1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/blkdev.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/string_helpers.h>
31 #include <linux/swiotlb.h>
32 #include <linux/sysfs.h>
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
34
35 #include "base.h"
36 #include "physical_location.h"
37 #include "power/power.h"
38
39 /* Device links support. */
40 static LIST_HEAD(deferred_sync);
41 static unsigned int defer_sync_state_count = 1;
42 static DEFINE_MUTEX(fwnode_link_lock);
43 static bool fw_devlink_is_permissive(void);
44 static void __fw_devlink_link_to_consumers(struct device *dev);
45 static bool fw_devlink_drv_reg_done;
46 static bool fw_devlink_best_effort;
47 static struct workqueue_struct *device_link_wq;
48
49 /**
50 * __fwnode_link_add - Create a link between two fwnode_handles.
51 * @con: Consumer end of the link.
52 * @sup: Supplier end of the link.
53 *
54 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
55 * represents the detail that the firmware lists @sup fwnode as supplying a
56 * resource to @con.
57 *
58 * The driver core will use the fwnode link to create a device link between the
59 * two device objects corresponding to @con and @sup when they are created. The
60 * driver core will automatically delete the fwnode link between @con and @sup
61 * after doing that.
62 *
63 * Attempts to create duplicate links between the same pair of fwnode handles
64 * are ignored and there is no reference counting.
65 */
__fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)66 static int __fwnode_link_add(struct fwnode_handle *con,
67 struct fwnode_handle *sup, u8 flags)
68 {
69 struct fwnode_link *link;
70
71 list_for_each_entry(link, &sup->consumers, s_hook)
72 if (link->consumer == con) {
73 link->flags |= flags;
74 return 0;
75 }
76
77 link = kzalloc(sizeof(*link), GFP_KERNEL);
78 if (!link)
79 return -ENOMEM;
80
81 link->supplier = sup;
82 INIT_LIST_HEAD(&link->s_hook);
83 link->consumer = con;
84 INIT_LIST_HEAD(&link->c_hook);
85 link->flags = flags;
86
87 list_add(&link->s_hook, &sup->consumers);
88 list_add(&link->c_hook, &con->suppliers);
89 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
90 con, sup);
91
92 return 0;
93 }
94
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup)95 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
96 {
97 int ret;
98
99 mutex_lock(&fwnode_link_lock);
100 ret = __fwnode_link_add(con, sup, 0);
101 mutex_unlock(&fwnode_link_lock);
102 return ret;
103 }
104
105 /**
106 * __fwnode_link_del - Delete a link between two fwnode_handles.
107 * @link: the fwnode_link to be deleted
108 *
109 * The fwnode_link_lock needs to be held when this function is called.
110 */
__fwnode_link_del(struct fwnode_link * link)111 static void __fwnode_link_del(struct fwnode_link *link)
112 {
113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
114 link->consumer, link->supplier);
115 list_del(&link->s_hook);
116 list_del(&link->c_hook);
117 kfree(link);
118 }
119
120 /**
121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
122 * @link: the fwnode_link to be marked
123 *
124 * The fwnode_link_lock needs to be held when this function is called.
125 */
__fwnode_link_cycle(struct fwnode_link * link)126 static void __fwnode_link_cycle(struct fwnode_link *link)
127 {
128 pr_debug("%pfwf: cycle: depends on %pfwf\n",
129 link->consumer, link->supplier);
130 link->flags |= FWLINK_FLAG_CYCLE;
131 }
132
133 /**
134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
135 * @fwnode: fwnode whose supplier links need to be deleted
136 *
137 * Deletes all supplier links connecting directly to @fwnode.
138 */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
140 {
141 struct fwnode_link *link, *tmp;
142
143 mutex_lock(&fwnode_link_lock);
144 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
145 __fwnode_link_del(link);
146 mutex_unlock(&fwnode_link_lock);
147 }
148
149 /**
150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
151 * @fwnode: fwnode whose consumer links need to be deleted
152 *
153 * Deletes all consumer links connecting directly to @fwnode.
154 */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
156 {
157 struct fwnode_link *link, *tmp;
158
159 mutex_lock(&fwnode_link_lock);
160 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
161 __fwnode_link_del(link);
162 mutex_unlock(&fwnode_link_lock);
163 }
164
165 /**
166 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
167 * @fwnode: fwnode whose links needs to be deleted
168 *
169 * Deletes all links connecting directly to a fwnode.
170 */
fwnode_links_purge(struct fwnode_handle * fwnode)171 void fwnode_links_purge(struct fwnode_handle *fwnode)
172 {
173 fwnode_links_purge_suppliers(fwnode);
174 fwnode_links_purge_consumers(fwnode);
175 }
176
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
178 {
179 struct fwnode_handle *child;
180
181 /* Don't purge consumer links of an added child */
182 if (fwnode->dev)
183 return;
184
185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
186 fwnode_links_purge_consumers(fwnode);
187
188 fwnode_for_each_available_child_node(fwnode, child)
189 fw_devlink_purge_absent_suppliers(child);
190 }
191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
192
193 /**
194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
195 * @from: move consumers away from this fwnode
196 * @to: move consumers to this fwnode
197 *
198 * Move all consumer links from @from fwnode to @to fwnode.
199 */
__fwnode_links_move_consumers(struct fwnode_handle * from,struct fwnode_handle * to)200 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
201 struct fwnode_handle *to)
202 {
203 struct fwnode_link *link, *tmp;
204
205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
206 __fwnode_link_add(link->consumer, to, link->flags);
207 __fwnode_link_del(link);
208 }
209 }
210
211 /**
212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
213 * @fwnode: fwnode from which to pick up dangling consumers
214 * @new_sup: fwnode of new supplier
215 *
216 * If the @fwnode has a corresponding struct device and the device supports
217 * probing (that is, added to a bus), then we want to let fw_devlink create
218 * MANAGED device links to this device, so leave @fwnode and its descendant's
219 * fwnode links alone.
220 *
221 * Otherwise, move its consumers to the new supplier @new_sup.
222 */
__fw_devlink_pickup_dangling_consumers(struct fwnode_handle * fwnode,struct fwnode_handle * new_sup)223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
224 struct fwnode_handle *new_sup)
225 {
226 struct fwnode_handle *child;
227
228 if (fwnode->dev && fwnode->dev->bus)
229 return;
230
231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
232 __fwnode_links_move_consumers(fwnode, new_sup);
233
234 fwnode_for_each_available_child_node(fwnode, child)
235 __fw_devlink_pickup_dangling_consumers(child, new_sup);
236 }
237
238 static DEFINE_MUTEX(device_links_lock);
239 DEFINE_STATIC_SRCU(device_links_srcu);
240
device_links_write_lock(void)241 static inline void device_links_write_lock(void)
242 {
243 mutex_lock(&device_links_lock);
244 }
245
device_links_write_unlock(void)246 static inline void device_links_write_unlock(void)
247 {
248 mutex_unlock(&device_links_lock);
249 }
250
device_links_read_lock(void)251 int device_links_read_lock(void) __acquires(&device_links_srcu)
252 {
253 return srcu_read_lock(&device_links_srcu);
254 }
255
device_links_read_unlock(int idx)256 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
257 {
258 srcu_read_unlock(&device_links_srcu, idx);
259 }
260
device_links_read_lock_held(void)261 int device_links_read_lock_held(void)
262 {
263 return srcu_read_lock_held(&device_links_srcu);
264 }
265
device_link_synchronize_removal(void)266 static void device_link_synchronize_removal(void)
267 {
268 synchronize_srcu(&device_links_srcu);
269 }
270
device_link_remove_from_lists(struct device_link * link)271 static void device_link_remove_from_lists(struct device_link *link)
272 {
273 list_del_rcu(&link->s_node);
274 list_del_rcu(&link->c_node);
275 }
276
device_is_ancestor(struct device * dev,struct device * target)277 static bool device_is_ancestor(struct device *dev, struct device *target)
278 {
279 while (target->parent) {
280 target = target->parent;
281 if (dev == target)
282 return true;
283 }
284 return false;
285 }
286
287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \
288 DL_FLAG_CYCLE | \
289 DL_FLAG_MANAGED)
device_link_flag_is_sync_state_only(u32 flags)290 static inline bool device_link_flag_is_sync_state_only(u32 flags)
291 {
292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
293 }
294
295 /**
296 * device_is_dependent - Check if one device depends on another one
297 * @dev: Device to check dependencies for.
298 * @target: Device to check against.
299 *
300 * Check if @target depends on @dev or any device dependent on it (its child or
301 * its consumer etc). Return 1 if that is the case or 0 otherwise.
302 */
device_is_dependent(struct device * dev,void * target)303 int device_is_dependent(struct device *dev, void *target)
304 {
305 struct device_link *link;
306 int ret;
307
308 /*
309 * The "ancestors" check is needed to catch the case when the target
310 * device has not been completely initialized yet and it is still
311 * missing from the list of children of its parent device.
312 */
313 if (dev == target || device_is_ancestor(dev, target))
314 return 1;
315
316 ret = device_for_each_child(dev, target, device_is_dependent);
317 if (ret)
318 return ret;
319
320 list_for_each_entry(link, &dev->links.consumers, s_node) {
321 if (device_link_flag_is_sync_state_only(link->flags))
322 continue;
323
324 if (link->consumer == target)
325 return 1;
326
327 ret = device_is_dependent(link->consumer, target);
328 if (ret)
329 break;
330 }
331 return ret;
332 }
333
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)334 static void device_link_init_status(struct device_link *link,
335 struct device *consumer,
336 struct device *supplier)
337 {
338 switch (supplier->links.status) {
339 case DL_DEV_PROBING:
340 switch (consumer->links.status) {
341 case DL_DEV_PROBING:
342 /*
343 * A consumer driver can create a link to a supplier
344 * that has not completed its probing yet as long as it
345 * knows that the supplier is already functional (for
346 * example, it has just acquired some resources from the
347 * supplier).
348 */
349 link->status = DL_STATE_CONSUMER_PROBE;
350 break;
351 default:
352 link->status = DL_STATE_DORMANT;
353 break;
354 }
355 break;
356 case DL_DEV_DRIVER_BOUND:
357 switch (consumer->links.status) {
358 case DL_DEV_PROBING:
359 link->status = DL_STATE_CONSUMER_PROBE;
360 break;
361 case DL_DEV_DRIVER_BOUND:
362 link->status = DL_STATE_ACTIVE;
363 break;
364 default:
365 link->status = DL_STATE_AVAILABLE;
366 break;
367 }
368 break;
369 case DL_DEV_UNBINDING:
370 link->status = DL_STATE_SUPPLIER_UNBIND;
371 break;
372 default:
373 link->status = DL_STATE_DORMANT;
374 break;
375 }
376 }
377
device_reorder_to_tail(struct device * dev,void * not_used)378 static int device_reorder_to_tail(struct device *dev, void *not_used)
379 {
380 struct device_link *link;
381
382 /*
383 * Devices that have not been registered yet will be put to the ends
384 * of the lists during the registration, so skip them here.
385 */
386 if (device_is_registered(dev))
387 devices_kset_move_last(dev);
388
389 if (device_pm_initialized(dev))
390 device_pm_move_last(dev);
391
392 device_for_each_child(dev, NULL, device_reorder_to_tail);
393 list_for_each_entry(link, &dev->links.consumers, s_node) {
394 if (device_link_flag_is_sync_state_only(link->flags))
395 continue;
396 device_reorder_to_tail(link->consumer, NULL);
397 }
398
399 return 0;
400 }
401
402 /**
403 * device_pm_move_to_tail - Move set of devices to the end of device lists
404 * @dev: Device to move
405 *
406 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
407 *
408 * It moves the @dev along with all of its children and all of its consumers
409 * to the ends of the device_kset and dpm_list, recursively.
410 */
device_pm_move_to_tail(struct device * dev)411 void device_pm_move_to_tail(struct device *dev)
412 {
413 int idx;
414
415 idx = device_links_read_lock();
416 device_pm_lock();
417 device_reorder_to_tail(dev, NULL);
418 device_pm_unlock();
419 device_links_read_unlock(idx);
420 }
421
422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
423
status_show(struct device * dev,struct device_attribute * attr,char * buf)424 static ssize_t status_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426 {
427 const char *output;
428
429 switch (to_devlink(dev)->status) {
430 case DL_STATE_NONE:
431 output = "not tracked";
432 break;
433 case DL_STATE_DORMANT:
434 output = "dormant";
435 break;
436 case DL_STATE_AVAILABLE:
437 output = "available";
438 break;
439 case DL_STATE_CONSUMER_PROBE:
440 output = "consumer probing";
441 break;
442 case DL_STATE_ACTIVE:
443 output = "active";
444 break;
445 case DL_STATE_SUPPLIER_UNBIND:
446 output = "supplier unbinding";
447 break;
448 default:
449 output = "unknown";
450 break;
451 }
452
453 return sysfs_emit(buf, "%s\n", output);
454 }
455 static DEVICE_ATTR_RO(status);
456
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)457 static ssize_t auto_remove_on_show(struct device *dev,
458 struct device_attribute *attr, char *buf)
459 {
460 struct device_link *link = to_devlink(dev);
461 const char *output;
462
463 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
464 output = "supplier unbind";
465 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
466 output = "consumer unbind";
467 else
468 output = "never";
469
470 return sysfs_emit(buf, "%s\n", output);
471 }
472 static DEVICE_ATTR_RO(auto_remove_on);
473
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)474 static ssize_t runtime_pm_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
476 {
477 struct device_link *link = to_devlink(dev);
478
479 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
480 }
481 static DEVICE_ATTR_RO(runtime_pm);
482
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)483 static ssize_t sync_state_only_show(struct device *dev,
484 struct device_attribute *attr, char *buf)
485 {
486 struct device_link *link = to_devlink(dev);
487
488 return sysfs_emit(buf, "%d\n",
489 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
490 }
491 static DEVICE_ATTR_RO(sync_state_only);
492
493 static struct attribute *devlink_attrs[] = {
494 &dev_attr_status.attr,
495 &dev_attr_auto_remove_on.attr,
496 &dev_attr_runtime_pm.attr,
497 &dev_attr_sync_state_only.attr,
498 NULL,
499 };
500 ATTRIBUTE_GROUPS(devlink);
501
device_link_release_fn(struct work_struct * work)502 static void device_link_release_fn(struct work_struct *work)
503 {
504 struct device_link *link = container_of(work, struct device_link, rm_work);
505
506 /* Ensure that all references to the link object have been dropped. */
507 device_link_synchronize_removal();
508
509 pm_runtime_release_supplier(link);
510 /*
511 * If supplier_preactivated is set, the link has been dropped between
512 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
513 * in __driver_probe_device(). In that case, drop the supplier's
514 * PM-runtime usage counter to remove the reference taken by
515 * pm_runtime_get_suppliers().
516 */
517 if (link->supplier_preactivated)
518 pm_runtime_put_noidle(link->supplier);
519
520 pm_request_idle(link->supplier);
521
522 put_device(link->consumer);
523 put_device(link->supplier);
524 kfree(link);
525 }
526
devlink_dev_release(struct device * dev)527 static void devlink_dev_release(struct device *dev)
528 {
529 struct device_link *link = to_devlink(dev);
530
531 INIT_WORK(&link->rm_work, device_link_release_fn);
532 /*
533 * It may take a while to complete this work because of the SRCU
534 * synchronization in device_link_release_fn() and if the consumer or
535 * supplier devices get deleted when it runs, so put it into the
536 * dedicated workqueue.
537 */
538 queue_work(device_link_wq, &link->rm_work);
539 }
540
541 /**
542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
543 */
device_link_wait_removal(void)544 void device_link_wait_removal(void)
545 {
546 /*
547 * devlink removal jobs are queued in the dedicated work queue.
548 * To be sure that all removal jobs are terminated, ensure that any
549 * scheduled work has run to completion.
550 */
551 flush_workqueue(device_link_wq);
552 }
553 EXPORT_SYMBOL_GPL(device_link_wait_removal);
554
555 static struct class devlink_class = {
556 .name = "devlink",
557 .dev_groups = devlink_groups,
558 .dev_release = devlink_dev_release,
559 };
560
devlink_add_symlinks(struct device * dev)561 static int devlink_add_symlinks(struct device *dev)
562 {
563 int ret;
564 size_t len;
565 struct device_link *link = to_devlink(dev);
566 struct device *sup = link->supplier;
567 struct device *con = link->consumer;
568 char *buf;
569
570 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
571 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
572 len += strlen(":");
573 len += strlen("supplier:") + 1;
574 buf = kzalloc(len, GFP_KERNEL);
575 if (!buf)
576 return -ENOMEM;
577
578 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
579 if (ret)
580 goto out;
581
582 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
583 if (ret)
584 goto err_con;
585
586 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
587 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
588 if (ret)
589 goto err_con_dev;
590
591 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
592 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
593 if (ret)
594 goto err_sup_dev;
595
596 goto out;
597
598 err_sup_dev:
599 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
600 sysfs_remove_link(&sup->kobj, buf);
601 err_con_dev:
602 sysfs_remove_link(&link->link_dev.kobj, "consumer");
603 err_con:
604 sysfs_remove_link(&link->link_dev.kobj, "supplier");
605 out:
606 kfree(buf);
607 return ret;
608 }
609
devlink_remove_symlinks(struct device * dev)610 static void devlink_remove_symlinks(struct device *dev)
611 {
612 struct device_link *link = to_devlink(dev);
613 size_t len;
614 struct device *sup = link->supplier;
615 struct device *con = link->consumer;
616 char *buf;
617
618 sysfs_remove_link(&link->link_dev.kobj, "consumer");
619 sysfs_remove_link(&link->link_dev.kobj, "supplier");
620
621 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
622 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
623 len += strlen(":");
624 len += strlen("supplier:") + 1;
625 buf = kzalloc(len, GFP_KERNEL);
626 if (!buf) {
627 WARN(1, "Unable to properly free device link symlinks!\n");
628 return;
629 }
630
631 if (device_is_registered(con)) {
632 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
633 sysfs_remove_link(&con->kobj, buf);
634 }
635 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
636 sysfs_remove_link(&sup->kobj, buf);
637 kfree(buf);
638 }
639
640 static struct class_interface devlink_class_intf = {
641 .class = &devlink_class,
642 .add_dev = devlink_add_symlinks,
643 .remove_dev = devlink_remove_symlinks,
644 };
645
devlink_class_init(void)646 static int __init devlink_class_init(void)
647 {
648 int ret;
649
650 ret = class_register(&devlink_class);
651 if (ret)
652 return ret;
653
654 ret = class_interface_register(&devlink_class_intf);
655 if (ret)
656 class_unregister(&devlink_class);
657
658 return ret;
659 }
660 postcore_initcall(devlink_class_init);
661
662 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
663 DL_FLAG_AUTOREMOVE_SUPPLIER | \
664 DL_FLAG_AUTOPROBE_CONSUMER | \
665 DL_FLAG_SYNC_STATE_ONLY | \
666 DL_FLAG_INFERRED | \
667 DL_FLAG_CYCLE)
668
669 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
670 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
671
672 /**
673 * device_link_add - Create a link between two devices.
674 * @consumer: Consumer end of the link.
675 * @supplier: Supplier end of the link.
676 * @flags: Link flags.
677 *
678 * The caller is responsible for the proper synchronization of the link creation
679 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
680 * runtime PM framework to take the link into account. Second, if the
681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
682 * be forced into the active meta state and reference-counted upon the creation
683 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
684 * ignored.
685 *
686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
687 * expected to release the link returned by it directly with the help of either
688 * device_link_del() or device_link_remove().
689 *
690 * If that flag is not set, however, the caller of this function is handing the
691 * management of the link over to the driver core entirely and its return value
692 * can only be used to check whether or not the link is present. In that case,
693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
694 * flags can be used to indicate to the driver core when the link can be safely
695 * deleted. Namely, setting one of them in @flags indicates to the driver core
696 * that the link is not going to be used (by the given caller of this function)
697 * after unbinding the consumer or supplier driver, respectively, from its
698 * device, so the link can be deleted at that point. If none of them is set,
699 * the link will be maintained until one of the devices pointed to by it (either
700 * the consumer or the supplier) is unregistered.
701 *
702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
705 * be used to request the driver core to automatically probe for a consumer
706 * driver after successfully binding a driver to the supplier device.
