1 /*
2 * Translation Block Maintenance
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/interval-tree.h"
22 #include "qemu/qtree.h"
23 #include "exec/cputlb.h"
24 #include "exec/log.h"
25 #include "exec/exec-all.h"
26 #include "exec/page-protection.h"
27 #include "exec/tb-flush.h"
28 #include "tb-internal.h"
29 #include "system/tcg.h"
30 #include "tcg/tcg.h"
31 #include "tb-hash.h"
32 #include "tb-context.h"
33 #include "tb-internal.h"
34 #include "internal-common.h"
35 #include "internal-target.h"
36 #ifdef CONFIG_USER_ONLY
37 #include "user/page-protection.h"
38 #endif
39
40
41 /* List iterators for lists of tagged pointers in TranslationBlock. */
42 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \
43 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
44 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
45 tb = (TranslationBlock *)((uintptr_t)tb & ~1))
46
47 #define TB_FOR_EACH_JMP(head_tb, tb, n) \
48 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
49
tb_cmp(const void * ap,const void * bp)50 static bool tb_cmp(const void *ap, const void *bp)
51 {
52 const TranslationBlock *a = ap;
53 const TranslationBlock *b = bp;
54
55 return ((tb_cflags(a) & CF_PCREL || a->pc == b->pc) &&
56 a->cs_base == b->cs_base &&
57 a->flags == b->flags &&
58 (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) &&
59 tb_page_addr0(a) == tb_page_addr0(b) &&
60 tb_page_addr1(a) == tb_page_addr1(b));
61 }
62
tb_htable_init(void)63 void tb_htable_init(void)
64 {
65 unsigned int mode = QHT_MODE_AUTO_RESIZE;
66
67 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
68 }
69
70 typedef struct PageDesc PageDesc;
71
72 #ifdef CONFIG_USER_ONLY
73
74 /*
75 * In user-mode page locks aren't used; mmap_lock is enough.
76 */
77 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
78
tb_lock_pages(const TranslationBlock * tb)79 static inline void tb_lock_pages(const TranslationBlock *tb) { }
80
81 /*
82 * For user-only, since we are protecting all of memory with a single lock,
83 * and because the two pages of a TranslationBlock are always contiguous,
84 * use a single data structure to record all TranslationBlocks.
85 */
86 static IntervalTreeRoot tb_root;
87
tb_remove_all(void)88 static void tb_remove_all(void)
89 {
90 assert_memory_lock();
91 memset(&tb_root, 0, sizeof(tb_root));
92 }
93
94 /* Call with mmap_lock held. */
tb_record(TranslationBlock * tb)95 static void tb_record(TranslationBlock *tb)
96 {
97 vaddr addr;
98 int flags;
99
100 assert_memory_lock();
101 tb->itree.last = tb->itree.start + tb->size - 1;
102
103 /* translator_loop() must have made all TB pages non-writable */
104 addr = tb_page_addr0(tb);
105 flags = page_get_flags(addr);
106 assert(!(flags & PAGE_WRITE));
107
108 addr = tb_page_addr1(tb);
109 if (addr != -1) {
110 flags = page_get_flags(addr);
111 assert(!(flags & PAGE_WRITE));
112 }
113
114 interval_tree_insert(&tb->itree, &tb_root);
115 }
116
117 /* Call with mmap_lock held. */
tb_remove(TranslationBlock * tb)118 static void tb_remove(TranslationBlock *tb)
119 {
120 assert_memory_lock();
121 interval_tree_remove(&tb->itree, &tb_root);
122 }
123
124 /* TODO: For now, still shared with translate-all.c for system mode. */
125 #define PAGE_FOR_EACH_TB(start, last, pagedesc, T, N) \
126 for (T = foreach_tb_first(start, last), \
127 N = foreach_tb_next(T, start, last); \
128 T != NULL; \
129 T = N, N = foreach_tb_next(N, start, last))
130
131 typedef TranslationBlock *PageForEachNext;
132
foreach_tb_first(tb_page_addr_t start,tb_page_addr_t last)133 static PageForEachNext foreach_tb_first(tb_page_addr_t start,
134 tb_page_addr_t last)
135 {
136 IntervalTreeNode *n = interval_tree_iter_first(&tb_root, start, last);
137 return n ? container_of(n, TranslationBlock, itree) : NULL;
138 }
139
foreach_tb_next(PageForEachNext tb,tb_page_addr_t start,tb_page_addr_t last)140 static PageForEachNext foreach_tb_next(PageForEachNext tb,
141 tb_page_addr_t start,
142 tb_page_addr_t last)
143 {
144 IntervalTreeNode *n;
145
146 if (tb) {
147 n = interval_tree_iter_next(&tb->itree, start, last);
148 if (n) {
149 return container_of(n, TranslationBlock, itree);
150 }
151 }
152 return NULL;
153 }
154
155 #else
156 /*
157 * In system mode we want L1_MAP to be based on ram offsets.
