1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17
18 #include "internal.h"
19
20 struct regmap_irq_chip_data {
21 struct mutex lock;
22 struct irq_chip irq_chip;
23
24 struct regmap *map;
25 const struct regmap_irq_chip *chip;
26
27 int irq_base;
28 struct irq_domain *domain;
29
30 int irq;
31 int wake_count;
32
33 void *status_reg_buf;
34 unsigned int *main_status_buf;
35 unsigned int *status_buf;
36 unsigned int *mask_buf;
37 unsigned int *mask_buf_def;
38 unsigned int *wake_buf;
39 unsigned int *type_buf;
40 unsigned int *type_buf_def;
41 unsigned int **config_buf;
42
43 unsigned int irq_reg_stride;
44
45 unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
46 unsigned int base, int index);
47
48 unsigned int clear_status:1;
49 };
50
51 static inline const
irq_to_regmap_irq(struct regmap_irq_chip_data * data,int irq)52 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
53 int irq)
54 {
55 return &data->chip->irqs[irq];
56 }
57
regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data * data)58 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
59 {
60 struct regmap *map = data->map;
61
62 /*
63 * While possible that a user-defined ->get_irq_reg() callback might
64 * be linear enough to support bulk reads, most of the time it won't.
65 * Therefore only allow them if the default callback is being used.
66 */
67 return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
68 data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
69 !map->use_single_read;
70 }
71
regmap_irq_lock(struct irq_data * data)72 static void regmap_irq_lock(struct irq_data *data)
73 {
74 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75
76 mutex_lock(&d->lock);
77 }
78
regmap_irq_sync_unlock(struct irq_data * data)79 static void regmap_irq_sync_unlock(struct irq_data *data)
80 {
81 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
82 struct regmap *map = d->map;
83 int i, j, ret;
84 u32 reg;
85 u32 val;
86
87 if (d->chip->runtime_pm) {
88 ret = pm_runtime_get_sync(map->dev);
89 if (ret < 0)
90 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
91 ret);
92 }
93
94 if (d->clear_status) {
95 for (i = 0; i < d->chip->num_regs; i++) {
96 reg = d->get_irq_reg(d, d->chip->status_base, i);
97
98 ret = regmap_read(map, reg, &val);
99 if (ret)
100 dev_err(d->map->dev,
101 "Failed to clear the interrupt status bits\n");
102 }
103
104 d->clear_status = false;
105 }
106
107 /*
108 * If there's been a change in the mask write it back to the
109 * hardware. We rely on the use of the regmap core cache to
110 * suppress pointless writes.
111 */
112 for (i = 0; i < d->chip->num_regs; i++) {
113 if (d->chip->handle_mask_sync)
114 d->chip->handle_mask_sync(i, d->mask_buf_def[i],
115 d->mask_buf[i],
116 d->chip->irq_drv_data);
117
118 if (d->chip->mask_base && !d->chip->handle_mask_sync) {
119 reg = d->get_irq_reg(d, d->chip->mask_base, i);
120 ret = regmap_update_bits(d->map, reg,
121 d->mask_buf_def[i],
122 d->mask_buf[i]);
123 if (ret)
124 dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
125 }
126
127 if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
128 reg = d->get_irq_reg(d, d->chip->unmask_base, i);
129 ret = regmap_update_bits(d->map, reg,
130 d->mask_buf_def[i], ~d->mask_buf[i]);
131 if (ret)
132 dev_err(d->map->dev, "Failed to sync masks in %x\n",
133 reg);
134 }
135
136 reg = d->get_irq_reg(d, d->chip->wake_base, i);
137 if (d->wake_buf) {
138 if (d->chip->wake_invert)
139 ret = regmap_update_bits(d->map, reg,
140 d->mask_buf_def[i],
141 ~d->wake_buf[i]);
142 else
143 ret = regmap_update_bits(d->map, reg,
144 d->mask_buf_def[i],
145 d->wake_buf[i]);
146 if (ret != 0)
147 dev_err(d->map->dev,
148 "Failed to sync wakes in %x: %d\n",
149 reg, ret);
150 }
151
152 if (!d->chip->init_ack_masked)
153 continue;
154 /*
155 * Ack all the masked interrupts unconditionally,
156 * OR if there is masked interrupt which hasn't been Acked,
157 * it'll be ignored in irq handler, then may introduce irq storm
158 */
159 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
160 reg = d->get_irq_reg(d, d->chip->ack_base, i);
161
162 /* some chips ack by write 0 */
163 if (d->chip->ack_invert)
164 ret = regmap_write(map, reg, ~d->mask_buf[i]);
165 else
166 ret = regmap_write(map, reg, d->mask_buf[i]);
167 if (d->chip->clear_ack) {
168 if (d->chip->ack_invert && !ret)
169 ret = regmap_write(map, reg, UINT_MAX);
170 else if (!ret)
171 ret = regmap_write(map, reg, 0);
172 }
173 if (ret != 0)
174 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