707 *
708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
710 * the same time is invalid and will cause NULL to be returned upfront.
711 * However, if a device link between the given @consumer and @supplier pair
712 * exists already when this function is called for them, the existing link will
713 * be returned regardless of its current type and status (the link's flags may
714 * be modified then). The caller of this function is then expected to treat
715 * the link as though it has just been created, so (in particular) if
716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
717 * explicitly when not needed any more (as stated above).
718 *
719 * A side effect of the link creation is re-ordering of dpm_list and the
720 * devices_kset list by moving the consumer device and all devices depending
721 * on it to the ends of these lists (that does not happen to devices that have
722 * not been registered when this function is called).
723 *
724 * The supplier device is required to be registered when this function is called
725 * and NULL will be returned if that is not the case. The consumer device need
726 * not be registered, however.
727 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)728 struct device_link *device_link_add(struct device *consumer,
729 struct device *supplier, u32 flags)
730 {
731 struct device_link *link;
732
733 if (!consumer || !supplier || consumer == supplier ||
734 flags & ~DL_ADD_VALID_FLAGS ||
735 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
736 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
737 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
738 DL_FLAG_AUTOREMOVE_SUPPLIER)))
739 return NULL;
740
741 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
742 if (pm_runtime_get_sync(supplier) < 0) {
743 pm_runtime_put_noidle(supplier);
744 return NULL;
745 }
746 }
747
748 if (!(flags & DL_FLAG_STATELESS))
749 flags |= DL_FLAG_MANAGED;
750
751 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
752 !device_link_flag_is_sync_state_only(flags))
753 return NULL;
754
755 device_links_write_lock();
756 device_pm_lock();
757
758 /*
759 * If the supplier has not been fully registered yet or there is a
760 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
761 * the supplier already in the graph, return NULL. If the link is a
762 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
763 * because it only affects sync_state() callbacks.
764 */
765 if (!device_pm_initialized(supplier)
766 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
767 device_is_dependent(consumer, supplier))) {
768 link = NULL;
769 goto out;
770 }
771
772 /*
773 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
774 * So, only create it if the consumer hasn't probed yet.
775 */
776 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
777 consumer->links.status != DL_DEV_NO_DRIVER &&
778 consumer->links.status != DL_DEV_PROBING) {
779 link = NULL;
780 goto out;
781 }
782
783 /*
784 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
785 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
786 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
787 */
788 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
789 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
790
791 list_for_each_entry(link, &supplier->links.consumers, s_node) {
792 if (link->consumer != consumer)
793 continue;
794
795 if (link->flags & DL_FLAG_INFERRED &&
796 !(flags & DL_FLAG_INFERRED))
797 link->flags &= ~DL_FLAG_INFERRED;
798
799 if (flags & DL_FLAG_PM_RUNTIME) {
800 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
801 pm_runtime_new_link(consumer);
802 link->flags |= DL_FLAG_PM_RUNTIME;
803 }
804 if (flags & DL_FLAG_RPM_ACTIVE)
805 refcount_inc(&link->rpm_active);
806 }
807
808 if (flags & DL_FLAG_STATELESS) {
809 kref_get(&link->kref);
810 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
811 !(link->flags & DL_FLAG_STATELESS)) {
812 link->flags |= DL_FLAG_STATELESS;
813 goto reorder;
814 } else {
815 link->flags |= DL_FLAG_STATELESS;
816 goto out;
817 }
818 }
819
820 /*
821 * If the life time of the link following from the new flags is
822 * longer than indicated by the flags of the existing link,
823 * update the existing link to stay around longer.
824 */
825 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
826 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
827 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
828 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
829 }
830 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
831 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
832 DL_FLAG_AUTOREMOVE_SUPPLIER);
833 }
834 if (!(link->flags & DL_FLAG_MANAGED)) {
835 kref_get(&link->kref);
836 link->flags |= DL_FLAG_MANAGED;
837 device_link_init_status(link, consumer, supplier);
838 }
839 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
840 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
841 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
842 goto reorder;
843 }
844
845 goto out;
846 }
847
848 link = kzalloc(sizeof(*link), GFP_KERNEL);
849 if (!link)
850 goto out;
851
852 refcount_set(&link->rpm_active, 1);
853
854 get_device(supplier);
855 link->supplier = supplier;
856 INIT_LIST_HEAD(&link->s_node);
857 get_device(consumer);
858 link->consumer = consumer;
859 INIT_LIST_HEAD(&link->c_node);
860 link->flags = flags;
861 kref_init(&link->kref);
862
863 link->link_dev.class = &devlink_class;
864 device_set_pm_not_required(&link->link_dev);
865 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
866 dev_bus_name(supplier), dev_name(supplier),
867 dev_bus_name(consumer), dev_name(consumer));
868 if (device_register(&link->link_dev)) {
869 put_device(&link->link_dev);
870 link = NULL;
871 goto out;
872 }
873
874 if (flags & DL_FLAG_PM_RUNTIME) {
875 if (flags & DL_FLAG_RPM_ACTIVE)
876 refcount_inc(&link->rpm_active);
877
878 pm_runtime_new_link(consumer);
879 }
880
881 /* Determine the initial link state. */
882 if (flags & DL_FLAG_STATELESS)
883 link->status = DL_STATE_NONE;
884 else
885 device_link_init_status(link, consumer, supplier);
886
887 /*
888 * Some callers expect the link creation during consumer driver probe to
889 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
890 */
891 if (link->status == DL_STATE_CONSUMER_PROBE &&
892 flags & DL_FLAG_PM_RUNTIME)
893 pm_runtime_resume(supplier);
894
895 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
896 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
897
898 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
899 dev_dbg(consumer,
900 "Linked as a sync state only consumer to %s\n",
901 dev_name(supplier));
902 goto out;
903 }
904
905 reorder:
906 /*
907 * Move the consumer and all of the devices depending on it to the end
908 * of dpm_list and the devices_kset list.
909 *
910 * It is necessary to hold dpm_list locked throughout all that or else
911 * we may end up suspending with a wrong ordering of it.
912 */
913 device_reorder_to_tail(consumer, NULL);
914
915 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
916
917 out:
918 device_pm_unlock();
919 device_links_write_unlock();
920
921 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
922 pm_runtime_put(supplier);
923
924 return link;
925 }
926 EXPORT_SYMBOL_GPL(device_link_add);
927
__device_link_del(struct kref * kref)928 static void __device_link_del(struct kref *kref)
929 {
930 struct device_link *link = container_of(kref, struct device_link, kref);
931
932 dev_dbg(link->consumer, "Dropping the link to %s\n",
933 dev_name(link->supplier));
934
935 pm_runtime_drop_link(link);
936
937 device_link_remove_from_lists(link);
938 device_unregister(&link->link_dev);
939 }
940
device_link_put_kref(struct device_link * link)941 static void device_link_put_kref(struct device_link *link)
942 {
943 if (link->flags & DL_FLAG_STATELESS)
944 kref_put(&link->kref, __device_link_del);
945 else if (!device_is_registered(link->consumer))
946 __device_link_del(&link->kref);
947 else
948 WARN(1, "Unable to drop a managed device link reference\n");
949 }
950
951 /**
952 * device_link_del - Delete a stateless link between two devices.
953 * @link: Device link to delete.
954 *
955 * The caller must ensure proper synchronization of this function with runtime
956 * PM. If the link was added multiple times, it needs to be deleted as often.
957 * Care is required for hotplugged devices: Their links are purged on removal
958 * and calling device_link_del() is then no longer allowed.
959 */
device_link_del(struct device_link * link)960 void device_link_del(struct device_link *link)
961 {
962 device_links_write_lock();
963 device_link_put_kref(link);
964 device_links_write_unlock();
965 }
966 EXPORT_SYMBOL_GPL(device_link_del);
967
968 /**
969 * device_link_remove - Delete a stateless link between two devices.
970 * @consumer: Consumer end of the link.
971 * @supplier: Supplier end of the link.
972 *
973 * The caller must ensure proper synchronization of this function with runtime
974 * PM.
975 */
device_link_remove(void * consumer,struct device * supplier)976 void device_link_remove(void *consumer, struct device *supplier)
977 {
978 struct device_link *link;
979
980 if (WARN_ON(consumer == supplier))
981 return;
982
983 device_links_write_lock();
984
985 list_for_each_entry(link, &supplier->links.consumers, s_node) {
986 if (link->consumer == consumer) {
987 device_link_put_kref(link);
988 break;
989 }
990 }
991
992 device_links_write_unlock();
993 }
994 EXPORT_SYMBOL_GPL(device_link_remove);
995
device_links_missing_supplier(struct device * dev)996 static void device_links_missing_supplier(struct device *dev)
997 {
998 struct device_link *link;
999
1000 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1001 if (link->status != DL_STATE_CONSUMER_PROBE)
1002 continue;
1003
1004 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1005 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1006 } else {
1007 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1008 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1009 }
1010 }
1011 }
1012
dev_is_best_effort(struct device * dev)1013 static bool dev_is_best_effort(struct device *dev)
1014 {
1015 return (fw_devlink_best_effort && dev->can_match) ||
1016 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1017 }
1018
fwnode_links_check_suppliers(struct fwnode_handle * fwnode)1019 static struct fwnode_handle *fwnode_links_check_suppliers(
1020 struct fwnode_handle *fwnode)
1021 {
1022 struct fwnode_link *link;
1023
1024 if (!fwnode || fw_devlink_is_permissive())
1025 return NULL;
1026
1027 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1028 if (!(link->flags &
1029 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1030 return link->supplier;
1031
1032 return NULL;
1033 }
1034
1035 /**
1036 * device_links_check_suppliers - Check presence of supplier drivers.
1037 * @dev: Consumer device.
1038 *
1039 * Check links from this device to any suppliers. Walk the list of the device's
1040 * links to suppliers and see if all of them are available. If not, simply
1041 * return -EPROBE_DEFER.
1042 *
1043 * We need to guarantee that the supplier will not go away after the check has
1044 * been positive here. It only can go away in __device_release_driver() and
1045 * that function checks the device's links to consumers. This means we need to
1046 * mark the link as "consumer probe in progress" to make the supplier removal
1047 * wait for us to complete (or bad things may happen).
1048 *
1049 * Links without the DL_FLAG_MANAGED flag set are ignored.
1050 */
device_links_check_suppliers(struct device * dev)1051 int device_links_check_suppliers(struct device *dev)
1052 {
1053 struct device_link *link;
1054 int ret = 0, fwnode_ret = 0;
1055 struct fwnode_handle *sup_fw;
1056
1057 /*
1058 * Device waiting for supplier to become available is not allowed to
1059 * probe.
1060 */
1061 mutex_lock(&fwnode_link_lock);
1062 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1063 if (sup_fw) {
1064 if (!dev_is_best_effort(dev)) {
1065 fwnode_ret = -EPROBE_DEFER;
1066 dev_err_probe(dev, -EPROBE_DEFER,
1067 "wait for supplier %pfwf\n", sup_fw);
1068 } else {
1069 fwnode_ret = -EAGAIN;
1070 }
1071 }
1072 mutex_unlock(&fwnode_link_lock);
1073 if (fwnode_ret == -EPROBE_DEFER)
1074 return fwnode_ret;
1075
1076 device_links_write_lock();
1077
1078 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1079 if (!(link->flags & DL_FLAG_MANAGED))
1080 continue;
1081
1082 if (link->status != DL_STATE_AVAILABLE &&
1083 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1084
1085 if (dev_is_best_effort(dev) &&
1086 link->flags & DL_FLAG_INFERRED &&
1087 !link->supplier->can_match) {
1088 ret = -EAGAIN;
1089 continue;
1090 }
1091
1092 device_links_missing_supplier(dev);
1093 dev_err_probe(dev, -EPROBE_DEFER,
1094 "supplier %s not ready\n",
1095 dev_name(link->supplier));
1096 ret = -EPROBE_DEFER;
1097 break;
1098 }
1099 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1100 }
1101 dev->links.status = DL_DEV_PROBING;
1102
1103 device_links_write_unlock();
1104
1105 return ret ? ret : fwnode_ret;
1106 }
1107
1108 /**
1109 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1110 * @dev: Device to call sync_state() on
1111 * @list: List head to queue the @dev on
1112 *
1113 * Queues a device for a sync_state() callback when the device links write lock
1114 * isn't held. This allows the sync_state() execution flow to use device links
1115 * APIs. The caller must ensure this function is called with
1116 * device_links_write_lock() held.
1117 *
1118 * This function does a get_device() to make sure the device is not freed while
1119 * on this list.
1120 *
1121 * So the caller must also ensure that device_links_flush_sync_list() is called
1122 * as soon as the caller releases device_links_write_lock(). This is necessary
1123 * to make sure the sync_state() is called in a timely fashion and the
1124 * put_device() is called on this device.
1125 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1126 static void __device_links_queue_sync_state(struct device *dev,
1127 struct list_head *list)
1128 {
1129 struct device_link *link;
1130
1131 if (!dev_has_sync_state(dev))
1132 return;
1133 if (dev->state_synced)
1134 return;
1135
1136 list_for_each_entry(link, &dev->links.consumers, s_node) {
1137 if (!(link->flags & DL_FLAG_MANAGED))
1138 continue;
1139 if (link->status != DL_STATE_ACTIVE)
1140 return;
1141 }
1142
1143 /*
1144 * Set the flag here to avoid adding the same device to a list more
1145 * than once. This can happen if new consumers get added to the device
1146 * and probed before the list is flushed.
1147 */
1148 dev->state_synced = true;
1149
1150 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1151 return;
1152
1153 get_device(dev);
1154 list_add_tail(&dev->links.defer_sync, list);
1155 }
1156
1157 /**
1158 * device_links_flush_sync_list - Call sync_state() on a list of devices
1159 * @list: List of devices to call sync_state() on
1160 * @dont_lock_dev: Device for which lock is already held by the caller
1161 *
1162 * Calls sync_state() on all the devices that have been queued for it. This
1163 * function is used in conjunction with __device_links_queue_sync_state(). The
1164 * @dont_lock_dev parameter is useful when this function is called from a
1165 * context where a device lock is already held.
1166 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1167 static void device_links_flush_sync_list(struct list_head *list,
1168 struct device *dont_lock_dev)
1169 {
1170 struct device *dev, *tmp;
1171
1172 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1173 list_del_init(&dev->links.defer_sync);
1174
1175 if (dev != dont_lock_dev)
1176 device_lock(dev);
1177
1178 dev_sync_state(dev);
1179
1180 if (dev != dont_lock_dev)
1181 device_unlock(dev);
1182
1183 put_device(dev);
1184 }
1185 }
1186
device_links_supplier_sync_state_pause(void)1187 void device_links_supplier_sync_state_pause(void)
1188 {
1189 device_links_write_lock();
1190 defer_sync_state_count++;
1191 device_links_write_unlock();
1192 }
1193
device_links_supplier_sync_state_resume(void)1194 void device_links_supplier_sync_state_resume(void)
1195 {
1196 struct device *dev, *tmp;
1197 LIST_HEAD(sync_list);
1198
1199 device_links_write_lock();
1200 if (!defer_sync_state_count) {
1201 WARN(true, "Unmatched sync_state pause/resume!");
1202 goto out;
1203 }
1204 defer_sync_state_count--;
1205 if (defer_sync_state_count)
1206 goto out;
1207
1208 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1209 /*
1210 * Delete from deferred_sync list before queuing it to
1211 * sync_list because defer_sync is used for both lists.
1212 */
1213 list_del_init(&dev->links.defer_sync);
1214 __device_links_queue_sync_state(dev, &sync_list);
1215 }
1216 out:
1217 device_links_write_unlock();
1218
1219 device_links_flush_sync_list(&sync_list, NULL);
1220 }
1221
sync_state_resume_initcall(void)1222 static int sync_state_resume_initcall(void)
1223 {
1224 device_links_supplier_sync_state_resume();
1225 return 0;
1226 }
1227 late_initcall(sync_state_resume_initcall);
1228
__device_links_supplier_defer_sync(struct device * sup)1229 static void __device_links_supplier_defer_sync(struct device *sup)
1230 {
1231 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1232 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1233 }
1234
device_link_drop_managed(struct device_link * link)1235 static void device_link_drop_managed(struct device_link *link)
1236 {
1237 link->flags &= ~DL_FLAG_MANAGED;
1238 WRITE_ONCE(link->status, DL_STATE_NONE);
1239 kref_put(&link->kref, __device_link_del);
1240 }
1241
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1242 static ssize_t waiting_for_supplier_show(struct device *dev,
1243 struct device_attribute *attr,
1244 char *buf)
1245 {
1246 bool val;
1247
1248 device_lock(dev);
1249 mutex_lock(&fwnode_link_lock);
1250 val = !!fwnode_links_check_suppliers(dev->fwnode);
1251 mutex_unlock(&fwnode_link_lock);
1252 device_unlock(dev);
1253 return sysfs_emit(buf, "%u\n", val);
1254 }
1255 static DEVICE_ATTR_RO(waiting_for_supplier);
1256
1257 /**
1258 * device_links_force_bind - Prepares device to be force bound
1259 * @dev: Consumer device.
1260 *
1261 * device_bind_driver() force binds a device to a driver without calling any
1262 * driver probe functions. So the consumer really isn't going to wait for any
1263 * supplier before it's bound to the driver. We still want the device link
1264 * states to be sensible when this happens.
1265 *
1266 * In preparation for device_bind_driver(), this function goes through each
1267 * supplier device links and checks if the supplier is bound. If it is, then
1268 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1269 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1270 */
device_links_force_bind(struct device * dev)1271 void device_links_force_bind(struct device *dev)
1272 {
1273 struct device_link *link, *ln;
1274
1275 device_links_write_lock();
1276
1277 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1278 if (!(link->flags & DL_FLAG_MANAGED))
1279 continue;
1280
1281 if (link->status != DL_STATE_AVAILABLE) {
1282 device_link_drop_managed(link);
1283 continue;
1284 }
1285 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1286 }
1287 dev->links.status = DL_DEV_PROBING;
1288
1289 device_links_write_unlock();
1290 }
1291
1292 /**
1293 * device_links_driver_bound - Update device links after probing its driver.
1294 * @dev: Device to update the links for.
1295 *
1296 * The probe has been successful, so update links from this device to any
1297 * consumers by changing their status to "available".
1298 *
1299 * Also change the status of @dev's links to suppliers to "active".
1300 *
1301 * Links without the DL_FLAG_MANAGED flag set are ignored.
1302 */
device_links_driver_bound(struct device * dev)1303 void device_links_driver_bound(struct device *dev)
1304 {
1305 struct device_link *link, *ln;
1306 LIST_HEAD(sync_list);
1307
1308 /*
1309 * If a device binds successfully, it's expected to have created all
1310 * the device links it needs to or make new device links as it needs
1311 * them. So, fw_devlink no longer needs to create device links to any
1312 * of the device's suppliers.
1313 *
1314 * Also, if a child firmware node of this bound device is not added as a
1315 * device by now, assume it is never going to be added. Make this bound
1316 * device the fallback supplier to the dangling consumers of the child
1317 * firmware node because this bound device is probably implementing the
1318 * child firmware node functionality and we don't want the dangling
1319 * consumers to defer probe indefinitely waiting for a device for the
1320 * child firmware node.
1321 */
1322 if (dev->fwnode && dev->fwnode->dev == dev) {
1323 struct fwnode_handle *child;
1324 fwnode_links_purge_suppliers(dev->fwnode);
1325 mutex_lock(&fwnode_link_lock);
1326 fwnode_for_each_available_child_node(dev->fwnode, child)
1327 __fw_devlink_pickup_dangling_consumers(child,
1328 dev->fwnode);
1329 __fw_devlink_link_to_consumers(dev);
1330 mutex_unlock(&fwnode_link_lock);
1331 }
1332 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1333
1334 device_links_write_lock();
1335
1336 list_for_each_entry(link, &dev->links.consumers, s_node) {
1337 if (!(link->flags & DL_FLAG_MANAGED))
1338 continue;
1339
1340 /*
1341 * Links created during consumer probe may be in the "consumer
1342 * probe" state to start with if the supplier is still probing
1343 * when they are created and they may become "active" if the
1344 * consumer probe returns first. Skip them here.
