xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/core/dc.c (revision 7b7fd0ac7dc1ffcaf24d9bca0f051b0168e43cd4)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24 
25 #include "dm_services.h"
26 
27 #include "dc.h"
28 
29 #include "core_status.h"
30 #include "core_types.h"
31 #include "hw_sequencer.h"
32 #include "dce/dce_hwseq.h"
33 
34 #include "resource.h"
35 
36 #include "gpio_service_interface.h"
37 #include "clk_mgr.h"
38 #include "clock_source.h"
39 #include "dc_bios_types.h"
40 
41 #include "bios_parser_interface.h"
42 #include "bios/bios_parser_helper.h"
43 #include "include/irq_service_interface.h"
44 #include "transform.h"
45 #include "dmcu.h"
46 #include "dpp.h"
47 #include "timing_generator.h"
48 #include "abm.h"
49 #include "virtual/virtual_link_encoder.h"
50 #include "hubp.h"
51 
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54 #include "link_enc_cfg.h"
55 
56 #include "link.h"
57 #include "dm_helpers.h"
58 #include "mem_input.h"
59 
60 #include "dc_dmub_srv.h"
61 
62 #include "dsc.h"
63 
64 #include "vm_helper.h"
65 
66 #include "dce/dce_i2c.h"
67 
68 #include "dmub/dmub_srv.h"
69 
70 #include "dce/dmub_psr.h"
71 
72 #include "dce/dmub_hw_lock_mgr.h"
73 
74 #include "dc_trace.h"
75 
76 #include "hw_sequencer_private.h"
77 
78 #include "dce/dmub_outbox.h"
79 
80 #define CTX \
81 	dc->ctx
82 
83 #define DC_LOGGER \
84 	dc->ctx->logger
85 
86 static const char DC_BUILD_ID[] = "production-build";
87 
88 /**
89  * DOC: Overview
90  *
91  * DC is the OS-agnostic component of the amdgpu DC driver.
92  *
93  * DC maintains and validates a set of structs representing the state of the
94  * driver and writes that state to AMD hardware
95  *
96  * Main DC HW structs:
97  *
98  * struct dc - The central struct.  One per driver.  Created on driver load,
99  * destroyed on driver unload.
100  *
101  * struct dc_context - One per driver.
102  * Used as a backpointer by most other structs in dc.
103  *
104  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
105  * plugpoints).  Created on driver load, destroyed on driver unload.
106  *
107  * struct dc_sink - One per display.  Created on boot or hotplug.
108  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
109  * (the display directly attached).  It may also have one or more remote
110  * sinks (in the Multi-Stream Transport case)
111  *
112  * struct resource_pool - One per driver.  Represents the hw blocks not in the
113  * main pipeline.  Not directly accessible by dm.
114  *
115  * Main dc state structs:
116  *
117  * These structs can be created and destroyed as needed.  There is a full set of
118  * these structs in dc->current_state representing the currently programmed state.
119  *
120  * struct dc_state - The global DC state to track global state information,
121  * such as bandwidth values.
122  *
123  * struct dc_stream_state - Represents the hw configuration for the pipeline from
124  * a framebuffer to a display.  Maps one-to-one with dc_sink.
125  *
126  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
127  * and may have more in the Multi-Plane Overlay case.
128  *
129  * struct resource_context - Represents the programmable state of everything in
130  * the resource_pool.  Not directly accessible by dm.
131  *
132  * struct pipe_ctx - A member of struct resource_context.  Represents the
133  * internal hardware pipeline components.  Each dc_plane_state has either
134  * one or two (in the pipe-split case).
135  */
136 
137 /* Private functions */
138 
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)139 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
140 {
141 	if (new > *original)
142 		*original = new;
143 }
144 
destroy_links(struct dc * dc)145 static void destroy_links(struct dc *dc)
146 {
147 	uint32_t i;
148 
149 	for (i = 0; i < dc->link_count; i++) {
150 		if (NULL != dc->links[i])
151 			dc->link_srv->destroy_link(&dc->links[i]);
152 	}
153 }
154 
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)155 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
156 {
157 	int i;
158 	uint32_t count = 0;
159 
160 	for (i = 0; i < num_links; i++) {
161 		if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
162 				links[i]->is_internal_display)
163 			count++;
164 	}
165 
166 	return count;
167 }
168 
get_seamless_boot_stream_count(struct dc_state * ctx)169 static int get_seamless_boot_stream_count(struct dc_state *ctx)
170 {
171 	uint8_t i;
172 	uint8_t seamless_boot_stream_count = 0;
173 
174 	for (i = 0; i < ctx->stream_count; i++)
175 		if (ctx->streams[i]->apply_seamless_boot_optimization)
176 			seamless_boot_stream_count++;
177 
178 	return seamless_boot_stream_count;
179 }
180 
create_links(struct dc * dc,uint32_t num_virtual_links)181 static bool create_links(
182 		struct dc *dc,
183 		uint32_t num_virtual_links)
184 {
185 	int i;
186 	int connectors_num;
187 	struct dc_bios *bios = dc->ctx->dc_bios;
188 
189 	dc->link_count = 0;
190 
191 	connectors_num = bios->funcs->get_connectors_number(bios);
192 
193 	DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
194 
195 	if (connectors_num > ENUM_ID_COUNT) {
196 		dm_error(
197 			"DC: Number of connectors %d exceeds maximum of %d!\n",
198 			connectors_num,
199 			ENUM_ID_COUNT);
200 		return false;
201 	}
202 
203 	dm_output_to_console(
204 		"DC: %s: connectors_num: physical:%d, virtual:%d\n",
205 		__func__,
206 		connectors_num,
207 		num_virtual_links);
208 
209 	for (i = 0; i < connectors_num; i++) {
210 		struct link_init_data link_init_params = {0};
211 		struct dc_link *link;
212 
213 		DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
214 
215 		link_init_params.ctx = dc->ctx;
216 		/* next BIOS object table connector */
217 		link_init_params.connector_index = i;
218 		link_init_params.link_index = dc->link_count;
219 		link_init_params.dc = dc;
220 		link = dc->link_srv->create_link(&link_init_params);
221 
222 		if (link) {
223 			dc->links[dc->link_count] = link;
224 			link->dc = dc;
225 			++dc->link_count;
226 		}
227 	}
228 
229 	DC_LOG_DC("BIOS object table - end");
230 
231 	/* Create a link for each usb4 dpia port */
232 	for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
233 		struct link_init_data link_init_params = {0};
234 		struct dc_link *link;
235 
236 		link_init_params.ctx = dc->ctx;
237 		link_init_params.connector_index = i;
238 		link_init_params.link_index = dc->link_count;
239 		link_init_params.dc = dc;
240 		link_init_params.is_dpia_link = true;
241 
242 		link = dc->link_srv->create_link(&link_init_params);
243 		if (link) {
244 			dc->links[dc->link_count] = link;
245 			link->dc = dc;
246 			++dc->link_count;
247 		}
248 	}
249 
250 	for (i = 0; i < num_virtual_links; i++) {
251 		struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
252 		struct encoder_init_data enc_init = {0};
253 
254 		if (link == NULL) {
255 			BREAK_TO_DEBUGGER();
256 			goto failed_alloc;
257 		}
258 
259 		link->link_index = dc->link_count;
260 		dc->links[dc->link_count] = link;
261 		dc->link_count++;
262 
263 		link->ctx = dc->ctx;
264 		link->dc = dc;
265 		link->connector_signal = SIGNAL_TYPE_VIRTUAL;
266 		link->link_id.type = OBJECT_TYPE_CONNECTOR;
267 		link->link_id.id = CONNECTOR_ID_VIRTUAL;
268 		link->link_id.enum_id = ENUM_ID_1;
269 		link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
270 
271 		if (!link->link_enc) {
272 			BREAK_TO_DEBUGGER();
273 			goto failed_alloc;
274 		}
275 
276 		link->link_status.dpcd_caps = &link->dpcd_caps;
277 
278 		enc_init.ctx = dc->ctx;
279 		enc_init.channel = CHANNEL_ID_UNKNOWN;
280 		enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
281 		enc_init.transmitter = TRANSMITTER_UNKNOWN;
282 		enc_init.connector = link->link_id;
283 		enc_init.encoder.type = OBJECT_TYPE_ENCODER;
284 		enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
285 		enc_init.encoder.enum_id = ENUM_ID_1;
286 		virtual_link_encoder_construct(link->link_enc, &enc_init);
287 	}
288 
289 	dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
290 
291 	return true;
292 
293 failed_alloc:
294 	return false;
295 }
296 
297 /* Create additional DIG link encoder objects if fewer than the platform
298  * supports were created during link construction. This can happen if the
299  * number of physical connectors is less than the number of DIGs.
300  */
create_link_encoders(struct dc * dc)301 static bool create_link_encoders(struct dc *dc)
302 {
303 	bool res = true;
304 	unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
305 	unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
306 	int i;
307 
308 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
309 	 * link encoders and physical display endpoints and does not require
310 	 * additional link encoder objects.
311 	 */
312 	if (num_usb4_dpia == 0)
313 		return res;
314 
315 	/* Create as many link encoder objects as the platform supports. DPIA
316 	 * endpoints can be programmably mapped to any DIG.
317 	 */
318 	if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
319 		for (i = 0; i < num_dig_link_enc; i++) {
320 			struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
321 
322 			if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
323 				link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
324 						(enum engine_id)(ENGINE_ID_DIGA + i));
325 				if (link_enc) {
326 					dc->res_pool->link_encoders[i] = link_enc;
327 					dc->res_pool->dig_link_enc_count++;
328 				} else {
329 					res = false;
330 				}
331 			}
332 		}
333 	}
334 
335 	return res;
336 }
337 
338 /* Destroy any additional DIG link encoder objects created by
339  * create_link_encoders().
340  * NB: Must only be called after destroy_links().
341  */
destroy_link_encoders(struct dc * dc)342 static void destroy_link_encoders(struct dc *dc)
343 {
344 	unsigned int num_usb4_dpia;
345 	unsigned int num_dig_link_enc;
346 	int i;
347 
348 	if (!dc->res_pool)
349 		return;
350 
351 	num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
352 	num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
353 
354 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
355 	 * link encoders and physical display endpoints and does not require
356 	 * additional link encoder objects.
357 	 */
358 	if (num_usb4_dpia == 0)
359 		return;
360 
361 	for (i = 0; i < num_dig_link_enc; i++) {
362 		struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
363 
364 		if (link_enc) {
365 			link_enc->funcs->destroy(&link_enc);
366 			dc->res_pool->link_encoders[i] = NULL;
367 			dc->res_pool->dig_link_enc_count--;
368 		}
369 	}
370 }
371 
dc_perf_trace_create(void)372 static struct dc_perf_trace *dc_perf_trace_create(void)
373 {
374 	return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
375 }
376 
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)377 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
378 {
379 	kfree(*perf_trace);
380 	*perf_trace = NULL;
381 }
382 
383 /**
384  *  dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
385  *  @dc:     dc reference
386  *  @stream: Initial dc stream state
387  *  @adjust: Updated parameters for vertical_total_min and vertical_total_max
388  *
389  *  Looks up the pipe context of dc_stream_state and updates the
390  *  vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
391  *  Rate, which is a power-saving feature that targets reducing panel
392  *  refresh rate while the screen is static
393  *
394  *  Return: %true if the pipe context is found and adjusted;
395  *          %false if the pipe context is not found.
396  */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)397 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
398 		struct dc_stream_state *stream,
399 		struct dc_crtc_timing_adjust *adjust)
400 {
401 	int i;
402 
403 	/*
404 	 * Don't adjust DRR while there's bandwidth optimizations pending to
405 	 * avoid conflicting with firmware updates.
406 	 */
407 	if (dc->ctx->dce_version > DCE_VERSION_MAX)
408 		if (dc->optimized_required || dc->wm_optimized_required)
409 			return false;
410 
411 	stream->adjust.v_total_max = adjust->v_total_max;
412 	stream->adjust.v_total_mid = adjust->v_total_mid;
413 	stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
414 	stream->adjust.v_total_min = adjust->v_total_min;
415 
416 	for (i = 0; i < MAX_PIPES; i++) {
417 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
418 
419 		if (pipe->stream == stream && pipe->stream_res.tg) {
420 			dc->hwss.set_drr(&pipe,
421 					1,
422 					*adjust);
423 
424 			return true;
425 		}
426 	}
427 	return false;
428 }
429 
430 /**
431  * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
432  * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
433  *
434  * @dc: [in] dc reference
435  * @stream: [in] Initial dc stream state
436  * @refresh_rate: [in] new refresh_rate
437  *
438  * Return: %true if the pipe context is found and there is an associated
439  *         timing_generator for the DC;
440  *         %false if the pipe context is not found or there is no
441  *         timing_generator for the DC.
442  */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)443 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
444 		struct dc_stream_state *stream,
445 		uint32_t *refresh_rate)
446 {
447 	bool status = false;
448 
449 	int i = 0;
450 
451 	for (i = 0; i < MAX_PIPES; i++) {
452 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
453 
454 		if (pipe->stream == stream && pipe->stream_res.tg) {
455 			/* Only execute if a function pointer has been defined for
456 			 * the DC version in question
457 			 */
458 			if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
459 				pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
460 
461 				status = true;
462 
463 				break;
464 			}
465 		}
466 	}
467 
468 	return status;
469 }
470 
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)471 bool dc_stream_get_crtc_position(struct dc *dc,
472 		struct dc_stream_state **streams, int num_streams,
473 		unsigned int *v_pos, unsigned int *nom_v_pos)
474 {
475 	/* TODO: Support multiple streams */
476 	const struct dc_stream_state *stream = streams[0];
477 	int i;
478 	bool ret = false;
479 	struct crtc_position position;
480 
481 	for (i = 0; i < MAX_PIPES; i++) {
482 		struct pipe_ctx *pipe =
483 				&dc->current_state->res_ctx.pipe_ctx[i];
484 
485 		if (pipe->stream == stream && pipe->stream_res.stream_enc) {
486 			dc->hwss.get_position(&pipe, 1, &position);
487 
488 			*v_pos = position.vertical_count;
489 			*nom_v_pos = position.nominal_vcount;
490 			ret = true;
491 		}
492 	}
493 	return ret;
494 }
495 
496 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
497 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)498 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
499 		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
500 {
501 	union dmub_rb_cmd cmd = {0};
502 
503 	cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
504 	cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
505 
506 	if (is_stop) {
507 		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
508 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
509 	} else {
510 		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
511 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
512 		cmd.secure_display.roi_info.x_start = rect->x;
513 		cmd.secure_display.roi_info.y_start = rect->y;
514 		cmd.secure_display.roi_info.x_end = rect->x + rect->width;
515 		cmd.secure_display.roi_info.y_end = rect->y + rect->height;
516 	}
517 
518 	dm_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
519 }
520 
521 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)522 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
523 		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
524 {
525 	if (is_stop)
526 		dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
527 	else
528 		dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
529 }
530 
531 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,bool is_stop)532 dc_stream_forward_crc_window(struct dc_stream_state *stream,
533 		struct rect *rect, bool is_stop)
534 {
535 	struct dmcu *dmcu;
536 	struct dc_dmub_srv *dmub_srv;
537 	struct otg_phy_mux mux_mapping;
538 	struct pipe_ctx *pipe;
539 	int i;
540 	struct dc *dc = stream->ctx->dc;
541 
542 	for (i = 0; i < MAX_PIPES; i++) {
543 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
544 		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
545 			break;
546 	}
547 
548 	/* Stream not found */
549 	if (i == MAX_PIPES)
550 		return false;
551 
552 	mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
553 	mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
554 
555 	dmcu = dc->res_pool->dmcu;
556 	dmub_srv = dc->ctx->dmub_srv;
557 
558 	/* forward to dmub */
559 	if (dmub_srv)
560 		dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
561 	/* forward to dmcu */
562 	else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
563 		dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
564 	else
565 		return false;
566 
567 	return true;
568 }
569 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
570 
571 /**
572  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
573  * @dc: DC Object
574  * @stream: The stream to configure CRC on.
575  * @enable: Enable CRC if true, disable otherwise.
576  * @crc_window: CRC window (x/y start/end) information
577  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
578  *              once.
579  *
580  * By default, only CRC0 is configured, and the entire frame is used to
581  * calculate the CRC.
582  *
583  * Return: %false if the stream is not found or CRC capture is not supported;
584  *         %true if the stream has been configured.
585  */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous)586 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
587 			     struct crc_params *crc_window, bool enable, bool continuous)
588 {
589 	struct pipe_ctx *pipe;
590 	struct crc_params param;
591 	struct timing_generator *tg;
592 
593 	pipe = resource_get_otg_master_for_stream(
594 			&dc->current_state->res_ctx, stream);
595 
596 	/* Stream not found */
597 	if (pipe == NULL)
598 		return false;
599 
600 	/* By default, capture the full frame */
601 	param.windowa_x_start = 0;
602 	param.windowa_y_start = 0;
603 	param.windowa_x_end = pipe->stream->timing.h_addressable;
604 	param.windowa_y_end = pipe->stream->timing.v_addressable;
605 	param.windowb_x_start = 0;
606 	param.windowb_y_start = 0;
607 	param.windowb_x_end = pipe->stream->timing.h_addressable;
608 	param.windowb_y_end = pipe->stream->timing.v_addressable;
609 
610 	if (crc_window) {
611 		param.windowa_x_start = crc_window->windowa_x_start;
612 		param.windowa_y_start = crc_window->windowa_y_start;
613 		param.windowa_x_end = crc_window->windowa_x_end;
614 		param.windowa_y_end = crc_window->windowa_y_end;
615 		param.windowb_x_start = crc_window->windowb_x_start;
616 		param.windowb_y_start = crc_window->windowb_y_start;
617 		param.windowb_x_end = crc_window->windowb_x_end;
618 		param.windowb_y_end = crc_window->windowb_y_end;
619 	}
620 
621 	param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
622 	param.odm_mode = pipe->next_odm_pipe ? 1:0;
623 
624 	/* Default to the union of both windows */
625 	param.selection = UNION_WINDOW_A_B;
626 	param.continuous_mode = continuous;
627 	param.enable = enable;
628 
629 	tg = pipe->stream_res.tg;
630 
631 	/* Only call if supported */
632 	if (tg->funcs->configure_crc)
633 		return tg->funcs->configure_crc(tg, &param);
634 	DC_LOG_WARNING("CRC capture not supported.");
635 	return false;
636 }
637 
638 /**
639  * dc_stream_get_crc() - Get CRC values for the given stream.
640  *
641  * @dc: DC object.
642  * @stream: The DC stream state of the stream to get CRCs from.
643  * @r_cr: CRC value for the red component.
644  * @g_y:  CRC value for the green component.
645  * @b_cb: CRC value for the blue component.
646  *
647  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
648  *
649  * Return:
650  * %false if stream is not found, or if CRCs are not enabled.