158 */
159 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
160 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
161 #else
162 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
163 #endif
164
165 /* Size of the L2 (and L3, etc) page tables. */
166 #define V_L2_BITS 10
167 #define V_L2_SIZE (1 << V_L2_BITS)
168
169 /*
170 * L1 Mapping properties
171 */
172 static int v_l1_size;
173 static int v_l1_shift;
174 static int v_l2_levels;
175
176 /*
177 * The bottom level has pointers to PageDesc, and is indexed by
178 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
179 */
180 #define V_L1_MIN_BITS 4
181 #define V_L1_MAX_BITS (V_L2_BITS + 3)
182 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
183
184 static void *l1_map[V_L1_MAX_SIZE];
185
186 struct PageDesc {
187 QemuSpin lock;
188 /* list of TBs intersecting this ram page */
189 uintptr_t first_tb;
190 };
191
page_table_config_init(void)192 void page_table_config_init(void)
193 {
194 uint32_t v_l1_bits;
195
196 assert(TARGET_PAGE_BITS);
197 /* The bits remaining after N lower levels of page tables. */
198 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
199 if (v_l1_bits < V_L1_MIN_BITS) {
200 v_l1_bits += V_L2_BITS;
201 }
202
203 v_l1_size = 1 << v_l1_bits;
204 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
205 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
206
207 assert(v_l1_bits <= V_L1_MAX_BITS);
208 assert(v_l1_shift % V_L2_BITS == 0);
209 assert(v_l2_levels >= 0);
210 }
211
page_find_alloc(tb_page_addr_t index,bool alloc)212 static PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc)
213 {
214 PageDesc *pd;
215 void **lp;
216
217 /* Level 1. Always allocated. */
218 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
219
220 /* Level 2..N-1. */
221 for (int i = v_l2_levels; i > 0; i--) {
222 void **p = qatomic_rcu_read(lp);
223
224 if (p == NULL) {
225 void *existing;
226
227 if (!alloc) {
228 return NULL;
229 }
230 p = g_new0(void *, V_L2_SIZE);
231 existing = qatomic_cmpxchg(lp, NULL, p);
232 if (unlikely(existing)) {
233 g_free(p);
234 p = existing;
235 }
236 }
237
238 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
239 }
240
241 pd = qatomic_rcu_read(lp);
242 if (pd == NULL) {
243 void *existing;
244
245 if (!alloc) {
246 return NULL;
247 }
248
249 pd = g_new0(PageDesc, V_L2_SIZE);
250 for (int i = 0; i < V_L2_SIZE; i++) {
251 qemu_spin_init(&pd[i].lock);
252 }
253
254 existing = qatomic_cmpxchg(lp, NULL, pd);
255 if (unlikely(existing)) {
256 for (int i = 0; i < V_L2_SIZE; i++) {
257 qemu_spin_destroy(&pd[i].lock);
258 }
259 g_free(pd);
260 pd = existing;
261 }
262 }
263
264 return pd + (index & (V_L2_SIZE - 1));
265 }
266
page_find(tb_page_addr_t index)267 static inline PageDesc *page_find(tb_page_addr_t index)
268 {
269 return page_find_alloc(index, false);
270 }
271
272 /**
273 * struct page_entry - page descriptor entry
274 * @pd: pointer to the &struct PageDesc of the page this entry represents
275 * @index: page index of the page
276 * @locked: whether the page is locked
277 *
278 * This struct helps us keep track of the locked state of a page, without
279 * bloating &struct PageDesc.
280 *
281 * A page lock protects accesses to all fields of &struct PageDesc.
282 *
283 * See also: &struct page_collection.
284 */
285 struct page_entry {
286 PageDesc *pd;
287 tb_page_addr_t index;
288 bool locked;
289 };
290
291 /**
292 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
293 * @tree: Binary search tree (BST) of the pages, with key == page index
294 * @max: Pointer to the page in @tree with the highest page index
295 *
296 * To avoid deadlock we lock pages in ascending order of page index.
297 * When operating on a set of pages, we need to keep track of them so that
298 * we can lock them in order and also unlock them later. For this we collect
299 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
300 * @tree implementation we use does not provide an O(1) operation to obtain the
301 * highest-ranked element, we use @max to keep track of the inserted page
302 * with the highest index. This is valuable because if a page is not in
303 * the tree and its index is higher than @max's, then we can lock it
304 * without breaking the locking order rule.
305 *
306 * Note on naming: 'struct page_set' would be shorter, but we already have a few
307 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
308 *
309 * See also: page_collection_lock().