1345 */
1346 if (link->status == DL_STATE_CONSUMER_PROBE ||
1347 link->status == DL_STATE_ACTIVE)
1348 continue;
1349
1350 WARN_ON(link->status != DL_STATE_DORMANT);
1351 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1352
1353 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1354 driver_deferred_probe_add(link->consumer);
1355 }
1356
1357 if (defer_sync_state_count)
1358 __device_links_supplier_defer_sync(dev);
1359 else
1360 __device_links_queue_sync_state(dev, &sync_list);
1361
1362 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1363 struct device *supplier;
1364
1365 if (!(link->flags & DL_FLAG_MANAGED))
1366 continue;
1367
1368 supplier = link->supplier;
1369 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1370 /*
1371 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1372 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1373 * save to drop the managed link completely.
1374 */
1375 device_link_drop_managed(link);
1376 } else if (dev_is_best_effort(dev) &&
1377 link->flags & DL_FLAG_INFERRED &&
1378 link->status != DL_STATE_CONSUMER_PROBE &&
1379 !link->supplier->can_match) {
1380 /*
1381 * When dev_is_best_effort() is true, we ignore device
1382 * links to suppliers that don't have a driver. If the
1383 * consumer device still managed to probe, there's no
1384 * point in maintaining a device link in a weird state
1385 * (consumer probed before supplier). So delete it.
1386 */
1387 device_link_drop_managed(link);
1388 } else {
1389 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1390 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1391 }
1392
1393 /*
1394 * This needs to be done even for the deleted
1395 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1396 * device link that was preventing the supplier from getting a
1397 * sync_state() call.
1398 */
1399 if (defer_sync_state_count)
1400 __device_links_supplier_defer_sync(supplier);
1401 else
1402 __device_links_queue_sync_state(supplier, &sync_list);
1403 }
1404
1405 dev->links.status = DL_DEV_DRIVER_BOUND;
1406
1407 device_links_write_unlock();
1408
1409 device_links_flush_sync_list(&sync_list, dev);
1410 }
1411
1412 /**
1413 * __device_links_no_driver - Update links of a device without a driver.
1414 * @dev: Device without a drvier.
1415 *
1416 * Delete all non-persistent links from this device to any suppliers.
1417 *
1418 * Persistent links stay around, but their status is changed to "available",
1419 * unless they already are in the "supplier unbind in progress" state in which
1420 * case they need not be updated.
1421 *
1422 * Links without the DL_FLAG_MANAGED flag set are ignored.
1423 */
__device_links_no_driver(struct device * dev)1424 static void __device_links_no_driver(struct device *dev)
1425 {
1426 struct device_link *link, *ln;
1427
1428 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1429 if (!(link->flags & DL_FLAG_MANAGED))
1430 continue;
1431
1432 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1433 device_link_drop_managed(link);
1434 continue;
1435 }
1436
1437 if (link->status != DL_STATE_CONSUMER_PROBE &&
1438 link->status != DL_STATE_ACTIVE)
1439 continue;
1440
1441 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1442 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1443 } else {
1444 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1445 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1446 }
1447 }
1448
1449 dev->links.status = DL_DEV_NO_DRIVER;
1450 }
1451
1452 /**
1453 * device_links_no_driver - Update links after failing driver probe.
1454 * @dev: Device whose driver has just failed to probe.
1455 *
1456 * Clean up leftover links to consumers for @dev and invoke
1457 * %__device_links_no_driver() to update links to suppliers for it as
1458 * appropriate.
1459 *
1460 * Links without the DL_FLAG_MANAGED flag set are ignored.
1461 */
device_links_no_driver(struct device * dev)1462 void device_links_no_driver(struct device *dev)
1463 {
1464 struct device_link *link;
1465
1466 device_links_write_lock();
1467
1468 list_for_each_entry(link, &dev->links.consumers, s_node) {
1469 if (!(link->flags & DL_FLAG_MANAGED))
1470 continue;
1471
1472 /*
1473 * The probe has failed, so if the status of the link is
1474 * "consumer probe" or "active", it must have been added by
1475 * a probing consumer while this device was still probing.
1476 * Change its state to "dormant", as it represents a valid
1477 * relationship, but it is not functionally meaningful.
1478 */
1479 if (link->status == DL_STATE_CONSUMER_PROBE ||
1480 link->status == DL_STATE_ACTIVE)
1481 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1482 }
1483
1484 __device_links_no_driver(dev);
1485
1486 device_links_write_unlock();
1487 }
1488
1489 /**
1490 * device_links_driver_cleanup - Update links after driver removal.
1491 * @dev: Device whose driver has just gone away.
1492 *
1493 * Update links to consumers for @dev by changing their status to "dormant" and
1494 * invoke %__device_links_no_driver() to update links to suppliers for it as
1495 * appropriate.
1496 *
1497 * Links without the DL_FLAG_MANAGED flag set are ignored.
1498 */
device_links_driver_cleanup(struct device * dev)1499 void device_links_driver_cleanup(struct device *dev)
1500 {
1501 struct device_link *link, *ln;
1502
1503 device_links_write_lock();
1504
1505 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1506 if (!(link->flags & DL_FLAG_MANAGED))
1507 continue;
1508
1509 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1510 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1511
1512 /*
1513 * autoremove the links between this @dev and its consumer
1514 * devices that are not active, i.e. where the link state
1515 * has moved to DL_STATE_SUPPLIER_UNBIND.
1516 */
1517 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1518 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1519 device_link_drop_managed(link);
1520
1521 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1522 }
1523
1524 list_del_init(&dev->links.defer_sync);
1525 __device_links_no_driver(dev);
1526
1527 device_links_write_unlock();
1528 }
1529
1530 /**
1531 * device_links_busy - Check if there are any busy links to consumers.
1532 * @dev: Device to check.
1533 *
1534 * Check each consumer of the device and return 'true' if its link's status
1535 * is one of "consumer probe" or "active" (meaning that the given consumer is
1536 * probing right now or its driver is present). Otherwise, change the link
1537 * state to "supplier unbind" to prevent the consumer from being probed
1538 * successfully going forward.
1539 *
1540 * Return 'false' if there are no probing or active consumers.
1541 *
1542 * Links without the DL_FLAG_MANAGED flag set are ignored.
1543 */
device_links_busy(struct device * dev)1544 bool device_links_busy(struct device *dev)
1545 {
1546 struct device_link *link;
1547 bool ret = false;
1548
1549 device_links_write_lock();
1550
1551 list_for_each_entry(link, &dev->links.consumers, s_node) {
1552 if (!(link->flags & DL_FLAG_MANAGED))
1553 continue;
1554
1555 if (link->status == DL_STATE_CONSUMER_PROBE
1556 || link->status == DL_STATE_ACTIVE) {
1557 ret = true;
1558 break;
1559 }
1560 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1561 }
1562
1563 dev->links.status = DL_DEV_UNBINDING;
1564
1565 device_links_write_unlock();
1566 return ret;
1567 }
1568
1569 /**
1570 * device_links_unbind_consumers - Force unbind consumers of the given device.
1571 * @dev: Device to unbind the consumers of.
1572 *
1573 * Walk the list of links to consumers for @dev and if any of them is in the
1574 * "consumer probe" state, wait for all device probes in progress to complete
1575 * and start over.
1576 *
1577 * If that's not the case, change the status of the link to "supplier unbind"
1578 * and check if the link was in the "active" state. If so, force the consumer
1579 * driver to unbind and start over (the consumer will not re-probe as we have
1580 * changed the state of the link already).
1581 *
1582 * Links without the DL_FLAG_MANAGED flag set are ignored.
1583 */
device_links_unbind_consumers(struct device * dev)1584 void device_links_unbind_consumers(struct device *dev)
1585 {
1586 struct device_link *link;
1587
1588 start:
1589 device_links_write_lock();
1590
1591 list_for_each_entry(link, &dev->links.consumers, s_node) {
1592 enum device_link_state status;
1593
1594 if (!(link->flags & DL_FLAG_MANAGED) ||
1595 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1596 continue;
1597
1598 status = link->status;
1599 if (status == DL_STATE_CONSUMER_PROBE) {
1600 device_links_write_unlock();
1601
1602 wait_for_device_probe();
1603 goto start;
1604 }
1605 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1606 if (status == DL_STATE_ACTIVE) {
1607 struct device *consumer = link->consumer;
1608
1609 get_device(consumer);
1610
1611 device_links_write_unlock();
1612
1613 device_release_driver_internal(consumer, NULL,
1614 consumer->parent);
1615 put_device(consumer);
1616 goto start;
1617 }
1618 }
1619
1620 device_links_write_unlock();
1621 }
1622
1623 /**
1624 * device_links_purge - Delete existing links to other devices.
1625 * @dev: Target device.
1626 */
device_links_purge(struct device * dev)1627 static void device_links_purge(struct device *dev)
1628 {
1629 struct device_link *link, *ln;
1630
1631 if (dev->class == &devlink_class)
1632 return;
1633
1634 /*
1635 * Delete all of the remaining links from this device to any other
1636 * devices (either consumers or suppliers).
1637 */
1638 device_links_write_lock();
1639
1640 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1641 WARN_ON(link->status == DL_STATE_ACTIVE);
1642 __device_link_del(&link->kref);
1643 }
1644
1645 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1646 WARN_ON(link->status != DL_STATE_DORMANT &&
1647 link->status != DL_STATE_NONE);
1648 __device_link_del(&link->kref);
1649 }
1650
1651 device_links_write_unlock();
1652 }
1653
1654 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1655 DL_FLAG_SYNC_STATE_ONLY)
1656 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1657 DL_FLAG_AUTOPROBE_CONSUMER)
1658 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1659 DL_FLAG_PM_RUNTIME)
1660
1661 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
fw_devlink_setup(char * arg)1662 static int __init fw_devlink_setup(char *arg)
1663 {
1664 if (!arg)
1665 return -EINVAL;
1666
1667 if (strcmp(arg, "off") == 0) {
1668 fw_devlink_flags = 0;
1669 } else if (strcmp(arg, "permissive") == 0) {
1670 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1671 } else if (strcmp(arg, "on") == 0) {
1672 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1673 } else if (strcmp(arg, "rpm") == 0) {
1674 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1675 }
1676 return 0;
1677 }
1678 early_param("fw_devlink", fw_devlink_setup);
1679
1680 static bool fw_devlink_strict;
fw_devlink_strict_setup(char * arg)1681 static int __init fw_devlink_strict_setup(char *arg)
1682 {
1683 return kstrtobool(arg, &fw_devlink_strict);
1684 }
1685 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1686
1687 #define FW_DEVLINK_SYNC_STATE_STRICT 0
1688 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1
1689
1690 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1691 static int fw_devlink_sync_state;
1692 #else
1693 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1694 #endif
1695
fw_devlink_sync_state_setup(char * arg)1696 static int __init fw_devlink_sync_state_setup(char *arg)
1697 {
1698 if (!arg)
1699 return -EINVAL;
1700
1701 if (strcmp(arg, "strict") == 0) {
1702 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1703 return 0;
1704 } else if (strcmp(arg, "timeout") == 0) {
1705 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1706 return 0;
1707 }
1708 return -EINVAL;
1709 }
1710 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1711
fw_devlink_get_flags(u8 fwlink_flags)1712 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1713 {
1714 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1715 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1716
1717 return fw_devlink_flags;
1718 }
1719
fw_devlink_is_permissive(void)1720 static bool fw_devlink_is_permissive(void)
1721 {
1722 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1723 }
1724
fw_devlink_is_strict(void)1725 bool fw_devlink_is_strict(void)
1726 {
1727 return fw_devlink_strict && !fw_devlink_is_permissive();
1728 }
1729
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1730 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1731 {
1732 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1733 return;
1734
1735 fwnode_call_int_op(fwnode, add_links);
1736 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1737 }
1738
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1739 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1740 {
1741 struct fwnode_handle *child = NULL;
1742
1743 fw_devlink_parse_fwnode(fwnode);
1744
1745 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1746 fw_devlink_parse_fwtree(child);
1747 }
1748
fw_devlink_relax_link(struct device_link * link)1749 static void fw_devlink_relax_link(struct device_link *link)
1750 {
1751 if (!(link->flags & DL_FLAG_INFERRED))
1752 return;
1753
1754 if (device_link_flag_is_sync_state_only(link->flags))
1755 return;
1756
1757 pm_runtime_drop_link(link);
1758 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1759 dev_dbg(link->consumer, "Relaxing link with %s\n",
1760 dev_name(link->supplier));
1761 }
1762
fw_devlink_no_driver(struct device * dev,void * data)1763 static int fw_devlink_no_driver(struct device *dev, void *data)
1764 {
1765 struct device_link *link = to_devlink(dev);
1766
1767 if (!link->supplier->can_match)
1768 fw_devlink_relax_link(link);
1769
1770 return 0;
1771 }
1772
fw_devlink_drivers_done(void)1773 void fw_devlink_drivers_done(void)
1774 {
1775 fw_devlink_drv_reg_done = true;
1776 device_links_write_lock();
1777 class_for_each_device(&devlink_class, NULL, NULL,
1778 fw_devlink_no_driver);
1779 device_links_write_unlock();
1780 }
1781
fw_devlink_dev_sync_state(struct device * dev,void * data)1782 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1783 {
1784 struct device_link *link = to_devlink(dev);
1785 struct device *sup = link->supplier;
1786
1787 if (!(link->flags & DL_FLAG_MANAGED) ||
1788 link->status == DL_STATE_ACTIVE || sup->state_synced ||
1789 !dev_has_sync_state(sup))
1790 return 0;
1791
1792 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1793 dev_warn(sup, "sync_state() pending due to %s\n",
1794 dev_name(link->consumer));
1795 return 0;
1796 }
1797
1798 if (!list_empty(&sup->links.defer_sync))
1799 return 0;
1800
1801 dev_warn(sup, "Timed out. Forcing sync_state()\n");
1802 sup->state_synced = true;
1803 get_device(sup);
1804 list_add_tail(&sup->links.defer_sync, data);
1805
1806 return 0;
1807 }
1808
fw_devlink_probing_done(void)1809 void fw_devlink_probing_done(void)
1810 {
1811 LIST_HEAD(sync_list);
1812
1813 device_links_write_lock();
1814 class_for_each_device(&devlink_class, NULL, &sync_list,
1815 fw_devlink_dev_sync_state);
1816 device_links_write_unlock();
1817 device_links_flush_sync_list(&sync_list, NULL);
1818 }
1819
1820 /**
1821 * wait_for_init_devices_probe - Try to probe any device needed for init
1822 *
1823 * Some devices might need to be probed and bound successfully before the kernel
1824 * boot sequence can finish and move on to init/userspace. For example, a
1825 * network interface might need to be bound to be able to mount a NFS rootfs.
1826 *
1827 * With fw_devlink=on by default, some of these devices might be blocked from
1828 * probing because they are waiting on a optional supplier that doesn't have a
1829 * driver. While fw_devlink will eventually identify such devices and unblock
1830 * the probing automatically, it might be too late by the time it unblocks the
1831 * probing of devices. For example, the IP4 autoconfig might timeout before
1832 * fw_devlink unblocks probing of the network interface.
1833 *
1834 * This function is available to temporarily try and probe all devices that have
1835 * a driver even if some of their suppliers haven't been added or don't have
1836 * drivers.
1837 *
1838 * The drivers can then decide which of the suppliers are optional vs mandatory
1839 * and probe the device if possible. By the time this function returns, all such
1840 * "best effort" probes are guaranteed to be completed. If a device successfully
1841 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1842 * device where the supplier hasn't yet probed successfully because they have to
1843 * be optional dependencies.
1844 *
1845 * Any devices that didn't successfully probe go back to being treated as if
1846 * this function was never called.
1847 *
1848 * This also means that some devices that aren't needed for init and could have
1849 * waited for their optional supplier to probe (when the supplier's module is
1850 * loaded later on) would end up probing prematurely with limited functionality.
1851 * So call this function only when boot would fail without it.
1852 */
wait_for_init_devices_probe(void)1853 void __init wait_for_init_devices_probe(void)
1854 {
1855 if (!fw_devlink_flags || fw_devlink_is_permissive())
1856 return;
1857
1858 /*
1859 * Wait for all ongoing probes to finish so that the "best effort" is
1860 * only applied to devices that can't probe otherwise.
1861 */
1862 wait_for_device_probe();
1863
1864 pr_info("Trying to probe devices needed for running init ...\n");
1865 fw_devlink_best_effort = true;
1866 driver_deferred_probe_trigger();
1867
1868 /*
1869 * Wait for all "best effort" probes to finish before going back to
1870 * normal enforcement.
1871 */
1872 wait_for_device_probe();
1873 fw_devlink_best_effort = false;
1874 }
1875
fw_devlink_unblock_consumers(struct device * dev)1876 static void fw_devlink_unblock_consumers(struct device *dev)
1877 {
1878 struct device_link *link;
1879
1880 if (!fw_devlink_flags || fw_devlink_is_permissive())
1881 return;
1882
1883 device_links_write_lock();
1884 list_for_each_entry(link, &dev->links.consumers, s_node)
1885 fw_devlink_relax_link(link);
1886 device_links_write_unlock();
1887 }
1888
1889
fwnode_init_without_drv(struct fwnode_handle * fwnode)1890 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1891 {
1892 struct device *dev;
1893 bool ret;
1894
1895 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1896 return false;
1897
1898 dev = get_dev_from_fwnode(fwnode);
1899 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1900 put_device(dev);
1901
1902 return ret;
1903 }
1904
fwnode_ancestor_init_without_drv(struct fwnode_handle * fwnode)1905 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1906 {
1907 struct fwnode_handle *parent;
1908
1909 fwnode_for_each_parent_node(fwnode, parent) {
1910 if (fwnode_init_without_drv(parent)) {
1911 fwnode_handle_put(parent);
1912 return true;
1913 }
1914 }
1915
1916 return false;
1917 }
1918
1919 /**
1920 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1921 * @con: Potential consumer device.
1922 * @sup_handle: Potential supplier's fwnode.
1923 *
1924 * Needs to be called with fwnode_lock and device link lock held.
1925 *
1926 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1927 * depend on @con. This function can detect multiple cyles between @sup_handle
1928 * and @con. When such dependency cycles are found, convert all device links
1929 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1930 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1931 * converted into a device link in the future, they are created as
1932 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1933 * fw_devlink=permissive just between the devices in the cycle. We need to do
1934 * this because, at this point, fw_devlink can't tell which of these
1935 * dependencies is not a real dependency.
1936 *
1937 * Return true if one or more cycles were found. Otherwise, return false.
1938 */
__fw_devlink_relax_cycles(struct fwnode_handle * con_handle,struct fwnode_handle * sup_handle)1939 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle,
1940 struct fwnode_handle *sup_handle)
1941 {
1942 struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL;
1943 struct fwnode_link *link;
1944 struct device_link *dev_link;
1945 bool ret = false;
1946
1947 if (!sup_handle)
1948 return false;
1949
1950 /*
1951 * We aren't trying to find all cycles. Just a cycle between con and
1952 * sup_handle.
1953 */
1954 if (sup_handle->flags & FWNODE_FLAG_VISITED)
1955 return false;
1956
1957 sup_handle->flags |= FWNODE_FLAG_VISITED;
1958
1959 /* Termination condition. */
1960 if (sup_handle == con_handle) {
1961 pr_debug("----- cycle: start -----\n");
1962 ret = true;
1963 goto out;
1964 }
1965
1966 sup_dev = get_dev_from_fwnode(sup_handle);
1967 con_dev = get_dev_from_fwnode(con_handle);
1968 /*
1969 * If sup_dev is bound to a driver and @con hasn't started binding to a
1970 * driver, sup_dev can't be a consumer of @con. So, no need to check
1971 * further.
1972 */
1973 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
1974 con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) {
1975 ret = false;
1976 goto out;
1977 }
1978
1979 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
1980 if (link->flags & FWLINK_FLAG_IGNORE)
1981 continue;
1982
1983 if (__fw_devlink_relax_cycles(con_handle, link->supplier)) {
1984 __fwnode_link_cycle(link);
1985 ret = true;
1986 }
1987 }
1988
1989 /*
1990 * Give priority to device parent over fwnode parent to account for any
1991 * quirks in how fwnodes are converted to devices.