175 reg, ret);
176 }
177 }
178
179 for (i = 0; i < d->chip->num_config_bases; i++) {
180 for (j = 0; j < d->chip->num_config_regs; j++) {
181 reg = d->get_irq_reg(d, d->chip->config_base[i], j);
182 ret = regmap_write(map, reg, d->config_buf[i][j]);
183 if (ret)
184 dev_err(d->map->dev,
185 "Failed to write config %x: %d\n",
186 reg, ret);
187 }
188 }
189
190 if (d->chip->runtime_pm)
191 pm_runtime_put(map->dev);
192
193 /* If we've changed our wakeup count propagate it to the parent */
194 if (d->wake_count < 0)
195 for (i = d->wake_count; i < 0; i++)
196 irq_set_irq_wake(d->irq, 0);
197 else if (d->wake_count > 0)
198 for (i = 0; i < d->wake_count; i++)
199 irq_set_irq_wake(d->irq, 1);
200
201 d->wake_count = 0;
202
203 mutex_unlock(&d->lock);
204 }
205
regmap_irq_enable(struct irq_data * data)206 static void regmap_irq_enable(struct irq_data *data)
207 {
208 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
209 struct regmap *map = d->map;
210 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
211 unsigned int reg = irq_data->reg_offset / map->reg_stride;
212 unsigned int mask;
213
214 /*
215 * The type_in_mask flag means that the underlying hardware uses
216 * separate mask bits for each interrupt trigger type, but we want
217 * to have a single logical interrupt with a configurable type.
218 *
219 * If the interrupt we're enabling defines any supported types
220 * then instead of using the regular mask bits for this interrupt,
221 * use the value previously written to the type buffer at the
222 * corresponding offset in regmap_irq_set_type().
223 */
224 if (d->chip->type_in_mask && irq_data->type.types_supported)
225 mask = d->type_buf[reg] & irq_data->mask;
226 else
227 mask = irq_data->mask;
228
229 if (d->chip->clear_on_unmask)
230 d->clear_status = true;
231
232 d->mask_buf[reg] &= ~mask;
233 }
234
regmap_irq_disable(struct irq_data * data)235 static void regmap_irq_disable(struct irq_data *data)
236 {
237 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
238 struct regmap *map = d->map;
239 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
240
241 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
242 }
243
regmap_irq_set_type(struct irq_data * data,unsigned int type)244 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
245 {
246 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
247 struct regmap *map = d->map;
248 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
249 int reg, ret;
250 const struct regmap_irq_type *t = &irq_data->type;
251
252 if ((t->types_supported & type) != type)
253 return 0;
254
255 reg = t->type_reg_offset / map->reg_stride;
256
257 if (d->chip->type_in_mask) {
258 ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
259 irq_data, reg, d->chip->irq_drv_data);
260 if (ret)
261 return ret;
262 }
263
264 if (d->chip->set_type_config) {
265 ret = d->chip->set_type_config(d->config_buf, type, irq_data,
266 reg, d->chip->irq_drv_data);
267 if (ret)
268 return ret;
269 }
270
271 return 0;
272 }
273
regmap_irq_set_wake(struct irq_data * data,unsigned int on)274 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
275 {
276 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
277 struct regmap *map = d->map;
278 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
279
280 if (on) {
281 if (d->wake_buf)
282 d->wake_buf[irq_data->reg_offset / map->reg_stride]
283 &= ~irq_data->mask;
284 d->wake_count++;
285 } else {
286 if (d->wake_buf)
287 d->wake_buf[irq_data->reg_offset / map->reg_stride]
288 |= irq_data->mask;
289 d->wake_count--;
290 }
291
292 return 0;
293 }
294
295 static const struct irq_chip regmap_irq_chip = {
296 .irq_bus_lock = regmap_irq_lock,
297 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
298 .irq_disable = regmap_irq_disable,
299 .irq_enable = regmap_irq_enable,
300 .irq_set_type = regmap_irq_set_type,
301 .irq_set_wake = regmap_irq_set_wake,
302 };
303
read_sub_irq_data(struct regmap_irq_chip_data * data,unsigned int b)304 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
305 unsigned int b)
306 {
307 const struct regmap_irq_chip *chip = data->chip;
308 struct regmap *map = data->map;
309 struct regmap_irq_sub_irq_map *subreg;
310 unsigned int reg;
311 int i, ret = 0;
312
313 if (!chip->sub_reg_offsets) {
314 reg = data->get_irq_reg(data, chip->status_base, b);
315 ret = regmap_read(map, reg, &data->status_buf[b]);
316 } else {
317 /*
318 * Note we can't use ->get_irq_reg() here because the offsets
319 * in 'subreg' are *not* interchangeable with indices.
