xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dce110/dce110_hw_sequencer.c (revision 86aa961bb4619a68077ebeba21c52e9ba0eab43d)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 #include "dc.h"
28 #include "dc_bios_types.h"
29 #include "core_types.h"
30 #include "core_status.h"
31 #include "resource.h"
32 #include "dm_helpers.h"
33 #include "dce110_timing_generator.h"
34 #include "dce/dce_hwseq.h"
35 #include "gpio_service_interface.h"
36 
37 #include "dce110_compressor.h"
38 
39 #include "bios/bios_parser_helper.h"
40 #include "timing_generator.h"
41 #include "mem_input.h"
42 #include "opp.h"
43 #include "ipp.h"
44 #include "transform.h"
45 #include "stream_encoder.h"
46 #include "link_encoder.h"
47 #include "link_enc_cfg.h"
48 #include "link_hwss.h"
49 #include "link.h"
50 #include "dccg.h"
51 #include "clock_source.h"
52 #include "clk_mgr.h"
53 #include "abm.h"
54 #include "audio.h"
55 #include "reg_helper.h"
56 #include "panel_cntl.h"
57 #include "dpcd_defs.h"
58 /* include DCE11 register header files */
59 #include "dce/dce_11_0_d.h"
60 #include "dce/dce_11_0_sh_mask.h"
61 #include "custom_float.h"
62 
63 #include "atomfirmware.h"
64 
65 #include "dcn10/dcn10_hw_sequencer.h"
66 
67 #include "dce110_hw_sequencer.h"
68 
69 #define GAMMA_HW_POINTS_NUM 256
70 
71 /*
72  * All values are in milliseconds;
73  * For eDP, after power-up/power/down,
74  * 300/500 msec max. delay from LCDVCC to black video generation
75  */
76 #define PANEL_POWER_UP_TIMEOUT 300
77 #define PANEL_POWER_DOWN_TIMEOUT 500
78 #define HPD_CHECK_INTERVAL 10
79 #define OLED_POST_T7_DELAY 100
80 #define OLED_PRE_T11_DELAY 150
81 
82 #define CTX \
83 	hws->ctx
84 
85 #define DC_LOGGER_INIT()
86 
87 #define REG(reg)\
88 	hws->regs->reg
89 
90 #undef FN
91 #define FN(reg_name, field_name) \
92 	hws->shifts->field_name, hws->masks->field_name
93 
94 struct dce110_hw_seq_reg_offsets {
95 	uint32_t crtc;
96 };
97 
98 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
99 {
100 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
101 },
102 {
103 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
104 },
105 {
106 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
107 },
108 {
109 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
110 }
111 };
112 
113 #define HW_REG_BLND(reg, id)\
114 	(reg + reg_offsets[id].blnd)
115 
116 #define HW_REG_CRTC(reg, id)\
117 	(reg + reg_offsets[id].crtc)
118 
119 #define MAX_WATERMARK 0xFFFF
120 #define SAFE_NBP_MARK 0x7FFF
121 
122 /*******************************************************************************
123  * Private definitions
124  ******************************************************************************/
125 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)126 static void dce110_init_pte(struct dc_context *ctx)
127 {
128 	uint32_t addr;
129 	uint32_t value = 0;
130 	uint32_t chunk_int = 0;
131 	uint32_t chunk_mul = 0;
132 
133 	addr = mmUNP_DVMM_PTE_CONTROL;
134 	value = dm_read_reg(ctx, addr);
135 
136 	set_reg_field_value(
137 		value,
138 		0,
139 		DVMM_PTE_CONTROL,
140 		DVMM_USE_SINGLE_PTE);
141 
142 	set_reg_field_value(
143 		value,
144 		1,
145 		DVMM_PTE_CONTROL,
146 		DVMM_PTE_BUFFER_MODE0);
147 
148 	set_reg_field_value(
149 		value,
150 		1,
151 		DVMM_PTE_CONTROL,
152 		DVMM_PTE_BUFFER_MODE1);
153 
154 	dm_write_reg(ctx, addr, value);
155 
156 	addr = mmDVMM_PTE_REQ;
157 	value = dm_read_reg(ctx, addr);
158 
159 	chunk_int = get_reg_field_value(
160 		value,
161 		DVMM_PTE_REQ,
162 		HFLIP_PTEREQ_PER_CHUNK_INT);
163 
164 	chunk_mul = get_reg_field_value(
165 		value,
166 		DVMM_PTE_REQ,
167 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
168 
169 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
170 
171 		set_reg_field_value(
172 			value,
173 			255,
174 			DVMM_PTE_REQ,
175 			MAX_PTEREQ_TO_ISSUE);
176 
177 		set_reg_field_value(
178 			value,
179 			4,
180 			DVMM_PTE_REQ,
181 			HFLIP_PTEREQ_PER_CHUNK_INT);
182 
183 		set_reg_field_value(
184 			value,
185 			4,
186 			DVMM_PTE_REQ,
187 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
188 
189 		dm_write_reg(ctx, addr, value);
190 	}
191 }
192 /**************************************************************************/
193 
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)194 static void enable_display_pipe_clock_gating(
195 	struct dc_context *ctx,
196 	bool clock_gating)
197 {
198 	/*TODO*/
199 }
200 
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)201 static bool dce110_enable_display_power_gating(
202 	struct dc *dc,
203 	uint8_t controller_id,
204 	struct dc_bios *dcb,
205 	enum pipe_gating_control power_gating)
206 {
207 	enum bp_result bp_result = BP_RESULT_OK;
208 	enum bp_pipe_control_action cntl;
209 	struct dc_context *ctx = dc->ctx;
210 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
211 
212 	if (power_gating == PIPE_GATING_CONTROL_INIT)
213 		cntl = ASIC_PIPE_INIT;
214 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
215 		cntl = ASIC_PIPE_ENABLE;
216 	else
217 		cntl = ASIC_PIPE_DISABLE;
218 
219 	if (controller_id == underlay_idx)
220 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
221 
222 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0) {
223 
224 		bp_result = dcb->funcs->enable_disp_power_gating(
225 						dcb, controller_id + 1, cntl);
226 
227 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
228 		 * by default when command table is called
229 		 *
230 		 * Bios parser accepts controller_id = 6 as indicative of
231 		 * underlay pipe in dce110. But we do not support more
232 		 * than 3.
233 		 */
234 		if (controller_id < CONTROLLER_ID_MAX - 1)
235 			dm_write_reg(ctx,
236 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
237 				0);
238 	}
239 
240 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
241 		dce110_init_pte(ctx);
242 
243 	if (bp_result == BP_RESULT_OK)
244 		return true;
245 	else
246 		return false;
247 }
248 
build_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)249 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
250 		const struct dc_plane_state *plane_state)
251 {
252 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
253 
254 	switch (plane_state->format) {
255 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
256 		prescale_params->scale = 0x2082;
257 		break;
258 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
259 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
260 		prescale_params->scale = 0x2020;
261 		break;
262 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
263 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
264 		prescale_params->scale = 0x2008;
265 		break;
266 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
267 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
268 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
269 		prescale_params->scale = 0x2000;
270 		break;
271 	default:
272 		ASSERT(false);
273 		break;
274 	}
275 }
276 
277 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)278 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
279 			       const struct dc_plane_state *plane_state)
280 {
281 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
282 	const struct dc_transfer_func *tf = NULL;
283 	struct ipp_prescale_params prescale_params = { 0 };
284 	bool result = true;
285 
286 	if (ipp == NULL)
287 		return false;
288 
289 	if (plane_state->in_transfer_func)
290 		tf = plane_state->in_transfer_func;
291 
292 	build_prescale_params(&prescale_params, plane_state);
293 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
294 
295 	if (plane_state->gamma_correction &&
296 			!plane_state->gamma_correction->is_identity &&
297 			dce_use_lut(plane_state->format))
298 		ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
299 
300 	if (tf == NULL) {
301 		/* Default case if no input transfer function specified */
302 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
303 	} else if (tf->type == TF_TYPE_PREDEFINED) {
304 		switch (tf->tf) {
305 		case TRANSFER_FUNCTION_SRGB:
306 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
307 			break;
308 		case TRANSFER_FUNCTION_BT709:
309 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
310 			break;
311 		case TRANSFER_FUNCTION_LINEAR:
312 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
313 			break;
314 		case TRANSFER_FUNCTION_PQ:
315 		default:
316 			result = false;
317 			break;
318 		}
319 	} else if (tf->type == TF_TYPE_BYPASS) {
320 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
321 	} else {
322 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
323 		result = false;
324 	}
325 
326 	return result;
327 }
328 
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)329 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
330 				    struct curve_points *arr_points,
331 				    uint32_t hw_points_num)
332 {
333 	struct custom_float_format fmt;
334 
335 	struct pwl_result_data *rgb = rgb_resulted;
336 
337 	uint32_t i = 0;
338 
339 	fmt.exponenta_bits = 6;
340 	fmt.mantissa_bits = 12;
341 	fmt.sign = true;
342 
343 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
344 					    &arr_points[0].custom_float_x)) {
345 		BREAK_TO_DEBUGGER();
346 		return false;
347 	}
348 
349 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
350 					    &arr_points[0].custom_float_offset)) {
351 		BREAK_TO_DEBUGGER();
352 		return false;
353 	}
354 
355 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
356 					    &arr_points[0].custom_float_slope)) {
357 		BREAK_TO_DEBUGGER();
358 		return false;
359 	}
360 
361 	fmt.mantissa_bits = 10;
362 	fmt.sign = false;
363 
364 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
365 					    &arr_points[1].custom_float_x)) {
366 		BREAK_TO_DEBUGGER();
367 		return false;
368 	}
369 
370 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
371 					    &arr_points[1].custom_float_y)) {
372 		BREAK_TO_DEBUGGER();
373 		return false;
374 	}
375 
376 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
377 					    &arr_points[1].custom_float_slope)) {
378 		BREAK_TO_DEBUGGER();
379 		return false;
380 	}
381 
382 	fmt.mantissa_bits = 12;
383 	fmt.sign = true;
384 
385 	while (i != hw_points_num) {
386 		if (!convert_to_custom_float_format(rgb->red, &fmt,
387 						    &rgb->red_reg)) {
388 			BREAK_TO_DEBUGGER();
389 			return false;
390 		}
391 
392 		if (!convert_to_custom_float_format(rgb->green, &fmt,
393 						    &rgb->green_reg)) {
394 			BREAK_TO_DEBUGGER();
395 			return false;
396 		}
397 
398 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
399 						    &rgb->blue_reg)) {
400 			BREAK_TO_DEBUGGER();
401 			return false;
402 		}
403 
404 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
405 						    &rgb->delta_red_reg)) {
406 			BREAK_TO_DEBUGGER();
407 			return false;
408 		}
409 
410 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
411 						    &rgb->delta_green_reg)) {
412 			BREAK_TO_DEBUGGER();
413 			return false;
414 		}
415 
416 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
417 						    &rgb->delta_blue_reg)) {
418 			BREAK_TO_DEBUGGER();
419 			return false;
420 		}
421 
422 		++rgb;
423 		++i;
424 	}
425 
426 	return true;
427 }
428 
429 #define MAX_LOW_POINT      25
430 #define NUMBER_REGIONS     16
431 #define NUMBER_SW_SEGMENTS 16
432 
433 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)434 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
435 				      struct pwl_params *regamma_params)
436 {
437 	struct curve_points *arr_points;
438 	struct pwl_result_data *rgb_resulted;
439 	struct pwl_result_data *rgb;
440 	struct pwl_result_data *rgb_plus_1;
441 	struct fixed31_32 y_r;
442 	struct fixed31_32 y_g;
443 	struct fixed31_32 y_b;
444 	struct fixed31_32 y1_min;
445 	struct fixed31_32 y3_max;
446 
447 	int32_t region_start, region_end;
448 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
449 
450 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
451 		return false;
452 
453 	arr_points = regamma_params->arr_points;
454 	rgb_resulted = regamma_params->rgb_resulted;
455 	hw_points = 0;
456 
457 	memset(regamma_params, 0, sizeof(struct pwl_params));
458 
459 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
460 		/* 16 segments
461 		 * segments are from 2^-11 to 2^5
462 		 */
463 		region_start = -11;
464 		region_end = region_start + NUMBER_REGIONS;
465 
466 		for (i = 0; i < NUMBER_REGIONS; i++)
467 			seg_distr[i] = 4;
468 
469 	} else {
470 		/* 10 segments
471 		 * segment is from 2^-10 to 2^1
472 		 * We include an extra segment for range [2^0, 2^1). This is to
473 		 * ensure that colors with normalized values of 1 don't miss the
474 		 * LUT.