1992 */
1993 if (sup_dev)
1994 par_dev = get_device(sup_dev->parent);
1995 else
1996 par_dev = fwnode_get_next_parent_dev(sup_handle);
1997
1998 if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) {
1999 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2000 par_dev->fwnode);
2001 ret = true;
2002 }
2003
2004 if (!sup_dev)
2005 goto out;
2006
2007 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2008 /*
2009 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2010 * such due to a cycle.
2011 */
2012 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2013 !(dev_link->flags & DL_FLAG_CYCLE))
2014 continue;
2015
2016 if (__fw_devlink_relax_cycles(con_handle,
2017 dev_link->supplier->fwnode)) {
2018 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2019 dev_link->supplier->fwnode);
2020 fw_devlink_relax_link(dev_link);
2021 dev_link->flags |= DL_FLAG_CYCLE;
2022 ret = true;
2023 }
2024 }
2025
2026 out:
2027 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2028 put_device(sup_dev);
2029 put_device(par_dev);
2030 return ret;
2031 }
2032
2033 /**
2034 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2035 * @con: consumer device for the device link
2036 * @sup_handle: fwnode handle of supplier
2037 * @link: fwnode link that's being converted to a device link
2038 *
2039 * This function will try to create a device link between the consumer device
2040 * @con and the supplier device represented by @sup_handle.
2041 *
2042 * The supplier has to be provided as a fwnode because incorrect cycles in
2043 * fwnode links can sometimes cause the supplier device to never be created.
2044 * This function detects such cases and returns an error if it cannot create a
2045 * device link from the consumer to a missing supplier.
2046 *
2047 * Returns,
2048 * 0 on successfully creating a device link
2049 * -EINVAL if the device link cannot be created as expected
2050 * -EAGAIN if the device link cannot be created right now, but it may be
2051 * possible to do that in the future
2052 */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,struct fwnode_link * link)2053 static int fw_devlink_create_devlink(struct device *con,
2054 struct fwnode_handle *sup_handle,
2055 struct fwnode_link *link)
2056 {
2057 struct device *sup_dev;
2058 int ret = 0;
2059 u32 flags;
2060
2061 if (link->flags & FWLINK_FLAG_IGNORE)
2062 return 0;
2063
2064 /*
2065 * In some cases, a device P might also be a supplier to its child node
2066 * C. However, this would defer the probe of C until the probe of P
2067 * completes successfully. This is perfectly fine in the device driver
2068 * model. device_add() doesn't guarantee probe completion of the device
2069 * by the time it returns.
2070 *
2071 * However, there are a few drivers that assume C will finish probing
2072 * as soon as it's added and before P finishes probing. So, we provide
2073 * a flag to let fw_devlink know not to delay the probe of C until the
2074 * probe of P completes successfully.
2075 *
2076 * When such a flag is set, we can't create device links where P is the
2077 * supplier of C as that would delay the probe of C.
2078 */
2079 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2080 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2081 return -EINVAL;
2082
2083 /*
2084 * Don't try to optimize by not calling the cycle detection logic under
2085 * certain conditions. There's always some corner case that won't get
2086 * detected.
2087 */
2088 device_links_write_lock();
2089 if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) {
2090 __fwnode_link_cycle(link);
2091 pr_debug("----- cycle: end -----\n");
2092 pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n",
2093 link->consumer, sup_handle);
2094 }
2095 device_links_write_unlock();
2096
2097 if (con->fwnode == link->consumer)
2098 flags = fw_devlink_get_flags(link->flags);
2099 else
2100 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2101
2102 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2103 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2104 else
2105 sup_dev = get_dev_from_fwnode(sup_handle);
2106
2107 if (sup_dev) {
2108 /*
2109 * If it's one of those drivers that don't actually bind to
2110 * their device using driver core, then don't wait on this
2111 * supplier device indefinitely.
2112 */
2113 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2114 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2115 dev_dbg(con,
2116 "Not linking %pfwf - dev might never probe\n",
2117 sup_handle);
2118 ret = -EINVAL;
2119 goto out;
2120 }
2121
2122 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2123 dev_err(con, "Failed to create device link (0x%x) with %s\n",
2124 flags, dev_name(sup_dev));
2125 ret = -EINVAL;
2126 }
2127
2128 goto out;
2129 }
2130
2131 /*
2132 * Supplier or supplier's ancestor already initialized without a struct
2133 * device or being probed by a driver.
2134 */
2135 if (fwnode_init_without_drv(sup_handle) ||
2136 fwnode_ancestor_init_without_drv(sup_handle)) {
2137 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2138 sup_handle);
2139 return -EINVAL;
2140 }
2141
2142 ret = -EAGAIN;
2143 out:
2144 put_device(sup_dev);
2145 return ret;
2146 }
2147
2148 /**
2149 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2150 * @dev: Device that needs to be linked to its consumers
2151 *
2152 * This function looks at all the consumer fwnodes of @dev and creates device
2153 * links between the consumer device and @dev (supplier).
2154 *
2155 * If the consumer device has not been added yet, then this function creates a
2156 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2157 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2158 * sync_state() callback before the real consumer device gets to be added and
2159 * then probed.
2160 *
2161 * Once device links are created from the real consumer to @dev (supplier), the
2162 * fwnode links are deleted.
2163 */
__fw_devlink_link_to_consumers(struct device * dev)2164 static void __fw_devlink_link_to_consumers(struct device *dev)
2165 {
2166 struct fwnode_handle *fwnode = dev->fwnode;
2167 struct fwnode_link *link, *tmp;
2168
2169 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2170 struct device *con_dev;
2171 bool own_link = true;
2172 int ret;
2173
2174 con_dev = get_dev_from_fwnode(link->consumer);
2175 /*
2176 * If consumer device is not available yet, make a "proxy"
2177 * SYNC_STATE_ONLY link from the consumer's parent device to
2178 * the supplier device. This is necessary to make sure the
2179 * supplier doesn't get a sync_state() callback before the real
2180 * consumer can create a device link to the supplier.
2181 *
2182 * This proxy link step is needed to handle the case where the
2183 * consumer's parent device is added before the supplier.
2184 */
2185 if (!con_dev) {
2186 con_dev = fwnode_get_next_parent_dev(link->consumer);
2187 /*
2188 * However, if the consumer's parent device is also the
2189 * parent of the supplier, don't create a
2190 * consumer-supplier link from the parent to its child
2191 * device. Such a dependency is impossible.
2192 */
2193 if (con_dev &&
2194 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2195 put_device(con_dev);
2196 con_dev = NULL;
2197 } else {
2198 own_link = false;
2199 }
2200 }
2201
2202 if (!con_dev)
2203 continue;
2204
2205 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2206 put_device(con_dev);
2207 if (!own_link || ret == -EAGAIN)
2208 continue;
2209
2210 __fwnode_link_del(link);
2211 }
2212 }
2213
2214 /**
2215 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2216 * @dev: The consumer device that needs to be linked to its suppliers
2217 * @fwnode: Root of the fwnode tree that is used to create device links
2218 *
2219 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2220 * @fwnode and creates device links between @dev (consumer) and all the
2221 * supplier devices of the entire fwnode tree at @fwnode.
2222 *
2223 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2224 * and the real suppliers of @dev. Once these device links are created, the
2225 * fwnode links are deleted.
2226 *
2227 * In addition, it also looks at all the suppliers of the entire fwnode tree
2228 * because some of the child devices of @dev that have not been added yet
2229 * (because @dev hasn't probed) might already have their suppliers added to
2230 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2231 * @dev (consumer) and these suppliers to make sure they don't execute their
2232 * sync_state() callbacks before these child devices have a chance to create
2233 * their device links. The fwnode links that correspond to the child devices
2234 * aren't delete because they are needed later to create the device links
2235 * between the real consumer and supplier devices.
2236 */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)2237 static void __fw_devlink_link_to_suppliers(struct device *dev,
2238 struct fwnode_handle *fwnode)
2239 {
2240 bool own_link = (dev->fwnode == fwnode);
2241 struct fwnode_link *link, *tmp;
2242 struct fwnode_handle *child = NULL;
2243
2244 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2245 int ret;
2246 struct fwnode_handle *sup = link->supplier;
2247
2248 ret = fw_devlink_create_devlink(dev, sup, link);
2249 if (!own_link || ret == -EAGAIN)
2250 continue;
2251
2252 __fwnode_link_del(link);
2253 }
2254
2255 /*
2256 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2257 * all the descendants. This proxy link step is needed to handle the
2258 * case where the supplier is added before the consumer's parent device
2259 * (@dev).
2260 */
2261 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2262 __fw_devlink_link_to_suppliers(dev, child);
2263 }
2264
fw_devlink_link_device(struct device * dev)2265 static void fw_devlink_link_device(struct device *dev)
2266 {
2267 struct fwnode_handle *fwnode = dev->fwnode;
2268
2269 if (!fw_devlink_flags)
2270 return;
2271
2272 fw_devlink_parse_fwtree(fwnode);
2273
2274 mutex_lock(&fwnode_link_lock);
2275 __fw_devlink_link_to_consumers(dev);
2276 __fw_devlink_link_to_suppliers(dev, fwnode);
2277 mutex_unlock(&fwnode_link_lock);
2278 }
2279
2280 /* Device links support end. */
2281
2282 int (*platform_notify)(struct device *dev) = NULL;
2283 int (*platform_notify_remove)(struct device *dev) = NULL;
2284 static struct kobject *dev_kobj;
2285
2286 /* /sys/dev/char */
2287 static struct kobject *sysfs_dev_char_kobj;
2288
2289 /* /sys/dev/block */
2290 static struct kobject *sysfs_dev_block_kobj;
2291
2292 static DEFINE_MUTEX(device_hotplug_lock);
2293
lock_device_hotplug(void)2294 void lock_device_hotplug(void)
2295 {
2296 mutex_lock(&device_hotplug_lock);
2297 }
2298
unlock_device_hotplug(void)2299 void unlock_device_hotplug(void)
2300 {
2301 mutex_unlock(&device_hotplug_lock);
2302 }
2303
lock_device_hotplug_sysfs(void)2304 int lock_device_hotplug_sysfs(void)
2305 {
2306 if (mutex_trylock(&device_hotplug_lock))
2307 return 0;
2308
2309 /* Avoid busy looping (5 ms of sleep should do). */
2310 msleep(5);
2311 return restart_syscall();
2312 }
2313
2314 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2315 static inline int device_is_not_partition(struct device *dev)
2316 {
2317 return !(dev->type == &part_type);
2318 }
2319 #else
device_is_not_partition(struct device * dev)2320 static inline int device_is_not_partition(struct device *dev)
2321 {
2322 return 1;
2323 }
2324 #endif
2325
device_platform_notify(struct device * dev)2326 static void device_platform_notify(struct device *dev)
2327 {
2328 acpi_device_notify(dev);
2329
2330 software_node_notify(dev);
2331
2332 if (platform_notify)
2333 platform_notify(dev);
2334 }
2335
device_platform_notify_remove(struct device * dev)2336 static void device_platform_notify_remove(struct device *dev)
2337 {
2338 if (platform_notify_remove)
2339 platform_notify_remove(dev);
2340
2341 software_node_notify_remove(dev);
2342
2343 acpi_device_notify_remove(dev);
2344 }
2345
2346 /**
2347 * dev_driver_string - Return a device's driver name, if at all possible
2348 * @dev: struct device to get the name of
2349 *
2350 * Will return the device's driver's name if it is bound to a device. If
2351 * the device is not bound to a driver, it will return the name of the bus
2352 * it is attached to. If it is not attached to a bus either, an empty
2353 * string will be returned.
2354 */
dev_driver_string(const struct device * dev)2355 const char *dev_driver_string(const struct device *dev)
2356 {
2357 struct device_driver *drv;
2358
2359 /* dev->driver can change to NULL underneath us because of unbinding,
2360 * so be careful about accessing it. dev->bus and dev->class should
2361 * never change once they are set, so they don't need special care.
2362 */
2363 drv = READ_ONCE(dev->driver);
2364 return drv ? drv->name : dev_bus_name(dev);
2365 }
2366 EXPORT_SYMBOL(dev_driver_string);
2367
2368 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2369
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2370 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2371 char *buf)
2372 {
2373 struct device_attribute *dev_attr = to_dev_attr(attr);
2374 struct device *dev = kobj_to_dev(kobj);
2375 ssize_t ret = -EIO;
2376
2377 if (dev_attr->show)
2378 ret = dev_attr->show(dev, dev_attr, buf);
2379 if (ret >= (ssize_t)PAGE_SIZE) {
2380 printk("dev_attr_show: %pS returned bad count\n",
2381 dev_attr->show);
2382 }
2383 return ret;
2384 }
2385
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2386 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2387 const char *buf, size_t count)
2388 {
2389 struct device_attribute *dev_attr = to_dev_attr(attr);
2390 struct device *dev = kobj_to_dev(kobj);
2391 ssize_t ret = -EIO;
2392
2393 if (dev_attr->store)
2394 ret = dev_attr->store(dev, dev_attr, buf, count);
2395 return ret;
2396 }
2397
2398 static const struct sysfs_ops dev_sysfs_ops = {
2399 .show = dev_attr_show,
2400 .store = dev_attr_store,
2401 };
2402
2403 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2404
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2405 ssize_t device_store_ulong(struct device *dev,
2406 struct device_attribute *attr,
2407 const char *buf, size_t size)
2408 {
2409 struct dev_ext_attribute *ea = to_ext_attr(attr);
2410 int ret;
2411 unsigned long new;
2412
2413 ret = kstrtoul(buf, 0, &new);
2414 if (ret)
2415 return ret;
2416 *(unsigned long *)(ea->var) = new;
2417 /* Always return full write size even if we didn't consume all */
2418 return size;
2419 }
2420 EXPORT_SYMBOL_GPL(device_store_ulong);
2421
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2422 ssize_t device_show_ulong(struct device *dev,
2423 struct device_attribute *attr,
2424 char *buf)
2425 {
2426 struct dev_ext_attribute *ea = to_ext_attr(attr);
2427 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2428 }
2429 EXPORT_SYMBOL_GPL(device_show_ulong);
2430
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2431 ssize_t device_store_int(struct device *dev,
2432 struct device_attribute *attr,
2433 const char *buf, size_t size)
2434 {
2435 struct dev_ext_attribute *ea = to_ext_attr(attr);
2436 int ret;
2437 long new;
2438
2439 ret = kstrtol(buf, 0, &new);
2440 if (ret)
2441 return ret;
2442
2443 if (new > INT_MAX || new < INT_MIN)
2444 return -EINVAL;
2445 *(int *)(ea->var) = new;
2446 /* Always return full write size even if we didn't consume all */
2447 return size;
2448 }
2449 EXPORT_SYMBOL_GPL(device_store_int);
2450
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2451 ssize_t device_show_int(struct device *dev,
2452 struct device_attribute *attr,
2453 char *buf)
2454 {
2455 struct dev_ext_attribute *ea = to_ext_attr(attr);
2456
2457 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2458 }
2459 EXPORT_SYMBOL_GPL(device_show_int);
2460
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2461 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2462 const char *buf, size_t size)
2463 {
2464 struct dev_ext_attribute *ea = to_ext_attr(attr);
2465
2466 if (kstrtobool(buf, ea->var) < 0)
2467 return -EINVAL;
2468
2469 return size;
2470 }
2471 EXPORT_SYMBOL_GPL(device_store_bool);
2472
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2473 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2474 char *buf)
2475 {
2476 struct dev_ext_attribute *ea = to_ext_attr(attr);
2477
2478 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2479 }
2480 EXPORT_SYMBOL_GPL(device_show_bool);
2481
2482 /**
2483 * device_release - free device structure.
2484 * @kobj: device's kobject.
2485 *
2486 * This is called once the reference count for the object
2487 * reaches 0. We forward the call to the device's release
2488 * method, which should handle actually freeing the structure.
2489 */
device_release(struct kobject * kobj)2490 static void device_release(struct kobject *kobj)
2491 {
2492 struct device *dev = kobj_to_dev(kobj);
2493 struct device_private *p = dev->p;
2494
2495 /*
2496 * Some platform devices are driven without driver attached
2497 * and managed resources may have been acquired. Make sure
2498 * all resources are released.
2499 *
2500 * Drivers still can add resources into device after device
2501 * is deleted but alive, so release devres here to avoid
2502 * possible memory leak.