320 */
321 subreg = &chip->sub_reg_offsets[b];
322 for (i = 0; i < subreg->num_regs; i++) {
323 unsigned int offset = subreg->offset[i];
324 unsigned int index = offset / map->reg_stride;
325
326 ret = regmap_read(map, chip->status_base + offset,
327 &data->status_buf[index]);
328 if (ret)
329 break;
330 }
331 }
332 return ret;
333 }
334
regmap_irq_thread(int irq,void * d)335 static irqreturn_t regmap_irq_thread(int irq, void *d)
336 {
337 struct regmap_irq_chip_data *data = d;
338 const struct regmap_irq_chip *chip = data->chip;
339 struct regmap *map = data->map;
340 int ret, i;
341 bool handled = false;
342 u32 reg;
343
344 if (chip->handle_pre_irq)
345 chip->handle_pre_irq(chip->irq_drv_data);
346
347 if (chip->runtime_pm) {
348 ret = pm_runtime_get_sync(map->dev);
349 if (ret < 0) {
350 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
351 ret);
352 goto exit;
353 }
354 }
355
356 /*
357 * Read only registers with active IRQs if the chip has 'main status
358 * register'. Else read in the statuses, using a single bulk read if
359 * possible in order to reduce the I/O overheads.
360 */
361
362 if (chip->no_status) {
363 /* no status register so default to all active */
364 memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
365 } else if (chip->num_main_regs) {
366 unsigned int max_main_bits;
367 unsigned long size;
368
369 size = chip->num_regs * sizeof(unsigned int);
370
371 max_main_bits = (chip->num_main_status_bits) ?
372 chip->num_main_status_bits : chip->num_regs;
373 /* Clear the status buf as we don't read all status regs */
374 memset(data->status_buf, 0, size);
375
376 /* We could support bulk read for main status registers
377 * but I don't expect to see devices with really many main
378 * status registers so let's only support single reads for the
379 * sake of simplicity. and add bulk reads only if needed
380 */
381 for (i = 0; i < chip->num_main_regs; i++) {
382 reg = data->get_irq_reg(data, chip->main_status, i);
383 ret = regmap_read(map, reg, &data->main_status_buf[i]);
384 if (ret) {
385 dev_err(map->dev,
386 "Failed to read IRQ status %d\n",
387 ret);
388 goto exit;
389 }
390 }
391
392 /* Read sub registers with active IRQs */
393 for (i = 0; i < chip->num_main_regs; i++) {
394 unsigned int b;
395 const unsigned long mreg = data->main_status_buf[i];
396
397 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
398 if (i * map->format.val_bytes * 8 + b >
399 max_main_bits)
400 break;
401 ret = read_sub_irq_data(data, b);
402
403 if (ret != 0) {
404 dev_err(map->dev,
405 "Failed to read IRQ status %d\n",
406 ret);
407 goto exit;
408 }
409 }
410
411 }
412 } else if (regmap_irq_can_bulk_read_status(data)) {
413
414 u8 *buf8 = data->status_reg_buf;
415 u16 *buf16 = data->status_reg_buf;
416 u32 *buf32 = data->status_reg_buf;
417
418 BUG_ON(!data->status_reg_buf);
419
420 ret = regmap_bulk_read(map, chip->status_base,
421 data->status_reg_buf,
422 chip->num_regs);
423 if (ret != 0) {
424 dev_err(map->dev, "Failed to read IRQ status: %d\n",
425 ret);
426 goto exit;
427 }
428
429 for (i = 0; i < data->chip->num_regs; i++) {
430 switch (map->format.val_bytes) {
431 case 1:
432 data->status_buf[i] = buf8[i];
433 break;
434 case 2:
435 data->status_buf[i] = buf16[i];
436 break;
437 case 4:
438 data->status_buf[i] = buf32[i];
439 break;
440 default:
441 BUG();
442 goto exit;
443 }
444 }
445
446 } else {
447 for (i = 0; i < data->chip->num_regs; i++) {
448 unsigned int reg = data->get_irq_reg(data,