651  */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)652 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
653 		       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
654 {
655 	int i;
656 	struct pipe_ctx *pipe;
657 	struct timing_generator *tg;
658 
659 	for (i = 0; i < MAX_PIPES; i++) {
660 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
661 		if (pipe->stream == stream)
662 			break;
663 	}
664 	/* Stream not found */
665 	if (i == MAX_PIPES)
666 		return false;
667 
668 	tg = pipe->stream_res.tg;
669 
670 	if (tg->funcs->get_crc)
671 		return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
672 	DC_LOG_WARNING("CRC capture not supported.");
673 	return false;
674 }
675 
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)676 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
677 		enum dc_dynamic_expansion option)
678 {
679 	/* OPP FMT dyn expansion updates*/
680 	int i;
681 	struct pipe_ctx *pipe_ctx;
682 
683 	for (i = 0; i < MAX_PIPES; i++) {
684 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
685 				== stream) {
686 			pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
687 			pipe_ctx->stream_res.opp->dyn_expansion = option;
688 			pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
689 					pipe_ctx->stream_res.opp,
690 					COLOR_SPACE_YCBCR601,
691 					stream->timing.display_color_depth,
692 					stream->signal);
693 		}
694 	}
695 }
696 
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)697 void dc_stream_set_dither_option(struct dc_stream_state *stream,
698 		enum dc_dither_option option)
699 {
700 	struct bit_depth_reduction_params params;
701 	struct dc_link *link = stream->link;
702 	struct pipe_ctx *pipes = NULL;
703 	int i;
704 
705 	for (i = 0; i < MAX_PIPES; i++) {
706 		if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
707 				stream) {
708 			pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
709 			break;
710 		}
711 	}
712 
713 	if (!pipes)
714 		return;
715 	if (option > DITHER_OPTION_MAX)
716 		return;
717 
718 	stream->dither_option = option;
719 
720 	memset(&params, 0, sizeof(params));
721 	resource_build_bit_depth_reduction_params(stream, &params);
722 	stream->bit_depth_params = params;
723 
724 	if (pipes->plane_res.xfm &&
725 	    pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
726 		pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
727 			pipes->plane_res.xfm,
728 			pipes->plane_res.scl_data.lb_params.depth,
729 			&stream->bit_depth_params);
730 	}
731 
732 	pipes->stream_res.opp->funcs->
733 		opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
734 }
735 
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)736 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
737 {
738 	int i;
739 	bool ret = false;
740 	struct pipe_ctx *pipes;
741 
742 	for (i = 0; i < MAX_PIPES; i++) {
743 		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
744 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
745 			dc->hwss.program_gamut_remap(pipes);
746 			ret = true;
747 		}
748 	}
749 
750 	return ret;
751 }
752 
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)753 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
754 {
755 	int i;
756 	bool ret = false;
757 	struct pipe_ctx *pipes;
758 
759 	for (i = 0; i < MAX_PIPES; i++) {
760 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
761 				== stream) {
762 
763 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
764 			dc->hwss.program_output_csc(dc,
765 					pipes,
766 					stream->output_color_space,
767 					stream->csc_color_matrix.matrix,
768 					pipes->stream_res.opp->inst);
769 			ret = true;
770 		}
771 	}
772 
773 	return ret;
774 }
775 
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)776 void dc_stream_set_static_screen_params(struct dc *dc,
777 		struct dc_stream_state **streams,
778 		int num_streams,
779 		const struct dc_static_screen_params *params)
780 {
781 	int i, j;
782 	struct pipe_ctx *pipes_affected[MAX_PIPES];
783 	int num_pipes_affected = 0;
784 
785 	for (i = 0; i < num_streams; i++) {
786 		struct dc_stream_state *stream = streams[i];
787 
788 		for (j = 0; j < MAX_PIPES; j++) {
789 			if (dc->current_state->res_ctx.pipe_ctx[j].stream
790 					== stream) {
791 				pipes_affected[num_pipes_affected++] =
792 						&dc->current_state->res_ctx.pipe_ctx[j];
793 			}
794 		}
795 	}
796 
797 	dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
798 }
799 
dc_destruct(struct dc * dc)800 static void dc_destruct(struct dc *dc)
801 {
802 	// reset link encoder assignment table on destruct
803 	if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
804 		link_enc_cfg_init(dc, dc->current_state);
805 
806 	if (dc->current_state) {
807 		dc_release_state(dc->current_state);
808 		dc->current_state = NULL;
809 	}
810 
811 	destroy_links(dc);
812 
813 	destroy_link_encoders(dc);
814 
815 	if (dc->clk_mgr) {
816 		dc_destroy_clk_mgr(dc->clk_mgr);
817 		dc->clk_mgr = NULL;
818 	}
819 
820 	dc_destroy_resource_pool(dc);
821 
822 	if (dc->link_srv)
823 		link_destroy_link_service(&dc->link_srv);
824 
825 	if (dc->ctx->gpio_service)
826 		dal_gpio_service_destroy(&dc->ctx->gpio_service);
827 
828 	if (dc->ctx->created_bios)
829 		dal_bios_parser_destroy(&dc->ctx->dc_bios);
830 
831 	dc_perf_trace_destroy(&dc->ctx->perf_trace);
832 
833 	kfree(dc->ctx);
834 	dc->ctx = NULL;
835 
836 	kfree(dc->bw_vbios);
837 	dc->bw_vbios = NULL;
838 
839 	kfree(dc->bw_dceip);
840 	dc->bw_dceip = NULL;
841 
842 	kfree(dc->dcn_soc);
843 	dc->dcn_soc = NULL;
844 
845 	kfree(dc->dcn_ip);
846 	dc->dcn_ip = NULL;
847 
848 	kfree(dc->vm_helper);
849 	dc->vm_helper = NULL;
850 
851 }
852 
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)853 static bool dc_construct_ctx(struct dc *dc,
854 		const struct dc_init_data *init_params)
855 {
856 	struct dc_context *dc_ctx;
857 
858 	dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
859 	if (!dc_ctx)
860 		return false;
861 
862 	dc_ctx->cgs_device = init_params->cgs_device;
863 	dc_ctx->driver_context = init_params->driver;
864 	dc_ctx->dc = dc;
865 	dc_ctx->asic_id = init_params->asic_id;
866 	dc_ctx->dc_sink_id_count = 0;
867 	dc_ctx->dc_stream_id_count = 0;
868 	dc_ctx->dce_environment = init_params->dce_environment;
869 	dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
870 	dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
871 
872 	/* Create logger */
873 
874 	dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
875 
876 	dc_ctx->perf_trace = dc_perf_trace_create();
877 	if (!dc_ctx->perf_trace) {
878 		kfree(dc_ctx);
879 		ASSERT_CRITICAL(false);
880 		return false;
881 	}
882 
883 	dc->ctx = dc_ctx;
884 
885 	dc->link_srv = link_create_link_service();
886 	if (!dc->link_srv)
887 		return false;
888 
889 	return true;
890 }
891 
dc_construct(struct dc * dc,const struct dc_init_data * init_params)892 static bool dc_construct(struct dc *dc,
893 		const struct dc_init_data *init_params)
894 {
895 	struct dc_context *dc_ctx;
896 	struct bw_calcs_dceip *dc_dceip;
897 	struct bw_calcs_vbios *dc_vbios;
898 	struct dcn_soc_bounding_box *dcn_soc;
899 	struct dcn_ip_params *dcn_ip;
900 
901 	dc->config = init_params->flags;
902 
903 	// Allocate memory for the vm_helper
904 	dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
905 	if (!dc->vm_helper) {
906 		dm_error("%s: failed to create dc->vm_helper\n", __func__);
907 		goto fail;
908 	}
909 
910 	memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
911 
912 	dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
913 	if (!dc_dceip) {
914 		dm_error("%s: failed to create dceip\n", __func__);
915 		goto fail;
916 	}
917 
918 	dc->bw_dceip = dc_dceip;
919 
920 	dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
921 	if (!dc_vbios) {
922 		dm_error("%s: failed to create vbios\n", __func__);
923 		goto fail;
924 	}
925 
926 	dc->bw_vbios = dc_vbios;
927 	dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
928 	if (!dcn_soc) {
929 		dm_error("%s: failed to create dcn_soc\n", __func__);
930 		goto fail;
931 	}
932 
933 	dc->dcn_soc = dcn_soc;
934 
935 	dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
936 	if (!dcn_ip) {
937 		dm_error("%s: failed to create dcn_ip\n", __func__);
938 		goto fail;
939 	}
940 
941 	dc->dcn_ip = dcn_ip;
942 
943 	if (!dc_construct_ctx(dc, init_params)) {
944 		dm_error("%s: failed to create ctx\n", __func__);
945 		goto fail;
946 	}
947 
948         dc_ctx = dc->ctx;
949 
950 	/* Resource should construct all asic specific resources.
951 	 * This should be the only place where we need to parse the asic id
952 	 */
953 	if (init_params->vbios_override)
954 		dc_ctx->dc_bios = init_params->vbios_override;
955 	else {
956 		/* Create BIOS parser */
957 		struct bp_init_data bp_init_data;
958 
959 		bp_init_data.ctx = dc_ctx;
960 		bp_init_data.bios = init_params->asic_id.atombios_base_address;
961 
962 		dc_ctx->dc_bios = dal_bios_parser_create(
963 				&bp_init_data, dc_ctx->dce_version);
964 
965 		if (!dc_ctx->dc_bios) {
966 			ASSERT_CRITICAL(false);
967 			goto fail;
968 		}
969 
970 		dc_ctx->created_bios = true;
971 	}
972 
973 	dc->vendor_signature = init_params->vendor_signature;
974 
975 	/* Create GPIO service */
976 	dc_ctx->gpio_service = dal_gpio_service_create(
977 			dc_ctx->dce_version,
978 			dc_ctx->dce_environment,
979 			dc_ctx);
980 
981 	if (!dc_ctx->gpio_service) {
982 		ASSERT_CRITICAL(false);
983 		goto fail;
984 	}
985 
986 	dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
987 	if (!dc->res_pool)
988 		goto fail;
989 
990 	/* set i2c speed if not done by the respective dcnxxx__resource.c */
991 	if (dc->caps.i2c_speed_in_khz_hdcp == 0)
992 		dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
993 	if (dc->caps.max_optimizable_video_width == 0)
994 		dc->caps.max_optimizable_video_width = 5120;
995 	dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
996 	if (!dc->clk_mgr)
997 		goto fail;
998 #ifdef CONFIG_DRM_AMD_DC_FP
999 	dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1000 
1001 	if (dc->res_pool->funcs->update_bw_bounding_box) {
1002 		DC_FP_START();
1003 		dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1004 		DC_FP_END();
1005 	}
1006 #endif
1007 
1008 	/* Creation of current_state must occur after dc->dml
1009 	 * is initialized in dc_create_resource_pool because
1010 	 * on creation it copies the contents of dc->dml
1011 	 */
1012 
1013 	dc->current_state = dc_create_state(dc);
1014 
1015 	if (!dc->current_state) {
1016 		dm_error("%s: failed to create validate ctx\n", __func__);
1017 		goto fail;
1018 	}
1019 
1020 	if (!create_links(dc, init_params->num_virtual_links))
1021 		goto fail;
1022 
1023 	/* Create additional DIG link encoder objects if fewer than the platform
1024 	 * supports were created during link construction.
1025 	 */
1026 	if (!create_link_encoders(dc))
1027 		goto fail;
1028 
1029 	dc_resource_state_construct(dc, dc->current_state);
1030 
1031 	return true;
1032 
1033 fail:
1034 	return false;
1035 }
1036 
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1037 static void disable_all_writeback_pipes_for_stream(
1038 		const struct dc *dc,
1039 		struct dc_stream_state *stream,
1040 		struct dc_state *context)
1041 {
1042 	int i;
1043 
1044 	for (i = 0; i < stream->num_wb_info; i++)
1045 		stream->writeback_info[i].wb_enabled = false;
1046 }
1047 
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1048 static void apply_ctx_interdependent_lock(struct dc *dc,
1049 					  struct dc_state *context,
1050 					  struct dc_stream_state *stream,
1051 					  bool lock)
1052 {
1053 	int i;
1054 
1055 	/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1056 	if (dc->hwss.interdependent_update_lock)
1057 		dc->hwss.interdependent_update_lock(dc, context, lock);
1058 	else {
1059 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1060 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1061 			struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1062 
1063 			// Copied conditions that were previously in dce110_apply_ctx_for_surface
1064 			if (stream == pipe_ctx->stream) {
1065 				if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1066 					(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1067 					dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1068 			}
1069 		}
1070 	}
1071 }
1072 
dc_update_viusal_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1073 static void dc_update_viusal_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1074 {
1075 	if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1076 		memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1077 
1078 		if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1079 			get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1080 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1081 			get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1082 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1083 			get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1084 		else {
1085 			if (dc->ctx->dce_version < DCN_VERSION_2_0)
1086 				color_space_to_black_color(
1087 					dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1088 		}
1089 		if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1090 			if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1091 				get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1092 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1093 				get_subvp_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1094 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1095 				get_mclk_switch_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1096 		}
1097 	}
1098 }
1099 
disable_dangling_plane(struct dc * dc,struct dc_state * context)1100 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1101 {
1102 	int i, j;
1103 	struct dc_state *dangling_context = dc_create_state(dc);
1104 	struct dc_state *current_ctx;
1105 	struct pipe_ctx *pipe;
1106 	struct timing_generator *tg;
1107 
1108 	if (dangling_context == NULL)
1109 		return;
1110 
1111 	dc_resource_state_copy_construct(dc->current_state, dangling_context);
1112 
1113 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1114 		struct dc_stream_state *old_stream =
1115 				dc->current_state->res_ctx.pipe_ctx[i].stream;
1116 		bool should_disable = true;
1117 		bool pipe_split_change = false;
1118 
1119 		if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1120 			(dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1121 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1122 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1123 		else
1124 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1125 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1126 
1127 		for (j = 0; j < context->stream_count; j++) {
1128 			if (old_stream == context->streams[j]) {
1129 				should_disable = false;
1130 				break;
1131 			}
1132 		}
1133 		if (!should_disable && pipe_split_change &&
1134 				dc->current_state->stream_count != context->stream_count)
1135 			should_disable = true;
1136 
1137 		if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1138 				!dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1139 			struct pipe_ctx *old_pipe, *new_pipe;
1140 
1141 			old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1142 			new_pipe = &context->res_ctx.pipe_ctx[i];
1143 
1144 			if (old_pipe->plane_state && !new_pipe->plane_state)
1145 				should_disable = true;
1146 		}
1147 
1148 		if (should_disable && old_stream) {
1149 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1150 			tg = pipe->stream_res.tg;
1151 			/* When disabling plane for a phantom pipe, we must turn on the
1152 			 * phantom OTG so the disable programming gets the double buffer
1153 			 * update. Otherwise the pipe will be left in a partially disabled
1154 			 * state that can result in underflow or hang when enabling it
1155 			 * again for different use.
1156 			 */
1157 			if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1158 				if (tg->funcs->enable_crtc) {
1159 					int main_pipe_width, main_pipe_height;
1160 
1161 					main_pipe_width = old_stream->mall_stream_config.paired_stream->dst.width;
1162 					main_pipe_height = old_stream->mall_stream_config.paired_stream->dst.height;
1163 					if (dc->hwss.blank_phantom)
1164 						dc->hwss.blank_phantom(dc, tg, main_pipe_width, main_pipe_height);
1165 					tg->funcs->enable_crtc(tg);
1166 				}
1167 			}
1168 			dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1169 			disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1170 
1171 			if (pipe->stream && pipe->plane_state)
1172 				dc_update_viusal_confirm_color(dc, context, pipe);
1173 
1174 			if (dc->hwss.apply_ctx_for_surface) {
1175 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1176 				dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1177 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1178 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1179 			}
1180 			if (dc->hwss.program_front_end_for_ctx) {
1181 				dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1182 				dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1183 				dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1184 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1185 			}
1186 			/* We need to put the phantom OTG back into it's default (disabled) state or we
1187 			 * can get corruption when transition from one SubVP config to a different one.
1188 			 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1189 			 * will still get it's double buffer update.
1190 			 */
1191 			if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1192 				if (tg->funcs->disable_phantom_crtc)
1193 					tg->funcs->disable_phantom_crtc(tg);
1194 			}
1195 		}
1196 	}
1197 
1198 	current_ctx = dc->current_state;
1199 	dc->current_state = dangling_context;
1200 	dc_release_state(current_ctx);
1201 }
1202 
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1203 static void disable_vbios_mode_if_required(
1204 		struct dc *dc,
1205 		struct dc_state *context)
1206 {
1207 	unsigned int i, j;
1208 
1209 	/* check if timing_changed, disable stream*/
1210 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1211 		struct dc_stream_state *stream = NULL;
1212 		struct dc_link *link = NULL;
1213 		struct pipe_ctx *pipe = NULL;
1214 
1215 		pipe = &context->res_ctx.pipe_ctx[i];
1216 		stream = pipe->stream;
1217 		if (stream == NULL)
1218 			continue;
1219 
1220 		if (stream->apply_seamless_boot_optimization)
1221 			continue;
1222 
1223 		// only looking for first odm pipe
1224 		if (pipe->prev_odm_pipe)
1225 			continue;
1226 
1227 		if (stream->link->local_sink &&
1228 			stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1229 			link = stream->link;
1230 		}
1231 
1232 		if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1233 			unsigned int enc_inst, tg_inst = 0;
1234 			unsigned int pix_clk_100hz;
1235 
1236 			enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1237 			if (enc_inst != ENGINE_ID_UNKNOWN) {
1238 				for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1239 					if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1240 						tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1241 							dc->res_pool->stream_enc[j]);
1242 						break;
1243 					}
1244 				}
1245 
1246 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1247 					dc->res_pool->dp_clock_source,
1248 					tg_inst, &pix_clk_100hz);
1249 
1250 				if (link->link_status.link_active) {
1251 					uint32_t requested_pix_clk_100hz =
1252 						pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1253 
1254 					if (pix_clk_100hz != requested_pix_clk_100hz) {
1255 						dc->link_srv->set_dpms_off(pipe);
1256 						pipe->stream->dpms_off = false;
1257 					}
1258 				}
1259 			}
1260 		}
1261 	}
1262 }
1263 
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)1264 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
1265 {
1266 	int i;
1267 	PERF_TRACE();
1268 	for (i = 0; i < MAX_PIPES; i++) {
1269 		int count = 0;
1270 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1271 
1272 		if (!pipe->plane_state || pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
1273 			continue;
1274 
1275 		/* Timeout 100 ms */
1276 		while (count < 100000) {
1277 			/* Must set to false to start with, due to OR in update function */
1278 			pipe->plane_state->status.is_flip_pending = false;
1279 			dc->hwss.update_pending_status(pipe);
1280 			if (!pipe->plane_state->status.is_flip_pending)
1281 				break;
1282 			udelay(1);
1283 			count++;
1284 		}
1285 		ASSERT(!pipe->plane_state->status.is_flip_pending);
1286 	}
1287 	PERF_TRACE();
1288 }
1289 
1290 /* Public functions */
1291 
dc_create(const struct dc_init_data * init_params)1292 struct dc *dc_create(const struct dc_init_data *init_params)
1293 {
1294 	struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1295 	unsigned int full_pipe_count;
1296 
1297 	if (!dc)
1298 		return NULL;
1299 
1300 	if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1301 		dc->caps.linear_pitch_alignment = 64;
1302 		if (!dc_construct_ctx(dc, init_params))
1303 			goto destruct_dc;
1304 	} else {
1305 		if (!dc_construct(dc, init_params))
1306 			goto destruct_dc;
1307 
1308 		full_pipe_count = dc->res_pool->pipe_count;
1309 		if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1310 			full_pipe_count--;
1311 		dc->caps.max_streams = min(
1312 				full_pipe_count,
1313 				dc->res_pool->stream_enc_count);
1314 
1315 		dc->caps.max_links = dc->link_count;
1316 		dc->caps.max_audios = dc->res_pool->audio_count;
1317 		dc->caps.linear_pitch_alignment = 64;
1318 
1319 		dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1320 
1321 		dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1322 
1323 		if (dc->res_pool->dmcu != NULL)
1324 			dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1325 	}
1326 
1327 	dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1328 	dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1329 
1330 	/* Populate versioning information */
1331 	dc->versions.dc_ver = DC_VER;
1332 
1333 	dc->build_id = DC_BUILD_ID;
1334 
1335 	DC_LOG_DC("Display Core initialized\n");
1336 
1337 
1338 
1339 	return dc;
1340 
1341 destruct_dc:
1342 	dc_destruct(dc);
1343 	kfree(dc);
1344 	return NULL;
1345 }
1346 
detect_edp_presence(struct dc * dc)1347 static void detect_edp_presence(struct dc *dc)
1348 {
1349 	struct dc_link *edp_links[MAX_NUM_EDP];
1350 	struct dc_link *edp_link = NULL;
1351 	enum dc_connection_type type;