2503 */
2504 devres_release_all(dev);
2505
2506 kfree(dev->dma_range_map);
2507
2508 if (dev->release)
2509 dev->release(dev);
2510 else if (dev->type && dev->type->release)
2511 dev->type->release(dev);
2512 else if (dev->class && dev->class->dev_release)
2513 dev->class->dev_release(dev);
2514 else
2515 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2516 dev_name(dev));
2517 kfree(p);
2518 }
2519
device_namespace(const struct kobject * kobj)2520 static const void *device_namespace(const struct kobject *kobj)
2521 {
2522 const struct device *dev = kobj_to_dev(kobj);
2523 const void *ns = NULL;
2524
2525 if (dev->class && dev->class->ns_type)
2526 ns = dev->class->namespace(dev);
2527
2528 return ns;
2529 }
2530
device_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)2531 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2532 {
2533 const struct device *dev = kobj_to_dev(kobj);
2534
2535 if (dev->class && dev->class->get_ownership)
2536 dev->class->get_ownership(dev, uid, gid);
2537 }
2538
2539 static const struct kobj_type device_ktype = {
2540 .release = device_release,
2541 .sysfs_ops = &dev_sysfs_ops,
2542 .namespace = device_namespace,
2543 .get_ownership = device_get_ownership,
2544 };
2545
2546
dev_uevent_filter(const struct kobject * kobj)2547 static int dev_uevent_filter(const struct kobject *kobj)
2548 {
2549 const struct kobj_type *ktype = get_ktype(kobj);
2550
2551 if (ktype == &device_ktype) {
2552 const struct device *dev = kobj_to_dev(kobj);
2553 if (dev->bus)
2554 return 1;
2555 if (dev->class)
2556 return 1;
2557 }
2558 return 0;
2559 }
2560
dev_uevent_name(const struct kobject * kobj)2561 static const char *dev_uevent_name(const struct kobject *kobj)
2562 {
2563 const struct device *dev = kobj_to_dev(kobj);
2564
2565 if (dev->bus)
2566 return dev->bus->name;
2567 if (dev->class)
2568 return dev->class->name;
2569 return NULL;
2570 }
2571
dev_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)2572 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2573 {
2574 const struct device *dev = kobj_to_dev(kobj);
2575 int retval = 0;
2576
2577 /* add device node properties if present */
2578 if (MAJOR(dev->devt)) {
2579 const char *tmp;
2580 const char *name;
2581 umode_t mode = 0;
2582 kuid_t uid = GLOBAL_ROOT_UID;
2583 kgid_t gid = GLOBAL_ROOT_GID;
2584
2585 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2586 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2587 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2588 if (name) {
2589 add_uevent_var(env, "DEVNAME=%s", name);
2590 if (mode)
2591 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2592 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2593 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2594 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2595 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2596 kfree(tmp);
2597 }
2598 }
2599
2600 if (dev->type && dev->type->name)
2601 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2602
2603 if (dev->driver)
2604 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2605
2606 /* Add common DT information about the device */
2607 of_device_uevent(dev, env);
2608
2609 /* have the bus specific function add its stuff */
2610 if (dev->bus && dev->bus->uevent) {
2611 retval = dev->bus->uevent(dev, env);
2612 if (retval)
2613 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2614 dev_name(dev), __func__, retval);
2615 }
2616
2617 /* have the class specific function add its stuff */
2618 if (dev->class && dev->class->dev_uevent) {
2619 retval = dev->class->dev_uevent(dev, env);
2620 if (retval)
2621 pr_debug("device: '%s': %s: class uevent() "
2622 "returned %d\n", dev_name(dev),
2623 __func__, retval);
2624 }
2625
2626 /* have the device type specific function add its stuff */
2627 if (dev->type && dev->type->uevent) {
2628 retval = dev->type->uevent(dev, env);
2629 if (retval)
2630 pr_debug("device: '%s': %s: dev_type uevent() "
2631 "returned %d\n", dev_name(dev),
2632 __func__, retval);
2633 }
2634
2635 return retval;
2636 }
2637
2638 static const struct kset_uevent_ops device_uevent_ops = {
2639 .filter = dev_uevent_filter,
2640 .name = dev_uevent_name,
2641 .uevent = dev_uevent,
2642 };
2643
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2644 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2645 char *buf)
2646 {
2647 struct kobject *top_kobj;
2648 struct kset *kset;
2649 struct kobj_uevent_env *env = NULL;
2650 int i;
2651 int len = 0;
2652 int retval;
2653
2654 /* search the kset, the device belongs to */
2655 top_kobj = &dev->kobj;
2656 while (!top_kobj->kset && top_kobj->parent)
2657 top_kobj = top_kobj->parent;
2658 if (!top_kobj->kset)
2659 goto out;
2660
2661 kset = top_kobj->kset;
2662 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2663 goto out;
2664
2665 /* respect filter */
2666 if (kset->uevent_ops && kset->uevent_ops->filter)
2667 if (!kset->uevent_ops->filter(&dev->kobj))
2668 goto out;
2669
2670 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2671 if (!env)
2672 return -ENOMEM;
2673
2674 /* Synchronize with really_probe() */
2675 device_lock(dev);
2676 /* let the kset specific function add its keys */
2677 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2678 device_unlock(dev);
2679 if (retval)
2680 goto out;
2681
2682 /* copy keys to file */
2683 for (i = 0; i < env->envp_idx; i++)
2684 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2685 out:
2686 kfree(env);
2687 return len;
2688 }
2689
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2690 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2691 const char *buf, size_t count)
2692 {
2693 int rc;
2694
2695 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2696
2697 if (rc) {
2698 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2699 return rc;
2700 }
2701
2702 return count;
2703 }
2704 static DEVICE_ATTR_RW(uevent);
2705
online_show(struct device * dev,struct device_attribute * attr,char * buf)2706 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2707 char *buf)
2708 {
2709 bool val;
2710
2711 device_lock(dev);
2712 val = !dev->offline;
2713 device_unlock(dev);
2714 return sysfs_emit(buf, "%u\n", val);
2715 }
2716
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2717 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2718 const char *buf, size_t count)
2719 {
2720 bool val;
2721 int ret;
2722
2723 ret = kstrtobool(buf, &val);
2724 if (ret < 0)
2725 return ret;
2726
2727 ret = lock_device_hotplug_sysfs();
2728 if (ret)
2729 return ret;
2730
2731 ret = val ? device_online(dev) : device_offline(dev);
2732 unlock_device_hotplug();
2733 return ret < 0 ? ret : count;
2734 }
2735 static DEVICE_ATTR_RW(online);
2736
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2737 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2738 char *buf)
2739 {
2740 const char *loc;
2741
2742 switch (dev->removable) {
2743 case DEVICE_REMOVABLE:
2744 loc = "removable";
2745 break;
2746 case DEVICE_FIXED:
2747 loc = "fixed";
2748 break;
2749 default:
2750 loc = "unknown";
2751 }
2752 return sysfs_emit(buf, "%s\n", loc);
2753 }
2754 static DEVICE_ATTR_RO(removable);
2755
device_add_groups(struct device * dev,const struct attribute_group ** groups)2756 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2757 {
2758 return sysfs_create_groups(&dev->kobj, groups);
2759 }
2760 EXPORT_SYMBOL_GPL(device_add_groups);
2761
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2762 void device_remove_groups(struct device *dev,
2763 const struct attribute_group **groups)
2764 {
2765 sysfs_remove_groups(&dev->kobj, groups);
2766 }
2767 EXPORT_SYMBOL_GPL(device_remove_groups);
2768
2769 union device_attr_group_devres {
2770 const struct attribute_group *group;
2771 const struct attribute_group **groups;
2772 };
2773
devm_attr_group_remove(struct device * dev,void * res)2774 static void devm_attr_group_remove(struct device *dev, void *res)
2775 {
2776 union device_attr_group_devres *devres = res;
2777 const struct attribute_group *group = devres->group;
2778
2779 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2780 sysfs_remove_group(&dev->kobj, group);
2781 }
2782
devm_attr_groups_remove(struct device * dev,void * res)2783 static void devm_attr_groups_remove(struct device *dev, void *res)
2784 {
2785 union device_attr_group_devres *devres = res;
2786 const struct attribute_group **groups = devres->groups;
2787
2788 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2789 sysfs_remove_groups(&dev->kobj, groups);
2790 }
2791
2792 /**
2793 * devm_device_add_group - given a device, create a managed attribute group
2794 * @dev: The device to create the group for
2795 * @grp: The attribute group to create
2796 *
2797 * This function creates a group for the first time. It will explicitly
2798 * warn and error if any of the attribute files being created already exist.
2799 *
2800 * Returns 0 on success or error code on failure.
2801 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2802 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2803 {
2804 union device_attr_group_devres *devres;
2805 int error;
2806
2807 devres = devres_alloc(devm_attr_group_remove,
2808 sizeof(*devres), GFP_KERNEL);
2809 if (!devres)
2810 return -ENOMEM;
2811
2812 error = sysfs_create_group(&dev->kobj, grp);
2813 if (error) {
2814 devres_free(devres);
2815 return error;
2816 }
2817
2818 devres->group = grp;
2819 devres_add(dev, devres);
2820 return 0;
2821 }
2822 EXPORT_SYMBOL_GPL(devm_device_add_group);
2823
2824 /**
2825 * devm_device_add_groups - create a bunch of managed attribute groups
2826 * @dev: The device to create the group for
2827 * @groups: The attribute groups to create, NULL terminated
2828 *
2829 * This function creates a bunch of managed attribute groups. If an error
2830 * occurs when creating a group, all previously created groups will be
2831 * removed, unwinding everything back to the original state when this
2832 * function was called. It will explicitly warn and error if any of the
2833 * attribute files being created already exist.
2834 *
2835 * Returns 0 on success or error code from sysfs_create_group on failure.
2836 */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)2837 int devm_device_add_groups(struct device *dev,
2838 const struct attribute_group **groups)
2839 {
2840 union device_attr_group_devres *devres;
2841 int error;
2842
2843 devres = devres_alloc(devm_attr_groups_remove,
2844 sizeof(*devres), GFP_KERNEL);
2845 if (!devres)
2846 return -ENOMEM;
2847
2848 error = sysfs_create_groups(&dev->kobj, groups);
2849 if (error) {
2850 devres_free(devres);
2851 return error;
2852 }
2853
2854 devres->groups = groups;
2855 devres_add(dev, devres);
2856 return 0;
2857 }
2858 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2859
device_add_attrs(struct device * dev)2860 static int device_add_attrs(struct device *dev)
2861 {
2862 const struct class *class = dev->class;
2863 const struct device_type *type = dev->type;
2864 int error;
2865
2866 if (class) {
2867 error = device_add_groups(dev, class->dev_groups);
2868 if (error)
2869 return error;
2870 }
2871
2872 if (type) {
2873 error = device_add_groups(dev, type->groups);
2874 if (error)
2875 goto err_remove_class_groups;
2876 }
2877
2878 error = device_add_groups(dev, dev->groups);
2879 if (error)
2880 goto err_remove_type_groups;
2881
2882 if (device_supports_offline(dev) && !dev->offline_disabled) {
2883 error = device_create_file(dev, &dev_attr_online);
2884 if (error)
2885 goto err_remove_dev_groups;
2886 }
2887
2888 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2889 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2890 if (error)
2891 goto err_remove_dev_online;
2892 }
2893
2894 if (dev_removable_is_valid(dev)) {
2895 error = device_create_file(dev, &dev_attr_removable);
2896 if (error)
2897 goto err_remove_dev_waiting_for_supplier;
2898 }
2899
2900 if (dev_add_physical_location(dev)) {
2901 error = device_add_group(dev,
2902 &dev_attr_physical_location_group);
2903 if (error)
2904 goto err_remove_dev_removable;
2905 }
2906
2907 return 0;
2908
2909 err_remove_dev_removable:
2910 device_remove_file(dev, &dev_attr_removable);
2911 err_remove_dev_waiting_for_supplier:
2912 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2913 err_remove_dev_online:
2914 device_remove_file(dev, &dev_attr_online);
2915 err_remove_dev_groups:
2916 device_remove_groups(dev, dev->groups);
2917 err_remove_type_groups:
2918 if (type)
2919 device_remove_groups(dev, type->groups);
2920 err_remove_class_groups:
2921 if (class)
2922 device_remove_groups(dev, class->dev_groups);
2923
2924 return error;
2925 }
2926
device_remove_attrs(struct device * dev)2927 static void device_remove_attrs(struct device *dev)
2928 {
2929 const struct class *class = dev->class;
2930 const struct device_type *type = dev->type;
2931
2932 if (dev->physical_location) {
2933 device_remove_group(dev, &dev_attr_physical_location_group);
2934 kfree(dev->physical_location);
2935 }
2936
2937 device_remove_file(dev, &dev_attr_removable);
2938 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2939 device_remove_file(dev, &dev_attr_online);
2940 device_remove_groups(dev, dev->groups);
2941
2942 if (type)
2943 device_remove_groups(dev, type->groups);
2944
2945 if (class)
2946 device_remove_groups(dev, class->dev_groups);
2947 }
2948
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2949 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2950 char *buf)
2951 {
2952 return print_dev_t(buf, dev->devt);
2953 }
2954 static DEVICE_ATTR_RO(dev);
2955
2956 /* /sys/devices/ */
2957 struct kset *devices_kset;
2958
2959 /**
2960 * devices_kset_move_before - Move device in the devices_kset's list.
2961 * @deva: Device to move.
2962 * @devb: Device @deva should come before.
2963 */
devices_kset_move_before(struct device * deva,struct device * devb)2964 static void devices_kset_move_before(struct device *deva, struct device *devb)
2965 {
2966 if (!devices_kset)
2967 return;
2968 pr_debug("devices_kset: Moving %s before %s\n",
2969 dev_name(deva), dev_name(devb));
2970 spin_lock(&devices_kset->list_lock);
2971 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2972 spin_unlock(&devices_kset->list_lock);
2973 }
2974
2975 /**
2976 * devices_kset_move_after - Move device in the devices_kset's list.
2977 * @deva: Device to move
2978 * @devb: Device @deva should come after.
2979 */
devices_kset_move_after(struct device * deva,struct device * devb)2980 static void devices_kset_move_after(struct device *deva, struct device *devb)
2981 {
2982 if (!devices_kset)
2983 return;
2984 pr_debug("devices_kset: Moving %s after %s\n",
2985 dev_name(deva), dev_name(devb));
2986 spin_lock(&devices_kset->list_lock);
2987 list_move(&deva->kobj.entry, &devb->kobj.entry);
2988 spin_unlock(&devices_kset->list_lock);
2989 }
2990
2991 /**
2992 * devices_kset_move_last - move the device to the end of devices_kset's list.
2993 * @dev: device to move
2994 */
devices_kset_move_last(struct device * dev)2995 void devices_kset_move_last(struct device *dev)
2996 {
2997 if (!devices_kset)
2998 return;
2999 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3000 spin_lock(&devices_kset->list_lock);
3001 list_move_tail(&dev->kobj.entry, &devices_kset->list);
3002 spin_unlock(&devices_kset->list_lock);
3003 }
3004
3005 /**
3006 * device_create_file - create sysfs attribute file for device.
3007 * @dev: device.
3008 * @attr: device attribute descriptor.
3009 */
device_create_file(struct device * dev,const struct device_attribute * attr)3010 int device_create_file(struct device *dev,
3011 const struct device_attribute *attr)
3012 {
3013 int error = 0;
3014
3015 if (dev) {
3016 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3017 "Attribute %s: write permission without 'store'\n",
3018 attr->attr.name);
3019 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3020 "Attribute %s: read permission without 'show'\n",
3021 attr->attr.name);
3022 error = sysfs_create_file(&dev->kobj, &attr->attr);
3023 }
3024
3025 return error;
3026 }
3027 EXPORT_SYMBOL_GPL(device_create_file);
3028
3029 /**
3030 * device_remove_file - remove sysfs attribute file.
3031 * @dev: device.
3032 * @attr: device attribute descriptor.
3033 */
device_remove_file(struct device * dev,const struct device_attribute * attr)3034 void device_remove_file(struct device *dev,
3035 const struct device_attribute *attr)
3036 {
3037 if (dev)
3038 sysfs_remove_file(&dev->kobj, &attr->attr);
3039 }
3040 EXPORT_SYMBOL_GPL(device_remove_file);
3041
3042 /**
3043 * device_remove_file_self - remove sysfs attribute file from its own method.
3044 * @dev: device.
3045 * @attr: device attribute descriptor.
3046 *
3047 * See kernfs_remove_self() for details.
3048 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)3049 bool device_remove_file_self(struct device *dev,
3050 const struct device_attribute *attr)
3051 {
3052 if (dev)
3053 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3054 else
3055 return false;
3056 }
3057 EXPORT_SYMBOL_GPL(device_remove_file_self);
3058
3059 /**
3060 * device_create_bin_file - create sysfs binary attribute file for device.
3061 * @dev: device.
3062 * @attr: device binary attribute descriptor.
3063 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)3064 int device_create_bin_file(struct device *dev,
3065 const struct bin_attribute *attr)
3066 {
3067 int error = -EINVAL;
3068 if (dev)
3069 error = sysfs_create_bin_file(&dev->kobj, attr);
3070 return error;
3071 }
3072 EXPORT_SYMBOL_GPL(device_create_bin_file);
3073
3074 /**
3075 * device_remove_bin_file - remove sysfs binary attribute file
3076 * @dev: device.
3077 * @attr: device binary attribute descriptor.
3078 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)3079 void device_remove_bin_file(struct device *dev,
3080 const struct bin_attribute *attr)
3081 {
3082 if (dev)
3083 sysfs_remove_bin_file(&dev->kobj, attr);
3084 }
3085 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3086
klist_children_get(struct klist_node * n)3087 static void klist_children_get(struct klist_node *n)
3088 {
3089 struct device_private *p = to_device_private_parent(n);
3090 struct device *dev = p->device;
3091
3092 get_device(dev);
3093 }
3094
klist_children_put(struct klist_node * n)3095 static void klist_children_put(struct klist_node *n)
3096 {
3097 struct device_private *p = to_device_private_parent(n);
3098 struct device *dev = p->device;
3099
3100 put_device(dev);
3101 }
3102
3103 /**
3104 * device_initialize - init device structure.
3105 * @dev: device.
3106 *
3107 * This prepares the device for use by other layers by initializing
3108 * its fields.
3109 * It is the first half of device_register(), if called by
3110 * that function, though it can also be called separately, so one
3111 * may use @dev's fields. In particular, get_device()/put_device()
3112 * may be used for reference counting of @dev after calling this
3113 * function.
3114 *
3115 * All fields in @dev must be initialized by the caller to 0, except
3116 * for those explicitly set to some other value. The simplest
3117 * approach is to use kzalloc() to allocate the structure containing
3118 * @dev.
3119 *
3120 * NOTE: Use put_device() to give up your reference instead of freeing
3121 * @dev directly once you have called this function.
3122 */
device_initialize(struct device * dev)3123 void device_initialize(struct device *dev)
3124 {
3125 dev->kobj.kset = devices_kset;
3126 kobject_init(&dev->kobj, &device_ktype);
3127 INIT_LIST_HEAD(&dev->dma_pools);
3128 mutex_init(&dev->mutex);
3129 lockdep_set_novalidate_class(&dev->mutex);
3130 spin_lock_init(&dev->devres_lock);
3131 INIT_LIST_HEAD(&dev->devres_head);
3132 device_pm_init(dev);
3133 set_dev_node(dev, NUMA_NO_NODE);
3134 INIT_LIST_HEAD(&dev->links.consumers);
3135 INIT_LIST_HEAD(&dev->links.suppliers);
3136 INIT_LIST_HEAD(&dev->links.defer_sync);
3137 dev->links.status = DL_DEV_NO_DRIVER;
3138 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3139 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3140 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3141 dev->dma_coherent = dma_default_coherent;
3142 #endif
3143 swiotlb_dev_init(dev);
3144 }
3145 EXPORT_SYMBOL_GPL(device_initialize);
3146
virtual_device_parent(struct device * dev)3147 struct kobject *virtual_device_parent(struct device *dev)
3148 {
3149 static struct kobject *virtual_dir = NULL;
3150
3151 if (!virtual_dir)
3152 virtual_dir = kobject_create_and_add("virtual",
3153 &devices_kset->kobj);
3154
3155 return virtual_dir;
3156 }
3157
3158 struct class_dir {
3159 struct kobject kobj;
3160 const struct class *class;
3161 };
3162
3163 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3164
class_dir_release(struct kobject * kobj)3165 static void class_dir_release(struct kobject *kobj)
3166 {
3167 struct class_dir *dir = to_class_dir(kobj);
3168 kfree(dir);
3169 }
3170
3171 static const
class_dir_child_ns_type(const struct kobject * kobj)3172 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3173 {
3174 const struct class_dir *dir = to_class_dir(kobj);
3175 return dir->class->ns_type;
3176 }
3177
3178 static const struct kobj_type class_dir_ktype = {
3179 .release = class_dir_release,
3180 .sysfs_ops = &kobj_sysfs_ops,
3181 .child_ns_type = class_dir_child_ns_type
3182 };
3183
class_dir_create_and_add(struct subsys_private * sp,struct kobject * parent_kobj)3184 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3185 struct kobject *parent_kobj)
3186 {
3187 struct class_dir *dir;
3188 int retval;
3189
3190 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3191 if (!dir)
3192 return ERR_PTR(-ENOMEM);
3193
3194 dir->class = sp->class;
3195 kobject_init(&dir->kobj, &class_dir_ktype);
3196
3197 dir->kobj.kset = &sp->glue_dirs;
3198
3199 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3200 if (retval < 0) {
3201 kobject_put(&dir->kobj);
3202 return ERR_PTR(retval);
3203 }
3204 return &dir->kobj;
3205 }
3206
3207 static DEFINE_MUTEX(gdp_mutex);
3208
get_device_parent(struct device * dev,struct device * parent)3209 static struct kobject *get_device_parent(struct device *dev,
3210 struct device *parent)
3211 {
3212 struct subsys_private *sp = class_to_subsys(dev->class);
3213 struct kobject *kobj = NULL;
3214
3215 if (sp) {
3216 struct kobject *parent_kobj;
3217 struct kobject *k;
3218
3219 /*
3220 * If we have no parent, we live in "virtual".
3221 * Class-devices with a non class-device as parent, live
3222 * in a "glue" directory to prevent namespace collisions.
3223 */
3224 if (parent == NULL)
3225 parent_kobj = virtual_device_parent(dev);
3226 else if (parent->class && !dev->class->ns_type) {
3227 subsys_put(sp);
3228 return &parent->kobj;
3229 } else {
3230 parent_kobj = &parent->kobj;
3231 }
3232
3233 mutex_lock(&gdp_mutex);
3234
3235 /* find our class-directory at the parent and reference it */
3236 spin_lock(&sp->glue_dirs.list_lock);
3237 list_for_each_entry(k, &sp->glue_dirs.list, entry)
3238 if (k->parent == parent_kobj) {
3239 kobj = kobject_get(k);
3240 break;
3241 }
3242 spin_unlock(&sp->glue_dirs.list_lock);
3243 if (kobj) {
3244 mutex_unlock(&gdp_mutex);
3245 subsys_put(sp);
3246 return kobj;
3247 }
3248
3249 /* or create a new class-directory at the parent device */
3250 k = class_dir_create_and_add(sp, parent_kobj);
3251 /* do not emit an uevent for this simple "glue" directory */
3252 mutex_unlock(&gdp_mutex);
3253 subsys_put(sp);
3254 return k;
3255 }
3256
3257 /* subsystems can specify a default root directory for their devices */
3258 if (!parent && dev->bus) {
3259 struct device *dev_root = bus_get_dev_root(dev->bus);
3260
3261 if (dev_root) {
3262 kobj = &dev_root->kobj;
3263 put_device(dev_root);
3264 return kobj;
3265 }
3266 }
3267
3268 if (parent)
3269 return &parent->kobj;
3270 return NULL;
3271 }
3272
live_in_glue_dir(struct kobject * kobj,struct device * dev)3273 static inline bool live_in_glue_dir(struct kobject *kobj,
3274 struct device *dev)
3275 {
3276 struct subsys_private *sp;
3277 bool retval;
3278
3279 if (!kobj || !dev->class)
3280 return false;
3281
3282 sp = class_to_subsys(dev->class);
3283 if (!sp)
3284 return false;
3285
3286 if (kobj->kset == &sp->glue_dirs)
3287 retval = true;
3288 else
3289 retval = false;
3290
3291 subsys_put(sp);
3292 return retval;
3293 }
3294
get_glue_dir(struct device * dev)3295 static inline struct kobject *get_glue_dir(struct device *dev)
3296 {
3297 return dev->kobj.parent;
3298 }
3299
3300 /**
3301 * kobject_has_children - Returns whether a kobject has children.