449 data->chip->status_base, i);
450 ret = regmap_read(map, reg, &data->status_buf[i]);
451
452 if (ret != 0) {
453 dev_err(map->dev,
454 "Failed to read IRQ status: %d\n",
455 ret);
456 goto exit;
457 }
458 }
459 }
460
461 if (chip->status_invert)
462 for (i = 0; i < data->chip->num_regs; i++)
463 data->status_buf[i] = ~data->status_buf[i];
464
465 /*
466 * Ignore masked IRQs and ack if we need to; we ack early so
467 * there is no race between handling and acknowledging the
468 * interrupt. We assume that typically few of the interrupts
469 * will fire simultaneously so don't worry about overhead from
470 * doing a write per register.
471 */
472 for (i = 0; i < data->chip->num_regs; i++) {
473 data->status_buf[i] &= ~data->mask_buf[i];
474
475 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
476 reg = data->get_irq_reg(data, data->chip->ack_base, i);
477
478 if (chip->ack_invert)
479 ret = regmap_write(map, reg,
480 ~data->status_buf[i]);
481 else
482 ret = regmap_write(map, reg,
483 data->status_buf[i]);
484 if (chip->clear_ack) {
485 if (chip->ack_invert && !ret)
486 ret = regmap_write(map, reg, UINT_MAX);
487 else if (!ret)
488 ret = regmap_write(map, reg, 0);
489 }
490 if (ret != 0)
491 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
492 reg, ret);
493 }
494 }
495
496 for (i = 0; i < chip->num_irqs; i++) {
497 if (data->status_buf[chip->irqs[i].reg_offset /
498 map->reg_stride] & chip->irqs[i].mask) {
499 handle_nested_irq(irq_find_mapping(data->domain, i));
500 handled = true;
501 }
502 }
503
504 exit:
505 if (chip->handle_post_irq)
506 chip->handle_post_irq(chip->irq_drv_data);
507
508 if (chip->runtime_pm)
509 pm_runtime_put(map->dev);
510
511 if (handled)
512 return IRQ_HANDLED;
513 else
514 return IRQ_NONE;
515 }
516
517 static struct lock_class_key regmap_irq_lock_class;
518 static struct lock_class_key regmap_irq_request_class;
519
regmap_irq_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)520 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
521 irq_hw_number_t hw)
522 {
523 struct regmap_irq_chip_data *data = h->host_data;
524
525 irq_set_chip_data(virq, data);
526 irq_set_lockdep_class(virq, ®map_irq_lock_class, ®map_irq_request_class);
527 irq_set_chip(virq, &data->irq_chip);
528 irq_set_nested_thread(virq, 1);
529 irq_set_parent(virq, data->irq);
530 irq_set_noprobe(virq);
531
532 return 0;
533 }
534
535 static const struct irq_domain_ops regmap_domain_ops = {
536 .map = regmap_irq_map,
537 .xlate = irq_domain_xlate_onetwocell,
538 };
539
540 /**
541 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
542 * @data: Data for the &struct regmap_irq_chip
543 * @base: Base register
544 * @index: Register index
545 *
546 * Returns the register address corresponding to the given @base and @index
547 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
548 */
regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data * data,unsigned int base,int index)549 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
550 unsigned int base, int index)
551 {
552 struct regmap *map = data->map;
553
554 return base + index * map->reg_stride * data->irq_reg_stride;
555 }
556 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
557
558 /**
559 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
560 * @buf: Buffer containing configuration register values, this is a 2D array of
561 * `num_config_bases` rows, each of `num_config_regs` elements.
562 * @type: The requested IRQ type.
563 * @irq_data: The IRQ being configured.