1352 	int i;
1353 	int edp_num;
1354 
1355 	dc_get_edp_links(dc, edp_links, &edp_num);
1356 	if (!edp_num)
1357 		return;
1358 
1359 	for (i = 0; i < edp_num; i++) {
1360 		edp_link = edp_links[i];
1361 		if (dc->config.edp_not_connected) {
1362 			edp_link->edp_sink_present = false;
1363 		} else {
1364 			dc_link_detect_connection_type(edp_link, &type);
1365 			edp_link->edp_sink_present = (type != dc_connection_none);
1366 		}
1367 	}
1368 }
1369 
dc_hardware_init(struct dc * dc)1370 void dc_hardware_init(struct dc *dc)
1371 {
1372 
1373 	detect_edp_presence(dc);
1374 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1375 		dc->hwss.init_hw(dc);
1376 }
1377 
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1378 void dc_init_callbacks(struct dc *dc,
1379 		const struct dc_callback_init *init_params)
1380 {
1381 	dc->ctx->cp_psp = init_params->cp_psp;
1382 }
1383 
dc_deinit_callbacks(struct dc * dc)1384 void dc_deinit_callbacks(struct dc *dc)
1385 {
1386 	memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1387 }
1388 
dc_destroy(struct dc ** dc)1389 void dc_destroy(struct dc **dc)
1390 {
1391 	dc_destruct(*dc);
1392 	kfree(*dc);
1393 	*dc = NULL;
1394 }
1395 
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1396 static void enable_timing_multisync(
1397 		struct dc *dc,
1398 		struct dc_state *ctx)
1399 {
1400 	int i, multisync_count = 0;
1401 	int pipe_count = dc->res_pool->pipe_count;
1402 	struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1403 
1404 	for (i = 0; i < pipe_count; i++) {
1405 		if (!ctx->res_ctx.pipe_ctx[i].stream ||
1406 				!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1407 			continue;
1408 		if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1409 			continue;
1410 		multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1411 		multisync_count++;
1412 	}
1413 
1414 	if (multisync_count > 0) {
1415 		dc->hwss.enable_per_frame_crtc_position_reset(
1416 			dc, multisync_count, multisync_pipes);
1417 	}
1418 }
1419 
program_timing_sync(struct dc * dc,struct dc_state * ctx)1420 static void program_timing_sync(
1421 		struct dc *dc,
1422 		struct dc_state *ctx)
1423 {
1424 	int i, j, k;
1425 	int group_index = 0;
1426 	int num_group = 0;
1427 	int pipe_count = dc->res_pool->pipe_count;
1428 	struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1429 
1430 	for (i = 0; i < pipe_count; i++) {
1431 		if (!ctx->res_ctx.pipe_ctx[i].stream
1432 				|| ctx->res_ctx.pipe_ctx[i].top_pipe
1433 				|| ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1434 			continue;
1435 
1436 		unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1437 	}
1438 
1439 	for (i = 0; i < pipe_count; i++) {
1440 		int group_size = 1;
1441 		enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1442 		struct pipe_ctx *pipe_set[MAX_PIPES];
1443 
1444 		if (!unsynced_pipes[i])
1445 			continue;
1446 
1447 		pipe_set[0] = unsynced_pipes[i];
1448 		unsynced_pipes[i] = NULL;
1449 
1450 		/* Add tg to the set, search rest of the tg's for ones with
1451 		 * same timing, add all tgs with same timing to the group
1452 		 */
1453 		for (j = i + 1; j < pipe_count; j++) {
1454 			if (!unsynced_pipes[j])
1455 				continue;
1456 			if (sync_type != TIMING_SYNCHRONIZABLE &&
1457 				dc->hwss.enable_vblanks_synchronization &&
1458 				unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1459 				resource_are_vblanks_synchronizable(
1460 					unsynced_pipes[j]->stream,
1461 					pipe_set[0]->stream)) {
1462 				sync_type = VBLANK_SYNCHRONIZABLE;
1463 				pipe_set[group_size] = unsynced_pipes[j];
1464 				unsynced_pipes[j] = NULL;
1465 				group_size++;
1466 			} else
1467 			if (sync_type != VBLANK_SYNCHRONIZABLE &&
1468 				resource_are_streams_timing_synchronizable(
1469 					unsynced_pipes[j]->stream,
1470 					pipe_set[0]->stream)) {
1471 				sync_type = TIMING_SYNCHRONIZABLE;
1472 				pipe_set[group_size] = unsynced_pipes[j];
1473 				unsynced_pipes[j] = NULL;
1474 				group_size++;
1475 			}
1476 		}
1477 
1478 		/* set first unblanked pipe as master */
1479 		for (j = 0; j < group_size; j++) {
1480 			bool is_blanked;
1481 
1482 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1483 				is_blanked =
1484 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1485 			else
1486 				is_blanked =
1487 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1488 			if (!is_blanked) {
1489 				if (j == 0)
1490 					break;
1491 
1492 				swap(pipe_set[0], pipe_set[j]);
1493 				break;
1494 			}
1495 		}
1496 
1497 		for (k = 0; k < group_size; k++) {
1498 			struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1499 
1500 			status->timing_sync_info.group_id = num_group;
1501 			status->timing_sync_info.group_size = group_size;
1502 			if (k == 0)
1503 				status->timing_sync_info.master = true;
1504 			else
1505 				status->timing_sync_info.master = false;
1506 
1507 		}
1508 
1509 		/* remove any other pipes that are already been synced */
1510 		if (dc->config.use_pipe_ctx_sync_logic) {
1511 			/* check pipe's syncd to decide which pipe to be removed */
1512 			for (j = 1; j < group_size; j++) {
1513 				if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1514 					group_size--;
1515 					pipe_set[j] = pipe_set[group_size];
1516 					j--;
1517 				} else
1518 					/* link slave pipe's syncd with master pipe */
1519 					pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1520 			}
1521 		} else {
1522 			for (j = j + 1; j < group_size; j++) {
1523 				bool is_blanked;
1524 
1525 				if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1526 					is_blanked =
1527 						pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1528 				else
1529 					is_blanked =
1530 						pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1531 				if (!is_blanked) {
1532 					group_size--;
1533 					pipe_set[j] = pipe_set[group_size];
1534 					j--;
1535 				}
1536 			}
1537 		}
1538 
1539 		if (group_size > 1) {
1540 			if (sync_type == TIMING_SYNCHRONIZABLE) {
1541 				dc->hwss.enable_timing_synchronization(
1542 					dc, group_index, group_size, pipe_set);
1543 			} else
1544 				if (sync_type == VBLANK_SYNCHRONIZABLE) {
1545 				dc->hwss.enable_vblanks_synchronization(
1546 					dc, group_index, group_size, pipe_set);
1547 				}
1548 			group_index++;
1549 		}
1550 		num_group++;
1551 	}
1552 }
1553 
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1554 static bool streams_changed(struct dc *dc,
1555 			    struct dc_stream_state *streams[],
1556 			    uint8_t stream_count)
1557 {
1558 	uint8_t i;
1559 
1560 	if (stream_count != dc->current_state->stream_count)
1561 		return true;
1562 
1563 	for (i = 0; i < dc->current_state->stream_count; i++) {
1564 		if (dc->current_state->streams[i] != streams[i])
1565 			return true;
1566 		if (!streams[i]->link->link_state_valid)
1567 			return true;
1568 	}
1569 
1570 	return false;
1571 }
1572 
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1573 bool dc_validate_boot_timing(const struct dc *dc,
1574 				const struct dc_sink *sink,
1575 				struct dc_crtc_timing *crtc_timing)
1576 {
1577 	struct timing_generator *tg;
1578 	struct stream_encoder *se = NULL;
1579 
1580 	struct dc_crtc_timing hw_crtc_timing = {0};
1581 
1582 	struct dc_link *link = sink->link;
1583 	unsigned int i, enc_inst, tg_inst = 0;
1584 
1585 	/* Support seamless boot on EDP displays only */
1586 	if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1587 		return false;
1588 	}
1589 
1590 	if (dc->debug.force_odm_combine)
1591 		return false;
1592 
1593 	/* Check for enabled DIG to identify enabled display */
1594 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1595 		return false;
1596 
1597 	enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1598 
1599 	if (enc_inst == ENGINE_ID_UNKNOWN)
1600 		return false;
1601 
1602 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1603 		if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1604 
1605 			se = dc->res_pool->stream_enc[i];
1606 
1607 			tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1608 				dc->res_pool->stream_enc[i]);
1609 			break;
1610 		}
1611 	}
1612 
1613 	// tg_inst not found
1614 	if (i == dc->res_pool->stream_enc_count)
1615 		return false;
1616 
1617 	if (tg_inst >= dc->res_pool->timing_generator_count)
1618 		return false;
1619 
1620 	if (tg_inst != link->link_enc->preferred_engine)
1621 		return false;
1622 
1623 	tg = dc->res_pool->timing_generators[tg_inst];
1624 
1625 	if (!tg->funcs->get_hw_timing)
1626 		return false;
1627 
1628 	if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1629 		return false;
1630 
1631 	if (crtc_timing->h_total != hw_crtc_timing.h_total)
1632 		return false;
1633 
1634 	if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1635 		return false;
1636 
1637 	if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1638 		return false;
1639 
1640 	if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1641 		return false;
1642 
1643 	if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1644 		return false;
1645 
1646 	if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1647 		return false;
1648 
1649 	if (crtc_timing->v_total != hw_crtc_timing.v_total)
1650 		return false;
1651 
1652 	if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1653 		return false;
1654 
1655 	if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1656 		return false;
1657 
1658 	if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1659 		return false;
1660 
1661 	if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1662 		return false;
1663 
1664 	if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1665 		return false;
1666 
1667 	/* block DSC for now, as VBIOS does not currently support DSC timings */
1668 	if (crtc_timing->flags.DSC)
1669 		return false;
1670 
1671 	if (dc_is_dp_signal(link->connector_signal)) {
1672 		unsigned int pix_clk_100hz;
1673 		uint32_t numOdmPipes = 1;
1674 		uint32_t id_src[4] = {0};
1675 
1676 		dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1677 			dc->res_pool->dp_clock_source,
1678 			tg_inst, &pix_clk_100hz);
1679 
1680 		if (tg->funcs->get_optc_source)
1681 			tg->funcs->get_optc_source(tg,
1682 						&numOdmPipes, &id_src[0], &id_src[1]);
1683 
1684 		if (numOdmPipes == 2)
1685 			pix_clk_100hz *= 2;
1686 		if (numOdmPipes == 4)
1687 			pix_clk_100hz *= 4;
1688 
1689 		// Note: In rare cases, HW pixclk may differ from crtc's pixclk
1690 		// slightly due to rounding issues in 10 kHz units.
1691 		if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1692 			return false;
1693 
1694 		if (!se || !se->funcs->dp_get_pixel_format)
1695 			return false;
1696 
1697 		if (!se->funcs->dp_get_pixel_format(
1698 			se,
1699 			&hw_crtc_timing.pixel_encoding,
1700 			&hw_crtc_timing.display_color_depth))
1701 			return false;
1702 
1703 		if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1704 			return false;
1705 
1706 		if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1707 			return false;
1708 	}
1709 
1710 	if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1711 		return false;
1712 	}
1713 
1714 	if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED)
1715 		return false;
1716 
1717 	if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1718 		DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1719 		return false;
1720 	}
1721 
1722 	return true;
1723 }
1724 
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1725 static inline bool should_update_pipe_for_stream(
1726 		struct dc_state *context,
1727 		struct pipe_ctx *pipe_ctx,
1728 		struct dc_stream_state *stream)
1729 {
1730 	return (pipe_ctx->stream && pipe_ctx->stream == stream);
1731 }
1732 
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1733 static inline bool should_update_pipe_for_plane(
1734 		struct dc_state *context,
1735 		struct pipe_ctx *pipe_ctx,
1736 		struct dc_plane_state *plane_state)
1737 {
1738 	return (pipe_ctx->plane_state == plane_state);
1739 }
1740 
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1741 void dc_enable_stereo(
1742 	struct dc *dc,
1743 	struct dc_state *context,
1744 	struct dc_stream_state *streams[],
1745 	uint8_t stream_count)
1746 {
1747 	int i, j;
1748 	struct pipe_ctx *pipe;
1749 
1750 	for (i = 0; i < MAX_PIPES; i++) {
1751 		if (context != NULL) {
1752 			pipe = &context->res_ctx.pipe_ctx[i];
1753 		} else {
1754 			context = dc->current_state;
1755 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1756 		}
1757 
1758 		for (j = 0; pipe && j < stream_count; j++)  {
1759 			if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1760 				dc->hwss.setup_stereo)
1761 				dc->hwss.setup_stereo(pipe, dc);
1762 		}
1763 	}
1764 }
1765 
dc_trigger_sync(struct dc * dc,struct dc_state * context)1766 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1767 {
1768 	if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1769 		enable_timing_multisync(dc, context);
1770 		program_timing_sync(dc, context);
1771 	}
1772 }
1773 
get_stream_mask(struct dc * dc,struct dc_state * context)1774 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1775 {
1776 	int i;
1777 	unsigned int stream_mask = 0;
1778 
1779 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1780 		if (context->res_ctx.pipe_ctx[i].stream)
1781 			stream_mask |= 1 << i;
1782 	}
1783 
1784 	return stream_mask;
1785 }
1786 
dc_z10_restore(const struct dc * dc)1787 void dc_z10_restore(const struct dc *dc)
1788 {
1789 	if (dc->hwss.z10_restore)
1790 		dc->hwss.z10_restore(dc);
1791 }
1792 
dc_z10_save_init(struct dc * dc)1793 void dc_z10_save_init(struct dc *dc)
1794 {
1795 	if (dc->hwss.z10_save_init)
1796 		dc->hwss.z10_save_init(dc);
1797 }
1798 
1799 /**
1800  * dc_commit_state_no_check - Apply context to the hardware
1801  *
1802  * @dc: DC object with the current status to be updated
1803  * @context: New state that will become the current status at the end of this function
1804  *
1805  * Applies given context to the hardware and copy it into current context.
1806  * It's up to the user to release the src context afterwards.
1807  *
1808  * Return: an enum dc_status result code for the operation
1809  */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1810 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1811 {
1812 	struct dc_bios *dcb = dc->ctx->dc_bios;
1813 	enum dc_status result = DC_ERROR_UNEXPECTED;
1814 	struct pipe_ctx *pipe;
1815 	int i, k, l;
1816 	struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1817 	struct dc_state *old_state;
1818 	bool subvp_prev_use = false;
1819 
1820 	dc_z10_restore(dc);
1821 	dc_allow_idle_optimizations(dc, false);
1822 
1823 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1824 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1825 
1826 		/* Check old context for SubVP */
1827 		subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
1828 		if (subvp_prev_use)
1829 			break;
1830 	}
1831 
1832 	for (i = 0; i < context->stream_count; i++)
1833 		dc_streams[i] =  context->streams[i];
1834 
1835 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
1836 		disable_vbios_mode_if_required(dc, context);
1837 		dc->hwss.enable_accelerated_mode(dc, context);
1838 	}
1839 
1840 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1841 		context->stream_count == 0)
1842 		dc->hwss.prepare_bandwidth(dc, context);
1843 
1844 	/* When SubVP is active, all HW programming must be done while
1845 	 * SubVP lock is acquired
1846 	 */
1847 	if (dc->hwss.subvp_pipe_control_lock)
1848 		dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1849 
1850 	if (dc->hwss.update_dsc_pg)
1851 		dc->hwss.update_dsc_pg(dc, context, false);
1852 
1853 	disable_dangling_plane(dc, context);
1854 	/* re-program planes for existing stream, in case we need to
1855 	 * free up plane resource for later use
1856 	 */
1857 	if (dc->hwss.apply_ctx_for_surface) {
1858 		for (i = 0; i < context->stream_count; i++) {
1859 			if (context->streams[i]->mode_changed)
1860 				continue;
1861 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1862 			dc->hwss.apply_ctx_for_surface(
1863 				dc, context->streams[i],
1864 				context->stream_status[i].plane_count,
1865 				context); /* use new pipe config in new context */
1866 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1867 			dc->hwss.post_unlock_program_front_end(dc, context);
1868 		}
1869 	}
1870 
1871 	/* Program hardware */
1872 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1873 		pipe = &context->res_ctx.pipe_ctx[i];
1874 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1875 	}
1876 
1877 	result = dc->hwss.apply_ctx_to_hw(dc, context);
1878 
1879 	if (result != DC_OK) {
1880 		/* Application of dc_state to hardware stopped. */
1881 		dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1882 		return result;
1883 	}
1884 
1885 	dc_trigger_sync(dc, context);
1886 
1887 	/* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
1888 	for (i = 0; i < context->stream_count; i++) {
1889 		uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
1890 
1891 		context->streams[i]->update_flags.raw = 0xFFFFFFFF;
1892 		context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
1893 	}
1894 
1895 	/* Program all planes within new context*/
1896 	if (dc->hwss.program_front_end_for_ctx) {
1897 		dc->hwss.interdependent_update_lock(dc, context, true);
1898 		dc->hwss.program_front_end_for_ctx(dc, context);
1899 		dc->hwss.interdependent_update_lock(dc, context, false);
1900 		dc->hwss.post_unlock_program_front_end(dc, context);
1901 	}
1902 
1903 	if (dc->hwss.commit_subvp_config)
1904 		dc->hwss.commit_subvp_config(dc, context);
1905 	if (dc->hwss.subvp_pipe_control_lock)
1906 		dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
1907 
1908 	for (i = 0; i < context->stream_count; i++) {
1909 		const struct dc_link *link = context->streams[i]->link;
1910 
1911 		if (!context->streams[i]->mode_changed)
1912 			continue;
1913 
1914 		if (dc->hwss.apply_ctx_for_surface) {
1915 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1916 			dc->hwss.apply_ctx_for_surface(
1917 					dc, context->streams[i],
1918 					context->stream_status[i].plane_count,
1919 					context);
1920 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1921 			dc->hwss.post_unlock_program_front_end(dc, context);
1922 		}
1923 
1924 		/*
1925 		 * enable stereo
1926 		 * TODO rework dc_enable_stereo call to work with validation sets?
1927 		 */
1928 		for (k = 0; k < MAX_PIPES; k++) {
1929 			pipe = &context->res_ctx.pipe_ctx[k];
1930 
1931 			for (l = 0 ; pipe && l < context->stream_count; l++)  {
1932 				if (context->streams[l] &&
1933 					context->streams[l] == pipe->stream &&
1934 					dc->hwss.setup_stereo)
1935 					dc->hwss.setup_stereo(pipe, dc);
1936 			}
1937 		}
1938 
1939 		CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1940 				context->streams[i]->timing.h_addressable,
1941 				context->streams[i]->timing.v_addressable,
1942 				context->streams[i]->timing.h_total,
1943 				context->streams[i]->timing.v_total,
1944 				context->streams[i]->timing.pix_clk_100hz / 10);
1945 	}
1946 
1947 	dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1948 
1949 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1950 		context->stream_count == 0) {
1951 		/* Must wait for no flips to be pending before doing optimize bw */
1952 		wait_for_no_pipes_pending(dc, context);
1953 		/* pplib is notified if disp_num changed */
1954 		dc->hwss.optimize_bandwidth(dc, context);
1955 		/* Need to do otg sync again as otg could be out of sync due to otg
1956 		 * workaround applied during clock update
1957 		 */
1958 		dc_trigger_sync(dc, context);
1959 	}
1960 
1961 	if (dc->hwss.update_dsc_pg)
1962 		dc->hwss.update_dsc_pg(dc, context, true);
1963 
1964 	if (dc->ctx->dce_version >= DCE_VERSION_MAX)
1965 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
1966 	else
1967 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
1968 
1969 	context->stream_mask = get_stream_mask(dc, context);
1970 
1971 	if (context->stream_mask != dc->current_state->stream_mask)
1972 		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1973 
1974 	for (i = 0; i < context->stream_count; i++)
1975 		context->streams[i]->mode_changed = false;
1976 
1977 	/* Clear update flags that were set earlier to avoid redundant programming */
1978 	for (i = 0; i < context->stream_count; i++) {
1979 		context->streams[i]->update_flags.raw = 0x0;
1980 	}
1981 
1982 	old_state = dc->current_state;
1983 	dc->current_state = context;
1984 
1985 	dc_release_state(old_state);
1986 
1987 	dc_retain_state(dc->current_state);
1988 
1989 	return result;
1990 }
1991 
1992 static bool commit_minimal_transition_state(struct dc *dc,
1993 		struct dc_state *transition_base_context);
1994 
1995 /**
1996  * dc_commit_streams - Commit current stream state
1997  *
1998  * @dc: DC object with the commit state to be configured in the hardware
1999  * @streams: Array with a list of stream state
2000  * @stream_count: Total of streams
2001  *
2002  * Function responsible for commit streams change to the hardware.
2003  *
2004  * Return:
2005  * Return DC_OK if everything work as expected, otherwise, return a dc_status
2006  * code.
2007  */
dc_commit_streams(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)2008 enum dc_status dc_commit_streams(struct dc *dc,
2009 				 struct dc_stream_state *streams[],
2010 				 uint8_t stream_count)
2011 {
2012 	int i, j;
2013 	struct dc_state *context;
2014 	enum dc_status res = DC_OK;
2015 	struct dc_validation_set set[MAX_STREAMS] = {0};
2016 	struct pipe_ctx *pipe;
2017 	bool handle_exit_odm2to1 = false;
2018 
2019 	if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2020 		return res;
2021 
2022 	if (!streams_changed(dc, streams, stream_count))
2023 		return res;
2024 
2025 	DC_LOG_DC("%s: %d streams\n", __func__, stream_count);
2026 
2027 	for (i = 0; i < stream_count; i++) {
2028 		struct dc_stream_state *stream = streams[i];
2029 		struct dc_stream_status *status = dc_stream_get_status(stream);
2030 
2031 		dc_stream_log(dc, stream);
2032 
2033 		set[i].stream = stream;
2034 
2035 		if (status) {
2036 			set[i].plane_count = status->plane_count;
2037 			for (j = 0; j < status->plane_count; j++)
2038 				set[i].plane_states[j] = status->plane_states[j];
2039 		}
2040 	}
2041 
2042 	/* ODM Combine 2:1 power optimization is only applied for single stream
2043 	 * scenario, it uses extra pipes than needed to reduce power consumption
2044 	 * We need to switch off this feature to make room for new streams.