3302 * @kobj: the object to test
3303 *
3304 * This will return whether a kobject has other kobjects as children.
3305 *
3306 * It does NOT account for the presence of attribute files, only sub
3307 * directories. It also assumes there is no concurrent addition or
3308 * removal of such children, and thus relies on external locking.
3309 */
kobject_has_children(struct kobject * kobj)3310 static inline bool kobject_has_children(struct kobject *kobj)
3311 {
3312 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3313
3314 return kobj->sd && kobj->sd->dir.subdirs;
3315 }
3316
3317 /*
3318 * make sure cleaning up dir as the last step, we need to make
3319 * sure .release handler of kobject is run with holding the
3320 * global lock
3321 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3322 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3323 {
3324 unsigned int ref;
3325
3326 /* see if we live in a "glue" directory */
3327 if (!live_in_glue_dir(glue_dir, dev))
3328 return;
3329
3330 mutex_lock(&gdp_mutex);
3331 /**
3332 * There is a race condition between removing glue directory
3333 * and adding a new device under the glue directory.
3334 *
3335 * CPU1: CPU2:
3336 *
3337 * device_add()
3338 * get_device_parent()
3339 * class_dir_create_and_add()
3340 * kobject_add_internal()
3341 * create_dir() // create glue_dir
3342 *
3343 * device_add()
3344 * get_device_parent()
3345 * kobject_get() // get glue_dir
3346 *
3347 * device_del()
3348 * cleanup_glue_dir()
3349 * kobject_del(glue_dir)
3350 *
3351 * kobject_add()
3352 * kobject_add_internal()
3353 * create_dir() // in glue_dir
3354 * sysfs_create_dir_ns()
3355 * kernfs_create_dir_ns(sd)
3356 *
3357 * sysfs_remove_dir() // glue_dir->sd=NULL
3358 * sysfs_put() // free glue_dir->sd
3359 *
3360 * // sd is freed
3361 * kernfs_new_node(sd)
3362 * kernfs_get(glue_dir)
3363 * kernfs_add_one()
3364 * kernfs_put()
3365 *
3366 * Before CPU1 remove last child device under glue dir, if CPU2 add
3367 * a new device under glue dir, the glue_dir kobject reference count
3368 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3369 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3370 * and sysfs_put(). This result in glue_dir->sd is freed.
3371 *
3372 * Then the CPU2 will see a stale "empty" but still potentially used
3373 * glue dir around in kernfs_new_node().
3374 *
3375 * In order to avoid this happening, we also should make sure that
3376 * kernfs_node for glue_dir is released in CPU1 only when refcount
3377 * for glue_dir kobj is 1.
3378 */
3379 ref = kref_read(&glue_dir->kref);
3380 if (!kobject_has_children(glue_dir) && !--ref)
3381 kobject_del(glue_dir);
3382 kobject_put(glue_dir);
3383 mutex_unlock(&gdp_mutex);
3384 }
3385
device_add_class_symlinks(struct device * dev)3386 static int device_add_class_symlinks(struct device *dev)
3387 {
3388 struct device_node *of_node = dev_of_node(dev);
3389 struct subsys_private *sp;
3390 int error;
3391
3392 if (of_node) {
3393 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3394 if (error)
3395 dev_warn(dev, "Error %d creating of_node link\n",error);
3396 /* An error here doesn't warrant bringing down the device */
3397 }
3398
3399 sp = class_to_subsys(dev->class);
3400 if (!sp)
3401 return 0;
3402
3403 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3404 if (error)
3405 goto out_devnode;
3406
3407 if (dev->parent && device_is_not_partition(dev)) {
3408 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3409 "device");
3410 if (error)
3411 goto out_subsys;
3412 }
3413
3414 /* link in the class directory pointing to the device */
3415 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3416 if (error)
3417 goto out_device;
3418 goto exit;
3419
3420 out_device:
3421 sysfs_remove_link(&dev->kobj, "device");
3422 out_subsys:
3423 sysfs_remove_link(&dev->kobj, "subsystem");
3424 out_devnode:
3425 sysfs_remove_link(&dev->kobj, "of_node");
3426 exit:
3427 subsys_put(sp);
3428 return error;
3429 }
3430
device_remove_class_symlinks(struct device * dev)3431 static void device_remove_class_symlinks(struct device *dev)
3432 {
3433 struct subsys_private *sp = class_to_subsys(dev->class);
3434
3435 if (dev_of_node(dev))
3436 sysfs_remove_link(&dev->kobj, "of_node");
3437
3438 if (!sp)
3439 return;
3440
3441 if (dev->parent && device_is_not_partition(dev))
3442 sysfs_remove_link(&dev->kobj, "device");
3443 sysfs_remove_link(&dev->kobj, "subsystem");
3444 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3445 subsys_put(sp);
3446 }
3447
3448 /**
3449 * dev_set_name - set a device name
3450 * @dev: device
3451 * @fmt: format string for the device's name
3452 */
dev_set_name(struct device * dev,const char * fmt,...)3453 int dev_set_name(struct device *dev, const char *fmt, ...)
3454 {
3455 va_list vargs;
3456 int err;
3457
3458 va_start(vargs, fmt);
3459 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3460 va_end(vargs);
3461 return err;
3462 }
3463 EXPORT_SYMBOL_GPL(dev_set_name);
3464
3465 /* select a /sys/dev/ directory for the device */
device_to_dev_kobj(struct device * dev)3466 static struct kobject *device_to_dev_kobj(struct device *dev)
3467 {
3468 if (is_blockdev(dev))
3469 return sysfs_dev_block_kobj;
3470 else
3471 return sysfs_dev_char_kobj;
3472 }
3473
device_create_sys_dev_entry(struct device * dev)3474 static int device_create_sys_dev_entry(struct device *dev)
3475 {
3476 struct kobject *kobj = device_to_dev_kobj(dev);
3477 int error = 0;
3478 char devt_str[15];
3479
3480 if (kobj) {
3481 format_dev_t(devt_str, dev->devt);
3482 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3483 }
3484
3485 return error;
3486 }
3487
device_remove_sys_dev_entry(struct device * dev)3488 static void device_remove_sys_dev_entry(struct device *dev)
3489 {
3490 struct kobject *kobj = device_to_dev_kobj(dev);
3491 char devt_str[15];
3492
3493 if (kobj) {
3494 format_dev_t(devt_str, dev->devt);
3495 sysfs_remove_link(kobj, devt_str);
3496 }
3497 }
3498
device_private_init(struct device * dev)3499 static int device_private_init(struct device *dev)
3500 {
3501 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3502 if (!dev->p)
3503 return -ENOMEM;
3504 dev->p->device = dev;
3505 klist_init(&dev->p->klist_children, klist_children_get,
3506 klist_children_put);
3507 INIT_LIST_HEAD(&dev->p->deferred_probe);
3508 return 0;
3509 }
3510
3511 /**
3512 * device_add - add device to device hierarchy.
3513 * @dev: device.
3514 *
3515 * This is part 2 of device_register(), though may be called
3516 * separately _iff_ device_initialize() has been called separately.
3517 *
3518 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3519 * to the global and sibling lists for the device, then
3520 * adds it to the other relevant subsystems of the driver model.
3521 *
3522 * Do not call this routine or device_register() more than once for
3523 * any device structure. The driver model core is not designed to work
3524 * with devices that get unregistered and then spring back to life.
3525 * (Among other things, it's very hard to guarantee that all references
3526 * to the previous incarnation of @dev have been dropped.) Allocate
3527 * and register a fresh new struct device instead.
3528 *
3529 * NOTE: _Never_ directly free @dev after calling this function, even
3530 * if it returned an error! Always use put_device() to give up your
3531 * reference instead.
3532 *
3533 * Rule of thumb is: if device_add() succeeds, you should call
3534 * device_del() when you want to get rid of it. If device_add() has
3535 * *not* succeeded, use *only* put_device() to drop the reference
3536 * count.
3537 */
device_add(struct device * dev)3538 int device_add(struct device *dev)
3539 {
3540 struct subsys_private *sp;
3541 struct device *parent;
3542 struct kobject *kobj;
3543 struct class_interface *class_intf;
3544 int error = -EINVAL;
3545 struct kobject *glue_dir = NULL;
3546
3547 dev = get_device(dev);
3548 if (!dev)
3549 goto done;
3550
3551 if (!dev->p) {
3552 error = device_private_init(dev);
3553 if (error)
3554 goto done;
3555 }
3556
3557 /*
3558 * for statically allocated devices, which should all be converted
3559 * some day, we need to initialize the name. We prevent reading back
3560 * the name, and force the use of dev_name()
3561 */
3562 if (dev->init_name) {
3563 error = dev_set_name(dev, "%s", dev->init_name);
3564 dev->init_name = NULL;
3565 }
3566
3567 if (dev_name(dev))
3568 error = 0;
3569 /* subsystems can specify simple device enumeration */
3570 else if (dev->bus && dev->bus->dev_name)
3571 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3572 else
3573 error = -EINVAL;
3574 if (error)
3575 goto name_error;
3576
3577 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3578
3579 parent = get_device(dev->parent);
3580 kobj = get_device_parent(dev, parent);
3581 if (IS_ERR(kobj)) {
3582 error = PTR_ERR(kobj);
3583 goto parent_error;
3584 }
3585 if (kobj)
3586 dev->kobj.parent = kobj;
3587
3588 /* use parent numa_node */
3589 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3590 set_dev_node(dev, dev_to_node(parent));
3591
3592 /* first, register with generic layer. */
3593 /* we require the name to be set before, and pass NULL */
3594 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3595 if (error) {
3596 glue_dir = kobj;
3597 goto Error;
3598 }
3599
3600 /* notify platform of device entry */
3601 device_platform_notify(dev);
3602
3603 error = device_create_file(dev, &dev_attr_uevent);
3604 if (error)
3605 goto attrError;
3606
3607 error = device_add_class_symlinks(dev);
3608 if (error)
3609 goto SymlinkError;
3610 error = device_add_attrs(dev);
3611 if (error)
3612 goto AttrsError;
3613 error = bus_add_device(dev);
3614 if (error)
3615 goto BusError;
3616 error = dpm_sysfs_add(dev);
3617 if (error)
3618 goto DPMError;
3619 device_pm_add(dev);
3620
3621 if (MAJOR(dev->devt)) {
3622 error = device_create_file(dev, &dev_attr_dev);
3623 if (error)
3624 goto DevAttrError;
3625
3626 error = device_create_sys_dev_entry(dev);
3627 if (error)
3628 goto SysEntryError;
3629
3630 devtmpfs_create_node(dev);
3631 }
3632
3633 /* Notify clients of device addition. This call must come
3634 * after dpm_sysfs_add() and before kobject_uevent().
3635 */
3636 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3637 kobject_uevent(&dev->kobj, KOBJ_ADD);
3638
3639 /*
3640 * Check if any of the other devices (consumers) have been waiting for
3641 * this device (supplier) to be added so that they can create a device
3642 * link to it.
3643 *
3644 * This needs to happen after device_pm_add() because device_link_add()
3645 * requires the supplier be registered before it's called.
3646 *
3647 * But this also needs to happen before bus_probe_device() to make sure
3648 * waiting consumers can link to it before the driver is bound to the
3649 * device and the driver sync_state callback is called for this device.
3650 */
3651 if (dev->fwnode && !dev->fwnode->dev) {
3652 dev->fwnode->dev = dev;
3653 fw_devlink_link_device(dev);
3654 }
3655
3656 bus_probe_device(dev);
3657
3658 /*
3659 * If all driver registration is done and a newly added device doesn't
3660 * match with any driver, don't block its consumers from probing in
3661 * case the consumer device is able to operate without this supplier.
3662 */
3663 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3664 fw_devlink_unblock_consumers(dev);
3665
3666 if (parent)
3667 klist_add_tail(&dev->p->knode_parent,
3668 &parent->p->klist_children);
3669
3670 sp = class_to_subsys(dev->class);
3671 if (sp) {
3672 mutex_lock(&sp->mutex);
3673 /* tie the class to the device */
3674 klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3675
3676 /* notify any interfaces that the device is here */
3677 list_for_each_entry(class_intf, &sp->interfaces, node)
3678 if (class_intf->add_dev)
3679 class_intf->add_dev(dev);
3680 mutex_unlock(&sp->mutex);
3681 subsys_put(sp);
3682 }
3683 done:
3684 put_device(dev);
3685 return error;
3686 SysEntryError:
3687 if (MAJOR(dev->devt))
3688 device_remove_file(dev, &dev_attr_dev);
3689 DevAttrError:
3690 device_pm_remove(dev);
3691 dpm_sysfs_remove(dev);
3692 DPMError:
3693 dev->driver = NULL;
3694 bus_remove_device(dev);
3695 BusError:
3696 device_remove_attrs(dev);
3697 AttrsError:
3698 device_remove_class_symlinks(dev);
3699 SymlinkError:
3700 device_remove_file(dev, &dev_attr_uevent);
3701 attrError:
3702 device_platform_notify_remove(dev);
3703 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3704 glue_dir = get_glue_dir(dev);
3705 kobject_del(&dev->kobj);
3706 Error:
3707 cleanup_glue_dir(dev, glue_dir);
3708 parent_error:
3709 put_device(parent);
3710 name_error:
3711 kfree(dev->p);
3712 dev->p = NULL;
3713 goto done;
3714 }
3715 EXPORT_SYMBOL_GPL(device_add);
3716
3717 /**
3718 * device_register - register a device with the system.
3719 * @dev: pointer to the device structure
3720 *
3721 * This happens in two clean steps - initialize the device
3722 * and add it to the system. The two steps can be called
3723 * separately, but this is the easiest and most common.
3724 * I.e. you should only call the two helpers separately if
3725 * have a clearly defined need to use and refcount the device
3726 * before it is added to the hierarchy.
3727 *
3728 * For more information, see the kerneldoc for device_initialize()
3729 * and device_add().
3730 *
3731 * NOTE: _Never_ directly free @dev after calling this function, even
3732 * if it returned an error! Always use put_device() to give up the
3733 * reference initialized in this function instead.
3734 */
device_register(struct device * dev)3735 int device_register(struct device *dev)
3736 {
3737 device_initialize(dev);
3738 return device_add(dev);
3739 }
3740 EXPORT_SYMBOL_GPL(device_register);
3741
3742 /**
3743 * get_device - increment reference count for device.
3744 * @dev: device.
3745 *
3746 * This simply forwards the call to kobject_get(), though
3747 * we do take care to provide for the case that we get a NULL
3748 * pointer passed in.
3749 */
get_device(struct device * dev)3750 struct device *get_device(struct device *dev)
3751 {
3752 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3753 }
3754 EXPORT_SYMBOL_GPL(get_device);
3755
3756 /**
3757 * put_device - decrement reference count.
3758 * @dev: device in question.
3759 */
put_device(struct device * dev)3760 void put_device(struct device *dev)
3761 {
3762 /* might_sleep(); */
3763 if (dev)
3764 kobject_put(&dev->kobj);
3765 }
3766 EXPORT_SYMBOL_GPL(put_device);
3767
kill_device(struct device * dev)3768 bool kill_device(struct device *dev)
3769 {
3770 /*
3771 * Require the device lock and set the "dead" flag to guarantee that
3772 * the update behavior is consistent with the other bitfields near
3773 * it and that we cannot have an asynchronous probe routine trying
3774 * to run while we are tearing out the bus/class/sysfs from
3775 * underneath the device.
3776 */
3777 device_lock_assert(dev);
3778
3779 if (dev->p->dead)
3780 return false;
3781 dev->p->dead = true;
3782 return true;
3783 }
3784 EXPORT_SYMBOL_GPL(kill_device);
3785
3786 /**
3787 * device_del - delete device from system.
3788 * @dev: device.
3789 *
3790 * This is the first part of the device unregistration
3791 * sequence. This removes the device from the lists we control
3792 * from here, has it removed from the other driver model
3793 * subsystems it was added to in device_add(), and removes it
3794 * from the kobject hierarchy.
3795 *
3796 * NOTE: this should be called manually _iff_ device_add() was
3797 * also called manually.
3798 */
device_del(struct device * dev)3799 void device_del(struct device *dev)
3800 {
3801 struct subsys_private *sp;
3802 struct device *parent = dev->parent;
3803 struct kobject *glue_dir = NULL;
3804 struct class_interface *class_intf;
3805 unsigned int noio_flag;
3806
3807 device_lock(dev);
3808 kill_device(dev);
3809 device_unlock(dev);
3810
3811 if (dev->fwnode && dev->fwnode->dev == dev)
3812 dev->fwnode->dev = NULL;
3813
3814 /* Notify clients of device removal. This call must come
3815 * before dpm_sysfs_remove().
3816 */
3817 noio_flag = memalloc_noio_save();
3818 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3819
3820 dpm_sysfs_remove(dev);
3821 if (parent)
3822 klist_del(&dev->p->knode_parent);
3823 if (MAJOR(dev->devt)) {
3824 devtmpfs_delete_node(dev);
3825 device_remove_sys_dev_entry(dev);
3826 device_remove_file(dev, &dev_attr_dev);
3827 }
3828
3829 sp = class_to_subsys(dev->class);
3830 if (sp) {
3831 device_remove_class_symlinks(dev);
3832
3833 mutex_lock(&sp->mutex);
3834 /* notify any interfaces that the device is now gone */
3835 list_for_each_entry(class_intf, &sp->interfaces, node)
3836 if (class_intf->remove_dev)
3837 class_intf->remove_dev(dev);
3838 /* remove the device from the class list */
3839 klist_del(&dev->p->knode_class);
3840 mutex_unlock(&sp->mutex);
3841 subsys_put(sp);
3842 }
3843 device_remove_file(dev, &dev_attr_uevent);
3844 device_remove_attrs(dev);
3845 bus_remove_device(dev);
3846 device_pm_remove(dev);
3847 driver_deferred_probe_del(dev);
3848 device_platform_notify_remove(dev);
3849 device_links_purge(dev);
3850
3851 /*
3852 * If a device does not have a driver attached, we need to clean
3853 * up any managed resources. We do this in device_release(), but
3854 * it's never called (and we leak the device) if a managed
3855 * resource holds a reference to the device. So release all
3856 * managed resources here, like we do in driver_detach(). We
3857 * still need to do so again in device_release() in case someone
3858 * adds a new resource after this point, though.
3859 */
3860 devres_release_all(dev);
3861
3862 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3863 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3864 glue_dir = get_glue_dir(dev);
3865 kobject_del(&dev->kobj);
3866 cleanup_glue_dir(dev, glue_dir);
3867 memalloc_noio_restore(noio_flag);
3868 put_device(parent);
3869 }
3870 EXPORT_SYMBOL_GPL(device_del);
3871
3872 /**
3873 * device_unregister - unregister device from system.
3874 * @dev: device going away.
3875 *
3876 * We do this in two parts, like we do device_register(). First,
3877 * we remove it from all the subsystems with device_del(), then
3878 * we decrement the reference count via put_device(). If that
3879 * is the final reference count, the device will be cleaned up
3880 * via device_release() above. Otherwise, the structure will
3881 * stick around until the final reference to the device is dropped.