564 * @idx: Index of the irq's config registers within each array `buf[i]`
565 * @irq_drv_data: Driver specific IRQ data
566 *
567 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
568 * chips with one config register. Register values are updated according to
569 * the &struct regmap_irq_type data associated with an IRQ.
570 */
regmap_irq_set_type_config_simple(unsigned int ** buf,unsigned int type,const struct regmap_irq * irq_data,int idx,void * irq_drv_data)571 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
572 const struct regmap_irq *irq_data,
573 int idx, void *irq_drv_data)
574 {
575 const struct regmap_irq_type *t = &irq_data->type;
576
577 if (t->type_reg_mask)
578 buf[0][idx] &= ~t->type_reg_mask;
579 else
580 buf[0][idx] &= ~(t->type_falling_val |
581 t->type_rising_val |
582 t->type_level_low_val |
583 t->type_level_high_val);
584
585 switch (type) {
586 case IRQ_TYPE_EDGE_FALLING:
587 buf[0][idx] |= t->type_falling_val;
588 break;
589
590 case IRQ_TYPE_EDGE_RISING:
591 buf[0][idx] |= t->type_rising_val;
592 break;
593
594 case IRQ_TYPE_EDGE_BOTH:
595 buf[0][idx] |= (t->type_falling_val |
596 t->type_rising_val);
597 break;
598
599 case IRQ_TYPE_LEVEL_HIGH:
600 buf[0][idx] |= t->type_level_high_val;
601 break;
602
603 case IRQ_TYPE_LEVEL_LOW:
604 buf[0][idx] |= t->type_level_low_val;
605 break;
606
607 default:
608 return -EINVAL;
609 }
610
611 return 0;
612 }
613 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
614
615 /**
616 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
617 *
618 * @fwnode: The firmware node where the IRQ domain should be added to.
619 * @map: The regmap for the device.
620 * @irq: The IRQ the device uses to signal interrupts.
621 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
622 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
623 * @chip: Configuration for the interrupt controller.
624 * @data: Runtime data structure for the controller, allocated on success.
625 *
626 * Returns 0 on success or an errno on failure.
627 *
628 * In order for this to be efficient the chip really should use a
629 * register cache. The chip driver is responsible for restoring the
630 * register values used by the IRQ controller over suspend and resume.
631 */
regmap_add_irq_chip_fwnode(struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)632 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
633 struct regmap *map, int irq,
634 int irq_flags, int irq_base,
635 const struct regmap_irq_chip *chip,
636 struct regmap_irq_chip_data **data)
637 {
638 struct regmap_irq_chip_data *d;
639 int i;
640 int ret = -ENOMEM;
641 u32 reg;
642
643 if (chip->num_regs <= 0)
644 return -EINVAL;
645
646 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
647 return -EINVAL;
648
649 if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
650 return -EINVAL;
651
652 for (i = 0; i < chip->num_irqs; i++) {
653 if (chip->irqs[i].reg_offset % map->reg_stride)
654 return -EINVAL;
655 if (chip->irqs[i].reg_offset / map->reg_stride >=
656 chip->num_regs)
657 return -EINVAL;
658 }
659
660 if (irq_base) {
661 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
662 if (irq_base < 0) {
663 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
664 irq_base);
665 return irq_base;
666 }
667 }
668
669 d = kzalloc(sizeof(*d), GFP_KERNEL);
670 if (!d)
671 return -ENOMEM;
672
673 if (chip->num_main_regs) {
674 d->main_status_buf = kcalloc(chip->num_main_regs,
675 sizeof(*d->main_status_buf),
676 GFP_KERNEL);
677
678 if (!d->main_status_buf)
679 goto err_alloc;
680 }
681
682 d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
683 GFP_KERNEL);
684 if (!d->status_buf)
685 goto err_alloc;
686
687 d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
688 GFP_KERNEL);
689 if (!d->mask_buf)
690 goto err_alloc;
691
692 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
693 GFP_KERNEL);
694 if (!d->mask_buf_def)
695 goto err_alloc;
696
697 if (chip->wake_base) {
698 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
699 GFP_KERNEL);
700 if (!d->wake_buf)
701 goto err_alloc;
702 }
703
704 if (chip->type_in_mask) {