310 */
311 struct page_collection {
312 QTree *tree;
313 struct page_entry *max;
314 };
315
316 typedef int PageForEachNext;
317 #define PAGE_FOR_EACH_TB(start, last, pagedesc, tb, n) \
318 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
319
320 #ifdef CONFIG_DEBUG_TCG
321
322 static __thread GHashTable *ht_pages_locked_debug;
323
ht_pages_locked_debug_init(void)324 static void ht_pages_locked_debug_init(void)
325 {
326 if (ht_pages_locked_debug) {
327 return;
328 }
329 ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
330 }
331
page_is_locked(const PageDesc * pd)332 static bool page_is_locked(const PageDesc *pd)
333 {
334 PageDesc *found;
335
336 ht_pages_locked_debug_init();
337 found = g_hash_table_lookup(ht_pages_locked_debug, pd);
338 return !!found;
339 }
340
page_lock__debug(PageDesc * pd)341 static void page_lock__debug(PageDesc *pd)
342 {
343 ht_pages_locked_debug_init();
344 g_assert(!page_is_locked(pd));
345 g_hash_table_insert(ht_pages_locked_debug, pd, pd);
346 }
347
page_unlock__debug(const PageDesc * pd)348 static void page_unlock__debug(const PageDesc *pd)
349 {
350 bool removed;
351
352 ht_pages_locked_debug_init();
353 g_assert(page_is_locked(pd));
354 removed = g_hash_table_remove(ht_pages_locked_debug, pd);
355 g_assert(removed);
356 }
357
do_assert_page_locked(const PageDesc * pd,const char * file,int line)358 static void do_assert_page_locked(const PageDesc *pd,
359 const char *file, int line)
360 {
361 if (unlikely(!page_is_locked(pd))) {
362 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
363 pd, file, line);
364 abort();
365 }
366 }
367 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
368
assert_no_pages_locked(void)369 void assert_no_pages_locked(void)
370 {
371 ht_pages_locked_debug_init();
372 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
373 }
374
375 #else /* !CONFIG_DEBUG_TCG */
376
page_lock__debug(const PageDesc * pd)377 static inline void page_lock__debug(const PageDesc *pd) { }
page_unlock__debug(const PageDesc * pd)378 static inline void page_unlock__debug(const PageDesc *pd) { }
assert_page_locked(const PageDesc * pd)379 static inline void assert_page_locked(const PageDesc *pd) { }
380
381 #endif /* CONFIG_DEBUG_TCG */
382
page_lock(PageDesc * pd)383 static void page_lock(PageDesc *pd)
384 {
385 page_lock__debug(pd);
386 qemu_spin_lock(&pd->lock);
387 }
388
389 /* Like qemu_spin_trylock, returns false on success */
page_trylock(PageDesc * pd)390 static bool page_trylock(PageDesc *pd)
391 {
392 bool busy = qemu_spin_trylock(&pd->lock);
393 if (!busy) {
394 page_lock__debug(pd);
395 }
396 return busy;
397 }
398
page_unlock(PageDesc * pd)399 static void page_unlock(PageDesc *pd)
400 {
401 qemu_spin_unlock(&pd->lock);
402 page_unlock__debug(pd);
403 }
404
tb_lock_page0(tb_page_addr_t paddr)405 void tb_lock_page0(tb_page_addr_t paddr)
406 {
407 page_lock(page_find_alloc(paddr >> TARGET_PAGE_BITS, true));
408 }
409
tb_lock_page1(tb_page_addr_t paddr0,tb_page_addr_t paddr1)410 void tb_lock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1)
411 {
412 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
413 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS;
414 PageDesc *pd0, *pd1;
415
416 if (pindex0 == pindex1) {
417 /* Identical pages, and the first page is already locked. */
418 return;
419 }
420
421 pd1 = page_find_alloc(pindex1, true);
422 if (pindex0 < pindex1) {
423 /* Correct locking order, we may block. */
424 page_lock(pd1);
425 return;
426 }
427
428 /* Incorrect locking order, we cannot block lest we deadlock. */
429 if (!page_trylock(pd1)) {
430 return;
431 }
432
433 /*
434 * Drop the lock on page0 and get both page locks in the right order.
435 * Restart translation via longjmp.
436 */
437 pd0 = page_find_alloc(pindex0, false);
438 page_unlock(pd0);
439 page_lock(pd1);
440 page_lock(pd0);
441 siglongjmp(tcg_ctx->jmp_trans, -3);
442 }
443
tb_unlock_page1(tb_page_addr_t paddr0,tb_page_addr_t paddr1)444 void tb_unlock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1)
445 {
446 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
447 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS;
448
449 if (pindex0 != pindex1) {
450 page_unlock(page_find_alloc(pindex1, false));
451 }
452 }
453
tb_lock_pages(TranslationBlock * tb)454 static void tb_lock_pages(TranslationBlock *tb)
455 {
456 tb_page_addr_t paddr0 = tb_page_addr0(tb);
457 tb_page_addr_t paddr1 = tb_page_addr1(tb);
458 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
459 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS;
460
461 if (unlikely(paddr0 == -1)) {
462 return;
463 }
464 if (unlikely(paddr1 != -1) && pindex0 != pindex1) {
465 if (pindex0 < pindex1) {
466 page_lock(page_find_alloc(pindex0, true));
467 page_lock(page_find_alloc(pindex1, true));
468 return;
469 }
470 page_lock(page_find_alloc(pindex1, true));
471 }
472 page_lock(page_find_alloc(pindex0, true));
473 }
474
tb_unlock_pages(TranslationBlock * tb)475 void tb_unlock_pages(TranslationBlock *tb)
476 {
477 tb_page_addr_t paddr0 = tb_page_addr0(tb);
478 tb_page_addr_t paddr1 = tb_page_addr1(tb);
479 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
480 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS;
481
482 if (unlikely(paddr0 == -1)) {
483 return;
484 }
485 if (unlikely(paddr1 != -1) && pindex0 != pindex1) {
486 page_unlock(page_find_alloc(pindex1, false));
487 }