3882 */
device_unregister(struct device * dev)3883 void device_unregister(struct device *dev)
3884 {
3885 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3886 device_del(dev);
3887 put_device(dev);
3888 }
3889 EXPORT_SYMBOL_GPL(device_unregister);
3890
prev_device(struct klist_iter * i)3891 static struct device *prev_device(struct klist_iter *i)
3892 {
3893 struct klist_node *n = klist_prev(i);
3894 struct device *dev = NULL;
3895 struct device_private *p;
3896
3897 if (n) {
3898 p = to_device_private_parent(n);
3899 dev = p->device;
3900 }
3901 return dev;
3902 }
3903
next_device(struct klist_iter * i)3904 static struct device *next_device(struct klist_iter *i)
3905 {
3906 struct klist_node *n = klist_next(i);
3907 struct device *dev = NULL;
3908 struct device_private *p;
3909
3910 if (n) {
3911 p = to_device_private_parent(n);
3912 dev = p->device;
3913 }
3914 return dev;
3915 }
3916
3917 /**
3918 * device_get_devnode - path of device node file
3919 * @dev: device
3920 * @mode: returned file access mode
3921 * @uid: returned file owner
3922 * @gid: returned file group
3923 * @tmp: possibly allocated string
3924 *
3925 * Return the relative path of a possible device node.
3926 * Non-default names may need to allocate a memory to compose
3927 * a name. This memory is returned in tmp and needs to be
3928 * freed by the caller.
3929 */
device_get_devnode(const struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3930 const char *device_get_devnode(const struct device *dev,
3931 umode_t *mode, kuid_t *uid, kgid_t *gid,
3932 const char **tmp)
3933 {
3934 char *s;
3935
3936 *tmp = NULL;
3937
3938 /* the device type may provide a specific name */
3939 if (dev->type && dev->type->devnode)
3940 *tmp = dev->type->devnode(dev, mode, uid, gid);
3941 if (*tmp)
3942 return *tmp;
3943
3944 /* the class may provide a specific name */
3945 if (dev->class && dev->class->devnode)
3946 *tmp = dev->class->devnode(dev, mode);
3947 if (*tmp)
3948 return *tmp;
3949
3950 /* return name without allocation, tmp == NULL */
3951 if (strchr(dev_name(dev), '!') == NULL)
3952 return dev_name(dev);
3953
3954 /* replace '!' in the name with '/' */
3955 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3956 if (!s)
3957 return NULL;
3958 return *tmp = s;
3959 }
3960
3961 /**
3962 * device_for_each_child - device child iterator.
3963 * @parent: parent struct device.
3964 * @fn: function to be called for each device.
3965 * @data: data for the callback.
3966 *
3967 * Iterate over @parent's child devices, and call @fn for each,
3968 * passing it @data.
3969 *
3970 * We check the return of @fn each time. If it returns anything
3971 * other than 0, we break out and return that value.
3972 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3973 int device_for_each_child(struct device *parent, void *data,
3974 int (*fn)(struct device *dev, void *data))
3975 {
3976 struct klist_iter i;
3977 struct device *child;
3978 int error = 0;
3979
3980 if (!parent->p)
3981 return 0;
3982
3983 klist_iter_init(&parent->p->klist_children, &i);
3984 while (!error && (child = next_device(&i)))
3985 error = fn(child, data);
3986 klist_iter_exit(&i);
3987 return error;
3988 }
3989 EXPORT_SYMBOL_GPL(device_for_each_child);
3990
3991 /**
3992 * device_for_each_child_reverse - device child iterator in reversed order.
3993 * @parent: parent struct device.
3994 * @fn: function to be called for each device.
3995 * @data: data for the callback.
3996 *
3997 * Iterate over @parent's child devices, and call @fn for each,
3998 * passing it @data.
3999 *
4000 * We check the return of @fn each time. If it returns anything
4001 * other than 0, we break out and return that value.
4002 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))4003 int device_for_each_child_reverse(struct device *parent, void *data,
4004 int (*fn)(struct device *dev, void *data))
4005 {
4006 struct klist_iter i;
4007 struct device *child;
4008 int error = 0;
4009
4010 if (!parent->p)
4011 return 0;
4012
4013 klist_iter_init(&parent->p->klist_children, &i);
4014 while ((child = prev_device(&i)) && !error)
4015 error = fn(child, data);
4016 klist_iter_exit(&i);
4017 return error;
4018 }
4019 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4020
4021 /**
4022 * device_for_each_child_reverse_from - device child iterator in reversed order.
4023 * @parent: parent struct device.
4024 * @from: optional starting point in child list
4025 * @fn: function to be called for each device.
4026 * @data: data for the callback.
4027 *
4028 * Iterate over @parent's child devices, starting at @from, and call @fn
4029 * for each, passing it @data. This helper is identical to
4030 * device_for_each_child_reverse() when @from is NULL.
4031 *
4032 * @fn is checked each iteration. If it returns anything other than 0,
4033 * iteration stop and that value is returned to the caller of
4034 * device_for_each_child_reverse_from();
4035 */
device_for_each_child_reverse_from(struct device * parent,struct device * from,const void * data,int (* fn)(struct device *,const void *))4036 int device_for_each_child_reverse_from(struct device *parent,
4037 struct device *from, const void *data,
4038 int (*fn)(struct device *, const void *))
4039 {
4040 struct klist_iter i;
4041 struct device *child;
4042 int error = 0;
4043
4044 if (!parent->p)
4045 return 0;
4046
4047 klist_iter_init_node(&parent->p->klist_children, &i,
4048 (from ? &from->p->knode_parent : NULL));
4049 while ((child = prev_device(&i)) && !error)
4050 error = fn(child, data);
4051 klist_iter_exit(&i);
4052 return error;
4053 }
4054 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4055
4056 /**
4057 * device_find_child - device iterator for locating a particular device.
4058 * @parent: parent struct device
4059 * @match: Callback function to check device
4060 * @data: Data to pass to match function
4061 *
4062 * This is similar to the device_for_each_child() function above, but it
4063 * returns a reference to a device that is 'found' for later use, as
4064 * determined by the @match callback.
4065 *
4066 * The callback should return 0 if the device doesn't match and non-zero
4067 * if it does. If the callback returns non-zero and a reference to the
4068 * current device can be obtained, this function will return to the caller
4069 * and not iterate over any more devices.
4070 *
4071 * NOTE: you will need to drop the reference with put_device() after use.
4072 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))4073 struct device *device_find_child(struct device *parent, void *data,
4074 int (*match)(struct device *dev, void *data))
4075 {
4076 struct klist_iter i;
4077 struct device *child;
4078
4079 if (!parent)
4080 return NULL;
4081
4082 klist_iter_init(&parent->p->klist_children, &i);
4083 while ((child = next_device(&i)))
4084 if (match(child, data) && get_device(child))
4085 break;
4086 klist_iter_exit(&i);
4087 return child;
4088 }
4089 EXPORT_SYMBOL_GPL(device_find_child);
4090
4091 /**
4092 * device_find_child_by_name - device iterator for locating a child device.
4093 * @parent: parent struct device
4094 * @name: name of the child device
4095 *
4096 * This is similar to the device_find_child() function above, but it
4097 * returns a reference to a device that has the name @name.
4098 *
4099 * NOTE: you will need to drop the reference with put_device() after use.
4100 */
device_find_child_by_name(struct device * parent,const char * name)4101 struct device *device_find_child_by_name(struct device *parent,
4102 const char *name)
4103 {
4104 struct klist_iter i;
4105 struct device *child;
4106
4107 if (!parent)
4108 return NULL;
4109
4110 klist_iter_init(&parent->p->klist_children, &i);
4111 while ((child = next_device(&i)))
4112 if (sysfs_streq(dev_name(child), name) && get_device(child))
4113 break;
4114 klist_iter_exit(&i);
4115 return child;
4116 }
4117 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4118
match_any(struct device * dev,void * unused)4119 static int match_any(struct device *dev, void *unused)
4120 {
4121 return 1;
4122 }
4123
4124 /**
4125 * device_find_any_child - device iterator for locating a child device, if any.
4126 * @parent: parent struct device
4127 *
4128 * This is similar to the device_find_child() function above, but it
4129 * returns a reference to a child device, if any.
4130 *
4131 * NOTE: you will need to drop the reference with put_device() after use.
4132 */
device_find_any_child(struct device * parent)4133 struct device *device_find_any_child(struct device *parent)
4134 {
4135 return device_find_child(parent, NULL, match_any);
4136 }
4137 EXPORT_SYMBOL_GPL(device_find_any_child);
4138
devices_init(void)4139 int __init devices_init(void)
4140 {
4141 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4142 if (!devices_kset)
4143 return -ENOMEM;
4144 dev_kobj = kobject_create_and_add("dev", NULL);
4145 if (!dev_kobj)
4146 goto dev_kobj_err;
4147 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4148 if (!sysfs_dev_block_kobj)
4149 goto block_kobj_err;
4150 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4151 if (!sysfs_dev_char_kobj)
4152 goto char_kobj_err;
4153 device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4154 if (!device_link_wq)
4155 goto wq_err;
4156
4157 return 0;
4158
4159 wq_err:
4160 kobject_put(sysfs_dev_char_kobj);
4161 char_kobj_err:
4162 kobject_put(sysfs_dev_block_kobj);
4163 block_kobj_err:
4164 kobject_put(dev_kobj);
4165 dev_kobj_err:
4166 kset_unregister(devices_kset);
4167 return -ENOMEM;
4168 }
4169
device_check_offline(struct device * dev,void * not_used)4170 static int device_check_offline(struct device *dev, void *not_used)
4171 {
4172 int ret;
4173
4174 ret = device_for_each_child(dev, NULL, device_check_offline);
4175 if (ret)
4176 return ret;
4177
4178 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4179 }
4180
4181 /**
4182 * device_offline - Prepare the device for hot-removal.
4183 * @dev: Device to be put offline.
4184 *
4185 * Execute the device bus type's .offline() callback, if present, to prepare
4186 * the device for a subsequent hot-removal. If that succeeds, the device must
4187 * not be used until either it is removed or its bus type's .online() callback
4188 * is executed.
4189 *
4190 * Call under device_hotplug_lock.
4191 */
device_offline(struct device * dev)4192 int device_offline(struct device *dev)
4193 {
4194 int ret;
4195
4196 if (dev->offline_disabled)
4197 return -EPERM;
4198
4199 ret = device_for_each_child(dev, NULL, device_check_offline);
4200 if (ret)
4201 return ret;
4202
4203 device_lock(dev);
4204 if (device_supports_offline(dev)) {
4205 if (dev->offline) {
4206 ret = 1;
4207 } else {
4208 ret = dev->bus->offline(dev);
4209 if (!ret) {
4210 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4211 dev->offline = true;
4212 }
4213 }
4214 }
4215 device_unlock(dev);
4216
4217 return ret;
4218 }
4219
4220 /**
4221 * device_online - Put the device back online after successful device_offline().
4222 * @dev: Device to be put back online.
4223 *
4224 * If device_offline() has been successfully executed for @dev, but the device
4225 * has not been removed subsequently, execute its bus type's .online() callback
4226 * to indicate that the device can be used again.
4227 *
4228 * Call under device_hotplug_lock.
4229 */
device_online(struct device * dev)4230 int device_online(struct device *dev)
4231 {
4232 int ret = 0;
4233
4234 device_lock(dev);
4235 if (device_supports_offline(dev)) {
4236 if (dev->offline) {
4237 ret = dev->bus->online(dev);
4238 if (!ret) {
4239 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4240 dev->offline = false;
4241 }
4242 } else {
4243 ret = 1;
4244 }
4245 }
4246 device_unlock(dev);
4247
4248 return ret;
4249 }
4250
4251 struct root_device {
4252 struct device dev;
4253 struct module *owner;
4254 };
4255
to_root_device(struct device * d)4256 static inline struct root_device *to_root_device(struct device *d)
4257 {
4258 return container_of(d, struct root_device, dev);
4259 }
4260
root_device_release(struct device * dev)4261 static void root_device_release(struct device *dev)
4262 {
4263 kfree(to_root_device(dev));
4264 }
4265
4266 /**
4267 * __root_device_register - allocate and register a root device
4268 * @name: root device name
4269 * @owner: owner module of the root device, usually THIS_MODULE
4270 *
4271 * This function allocates a root device and registers it
4272 * using device_register(). In order to free the returned
4273 * device, use root_device_unregister().
4274 *
4275 * Root devices are dummy devices which allow other devices
4276 * to be grouped under /sys/devices. Use this function to
4277 * allocate a root device and then use it as the parent of
4278 * any device which should appear under /sys/devices/{name}
4279 *
4280 * The /sys/devices/{name} directory will also contain a
4281 * 'module' symlink which points to the @owner directory
4282 * in sysfs.
4283 *
4284 * Returns &struct device pointer on success, or ERR_PTR() on error.
4285 *
4286 * Note: You probably want to use root_device_register().
4287 */
__root_device_register(const char * name,struct module * owner)4288 struct device *__root_device_register(const char *name, struct module *owner)
4289 {
4290 struct root_device *root;
4291 int err = -ENOMEM;
4292
4293 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4294 if (!root)
4295 return ERR_PTR(err);
4296
4297 err = dev_set_name(&root->dev, "%s", name);
4298 if (err) {
4299 kfree(root);
4300 return ERR_PTR(err);
4301 }
4302
4303 root->dev.release = root_device_release;
4304
4305 err = device_register(&root->dev);
4306 if (err) {
4307 put_device(&root->dev);
4308 return ERR_PTR(err);
4309 }
4310
4311 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4312 if (owner) {
4313 struct module_kobject *mk = &owner->mkobj;
4314
4315 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4316 if (err) {
4317 device_unregister(&root->dev);
4318 return ERR_PTR(err);
4319 }
4320 root->owner = owner;
4321 }
4322 #endif
4323
4324 return &root->dev;
4325 }
4326 EXPORT_SYMBOL_GPL(__root_device_register);
4327
4328 /**
4329 * root_device_unregister - unregister and free a root device
4330 * @dev: device going away
4331 *
4332 * This function unregisters and cleans up a device that was created by
4333 * root_device_register().
4334 */
root_device_unregister(struct device * dev)4335 void root_device_unregister(struct device *dev)
4336 {
4337 struct root_device *root = to_root_device(dev);
4338
4339 if (root->owner)
4340 sysfs_remove_link(&root->dev.kobj, "module");
4341
4342 device_unregister(dev);
4343 }
4344 EXPORT_SYMBOL_GPL(root_device_unregister);
4345
4346
device_create_release(struct device * dev)4347 static void device_create_release(struct device *dev)
4348 {
4349 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4350 kfree(dev);
4351 }
4352
4353 static __printf(6, 0) struct device *
device_create_groups_vargs(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4354 device_create_groups_vargs(const struct class *class, struct device *parent,
4355 dev_t devt, void *drvdata,
4356 const struct attribute_group **groups,
4357 const char *fmt, va_list args)
4358 {
4359 struct device *dev = NULL;
4360 int retval = -ENODEV;
4361
4362 if (IS_ERR_OR_NULL(class))
4363 goto error;
4364
4365 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4366 if (!dev) {
4367 retval = -ENOMEM;
4368 goto error;
4369 }
4370
4371 device_initialize(dev);
4372 dev->devt = devt;
4373 dev->class = class;
4374 dev->parent = parent;
4375 dev->groups = groups;
4376 dev->release = device_create_release;
4377 dev_set_drvdata(dev, drvdata);
4378
4379 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4380 if (retval)
4381 goto error;
4382
4383 retval = device_add(dev);
4384 if (retval)
4385 goto error;
4386
4387 return dev;
4388
4389 error:
4390 put_device(dev);
4391 return ERR_PTR(retval);
4392 }
4393
4394 /**
4395 * device_create - creates a device and registers it with sysfs
4396 * @class: pointer to the struct class that this device should be registered to
4397 * @parent: pointer to the parent struct device of this new device, if any
4398 * @devt: the dev_t for the char device to be added
4399 * @drvdata: the data to be added to the device for callbacks
4400 * @fmt: string for the device's name
4401 *
4402 * This function can be used by char device classes. A struct device
4403 * will be created in sysfs, registered to the specified class.
4404 *
4405 * A "dev" file will be created, showing the dev_t for the device, if
4406 * the dev_t is not 0,0.
4407 * If a pointer to a parent struct device is passed in, the newly created
4408 * struct device will be a child of that device in sysfs.
4409 * The pointer to the struct device will be returned from the call.
4410 * Any further sysfs files that might be required can be created using this
4411 * pointer.
4412 *
4413 * Returns &struct device pointer on success, or ERR_PTR() on error.
4414 */
device_create(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4415 struct device *device_create(const struct class *class, struct device *parent,
4416 dev_t devt, void *drvdata, const char *fmt, ...)
4417 {
4418 va_list vargs;
4419 struct device *dev;
4420
4421 va_start(vargs, fmt);
4422 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4423 fmt, vargs);
4424 va_end(vargs);
4425 return dev;
4426 }
4427 EXPORT_SYMBOL_GPL(device_create);
4428
4429 /**
4430 * device_create_with_groups - creates a device and registers it with sysfs
4431 * @class: pointer to the struct class that this device should be registered to
4432 * @parent: pointer to the parent struct device of this new device, if any
4433 * @devt: the dev_t for the char device to be added
4434 * @drvdata: the data to be added to the device for callbacks
4435 * @groups: NULL-terminated list of attribute groups to be created
4436 * @fmt: string for the device's name
4437 *
4438 * This function can be used by char device classes. A struct device
4439 * will be created in sysfs, registered to the specified class.
4440 * Additional attributes specified in the groups parameter will also
4441 * be created automatically.
4442 *
4443 * A "dev" file will be created, showing the dev_t for the device, if
4444 * the dev_t is not 0,0.
4445 * If a pointer to a parent struct device is passed in, the newly created
4446 * struct device will be a child of that device in sysfs.
4447 * The pointer to the struct device will be returned from the call.
4448 * Any further sysfs files that might be required can be created using this
4449 * pointer.
4450 *
4451 * Returns &struct device pointer on success, or ERR_PTR() on error.
4452 */
device_create_with_groups(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4453 struct device *device_create_with_groups(const struct class *class,
4454 struct device *parent, dev_t devt,
4455 void *drvdata,
4456 const struct attribute_group **groups,
4457 const char *fmt, ...)
4458 {
4459 va_list vargs;
4460 struct device *dev;
4461
4462 va_start(vargs, fmt);
4463 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4464 fmt, vargs);
4465 va_end(vargs);
4466 return dev;
4467 }
4468 EXPORT_SYMBOL_GPL(device_create_with_groups);
4469
4470 /**
4471 * device_destroy - removes a device that was created with device_create()
4472 * @class: pointer to the struct class that this device was registered with
4473 * @devt: the dev_t of the device that was previously registered
4474 *
4475 * This call unregisters and cleans up a device that was created with a
4476 * call to device_create().
4477 */
device_destroy(const struct class * class,dev_t devt)4478 void device_destroy(const struct class *class, dev_t devt)
4479 {
4480 struct device *dev;
4481
4482 dev = class_find_device_by_devt(class, devt);
4483 if (dev) {
4484 put_device(dev);
4485 device_unregister(dev);
4486 }
4487 }
4488 EXPORT_SYMBOL_GPL(device_destroy);
4489
4490 /**
4491 * device_rename - renames a device
4492 * @dev: the pointer to the struct device to be renamed
4493 * @new_name: the new name of the device
4494 *
4495 * It is the responsibility of the caller to provide mutual
4496 * exclusion between two different calls of device_rename
4497 * on the same device to ensure that new_name is valid and
4498 * won't conflict with other devices.
4499 *
4500 * Note: given that some subsystems (networking and infiniband) use this
4501 * function, with no immediate plans for this to change, we cannot assume or
4502 * require that this function not be called at all.
4503 *
4504 * However, if you're writing new code, do not call this function. The following
4505 * text from Kay Sievers offers some insight:
4506 *
4507 * Renaming devices is racy at many levels, symlinks and other stuff are not
4508 * replaced atomically, and you get a "move" uevent, but it's not easy to
4509 * connect the event to the old and new device. Device nodes are not renamed at
4510 * all, there isn't even support for that in the kernel now.
4511 *
4512 * In the meantime, during renaming, your target name might be taken by another
4513 * driver, creating conflicts. Or the old name is taken directly after you
4514 * renamed it -- then you get events for the same DEVPATH, before you even see
4515 * the "move" event. It's just a mess, and nothing new should ever rely on
4516 * kernel device renaming. Besides that, it's not even implemented now for
4517 * other things than (driver-core wise very simple) network devices.