705 d->type_buf_def = kcalloc(chip->num_regs,
706 sizeof(*d->type_buf_def), GFP_KERNEL);
707 if (!d->type_buf_def)
708 goto err_alloc;
709
710 d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
711 if (!d->type_buf)
712 goto err_alloc;
713 }
714
715 if (chip->num_config_bases && chip->num_config_regs) {
716 /*
717 * Create config_buf[num_config_bases][num_config_regs]
718 */
719 d->config_buf = kcalloc(chip->num_config_bases,
720 sizeof(*d->config_buf), GFP_KERNEL);
721 if (!d->config_buf)
722 goto err_alloc;
723
724 for (i = 0; i < chip->num_config_bases; i++) {
725 d->config_buf[i] = kcalloc(chip->num_config_regs,
726 sizeof(**d->config_buf),
727 GFP_KERNEL);
728 if (!d->config_buf[i])
729 goto err_alloc;
730 }
731 }
732
733 d->irq_chip = regmap_irq_chip;
734 d->irq_chip.name = chip->name;
735 d->irq = irq;
736 d->map = map;
737 d->chip = chip;
738 d->irq_base = irq_base;
739
740 if (chip->irq_reg_stride)
741 d->irq_reg_stride = chip->irq_reg_stride;
742 else
743 d->irq_reg_stride = 1;
744
745 if (chip->get_irq_reg)
746 d->get_irq_reg = chip->get_irq_reg;
747 else
748 d->get_irq_reg = regmap_irq_get_irq_reg_linear;
749
750 if (regmap_irq_can_bulk_read_status(d)) {
751 d->status_reg_buf = kmalloc_array(chip->num_regs,
752 map->format.val_bytes,
753 GFP_KERNEL);
754 if (!d->status_reg_buf)
755 goto err_alloc;
756 }
757
758 mutex_init(&d->lock);
759
760 for (i = 0; i < chip->num_irqs; i++)
761 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
762 |= chip->irqs[i].mask;
763
764 /* Mask all the interrupts by default */
765 for (i = 0; i < chip->num_regs; i++) {
766 d->mask_buf[i] = d->mask_buf_def[i];
767
768 if (chip->handle_mask_sync) {
769 ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
770 d->mask_buf[i],
771 chip->irq_drv_data);
772 if (ret)
773 goto err_alloc;
774 }
775
776 if (chip->mask_base && !chip->handle_mask_sync) {
777 reg = d->get_irq_reg(d, chip->mask_base, i);
778 ret = regmap_update_bits(d->map, reg,
779 d->mask_buf_def[i],
780 d->mask_buf[i]);
781 if (ret) {
782 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
783 reg, ret);
784 goto err_alloc;
785 }
786 }
787
788 if (chip->unmask_base && !chip->handle_mask_sync) {
789 reg = d->get_irq_reg(d, chip->unmask_base, i);
790 ret = regmap_update_bits(d->map, reg,
791 d->mask_buf_def[i], ~d->mask_buf[i]);
792 if (ret) {
793 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
794 reg, ret);
795 goto err_alloc;
796 }
797 }
798
799 if (!chip->init_ack_masked)
800 continue;
801
802 /* Ack masked but set interrupts */
803 if (d->chip->no_status) {
804 /* no status register so default to all active */
805 d->status_buf[i] = GENMASK(31, 0);
806 } else {
807 reg = d->get_irq_reg(d, d->chip->status_base, i);
808 ret = regmap_read(map, reg, &d->status_buf[i]);
809 if (ret != 0) {
810 dev_err(map->dev, "Failed to read IRQ status: %d\n",
811 ret);
812 goto err_alloc;
813 }
814 }
815
816 if (chip->status_invert)
817 d->status_buf[i] = ~d->status_buf[i];
818
819 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
820 reg = d->get_irq_reg(d, d->chip->ack_base, i);
821 if (chip->ack_invert)
822 ret = regmap_write(map, reg,
823 ~(d->status_buf[i] & d->mask_buf[i]));
824 else
825 ret = regmap_write(map, reg,
826 d->status_buf[i] & d->mask_buf[i]);
827 if (chip->clear_ack) {
828 if (chip->ack_invert && !ret)
829 ret = regmap_write(map, reg, UINT_MAX);
830 else if (!ret)
831 ret = regmap_write(map, reg, 0);
832 }
833 if (ret != 0) {
834 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
835 reg, ret);
836 goto err_alloc;
837 }
838 }
839 }
840
841 /* Wake is disabled by default */
842 if (d->wake_buf) {
843 for (i = 0; i < chip->num_regs; i++) {
844 d->wake_buf[i] = d->mask_buf_def[i];
845 reg = d->get_irq_reg(d, d->chip->wake_base, i);
846
847 if (chip->wake_invert)
848 ret = regmap_update_bits(d->map, reg,
849 d->mask_buf_def[i],
850 0);
851 else
852 ret = regmap_update_bits(d->map, reg,
853 d->mask_buf_def[i],
854 d->wake_buf[i]);
855 if (ret != 0) {
856 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
857 reg, ret);
858 goto err_alloc;
859 }
860 }