488 page_unlock(page_find_alloc(pindex0, false));
489 }
490
491 static inline struct page_entry *
page_entry_new(PageDesc * pd,tb_page_addr_t index)492 page_entry_new(PageDesc *pd, tb_page_addr_t index)
493 {
494 struct page_entry *pe = g_malloc(sizeof(*pe));
495
496 pe->index = index;
497 pe->pd = pd;
498 pe->locked = false;
499 return pe;
500 }
501
page_entry_destroy(gpointer p)502 static void page_entry_destroy(gpointer p)
503 {
504 struct page_entry *pe = p;
505
506 g_assert(pe->locked);
507 page_unlock(pe->pd);
508 g_free(pe);
509 }
510
511 /* returns false on success */
page_entry_trylock(struct page_entry * pe)512 static bool page_entry_trylock(struct page_entry *pe)
513 {
514 bool busy = page_trylock(pe->pd);
515 if (!busy) {
516 g_assert(!pe->locked);
517 pe->locked = true;
518 }
519 return busy;
520 }
521
do_page_entry_lock(struct page_entry * pe)522 static void do_page_entry_lock(struct page_entry *pe)
523 {
524 page_lock(pe->pd);
525 g_assert(!pe->locked);
526 pe->locked = true;
527 }
528
page_entry_lock(gpointer key,gpointer value,gpointer data)529 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
530 {
531 struct page_entry *pe = value;
532
533 do_page_entry_lock(pe);
534 return FALSE;
535 }
536
page_entry_unlock(gpointer key,gpointer value,gpointer data)537 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
538 {
539 struct page_entry *pe = value;
540
541 if (pe->locked) {
542 pe->locked = false;
543 page_unlock(pe->pd);
544 }
545 return FALSE;
546 }
547
548 /*
549 * Trylock a page, and if successful, add the page to a collection.
550 * Returns true ("busy") if the page could not be locked; false otherwise.
551 */
page_trylock_add(struct page_collection * set,tb_page_addr_t addr)552 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
553 {
554 tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
555 struct page_entry *pe;
556 PageDesc *pd;
557
558 pe = q_tree_lookup(set->tree, &index);
559 if (pe) {
560 return false;
561 }
562
563 pd = page_find(index);
564 if (pd == NULL) {
565 return false;
566 }
567
568 pe = page_entry_new(pd, index);
569 q_tree_insert(set->tree, &pe->index, pe);
570
571 /*
572 * If this is either (1) the first insertion or (2) a page whose index
573 * is higher than any other so far, just lock the page and move on.
574 */
575 if (set->max == NULL || pe->index > set->max->index) {
576 set->max = pe;
577 do_page_entry_lock(pe);
578 return false;
579 }
580 /*
581 * Try to acquire out-of-order lock; if busy, return busy so that we acquire
582 * locks in order.
583 */
584 return page_entry_trylock(pe);
585 }
586
tb_page_addr_cmp(gconstpointer ap,gconstpointer bp,gpointer udata)587 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
588 {
589 tb_page_addr_t a = *(const tb_page_addr_t *)ap;
590 tb_page_addr_t b = *(const tb_page_addr_t *)bp;
591
592 if (a == b) {
593 return 0;
594 } else if (a < b) {
595 return -1;
596 }
597 return 1;
598 }
599
600 /*
601 * Lock a range of pages ([@start,@last]) as well as the pages of all
602 * intersecting TBs.
603 * Locking order: acquire locks in ascending order of page index.
604 */
page_collection_lock(tb_page_addr_t start,tb_page_addr_t last)605 static struct page_collection *page_collection_lock(tb_page_addr_t start,
606 tb_page_addr_t last)
607 {
608 struct page_collection *set = g_malloc(sizeof(*set));
609 tb_page_addr_t index;
610 PageDesc *pd;
611
612 start >>= TARGET_PAGE_BITS;
613 last >>= TARGET_PAGE_BITS;
614 g_assert(start <= last);
615
616 set->tree = q_tree_new_full(tb_page_addr_cmp, NULL, NULL,
617 page_entry_destroy);
618 set->max = NULL;
619 assert_no_pages_locked();
620
621 retry:
622 q_tree_foreach(set->tree, page_entry_lock, NULL);
623
624 for (index = start; index <= last; index++) {
625 TranslationBlock *tb;
626 PageForEachNext n;
627
628 pd = page_find(index);
629 if (pd == NULL) {
630 continue;
631 }
632 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
633 q_tree_foreach(set->tree, page_entry_unlock, NULL);
634 goto retry;
635 }
636 assert_page_locked(pd);
637 PAGE_FOR_EACH_TB(unused, unused, pd, tb, n) {
638 if (page_trylock_add(set, tb_page_addr0(tb)) ||
639 (tb_page_addr1(tb) != -1 &&
640 page_trylock_add(set, tb_page_addr1(tb)))) {
641 /* drop all locks, and reacquire in order */
642 q_tree_foreach(set->tree, page_entry_unlock, NULL);
643 goto retry;
644 }
645 }
646 }
647 return set;
648 }
649
page_collection_unlock(struct page_collection * set)650 static void page_collection_unlock(struct page_collection *set)
651 {
652 /* entries are unlocked and freed via page_entry_destroy */
653 q_tree_destroy(set->tree);
654 g_free(set);
655 }
656
657 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
tb_remove_all_1(int level,void ** lp)658 static void tb_remove_all_1(int level, void **lp)
659 {
660 int i;
661
662 if (*lp == NULL) {
663 return;
664 }
665 if (level == 0) {
666 PageDesc *pd = *lp;
667
668 for (i = 0; i < V_L2_SIZE; ++i) {
669 page_lock(&pd[i]);
670 pd[i].first_tb = (uintptr_t)NULL;
671 page_unlock(&pd[i]);
672 }
673 } else {
674 void **pp = *lp;
675
676 for (i = 0; i < V_L2_SIZE; ++i) {
677 tb_remove_all_1(level - 1, pp + i);
678 }
679 }
680 }
681
tb_remove_all(void)682 static void tb_remove_all(void)
683 {
684 int i, l1_sz = v_l1_size;
685
686 for (i = 0; i < l1_sz; i++) {
687 tb_remove_all_1(v_l2_levels, l1_map + i);
688 }
689 }
690
691 /*
692 * Add the tb in the target page and protect it if necessary.