2045 	 */
2046 	if (stream_count > dc->current_state->stream_count &&
2047 			dc->current_state->stream_count == 1) {
2048 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2049 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2050 			if (pipe->next_odm_pipe)
2051 				handle_exit_odm2to1 = true;
2052 		}
2053 	}
2054 
2055 	if (handle_exit_odm2to1)
2056 		res = commit_minimal_transition_state(dc, dc->current_state);
2057 
2058 	context = dc_create_state(dc);
2059 	if (!context)
2060 		goto context_alloc_fail;
2061 
2062 	dc_resource_state_copy_construct_current(dc, context);
2063 
2064 	res = dc_validate_with_context(dc, set, stream_count, context, false);
2065 	if (res != DC_OK) {
2066 		BREAK_TO_DEBUGGER();
2067 		goto fail;
2068 	}
2069 
2070 	res = dc_commit_state_no_check(dc, context);
2071 
2072 	for (i = 0; i < stream_count; i++) {
2073 		for (j = 0; j < context->stream_count; j++) {
2074 			if (streams[i]->stream_id == context->streams[j]->stream_id)
2075 				streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2076 
2077 			if (dc_is_embedded_signal(streams[i]->signal)) {
2078 				struct dc_stream_status *status = dc_stream_get_status_from_state(context, streams[i]);
2079 
2080 				if (dc->hwss.is_abm_supported)
2081 					status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, streams[i]);
2082 				else
2083 					status->is_abm_supported = true;
2084 			}
2085 		}
2086 	}
2087 
2088 fail:
2089 	dc_release_state(context);
2090 
2091 context_alloc_fail:
2092 
2093 	DC_LOG_DC("%s Finished.\n", __func__);
2094 
2095 	return res;
2096 }
2097 
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2098 bool dc_acquire_release_mpc_3dlut(
2099 		struct dc *dc, bool acquire,
2100 		struct dc_stream_state *stream,
2101 		struct dc_3dlut **lut,
2102 		struct dc_transfer_func **shaper)
2103 {
2104 	int pipe_idx;
2105 	bool ret = false;
2106 	bool found_pipe_idx = false;
2107 	const struct resource_pool *pool = dc->res_pool;
2108 	struct resource_context *res_ctx = &dc->current_state->res_ctx;
2109 	int mpcc_id = 0;
2110 
2111 	if (pool && res_ctx) {
2112 		if (acquire) {
2113 			/*find pipe idx for the given stream*/
2114 			for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2115 				if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2116 					found_pipe_idx = true;
2117 					mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2118 					break;
2119 				}
2120 			}
2121 		} else
2122 			found_pipe_idx = true;/*for release pipe_idx is not required*/
2123 
2124 		if (found_pipe_idx) {
2125 			if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2126 				ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2127 			else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2128 				ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2129 		}
2130 	}
2131 	return ret;
2132 }
2133 
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2134 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2135 {
2136 	int i;
2137 	struct pipe_ctx *pipe;
2138 
2139 	for (i = 0; i < MAX_PIPES; i++) {
2140 		pipe = &context->res_ctx.pipe_ctx[i];
2141 
2142 		// Don't check flip pending on phantom pipes
2143 		if (!pipe->plane_state || (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM))
2144 			continue;
2145 
2146 		/* Must set to false to start with, due to OR in update function */
2147 		pipe->plane_state->status.is_flip_pending = false;
2148 		dc->hwss.update_pending_status(pipe);
2149 		if (pipe->plane_state->status.is_flip_pending)
2150 			return true;
2151 	}
2152 	return false;
2153 }
2154 
2155 /* Perform updates here which need to be deferred until next vupdate
2156  *
2157  * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2158  * but forcing lut memory to shutdown state is immediate. This causes
2159  * single frame corruption as lut gets disabled mid-frame unless shutdown
2160  * is deferred until after entering bypass.
2161  */
process_deferred_updates(struct dc * dc)2162 static void process_deferred_updates(struct dc *dc)
2163 {
2164 	int i = 0;
2165 
2166 	if (dc->debug.enable_mem_low_power.bits.cm) {
2167 		ASSERT(dc->dcn_ip->max_num_dpp);
2168 		for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2169 			if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2170 				dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2171 	}
2172 }
2173 
dc_post_update_surfaces_to_stream(struct dc * dc)2174 void dc_post_update_surfaces_to_stream(struct dc *dc)
2175 {
2176 	int i;
2177 	struct dc_state *context = dc->current_state;
2178 
2179 	if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2180 		return;
2181 
2182 	post_surface_trace(dc);
2183 
2184 	/*
2185 	 * Only relevant for DCN behavior where we can guarantee the optimization
2186 	 * is safe to apply - retain the legacy behavior for DCE.
2187 	 */
2188 
2189 	if (dc->ctx->dce_version < DCE_VERSION_MAX)
2190 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2191 	else {
2192 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2193 
2194 		if (is_flip_pending_in_pipes(dc, context))
2195 			return;
2196 
2197 		for (i = 0; i < dc->res_pool->pipe_count; i++)
2198 			if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2199 					context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2200 				context->res_ctx.pipe_ctx[i].pipe_idx = i;
2201 				dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
2202 			}
2203 
2204 		process_deferred_updates(dc);
2205 
2206 		dc->hwss.optimize_bandwidth(dc, context);
2207 
2208 		if (dc->hwss.update_dsc_pg)
2209 			dc->hwss.update_dsc_pg(dc, context, true);
2210 	}
2211 
2212 	dc->optimized_required = false;
2213 	dc->wm_optimized_required = false;
2214 }
2215 
init_state(struct dc * dc,struct dc_state * context)2216 static void init_state(struct dc *dc, struct dc_state *context)
2217 {
2218 	/* Each context must have their own instance of VBA and in order to
2219 	 * initialize and obtain IP and SOC the base DML instance from DC is
2220 	 * initially copied into every context
2221 	 */
2222 	memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
2223 }
2224 
dc_create_state(struct dc * dc)2225 struct dc_state *dc_create_state(struct dc *dc)
2226 {
2227 	struct dc_state *context = kvzalloc(sizeof(struct dc_state),
2228 					    GFP_KERNEL);
2229 
2230 	if (!context)
2231 		return NULL;
2232 
2233 	init_state(dc, context);
2234 
2235 	kref_init(&context->refcount);
2236 
2237 	return context;
2238 }
2239 
dc_copy_state(struct dc_state * src_ctx)2240 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
2241 {
2242 	int i, j;
2243 	struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
2244 
2245 	if (!new_ctx)
2246 		return NULL;
2247 	memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
2248 
2249 	for (i = 0; i < MAX_PIPES; i++) {
2250 			struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
2251 
2252 			if (cur_pipe->top_pipe)
2253 				cur_pipe->top_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2254 
2255 			if (cur_pipe->bottom_pipe)
2256 				cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2257 
2258 			if (cur_pipe->prev_odm_pipe)
2259 				cur_pipe->prev_odm_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2260 
2261 			if (cur_pipe->next_odm_pipe)
2262 				cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2263 
2264 	}
2265 
2266 	for (i = 0; i < new_ctx->stream_count; i++) {
2267 			dc_stream_retain(new_ctx->streams[i]);
2268 			for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
2269 				dc_plane_state_retain(
2270 					new_ctx->stream_status[i].plane_states[j]);
2271 	}
2272 
2273 	kref_init(&new_ctx->refcount);
2274 
2275 	return new_ctx;
2276 }
2277 
dc_retain_state(struct dc_state * context)2278 void dc_retain_state(struct dc_state *context)
2279 {
2280 	kref_get(&context->refcount);
2281 }
2282 
dc_state_free(struct kref * kref)2283 static void dc_state_free(struct kref *kref)
2284 {
2285 	struct dc_state *context = container_of(kref, struct dc_state, refcount);
2286 	dc_resource_state_destruct(context);
2287 	kvfree(context);
2288 }
2289 
dc_release_state(struct dc_state * context)2290 void dc_release_state(struct dc_state *context)
2291 {
2292 	kref_put(&context->refcount, dc_state_free);
2293 }
2294 
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2295 bool dc_set_generic_gpio_for_stereo(bool enable,
2296 		struct gpio_service *gpio_service)
2297 {
2298 	enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2299 	struct gpio_pin_info pin_info;
2300 	struct gpio *generic;
2301 	struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2302 			   GFP_KERNEL);
2303 
2304 	if (!config)
2305 		return false;
2306 	pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2307 
2308 	if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2309 		kfree(config);
2310 		return false;
2311 	} else {
2312 		generic = dal_gpio_service_create_generic_mux(
2313 			gpio_service,
2314 			pin_info.offset,
2315 			pin_info.mask);
2316 	}
2317 
2318 	if (!generic) {
2319 		kfree(config);
2320 		return false;
2321 	}
2322 
2323 	gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2324 
2325 	config->enable_output_from_mux = enable;
2326 	config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2327 
2328 	if (gpio_result == GPIO_RESULT_OK)
2329 		gpio_result = dal_mux_setup_config(generic, config);
2330 
2331 	if (gpio_result == GPIO_RESULT_OK) {
2332 		dal_gpio_close(generic);
2333 		dal_gpio_destroy_generic_mux(&generic);
2334 		kfree(config);
2335 		return true;
2336 	} else {
2337 		dal_gpio_close(generic);
2338 		dal_gpio_destroy_generic_mux(&generic);
2339 		kfree(config);
2340 		return false;
2341 	}
2342 }
2343 
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2344 static bool is_surface_in_context(
2345 		const struct dc_state *context,
2346 		const struct dc_plane_state *plane_state)
2347 {
2348 	int j;
2349 
2350 	for (j = 0; j < MAX_PIPES; j++) {
2351 		const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2352 
2353 		if (plane_state == pipe_ctx->plane_state) {
2354 			return true;
2355 		}
2356 	}
2357 
2358 	return false;
2359 }
2360 
get_plane_info_update_type(const struct dc_surface_update * u)2361 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
2362 {
2363 	union surface_update_flags *update_flags = &u->surface->update_flags;
2364 	enum surface_update_type update_type = UPDATE_TYPE_FAST;
2365 
2366 	if (!u->plane_info)
2367 		return UPDATE_TYPE_FAST;
2368 
2369 	if (u->plane_info->color_space != u->surface->color_space) {
2370 		update_flags->bits.color_space_change = 1;
2371 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2372 	}
2373 
2374 	if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2375 		update_flags->bits.horizontal_mirror_change = 1;
2376 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2377 	}
2378 
2379 	if (u->plane_info->rotation != u->surface->rotation) {
2380 		update_flags->bits.rotation_change = 1;
2381 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2382 	}
2383 
2384 	if (u->plane_info->format != u->surface->format) {
2385 		update_flags->bits.pixel_format_change = 1;
2386 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2387 	}
2388 
2389 	if (u->plane_info->stereo_format != u->surface->stereo_format) {
2390 		update_flags->bits.stereo_format_change = 1;
2391 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2392 	}
2393 
2394 	if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2395 		update_flags->bits.per_pixel_alpha_change = 1;
2396 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2397 	}
2398 
2399 	if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2400 		update_flags->bits.global_alpha_change = 1;
2401 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2402 	}
2403 
2404 	if (u->plane_info->dcc.enable != u->surface->dcc.enable
2405 			|| u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2406 			|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2407 		/* During DCC on/off, stutter period is calculated before
2408 		 * DCC has fully transitioned. This results in incorrect
2409 		 * stutter period calculation. Triggering a full update will
2410 		 * recalculate stutter period.
2411 		 */
2412 		update_flags->bits.dcc_change = 1;
2413 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2414 	}
2415 
2416 	if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2417 			resource_pixel_format_to_bpp(u->surface->format)) {
2418 		/* different bytes per element will require full bandwidth
2419 		 * and DML calculation
2420 		 */
2421 		update_flags->bits.bpp_change = 1;
2422 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2423 	}
2424 
2425 	if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2426 			|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2427 		update_flags->bits.plane_size_change = 1;
2428 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2429 	}
2430 
2431 
2432 	if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2433 			sizeof(union dc_tiling_info)) != 0) {
2434 		update_flags->bits.swizzle_change = 1;
2435 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2436 
2437 		/* todo: below are HW dependent, we should add a hook to
2438 		 * DCE/N resource and validated there.
2439 		 */
2440 		if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
2441 			/* swizzled mode requires RQ to be setup properly,
2442 			 * thus need to run DML to calculate RQ settings
2443 			 */
2444 			update_flags->bits.bandwidth_change = 1;
2445 			elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2446 		}
2447 	}
2448 
2449 	/* This should be UPDATE_TYPE_FAST if nothing has changed. */
2450 	return update_type;
2451 }
2452 
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2453 static enum surface_update_type get_scaling_info_update_type(
2454 		const struct dc *dc,
2455 		const struct dc_surface_update *u)
2456 {
2457 	union surface_update_flags *update_flags = &u->surface->update_flags;
2458 
2459 	if (!u->scaling_info)
2460 		return UPDATE_TYPE_FAST;
2461 
2462 	if (u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2463 			|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2464 			|| u->scaling_info->scaling_quality.integer_scaling !=
2465 				u->surface->scaling_quality.integer_scaling
2466 			) {
2467 		update_flags->bits.scaling_change = 1;
2468 
2469 		if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2470 			|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2471 				&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2472 					|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2473 			/* Making dst rect smaller requires a bandwidth change */
2474 			update_flags->bits.bandwidth_change = 1;
2475 	}
2476 
2477 	if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2478 		|| u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2479 
2480 		update_flags->bits.scaling_change = 1;
2481 		if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2482 				|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
2483 			/* Making src rect bigger requires a bandwidth change */
2484 			update_flags->bits.clock_change = 1;
2485 	}
2486 
2487 	if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2488 		(u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2489 		 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2490 		 /* Changing clip size of a large surface may result in MPC slice count change */
2491 		update_flags->bits.bandwidth_change = 1;
2492 
2493 	if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2494 			|| u->scaling_info->src_rect.y != u->surface->src_rect.y
2495 			|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2496 			|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2497 			|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2498 			|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2499 		update_flags->bits.position_change = 1;
2500 
2501 	if (update_flags->bits.clock_change
2502 			|| update_flags->bits.bandwidth_change
2503 			|| update_flags->bits.scaling_change)
2504 		return UPDATE_TYPE_FULL;
2505 
2506 	if (update_flags->bits.position_change)
2507 		return UPDATE_TYPE_MED;
2508 
2509 	return UPDATE_TYPE_FAST;
2510 }
2511 
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2512 static enum surface_update_type det_surface_update(const struct dc *dc,
2513 		const struct dc_surface_update *u)
2514 {
2515 	const struct dc_state *context = dc->current_state;
2516 	enum surface_update_type type;
2517 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2518 	union surface_update_flags *update_flags = &u->surface->update_flags;
2519 
2520 	if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2521 		update_flags->raw = 0xFFFFFFFF;
2522 		return UPDATE_TYPE_FULL;
2523 	}
2524 
2525 	update_flags->raw = 0; // Reset all flags
2526 
2527 	type = get_plane_info_update_type(u);
2528 	elevate_update_type(&overall_type, type);
2529 
2530 	type = get_scaling_info_update_type(dc, u);
2531 	elevate_update_type(&overall_type, type);
2532 
2533 	if (u->flip_addr) {
2534 		update_flags->bits.addr_update = 1;
2535 		if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2536 			update_flags->bits.tmz_changed = 1;
2537 			elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2538 		}
2539 	}
2540 	if (u->in_transfer_func)
2541 		update_flags->bits.in_transfer_func_change = 1;
2542 
2543 	if (u->input_csc_color_matrix)
2544 		update_flags->bits.input_csc_change = 1;
2545 
2546 	if (u->coeff_reduction_factor)
2547 		update_flags->bits.coeff_reduction_change = 1;
2548 
2549 	if (u->gamut_remap_matrix)
2550 		update_flags->bits.gamut_remap_change = 1;
2551 
2552 	if (u->gamma) {
2553 		enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2554 
2555 		if (u->plane_info)
2556 			format = u->plane_info->format;
2557 		else if (u->surface)
2558 			format = u->surface->format;
2559 
2560 		if (dce_use_lut(format))
2561 			update_flags->bits.gamma_change = 1;
2562 	}
2563 
2564 	if (u->lut3d_func || u->func_shaper)
2565 		update_flags->bits.lut_3d = 1;
2566 
2567 	if (u->hdr_mult.value)
2568 		if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2569 			update_flags->bits.hdr_mult = 1;
2570 			elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2571 		}
2572 
2573 	if (update_flags->bits.in_transfer_func_change) {
2574 		type = UPDATE_TYPE_MED;
2575 		elevate_update_type(&overall_type, type);
2576 	}
2577 
2578 	if (update_flags->bits.lut_3d) {
2579 		type = UPDATE_TYPE_FULL;
2580 		elevate_update_type(&overall_type, type);
2581 	}
2582 
2583 	if (dc->debug.enable_legacy_fast_update &&
2584 			(update_flags->bits.gamma_change ||
2585 			update_flags->bits.gamut_remap_change ||
2586 			update_flags->bits.input_csc_change ||
2587 			update_flags->bits.coeff_reduction_change)) {
2588 		type = UPDATE_TYPE_FULL;
2589 		elevate_update_type(&overall_type, type);
2590 	}
2591 	return overall_type;
2592 }
2593 
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2594 static enum surface_update_type check_update_surfaces_for_stream(
2595 		struct dc *dc,
2596 		struct dc_surface_update *updates,
2597 		int surface_count,
2598 		struct dc_stream_update *stream_update,
2599 		const struct dc_stream_status *stream_status)
2600 {
2601 	int i;
2602 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2603 
2604 	if (dc->idle_optimizations_allowed)
2605 		overall_type = UPDATE_TYPE_FULL;
2606 
2607 	if (stream_status == NULL || stream_status->plane_count != surface_count)
2608 		overall_type = UPDATE_TYPE_FULL;
2609 
2610 	if (stream_update && stream_update->pending_test_pattern) {
2611 		overall_type = UPDATE_TYPE_FULL;
2612 	}
2613 
2614 	/* some stream updates require passive update */
2615 	if (stream_update) {
2616 		union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2617 
2618 		if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2619 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2620 			stream_update->integer_scaling_update)
2621 			su_flags->bits.scaling = 1;
2622 
2623 		if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2624 			su_flags->bits.out_tf = 1;
2625 
2626 		if (stream_update->abm_level)
2627 			su_flags->bits.abm_level = 1;
2628 
2629 		if (stream_update->dpms_off)
2630 			su_flags->bits.dpms_off = 1;
2631 
2632 		if (stream_update->gamut_remap)
2633 			su_flags->bits.gamut_remap = 1;
2634 
2635 		if (stream_update->wb_update)
2636 			su_flags->bits.wb_update = 1;
2637 
2638 		if (stream_update->dsc_config)
2639 			su_flags->bits.dsc_changed = 1;
2640 
2641 		if (stream_update->mst_bw_update)
2642 			su_flags->bits.mst_bw = 1;
2643 
2644 		if (stream_update->stream && stream_update->stream->freesync_on_desktop &&
2645 			(stream_update->vrr_infopacket || stream_update->allow_freesync ||
2646 				stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2647 			su_flags->bits.fams_changed = 1;
2648 
2649 		if (su_flags->raw != 0)
2650 			overall_type = UPDATE_TYPE_FULL;
2651 
2652 		if (stream_update->output_csc_transform || stream_update->output_color_space)
2653 			su_flags->bits.out_csc = 1;
2654 
2655 		/* Output transfer function changes do not require bandwidth recalculation,
2656 		 * so don't trigger a full update
2657 		 */
2658 		if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2659 			su_flags->bits.out_tf = 1;
2660 	}
2661 
2662 	for (i = 0 ; i < surface_count; i++) {
2663 		enum surface_update_type type =
2664 				det_surface_update(dc, &updates[i]);
2665 
2666 		elevate_update_type(&overall_type, type);
2667 	}
2668 
2669 	return overall_type;
2670 }
2671 
2672 /*
2673  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2674  *
2675  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2676  */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2677 enum surface_update_type dc_check_update_surfaces_for_stream(
2678 		struct dc *dc,
2679 		struct dc_surface_update *updates,
2680 		int surface_count,
2681 		struct dc_stream_update *stream_update,
2682 		const struct dc_stream_status *stream_status)
2683 {
2684 	int i;
2685 	enum surface_update_type type;
2686 
2687 	if (stream_update)
2688 		stream_update->stream->update_flags.raw = 0;
2689 	for (i = 0; i < surface_count; i++)
2690 		updates[i].surface->update_flags.raw = 0;
2691 
2692 	type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2693 	if (type == UPDATE_TYPE_FULL) {
2694 		if (stream_update) {
2695 			uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2696 			stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2697 			stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2698 		}
2699 		for (i = 0; i < surface_count; i++)
2700 			updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2701 	}
2702 
2703 	if (type == UPDATE_TYPE_FAST) {
2704 		// If there's an available clock comparator, we use that.