861 }
862
863 if (irq_base)
864 d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
865 irq_base, 0,
866 ®map_domain_ops, d);
867 else
868 d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
869 ®map_domain_ops, d);
870 if (!d->domain) {
871 dev_err(map->dev, "Failed to create IRQ domain\n");
872 ret = -ENOMEM;
873 goto err_alloc;
874 }
875
876 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
877 irq_flags | IRQF_ONESHOT,
878 chip->name, d);
879 if (ret != 0) {
880 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
881 irq, chip->name, ret);
882 goto err_domain;
883 }
884
885 *data = d;
886
887 return 0;
888
889 err_domain:
890 /* Should really dispose of the domain but... */
891 err_alloc:
892 kfree(d->type_buf);
893 kfree(d->type_buf_def);
894 kfree(d->wake_buf);
895 kfree(d->mask_buf_def);
896 kfree(d->mask_buf);
897 kfree(d->status_buf);
898 kfree(d->status_reg_buf);
899 if (d->config_buf) {
900 for (i = 0; i < chip->num_config_bases; i++)
901 kfree(d->config_buf[i]);
902 kfree(d->config_buf);
903 }
904 kfree(d);
905 return ret;
906 }
907 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
908
909 /**
910 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
911 *
912 * @map: The regmap for the device.
913 * @irq: The IRQ the device uses to signal interrupts.
914 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
915 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
916 * @chip: Configuration for the interrupt controller.
917 * @data: Runtime data structure for the controller, allocated on success.
918 *
919 * Returns 0 on success or an errno on failure.
920 *
921 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
922 * node of the regmap is used.
923 */
regmap_add_irq_chip(struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)924 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
925 int irq_base, const struct regmap_irq_chip *chip,
926 struct regmap_irq_chip_data **data)
927 {
928 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
929 irq_flags, irq_base, chip, data);
930 }
931 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
932
933 /**
934 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
935 *
936 * @irq: Primary IRQ for the device
937 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
938 *
939 * This function also disposes of all mapped IRQs on the chip.
940 */
regmap_del_irq_chip(int irq,struct regmap_irq_chip_data * d)941 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
942 {
943 unsigned int virq;
944 int i, hwirq;
945
946 if (!d)
947 return;
948
949 free_irq(irq, d);
950
951 /* Dispose all virtual irq from irq domain before removing it */
952 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
953 /* Ignore hwirq if holes in the IRQ list */
954 if (!d->chip->irqs[hwirq].mask)
955 continue;
956
957 /*
958 * Find the virtual irq of hwirq on chip and if it is
959 * there then dispose it
960 */
961 virq = irq_find_mapping(d->domain, hwirq);
962 if (virq)
963 irq_dispose_mapping(virq);
964 }
965
966 irq_domain_remove(d->domain);
967 kfree(d->type_buf);
968 kfree(d->type_buf_def);
969 kfree(d->wake_buf);
970 kfree(d->mask_buf_def);
971 kfree(d->mask_buf);
972 kfree(d->status_reg_buf);
973 kfree(d->status_buf);
974 if (d->config_buf) {
975 for (i = 0; i < d->chip->num_config_bases; i++)
976 kfree(d->config_buf[i]);
977 kfree(d->config_buf);
978 }
979 kfree(d);
980 }
981 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
982
devm_regmap_irq_chip_release(struct device * dev,void * res)983 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
984 {
985 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
986
987 regmap_del_irq_chip(d->irq, d);
988 }
989
devm_regmap_irq_chip_match(struct device * dev,void * res,void * data)990 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
991
992 {
993 struct regmap_irq_chip_data **r = res;
994
995 if (!r || !*r) {
996 WARN_ON(!r || !*r);
997 return 0;
998 }
999 return *r == data;
1000 }
1001
1002 /**
1003 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1004 *
1005 * @dev: The device pointer on which irq_chip belongs to.