693 * Called with @p->lock held.
694 */
tb_page_add(PageDesc * p,TranslationBlock * tb,unsigned int n)695 static void tb_page_add(PageDesc *p, TranslationBlock *tb, unsigned int n)
696 {
697 bool page_already_protected;
698
699 assert_page_locked(p);
700
701 tb->page_next[n] = p->first_tb;
702 page_already_protected = p->first_tb != 0;
703 p->first_tb = (uintptr_t)tb | n;
704
705 /*
706 * If some code is already present, then the pages are already
707 * protected. So we handle the case where only the first TB is
708 * allocated in a physical page.
709 */
710 if (!page_already_protected) {
711 tlb_protect_code(tb->page_addr[n] & TARGET_PAGE_MASK);
712 }
713 }
714
tb_record(TranslationBlock * tb)715 static void tb_record(TranslationBlock *tb)
716 {
717 tb_page_addr_t paddr0 = tb_page_addr0(tb);
718 tb_page_addr_t paddr1 = tb_page_addr1(tb);
719 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
720 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS;
721
722 assert(paddr0 != -1);
723 if (unlikely(paddr1 != -1) && pindex0 != pindex1) {
724 tb_page_add(page_find_alloc(pindex1, false), tb, 1);
725 }
726 tb_page_add(page_find_alloc(pindex0, false), tb, 0);
727 }
728
tb_page_remove(PageDesc * pd,TranslationBlock * tb)729 static void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
730 {
731 TranslationBlock *tb1;
732 uintptr_t *pprev;
733 PageForEachNext n1;
734
735 assert_page_locked(pd);
736 pprev = &pd->first_tb;
737 PAGE_FOR_EACH_TB(unused, unused, pd, tb1, n1) {
738 if (tb1 == tb) {
739 *pprev = tb1->page_next[n1];
740 return;
741 }
742 pprev = &tb1->page_next[n1];
743 }
744 g_assert_not_reached();
745 }
746
tb_remove(TranslationBlock * tb)747 static void tb_remove(TranslationBlock *tb)
748 {
749 tb_page_addr_t paddr0 = tb_page_addr0(tb);
750 tb_page_addr_t paddr1 = tb_page_addr1(tb);
751 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
752 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS;
753
754 assert(paddr0 != -1);
755 if (unlikely(paddr1 != -1) && pindex0 != pindex1) {
756 tb_page_remove(page_find_alloc(pindex1, false), tb);
757 }
758 tb_page_remove(page_find_alloc(pindex0, false), tb);
759 }
760 #endif /* CONFIG_USER_ONLY */
761
762 /* flush all the translation blocks */
do_tb_flush(CPUState * cpu,run_on_cpu_data tb_flush_count)763 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
764 {
765 bool did_flush = false;
766
767 mmap_lock();
768 /* If it is already been done on request of another CPU, just retry. */
769 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
770 goto done;
771 }
772 did_flush = true;
773
774 CPU_FOREACH(cpu) {
775 tcg_flush_jmp_cache(cpu);
776 }
777
778 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
779 tb_remove_all();
780
781 tcg_region_reset_all();
782 /* XXX: flush processor icache at this point if cache flush is expensive */
783 qatomic_inc(&tb_ctx.tb_flush_count);
784
785 done:
786 mmap_unlock();
787 if (did_flush) {
788 qemu_plugin_flush_cb();
789 }
790 }
791
tb_flush(CPUState * cpu)792 void tb_flush(CPUState *cpu)
793 {
794 if (tcg_enabled()) {
795 unsigned tb_flush_count = qatomic_read(&tb_ctx.tb_flush_count);
796
797 if (cpu_in_serial_context(cpu)) {
798 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
799 } else {
800 async_safe_run_on_cpu(cpu, do_tb_flush,
801 RUN_ON_CPU_HOST_INT(tb_flush_count));
802 }
803 }
804 }
805
806 /* remove @orig from its @n_orig-th jump list */
tb_remove_from_jmp_list(TranslationBlock * orig,int n_orig)807 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
808 {
809 uintptr_t ptr, ptr_locked;
810 TranslationBlock *dest;
811 TranslationBlock *tb;
812 uintptr_t *pprev;
813 int n;
814
815 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
816 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1);
817 dest = (TranslationBlock *)(ptr & ~1);
818 if (dest == NULL) {
819 return;
820 }
821
822 qemu_spin_lock(&dest->jmp_lock);
823 /*
824 * While acquiring the lock, the jump might have been removed if the
825 * destination TB was invalidated; check again.