2705 		if (dc->clk_mgr->funcs->are_clock_states_equal) {
2706 			if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2707 				dc->optimized_required = true;
2708 		// Else we fallback to mem compare.
2709 		} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2710 			dc->optimized_required = true;
2711 		}
2712 
2713 		dc->optimized_required |= dc->wm_optimized_required;
2714 	}
2715 
2716 	return type;
2717 }
2718 
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2719 static struct dc_stream_status *stream_get_status(
2720 	struct dc_state *ctx,
2721 	struct dc_stream_state *stream)
2722 {
2723 	uint8_t i;
2724 
2725 	for (i = 0; i < ctx->stream_count; i++) {
2726 		if (stream == ctx->streams[i]) {
2727 			return &ctx->stream_status[i];
2728 		}
2729 	}
2730 
2731 	return NULL;
2732 }
2733 
2734 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2735 
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2736 static void copy_surface_update_to_plane(
2737 		struct dc_plane_state *surface,
2738 		struct dc_surface_update *srf_update)
2739 {
2740 	if (srf_update->flip_addr) {
2741 		surface->address = srf_update->flip_addr->address;
2742 		surface->flip_immediate =
2743 			srf_update->flip_addr->flip_immediate;
2744 		surface->time.time_elapsed_in_us[surface->time.index] =
2745 			srf_update->flip_addr->flip_timestamp_in_us -
2746 				surface->time.prev_update_time_in_us;
2747 		surface->time.prev_update_time_in_us =
2748 			srf_update->flip_addr->flip_timestamp_in_us;
2749 		surface->time.index++;
2750 		if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2751 			surface->time.index = 0;
2752 
2753 		surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2754 	}
2755 
2756 	if (srf_update->scaling_info) {
2757 		surface->scaling_quality =
2758 				srf_update->scaling_info->scaling_quality;
2759 		surface->dst_rect =
2760 				srf_update->scaling_info->dst_rect;
2761 		surface->src_rect =
2762 				srf_update->scaling_info->src_rect;
2763 		surface->clip_rect =
2764 				srf_update->scaling_info->clip_rect;
2765 	}
2766 
2767 	if (srf_update->plane_info) {
2768 		surface->color_space =
2769 				srf_update->plane_info->color_space;
2770 		surface->format =
2771 				srf_update->plane_info->format;
2772 		surface->plane_size =
2773 				srf_update->plane_info->plane_size;
2774 		surface->rotation =
2775 				srf_update->plane_info->rotation;
2776 		surface->horizontal_mirror =
2777 				srf_update->plane_info->horizontal_mirror;
2778 		surface->stereo_format =
2779 				srf_update->plane_info->stereo_format;
2780 		surface->tiling_info =
2781 				srf_update->plane_info->tiling_info;
2782 		surface->visible =
2783 				srf_update->plane_info->visible;
2784 		surface->per_pixel_alpha =
2785 				srf_update->plane_info->per_pixel_alpha;
2786 		surface->global_alpha =
2787 				srf_update->plane_info->global_alpha;
2788 		surface->global_alpha_value =
2789 				srf_update->plane_info->global_alpha_value;
2790 		surface->dcc =
2791 				srf_update->plane_info->dcc;
2792 		surface->layer_index =
2793 				srf_update->plane_info->layer_index;
2794 	}
2795 
2796 	if (srf_update->gamma &&
2797 			(surface->gamma_correction !=
2798 					srf_update->gamma)) {
2799 		memcpy(&surface->gamma_correction->entries,
2800 			&srf_update->gamma->entries,
2801 			sizeof(struct dc_gamma_entries));
2802 		surface->gamma_correction->is_identity =
2803 			srf_update->gamma->is_identity;
2804 		surface->gamma_correction->num_entries =
2805 			srf_update->gamma->num_entries;
2806 		surface->gamma_correction->type =
2807 			srf_update->gamma->type;
2808 	}
2809 
2810 	if (srf_update->in_transfer_func &&
2811 			(surface->in_transfer_func !=
2812 				srf_update->in_transfer_func)) {
2813 		surface->in_transfer_func->sdr_ref_white_level =
2814 			srf_update->in_transfer_func->sdr_ref_white_level;
2815 		surface->in_transfer_func->tf =
2816 			srf_update->in_transfer_func->tf;
2817 		surface->in_transfer_func->type =
2818 			srf_update->in_transfer_func->type;
2819 		memcpy(&surface->in_transfer_func->tf_pts,
2820 			&srf_update->in_transfer_func->tf_pts,
2821 			sizeof(struct dc_transfer_func_distributed_points));
2822 	}
2823 
2824 	if (srf_update->func_shaper &&
2825 			(surface->in_shaper_func !=
2826 			srf_update->func_shaper))
2827 		memcpy(surface->in_shaper_func, srf_update->func_shaper,
2828 		sizeof(*surface->in_shaper_func));
2829 
2830 	if (srf_update->lut3d_func &&
2831 			(surface->lut3d_func !=
2832 			srf_update->lut3d_func))
2833 		memcpy(surface->lut3d_func, srf_update->lut3d_func,
2834 		sizeof(*surface->lut3d_func));
2835 
2836 	if (srf_update->hdr_mult.value)
2837 		surface->hdr_mult =
2838 				srf_update->hdr_mult;
2839 
2840 	if (srf_update->blend_tf &&
2841 			(surface->blend_tf !=
2842 			srf_update->blend_tf))
2843 		memcpy(surface->blend_tf, srf_update->blend_tf,
2844 		sizeof(*surface->blend_tf));
2845 
2846 	if (srf_update->input_csc_color_matrix)
2847 		surface->input_csc_color_matrix =
2848 			*srf_update->input_csc_color_matrix;
2849 
2850 	if (srf_update->coeff_reduction_factor)
2851 		surface->coeff_reduction_factor =
2852 			*srf_update->coeff_reduction_factor;
2853 
2854 	if (srf_update->gamut_remap_matrix)
2855 		surface->gamut_remap_matrix =
2856 			*srf_update->gamut_remap_matrix;
2857 }
2858 
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2859 static void copy_stream_update_to_stream(struct dc *dc,
2860 					 struct dc_state *context,
2861 					 struct dc_stream_state *stream,
2862 					 struct dc_stream_update *update)
2863 {
2864 	struct dc_context *dc_ctx = dc->ctx;
2865 
2866 	if (update == NULL || stream == NULL)
2867 		return;
2868 
2869 	if (update->src.height && update->src.width)
2870 		stream->src = update->src;
2871 
2872 	if (update->dst.height && update->dst.width)
2873 		stream->dst = update->dst;
2874 
2875 	if (update->out_transfer_func &&
2876 	    stream->out_transfer_func != update->out_transfer_func) {
2877 		stream->out_transfer_func->sdr_ref_white_level =
2878 			update->out_transfer_func->sdr_ref_white_level;
2879 		stream->out_transfer_func->tf = update->out_transfer_func->tf;
2880 		stream->out_transfer_func->type =
2881 			update->out_transfer_func->type;
2882 		memcpy(&stream->out_transfer_func->tf_pts,
2883 		       &update->out_transfer_func->tf_pts,
2884 		       sizeof(struct dc_transfer_func_distributed_points));
2885 	}
2886 
2887 	if (update->hdr_static_metadata)
2888 		stream->hdr_static_metadata = *update->hdr_static_metadata;
2889 
2890 	if (update->abm_level)
2891 		stream->abm_level = *update->abm_level;
2892 
2893 	if (update->periodic_interrupt)
2894 		stream->periodic_interrupt = *update->periodic_interrupt;
2895 
2896 	if (update->gamut_remap)
2897 		stream->gamut_remap_matrix = *update->gamut_remap;
2898 
2899 	/* Note: this being updated after mode set is currently not a use case
2900 	 * however if it arises OCSC would need to be reprogrammed at the
2901 	 * minimum
2902 	 */
2903 	if (update->output_color_space)
2904 		stream->output_color_space = *update->output_color_space;
2905 
2906 	if (update->output_csc_transform)
2907 		stream->csc_color_matrix = *update->output_csc_transform;
2908 
2909 	if (update->vrr_infopacket)
2910 		stream->vrr_infopacket = *update->vrr_infopacket;
2911 
2912 	if (update->allow_freesync)
2913 		stream->allow_freesync = *update->allow_freesync;
2914 
2915 	if (update->vrr_active_variable)
2916 		stream->vrr_active_variable = *update->vrr_active_variable;
2917 
2918 	if (update->vrr_active_fixed)
2919 		stream->vrr_active_fixed = *update->vrr_active_fixed;
2920 
2921 	if (update->crtc_timing_adjust)
2922 		stream->adjust = *update->crtc_timing_adjust;
2923 
2924 	if (update->dpms_off)
2925 		stream->dpms_off = *update->dpms_off;
2926 
2927 	if (update->hfvsif_infopacket)
2928 		stream->hfvsif_infopacket = *update->hfvsif_infopacket;
2929 
2930 	if (update->vtem_infopacket)
2931 		stream->vtem_infopacket = *update->vtem_infopacket;
2932 
2933 	if (update->vsc_infopacket)
2934 		stream->vsc_infopacket = *update->vsc_infopacket;
2935 
2936 	if (update->vsp_infopacket)
2937 		stream->vsp_infopacket = *update->vsp_infopacket;
2938 
2939 	if (update->adaptive_sync_infopacket)
2940 		stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
2941 
2942 	if (update->dither_option)
2943 		stream->dither_option = *update->dither_option;
2944 
2945 	if (update->pending_test_pattern)
2946 		stream->test_pattern = *update->pending_test_pattern;
2947 	/* update current stream with writeback info */
2948 	if (update->wb_update) {
2949 		int i;
2950 
2951 		stream->num_wb_info = update->wb_update->num_wb_info;
2952 		ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2953 		for (i = 0; i < stream->num_wb_info; i++)
2954 			stream->writeback_info[i] =
2955 				update->wb_update->writeback_info[i];
2956 	}
2957 	if (update->dsc_config) {
2958 		struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2959 		uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2960 		uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2961 				       update->dsc_config->num_slices_v != 0);
2962 
2963 		/* Use temporarry context for validating new DSC config */
2964 		struct dc_state *dsc_validate_context = dc_create_state(dc);
2965 
2966 		if (dsc_validate_context) {
2967 			dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2968 
2969 			stream->timing.dsc_cfg = *update->dsc_config;
2970 			stream->timing.flags.DSC = enable_dsc;
2971 			if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2972 				stream->timing.dsc_cfg = old_dsc_cfg;
2973 				stream->timing.flags.DSC = old_dsc_enabled;
2974 				update->dsc_config = NULL;
2975 			}
2976 
2977 			dc_release_state(dsc_validate_context);
2978 		} else {
2979 			DC_ERROR("Failed to allocate new validate context for DSC change\n");
2980 			update->dsc_config = NULL;
2981 		}
2982 	}
2983 }
2984 
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)2985 static bool update_planes_and_stream_state(struct dc *dc,
2986 		struct dc_surface_update *srf_updates, int surface_count,
2987 		struct dc_stream_state *stream,
2988 		struct dc_stream_update *stream_update,
2989 		enum surface_update_type *new_update_type,
2990 		struct dc_state **new_context)
2991 {
2992 	struct dc_state *context;
2993 	int i, j;
2994 	enum surface_update_type update_type;
2995 	const struct dc_stream_status *stream_status;
2996 	struct dc_context *dc_ctx = dc->ctx;
2997 
2998 	stream_status = dc_stream_get_status(stream);
2999 
3000 	if (!stream_status) {
3001 		if (surface_count) /* Only an error condition if surf_count non-zero*/
3002 			ASSERT(false);
3003 
3004 		return false; /* Cannot commit surface to stream that is not committed */
3005 	}
3006 
3007 	context = dc->current_state;
3008 
3009 	update_type = dc_check_update_surfaces_for_stream(
3010 			dc, srf_updates, surface_count, stream_update, stream_status);
3011 
3012 	/* update current stream with the new updates */
3013 	copy_stream_update_to_stream(dc, context, stream, stream_update);
3014 
3015 	/* do not perform surface update if surface has invalid dimensions
3016 	 * (all zero) and no scaling_info is provided
3017 	 */
3018 	if (surface_count > 0) {
3019 		for (i = 0; i < surface_count; i++) {
3020 			if ((srf_updates[i].surface->src_rect.width == 0 ||
3021 				 srf_updates[i].surface->src_rect.height == 0 ||
3022 				 srf_updates[i].surface->dst_rect.width == 0 ||
3023 				 srf_updates[i].surface->dst_rect.height == 0) &&
3024 				(!srf_updates[i].scaling_info ||
3025 				  srf_updates[i].scaling_info->src_rect.width == 0 ||
3026 				  srf_updates[i].scaling_info->src_rect.height == 0 ||
3027 				  srf_updates[i].scaling_info->dst_rect.width == 0 ||
3028 				  srf_updates[i].scaling_info->dst_rect.height == 0)) {
3029 				DC_ERROR("Invalid src/dst rects in surface update!\n");
3030 				return false;
3031 			}
3032 		}
3033 	}
3034 
3035 	if (update_type >= update_surface_trace_level)
3036 		update_surface_trace(dc, srf_updates, surface_count);
3037 
3038 	if (update_type >= UPDATE_TYPE_FULL) {
3039 		struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3040 
3041 		for (i = 0; i < surface_count; i++)
3042 			new_planes[i] = srf_updates[i].surface;
3043 
3044 		/* initialize scratch memory for building context */
3045 		context = dc_create_state(dc);
3046 		if (context == NULL) {
3047 			DC_ERROR("Failed to allocate new validate context!\n");
3048 			return false;
3049 		}
3050 
3051 		dc_resource_state_copy_construct(
3052 				dc->current_state, context);
3053 
3054 		/* For each full update, remove all existing phantom pipes first.
3055 		 * Ensures that we have enough pipes for newly added MPO planes
3056 		 */
3057 		if (dc->res_pool->funcs->remove_phantom_pipes)
3058 			dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
3059 
3060 		/*remove old surfaces from context */
3061 		if (!dc_rem_all_planes_for_stream(dc, stream, context)) {
3062 
3063 			BREAK_TO_DEBUGGER();
3064 			goto fail;
3065 		}
3066 
3067 		/* add surface to context */
3068 		if (!dc_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3069 
3070 			BREAK_TO_DEBUGGER();
3071 			goto fail;
3072 		}
3073 	}
3074 
3075 	/* save update parameters into surface */
3076 	for (i = 0; i < surface_count; i++) {
3077 		struct dc_plane_state *surface = srf_updates[i].surface;
3078 
3079 		copy_surface_update_to_plane(surface, &srf_updates[i]);
3080 
3081 		if (update_type >= UPDATE_TYPE_MED) {
3082 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3083 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3084 
3085 				if (pipe_ctx->plane_state != surface)
3086 					continue;
3087 
3088 				resource_build_scaling_params(pipe_ctx);
3089 			}
3090 		}
3091 	}
3092 
3093 	if (update_type == UPDATE_TYPE_FULL) {
3094 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3095 			/* For phantom pipes we remove and create a new set of phantom pipes
3096 			 * for each full update (because we don't know if we'll need phantom
3097 			 * pipes until after the first round of validation). However, if validation
3098 			 * fails we need to keep the existing phantom pipes (because we don't update
3099 			 * the dc->current_state).
3100 			 *
3101 			 * The phantom stream/plane refcount is decremented for validation because
3102 			 * we assume it'll be removed (the free comes when the dc_state is freed),
3103 			 * but if validation fails we have to increment back the refcount so it's
3104 			 * consistent.