4518 *
4519 * Make up a "real" name in the driver before you register anything, or add
4520 * some other attributes for userspace to find the device, or use udev to add
4521 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4522 * don't even want to get into that and try to implement the missing pieces in
4523 * the core. We really have other pieces to fix in the driver core mess. :)
4524 */
device_rename(struct device * dev,const char * new_name)4525 int device_rename(struct device *dev, const char *new_name)
4526 {
4527 struct subsys_private *sp = NULL;
4528 struct kobject *kobj = &dev->kobj;
4529 char *old_device_name = NULL;
4530 int error;
4531 bool is_link_renamed = false;
4532
4533 dev = get_device(dev);
4534 if (!dev)
4535 return -EINVAL;
4536
4537 dev_dbg(dev, "renaming to %s\n", new_name);
4538
4539 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4540 if (!old_device_name) {
4541 error = -ENOMEM;
4542 goto out;
4543 }
4544
4545 if (dev->class) {
4546 sp = class_to_subsys(dev->class);
4547
4548 if (!sp) {
4549 error = -EINVAL;
4550 goto out;
4551 }
4552
4553 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4554 new_name, kobject_namespace(kobj));
4555 if (error)
4556 goto out;
4557
4558 is_link_renamed = true;
4559 }
4560
4561 error = kobject_rename(kobj, new_name);
4562 out:
4563 if (error && is_link_renamed)
4564 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4565 old_device_name, kobject_namespace(kobj));
4566 subsys_put(sp);
4567
4568 put_device(dev);
4569
4570 kfree(old_device_name);
4571
4572 return error;
4573 }
4574 EXPORT_SYMBOL_GPL(device_rename);
4575
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4576 static int device_move_class_links(struct device *dev,
4577 struct device *old_parent,
4578 struct device *new_parent)
4579 {
4580 int error = 0;
4581
4582 if (old_parent)
4583 sysfs_remove_link(&dev->kobj, "device");
4584 if (new_parent)
4585 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4586 "device");
4587 return error;
4588 }
4589
4590 /**
4591 * device_move - moves a device to a new parent
4592 * @dev: the pointer to the struct device to be moved
4593 * @new_parent: the new parent of the device (can be NULL)
4594 * @dpm_order: how to reorder the dpm_list
4595 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4596 int device_move(struct device *dev, struct device *new_parent,
4597 enum dpm_order dpm_order)
4598 {
4599 int error;
4600 struct device *old_parent;
4601 struct kobject *new_parent_kobj;
4602
4603 dev = get_device(dev);
4604 if (!dev)
4605 return -EINVAL;
4606
4607 device_pm_lock();
4608 new_parent = get_device(new_parent);
4609 new_parent_kobj = get_device_parent(dev, new_parent);
4610 if (IS_ERR(new_parent_kobj)) {
4611 error = PTR_ERR(new_parent_kobj);
4612 put_device(new_parent);
4613 goto out;
4614 }
4615
4616 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4617 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4618 error = kobject_move(&dev->kobj, new_parent_kobj);
4619 if (error) {
4620 cleanup_glue_dir(dev, new_parent_kobj);
4621 put_device(new_parent);
4622 goto out;
4623 }
4624 old_parent = dev->parent;
4625 dev->parent = new_parent;
4626 if (old_parent)
4627 klist_remove(&dev->p->knode_parent);
4628 if (new_parent) {
4629 klist_add_tail(&dev->p->knode_parent,
4630 &new_parent->p->klist_children);
4631 set_dev_node(dev, dev_to_node(new_parent));
4632 }
4633
4634 if (dev->class) {
4635 error = device_move_class_links(dev, old_parent, new_parent);
4636 if (error) {
4637 /* We ignore errors on cleanup since we're hosed anyway... */
4638 device_move_class_links(dev, new_parent, old_parent);
4639 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4640 if (new_parent)
4641 klist_remove(&dev->p->knode_parent);
4642 dev->parent = old_parent;
4643 if (old_parent) {
4644 klist_add_tail(&dev->p->knode_parent,
4645 &old_parent->p->klist_children);
4646 set_dev_node(dev, dev_to_node(old_parent));
4647 }
4648 }
4649 cleanup_glue_dir(dev, new_parent_kobj);
4650 put_device(new_parent);
4651 goto out;
4652 }
4653 }
4654 switch (dpm_order) {
4655 case DPM_ORDER_NONE:
4656 break;
4657 case DPM_ORDER_DEV_AFTER_PARENT:
4658 device_pm_move_after(dev, new_parent);
4659 devices_kset_move_after(dev, new_parent);
4660 break;
4661 case DPM_ORDER_PARENT_BEFORE_DEV:
4662 device_pm_move_before(new_parent, dev);
4663 devices_kset_move_before(new_parent, dev);
4664 break;
4665 case DPM_ORDER_DEV_LAST:
4666 device_pm_move_last(dev);
4667 devices_kset_move_last(dev);
4668 break;
4669 }
4670
4671 put_device(old_parent);
4672 out:
4673 device_pm_unlock();
4674 put_device(dev);
4675 return error;
4676 }
4677 EXPORT_SYMBOL_GPL(device_move);
4678
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4679 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4680 kgid_t kgid)
4681 {
4682 struct kobject *kobj = &dev->kobj;
4683 const struct class *class = dev->class;
4684 const struct device_type *type = dev->type;
4685 int error;
4686
4687 if (class) {
4688 /*
4689 * Change the device groups of the device class for @dev to
4690 * @kuid/@kgid.
4691 */
4692 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4693 kgid);
4694 if (error)
4695 return error;
4696 }
4697
4698 if (type) {
4699 /*
4700 * Change the device groups of the device type for @dev to
4701 * @kuid/@kgid.
4702 */
4703 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4704 kgid);
4705 if (error)
4706 return error;
4707 }
4708
4709 /* Change the device groups of @dev to @kuid/@kgid. */
4710 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4711 if (error)
4712 return error;
4713
4714 if (device_supports_offline(dev) && !dev->offline_disabled) {
4715 /* Change online device attributes of @dev to @kuid/@kgid. */
4716 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4717 kuid, kgid);
4718 if (error)
4719 return error;
4720 }
4721
4722 return 0;
4723 }
4724
4725 /**
4726 * device_change_owner - change the owner of an existing device.
4727 * @dev: device.
4728 * @kuid: new owner's kuid
4729 * @kgid: new owner's kgid
4730 *
4731 * This changes the owner of @dev and its corresponding sysfs entries to
4732 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4733 * core.
4734 *
4735 * Returns 0 on success or error code on failure.
4736 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4737 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4738 {
4739 int error;
4740 struct kobject *kobj = &dev->kobj;
4741 struct subsys_private *sp;
4742
4743 dev = get_device(dev);
4744 if (!dev)
4745 return -EINVAL;
4746
4747 /*
4748 * Change the kobject and the default attributes and groups of the
4749 * ktype associated with it to @kuid/@kgid.
4750 */
4751 error = sysfs_change_owner(kobj, kuid, kgid);
4752 if (error)
4753 goto out;
4754
4755 /*
4756 * Change the uevent file for @dev to the new owner. The uevent file
4757 * was created in a separate step when @dev got added and we mirror
4758 * that step here.
4759 */
4760 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4761 kgid);
4762 if (error)
4763 goto out;
4764
4765 /*
4766 * Change the device groups, the device groups associated with the
4767 * device class, and the groups associated with the device type of @dev
4768 * to @kuid/@kgid.
4769 */
4770 error = device_attrs_change_owner(dev, kuid, kgid);
4771 if (error)
4772 goto out;
4773
4774 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4775 if (error)
4776 goto out;
4777
4778 /*
4779 * Change the owner of the symlink located in the class directory of
4780 * the device class associated with @dev which points to the actual
4781 * directory entry for @dev to @kuid/@kgid. This ensures that the
4782 * symlink shows the same permissions as its target.
4783 */
4784 sp = class_to_subsys(dev->class);
4785 if (!sp) {
4786 error = -EINVAL;
4787 goto out;
4788 }
4789 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4790 subsys_put(sp);
4791
4792 out:
4793 put_device(dev);
4794 return error;
4795 }
4796 EXPORT_SYMBOL_GPL(device_change_owner);
4797
4798 /**
4799 * device_shutdown - call ->shutdown() on each device to shutdown.
4800 */
device_shutdown(void)4801 void device_shutdown(void)
4802 {
4803 struct device *dev, *parent;
4804
4805 wait_for_device_probe();
4806 device_block_probing();
4807
4808 cpufreq_suspend();
4809
4810 spin_lock(&devices_kset->list_lock);
4811 /*
4812 * Walk the devices list backward, shutting down each in turn.
4813 * Beware that device unplug events may also start pulling
4814 * devices offline, even as the system is shutting down.
4815 */
4816 while (!list_empty(&devices_kset->list)) {
4817 dev = list_entry(devices_kset->list.prev, struct device,
4818 kobj.entry);
4819
4820 /*
4821 * hold reference count of device's parent to
4822 * prevent it from being freed because parent's
4823 * lock is to be held
4824 */
4825 parent = get_device(dev->parent);
4826 get_device(dev);
4827 /*
4828 * Make sure the device is off the kset list, in the
4829 * event that dev->*->shutdown() doesn't remove it.
4830 */
4831 list_del_init(&dev->kobj.entry);
4832 spin_unlock(&devices_kset->list_lock);
4833
4834 /* hold lock to avoid race with probe/release */
4835 if (parent)
4836 device_lock(parent);
4837 device_lock(dev);
4838
4839 /* Don't allow any more runtime suspends */
4840 pm_runtime_get_noresume(dev);
4841 pm_runtime_barrier(dev);
4842
4843 if (dev->class && dev->class->shutdown_pre) {
4844 if (initcall_debug)
4845 dev_info(dev, "shutdown_pre\n");
4846 dev->class->shutdown_pre(dev);
4847 }
4848 if (dev->bus && dev->bus->shutdown) {
4849 if (initcall_debug)
4850 dev_info(dev, "shutdown\n");
4851 dev->bus->shutdown(dev);
4852 } else if (dev->driver && dev->driver->shutdown) {
4853 if (initcall_debug)
4854 dev_info(dev, "shutdown\n");
4855 dev->driver->shutdown(dev);
4856 }
4857
4858 device_unlock(dev);
4859 if (parent)
4860 device_unlock(parent);
4861
4862 put_device(dev);
4863 put_device(parent);
4864
4865 spin_lock(&devices_kset->list_lock);
4866 }
4867 spin_unlock(&devices_kset->list_lock);
4868 }
4869
4870 /*
4871 * Device logging functions
4872 */
4873
4874 #ifdef CONFIG_PRINTK
4875 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4876 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4877 {
4878 const char *subsys;
4879
4880 memset(dev_info, 0, sizeof(*dev_info));
4881
4882 if (dev->class)
4883 subsys = dev->class->name;
4884 else if (dev->bus)
4885 subsys = dev->bus->name;
4886 else
4887 return;
4888
4889 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4890
4891 /*
4892 * Add device identifier DEVICE=:
4893 * b12:8 block dev_t
4894 * c127:3 char dev_t
4895 * n8 netdev ifindex
4896 * +sound:card0 subsystem:devname
4897 */
4898 if (MAJOR(dev->devt)) {
4899 char c;
4900
4901 if (strcmp(subsys, "block") == 0)
4902 c = 'b';
4903 else
4904 c = 'c';
4905
4906 snprintf(dev_info->device, sizeof(dev_info->device),
4907 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4908 } else if (strcmp(subsys, "net") == 0) {
4909 struct net_device *net = to_net_dev(dev);
4910
4911 snprintf(dev_info->device, sizeof(dev_info->device),
4912 "n%u", net->ifindex);
4913 } else {
4914 snprintf(dev_info->device, sizeof(dev_info->device),
4915 "+%s:%s", subsys, dev_name(dev));
4916 }
4917 }
4918
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4919 int dev_vprintk_emit(int level, const struct device *dev,
4920 const char *fmt, va_list args)
4921 {
4922 struct dev_printk_info dev_info;
4923
4924 set_dev_info(dev, &dev_info);
4925
4926 return vprintk_emit(0, level, &dev_info, fmt, args);
4927 }
4928 EXPORT_SYMBOL(dev_vprintk_emit);
4929
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4930 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4931 {
4932 va_list args;
4933 int r;
4934
4935 va_start(args, fmt);
4936
4937 r = dev_vprintk_emit(level, dev, fmt, args);
4938
4939 va_end(args);
4940
4941 return r;
4942 }
4943 EXPORT_SYMBOL(dev_printk_emit);
4944
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4945 static void __dev_printk(const char *level, const struct device *dev,
4946 struct va_format *vaf)
4947 {
4948 if (dev)
4949 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4950 dev_driver_string(dev), dev_name(dev), vaf);
4951 else
4952 printk("%s(NULL device *): %pV", level, vaf);
4953 }
4954
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4955 void _dev_printk(const char *level, const struct device *dev,
4956 const char *fmt, ...)
4957 {
4958 struct va_format vaf;
4959 va_list args;
4960
4961 va_start(args, fmt);
4962
4963 vaf.fmt = fmt;
4964 vaf.va = &args;
4965
4966 __dev_printk(level, dev, &vaf);
4967
4968 va_end(args);
4969 }
4970 EXPORT_SYMBOL(_dev_printk);
4971
4972 #define define_dev_printk_level(func, kern_level) \
4973 void func(const struct device *dev, const char *fmt, ...) \
4974 { \
4975 struct va_format vaf; \
4976 va_list args; \
4977 \
4978 va_start(args, fmt); \
4979 \
4980 vaf.fmt = fmt; \
4981 vaf.va = &args; \
4982 \
4983 __dev_printk(kern_level, dev, &vaf); \
4984 \
4985 va_end(args); \
4986 } \
4987 EXPORT_SYMBOL(func);
4988
4989 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4990 define_dev_printk_level(_dev_alert, KERN_ALERT);
4991 define_dev_printk_level(_dev_crit, KERN_CRIT);
4992 define_dev_printk_level(_dev_err, KERN_ERR);
4993 define_dev_printk_level(_dev_warn, KERN_WARNING);
4994 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4995 define_dev_printk_level(_dev_info, KERN_INFO);
4996
4997 #endif
4998
4999 /**
5000 * dev_err_probe - probe error check and log helper
5001 * @dev: the pointer to the struct device
5002 * @err: error value to test
5003 * @fmt: printf-style format string
5004 * @...: arguments as specified in the format string
5005 *
5006 * This helper implements common pattern present in probe functions for error
5007 * checking: print debug or error message depending if the error value is
5008 * -EPROBE_DEFER and propagate error upwards.
5009 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5010 * checked later by reading devices_deferred debugfs attribute.
5011 * It replaces code sequence::
5012 *
5013 * if (err != -EPROBE_DEFER)
5014 * dev_err(dev, ...);
5015 * else
5016 * dev_dbg(dev, ...);
5017 * return err;
5018 *
5019 * with::
5020 *
5021 * return dev_err_probe(dev, err, ...);
5022 *
5023 * Note that it is deemed acceptable to use this function for error
5024 * prints during probe even if the @err is known to never be -EPROBE_DEFER.
5025 * The benefit compared to a normal dev_err() is the standardized format
5026 * of the error code and the fact that the error code is returned.
5027 *
5028 * Returns @err.
5029 *
5030 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)5031 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5032 {
5033 struct va_format vaf;
5034 va_list args;
5035
5036 va_start(args, fmt);
5037 vaf.fmt = fmt;
5038 vaf.va = &args;
5039
5040 if (err != -EPROBE_DEFER) {
5041 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5042 } else {
5043 device_set_deferred_probe_reason(dev, &vaf);
5044 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5045 }
5046
5047 va_end(args);
5048
5049 return err;
5050 }
5051 EXPORT_SYMBOL_GPL(dev_err_probe);
5052
fwnode_is_primary(struct fwnode_handle * fwnode)5053 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5054 {
5055 return fwnode && !IS_ERR(fwnode->secondary);
5056 }
5057
5058 /**
5059 * set_primary_fwnode - Change the primary firmware node of a given device.
5060 * @dev: Device to handle.
5061 * @fwnode: New primary firmware node of the device.
5062 *
5063 * Set the device's firmware node pointer to @fwnode, but if a secondary
5064 * firmware node of the device is present, preserve it.
5065 *
5066 * Valid fwnode cases are:
5067 * - primary --> secondary --> -ENODEV
5068 * - primary --> NULL
5069 * - secondary --> -ENODEV
5070 * - NULL
5071 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5072 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5073 {
5074 struct device *parent = dev->parent;
5075 struct fwnode_handle *fn = dev->fwnode;
5076
5077 if (fwnode) {
5078 if (fwnode_is_primary(fn))
5079 fn = fn->secondary;
5080
5081 if (fn) {
5082 WARN_ON(fwnode->secondary);
5083 fwnode->secondary = fn;
5084 }
5085 dev->fwnode = fwnode;
5086 } else {
5087 if (fwnode_is_primary(fn)) {
5088 dev->fwnode = fn->secondary;
5089
5090 /* Skip nullifying fn->secondary if the primary is shared */
5091 if (parent && fn == parent->fwnode)
5092 return;
5093
5094 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5095 fn->secondary = NULL;
5096 } else {
5097 dev->fwnode = NULL;
5098 }
5099 }
5100 }
5101 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5102
5103 /**
5104 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5105 * @dev: Device to handle.
5106 * @fwnode: New secondary firmware node of the device.
5107 *
5108 * If a primary firmware node of the device is present, set its secondary
5109 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5110 * @fwnode.
5111 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5112 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5113 {
5114 if (fwnode)
5115 fwnode->secondary = ERR_PTR(-ENODEV);
5116
5117 if (fwnode_is_primary(dev->fwnode))
5118 dev->fwnode->secondary = fwnode;
5119 else
5120 dev->fwnode = fwnode;
5121 }
5122 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5123
5124 /**
5125 * device_set_of_node_from_dev - reuse device-tree node of another device
5126 * @dev: device whose device-tree node is being set
5127 * @dev2: device whose device-tree node is being reused
5128 *
5129 * Takes another reference to the new device-tree node after first dropping
5130 * any reference held to the old node.
5131 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)5132 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5133 {
5134 of_node_put(dev->of_node);
5135 dev->of_node = of_node_get(dev2->of_node);
5136 dev->of_node_reused = true;
5137 }
5138 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5139
device_set_node(struct device * dev,struct fwnode_handle * fwnode)5140 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5141 {
5142 dev->fwnode = fwnode;
5143 dev->of_node = to_of_node(fwnode);
5144 }
5145 EXPORT_SYMBOL_GPL(device_set_node);
5146
device_match_name(struct device * dev,const void * name)5147 int device_match_name(struct device *dev, const void *name)
5148 {
5149 return sysfs_streq(dev_name(dev), name);
5150 }
5151 EXPORT_SYMBOL_GPL(device_match_name);
5152
device_match_of_node(struct device * dev,const void * np)5153 int device_match_of_node(struct device *dev, const void *np)
5154 {
5155 return dev->of_node == np;
5156 }
5157 EXPORT_SYMBOL_GPL(device_match_of_node);
5158
device_match_fwnode(struct device * dev,const void * fwnode)5159 int device_match_fwnode(struct device *dev, const void *fwnode)
5160 {
5161 return dev_fwnode(dev) == fwnode;
5162 }
5163 EXPORT_SYMBOL_GPL(device_match_fwnode);
5164
device_match_devt(struct device * dev,const void * pdevt)5165 int device_match_devt(struct device *dev, const void *pdevt)
5166 {
5167 return dev->devt == *(dev_t *)pdevt;
5168 }
5169 EXPORT_SYMBOL_GPL(device_match_devt);
5170
device_match_acpi_dev(struct device * dev,const void * adev)5171 int device_match_acpi_dev(struct device *dev, const void *adev)
5172 {
5173 return ACPI_COMPANION(dev) == adev;
5174 }
5175 EXPORT_SYMBOL(device_match_acpi_dev);
5176
device_match_acpi_handle(struct device * dev,const void * handle)5177 int device_match_acpi_handle(struct device *dev, const void *handle)
5178 {
5179 return ACPI_HANDLE(dev) == handle;
5180 }
5181 EXPORT_SYMBOL(device_match_acpi_handle);
5182
device_match_any(struct device * dev,const void * unused)5183 int device_match_any(struct device *dev, const void *unused)
5184 {
5185 return 1;
5186 }
5187 EXPORT_SYMBOL_GPL(device_match_any);
5188