826 */
827 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]);
828 if (ptr_locked != ptr) {
829 qemu_spin_unlock(&dest->jmp_lock);
830 /*
831 * The only possibility is that the jump was unlinked via
832 * tb_jump_unlink(dest). Seeing here another destination would be a bug,
833 * because we set the LSB above.
834 */
835 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
836 return;
837 }
838 /*
839 * We first acquired the lock, and since the destination pointer matches,
840 * we know for sure that @orig is in the jmp list.
841 */
842 pprev = &dest->jmp_list_head;
843 TB_FOR_EACH_JMP(dest, tb, n) {
844 if (tb == orig && n == n_orig) {
845 *pprev = tb->jmp_list_next[n];
846 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
847 qemu_spin_unlock(&dest->jmp_lock);
848 return;
849 }
850 pprev = &tb->jmp_list_next[n];
851 }
852 g_assert_not_reached();
853 }
854
855 /*
856 * Reset the jump entry 'n' of a TB so that it is not chained to another TB.
857 */
tb_reset_jump(TranslationBlock * tb,int n)858 void tb_reset_jump(TranslationBlock *tb, int n)
859 {
860 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
861 tb_set_jmp_target(tb, n, addr);
862 }
863
864 /* remove any jumps to the TB */
tb_jmp_unlink(TranslationBlock * dest)865 static inline void tb_jmp_unlink(TranslationBlock *dest)
866 {
867 TranslationBlock *tb;
868 int n;
869
870 qemu_spin_lock(&dest->jmp_lock);
871
872 TB_FOR_EACH_JMP(dest, tb, n) {
873 tb_reset_jump(tb, n);
874 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
875 /* No need to clear the list entry; setting the dest ptr is enough */
876 }
877 dest->jmp_list_head = (uintptr_t)NULL;
878
879 qemu_spin_unlock(&dest->jmp_lock);
880 }
881
tb_jmp_cache_inval_tb(TranslationBlock * tb)882 static void tb_jmp_cache_inval_tb(TranslationBlock *tb)
883 {
884 CPUState *cpu;
885
886 if (tb_cflags(tb) & CF_PCREL) {
887 /* A TB may be at any virtual address */
888 CPU_FOREACH(cpu) {
889 tcg_flush_jmp_cache(cpu);
890 }
891 } else {
892 uint32_t h = tb_jmp_cache_hash_func(tb->pc);
893
894 CPU_FOREACH(cpu) {
895 CPUJumpCache *jc = cpu->tb_jmp_cache;
896
897 if (qatomic_read(&jc->array[h].tb) == tb) {
898 qatomic_set(&jc->array[h].tb, NULL);
899 }
900 }
901 }
902 }
903
904 /*
905 * In user-mode, call with mmap_lock held.
906 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
907 * locks held.
908 */
do_tb_phys_invalidate(TranslationBlock * tb,bool rm_from_page_list)909 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
910 {
911 uint32_t h;
912 tb_page_addr_t phys_pc;
913 uint32_t orig_cflags = tb_cflags(tb);
914
915 assert_memory_lock();
916
917 /* make sure no further incoming jumps will be chained to this TB */
918 qemu_spin_lock(&tb->jmp_lock);
919 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID);
920 qemu_spin_unlock(&tb->jmp_lock);
921
922 /* remove the TB from the hash list */
923 phys_pc = tb_page_addr0(tb);
924 h = tb_hash_func(phys_pc, (orig_cflags & CF_PCREL ? 0 : tb->pc),
925 tb->flags, tb->cs_base, orig_cflags);
926 if (!qht_remove(&tb_ctx.htable, tb, h)) {
927 return;
928 }
929
930 /* remove the TB from the page list */
931 if (rm_from_page_list) {
932 tb_remove(tb);
933 }
934
935 /* remove the TB from the hash list */
936 tb_jmp_cache_inval_tb(tb);
937
938 /* suppress this TB from the two jump lists */
939 tb_remove_from_jmp_list(tb, 0);
940 tb_remove_from_jmp_list(tb, 1);
941
942 /* suppress any remaining jumps to this TB */
943 tb_jmp_unlink(tb);
944
945 qatomic_set(&tb_ctx.tb_phys_invalidate_count,
946 tb_ctx.tb_phys_invalidate_count + 1);
947 }
948
tb_phys_invalidate__locked(TranslationBlock * tb)949 static void tb_phys_invalidate__locked(TranslationBlock *tb)
950 {
951 qemu_thread_jit_write();
952 do_tb_phys_invalidate(tb, true);
953 qemu_thread_jit_execute();
954 }
955
956 /*
957 * Invalidate one TB.
958 * Called with mmap_lock held in user-mode.
959 */
tb_phys_invalidate(TranslationBlock * tb,tb_page_addr_t page_addr)960 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
961 {
962 if (page_addr == -1 && tb_page_addr0(tb) != -1) {
963 tb_lock_pages(tb);
964 do_tb_phys_invalidate(tb, true);
965 tb_unlock_pages(tb);
966 } else {
967 do_tb_phys_invalidate(tb, false);
968 }
969 }
970
971 /*
972 * Add a new TB and link it to the physical page tables.