3105 			 */
3106 			if (dc->res_pool->funcs->retain_phantom_pipes)
3107 				dc->res_pool->funcs->retain_phantom_pipes(dc, dc->current_state);
3108 			BREAK_TO_DEBUGGER();
3109 			goto fail;
3110 		}
3111 	}
3112 
3113 	*new_context = context;
3114 	*new_update_type = update_type;
3115 
3116 	return true;
3117 
3118 fail:
3119 	dc_release_state(context);
3120 
3121 	return false;
3122 
3123 }
3124 
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3125 static void commit_planes_do_stream_update(struct dc *dc,
3126 		struct dc_stream_state *stream,
3127 		struct dc_stream_update *stream_update,
3128 		enum surface_update_type update_type,
3129 		struct dc_state *context)
3130 {
3131 	int j;
3132 
3133 	// Stream updates
3134 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3135 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3136 
3137 		if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3138 
3139 			if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3140 				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3141 
3142 			if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3143 					stream_update->vrr_infopacket ||
3144 					stream_update->vsc_infopacket ||
3145 					stream_update->vsp_infopacket ||
3146 					stream_update->hfvsif_infopacket ||
3147 					stream_update->adaptive_sync_infopacket ||
3148 					stream_update->vtem_infopacket) {
3149 				resource_build_info_frame(pipe_ctx);
3150 				dc->hwss.update_info_frame(pipe_ctx);
3151 
3152 				if (dc_is_dp_signal(pipe_ctx->stream->signal))
3153 					dc->link_srv->dp_trace_source_sequence(
3154 							pipe_ctx->stream->link,
3155 							DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3156 			}
3157 
3158 			if (stream_update->hdr_static_metadata &&
3159 					stream->use_dynamic_meta &&
3160 					dc->hwss.set_dmdata_attributes &&
3161 					pipe_ctx->stream->dmdata_address.quad_part != 0)
3162 				dc->hwss.set_dmdata_attributes(pipe_ctx);
3163 
3164 			if (stream_update->gamut_remap)
3165 				dc_stream_set_gamut_remap(dc, stream);
3166 
3167 			if (stream_update->output_csc_transform)
3168 				dc_stream_program_csc_matrix(dc, stream);
3169 
3170 			if (stream_update->dither_option) {
3171 				struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3172 				resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3173 									&pipe_ctx->stream->bit_depth_params);
3174 				pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3175 						&stream->bit_depth_params,
3176 						&stream->clamping);
3177 				while (odm_pipe) {
3178 					odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3179 							&stream->bit_depth_params,
3180 							&stream->clamping);
3181 					odm_pipe = odm_pipe->next_odm_pipe;
3182 				}
3183 			}
3184 
3185 
3186 			/* Full fe update*/
3187 			if (update_type == UPDATE_TYPE_FAST)
3188 				continue;
3189 
3190 			if (stream_update->dsc_config)
3191 				dc->link_srv->update_dsc_config(pipe_ctx);
3192 
3193 			if (stream_update->mst_bw_update) {
3194 				if (stream_update->mst_bw_update->is_increase)
3195 					dc->link_srv->increase_mst_payload(pipe_ctx,
3196 							stream_update->mst_bw_update->mst_stream_bw);
3197  				else
3198 					dc->link_srv->reduce_mst_payload(pipe_ctx,
3199 							stream_update->mst_bw_update->mst_stream_bw);
3200  			}
3201 
3202 			if (stream_update->pending_test_pattern) {
3203 				dc_link_dp_set_test_pattern(stream->link,
3204 					stream->test_pattern.type,
3205 					stream->test_pattern.color_space,
3206 					stream->test_pattern.p_link_settings,
3207 					stream->test_pattern.p_custom_pattern,
3208 					stream->test_pattern.cust_pattern_size);
3209 			}
3210 
3211 			if (stream_update->dpms_off) {
3212 				if (*stream_update->dpms_off) {
3213 					dc->link_srv->set_dpms_off(pipe_ctx);
3214 					/* for dpms, keep acquired resources*/
3215 					if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3216 						pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3217 
3218 					dc->optimized_required = true;
3219 
3220 				} else {
3221 					if (get_seamless_boot_stream_count(context) == 0)
3222 						dc->hwss.prepare_bandwidth(dc, dc->current_state);
3223 					dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3224 				}
3225 			} else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3226 					&& !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3227 				/*
3228 				 * Workaround for firmware issue in some receivers where they don't pick up
3229 				 * correct output color space unless DP link is disabled/re-enabled
3230 				 */
3231 				dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3232 			}
3233 
3234 			if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3235 				bool should_program_abm = true;
3236 
3237 				// if otg funcs defined check if blanked before programming
3238 				if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3239 					if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3240 						should_program_abm = false;
3241 
3242 				if (should_program_abm) {
3243 					if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3244 						dc->hwss.set_abm_immediate_disable(pipe_ctx);
3245 					} else {
3246 						pipe_ctx->stream_res.abm->funcs->set_abm_level(
3247 							pipe_ctx->stream_res.abm, stream->abm_level);
3248 					}
3249 				}
3250 			}
3251 		}
3252 	}
3253 }
3254 
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3255 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3256 {
3257 	if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3258 			|| stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3259 			&& stream->ctx->dce_version >= DCN_VERSION_3_1)
3260 		return true;
3261 
3262 	if (stream->link->replay_settings.config.replay_supported)
3263 		return true;
3264 
3265 	return false;
3266 }
3267 
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3268 void dc_dmub_update_dirty_rect(struct dc *dc,
3269 			       int surface_count,
3270 			       struct dc_stream_state *stream,
3271 			       struct dc_surface_update *srf_updates,
3272 			       struct dc_state *context)
3273 {
3274 	union dmub_rb_cmd cmd;
3275 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3276 	unsigned int i, j;
3277 	unsigned int panel_inst = 0;
3278 
3279 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3280 		return;
3281 
3282 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3283 		return;
3284 
3285 	memset(&cmd, 0x0, sizeof(cmd));
3286 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3287 	cmd.update_dirty_rect.header.sub_type = 0;
3288 	cmd.update_dirty_rect.header.payload_bytes =
3289 		sizeof(cmd.update_dirty_rect) -
3290 		sizeof(cmd.update_dirty_rect.header);
3291 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3292 	for (i = 0; i < surface_count; i++) {
3293 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3294 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3295 
3296 		if (!srf_updates[i].surface || !flip_addr)
3297 			continue;
3298 		/* Do not send in immediate flip mode */
3299 		if (srf_updates[i].surface->flip_immediate)
3300 			continue;
3301 
3302 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3303 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3304 				sizeof(flip_addr->dirty_rects));
3305 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3306 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3307 
3308 			if (pipe_ctx->stream != stream)
3309 				continue;
3310 			if (pipe_ctx->plane_state != plane_state)
3311 				continue;
3312 
3313 			update_dirty_rect->panel_inst = panel_inst;
3314 			update_dirty_rect->pipe_idx = j;
3315 			dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3316 		}
3317 	}
3318 }
3319 
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3320 static void build_dmub_update_dirty_rect(
3321 		struct dc *dc,
3322 		int surface_count,
3323 		struct dc_stream_state *stream,
3324 		struct dc_surface_update *srf_updates,
3325 		struct dc_state *context,
3326 		struct dc_dmub_cmd dc_dmub_cmd[],
3327 		unsigned int *dmub_cmd_count)
3328 {
3329 	union dmub_rb_cmd cmd;
3330 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3331 	unsigned int i, j;
3332 	unsigned int panel_inst = 0;
3333 
3334 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3335 		return;
3336 
3337 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3338 		return;
3339 
3340 	memset(&cmd, 0x0, sizeof(cmd));
3341 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3342 	cmd.update_dirty_rect.header.sub_type = 0;
3343 	cmd.update_dirty_rect.header.payload_bytes =
3344 		sizeof(cmd.update_dirty_rect) -
3345 		sizeof(cmd.update_dirty_rect.header);
3346 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3347 	for (i = 0; i < surface_count; i++) {
3348 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3349 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3350 
3351 		if (!srf_updates[i].surface || !flip_addr)
3352 			continue;
3353 		/* Do not send in immediate flip mode */
3354 		if (srf_updates[i].surface->flip_immediate)
3355 			continue;
3356 		update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3357 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3358 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3359 				sizeof(flip_addr->dirty_rects));
3360 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3361 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3362 
3363 			if (pipe_ctx->stream != stream)
3364 				continue;
3365 			if (pipe_ctx->plane_state != plane_state)
3366 				continue;
3367 			update_dirty_rect->panel_inst = panel_inst;
3368 			update_dirty_rect->pipe_idx = j;
3369 			dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3370 			dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3371 			(*dmub_cmd_count)++;
3372 		}
3373 	}
3374 }
3375 
3376 
3377 /**
3378  * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3379  *
3380  * @dc: Current DC state
3381  * @srf_updates: Array of surface updates
3382  * @surface_count: Number of surfaces that have an updated
3383  * @stream: Corresponding stream to be updated in the current flip
3384  * @context: New DC state to be programmed
3385  *
3386  * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3387  * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3388  *
3389  * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3390  * to build an array of commands and have them sent while the OTG lock is acquired.
3391  *
3392  * Return: void
3393  */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3394 static void build_dmub_cmd_list(struct dc *dc,
3395 		struct dc_surface_update *srf_updates,
3396 		int surface_count,
3397 		struct dc_stream_state *stream,
3398 		struct dc_state *context,
3399 		struct dc_dmub_cmd dc_dmub_cmd[],
3400 		unsigned int *dmub_cmd_count)
3401 {
3402 	// Initialize cmd count to 0
3403 	*dmub_cmd_count = 0;
3404 	build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3405 }
3406 
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3407 static void commit_planes_for_stream_fast(struct dc *dc,
3408 		struct dc_surface_update *srf_updates,
3409 		int surface_count,
3410 		struct dc_stream_state *stream,
3411 		struct dc_stream_update *stream_update,
3412 		enum surface_update_type update_type,
3413 		struct dc_state *context)
3414 {
3415 	int i, j;
3416 	struct pipe_ctx *top_pipe_to_program = NULL;
3417 	dc_z10_restore(dc);
3418 
3419 	top_pipe_to_program = resource_get_otg_master_for_stream(
3420 			&context->res_ctx,
3421 			stream);
3422 
3423 	if (dc->debug.visual_confirm) {
3424 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3425 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3426 
3427 			if (pipe->stream && pipe->plane_state)
3428 				dc_update_viusal_confirm_color(dc, context, pipe);
3429 		}
3430 	}
3431 
3432 	for (i = 0; i < surface_count; i++) {
3433 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3434 		/*set logical flag for lock/unlock use*/
3435 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3436 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3437 
3438 			if (!pipe_ctx->plane_state)
3439 				continue;
3440 			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3441 				continue;
3442 			pipe_ctx->plane_state->triplebuffer_flips = false;
3443 			if (update_type == UPDATE_TYPE_FAST &&
3444 			    dc->hwss.program_triplebuffer &&
3445 			    !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3446 				/*triple buffer for VUpdate  only*/
3447 				pipe_ctx->plane_state->triplebuffer_flips = true;
3448 			}
3449 		}
3450 	}
3451 
3452 	build_dmub_cmd_list(dc,
3453 			srf_updates,
3454 			surface_count,
3455 			stream,
3456 			context,
3457 			context->dc_dmub_cmd,
3458 			&(context->dmub_cmd_count));
3459 	hwss_build_fast_sequence(dc,
3460 			context->dc_dmub_cmd,
3461 			context->dmub_cmd_count,
3462 			context->block_sequence,
3463 			&(context->block_sequence_steps),
3464 			top_pipe_to_program);
3465 	hwss_execute_sequence(dc,
3466 			context->block_sequence,
3467 			context->block_sequence_steps);
3468 	/* Clear update flags so next flip doesn't have redundant programming
3469 	 * (if there's no stream update, the update flags are not cleared).
3470 	 * Surface updates are cleared unconditionally at the beginning of each flip,
3471 	 * so no need to clear here.
3472 	 */
3473 	if (top_pipe_to_program->stream)
3474 		top_pipe_to_program->stream->update_flags.raw = 0;
3475 }
3476 
wait_for_outstanding_hw_updates(struct dc * dc,const struct dc_state * dc_context)3477 static void wait_for_outstanding_hw_updates(struct dc *dc, const struct dc_state *dc_context)
3478 {
3479 /*
3480  * This function calls HWSS to wait for any potentially double buffered
3481  * operations to complete. It should be invoked as a pre-amble prior
3482  * to full update programming before asserting any HW locks.
3483  */
3484 	int pipe_idx;
3485 	int opp_inst;
3486 	int opp_count = dc->res_pool->pipe_count;
3487 	struct hubp *hubp;
3488 	int mpcc_inst;
3489 	const struct pipe_ctx *pipe_ctx;
3490 
3491 	for (pipe_idx = 0; pipe_idx < dc->res_pool->pipe_count; pipe_idx++) {
3492 		pipe_ctx = &dc_context->res_ctx.pipe_ctx[pipe_idx];
3493 
3494 		if (!pipe_ctx->stream)
3495 			continue;
3496 
3497 		if (pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear)
3498 			pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear(pipe_ctx->stream_res.tg);
3499 
3500 		hubp = pipe_ctx->plane_res.hubp;
3501 		if (!hubp)
3502 			continue;
3503 
3504 		mpcc_inst = hubp->inst;
3505 		// MPCC inst is equal to pipe index in practice
3506 		for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
3507 			if (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst]) {
3508 				dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
3509 				dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
3510 				break;
3511 			}
3512 		}
3513 	}
3514 }
3515 
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3516 static void commit_planes_for_stream(struct dc *dc,
3517 		struct dc_surface_update *srf_updates,
3518 		int surface_count,
3519 		struct dc_stream_state *stream,
3520 		struct dc_stream_update *stream_update,
3521 		enum surface_update_type update_type,
3522 		struct dc_state *context)
3523 {
3524 	int i, j;
3525 	struct pipe_ctx *top_pipe_to_program = NULL;
3526 	bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3527 	bool subvp_prev_use = false;
3528 	bool subvp_curr_use = false;
3529 
3530 	// Once we apply the new subvp context to hardware it won't be in the
3531 	// dc->current_state anymore, so we have to cache it before we apply
3532 	// the new SubVP context
3533 	subvp_prev_use = false;
3534 	dc_z10_restore(dc);
3535 	if (update_type == UPDATE_TYPE_FULL)
3536 		wait_for_outstanding_hw_updates(dc, context);
3537 
3538 	if (update_type == UPDATE_TYPE_FULL) {
3539 		dc_allow_idle_optimizations(dc, false);
3540 
3541 		if (get_seamless_boot_stream_count(context) == 0)
3542 			dc->hwss.prepare_bandwidth(dc, context);
3543 
3544 		if (dc->hwss.update_dsc_pg)
3545 			dc->hwss.update_dsc_pg(dc, context, false);
3546 
3547 		context_clock_trace(dc, context);
3548 	}
3549 
3550 	top_pipe_to_program = resource_get_otg_master_for_stream(
3551 				&context->res_ctx,
3552 				stream);
3553 
3554 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3555 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3556 
3557 		// Check old context for SubVP
3558 		subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
3559 		if (subvp_prev_use)
3560 			break;
3561 	}
3562 
3563 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3564 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3565 
3566 		if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
3567 			subvp_curr_use = true;
3568 			break;
3569 		}
3570 	}
3571 
3572 	if (dc->debug.visual_confirm)
3573 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3574 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3575 
3576 			if (pipe->stream && pipe->plane_state)
3577 				dc_update_viusal_confirm_color(dc, context, pipe);
3578 		}
3579 
3580 	if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3581 		struct pipe_ctx *mpcc_pipe;
3582 		struct pipe_ctx *odm_pipe;
3583 
3584 		for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3585 			for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3586 				odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3587 	}
3588 
3589 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3590 		if (top_pipe_to_program &&
3591 			top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3592 			if (should_use_dmub_lock(stream->link)) {
3593 				union dmub_hw_lock_flags hw_locks = { 0 };
3594 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3595 
3596 				hw_locks.bits.lock_dig = 1;
3597 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3598 
3599 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3600 							true,
3601 							&hw_locks,
3602 							&inst_flags);
3603 			} else
3604 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3605 						top_pipe_to_program->stream_res.tg);
3606 		}
3607 
3608 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3609 		if (dc->hwss.subvp_pipe_control_lock)
3610 				dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3611 		dc->hwss.interdependent_update_lock(dc, context, true);
3612 
3613 	} else {
3614 		if (dc->hwss.subvp_pipe_control_lock)
3615 			dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3616 		/* Lock the top pipe while updating plane addrs, since freesync requires
3617 		 *  plane addr update event triggers to be synchronized.
3618 		 *  top_pipe_to_program is expected to never be NULL
3619 		 */
3620 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3621 	}
3622 
3623 	dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3624 
3625 	// Stream updates
3626 	if (stream_update)
3627 		commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3628 
3629 	if (surface_count == 0) {
3630 		/*
3631 		 * In case of turning off screen, no need to program front end a second time.
3632 		 * just return after program blank.
3633 		 */
3634 		if (dc->hwss.apply_ctx_for_surface)
3635 			dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3636 		if (dc->hwss.program_front_end_for_ctx)
3637 			dc->hwss.program_front_end_for_ctx(dc, context);
3638 
3639 		if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3640 			dc->hwss.interdependent_update_lock(dc, context, false);
3641 		} else {
3642 			dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3643 		}
3644 		dc->hwss.post_unlock_program_front_end(dc, context);
3645 
3646 		if (update_type != UPDATE_TYPE_FAST)
3647 			if (dc->hwss.commit_subvp_config)
3648 				dc->hwss.commit_subvp_config(dc, context);
3649 
3650 		/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3651 		 * move the SubVP lock to after the phantom pipes have been setup
3652 		 */
3653 		if (dc->hwss.subvp_pipe_control_lock)
3654 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
3655 							 NULL, subvp_prev_use);
3656 		return;
3657 	}
3658 
3659 	if (update_type != UPDATE_TYPE_FAST) {
3660 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3661 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3662 
3663 			if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
3664 				dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
3665 				pipe_ctx->stream && pipe_ctx->plane_state) {
3666 				/* Only update visual confirm for SUBVP and Mclk switching here.
3667 				 * The bar appears on all pipes, so we need to update the bar on all displays,
3668 				 * so the information doesn't get stale.
3669 				 */
3670 				dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
3671 						pipe_ctx->plane_res.hubp->inst);
3672 			}
3673 		}
3674 	}
3675 
3676 	for (i = 0; i < surface_count; i++) {
3677 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3678 		/*set logical flag for lock/unlock use*/
3679 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3680 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3681 			if (!pipe_ctx->plane_state)
3682 				continue;
3683 			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3684 				continue;
3685 			pipe_ctx->plane_state->triplebuffer_flips = false;
3686 			if (update_type == UPDATE_TYPE_FAST &&
3687 				dc->hwss.program_triplebuffer != NULL &&
3688 				!pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3689 					/*triple buffer for VUpdate  only*/
3690 					pipe_ctx->plane_state->triplebuffer_flips = true;
3691 			}
3692 		}
3693 		if (update_type == UPDATE_TYPE_FULL) {
3694 			/* force vsync flip when reconfiguring pipes to prevent underflow */
3695 			plane_state->flip_immediate = false;
3696 		}
3697 	}
3698 
3699 	// Update Type FULL, Surface updates
3700 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3701 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3702 
3703 		if (!pipe_ctx->top_pipe &&
3704 			!pipe_ctx->prev_odm_pipe &&
3705 			should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3706 			struct dc_stream_status *stream_status = NULL;
3707 
3708 			if (!pipe_ctx->plane_state)
3709 				continue;
3710 
3711 			/* Full fe update*/
3712 			if (update_type == UPDATE_TYPE_FAST)
3713 				continue;
3714 
3715 			ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3716 
3717 			if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3718 				/*turn off triple buffer for full update*/
3719 				dc->hwss.program_triplebuffer(
3720 					dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3721 			}
3722 			stream_status =
3723 				stream_get_status(context, pipe_ctx->stream);
3724 
3725 			if (dc->hwss.apply_ctx_for_surface)
3726 				dc->hwss.apply_ctx_for_surface(
3727 					dc, pipe_ctx->stream, stream_status->plane_count, context);
3728 		}
3729 	}
3730 	if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3731 		dc->hwss.program_front_end_for_ctx(dc, context);
3732 		if (dc->debug.validate_dml_output) {
3733 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
3734 				struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
3735 				if (cur_pipe->stream == NULL)
3736 					continue;
3737 
3738 				cur_pipe->plane_res.hubp->funcs->validate_dml_output(
3739 						cur_pipe->plane_res.hubp, dc->ctx,
3740 						&context->res_ctx.pipe_ctx[i].rq_regs,
3741 						&context->res_ctx.pipe_ctx[i].dlg_regs,
3742 						&context->res_ctx.pipe_ctx[i].ttu_regs);
3743 			}
3744 		}
3745 	}
3746 
3747 	// Update Type FAST, Surface updates
3748 	if (update_type == UPDATE_TYPE_FAST) {
3749 		if (dc->hwss.set_flip_control_gsl)
3750 			for (i = 0; i < surface_count; i++) {
3751 				struct dc_plane_state *plane_state = srf_updates[i].surface;
3752 
3753 				for (j = 0; j < dc->res_pool->pipe_count; j++) {
3754 					struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3755 
3756 					if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3757 						continue;
3758 
3759 					if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3760 						continue;
3761 
3762 					// GSL has to be used for flip immediate
3763 					dc->hwss.set_flip_control_gsl(pipe_ctx,
3764 							pipe_ctx->plane_state->flip_immediate);
3765 				}
3766 			}
3767 
3768 		/* Perform requested Updates */
3769 		for (i = 0; i < surface_count; i++) {
3770 			struct dc_plane_state *plane_state = srf_updates[i].surface;
3771 
3772 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3773 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3774 
3775 				if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3776 					continue;
3777 
3778 				if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3779 					continue;
3780 
3781 				/*program triple buffer after lock based on flip type*/
3782 				if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3783 					/*only enable triplebuffer for  fast_update*/
3784 					dc->hwss.program_triplebuffer(
3785 						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3786 				}
3787 				if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3788 					dc->hwss.update_plane_addr(dc, pipe_ctx);
3789 			}
3790 		}
3791 	}
3792 
3793 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3794 		dc->hwss.interdependent_update_lock(dc, context, false);
3795 	} else {
3796 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3797 	}
3798 
3799 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3800 		if (top_pipe_to_program &&
3801 		    top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3802 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3803 				top_pipe_to_program->stream_res.tg,
3804 				CRTC_STATE_VACTIVE);
3805 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3806 				top_pipe_to_program->stream_res.tg,
3807 				CRTC_STATE_VBLANK);
3808 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3809 				top_pipe_to_program->stream_res.tg,
3810 				CRTC_STATE_VACTIVE);
3811 
3812 			if (should_use_dmub_lock(stream->link)) {
3813 				union dmub_hw_lock_flags hw_locks = { 0 };
3814 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3815 
3816 				hw_locks.bits.lock_dig = 1;
3817 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3818 
3819 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3820 							false,
3821 							&hw_locks,
3822 							&inst_flags);
3823 			} else
3824 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
3825 					top_pipe_to_program->stream_res.tg);
3826 		}
3827 
3828 	if (subvp_curr_use) {
3829 		/* If enabling subvp or transitioning from subvp->subvp, enable the
3830 		 * phantom streams before we program front end for the phantom pipes.
3831 		 */
3832 		if (update_type != UPDATE_TYPE_FAST) {
3833 			if (dc->hwss.enable_phantom_streams)
3834 				dc->hwss.enable_phantom_streams(dc, context);
3835 		}
3836 	}
3837 
3838 	if (update_type != UPDATE_TYPE_FAST)
3839 		dc->hwss.post_unlock_program_front_end(dc, context);
3840 
3841 	if (subvp_prev_use && !subvp_curr_use) {
3842 		/* If disabling subvp, disable phantom streams after front end
3843 		 * programming has completed (we turn on phantom OTG in order
3844 		 * to complete the plane disable for phantom pipes).