475 		 */
476 		region_start = -10;
477 		region_end = 1;
478 
479 		seg_distr[0] = 4;
480 		seg_distr[1] = 4;
481 		seg_distr[2] = 4;
482 		seg_distr[3] = 4;
483 		seg_distr[4] = 4;
484 		seg_distr[5] = 4;
485 		seg_distr[6] = 4;
486 		seg_distr[7] = 4;
487 		seg_distr[8] = 4;
488 		seg_distr[9] = 4;
489 		seg_distr[10] = 0;
490 		seg_distr[11] = -1;
491 		seg_distr[12] = -1;
492 		seg_distr[13] = -1;
493 		seg_distr[14] = -1;
494 		seg_distr[15] = -1;
495 	}
496 
497 	for (k = 0; k < 16; k++) {
498 		if (seg_distr[k] != -1)
499 			hw_points += (1 << seg_distr[k]);
500 	}
501 
502 	j = 0;
503 	for (k = 0; k < (region_end - region_start); k++) {
504 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
505 		start_index = (region_start + k + MAX_LOW_POINT) *
506 				NUMBER_SW_SEGMENTS;
507 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
508 				i += increment) {
509 			if (j == hw_points - 1)
510 				break;
511 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
512 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
513 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
514 			j++;
515 		}
516 	}
517 
518 	/* last point */
519 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
520 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
521 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
522 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
523 
524 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
525 					     dc_fixpt_from_int(region_start));
526 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
527 					     dc_fixpt_from_int(region_end));
528 
529 	y_r = rgb_resulted[0].red;
530 	y_g = rgb_resulted[0].green;
531 	y_b = rgb_resulted[0].blue;
532 
533 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
534 
535 	arr_points[0].y = y1_min;
536 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
537 						 arr_points[0].x);
538 
539 	y_r = rgb_resulted[hw_points - 1].red;
540 	y_g = rgb_resulted[hw_points - 1].green;
541 	y_b = rgb_resulted[hw_points - 1].blue;
542 
543 	/* see comment above, m_arrPoints[1].y should be the Y value for the
544 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
545 	 */
546 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
547 
548 	arr_points[1].y = y3_max;
549 
550 	arr_points[1].slope = dc_fixpt_zero;
551 
552 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
553 		/* for PQ, we want to have a straight line from last HW X point,
554 		 * and the slope to be such that we hit 1.0 at 10000 nits.
555 		 */
556 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
557 
558 		arr_points[1].slope = dc_fixpt_div(
559 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
560 				dc_fixpt_sub(end_value, arr_points[1].x));
561 	}
562 
563 	regamma_params->hw_points_num = hw_points;
564 
565 	k = 0;
566 	for (i = 1; i < 16; i++) {
567 		if (seg_distr[k] != -1) {
568 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
569 			regamma_params->arr_curve_points[i].offset =
570 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
571 		}
572 		k++;
573 	}
574 
575 	if (seg_distr[k] != -1)
576 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
577 
578 	rgb = rgb_resulted;
579 	rgb_plus_1 = rgb_resulted + 1;
580 
581 	i = 1;
582 
583 	while (i != hw_points + 1) {
584 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
585 			rgb_plus_1->red = rgb->red;
586 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
587 			rgb_plus_1->green = rgb->green;
588 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
589 			rgb_plus_1->blue = rgb->blue;
590 
591 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
592 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
593 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
594 
595 		++rgb_plus_1;
596 		++rgb;
597 		++i;
598 	}
599 
600 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
601 
602 	return true;
603 }
604 
605 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)606 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
607 				const struct dc_stream_state *stream)
608 {
609 	struct transform *xfm = pipe_ctx->plane_res.xfm;
610 
611 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
612 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
613 
614 	if (stream->out_transfer_func &&
615 	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
616 	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
617 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
618 	} else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
619 							 &xfm->regamma_params)) {
620 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
621 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
622 	} else {
623 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
624 	}
625 
626 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
627 
628 	return true;
629 }
630 
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)631 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
632 {
633 	bool is_hdmi_tmds;
634 	bool is_dp;
635 
636 	ASSERT(pipe_ctx->stream);
637 
638 	if (pipe_ctx->stream_res.stream_enc == NULL)
639 		return;  /* this is not root pipe */
640 
641 	is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
642 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
643 
644 	if (!is_hdmi_tmds && !is_dp)
645 		return;
646 
647 	if (is_hdmi_tmds)
648 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
649 			pipe_ctx->stream_res.stream_enc,
650 			&pipe_ctx->stream_res.encoder_info_frame);
651 	else {
652 		if (pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num)
653 			pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num(
654 				pipe_ctx->stream_res.stream_enc,
655 				&pipe_ctx->stream_res.encoder_info_frame);
656 
657 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
658 			pipe_ctx->stream_res.stream_enc,
659 			&pipe_ctx->stream_res.encoder_info_frame);
660 	}
661 }
662 
dce110_enable_stream(struct pipe_ctx * pipe_ctx)663 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
664 {
665 	enum dc_lane_count lane_count =
666 		pipe_ctx->stream->link->cur_link_settings.lane_count;
667 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
668 	struct dc_link *link = pipe_ctx->stream->link;
669 	const struct dc *dc = link->dc;
670 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
671 	uint32_t active_total_with_borders;
672 	uint32_t early_control = 0;
673 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
674 
675 	link_hwss->setup_stream_encoder(pipe_ctx);
676 
677 	dc->hwss.update_info_frame(pipe_ctx);
678 
679 	/* enable early control to avoid corruption on DP monitor*/
680 	active_total_with_borders =
681 			timing->h_addressable
682 				+ timing->h_border_left
683 				+ timing->h_border_right;
684 
685 	if (lane_count != 0)
686 		early_control = active_total_with_borders % lane_count;
687 
688 	if (early_control == 0)
689 		early_control = lane_count;
690 
691 	tg->funcs->set_early_control(tg, early_control);
692 }
693 
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)694 static enum bp_result link_transmitter_control(
695 		struct dc_bios *bios,
696 	struct bp_transmitter_control *cntl)
697 {
698 	enum bp_result result;
699 
700 	result = bios->funcs->transmitter_control(bios, cntl);
701 
702 	return result;
703 }
704 
705 /*
706  * @brief
707  * eDP only.
708  */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)709 void dce110_edp_wait_for_hpd_ready(
710 		struct dc_link *link,
711 		bool power_up)
712 {
713 	struct dc_context *ctx = link->ctx;
714 	struct graphics_object_id connector = link->link_enc->connector;
715 	struct gpio *hpd;
716 	bool edp_hpd_high = false;
717 	uint32_t time_elapsed = 0;
718 	uint32_t timeout = power_up ?
719 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
720 
721 	if (dal_graphics_object_id_get_connector_id(connector)
722 			!= CONNECTOR_ID_EDP) {
723 		BREAK_TO_DEBUGGER();
724 		return;
725 	}
726 
727 	if (!power_up)
728 		/*
729 		 * From KV, we will not HPD low after turning off VCC -
730 		 * instead, we will check the SW timer in power_up().
731 		 */
732 		return;
733 
734 	/*
735 	 * When we power on/off the eDP panel,
736 	 * we need to wait until SENSE bit is high/low.
737 	 */
738 
739 	/* obtain HPD */
740 	/* TODO what to do with this? */
741 	hpd = ctx->dc->link_srv->get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
742 
743 	if (!hpd) {
744 		BREAK_TO_DEBUGGER();
745 		return;
746 	}
747 
748 	if (link != NULL) {
749 		if (link->panel_config.pps.extra_t3_ms > 0) {
750 			int extra_t3_in_ms = link->panel_config.pps.extra_t3_ms;
751 
752 			msleep(extra_t3_in_ms);
753 		}
754 	}
755 
756 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
757 
758 	/* wait until timeout or panel detected */
759 
760 	do {
761 		uint32_t detected = 0;
762 
763 		dal_gpio_get_value(hpd, &detected);
764 
765 		if (!(detected ^ power_up)) {
766 			edp_hpd_high = true;
767 			break;
768 		}
769 
770 		msleep(HPD_CHECK_INTERVAL);
771 
772 		time_elapsed += HPD_CHECK_INTERVAL;
773 	} while (time_elapsed < timeout);
774 
775 	dal_gpio_close(hpd);
776 
777 	dal_gpio_destroy_irq(&hpd);
778 
779 	/* ensure that the panel is detected */
780 	if (!edp_hpd_high)
781 		DC_LOG_DC("%s: wait timed out!\n", __func__);
782 }
783 
dce110_edp_power_control(struct dc_link * link,bool power_up)784 void dce110_edp_power_control(
785 		struct dc_link *link,
786 		bool power_up)
787 {
788 	struct dc_context *ctx = link->ctx;
789 	struct bp_transmitter_control cntl = { 0 };
790 	enum bp_result bp_result;
791 	uint8_t pwrseq_instance;
792 
793 
794 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
795 			!= CONNECTOR_ID_EDP) {
796 		BREAK_TO_DEBUGGER();
797 		return;
798 	}
799 
800 	if (!link->panel_cntl)
801 		return;
802 	if (power_up !=
803 		link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
804 
805 		unsigned long long current_ts = dm_get_timestamp(ctx);
806 		unsigned long long time_since_edp_poweroff_ms =
807 				div64_u64(dm_get_elapse_time_in_ns(
808 						ctx,
809 						current_ts,
810 						ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
811 		unsigned long long time_since_edp_poweron_ms =
812 				div64_u64(dm_get_elapse_time_in_ns(
813 						ctx,
814 						current_ts,
815 						ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link)), 1000000);
816 		DC_LOG_HW_RESUME_S3(
817 				"%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
818 				__func__,
819 				power_up,
820 				current_ts,
821 				ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
822 				ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link),
823 				time_since_edp_poweroff_ms,
824 				time_since_edp_poweron_ms);
825 
826 		/* Send VBIOS command to prompt eDP panel power */
827 		if (power_up) {
828 			/* edp requires a min of 500ms from LCDVDD off to on */
829 			unsigned long long remaining_min_edp_poweroff_time_ms = 500;
830 
831 			/* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
832 			if (link->local_sink != NULL)
833 				remaining_min_edp_poweroff_time_ms +=
834 					link->panel_config.pps.extra_t12_ms;
835 
836 			/* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
837 			if (ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
838 				if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
839 					remaining_min_edp_poweroff_time_ms =
840 						remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
841 				else
842 					remaining_min_edp_poweroff_time_ms = 0;
843 			}
844 
845 			if (remaining_min_edp_poweroff_time_ms) {
846 				DC_LOG_HW_RESUME_S3(
847 						"%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
848 						__func__, remaining_min_edp_poweroff_time_ms);
849 				msleep(remaining_min_edp_poweroff_time_ms);
850 				DC_LOG_HW_RESUME_S3(
851 						"%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
852 						__func__, remaining_min_edp_poweroff_time_ms);
853 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
854 						__func__, remaining_min_edp_poweroff_time_ms);
855 			} else {
856 				DC_LOG_HW_RESUME_S3(
857 						"%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
858 						__func__, remaining_min_edp_poweroff_time_ms);
859 			}
860 		}
861 
862 		DC_LOG_HW_RESUME_S3(
863 				"%s: BEGIN: Panel Power action: %s\n",
864 				__func__, (power_up ? "On":"Off"));
865 
866 		cntl.action = power_up ?