973 * Called with mmap_lock held for user-mode emulation.
974 *
975 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
976 * Note that in !user-mode, another thread might have already added a TB
977 * for the same block of guest code that @tb corresponds to. In that case,
978 * the caller should discard the original @tb, and use instead the returned TB.
979 */
tb_link_page(TranslationBlock * tb)980 TranslationBlock *tb_link_page(TranslationBlock *tb)
981 {
982 void *existing_tb = NULL;
983 uint32_t h;
984
985 assert_memory_lock();
986 tcg_debug_assert(!(tb->cflags & CF_INVALID));
987
988 tb_record(tb);
989
990 /* add in the hash table */
991 h = tb_hash_func(tb_page_addr0(tb), (tb->cflags & CF_PCREL ? 0 : tb->pc),
992 tb->flags, tb->cs_base, tb->cflags);
993 qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
994
995 /* remove TB from the page(s) if we couldn't insert it */
996 if (unlikely(existing_tb)) {
997 tb_remove(tb);
998 tb_unlock_pages(tb);
999 return existing_tb;
1000 }
1001
1002 tb_unlock_pages(tb);
1003 return tb;
1004 }
1005
1006 #ifdef CONFIG_USER_ONLY
1007 /*
1008 * Invalidate all TBs which intersect with the target address range.
1009 * Called with mmap_lock held for user-mode emulation.
1010 * NOTE: this function must not be called while a TB is running.
1011 */
tb_invalidate_phys_range(tb_page_addr_t start,tb_page_addr_t last)1012 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last)
1013 {
1014 TranslationBlock *tb;
1015 PageForEachNext n;
1016
1017 assert_memory_lock();
1018
1019 PAGE_FOR_EACH_TB(start, last, unused, tb, n) {
1020 tb_phys_invalidate__locked(tb);
1021 }
1022 }
1023
1024 /*
1025 * Invalidate all TBs which intersect with the target address page @addr.
1026 * Called with mmap_lock held for user-mode emulation
1027 * NOTE: this function must not be called while a TB is running.
1028 */
tb_invalidate_phys_page(tb_page_addr_t addr)1029 static void tb_invalidate_phys_page(tb_page_addr_t addr)
1030 {
1031 tb_page_addr_t start, last;
1032
1033 start = addr & TARGET_PAGE_MASK;
1034 last = addr | ~TARGET_PAGE_MASK;
1035 tb_invalidate_phys_range(start, last);
1036 }
1037
1038 /*
1039 * Called with mmap_lock held. If pc is not 0 then it indicates the
1040 * host PC of the faulting store instruction that caused this invalidate.
1041 * Returns true if the caller needs to abort execution of the current
1042 * TB (because it was modified by this store and the guest CPU has
1043 * precise-SMC semantics).
1044 */
tb_invalidate_phys_page_unwind(tb_page_addr_t addr,uintptr_t pc)1045 bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc)
1046 {
1047 TranslationBlock *current_tb;
1048 bool current_tb_modified;
1049 TranslationBlock *tb;
1050 PageForEachNext n;
1051 tb_page_addr_t last;
1052
1053 /*
1054 * Without precise smc semantics, or when outside of a TB,
1055 * we can skip to invalidate.
1056 */
1057 #ifndef TARGET_HAS_PRECISE_SMC
1058 pc = 0;
1059 #endif
1060 if (!pc) {
1061 tb_invalidate_phys_page(addr);
1062 return false;
1063 }
1064
1065 assert_memory_lock();
1066 current_tb = tcg_tb_lookup(pc);
1067
1068 last = addr | ~TARGET_PAGE_MASK;
1069 addr &= TARGET_PAGE_MASK;
1070 current_tb_modified = false;
1071
1072 PAGE_FOR_EACH_TB(addr, last, unused, tb, n) {
1073 if (current_tb == tb &&
1074 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1075 /*
1076 * If we are modifying the current TB, we must stop its
1077 * execution. We could be more precise by checking that
1078 * the modification is after the current PC, but it would
1079 * require a specialized function to partially restore
1080 * the CPU state.
1081 */
1082 current_tb_modified = true;
1083 cpu_restore_state_from_tb(current_cpu, current_tb, pc);
1084 }
1085 tb_phys_invalidate__locked(tb);
1086 }
1087
1088 if (current_tb_modified) {
1089 /* Force execution of one insn next time. */
1090 CPUState *cpu = current_cpu;
1091 cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu);
1092 return true;
1093 }
1094 return false;
1095 }
1096 #else
1097 /*
1098 * @p must be non-NULL.
1099 * Call with all @pages locked.
1100 */
1101 static void
tb_invalidate_phys_page_range__locked(struct page_collection * pages,PageDesc * p,tb_page_addr_t start,tb_page_addr_t last,uintptr_t retaddr)1102 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1103 PageDesc *p, tb_page_addr_t start,
1104 tb_page_addr_t last,
1105 uintptr_t retaddr)
1106 {
1107 TranslationBlock *tb;
1108 PageForEachNext n;
1109 #ifdef TARGET_HAS_PRECISE_SMC
1110 bool current_tb_modified = false;
1111 TranslationBlock *current_tb = retaddr ? tcg_tb_lookup(retaddr) : NULL;
1112 #endif /* TARGET_HAS_PRECISE_SMC */
1113
1114 /* Range may not cross a page. */
1115 tcg_debug_assert(((start ^ last) & TARGET_PAGE_MASK) == 0);
1116
1117 /*
1118 * We remove all the TBs in the range [start, last].