3845 		 */
3846 		dc->hwss.apply_ctx_to_hw(dc, context);
3847 	}
3848 
3849 	if (update_type != UPDATE_TYPE_FAST)
3850 		if (dc->hwss.commit_subvp_config)
3851 			dc->hwss.commit_subvp_config(dc, context);
3852 	/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3853 	 * move the SubVP lock to after the phantom pipes have been setup
3854 	 */
3855 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3856 		if (dc->hwss.subvp_pipe_control_lock)
3857 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3858 	} else {
3859 		if (dc->hwss.subvp_pipe_control_lock)
3860 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3861 	}
3862 
3863 	// Fire manual trigger only when bottom plane is flipped
3864 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3865 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3866 
3867 		if (!pipe_ctx->plane_state)
3868 			continue;
3869 
3870 		if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
3871 				!pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
3872 				!pipe_ctx->plane_state->update_flags.bits.addr_update ||
3873 				pipe_ctx->plane_state->skip_manual_trigger)
3874 			continue;
3875 
3876 		if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
3877 			pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
3878 	}
3879 }
3880 
3881 /**
3882  * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
3883  *
3884  * @dc: Used to get the current state status
3885  * @stream: Target stream, which we want to remove the attached planes
3886  * @surface_count: Number of surface update
3887  * @is_plane_addition: [in] Fill out with true if it is a plane addition case
3888  *
3889  * DCN32x and newer support a feature named Dynamic ODM which can conflict with
3890  * the MPO if used simultaneously in some specific configurations (e.g.,
3891  * 4k@144). This function checks if the incoming context requires applying a
3892  * transition state with unnecessary pipe splitting and ODM disabled to
3893  * circumvent our hardware limitations to prevent this edge case. If the OPP
3894  * associated with an MPCC might change due to plane additions, this function
3895  * returns true.
3896  *
3897  * Return:
3898  * Return true if OPP and MPCC might change, otherwise, return false.
3899  */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,int surface_count,bool * is_plane_addition)3900 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
3901 		struct dc_stream_state *stream,
3902 		int surface_count,
3903 		bool *is_plane_addition)
3904 {
3905 
3906 	struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
3907 	bool force_minimal_pipe_splitting = false;
3908 	bool subvp_active = false;
3909 	uint32_t i;
3910 
3911 	*is_plane_addition = false;
3912 
3913 	if (cur_stream_status &&
3914 			dc->current_state->stream_count > 0 &&
3915 			dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
3916 		/* determine if minimal transition is required due to MPC*/
3917 		if (surface_count > 0) {
3918 			if (cur_stream_status->plane_count > surface_count) {
3919 				force_minimal_pipe_splitting = true;
3920 			} else if (cur_stream_status->plane_count < surface_count) {
3921 				force_minimal_pipe_splitting = true;
3922 				*is_plane_addition = true;
3923 			}
3924 		}
3925 	}
3926 
3927 	if (cur_stream_status &&
3928 			dc->current_state->stream_count == 1 &&
3929 			dc->debug.enable_single_display_2to1_odm_policy) {
3930 		/* determine if minimal transition is required due to dynamic ODM*/
3931 		if (surface_count > 0) {
3932 			if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
3933 				force_minimal_pipe_splitting = true;
3934 			} else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
3935 				force_minimal_pipe_splitting = true;
3936 				*is_plane_addition = true;
3937 			}
3938 		}
3939 	}
3940 
3941 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3942 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3943 
3944 		if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
3945 			subvp_active = true;
3946 			break;
3947 		}
3948 	}
3949 
3950 	/* For SubVP when adding or removing planes we need to add a minimal transition
3951 	 * (even when disabling all planes). Whenever disabling a phantom pipe, we
3952 	 * must use the minimal transition path to disable the pipe correctly.
3953 	 *
3954 	 * We want to use the minimal transition whenever subvp is active, not only if
3955 	 * a plane is being added / removed from a subvp stream (MPO plane can be added
3956 	 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
3957 	 * a min transition to disable subvp.
3958 	 */
3959 	if (cur_stream_status && subvp_active) {
3960 		/* determine if minimal transition is required due to SubVP*/
3961 		if (cur_stream_status->plane_count > surface_count) {
3962 			force_minimal_pipe_splitting = true;
3963 		} else if (cur_stream_status->plane_count < surface_count) {
3964 			force_minimal_pipe_splitting = true;
3965 			*is_plane_addition = true;
3966 		}
3967 	}
3968 
3969 	return force_minimal_pipe_splitting;
3970 }
3971 
3972 /**
3973  * commit_minimal_transition_state - Create a transition pipe split state
3974  *
3975  * @dc: Used to get the current state status
3976  * @transition_base_context: New transition state
3977  *
3978  * In some specific configurations, such as pipe split on multi-display with
3979  * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
3980  * programming when moving to new planes. To mitigate those types of problems,
3981  * this function adds a transition state that minimizes pipe usage before
3982  * programming the new configuration. When adding a new plane, the current
3983  * state requires the least pipes, so it is applied without splitting. When
3984  * removing a plane, the new state requires the least pipes, so it is applied
3985  * without splitting.
3986  *
3987  * Return:
3988  * Return false if something is wrong in the transition state.
3989  */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)3990 static bool commit_minimal_transition_state(struct dc *dc,
3991 		struct dc_state *transition_base_context)
3992 {
3993 	struct dc_state *transition_context = dc_create_state(dc);
3994 	enum pipe_split_policy tmp_mpc_policy = 0;
3995 	bool temp_dynamic_odm_policy = 0;
3996 	bool temp_subvp_policy = 0;
3997 	enum dc_status ret = DC_ERROR_UNEXPECTED;
3998 	unsigned int i, j;
3999 	unsigned int pipe_in_use = 0;
4000 	bool subvp_in_use = false;
4001 	bool odm_in_use = false;
4002 
4003 	if (!transition_context)
4004 		return false;
4005 	/* Setup:
4006 	 * Store the current ODM and MPC config in some temp variables to be
4007 	 * restored after we commit the transition state.
4008 	 */
4009 
4010 	/* check current pipes in use*/
4011 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4012 		struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4013 
4014 		if (pipe->plane_state)
4015 			pipe_in_use++;
4016 	}
4017 
4018 	/* If SubVP is enabled and we are adding or removing planes from any main subvp
4019 	 * pipe, we must use the minimal transition.
4020 	 */
4021 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4022 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4023 
4024 		if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
4025 			subvp_in_use = true;
4026 			break;
4027 		}
4028 	}
4029 
4030 	/* If ODM is enabled and we are adding or removing planes from any ODM
4031 	 * pipe, we must use the minimal transition.
4032 	 */
4033 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4034 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4035 
4036 		if (pipe->stream && pipe->next_odm_pipe) {
4037 			odm_in_use = true;
4038 			break;
4039 		}
4040 	}
4041 
4042 	/* When the OS add a new surface if we have been used all of pipes with odm combine
4043 	 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4044 	 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4045 	 * call it again. Otherwise return true to skip.
4046 	 *
4047 	 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4048 	 * enter/exit MPO when DCN still have enough resources.
4049 	 */
4050 	if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use) {
4051 		dc_release_state(transition_context);
4052 		return true;
4053 	}
4054 
4055 	if (!dc->config.is_vmin_only_asic) {
4056 		tmp_mpc_policy = dc->debug.pipe_split_policy;
4057 		dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4058 	}
4059 
4060 	temp_dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4061 	dc->debug.enable_single_display_2to1_odm_policy = false;
4062 
4063 	temp_subvp_policy = dc->debug.force_disable_subvp;
4064 	dc->debug.force_disable_subvp = true;
4065 
4066 	dc_resource_state_copy_construct(transition_base_context, transition_context);
4067 
4068 	/* commit minimal state */
4069 	if (dc->res_pool->funcs->validate_bandwidth(dc, transition_context, false)) {
4070 		for (i = 0; i < transition_context->stream_count; i++) {
4071 			struct dc_stream_status *stream_status = &transition_context->stream_status[i];
4072 
4073 			for (j = 0; j < stream_status->plane_count; j++) {
4074 				struct dc_plane_state *plane_state = stream_status->plane_states[j];
4075 
4076 				/* force vsync flip when reconfiguring pipes to prevent underflow
4077 				 * and corruption
4078 				 */
4079 				plane_state->flip_immediate = false;
4080 			}
4081 		}
4082 
4083 		ret = dc_commit_state_no_check(dc, transition_context);
4084 	}
4085 
4086 	/* always release as dc_commit_state_no_check retains in good case */
4087 	dc_release_state(transition_context);
4088 
4089 	/* TearDown:
4090 	 * Restore original configuration for ODM and MPO.
4091 	 */
4092 	if (!dc->config.is_vmin_only_asic)
4093 		dc->debug.pipe_split_policy = tmp_mpc_policy;
4094 
4095 	dc->debug.enable_single_display_2to1_odm_policy = temp_dynamic_odm_policy;
4096 	dc->debug.force_disable_subvp = temp_subvp_policy;
4097 
4098 	if (ret != DC_OK) {
4099 		/* this should never happen */
4100 		BREAK_TO_DEBUGGER();
4101 		return false;
4102 	}
4103 
4104 	/* force full surface update */
4105 	for (i = 0; i < dc->current_state->stream_count; i++) {
4106 		for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4107 			dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4108 		}
4109 	}
4110 
4111 	return true;
4112 }
4113 
4114 /**
4115  * update_seamless_boot_flags() - Helper function for updating seamless boot flags
4116  *
4117  * @dc: Current DC state
4118  * @context: New DC state to be programmed
4119  * @surface_count: Number of surfaces that have an updated
4120  * @stream: Corresponding stream to be updated in the current flip
4121  *
4122  * Updating seamless boot flags do not need to be part of the commit sequence. This
4123  * helper function will update the seamless boot flags on each flip (if required)
4124  * outside of the HW commit sequence (fast or slow).
4125  *
4126  * Return: void
4127  */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)4128 static void update_seamless_boot_flags(struct dc *dc,
4129 		struct dc_state *context,
4130 		int surface_count,
4131 		struct dc_stream_state *stream)
4132 {
4133 	if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
4134 		/* Optimize seamless boot flag keeps clocks and watermarks high until
4135 		 * first flip. After first flip, optimization is required to lower
4136 		 * bandwidth. Important to note that it is expected UEFI will
4137 		 * only light up a single display on POST, therefore we only expect
4138 		 * one stream with seamless boot flag set.
4139 		 */
4140 		if (stream->apply_seamless_boot_optimization) {
4141 			stream->apply_seamless_boot_optimization = false;
4142 
4143 			if (get_seamless_boot_stream_count(context) == 0)
4144 				dc->optimized_required = true;
4145 		}
4146 	}
4147 }
4148 
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4149 static void populate_fast_updates(struct dc_fast_update *fast_update,
4150 		struct dc_surface_update *srf_updates,
4151 		int surface_count,
4152 		struct dc_stream_update *stream_update)
4153 {
4154 	int i = 0;
4155 
4156 	if (stream_update) {
4157 		fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4158 		fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4159 	}
4160 
4161 	for (i = 0; i < surface_count; i++) {
4162 		fast_update[i].flip_addr = srf_updates[i].flip_addr;
4163 		fast_update[i].gamma = srf_updates[i].gamma;
4164 		fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4165 		fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4166 		fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4167 	}
4168 }
4169 
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4170 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4171 {
4172 	int i;
4173 
4174 	if (fast_update[0].out_transfer_func ||
4175 		fast_update[0].output_csc_transform)
4176 		return true;
4177 
4178 	for (i = 0; i < surface_count; i++) {
4179 		if (fast_update[i].flip_addr ||
4180 				fast_update[i].gamma ||
4181 				fast_update[i].gamut_remap_matrix ||
4182 				fast_update[i].input_csc_color_matrix ||
4183 				fast_update[i].coeff_reduction_factor)
4184 			return true;
4185 	}
4186 
4187 	return false;
4188 }
4189 
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4190 static bool full_update_required(struct dc *dc,
4191 		struct dc_surface_update *srf_updates,
4192 		int surface_count,
4193 		struct dc_stream_update *stream_update,
4194 		struct dc_stream_state *stream)
4195 {
4196 
4197 	int i;
4198 	struct dc_stream_status *stream_status;
4199 	const struct dc_state *context = dc->current_state;
4200 
4201 	for (i = 0; i < surface_count; i++) {
4202 		if (srf_updates &&
4203 				(srf_updates[i].plane_info ||
4204 				srf_updates[i].scaling_info ||
4205 				(srf_updates[i].hdr_mult.value &&
4206 				srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4207 				srf_updates[i].in_transfer_func ||
4208 				srf_updates[i].func_shaper ||
4209 				srf_updates[i].lut3d_func ||
4210 				srf_updates[i].blend_tf ||
4211 				srf_updates[i].surface->force_full_update ||
4212 				(srf_updates[i].flip_addr &&
4213 				srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4214 				!is_surface_in_context(context, srf_updates[i].surface)))
4215 			return true;
4216 	}
4217 
4218 	if (stream_update &&
4219 			(((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4220 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4221 			stream_update->integer_scaling_update) ||
4222 			stream_update->hdr_static_metadata ||
4223 			stream_update->abm_level ||
4224 			stream_update->periodic_interrupt ||
4225 			stream_update->vrr_infopacket ||
4226 			stream_update->vsc_infopacket ||
4227 			stream_update->vsp_infopacket ||
4228 			stream_update->hfvsif_infopacket ||
4229 			stream_update->vtem_infopacket ||
4230 			stream_update->adaptive_sync_infopacket ||
4231 			stream_update->dpms_off ||
4232 			stream_update->allow_freesync ||
4233 			stream_update->vrr_active_variable ||
4234 			stream_update->vrr_active_fixed ||
4235 			stream_update->gamut_remap ||
4236 			stream_update->output_color_space ||
4237 			stream_update->dither_option ||
4238 			stream_update->wb_update ||
4239 			stream_update->dsc_config ||
4240 			stream_update->mst_bw_update ||
4241 			stream_update->func_shaper ||
4242 			stream_update->lut3d_func ||
4243 			stream_update->pending_test_pattern ||
4244 			stream_update->crtc_timing_adjust))
4245 		return true;
4246 
4247 	if (stream) {
4248 		stream_status = dc_stream_get_status(stream);
4249 		if (stream_status == NULL || stream_status->plane_count != surface_count)
4250 			return true;
4251 	}
4252 	if (dc->idle_optimizations_allowed)
4253 		return true;
4254 
4255 	return false;
4256 }
4257 
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4258 static bool fast_update_only(struct dc *dc,
4259 		struct dc_fast_update *fast_update,
4260 		struct dc_surface_update *srf_updates,
4261 		int surface_count,
4262 		struct dc_stream_update *stream_update,
4263 		struct dc_stream_state *stream)
4264 {
4265 	return fast_updates_exist(fast_update, surface_count)
4266 			&& !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4267 }
4268 
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)4269 bool dc_update_planes_and_stream(struct dc *dc,
4270 		struct dc_surface_update *srf_updates, int surface_count,
4271 		struct dc_stream_state *stream,
4272 		struct dc_stream_update *stream_update)
4273 {
4274 	struct dc_state *context;
4275 	enum surface_update_type update_type;
4276 	int i;
4277 	struct mall_temp_config mall_temp_config;
4278 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4279 
4280 	/* In cases where MPO and split or ODM are used transitions can
4281 	 * cause underflow. Apply stream configuration with minimal pipe
4282 	 * split first to avoid unsupported transitions for active pipes.
4283 	 */
4284 	bool force_minimal_pipe_splitting = 0;
4285 	bool is_plane_addition = 0;
4286 
4287 	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4288 	force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
4289 			dc,
4290 			stream,
4291 			surface_count,
4292 			&is_plane_addition);
4293 
4294 	/* on plane addition, minimal state is the current one */
4295 	if (force_minimal_pipe_splitting && is_plane_addition &&
4296 		!commit_minimal_transition_state(dc, dc->current_state))
4297 				return false;
4298 
4299 	if (!update_planes_and_stream_state(
4300 			dc,
4301 			srf_updates,
4302 			surface_count,
4303 			stream,
4304 			stream_update,
4305 			&update_type,
4306 			&context))
4307 		return false;
4308 
4309 	/* on plane removal, minimal state is the new one */
4310 	if (force_minimal_pipe_splitting && !is_plane_addition) {
4311 		/* Since all phantom pipes are removed in full validation,
4312 		 * we have to save and restore the subvp/mall config when
4313 		 * we do a minimal transition since the flags marking the
4314 		 * pipe as subvp/phantom will be cleared (dc copy constructor
4315 		 * creates a shallow copy).
4316 		 */
4317 		if (dc->res_pool->funcs->save_mall_state)
4318 			dc->res_pool->funcs->save_mall_state(dc, context, &mall_temp_config);
4319 		if (!commit_minimal_transition_state(dc, context)) {
4320 			dc_release_state(context);
4321 			return false;
4322 		}
4323 		if (dc->res_pool->funcs->restore_mall_state)
4324 			dc->res_pool->funcs->restore_mall_state(dc, context, &mall_temp_config);
4325 
4326 		/* If we do a minimal transition with plane removal and the context
4327 		 * has subvp we also have to retain back the phantom stream / planes
4328 		 * since the refcount is decremented as part of the min transition
4329 		 * (we commit a state with no subvp, so the phantom streams / planes
4330 		 * had to be removed).
4331 		 */
4332 		if (dc->res_pool->funcs->retain_phantom_pipes)
4333 			dc->res_pool->funcs->retain_phantom_pipes(dc, context);
4334 		update_type = UPDATE_TYPE_FULL;
4335 	}
4336 
4337 	update_seamless_boot_flags(dc, context, surface_count, stream);
4338 	if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4339 			!dc->debug.enable_legacy_fast_update) {
4340 		commit_planes_for_stream_fast(dc,
4341 				srf_updates,
4342 				surface_count,
4343 				stream,
4344 				stream_update,
4345 				update_type,
4346 				context);
4347 	} else {
4348 		if (!stream_update &&
4349 				dc->hwss.is_pipe_topology_transition_seamless &&
4350 				!dc->hwss.is_pipe_topology_transition_seamless(
4351 						dc, dc->current_state, context)) {
4352 
4353 			DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
4354 			BREAK_TO_DEBUGGER();
4355 		}
4356 		commit_planes_for_stream(
4357 				dc,
4358 				srf_updates,
4359 				surface_count,
4360 				stream,
4361 				stream_update,
4362 				update_type,
4363 				context);
4364 	}
4365 
4366 	if (dc->current_state != context) {
4367 
4368 		/* Since memory free requires elevated IRQL, an interrupt
4369 		 * request is generated by mem free. If this happens
4370 		 * between freeing and reassigning the context, our vsync
4371 		 * interrupt will call into dc and cause a memory
4372 		 * corruption BSOD. Hence, we first reassign the context,
4373 		 * then free the old context.
4374 		 */
4375 
4376 		struct dc_state *old = dc->current_state;
4377 
4378 		dc->current_state = context;
4379 		dc_release_state(old);
4380 
4381 		// clear any forced full updates
4382 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4383 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4384 
4385 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4386 				pipe_ctx->plane_state->force_full_update = false;
4387 		}
4388 	}
4389 	return true;
4390 }
4391 
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4392 void dc_commit_updates_for_stream(struct dc *dc,
4393 		struct dc_surface_update *srf_updates,
4394 		int surface_count,
4395 		struct dc_stream_state *stream,
4396 		struct dc_stream_update *stream_update,
4397 		struct dc_state *state)
4398 {
4399 	const struct dc_stream_status *stream_status;
4400 	enum surface_update_type update_type;
4401 	struct dc_state *context;
4402 	struct dc_context *dc_ctx = dc->ctx;
4403 	int i, j;
4404 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4405 
4406 	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4407 	stream_status = dc_stream_get_status(stream);
4408 	context = dc->current_state;
4409 
4410 	update_type = dc_check_update_surfaces_for_stream(
4411 				dc, srf_updates, surface_count, stream_update, stream_status);
4412 
4413 	/* TODO: Since change commit sequence can have a huge impact,
4414 	 * we decided to only enable it for DCN3x. However, as soon as
4415 	 * we get more confident about this change we'll need to enable
4416 	 * the new sequence for all ASICs.
4417 	 */
4418 	if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
4419 		/*
4420 		 * Previous frame finished and HW is ready for optimization.
4421 		 */
4422 		if (update_type == UPDATE_TYPE_FAST)
4423 			dc_post_update_surfaces_to_stream(dc);
4424 
4425 		dc_update_planes_and_stream(dc, srf_updates,
4426 					    surface_count, stream,
4427 					    stream_update);
4428 		return;
4429 	}
4430 
4431 	if (update_type >= update_surface_trace_level)
4432 		update_surface_trace(dc, srf_updates, surface_count);
4433 
4434 
4435 	if (update_type >= UPDATE_TYPE_FULL) {
4436 
4437 		/* initialize scratch memory for building context */
4438 		context = dc_create_state(dc);
4439 		if (context == NULL) {
4440 			DC_ERROR("Failed to allocate new validate context!\n");
4441 			return;
4442 		}
4443 
4444 		dc_resource_state_copy_construct(state, context);
4445 
4446 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4447 			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4448 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4449 
4450 			if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4451 				new_pipe->plane_state->force_full_update = true;
4452 		}
4453 	} else if (update_type == UPDATE_TYPE_FAST) {
4454 		/*
4455 		 * Previous frame finished and HW is ready for optimization.