867 			TRANSMITTER_CONTROL_POWER_ON :
868 			TRANSMITTER_CONTROL_POWER_OFF;
869 		cntl.transmitter = link->link_enc->transmitter;
870 		cntl.connector_obj_id = link->link_enc->connector;
871 		cntl.coherent = false;
872 		cntl.lanes_number = LANE_COUNT_FOUR;
873 		cntl.hpd_sel = link->link_enc->hpd_source;
874 		pwrseq_instance = link->panel_cntl->pwrseq_inst;
875 
876 		if (ctx->dc->ctx->dmub_srv &&
877 				ctx->dc->debug.dmub_command_table) {
878 
879 			if (cntl.action == TRANSMITTER_CONTROL_POWER_ON) {
880 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
881 						LVTMA_CONTROL_POWER_ON,
882 						pwrseq_instance, link->link_powered_externally);
883 			} else {
884 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
885 						LVTMA_CONTROL_POWER_OFF,
886 						pwrseq_instance, link->link_powered_externally);
887 			}
888 		}
889 
890 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
891 
892 		DC_LOG_HW_RESUME_S3(
893 				"%s: END: Panel Power action: %s bp_result=%u\n",
894 				__func__, (power_up ? "On":"Off"),
895 				bp_result);
896 
897 		ctx->dc->link_srv->dp_trace_set_edp_power_timestamp(link, power_up);
898 
899 		DC_LOG_HW_RESUME_S3(
900 				"%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
901 				__func__,
902 				ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
903 				ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link));
904 
905 		if (bp_result != BP_RESULT_OK)
906 			DC_LOG_ERROR(
907 					"%s: Panel Power bp_result: %d\n",
908 					__func__, bp_result);
909 	} else {
910 		DC_LOG_HW_RESUME_S3(
911 				"%s: Skipping Panel Power action: %s\n",
912 				__func__, (power_up ? "On":"Off"));
913 	}
914 }
915 
dce110_edp_wait_for_T12(struct dc_link * link)916 void dce110_edp_wait_for_T12(
917 		struct dc_link *link)
918 {
919 	struct dc_context *ctx = link->ctx;
920 
921 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
922 			!= CONNECTOR_ID_EDP) {
923 		BREAK_TO_DEBUGGER();
924 		return;
925 	}
926 
927 	if (!link->panel_cntl)
928 		return;
929 
930 	if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
931 			ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
932 		unsigned int t12_duration = 500; // Default T12 as per spec
933 		unsigned long long current_ts = dm_get_timestamp(ctx);
934 		unsigned long long time_since_edp_poweroff_ms =
935 				div64_u64(dm_get_elapse_time_in_ns(
936 						ctx,
937 						current_ts,
938 						ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
939 
940 		t12_duration += link->panel_config.pps.extra_t12_ms; // Add extra T12
941 
942 		if (time_since_edp_poweroff_ms < t12_duration)
943 			msleep(t12_duration - time_since_edp_poweroff_ms);
944 	}
945 }
946 /*todo: cloned in stream enc, fix*/
947 /*
948  * @brief
949  * eDP only. Control the backlight of the eDP panel
950  */
dce110_edp_backlight_control(struct dc_link * link,bool enable)951 void dce110_edp_backlight_control(
952 		struct dc_link *link,
953 		bool enable)
954 {
955 	struct dc_context *ctx = link->ctx;
956 	struct bp_transmitter_control cntl = { 0 };
957 	uint8_t pwrseq_instance;
958 	unsigned int pre_T11_delay = OLED_PRE_T11_DELAY;
959 	unsigned int post_T7_delay = OLED_POST_T7_DELAY;
960 
961 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
962 		!= CONNECTOR_ID_EDP) {
963 		BREAK_TO_DEBUGGER();
964 		return;
965 	}
966 
967 	if (link->panel_cntl && !(link->dpcd_sink_ext_caps.bits.oled ||
968 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
969 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)) {
970 		bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
971 
972 		if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
973 			DC_LOG_HW_RESUME_S3(
974 				"%s: panel already powered up/off. Do nothing.\n",
975 				__func__);
976 			return;
977 		}
978 	}
979 
980 	/* Send VBIOS command to control eDP panel backlight */
981 
982 	DC_LOG_HW_RESUME_S3(
983 			"%s: backlight action: %s\n",
984 			__func__, (enable ? "On":"Off"));
985 
986 	cntl.action = enable ?
987 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
988 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
989 
990 	/*cntl.engine_id = ctx->engine;*/
991 	cntl.transmitter = link->link_enc->transmitter;
992 	cntl.connector_obj_id = link->link_enc->connector;
993 	/*todo: unhardcode*/
994 	cntl.lanes_number = LANE_COUNT_FOUR;
995 	cntl.hpd_sel = link->link_enc->hpd_source;
996 	cntl.signal = SIGNAL_TYPE_EDP;
997 
998 	/* For eDP, the following delays might need to be considered
999 	 * after link training completed:
1000 	 * idle period - min. accounts for required BS-Idle pattern,
1001 	 * max. allows for source frame synchronization);
1002 	 * 50 msec max. delay from valid video data from source
1003 	 * to video on dislpay or backlight enable.
1004 	 *
1005 	 * Disable the delay for now.
1006 	 * Enable it in the future if necessary.
1007 	 */
1008 	/* dc_service_sleep_in_milliseconds(50); */
1009 		/*edp 1.2*/
1010 	pwrseq_instance = link->panel_cntl->pwrseq_inst;
1011 
1012 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1013 		if (!link->dc->config.edp_no_power_sequencing)
1014 		/*
1015 		 * Sometimes, DP receiver chip power-controlled externally by an
1016 		 * Embedded Controller could be treated and used as eDP,
1017 		 * if it drives mobile display. In this case,
1018 		 * we shouldn't be doing power-sequencing, hence we can skip
1019 		 * waiting for T7-ready.
1020 		 */
1021 			ctx->dc->link_srv->edp_receiver_ready_T7(link);
1022 		else
1023 			DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1024 	}
1025 
1026 	/* Setting link_powered_externally will bypass delays in the backlight
1027 	 * as they are not required if the link is being powered by a different
1028 	 * source.
1029 	 */
1030 	if (ctx->dc->ctx->dmub_srv &&
1031 			ctx->dc->debug.dmub_command_table) {
1032 		if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1033 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1034 					LVTMA_CONTROL_LCD_BLON,
1035 					pwrseq_instance, link->link_powered_externally);
1036 		else
1037 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1038 					LVTMA_CONTROL_LCD_BLOFF,
1039 					pwrseq_instance, link->link_powered_externally);
1040 	}
1041 
1042 	link_transmitter_control(ctx->dc_bios, &cntl);
1043 
1044 	if (enable && link->dpcd_sink_ext_caps.bits.oled) {
1045 		post_T7_delay += link->panel_config.pps.extra_post_t7_ms;
1046 		msleep(post_T7_delay);
1047 	}
1048 
1049 	if (link->dpcd_sink_ext_caps.bits.oled ||
1050 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1051 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1052 		ctx->dc->link_srv->edp_backlight_enable_aux(link, enable);
1053 
1054 	/*edp 1.2*/
1055 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1056 		if (!link->dc->config.edp_no_power_sequencing)
1057 		/*
1058 		 * Sometimes, DP receiver chip power-controlled externally by an
1059 		 * Embedded Controller could be treated and used as eDP,
1060 		 * if it drives mobile display. In this case,
1061 		 * we shouldn't be doing power-sequencing, hence we can skip
1062 		 * waiting for T9-ready.
1063 		 */
1064 			ctx->dc->link_srv->edp_add_delay_for_T9(link);
1065 		else
1066 			DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1067 	}
1068 
1069 	if (!enable && link->dpcd_sink_ext_caps.bits.oled) {
1070 		pre_T11_delay += link->panel_config.pps.extra_pre_t11_ms;
1071 		msleep(pre_T11_delay);
1072 	}
1073 }
1074 
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)1075 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1076 {
1077 	/* notify audio driver for audio modes of monitor */
1078 	struct dc *dc;
1079 	struct clk_mgr *clk_mgr;
1080 	unsigned int i, num_audio = 1;
1081 	const struct link_hwss *link_hwss;
1082 
1083 	if (!pipe_ctx->stream)
1084 		return;
1085 
1086 	dc = pipe_ctx->stream->ctx->dc;
1087 	clk_mgr = dc->clk_mgr;
1088 	link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1089 
1090 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1091 		return;
1092 
1093 	if (pipe_ctx->stream_res.audio) {
1094 		for (i = 0; i < MAX_PIPES; i++) {
1095 			/*current_state not updated yet*/
1096 			if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1097 				num_audio++;
1098 		}
1099 
1100 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1101 
1102 		if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1103 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1104 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1105 
1106 		link_hwss->enable_audio_packet(pipe_ctx);
1107 
1108 		if (pipe_ctx->stream_res.audio)
1109 			pipe_ctx->stream_res.audio->enabled = true;
1110 	}
1111 }
1112 
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)1113 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1114 {
1115 	struct dc *dc;
1116 	struct clk_mgr *clk_mgr;
1117 	const struct link_hwss *link_hwss;
1118 
1119 	if (!pipe_ctx || !pipe_ctx->stream)
1120 		return;
1121 
1122 	dc = pipe_ctx->stream->ctx->dc;
1123 	clk_mgr = dc->clk_mgr;
1124 	link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1125 
1126 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1127 		return;
1128 
1129 	link_hwss->disable_audio_packet(pipe_ctx);
1130 
1131 	if (pipe_ctx->stream_res.audio) {
1132 		pipe_ctx->stream_res.audio->enabled = false;
1133 
1134 		if (clk_mgr->funcs->enable_pme_wa)
1135 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1136 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1137 
1138 		/* TODO: notify audio driver for if audio modes list changed
1139 		 * add audio mode list change flag */
1140 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1141 		 * stream->stream_engine_id);
1142 		 */
1143 	}
1144 }
1145 
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1146 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1147 {
1148 	struct dc_stream_state *stream = pipe_ctx->stream;
1149 	struct dc_link *link = stream->link;
1150 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1151 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1152 	struct dccg *dccg = dc->res_pool->dccg;
1153 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
1154 	struct dtbclk_dto_params dto_params = {0};
1155 	int dp_hpo_inst;
1156 	struct link_encoder *link_enc = link_enc_cfg_get_link_enc(pipe_ctx->stream->link);
1157 	struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
1158 
1159 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1160 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1161 			pipe_ctx->stream_res.stream_enc);
1162 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1163 			pipe_ctx->stream_res.stream_enc);
1164 	}
1165 
1166 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1167 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1168 					pipe_ctx->stream_res.hpo_dp_stream_enc);
1169 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1170 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1171 			pipe_ctx->stream_res.stream_enc);
1172 
1173 	dc->hwss.disable_audio_stream(pipe_ctx);
1174 
1175 	link_hwss->reset_stream_encoder(pipe_ctx);
1176 
1177 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1178 		dto_params.otg_inst = tg->inst;
1179 		dto_params.timing = &pipe_ctx->stream->timing;
1180 		dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
1181 		if (dccg) {
1182 			dccg->funcs->disable_symclk32_se(dccg, dp_hpo_inst);
1183 			dccg->funcs->set_dpstreamclk(dccg, REFCLK, tg->inst, dp_hpo_inst);
1184 			if (dccg && dccg->funcs->set_dtbclk_dto)
1185 				dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
1186 		}
1187 	} else if (dccg && dccg->funcs->disable_symclk_se) {
1188 		dccg->funcs->disable_symclk_se(dccg, stream_enc->stream_enc_inst,
1189 				link_enc->transmitter - TRANSMITTER_UNIPHY_A);
1190 	}
1191 
1192 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1193 		/* TODO: This looks like a bug to me as we are disabling HPO IO when
1194 		 * we are just disabling a single HPO stream. Shouldn't we disable HPO
1195 		 * HW control only when HPOs for all streams are disabled?
1196 		 */
1197 		if (pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control)
1198 			pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control(
1199 					pipe_ctx->stream->ctx->dc->hwseq, false);
1200 	}
1201 }
1202 
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1203 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1204 		struct dc_link_settings *link_settings)
1205 {
1206 	struct encoder_unblank_param params = { { 0 } };
1207 	struct dc_stream_state *stream = pipe_ctx->stream;
1208 	struct dc_link *link = stream->link;
1209 	struct dce_hwseq *hws = link->dc->hwseq;
1210 
1211 	/* only 3 items below are used by unblank */
1212 	params.timing = pipe_ctx->stream->timing;
1213 	params.link_settings.link_rate = link_settings->link_rate;
1214 
1215 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1216 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
1217 
1218 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1219 		hws->funcs.edp_backlight_control(link, true);
1220 	}
1221 }
1222 
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1223 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1224 {
1225 	struct dc_stream_state *stream = pipe_ctx->stream;
1226 	struct dc_link *link = stream->link;
1227 	struct dce_hwseq *hws = link->dc->hwseq;
1228 
1229 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1230 		if (!link->skip_implict_edp_power_control)
1231 			hws->funcs.edp_backlight_control(link, false);
1232 		link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1233 	}
1234 
1235 	if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1236 		/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1237 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1238 				pipe_ctx->stream_res.hpo_dp_stream_enc);
1239 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1240 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1241 
1242 		if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1243 			/*
1244 			 * After output is idle pattern some sinks need time to recognize the stream
1245 			 * has changed or they enter protection state and hang.
1246 			 */
1247 			msleep(60);
1248 		} else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP) {
1249 			if (!link->dc->config.edp_no_power_sequencing) {
1250 				/*
1251 				 * Sometimes, DP receiver chip power-controlled externally by an
1252 				 * Embedded Controller could be treated and used as eDP,
1253 				 * if it drives mobile display. In this case,
1254 				 * we shouldn't be doing power-sequencing, hence we can skip
1255 				 * waiting for T9-ready.