1006 * @fwnode: The firmware node where the IRQ domain should be added to.
1007 * @map: The regmap for the device.
1008 * @irq: The IRQ the device uses to signal interrupts
1009 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1010 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1011 * @chip: Configuration for the interrupt controller.
1012 * @data: Runtime data structure for the controller, allocated on success
1013 *
1014 * Returns 0 on success or an errno on failure.
1015 *
1016 * The ®map_irq_chip_data will be automatically released when the device is
1017 * unbound.
1018 */
devm_regmap_add_irq_chip_fwnode(struct device * dev,struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1019 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1020 struct fwnode_handle *fwnode,
1021 struct regmap *map, int irq,
1022 int irq_flags, int irq_base,
1023 const struct regmap_irq_chip *chip,
1024 struct regmap_irq_chip_data **data)
1025 {
1026 struct regmap_irq_chip_data **ptr, *d;
1027 int ret;
1028
1029 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1030 GFP_KERNEL);
1031 if (!ptr)
1032 return -ENOMEM;
1033
1034 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1035 chip, &d);
1036 if (ret < 0) {
1037 devres_free(ptr);
1038 return ret;
1039 }
1040
1041 *ptr = d;
1042 devres_add(dev, ptr);
1043 *data = d;
1044 return 0;
1045 }
1046 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1047
1048 /**
1049 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1050 *
1051 * @dev: The device pointer on which irq_chip belongs to.
1052 * @map: The regmap for the device.
1053 * @irq: The IRQ the device uses to signal interrupts
1054 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1055 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1056 * @chip: Configuration for the interrupt controller.
1057 * @data: Runtime data structure for the controller, allocated on success
1058 *
1059 * Returns 0 on success or an errno on failure.
1060 *
1061 * The ®map_irq_chip_data will be automatically released when the device is
1062 * unbound.
1063 */
devm_regmap_add_irq_chip(struct device * dev,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1064 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1065 int irq_flags, int irq_base,
1066 const struct regmap_irq_chip *chip,
1067 struct regmap_irq_chip_data **data)
1068 {
1069 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1070 irq, irq_flags, irq_base, chip,
1071 data);
1072 }
1073 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1074
1075 /**
1076 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1077 *
1078 * @dev: Device for which the resource was allocated.
1079 * @irq: Primary IRQ for the device.
1080 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
1081 *
1082 * A resource managed version of regmap_del_irq_chip().
1083 */
devm_regmap_del_irq_chip(struct device * dev,int irq,struct regmap_irq_chip_data * data)1084 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1085 struct regmap_irq_chip_data *data)
1086 {
1087 int rc;
1088
1089 WARN_ON(irq != data->irq);
1090 rc = devres_release(dev, devm_regmap_irq_chip_release,
1091 devm_regmap_irq_chip_match, data);
1092
1093 if (rc != 0)
1094 WARN_ON(rc);
1095 }
1096 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1097
1098 /**
1099 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1100 *
1101 * @data: regmap irq controller to operate on.
1102 *
1103 * Useful for drivers to request their own IRQs.
1104 */
regmap_irq_chip_get_base(struct regmap_irq_chip_data * data)1105 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1106 {
1107 WARN_ON(!data->irq_base);
1108 return data->irq_base;
1109 }
1110 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1111
1112 /**
1113 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1114 *
1115 * @data: regmap irq controller to operate on.
1116 * @irq: index of the interrupt requested in the chip IRQs.
1117 *
1118 * Useful for drivers to request their own IRQs.
1119 */
regmap_irq_get_virq(struct regmap_irq_chip_data * data,int irq)1120 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1121 {
1122 /* Handle holes in the IRQ list */
1123 if (!data->chip->irqs[irq].mask)
1124 return -EINVAL;
1125
1126 return irq_create_mapping(data->domain, irq);
1127 }
1128 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1129
1130 /**
1131 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1132 *
1133 * @data: regmap_irq controller to operate on.
1134 *
1135 * Useful for drivers to request their own IRQs and for integration
1136 * with subsystems. For ease of integration NULL is accepted as a
1137 * domain, allowing devices to just call this even if no domain is
1138 * allocated.
1139 */
regmap_irq_get_domain(struct regmap_irq_chip_data * data)1140 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1141 {
1142 if (data)
1143 return data->domain;
1144 else
1145 return NULL;
1146 }
1147 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1148