1119 * XXX: see if in some cases it could be faster to invalidate all the code
1120 */
1121 PAGE_FOR_EACH_TB(start, last, p, tb, n) {
1122 tb_page_addr_t tb_start, tb_last;
1123
1124 /* NOTE: this is subtle as a TB may span two physical pages */
1125 tb_start = tb_page_addr0(tb);
1126 tb_last = tb_start + tb->size - 1;
1127 if (n == 0) {
1128 tb_last = MIN(tb_last, tb_start | ~TARGET_PAGE_MASK);
1129 } else {
1130 tb_start = tb_page_addr1(tb);
1131 tb_last = tb_start + (tb_last & ~TARGET_PAGE_MASK);
1132 }
1133 if (!(tb_last < start || tb_start > last)) {
1134 #ifdef TARGET_HAS_PRECISE_SMC
1135 if (current_tb == tb &&
1136 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1137 /*
1138 * If we are modifying the current TB, we must stop
1139 * its execution. We could be more precise by checking
1140 * that the modification is after the current PC, but it
1141 * would require a specialized function to partially
1142 * restore the CPU state.
1143 */
1144 current_tb_modified = true;
1145 cpu_restore_state_from_tb(current_cpu, current_tb, retaddr);
1146 }
1147 #endif /* TARGET_HAS_PRECISE_SMC */
1148 tb_phys_invalidate__locked(tb);
1149 }
1150 }
1151
1152 /* if no code remaining, no need to continue to use slow writes */
1153 if (!p->first_tb) {
1154 tlb_unprotect_code(start);
1155 }
1156
1157 #ifdef TARGET_HAS_PRECISE_SMC
1158 if (current_tb_modified) {
1159 page_collection_unlock(pages);
1160 /* Force execution of one insn next time. */
1161 current_cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu);
1162 mmap_unlock();
1163 cpu_loop_exit_noexc(current_cpu);
1164 }
1165 #endif
1166 }
1167
1168 /*
1169 * Invalidate all TBs which intersect with the target physical address range
1170 * [start;last]. NOTE: start and end may refer to *different* physical pages.
1171 * 'is_cpu_write_access' should be true if called from a real cpu write
1172 * access: the virtual CPU will exit the current TB if code is modified inside
1173 * this TB.
1174 */
tb_invalidate_phys_range(tb_page_addr_t start,tb_page_addr_t last)1175 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last)
1176 {
1177 struct page_collection *pages;
1178 tb_page_addr_t index, index_last;
1179
1180 pages = page_collection_lock(start, last);
1181
1182 index_last = last >> TARGET_PAGE_BITS;
1183 for (index = start >> TARGET_PAGE_BITS; index <= index_last; index++) {
1184 PageDesc *pd = page_find(index);
1185 tb_page_addr_t page_start, page_last;
1186
1187 if (pd == NULL) {
1188 continue;
1189 }
1190 assert_page_locked(pd);
1191 page_start = index << TARGET_PAGE_BITS;
1192 page_last = page_start | ~TARGET_PAGE_MASK;
1193 page_last = MIN(page_last, last);
1194 tb_invalidate_phys_page_range__locked(pages, pd,
1195 page_start, page_last, 0);
1196 }
1197 page_collection_unlock(pages);
1198 }
1199
1200 /*
1201 * Call with all @pages in the range [@start, @start + len[ locked.
1202 */
tb_invalidate_phys_page_fast__locked(struct page_collection * pages,tb_page_addr_t start,unsigned len,uintptr_t ra)1203 static void tb_invalidate_phys_page_fast__locked(struct page_collection *pages,
1204 tb_page_addr_t start,
1205 unsigned len, uintptr_t ra)
1206 {
1207 PageDesc *p;
1208
1209 p = page_find(start >> TARGET_PAGE_BITS);
1210 if (!p) {
1211 return;
1212 }
1213
1214 assert_page_locked(p);
1215 tb_invalidate_phys_page_range__locked(pages, p, start, start + len - 1, ra);
1216 }
1217
1218 /*
1219 * len must be <= 8 and start must be a multiple of len.
1220 * Called via softmmu_template.h when code areas are written to with
1221 * iothread mutex not held.
1222 */
tb_invalidate_phys_range_fast(ram_addr_t ram_addr,unsigned size,uintptr_t retaddr)1223 void tb_invalidate_phys_range_fast(ram_addr_t ram_addr,
1224 unsigned size,
1225 uintptr_t retaddr)
1226 {
1227 struct page_collection *pages;
1228
1229 pages = page_collection_lock(ram_addr, ram_addr + size - 1);
1230 tb_invalidate_phys_page_fast__locked(pages, ram_addr, size, retaddr);
1231 page_collection_unlock(pages);
1232 }
1233
1234 #endif /* CONFIG_USER_ONLY */
1235