1256 				 */
1257 				link->dc->link_srv->edp_receiver_ready_T9(link);
1258 			}
1259 		}
1260 	}
1261 
1262 }
1263 
1264 
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1265 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1266 {
1267 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1268 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1269 }
1270 
translate_to_dto_source(enum controller_id crtc_id)1271 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1272 {
1273 	switch (crtc_id) {
1274 	case CONTROLLER_ID_D0:
1275 		return DTO_SOURCE_ID0;
1276 	case CONTROLLER_ID_D1:
1277 		return DTO_SOURCE_ID1;
1278 	case CONTROLLER_ID_D2:
1279 		return DTO_SOURCE_ID2;
1280 	case CONTROLLER_ID_D3:
1281 		return DTO_SOURCE_ID3;
1282 	case CONTROLLER_ID_D4:
1283 		return DTO_SOURCE_ID4;
1284 	case CONTROLLER_ID_D5:
1285 		return DTO_SOURCE_ID5;
1286 	default:
1287 		return DTO_SOURCE_UNKNOWN;
1288 	}
1289 }
1290 
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1291 static void build_audio_output(
1292 	struct dc_state *state,
1293 	const struct pipe_ctx *pipe_ctx,
1294 	struct audio_output *audio_output)
1295 {
1296 	const struct dc_stream_state *stream = pipe_ctx->stream;
1297 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1298 
1299 	audio_output->signal = pipe_ctx->stream->signal;
1300 
1301 	/* audio_crtc_info  */
1302 
1303 	audio_output->crtc_info.h_total =
1304 		stream->timing.h_total;
1305 
1306 	/*
1307 	 * Audio packets are sent during actual CRTC blank physical signal, we
1308 	 * need to specify actual active signal portion
1309 	 */
1310 	audio_output->crtc_info.h_active =
1311 			stream->timing.h_addressable
1312 			+ stream->timing.h_border_left
1313 			+ stream->timing.h_border_right;
1314 
1315 	audio_output->crtc_info.v_active =
1316 			stream->timing.v_addressable
1317 			+ stream->timing.v_border_top
1318 			+ stream->timing.v_border_bottom;
1319 
1320 	audio_output->crtc_info.pixel_repetition = 1;
1321 
1322 	audio_output->crtc_info.interlaced =
1323 			stream->timing.flags.INTERLACE;
1324 
1325 	audio_output->crtc_info.refresh_rate =
1326 		(stream->timing.pix_clk_100hz*100)/
1327 		(stream->timing.h_total*stream->timing.v_total);
1328 
1329 	audio_output->crtc_info.color_depth =
1330 		stream->timing.display_color_depth;
1331 
1332 	audio_output->crtc_info.requested_pixel_clock_100Hz =
1333 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1334 
1335 	audio_output->crtc_info.calculated_pixel_clock_100Hz =
1336 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1337 
1338 /*for HDMI, audio ACR is with deep color ratio factor*/
1339 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1340 		audio_output->crtc_info.requested_pixel_clock_100Hz ==
1341 				(stream->timing.pix_clk_100hz)) {
1342 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1343 			audio_output->crtc_info.requested_pixel_clock_100Hz =
1344 					audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1345 			audio_output->crtc_info.calculated_pixel_clock_100Hz =
1346 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1347 
1348 		}
1349 	}
1350 
1351 	if (state->clk_mgr &&
1352 		(pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1353 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1354 		audio_output->pll_info.dp_dto_source_clock_in_khz =
1355 				state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1356 						state->clk_mgr);
1357 	}
1358 
1359 	audio_output->pll_info.feed_back_divider =
1360 			pipe_ctx->pll_settings.feedback_divider;
1361 
1362 	audio_output->pll_info.dto_source =
1363 		translate_to_dto_source(
1364 			pipe_ctx->stream_res.tg->inst + 1);
1365 
1366 	/* TODO hard code to enable for now. Need get from stream */
1367 	audio_output->pll_info.ss_enabled = true;
1368 
1369 	audio_output->pll_info.ss_percentage =
1370 			pipe_ctx->pll_settings.ss_percentage;
1371 }
1372 
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1373 static void program_scaler(const struct dc *dc,
1374 		const struct pipe_ctx *pipe_ctx)
1375 {
1376 	struct tg_color color = {0};
1377 
1378 	/* TOFPGA */
1379 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1380 		return;
1381 
1382 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1383 		get_surface_visual_confirm_color(pipe_ctx, &color);
1384 	else
1385 		color_space_to_black_color(dc,
1386 				pipe_ctx->stream->output_color_space,
1387 				&color);
1388 
1389 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1390 		pipe_ctx->plane_res.xfm,
1391 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1392 		&pipe_ctx->stream->bit_depth_params);
1393 
1394 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1395 		/*
1396 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1397 		 * alternate between Cb and Cr, so both channels need the pixel
1398 		 * value for Y
1399 		 */
1400 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1401 			color.color_r_cr = color.color_g_y;
1402 
1403 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1404 				pipe_ctx->stream_res.tg,
1405 				&color);
1406 	}
1407 
1408 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1409 		&pipe_ctx->plane_res.scl_data);
1410 }
1411 
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1412 static enum dc_status dce110_enable_stream_timing(
1413 		struct pipe_ctx *pipe_ctx,
1414 		struct dc_state *context,
1415 		struct dc *dc)
1416 {
1417 	struct dc_stream_state *stream = pipe_ctx->stream;
1418 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1419 			pipe_ctx[pipe_ctx->pipe_idx];
1420 	struct tg_color black_color = {0};
1421 
1422 	if (!pipe_ctx_old->stream) {
1423 
1424 		/* program blank color */
1425 		color_space_to_black_color(dc,
1426 				stream->output_color_space, &black_color);
1427 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1428 				pipe_ctx->stream_res.tg,
1429 				&black_color);
1430 
1431 		/*
1432 		 * Must blank CRTC after disabling power gating and before any
1433 		 * programming, otherwise CRTC will be hung in bad state
1434 		 */
1435 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1436 
1437 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1438 				pipe_ctx->clock_source,
1439 				&pipe_ctx->stream_res.pix_clk_params,
1440 				dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
1441 				&pipe_ctx->pll_settings)) {
1442 			BREAK_TO_DEBUGGER();
1443 			return DC_ERROR_UNEXPECTED;
1444 		}
1445 
1446 		if (dc_is_hdmi_tmds_signal(stream->signal)) {
1447 			stream->link->phy_state.symclk_ref_cnts.otg = 1;
1448 			if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
1449 				stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
1450 			else
1451 				stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
1452 		}
1453 
1454 		pipe_ctx->stream_res.tg->funcs->program_timing(
1455 				pipe_ctx->stream_res.tg,
1456 				&stream->timing,
1457 				0,
1458 				0,
1459 				0,
1460 				0,
1461 				pipe_ctx->stream->signal,
1462 				true);
1463 	}
1464 
1465 	if (!pipe_ctx_old->stream) {
1466 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1467 				pipe_ctx->stream_res.tg)) {
1468 			BREAK_TO_DEBUGGER();
1469 			return DC_ERROR_UNEXPECTED;
1470 		}
1471 	}
1472 
1473 	return DC_OK;
1474 }
1475 
apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1476 static enum dc_status apply_single_controller_ctx_to_hw(
1477 		struct pipe_ctx *pipe_ctx,
1478 		struct dc_state *context,
1479 		struct dc *dc)
1480 {
1481 	struct dc_stream_state *stream = pipe_ctx->stream;
1482 	struct dc_link *link = stream->link;
1483 	struct drr_params params = {0};
1484 	unsigned int event_triggers = 0;
1485 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1486 	struct dce_hwseq *hws = dc->hwseq;
1487 	const struct link_hwss *link_hwss = get_link_hwss(
1488 			link, &pipe_ctx->link_res);
1489 
1490 
1491 	if (hws->funcs.disable_stream_gating) {
1492 		hws->funcs.disable_stream_gating(dc, pipe_ctx);
1493 	}
1494 
1495 	if (pipe_ctx->stream_res.audio != NULL) {
1496 		struct audio_output audio_output;
1497 
1498 		build_audio_output(context, pipe_ctx, &audio_output);
1499 
1500 		link_hwss->setup_audio_output(pipe_ctx, &audio_output,
1501 				pipe_ctx->stream_res.audio->inst);
1502 
1503 		pipe_ctx->stream_res.audio->funcs->az_configure(
1504 				pipe_ctx->stream_res.audio,
1505 				pipe_ctx->stream->signal,
1506 				&audio_output.crtc_info,
1507 				&pipe_ctx->stream->audio_info);
1508 	}
1509 
1510 	/* make sure no pipes syncd to the pipe being enabled */
1511 	if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1512 		check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1513 
1514 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1515 		pipe_ctx->stream_res.opp,
1516 		&stream->bit_depth_params,
1517 		&stream->clamping);
1518 
1519 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1520 			pipe_ctx->stream_res.opp,
1521 			COLOR_SPACE_YCBCR601,
1522 			stream->timing.display_color_depth,
1523 			stream->signal);
1524 
1525 	while (odm_pipe) {
1526 		odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1527 				odm_pipe->stream_res.opp,
1528 				COLOR_SPACE_YCBCR601,
1529 				stream->timing.display_color_depth,
1530 				stream->signal);
1531 
1532 		odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1533 				odm_pipe->stream_res.opp,
1534 				&stream->bit_depth_params,
1535 				&stream->clamping);
1536 		odm_pipe = odm_pipe->next_odm_pipe;
1537 	}
1538 
1539 	/* DCN3.1 FPGA Workaround
1540 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1541 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1542 	 * function core_link_enable_stream
1543 	 */
1544 	if (!(hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)))
1545 		/*  */
1546 		/* Do not touch stream timing on seamless boot optimization. */
1547 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1548 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1549 
1550 	if (hws->funcs.setup_vupdate_interrupt)
1551 		hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1552 
1553 	params.vertical_total_min = stream->adjust.v_total_min;
1554 	params.vertical_total_max = stream->adjust.v_total_max;
1555 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
1556 		pipe_ctx->stream_res.tg->funcs->set_drr(
1557 			pipe_ctx->stream_res.tg, &params);
1558 
1559 	// DRR should set trigger event to monitor surface update event
1560 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1561 		event_triggers = 0x80;
1562 	/* Event triggers and num frames initialized for DRR, but can be
1563 	 * later updated for PSR use. Note DRR trigger events are generated
1564 	 * regardless of whether num frames met.
1565 	 */
1566 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1567 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1568 				pipe_ctx->stream_res.tg, event_triggers, 2);
1569 
1570 	if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1571 		pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1572 			pipe_ctx->stream_res.stream_enc,
1573 			pipe_ctx->stream_res.tg->inst);
1574 
1575 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1576 		dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1577 
1578 	if (!stream->dpms_off)
1579 		dc->link_srv->set_dpms_on(context, pipe_ctx);
1580 
1581 	/* DCN3.1 FPGA Workaround
1582 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1583 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1584 	 * function core_link_enable_stream
1585 	 */
1586 	if (hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1587 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1588 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1589 	}
1590 
1591 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1592 
1593 	/* Phantom and main stream share the same link (because the stream
1594 	 * is constructed with the same sink). Make sure not to override
1595 	 * and link programming on the main.
1596 	 */
1597 	if (pipe_ctx->stream->mall_stream_config.type != SUBVP_PHANTOM) {
1598 		pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1599 		pipe_ctx->stream->link->replay_settings.replay_feature_enabled = false;
1600 	}
1601 	return DC_OK;
1602 }
1603 
1604 /******************************************************************************/
1605 
power_down_encoders(struct dc * dc)1606 static void power_down_encoders(struct dc *dc)
1607 {
1608 	int i;
1609 
1610 	for (i = 0; i < dc->link_count; i++) {
1611 		enum signal_type signal = dc->links[i]->connector_signal;
1612 
1613 		dc->link_srv->blank_dp_stream(dc->links[i], false);
1614 
1615 		if (signal != SIGNAL_TYPE_EDP)
1616 			signal = SIGNAL_TYPE_NONE;
1617 
1618 		if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1619 			dc->links[i]->link_enc->funcs->disable_output(
1620 					dc->links[i]->link_enc, signal);
1621 
1622 		dc->links[i]->link_status.link_active = false;
1623 		memset(&dc->links[i]->cur_link_settings, 0,
1624 				sizeof(dc->links[i]->cur_link_settings));
1625 	}
1626 }
1627 
power_down_controllers(struct dc * dc)1628 static void power_down_controllers(struct dc *dc)
1629 {
1630 	int i;
1631 
1632 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1633 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1634 				dc->res_pool->timing_generators[i]);
1635 	}
1636 }
1637 
power_down_clock_sources(struct dc * dc)1638 static void power_down_clock_sources(struct dc *dc)
1639 {
1640 	int i;
1641 
1642 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1643 		dc->res_pool->dp_clock_source) == false)
1644 		dm_error("Failed to power down pll! (dp clk src)\n");
1645 
1646 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1647 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1648 				dc->res_pool->clock_sources[i]) == false)
1649 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1650 	}
1651 }
1652 
power_down_all_hw_blocks(struct dc * dc)1653 static void power_down_all_hw_blocks(struct dc *dc)
1654 {
1655 	power_down_encoders(dc);
1656 
1657 	power_down_controllers(dc);
1658 
1659 	power_down_clock_sources(dc);
1660 
1661 	if (dc->fbc_compressor)
1662 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1663 }
1664 
disable_vga_and_power_gate_all_controllers(struct dc * dc)1665 static void disable_vga_and_power_gate_all_controllers(
1666 		struct dc *dc)
1667 {
1668 	int i;
1669 	struct timing_generator *tg;
1670 	struct dc_context *ctx = dc->ctx;
1671 
1672 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1673 		tg = dc->res_pool->timing_generators[i];
1674 
1675 		if (tg->funcs->disable_vga)
1676 			tg->funcs->disable_vga(tg);
1677 	}
1678 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1679 		/* Enable CLOCK gating for each pipe BEFORE controller
1680 		 * powergating. */
1681 		enable_display_pipe_clock_gating(ctx,
1682 				true);
1683 
1684 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1685 		dc->hwss.disable_plane(dc,
1686 			&dc->current_state->res_ctx.pipe_ctx[i]);
1687 	}
1688 }
1689 
1690 
get_edp_streams(struct dc_state * context,struct dc_stream_state ** edp_streams,int * edp_stream_num)1691 static void get_edp_streams(struct dc_state *context,
1692 		struct dc_stream_state **edp_streams,
1693 		int *edp_stream_num)
1694 {
1695 	int i;
1696 
1697 	*edp_stream_num = 0;
1698 	for (i = 0; i < context->stream_count; i++) {
1699 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1700 			edp_streams[*edp_stream_num] = context->streams[i];
1701 			if (++(*edp_stream_num) == MAX_NUM_EDP)
1702 				return;
1703 		}
1704 	}
1705 }
1706 
get_edp_links_with_sink(struct dc * dc,struct dc_link ** edp_links_with_sink,int * edp_with_sink_num)1707 static void get_edp_links_with_sink(
1708 		struct dc *dc,
1709 		struct dc_link **edp_links_with_sink,
1710 		int *edp_with_sink_num)
1711 {
1712 	int i;
1713 
1714 	/* check if there is an eDP panel not in use */
1715 	*edp_with_sink_num = 0;
1716 	for (i = 0; i < dc->link_count; i++) {
1717 		if (dc->links[i]->local_sink &&
1718 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1719 			edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1720 			if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1721 				return;
1722 		}
1723 	}
1724 }
1725 
1726 /*
1727  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1728  *  1. Power down all DC HW blocks
1729  *  2. Disable VGA engine on all controllers
1730  *  3. Enable power gating for controller
1731  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1732  */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1733 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1734 {
1735 	struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1736 	struct dc_link *edp_links[MAX_NUM_EDP];
1737 	struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1738 	struct dc_link *edp_link_with_sink = NULL;
1739 	struct dc_link *edp_link = NULL;
1740 	struct dce_hwseq *hws = dc->hwseq;
1741 	int edp_with_sink_num;
1742 	int edp_num;
1743 	int edp_stream_num;
1744 	int i;
1745 	bool can_apply_edp_fast_boot = false;
1746 	bool can_apply_seamless_boot = false;
1747 	bool keep_edp_vdd_on = false;
1748 	DC_LOGGER_INIT();
1749 
1750 
1751 	get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1752 	dc_get_edp_links(dc, edp_links, &edp_num);
1753 
1754 	if (hws->funcs.init_pipes)
1755 		hws->funcs.init_pipes(dc, context);
1756 
1757 	get_edp_streams(context, edp_streams, &edp_stream_num);
1758 
1759 	// Check fastboot support, disable on DCE8 because of blank screens
1760 	if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1761 		    dc->ctx->dce_version != DCE_VERSION_8_1 &&
1762 		    dc->ctx->dce_version != DCE_VERSION_8_3) {
1763 		for (i = 0; i < edp_num; i++) {
1764 			edp_link = edp_links[i];
1765 			if (edp_link != edp_streams[0]->link)
1766 				continue;
1767 			// enable fastboot if backend is enabled on eDP
1768 			if (edp_link->link_enc->funcs->is_dig_enabled &&
1769 			    edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1770 			    edp_link->link_status.link_active) {
1771 				struct dc_stream_state *edp_stream = edp_streams[0];
1772 
1773 				can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1774 					edp_stream->sink, &edp_stream->timing);
1775 				edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1776 				if (can_apply_edp_fast_boot)
1777 					DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
1778 
1779 				break;
1780 			}
1781 		}
1782 		// We are trying to enable eDP, don't power down VDD
1783 		if (can_apply_edp_fast_boot)
1784 			keep_edp_vdd_on = true;
1785 	}
1786 
1787 	// Check seamless boot support
1788 	for (i = 0; i < context->stream_count; i++) {
1789 		if (context->streams[i]->apply_seamless_boot_optimization) {
1790 			can_apply_seamless_boot = true;
1791 			break;
1792 		}
1793 	}
1794 
1795 	/* eDP should not have stream in resume from S4 and so even with VBios post
1796 	 * it should get turned off
1797 	 */
1798 	if (edp_with_sink_num)
1799 		edp_link_with_sink = edp_links_with_sink[0];
1800 
1801 	if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1802 		if (edp_link_with_sink && !keep_edp_vdd_on) {
1803 			/*turn off backlight before DP_blank and encoder powered down*/
1804 			hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1805 		}
1806 		/*resume from S3, no vbios posting, no need to power down again*/
1807 		clk_mgr_exit_optimized_pwr_state(dc, dc->clk_mgr);
1808 
1809 		power_down_all_hw_blocks(dc);
1810 		disable_vga_and_power_gate_all_controllers(dc);
1811 		if (edp_link_with_sink && !keep_edp_vdd_on)
1812 			dc->hwss.edp_power_control(edp_link_with_sink, false);
1813 		clk_mgr_optimize_pwr_state(dc, dc->clk_mgr);
1814 	}
1815 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1816 }
1817 
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)1818 static uint32_t compute_pstate_blackout_duration(
1819 	struct bw_fixed blackout_duration,
1820 	const struct dc_stream_state *stream)
1821 {
1822 	uint32_t total_dest_line_time_ns;
1823 	uint32_t pstate_blackout_duration_ns;
1824 
1825 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1826 
1827 	total_dest_line_time_ns = 1000000UL *
1828 		(stream->timing.h_total * 10) /
1829 		stream->timing.pix_clk_100hz +
1830 		pstate_blackout_duration_ns;
1831 
1832 	return total_dest_line_time_ns;
1833 }
1834 
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)1835 static void dce110_set_displaymarks(
1836 	const struct dc *dc,
1837 	struct dc_state *context)
1838 {
1839 	uint8_t i, num_pipes;
1840 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1841 
1842 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1843 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1844 		uint32_t total_dest_line_time_ns;
1845 
1846 		if (pipe_ctx->stream == NULL)
1847 			continue;
1848 
1849 		total_dest_line_time_ns = compute_pstate_blackout_duration(
1850 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1851 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1852 			pipe_ctx->plane_res.mi,
1853 			context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1854 			context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1855 			context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1856 			context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1857 			total_dest_line_time_ns);
1858 		if (i == underlay_idx) {
1859 			num_pipes++;
1860 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1861 				pipe_ctx->plane_res.mi,
1862 				context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1863 				context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1864 				context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1865 				total_dest_line_time_ns);
1866 		}
1867 		num_pipes++;
1868 	}
1869 }
1870 
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)1871 void dce110_set_safe_displaymarks(
1872 		struct resource_context *res_ctx,
1873 		const struct resource_pool *pool)
1874 {
1875 	int i;
1876 	int underlay_idx = pool->underlay_pipe_index;
1877 	struct dce_watermarks max_marks = {
1878 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1879 	struct dce_watermarks nbp_marks = {
1880 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1881 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
1882 
1883 	for (i = 0; i < MAX_PIPES; i++) {
1884 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1885 			continue;
1886 
1887 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1888 				res_ctx->pipe_ctx[i].plane_res.mi,
1889 				nbp_marks,
1890 				max_marks,
1891 				min_marks,
1892 				max_marks,
1893 				MAX_WATERMARK);
1894 
1895 		if (i == underlay_idx)
1896 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1897 				res_ctx->pipe_ctx[i].plane_res.mi,
1898 				nbp_marks,
1899 				max_marks,
1900 				max_marks,
1901 				MAX_WATERMARK);
1902 
1903 	}
1904 }
1905 
1906 /*******************************************************************************
1907  * Public functions
1908  ******************************************************************************/
1909 
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)1910 static void set_drr(struct pipe_ctx **pipe_ctx,
1911 		int num_pipes, struct dc_crtc_timing_adjust adjust)
1912 {
1913 	int i = 0;
1914 	struct drr_params params = {0};
1915 	// DRR should set trigger event to monitor surface update event
1916 	unsigned int event_triggers = 0x80;
1917 	// Note DRR trigger events are generated regardless of whether num frames met.
1918 	unsigned int num_frames = 2;
1919 
1920 	params.vertical_total_max = adjust.v_total_max;
1921 	params.vertical_total_min = adjust.v_total_min;
1922 
1923 	/* TODO: If multiple pipes are to be supported, you need
1924 	 * some GSL stuff. Static screen triggers may be programmed differently
1925 	 * as well.
1926 	 */
1927 	for (i = 0; i < num_pipes; i++) {
1928 		pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1929 			pipe_ctx[i]->stream_res.tg, &params);
1930 
1931 		if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1932 			pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1933 					pipe_ctx[i]->stream_res.tg,
1934 					event_triggers, num_frames);
1935 	}
1936 }
1937 
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)1938 static void get_position(struct pipe_ctx **pipe_ctx,
1939 		int num_pipes,
1940 		struct crtc_position *position)
1941 {
1942 	int i = 0;
1943 
1944 	/* TODO: handle pipes > 1
1945 	 */
1946 	for (i = 0; i < num_pipes; i++)
1947 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1948 }
1949 
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)1950 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1951 		int num_pipes, const struct dc_static_screen_params *params)
1952 {
1953 	unsigned int i;
1954 	unsigned int triggers = 0;
1955 
1956 	if (params->triggers.overlay_update)
1957 		triggers |= 0x100;
1958 	if (params->triggers.surface_update)
1959 		triggers |= 0x80;
1960 	if (params->triggers.cursor_update)
1961 		triggers |= 0x2;
1962 	if (params->triggers.force_trigger)
1963 		triggers |= 0x1;
1964 
1965 	if (num_pipes) {
1966 		struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1967 
1968 		if (dc->fbc_compressor)
1969 			triggers |= 0x84;
1970 	}
1971 
1972 	for (i = 0; i < num_pipes; i++)
1973 		pipe_ctx[i]->stream_res.tg->funcs->
1974 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1975 					triggers, params->num_frames);
1976 }
1977 
1978 /*
1979  *  Check if FBC can be enabled
1980  */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)1981 static bool should_enable_fbc(struct dc *dc,
1982 		struct dc_state *context,
1983 		uint32_t *pipe_idx)
1984 {
1985 	uint32_t i;
1986 	struct pipe_ctx *pipe_ctx = NULL;
1987 	struct resource_context *res_ctx = &context->res_ctx;
1988 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1989 
1990 
1991 	ASSERT(dc->fbc_compressor);
1992 
1993 	/* FBC memory should be allocated */
1994 	if (!dc->ctx->fbc_gpu_addr)
1995 		return false;
1996 
1997 	/* Only supports single display */
1998 	if (context->stream_count != 1)
1999 		return false;
2000 
2001 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2002 		if (res_ctx->pipe_ctx[i].stream) {
2003 
2004 			pipe_ctx = &res_ctx->pipe_ctx[i];
2005 
2006 			if (!pipe_ctx)
2007 				continue;
2008 
2009 			/* fbc not applicable on underlay pipe */
2010 			if (pipe_ctx->pipe_idx != underlay_idx) {
2011 				*pipe_idx = i;
2012 				break;
2013 			}
2014 		}
2015 	}
2016 
2017 	if (i == dc->res_pool->pipe_count)
2018 		return false;
2019 
2020 	if (!pipe_ctx->stream->link)
2021 		return false;
2022 
2023 	/* Only supports eDP */
2024 	if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2025 		return false;
2026 
2027 	/* PSR should not be enabled */
2028 	if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2029 		return false;
2030 
2031 	/* Replay should not be enabled */
2032 	if (pipe_ctx->stream->link->replay_settings.replay_feature_enabled)
2033 		return false;
2034 
2035 	/* Nothing to compress */
2036 	if (!pipe_ctx->plane_state)
2037 		return false;
2038 
2039 	/* Only for non-linear tiling */
2040 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2041 		return false;
2042 
2043 	return true;
2044 }
2045 
2046 /*
2047  *  Enable FBC
2048  */
enable_fbc(struct dc * dc,struct dc_state * context)2049 static void enable_fbc(
2050 		struct dc *dc,
2051 		struct dc_state *context)
2052 {
2053 	uint32_t pipe_idx = 0;
2054 
2055 	if (should_enable_fbc(dc, context, &pipe_idx)) {
2056 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
2057 		struct compr_addr_and_pitch_params params = {0, 0, 0};
2058 		struct compressor *compr = dc->fbc_compressor;
2059 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2060 
2061 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2062 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2063 		params.inst = pipe_ctx->stream_res.tg->inst;
2064 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2065 
2066 		compr->funcs->surface_address_and_pitch(compr, &params);
2067 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2068 
2069 		compr->funcs->enable_fbc(compr, &params);
2070 	}
2071 }
2072 
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)2073 static void dce110_reset_hw_ctx_wrap(
2074 		struct dc *dc,
2075 		struct dc_state *context)
2076 {
2077 	int i;
2078 
2079 	/* Reset old context */
2080 	/* look up the targets that have been removed since last commit */
2081 	for (i = 0; i < MAX_PIPES; i++) {
2082 		struct pipe_ctx *pipe_ctx_old =
2083 			&dc->current_state->res_ctx.pipe_ctx[i];
2084 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2085 
2086 		/* Note: We need to disable output if clock sources change,
2087 		 * since bios does optimization and doesn't apply if changing
2088 		 * PHY when not already disabled.
2089 		 */
2090 
2091 		/* Skip underlay pipe since it will be handled in commit surface*/
2092 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2093 			continue;
2094 
2095 		if (!pipe_ctx->stream ||
2096 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2097 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2098 
2099 			/* Disable if new stream is null. O/w, if stream is
2100 			 * disabled already, no need to disable again.
2101 			 */
2102 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2103 				dc->link_srv->set_dpms_off(pipe_ctx_old);
2104 
2105 				/* free acquired resources*/
2106 				if (pipe_ctx_old->stream_res.audio) {
2107 					/*disable az_endpoint*/
2108 					pipe_ctx_old->stream_res.audio->funcs->
2109 							az_disable(pipe_ctx_old->stream_res.audio);
2110 
2111 					/*free audio*/
2112 					if (dc->caps.dynamic_audio == true) {
2113 						/*we have to dynamic arbitrate the audio endpoints*/
2114 						/*we free the resource, need reset is_audio_acquired*/
2115 						update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2116 								pipe_ctx_old->stream_res.audio, false);
2117 						pipe_ctx_old->stream_res.audio = NULL;
2118 					}
2119 				}
2120 			}
2121 
2122 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2123 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2124 				dm_error("DC: failed to blank crtc!\n");
2125 				BREAK_TO_DEBUGGER();
2126 			}
2127 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2128 			if (dc_is_hdmi_tmds_signal(pipe_ctx_old->stream->signal))
2129 				pipe_ctx_old->stream->link->phy_state.symclk_ref_cnts.otg = 0;
2130 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2131 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2132 
2133 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2134 										dc->res_pool,
2135 										old_clk))
2136 				old_clk->funcs->cs_power_down(old_clk);
2137 
2138 			dc->hwss.disable_plane(dc, pipe_ctx_old);
2139 
2140 			pipe_ctx_old->stream = NULL;
2141 		}
2142 	}
2143 }
2144 
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)2145 static void dce110_setup_audio_dto(
2146 		struct dc *dc,
2147 		struct dc_state *context)
2148 {
2149 	int i;
2150 
2151 	/* program audio wall clock. use HDMI as clock source if HDMI
2152 	 * audio active. Otherwise, use DP as clock source
2153 	 * first, loop to find any HDMI audio, if not, loop find DP audio
2154 	 */
2155 	/* Setup audio rate clock source */
2156 	/* Issue:
2157 	* Audio lag happened on DP monitor when unplug a HDMI monitor
2158 	*
2159 	* Cause:
2160 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2161 	* is set to either dto0 or dto1, audio should work fine.
2162 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2163 	* set to dto0 will cause audio lag.
2164 	*
2165 	* Solution:
2166 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2167 	* find first available pipe with audio, setup audio wall DTO per topology
2168 	* instead of per pipe.
2169 	*/
2170 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2171 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2172 
2173 		if (pipe_ctx->stream == NULL)
2174 			continue;
2175 
2176 		if (pipe_ctx->top_pipe)
2177 			continue;
2178 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2179 			continue;
2180 		if (pipe_ctx->stream_res.audio != NULL) {
2181 			struct audio_output audio_output;
2182 
2183 			build_audio_output(context, pipe_ctx, &audio_output);
2184 
2185 			if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2186 				struct dtbclk_dto_params dto_params = {0};
2187 
2188 				dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2189 					dc->res_pool->dccg, &dto_params);
2190 
2191 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2192 						pipe_ctx->stream_res.audio,
2193 						pipe_ctx->stream->signal,
2194 						&audio_output.crtc_info,
2195 						&audio_output.pll_info);
2196 			} else
2197 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2198 					pipe_ctx->stream_res.audio,
2199 					pipe_ctx->stream->signal,
2200 					&audio_output.crtc_info,
2201 					&audio_output.pll_info);
2202 			break;
2203 		}
2204 	}
2205 
2206 	/* no HDMI audio is found, try DP audio */
2207 	if (i == dc->res_pool->pipe_count) {
2208 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2209 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2210 
2211 			if (pipe_ctx->stream == NULL)
2212 				continue;
2213 
2214 			if (pipe_ctx->top_pipe)
2215 				continue;
2216 
2217 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2218 				continue;
2219 
2220 			if (pipe_ctx->stream_res.audio != NULL) {
2221 				struct audio_output audio_output;
2222 
2223 				build_audio_output(context, pipe_ctx, &audio_output);
2224 
2225 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2226 					pipe_ctx->stream_res.audio,
2227 					pipe_ctx->stream->signal,
2228 					&audio_output.crtc_info,
2229 					&audio_output.pll_info);
2230 				break;
2231 			}
2232 		}
2233 	}
2234 }
2235 
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2236 enum dc_status dce110_apply_ctx_to_hw(
2237 		struct dc *dc,
2238 		struct dc_state *context)
2239 {
2240 	struct dce_hwseq *hws = dc->hwseq;
2241 	struct dc_bios *dcb = dc->ctx->dc_bios;
2242 	enum dc_status status;
2243 	int i;
2244 
2245 	/* reset syncd pipes from disabled pipes */
2246 	if (dc->config.use_pipe_ctx_sync_logic)
2247 		reset_syncd_pipes_from_disabled_pipes(dc, context);
2248 
2249 	/* Reset old context */
2250 	/* look up the targets that have been removed since last commit */
2251 	hws->funcs.reset_hw_ctx_wrap(dc, context);
2252 
2253 	/* Skip applying if no targets */
2254 	if (context->stream_count <= 0)
2255 		return DC_OK;
2256 
2257 	/* Apply new context */
2258 	dcb->funcs->set_scratch_critical_state(dcb, true);
2259 
2260 	/* below is for real asic only */
2261 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2262 		struct pipe_ctx *pipe_ctx_old =
2263 					&dc->current_state->res_ctx.pipe_ctx[i];
2264 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2265 
2266 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2267 			continue;
2268 
2269 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2270 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2271 				dce_crtc_switch_to_clk_src(dc->hwseq,
2272 						pipe_ctx->clock_source, i);
2273 			continue;
2274 		}
2275 
2276 		hws->funcs.enable_display_power_gating(
2277 				dc, i, dc->ctx->dc_bios,
2278 				PIPE_GATING_CONTROL_DISABLE);
2279 	}
2280 
2281 	if (dc->fbc_compressor)
2282 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2283 
2284 	dce110_setup_audio_dto(dc, context);
2285 
2286 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2287 		struct pipe_ctx *pipe_ctx_old =
2288 					&dc->current_state->res_ctx.pipe_ctx[i];
2289 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2290 
2291 		if (pipe_ctx->stream == NULL)
2292 			continue;
2293 
2294 		if (pipe_ctx->stream == pipe_ctx_old->stream &&
2295 			pipe_ctx->stream->link->link_state_valid) {
2296 			continue;
2297 		}
2298 
2299 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2300 			continue;
2301 
2302 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2303 			continue;
2304 
2305 		status = apply_single_controller_ctx_to_hw(
2306 				pipe_ctx,
2307 				context,
2308 				dc);
2309 
2310 		if (DC_OK != status)
2311 			return status;
2312 
2313 #ifdef CONFIG_DRM_AMD_DC_FP
2314 		if (hws->funcs.resync_fifo_dccg_dio)
2315 			hws->funcs.resync_fifo_dccg_dio(hws, dc, context);
2316 #endif
2317 	}
2318 
2319 	if (dc->fbc_compressor)
2320 		enable_fbc(dc, dc->current_state);
2321 
2322 	dcb->funcs->set_scratch_critical_state(dcb, false);
2323 
2324 	return DC_OK;
2325 }
2326 
2327 /*******************************************************************************
2328  * Front End programming
2329  ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2330 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2331 {
2332 	struct default_adjustment default_adjust = { 0 };
2333 
2334 	default_adjust.force_hw_default = false;
2335 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2336 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2337 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2338 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2339 
2340 	/* display color depth */
2341 	default_adjust.color_depth =
2342 		pipe_ctx->stream->timing.display_color_depth;
2343 
2344 	/* Lb color depth */
2345 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2346 
2347 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2348 					pipe_ctx->plane_res.xfm, &default_adjust);
2349 }
2350 
2351 
2352 /*******************************************************************************
2353  * In order to turn on/off specific surface we will program
2354  * Blender + CRTC
2355  *
2356  * In case that we have two surfaces and they have a different visibility
2357  * we can't turn off the CRTC since it will turn off the entire display
2358  *
2359  * |----------------------------------------------- |
2360  * |bottom pipe|curr pipe  |              |         |
2361  * |Surface    |Surface    | Blender      |  CRCT   |
2362  * |visibility |visibility | Configuration|         |
2363  * |------------------------------------------------|
2364  * |   off     |    off    | CURRENT_PIPE | blank   |
2365  * |   off     |    on     | CURRENT_PIPE | unblank |
2366  * |   on      |    off    | OTHER_PIPE   | unblank |
2367  * |   on      |    on     | BLENDING     | unblank |
2368  * -------------------------------------------------|
2369  *
2370  ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2371 static void program_surface_visibility(const struct dc *dc,
2372 		struct pipe_ctx *pipe_ctx)
2373 {
2374 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2375 	bool blank_target = false;
2376 
2377 	if (pipe_ctx->bottom_pipe) {
2378 
2379 		/* For now we are supporting only two pipes */
2380 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2381 
2382 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2383 			if (pipe_ctx->plane_state->visible)
2384 				blender_mode = BLND_MODE_BLENDING;
2385 			else
2386 				blender_mode = BLND_MODE_OTHER_PIPE;
2387 
2388 		} else if (!pipe_ctx->plane_state->visible)
2389 			blank_target = true;
2390 
2391 	} else if (!pipe_ctx->plane_state->visible)
2392 		blank_target = true;
2393 
2394 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2395 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2396 
2397 }
2398 
program_gamut_remap(struct pipe_ctx * pipe_ctx)2399 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2400 {
2401 	int i = 0;
2402 	struct xfm_grph_csc_adjustment adjust;
2403 	memset(&adjust, 0, sizeof(adjust));
2404 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2405 
2406 
2407 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2408 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2409 
2410 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2411 			adjust.temperature_matrix[i] =
2412 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2413 	}
2414 
2415 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2416 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2417 static void update_plane_addr(const struct dc *dc,
2418 		struct pipe_ctx *pipe_ctx)
2419 {
2420 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2421 
2422 	if (plane_state == NULL)
2423 		return;
2424 
2425 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2426 			pipe_ctx->plane_res.mi,
2427 			&plane_state->address,
2428 			plane_state->flip_immediate);
2429 
2430 	plane_state->status.requested_address = plane_state->address;
2431 }
2432 
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2433 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2434 {
2435 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2436 
2437 	if (plane_state == NULL)
2438 		return;
2439 
2440 	plane_state->status.is_flip_pending =
2441 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2442 					pipe_ctx->plane_res.mi);
2443 
2444 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2445 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2446 
2447 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2448 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2449 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2450 		plane_state->status.is_right_eye =\
2451 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2452 	}
2453 }
2454 
dce110_power_down(struct dc * dc)2455 void dce110_power_down(struct dc *dc)
2456 {
2457 	power_down_all_hw_blocks(dc);
2458 	disable_vga_and_power_gate_all_controllers(dc);
2459 }
2460 
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2461 static bool wait_for_reset_trigger_to_occur(
2462 	struct dc_context *dc_ctx,
2463 	struct timing_generator *tg)
2464 {
2465 	bool rc = false;
2466 
2467 	/* To avoid endless loop we wait at most
2468 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2469 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2470 	uint32_t i;
2471 
2472 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2473 
2474 		if (!tg->funcs->is_counter_moving(tg)) {
2475 			DC_ERROR("TG counter is not moving!\n");
2476 			break;
2477 		}
2478 
2479 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2480 			rc = true;
2481 			/* usually occurs at i=1 */
2482 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2483 					i);
2484 			break;
2485 		}
2486 
2487 		/* Wait for one frame. */
2488 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2489 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2490 	}
2491 
2492 	if (false == rc)
2493 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2494 
2495 	return rc;
2496 }
2497 
2498 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2499 static void dce110_enable_timing_synchronization(
2500 		struct dc *dc,
2501 		int group_index,
2502 		int group_size,
2503 		struct pipe_ctx *grouped_pipes[])
2504 {
2505 	struct dc_context *dc_ctx = dc->ctx;
2506 	struct dcp_gsl_params gsl_params = { 0 };
2507 	int i;
2508 
2509 	DC_SYNC_INFO("GSL: Setting-up...\n");
2510 
2511 	/* Designate a single TG in the group as a master.
2512 	 * Since HW doesn't care which one, we always assign
2513 	 * the 1st one in the group. */
2514 	gsl_params.gsl_group = 0;
2515 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2516 
2517 	for (i = 0; i < group_size; i++)
2518 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2519 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2520 
2521 	/* Reset slave controllers on master VSync */
2522 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2523 
2524 	for (i = 1 /* skip the master */; i < group_size; i++)
2525 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2526 				grouped_pipes[i]->stream_res.tg,
2527 				gsl_params.gsl_group);
2528 
2529 	for (i = 1 /* skip the master */; i < group_size; i++) {
2530 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2531 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2532 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2533 				grouped_pipes[i]->stream_res.tg);
2534 	}
2535 
2536 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2537 	 * is that the sync'ed displays will not drift out of sync over time*/
2538 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2539 	for (i = 0; i < group_size; i++)
2540 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2541 
2542 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2543 }
2544 
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2545 static void dce110_enable_per_frame_crtc_position_reset(
2546 		struct dc *dc,
2547 		int group_size,
2548 		struct pipe_ctx *grouped_pipes[])
2549 {
2550 	struct dc_context *dc_ctx = dc->ctx;
2551 	struct dcp_gsl_params gsl_params = { 0 };
2552 	int i;
2553 
2554 	gsl_params.gsl_group = 0;
2555 	gsl_params.gsl_master = 0;
2556 
2557 	for (i = 0; i < group_size; i++)
2558 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2559 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2560 
2561 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2562 
2563 	for (i = 1; i < group_size; i++)
2564 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2565 				grouped_pipes[i]->stream_res.tg,
2566 				gsl_params.gsl_master,
2567 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2568 
2569 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2570 	for (i = 1; i < group_size; i++)
2571 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2572 
2573 	for (i = 0; i < group_size; i++)
2574 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2575 
2576 }
2577 
init_pipes(struct dc * dc,struct dc_state * context)2578 static void init_pipes(struct dc *dc, struct dc_state *context)
2579 {
2580 	// Do nothing
2581 }
2582 
init_hw(struct dc * dc)2583 static void init_hw(struct dc *dc)
2584 {
2585 	int i;
2586 	struct dc_bios *bp;
2587 	struct transform *xfm;
2588 	struct abm *abm;
2589 	struct dmcu *dmcu;
2590 	struct dce_hwseq *hws = dc->hwseq;
2591 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2592 
2593 	bp = dc->ctx->dc_bios;
2594 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2595 		xfm = dc->res_pool->transforms[i];
2596 		xfm->funcs->transform_reset(xfm);
2597 
2598 		hws->funcs.enable_display_power_gating(
2599 				dc, i, bp,
2600 				PIPE_GATING_CONTROL_INIT);
2601 		hws->funcs.enable_display_power_gating(
2602 				dc, i, bp,
2603 				PIPE_GATING_CONTROL_DISABLE);
2604 		hws->funcs.enable_display_pipe_clock_gating(
2605 			dc->ctx,
2606 			true);
2607 	}
2608 
2609 	dce_clock_gating_power_up(dc->hwseq, false);
2610 	/***************************************/
2611 
2612 	for (i = 0; i < dc->link_count; i++) {
2613 		/****************************************/
2614 		/* Power up AND update implementation according to the
2615 		 * required signal (which may be different from the
2616 		 * default signal on connector). */
2617 		struct dc_link *link = dc->links[i];
2618 
2619 		link->link_enc->funcs->hw_init(link->link_enc);
2620 	}
2621 
2622 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2623 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2624 
2625 		tg->funcs->disable_vga(tg);
2626 
2627 		/* Blank controller using driver code instead of
2628 		 * command table. */
2629 		tg->funcs->set_blank(tg, true);
2630 		hwss_wait_for_blank_complete(tg);
2631 	}
2632 
2633 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2634 		struct audio *audio = dc->res_pool->audios[i];
2635 		audio->funcs->hw_init(audio);
2636 	}
2637 
2638 	for (i = 0; i < dc->link_count; i++) {
2639 		struct dc_link *link = dc->links[i];
2640 
2641 		if (link->panel_cntl)
2642 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2643 	}
2644 
2645 	abm = dc->res_pool->abm;
2646 	if (abm != NULL)
2647 		abm->funcs->abm_init(abm, backlight);
2648 
2649 	dmcu = dc->res_pool->dmcu;
2650 	if (dmcu != NULL && abm != NULL)
2651 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2652 
2653 	if (dc->fbc_compressor)
2654 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2655 
2656 }
2657 
2658 
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2659 void dce110_prepare_bandwidth(
2660 		struct dc *dc,
2661 		struct dc_state *context)
2662 {
2663 	struct clk_mgr *dccg = dc->clk_mgr;
2664 
2665 	dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2666 	if (dccg)
2667 		dccg->funcs->update_clocks(
2668 				dccg,
2669 				context,
2670 				false);
2671 }
2672 
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2673 void dce110_optimize_bandwidth(
2674 		struct dc *dc,
2675 		struct dc_state *context)
2676 {
2677 	struct clk_mgr *dccg = dc->clk_mgr;
2678 
2679 	dce110_set_displaymarks(dc, context);
2680 
2681 	if (dccg)
2682 		dccg->funcs->update_clocks(
2683 				dccg,
2684 				context,
2685 				true);
2686 }
2687 
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2688 static void dce110_program_front_end_for_pipe(
2689 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2690 {
2691 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2692 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2693 	struct xfm_grph_csc_adjustment adjust;
2694 	struct out_csc_color_matrix tbl_entry;
2695 	unsigned int i;
2696 	struct dce_hwseq *hws = dc->hwseq;
2697 
2698 	DC_LOGGER_INIT();
2699 	memset(&tbl_entry, 0, sizeof(tbl_entry));
2700 
2701 	memset(&adjust, 0, sizeof(adjust));
2702 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2703 
2704 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2705 
2706 	set_default_colors(pipe_ctx);
2707 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2708 			== true) {
2709 		tbl_entry.color_space =
2710 			pipe_ctx->stream->output_color_space;
2711 
2712 		for (i = 0; i < 12; i++)
2713 			tbl_entry.regval[i] =
2714 			pipe_ctx->stream->csc_color_matrix.matrix[i];
2715 
2716 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2717 				(pipe_ctx->plane_res.xfm, &tbl_entry);
2718 	}
2719 
2720 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2721 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2722 
2723 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2724 			adjust.temperature_matrix[i] =
2725 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2726 	}
2727 
2728 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2729 
2730 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
2731 
2732 	program_scaler(dc, pipe_ctx);
2733 
2734 	mi->funcs->mem_input_program_surface_config(
2735 			mi,
2736 			plane_state->format,
2737 			&plane_state->tiling_info,
2738 			&plane_state->plane_size,
2739 			plane_state->rotation,
2740 			NULL,
2741 			false);
2742 	if (mi->funcs->set_blank)
2743 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2744 
2745 	if (dc->config.gpu_vm_support)
2746 		mi->funcs->mem_input_program_pte_vm(
2747 				pipe_ctx->plane_res.mi,
2748 				plane_state->format,
2749 				&plane_state->tiling_info,
2750 				plane_state->rotation);
2751 
2752 	/* Moved programming gamma from dc to hwss */
2753 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2754 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2755 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2756 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2757 
2758 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2759 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2760 
2761 	DC_LOG_SURFACE(
2762 			"Pipe:%d %p: addr hi:0x%x, "
2763 			"addr low:0x%x, "
2764 			"src: %d, %d, %d,"
2765 			" %d; dst: %d, %d, %d, %d;"
2766 			"clip: %d, %d, %d, %d\n",
2767 			pipe_ctx->pipe_idx,
2768 			(void *) pipe_ctx->plane_state,
2769 			pipe_ctx->plane_state->address.grph.addr.high_part,
2770 			pipe_ctx->plane_state->address.grph.addr.low_part,
2771 			pipe_ctx->plane_state->src_rect.x,
2772 			pipe_ctx->plane_state->src_rect.y,
2773 			pipe_ctx->plane_state->src_rect.width,
2774 			pipe_ctx->plane_state->src_rect.height,
2775 			pipe_ctx->plane_state->dst_rect.x,
2776 			pipe_ctx->plane_state->dst_rect.y,
2777 			pipe_ctx->plane_state->dst_rect.width,
2778 			pipe_ctx->plane_state->dst_rect.height,
2779 			pipe_ctx->plane_state->clip_rect.x,
2780 			pipe_ctx->plane_state->clip_rect.y,
2781 			pipe_ctx->plane_state->clip_rect.width,
2782 			pipe_ctx->plane_state->clip_rect.height);
2783 
2784 	DC_LOG_SURFACE(
2785 			"Pipe %d: width, height, x, y\n"
2786 			"viewport:%d, %d, %d, %d\n"
2787 			"recout:  %d, %d, %d, %d\n",
2788 			pipe_ctx->pipe_idx,
2789 			pipe_ctx->plane_res.scl_data.viewport.width,
2790 			pipe_ctx->plane_res.scl_data.viewport.height,
2791 			pipe_ctx->plane_res.scl_data.viewport.x,
2792 			pipe_ctx->plane_res.scl_data.viewport.y,
2793 			pipe_ctx->plane_res.scl_data.recout.width,
2794 			pipe_ctx->plane_res.scl_data.recout.height,
2795 			pipe_ctx->plane_res.scl_data.recout.x,
2796 			pipe_ctx->plane_res.scl_data.recout.y);
2797 }
2798 
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)2799 static void dce110_apply_ctx_for_surface(
2800 		struct dc *dc,
2801 		const struct dc_stream_state *stream,
2802 		int num_planes,
2803 		struct dc_state *context)
2804 {
2805 	int i;
2806 
2807 	if (num_planes == 0)
2808 		return;
2809 
2810 	if (dc->fbc_compressor)
2811 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2812 
2813 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2814 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2815 
2816 		if (pipe_ctx->stream != stream)
2817 			continue;
2818 
2819 		/* Need to allocate mem before program front end for Fiji */
2820 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2821 				pipe_ctx->plane_res.mi,
2822 				pipe_ctx->stream->timing.h_total,
2823 				pipe_ctx->stream->timing.v_total,
2824 				pipe_ctx->stream->timing.pix_clk_100hz / 10,
2825 				context->stream_count);
2826 
2827 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
2828 
2829 		dc->hwss.update_plane_addr(dc, pipe_ctx);
2830 
2831 		program_surface_visibility(dc, pipe_ctx);
2832 
2833 	}
2834 
2835 	if (dc->fbc_compressor)
2836 		enable_fbc(dc, context);
2837 }
2838 
dce110_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)2839 static void dce110_post_unlock_program_front_end(
2840 		struct dc *dc,
2841 		struct dc_state *context)
2842 {
2843 }
2844 
dce110_power_down_fe(struct dc * dc,struct pipe_ctx * pipe_ctx)2845 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2846 {
2847 	struct dce_hwseq *hws = dc->hwseq;
2848 	int fe_idx = pipe_ctx->plane_res.mi ?
2849 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2850 
2851 	/* Do not power down fe when stream is active on dce*/
2852 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2853 		return;
2854 
2855 	hws->funcs.enable_display_power_gating(
2856 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2857 
2858 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2859 				dc->res_pool->transforms[fe_idx]);
2860 }
2861 
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)2862 static void dce110_wait_for_mpcc_disconnect(
2863 		struct dc *dc,
2864 		struct resource_pool *res_pool,
2865 		struct pipe_ctx *pipe_ctx)
2866 {
2867 	/* do nothing*/
2868 }
2869 
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)2870 static void program_output_csc(struct dc *dc,
2871 		struct pipe_ctx *pipe_ctx,
2872 		enum dc_color_space colorspace,
2873 		uint16_t *matrix,
2874 		int opp_id)
2875 {
2876 	int i;
2877 	struct out_csc_color_matrix tbl_entry;
2878 
2879 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2880 		enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2881 
2882 		for (i = 0; i < 12; i++)
2883 			tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2884 
2885 		tbl_entry.color_space = color_space;
2886 
2887 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2888 				pipe_ctx->plane_res.xfm, &tbl_entry);
2889 	}
2890 }
2891 
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)2892 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2893 {
2894 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2895 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2896 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2897 	struct dc_cursor_mi_param param = {
2898 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2899 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2900 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
2901 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2902 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2903 		.rotation = pipe_ctx->plane_state->rotation,
2904 		.mirror = pipe_ctx->plane_state->horizontal_mirror
2905 	};
2906 
2907 	/**
2908 	 * If the cursor's source viewport is clipped then we need to
2909 	 * translate the cursor to appear in the correct position on
2910 	 * the screen.
2911 	 *
2912 	 * This translation isn't affected by scaling so it needs to be
2913 	 * done *after* we adjust the position for the scale factor.
2914 	 *
2915 	 * This is only done by opt-in for now since there are still
2916 	 * some usecases like tiled display that might enable the
2917 	 * cursor on both streams while expecting dc to clip it.
2918 	 */
2919 	if (pos_cpy.translate_by_source) {
2920 		pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2921 		pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2922 	}
2923 
2924 	if (pipe_ctx->plane_state->address.type
2925 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2926 		pos_cpy.enable = false;
2927 
2928 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2929 		pos_cpy.enable = false;
2930 
2931 	if (ipp->funcs->ipp_cursor_set_position)
2932 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2933 	if (mi->funcs->set_cursor_position)
2934 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2935 }
2936 
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)2937 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2938 {
2939 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2940 
2941 	if (pipe_ctx->plane_res.ipp &&
2942 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2943 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2944 				pipe_ctx->plane_res.ipp, attributes);
2945 
2946 	if (pipe_ctx->plane_res.mi &&
2947 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2948 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2949 				pipe_ctx->plane_res.mi, attributes);
2950 
2951 	if (pipe_ctx->plane_res.xfm &&
2952 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2953 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2954 				pipe_ctx->plane_res.xfm, attributes);
2955 }
2956 
dce110_set_backlight_level(struct pipe_ctx * pipe_ctx,uint32_t backlight_pwm_u16_16,uint32_t frame_ramp)2957 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2958 		uint32_t backlight_pwm_u16_16,
2959 		uint32_t frame_ramp)
2960 {
2961 	struct dc_link *link = pipe_ctx->stream->link;
2962 	struct dc  *dc = link->ctx->dc;
2963 	struct abm *abm = pipe_ctx->stream_res.abm;
2964 	struct panel_cntl *panel_cntl = link->panel_cntl;
2965 	struct dmcu *dmcu = dc->res_pool->dmcu;
2966 	bool fw_set_brightness = true;
2967 	/* DMCU -1 for all controller id values,
2968 	 * therefore +1 here
2969 	 */
2970 	uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2971 
2972 	if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2973 		return false;
2974 
2975 	if (dmcu)
2976 		fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2977 
2978 	if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2979 		panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2980 	else
2981 		abm->funcs->set_backlight_level_pwm(
2982 				abm,
2983 				backlight_pwm_u16_16,
2984 				frame_ramp,
2985 				controller_id,
2986 				link->panel_cntl->inst);
2987 
2988 	return true;
2989 }
2990 
dce110_set_abm_immediate_disable(struct pipe_ctx * pipe_ctx)2991 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2992 {
2993 	struct abm *abm = pipe_ctx->stream_res.abm;
2994 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2995 
2996 	if (abm)
2997 		abm->funcs->set_abm_immediate_disable(abm,
2998 				pipe_ctx->stream->link->panel_cntl->inst);
2999 
3000 	if (panel_cntl)
3001 		panel_cntl->funcs->store_backlight_level(panel_cntl);
3002 }
3003 
dce110_set_pipe(struct pipe_ctx * pipe_ctx)3004 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
3005 {
3006 	struct abm *abm = pipe_ctx->stream_res.abm;
3007 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3008 	uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
3009 
3010 	if (abm && panel_cntl)
3011 		abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
3012 }
3013 
dce110_enable_lvds_link_output(struct dc_link * link,const struct link_resource * link_res,enum clock_source_id clock_source,uint32_t pixel_clock)3014 void dce110_enable_lvds_link_output(struct dc_link *link,
3015 		const struct link_resource *link_res,
3016 		enum clock_source_id clock_source,
3017 		uint32_t pixel_clock)
3018 {
3019 	link->link_enc->funcs->enable_lvds_output(
3020 			link->link_enc,
3021 			clock_source,
3022 			pixel_clock);
3023 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3024 }
3025 
dce110_enable_tmds_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,enum dc_color_depth color_depth,uint32_t pixel_clock)3026 void dce110_enable_tmds_link_output(struct dc_link *link,
3027 		const struct link_resource *link_res,
3028 		enum signal_type signal,
3029 		enum clock_source_id clock_source,
3030 		enum dc_color_depth color_depth,
3031 		uint32_t pixel_clock)
3032 {
3033 	link->link_enc->funcs->enable_tmds_output(
3034 			link->link_enc,
3035 			clock_source,
3036 			color_depth,
3037 			signal,
3038 			pixel_clock);
3039 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3040 }
3041 
dce110_enable_dp_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,const struct dc_link_settings * link_settings)3042 void dce110_enable_dp_link_output(
3043 		struct dc_link *link,
3044 		const struct link_resource *link_res,
3045 		enum signal_type signal,
3046 		enum clock_source_id clock_source,
3047 		const struct dc_link_settings *link_settings)
3048 {
3049 	struct dc  *dc = link->ctx->dc;
3050 	struct dmcu *dmcu = dc->res_pool->dmcu;
3051 	struct pipe_ctx *pipes =
3052 			link->dc->current_state->res_ctx.pipe_ctx;
3053 	struct clock_source *dp_cs =
3054 			link->dc->res_pool->dp_clock_source;
3055 	const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3056 	unsigned int i;
3057 
3058 	/*
3059 	 * Add the logic to extract BOTH power up and power down sequences
3060 	 * from enable/disable link output and only call edp panel control
3061 	 * in enable_link_dp and disable_link_dp once.
3062 	 */
3063 	if (link->connector_signal == SIGNAL_TYPE_EDP) {
3064 		link->dc->hwss.edp_wait_for_hpd_ready(link, true);
3065 	}
3066 
3067 	/* If the current pixel clock source is not DTO(happens after
3068 	 * switching from HDMI passive dongle to DP on the same connector),
3069 	 * switch the pixel clock source to DTO.
3070 	 */
3071 
3072 	for (i = 0; i < MAX_PIPES; i++) {
3073 		if (pipes[i].stream != NULL &&
3074 				pipes[i].stream->link == link) {
3075 			if (pipes[i].clock_source != NULL &&
3076 					pipes[i].clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
3077 				pipes[i].clock_source = dp_cs;
3078 				pipes[i].stream_res.pix_clk_params.requested_pix_clk_100hz =
3079 						pipes[i].stream->timing.pix_clk_100hz;
3080 				pipes[i].clock_source->funcs->program_pix_clk(
3081 						pipes[i].clock_source,
3082 						&pipes[i].stream_res.pix_clk_params,
3083 						dc->link_srv->dp_get_encoding_format(link_settings),
3084 						&pipes[i].pll_settings);
3085 			}
3086 		}
3087 	}
3088 
3089 	if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING) {
3090 		if (dc->clk_mgr->funcs->notify_link_rate_change)
3091 			dc->clk_mgr->funcs->notify_link_rate_change(dc->clk_mgr, link);
3092 	}
3093 
3094 	if (dmcu != NULL && dmcu->funcs->lock_phy)
3095 		dmcu->funcs->lock_phy(dmcu);
3096 
3097 	if (link_hwss->ext.enable_dp_link_output)
3098 		link_hwss->ext.enable_dp_link_output(link, link_res, signal,
3099 				clock_source, link_settings);
3100 
3101 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3102 
3103 	if (dmcu != NULL && dmcu->funcs->unlock_phy)
3104 		dmcu->funcs->unlock_phy(dmcu);
3105 
3106 	dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_ENABLE_LINK_PHY);
3107 }
3108 
dce110_disable_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal)3109 void dce110_disable_link_output(struct dc_link *link,
3110 		const struct link_resource *link_res,
3111 		enum signal_type signal)
3112 {
3113 	struct dc *dc = link->ctx->dc;
3114 	const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3115 	struct dmcu *dmcu = dc->res_pool->dmcu;
3116 
3117 	if (signal == SIGNAL_TYPE_EDP &&
3118 			link->dc->hwss.edp_backlight_control)
3119 		link->dc->hwss.edp_backlight_control(link, false);
3120 	else if (dmcu != NULL && dmcu->funcs->lock_phy)
3121 		dmcu->funcs->lock_phy(dmcu);
3122 
3123 	link_hwss->disable_link_output(link, link_res, signal);
3124 	link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
3125 	/*
3126 	 * Add the logic to extract BOTH power up and power down sequences
3127 	 * from enable/disable link output and only call edp panel control
3128 	 * in enable_link_dp and disable_link_dp once.
3129 	 */
3130 	if (dmcu != NULL && dmcu->funcs->lock_phy)
3131 		dmcu->funcs->unlock_phy(dmcu);
3132 	dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
3133 }
3134 
3135 static const struct hw_sequencer_funcs dce110_funcs = {
3136 	.program_gamut_remap = program_gamut_remap,
3137 	.program_output_csc = program_output_csc,
3138 	.init_hw = init_hw,
3139 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3140 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3141 	.post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3142 	.update_plane_addr = update_plane_addr,
3143 	.update_pending_status = dce110_update_pending_status,
3144 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
3145 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
3146 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3147 	.update_info_frame = dce110_update_info_frame,
3148 	.enable_stream = dce110_enable_stream,
3149 	.disable_stream = dce110_disable_stream,
3150 	.unblank_stream = dce110_unblank_stream,
3151 	.blank_stream = dce110_blank_stream,
3152 	.enable_audio_stream = dce110_enable_audio_stream,
3153 	.disable_audio_stream = dce110_disable_audio_stream,
3154 	.disable_plane = dce110_power_down_fe,
3155 	.pipe_control_lock = dce_pipe_control_lock,
3156 	.interdependent_update_lock = NULL,
3157 	.cursor_lock = dce_pipe_control_lock,
3158 	.prepare_bandwidth = dce110_prepare_bandwidth,
3159 	.optimize_bandwidth = dce110_optimize_bandwidth,
3160 	.set_drr = set_drr,
3161 	.get_position = get_position,
3162 	.set_static_screen_control = set_static_screen_control,
3163 	.setup_stereo = NULL,
3164 	.set_avmute = dce110_set_avmute,
3165 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3166 	.edp_backlight_control = dce110_edp_backlight_control,
3167 	.edp_power_control = dce110_edp_power_control,
3168 	.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3169 	.set_cursor_position = dce110_set_cursor_position,
3170 	.set_cursor_attribute = dce110_set_cursor_attribute,
3171 	.set_backlight_level = dce110_set_backlight_level,
3172 	.set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3173 	.set_pipe = dce110_set_pipe,
3174 	.enable_lvds_link_output = dce110_enable_lvds_link_output,
3175 	.enable_tmds_link_output = dce110_enable_tmds_link_output,
3176 	.enable_dp_link_output = dce110_enable_dp_link_output,
3177 	.disable_link_output = dce110_disable_link_output,
3178 };
3179 
3180 static const struct hwseq_private_funcs dce110_private_funcs = {
3181 	.init_pipes = init_pipes,
3182 	.update_plane_addr = update_plane_addr,
3183 	.set_input_transfer_func = dce110_set_input_transfer_func,
3184 	.set_output_transfer_func = dce110_set_output_transfer_func,
3185 	.power_down = dce110_power_down,
3186 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3187 	.enable_display_power_gating = dce110_enable_display_power_gating,
3188 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3189 	.enable_stream_timing = dce110_enable_stream_timing,
3190 	.disable_stream_gating = NULL,
3191 	.enable_stream_gating = NULL,
3192 	.edp_backlight_control = dce110_edp_backlight_control,
3193 };
3194 
dce110_hw_sequencer_construct(struct dc * dc)3195 void dce110_hw_sequencer_construct(struct dc *dc)
3196 {
3197 	dc->hwss = dce110_funcs;
3198 	dc->hwseq->funcs = dce110_private_funcs;
3199 }
3200 
3201