4456 		 */
4457 		dc_post_update_surfaces_to_stream(dc);
4458 	}
4459 
4460 
4461 	for (i = 0; i < surface_count; i++) {
4462 		struct dc_plane_state *surface = srf_updates[i].surface;
4463 
4464 		copy_surface_update_to_plane(surface, &srf_updates[i]);
4465 
4466 		if (update_type >= UPDATE_TYPE_MED) {
4467 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
4468 				struct pipe_ctx *pipe_ctx =
4469 					&context->res_ctx.pipe_ctx[j];
4470 
4471 				if (pipe_ctx->plane_state != surface)
4472 					continue;
4473 
4474 				resource_build_scaling_params(pipe_ctx);
4475 			}
4476 		}
4477 	}
4478 
4479 	copy_stream_update_to_stream(dc, context, stream, stream_update);
4480 
4481 	if (update_type >= UPDATE_TYPE_FULL) {
4482 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4483 			DC_ERROR("Mode validation failed for stream update!\n");
4484 			dc_release_state(context);
4485 			return;
4486 		}
4487 	}
4488 
4489 	TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4490 
4491 	update_seamless_boot_flags(dc, context, surface_count, stream);
4492 	if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4493 			!dc->debug.enable_legacy_fast_update) {
4494 		commit_planes_for_stream_fast(dc,
4495 				srf_updates,
4496 				surface_count,
4497 				stream,
4498 				stream_update,
4499 				update_type,
4500 				context);
4501 	} else {
4502 		commit_planes_for_stream(
4503 				dc,
4504 				srf_updates,
4505 				surface_count,
4506 				stream,
4507 				stream_update,
4508 				update_type,
4509 				context);
4510 	}
4511 	/*update current_State*/
4512 	if (dc->current_state != context) {
4513 
4514 		struct dc_state *old = dc->current_state;
4515 
4516 		dc->current_state = context;
4517 		dc_release_state(old);
4518 
4519 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4520 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4521 
4522 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4523 				pipe_ctx->plane_state->force_full_update = false;
4524 		}
4525 	}
4526 
4527 	/* Legacy optimization path for DCE. */
4528 	if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4529 		dc_post_update_surfaces_to_stream(dc);
4530 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4531 	}
4532 
4533 	return;
4534 
4535 }
4536 
dc_get_current_stream_count(struct dc * dc)4537 uint8_t dc_get_current_stream_count(struct dc *dc)
4538 {
4539 	return dc->current_state->stream_count;
4540 }
4541 
dc_get_stream_at_index(struct dc * dc,uint8_t i)4542 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
4543 {
4544 	if (i < dc->current_state->stream_count)
4545 		return dc->current_state->streams[i];
4546 	return NULL;
4547 }
4548 
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)4549 enum dc_irq_source dc_interrupt_to_irq_source(
4550 		struct dc *dc,
4551 		uint32_t src_id,
4552 		uint32_t ext_id)
4553 {
4554 	return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
4555 }
4556 
4557 /*
4558  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
4559  */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)4560 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
4561 {
4562 
4563 	if (dc == NULL)
4564 		return false;
4565 
4566 	return dal_irq_service_set(dc->res_pool->irqs, src, enable);
4567 }
4568 
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)4569 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
4570 {
4571 	dal_irq_service_ack(dc->res_pool->irqs, src);
4572 }
4573 
dc_power_down_on_boot(struct dc * dc)4574 void dc_power_down_on_boot(struct dc *dc)
4575 {
4576 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
4577 			dc->hwss.power_down_on_boot)
4578 		dc->hwss.power_down_on_boot(dc);
4579 }
4580 
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)4581 void dc_set_power_state(
4582 	struct dc *dc,
4583 	enum dc_acpi_cm_power_state power_state)
4584 {
4585 	struct kref refcount;
4586 	struct display_mode_lib *dml;
4587 
4588 	if (!dc->current_state)
4589 		return;
4590 
4591 	switch (power_state) {
4592 	case DC_ACPI_CM_POWER_STATE_D0:
4593 		dc_resource_state_construct(dc, dc->current_state);
4594 
4595 		dc_z10_restore(dc);
4596 
4597 		dc->hwss.init_hw(dc);
4598 
4599 		if (dc->hwss.init_sys_ctx != NULL &&
4600 			dc->vm_pa_config.valid) {
4601 			dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
4602 		}
4603 
4604 		break;
4605 	default:
4606 		ASSERT(dc->current_state->stream_count == 0);
4607 		/* Zero out the current context so that on resume we start with
4608 		 * clean state, and dc hw programming optimizations will not
4609 		 * cause any trouble.
4610 		 */
4611 		dml = kzalloc(sizeof(struct display_mode_lib),
4612 				GFP_KERNEL);
4613 
4614 		ASSERT(dml);
4615 		if (!dml)
4616 			return;
4617 
4618 		/* Preserve refcount */
4619 		refcount = dc->current_state->refcount;
4620 		/* Preserve display mode lib */
4621 		memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
4622 
4623 		dc_resource_state_destruct(dc->current_state);
4624 		memset(dc->current_state, 0,
4625 				sizeof(*dc->current_state));
4626 
4627 		dc->current_state->refcount = refcount;
4628 		dc->current_state->bw_ctx.dml = *dml;
4629 
4630 		kfree(dml);
4631 
4632 		break;
4633 	}
4634 }
4635 
dc_resume(struct dc * dc)4636 void dc_resume(struct dc *dc)
4637 {
4638 	uint32_t i;
4639 
4640 	for (i = 0; i < dc->link_count; i++)
4641 		dc->link_srv->resume(dc->links[i]);
4642 }
4643 
dc_is_dmcu_initialized(struct dc * dc)4644 bool dc_is_dmcu_initialized(struct dc *dc)
4645 {
4646 	struct dmcu *dmcu = dc->res_pool->dmcu;
4647 
4648 	if (dmcu)
4649 		return dmcu->funcs->is_dmcu_initialized(dmcu);
4650 	return false;
4651 }
4652 
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)4653 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
4654 {
4655 	info->displayClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
4656 	info->engineClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
4657 	info->memoryClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
4658 	info->maxSupportedDppClock		= (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
4659 	info->dppClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
4660 	info->socClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
4661 	info->dcfClockDeepSleep			= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
4662 	info->fClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
4663 	info->phyClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
4664 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)4665 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
4666 {
4667 	if (dc->hwss.set_clock)
4668 		return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
4669 	return DC_ERROR_UNEXPECTED;
4670 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)4671 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
4672 {
4673 	if (dc->hwss.get_clock)
4674 		dc->hwss.get_clock(dc, clock_type, clock_cfg);
4675 }
4676 
4677 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)4678 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
4679 {
4680 	int i;
4681 	bool allow_active;
4682 
4683 	for (i = 0; i < dc->current_state->stream_count ; i++) {
4684 		struct dc_link *link;
4685 		struct dc_stream_state *stream = dc->current_state->streams[i];
4686 
4687 		link = stream->link;
4688 		if (!link)
4689 			continue;
4690 
4691 		if (link->psr_settings.psr_feature_enabled) {
4692 			if (enable && !link->psr_settings.psr_allow_active) {
4693 				allow_active = true;
4694 				if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
4695 					return false;
4696 			} else if (!enable && link->psr_settings.psr_allow_active) {
4697 				allow_active = false;
4698 				if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
4699 					return false;
4700 			}
4701 		}
4702 	}
4703 
4704 	return true;
4705 }
4706 
dc_allow_idle_optimizations(struct dc * dc,bool allow)4707 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
4708 {
4709 	if (dc->debug.disable_idle_power_optimizations)
4710 		return;
4711 
4712 	if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
4713 		if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
4714 			return;
4715 
4716 	if (allow == dc->idle_optimizations_allowed)
4717 		return;
4718 
4719 	if (dc->hwss.apply_idle_power_optimizations && dc->clk_mgr != NULL &&
4720 	    dc->hwss.apply_idle_power_optimizations(dc, allow))
4721 		dc->idle_optimizations_allowed = allow;
4722 }
4723 
4724 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)4725 void dc_unlock_memory_clock_frequency(struct dc *dc)
4726 {
4727 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
4728 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
4729 
4730 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
4731 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4732 }
4733 
4734 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)4735 void dc_lock_memory_clock_frequency(struct dc *dc)
4736 {
4737 	if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
4738 		dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
4739 
4740 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
4741 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
4742 
4743 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
4744 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4745 }
4746 
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)4747 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
4748 {
4749 	struct dc_state *context = dc->current_state;
4750 	struct hubp *hubp;
4751 	struct pipe_ctx *pipe;
4752 	int i;
4753 
4754 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4755 		pipe = &context->res_ctx.pipe_ctx[i];
4756 
4757 		if (pipe->stream != NULL) {
4758 			dc->hwss.disable_pixel_data(dc, pipe, true);
4759 
4760 			// wait for double buffer
4761 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4762 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
4763 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4764 
4765 			hubp = pipe->plane_res.hubp;
4766 			hubp->funcs->set_blank_regs(hubp, true);
4767 		}
4768 	}
4769 
4770 	dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
4771 	dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
4772 
4773 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4774 		pipe = &context->res_ctx.pipe_ctx[i];
4775 
4776 		if (pipe->stream != NULL) {
4777 			dc->hwss.disable_pixel_data(dc, pipe, false);
4778 
4779 			hubp = pipe->plane_res.hubp;
4780 			hubp->funcs->set_blank_regs(hubp, false);
4781 		}
4782 	}
4783 }
4784 
4785 
4786 /**
4787  * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
4788  * @dc: pointer to dc of the dm calling this
4789  * @enable: True = transition to DC mode, false = transition back to AC mode
4790  *
4791  * Some SoCs define additional clock limits when in DC mode, DM should
4792  * invoke this function when the platform undergoes a power source transition
4793  * so DC can apply/unapply the limit. This interface may be disruptive to
4794  * the onscreen content.
4795  *
4796  * Context: Triggered by OS through DM interface, or manually by escape calls.
4797  * Need to hold a dclock when doing so.
4798  *
4799  * Return: none (void function)
4800  *
4801  */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)4802 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
4803 {
4804 	unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
4805 	bool p_state_change_support;
4806 
4807 	if (!dc->config.dc_mode_clk_limit_support)
4808 		return;
4809 
4810 	softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
4811 	for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
4812 		if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
4813 			maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
4814 	}
4815 	funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
4816 	p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
4817 
4818 	if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
4819 		if (p_state_change_support) {
4820 			if (funcMin <= softMax)
4821 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
4822 			// else: No-Op
4823 		} else {
4824 			if (funcMin <= softMax)
4825 				blank_and_force_memclk(dc, true, softMax);
4826 			// else: No-Op
4827 		}
4828 	} else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
4829 		if (p_state_change_support) {
4830 			if (funcMin <= softMax)
4831 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
4832 			// else: No-Op
4833 		} else {
4834 			if (funcMin <= softMax)
4835 				blank_and_force_memclk(dc, true, maxDPM);
4836 			// else: No-Op
4837 		}
4838 	}
4839 	dc->clk_mgr->dc_mode_softmax_enabled = enable;
4840 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,struct dc_plane_state * plane,struct dc_cursor_attributes * cursor_attr)4841 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, struct dc_plane_state *plane,
4842 		struct dc_cursor_attributes *cursor_attr)
4843 {
4844 	if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_attr))
4845 		return true;
4846 	return false;
4847 }
4848 
4849 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)4850 void dc_hardware_release(struct dc *dc)
4851 {
4852 	dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
4853 
4854 	if (dc->hwss.hardware_release)
4855 		dc->hwss.hardware_release(dc);
4856 }
4857 
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)4858 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
4859 {
4860 	if (dc->current_state)
4861 		dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
4862 }
4863 
4864 /**
4865  * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
4866  *
4867  * @dc: [in] dc structure
4868  *
4869  * Checks whether DMUB FW supports outbox notifications, if supported DM
4870  * should register outbox interrupt prior to actually enabling interrupts
4871  * via dc_enable_dmub_outbox
4872  *
4873  * Return:
4874  * True if DMUB FW supports outbox notifications, False otherwise
4875  */
dc_is_dmub_outbox_supported(struct dc * dc)4876 bool dc_is_dmub_outbox_supported(struct dc *dc)
4877 {
4878 	switch (dc->ctx->asic_id.chip_family) {
4879 
4880 	case FAMILY_YELLOW_CARP:
4881 		/* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
4882 		if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
4883 		    !dc->debug.dpia_debug.bits.disable_dpia)
4884 			return true;
4885 	break;
4886 
4887 	case AMDGPU_FAMILY_GC_11_0_1:
4888 	case AMDGPU_FAMILY_GC_11_5_0:
4889 		if (!dc->debug.dpia_debug.bits.disable_dpia)
4890 			return true;
4891 	break;
4892 
4893 	default:
4894 		break;
4895 	}
4896 
4897 	/* dmub aux needs dmub notifications to be enabled */
4898 	return dc->debug.enable_dmub_aux_for_legacy_ddc;
4899 
4900 }
4901 
4902 /**
4903  * dc_enable_dmub_notifications - Check if dmub fw supports outbox
4904  *
4905  * @dc: [in] dc structure
4906  *
4907  * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
4908  * notifications. All DMs shall switch to dc_is_dmub_outbox_supported.  This
4909  * API shall be removed after switching.
4910  *
4911  * Return:
4912  * True if DMUB FW supports outbox notifications, False otherwise
4913  */
dc_enable_dmub_notifications(struct dc * dc)4914 bool dc_enable_dmub_notifications(struct dc *dc)
4915 {
4916 	return dc_is_dmub_outbox_supported(dc);
4917 }
4918 
4919 /**
4920  * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
4921  *
4922  * @dc: [in] dc structure
4923  *
4924  * Enables DMUB unsolicited notifications to x86 via outbox.
4925  */
dc_enable_dmub_outbox(struct dc * dc)4926 void dc_enable_dmub_outbox(struct dc *dc)
4927 {
4928 	struct dc_context *dc_ctx = dc->ctx;
4929 
4930 	dmub_enable_outbox_notification(dc_ctx->dmub_srv);
4931 	DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
4932 }
4933 
4934 /**
4935  * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
4936  *                                      Sets port index appropriately for legacy DDC
4937  * @dc: dc structure
4938  * @link_index: link index
4939  * @payload: aux payload
4940  *
4941  * Returns: True if successful, False if failure
4942  */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)4943 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
4944 				uint32_t link_index,
4945 				struct aux_payload *payload)
4946 {
4947 	uint8_t action;
4948 	union dmub_rb_cmd cmd = {0};
4949 
4950 	ASSERT(payload->length <= 16);
4951 
4952 	cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
4953 	cmd.dp_aux_access.header.payload_bytes = 0;
4954 	/* For dpia, ddc_pin is set to NULL */
4955 	if (!dc->links[link_index]->ddc->ddc_pin)
4956 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
4957 	else
4958 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
4959 
4960 	cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
4961 	cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
4962 	cmd.dp_aux_access.aux_control.timeout = 0;
4963 	cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
4964 	cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
4965 	cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
4966 
4967 	/* set aux action */
4968 	if (payload->i2c_over_aux) {
4969 		if (payload->write) {
4970 			if (payload->mot)
4971 				action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
4972 			else
4973 				action = DP_AUX_REQ_ACTION_I2C_WRITE;
4974 		} else {
4975 			if (payload->mot)
4976 				action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
4977 			else
4978 				action = DP_AUX_REQ_ACTION_I2C_READ;
4979 			}
4980 	} else {
4981 		if (payload->write)
4982 			action = DP_AUX_REQ_ACTION_DPCD_WRITE;
4983 		else
4984 			action = DP_AUX_REQ_ACTION_DPCD_READ;
4985 	}
4986 
4987 	cmd.dp_aux_access.aux_control.dpaux.action = action;
4988 
4989 	if (payload->length && payload->write) {
4990 		memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
4991 			payload->data,
4992 			payload->length
4993 			);
4994 	}
4995 
4996 	dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
4997 
4998 	return true;
4999 }
5000 
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)5001 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
5002 					    uint8_t dpia_port_index)
5003 {
5004 	uint8_t index, link_index = 0xFF;
5005 
5006 	for (index = 0; index < dc->link_count; index++) {
5007 		/* ddc_hw_inst has dpia port index for dpia links
5008 		 * and ddc instance for legacy links
5009 		 */
5010 		if (!dc->links[index]->ddc->ddc_pin) {
5011 			if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5012 				link_index = index;
5013 				break;
5014 			}
5015 		}
5016 	}
5017 	ASSERT(link_index != 0xFF);
5018 	return link_index;
5019 }
5020 
5021 /**
5022  * dc_process_dmub_set_config_async - Submits set_config command
5023  *
5024  * @dc: [in] dc structure
5025  * @link_index: [in] link_index: link index
5026  * @payload: [in] aux payload
5027  * @notify: [out] set_config immediate reply
5028  *
5029  * Submits set_config command to dmub via inbox message.
5030  *
5031  * Return:
5032  * True if successful, False if failure
5033  */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)5034 bool dc_process_dmub_set_config_async(struct dc *dc,
5035 				uint32_t link_index,
5036 				struct set_config_cmd_payload *payload,
5037 				struct dmub_notification *notify)
5038 {
5039 	union dmub_rb_cmd cmd = {0};
5040 	bool is_cmd_complete = true;
5041 
5042 	/* prepare SET_CONFIG command */
5043 	cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5044 	cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5045 
5046 	cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5047 	cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5048 	cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5049 
5050 	if (!dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5051 		/* command is not processed by dmub */
5052 		notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5053 		return is_cmd_complete;
5054 	}
5055 
5056 	/* command processed by dmub, if ret_status is 1, it is completed instantly */
5057 	if (cmd.set_config_access.header.ret_status == 1)
5058 		notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5059 	else
5060 		/* cmd pending, will receive notification via outbox */
5061 		is_cmd_complete = false;
5062 
5063 	return is_cmd_complete;
5064 }
5065 
5066 /**
5067  * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5068  *
5069  * @dc: [in] dc structure
5070  * @link_index: [in] link index
5071  * @mst_alloc_slots: [in] mst slots to be allotted
5072  * @mst_slots_in_use: [out] mst slots in use returned in failure case
5073  *
5074  * Submits mst slot allocation command to dmub via inbox message
5075  *
5076  * Return:
5077  * DC_OK if successful, DC_ERROR if failure
5078  */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)5079 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5080 				uint32_t link_index,
5081 				uint8_t mst_alloc_slots,
5082 				uint8_t *mst_slots_in_use)
5083 {
5084 	union dmub_rb_cmd cmd = {0};
5085 
5086 	/* prepare MST_ALLOC_SLOTS command */
5087 	cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5088 	cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5089 
5090 	cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5091 	cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5092 
5093 	if (!dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5094 		/* command is not processed by dmub */
5095 		return DC_ERROR_UNEXPECTED;
5096 
5097 	/* command processed by dmub, if ret_status is 1 */
5098 	if (cmd.set_config_access.header.ret_status != 1)
5099 		/* command processing error */
5100 		return DC_ERROR_UNEXPECTED;
5101 
5102 	/* command processed and we have a status of 2, mst not enabled in dpia */
5103 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5104 		return DC_FAIL_UNSUPPORTED_1;
5105 
5106 	/* previously configured mst alloc and used slots did not match */
5107 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5108 		*mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5109 		return DC_NOT_SUPPORTED;
5110 	}
5111 
5112 	return DC_OK;
5113 }
5114 
5115 /**
5116  * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
5117  *
5118  * @dc: [in] dc structure
5119  * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
5120  *
5121  * Submits dpia hpd int enable command to dmub via inbox message
5122  */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)5123 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
5124 				uint32_t hpd_int_enable)
5125 {
5126 	union dmub_rb_cmd cmd = {0};
5127 
5128 	cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
5129 	cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
5130 
5131 	dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5132 
5133 	DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
5134 }
5135 
5136 /**
5137  * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
5138  *
5139  * @dc: [in] dc structure
5140  *
5141  *
5142  */
dc_print_dmub_diagnostic_data(const struct dc * dc)5143 void dc_print_dmub_diagnostic_data(const struct dc *dc)
5144 {
5145 	dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
5146 }
5147 
5148 /**
5149  * dc_disable_accelerated_mode - disable accelerated mode
5150  * @dc: dc structure
5151  */
dc_disable_accelerated_mode(struct dc * dc)5152 void dc_disable_accelerated_mode(struct dc *dc)
5153 {
5154 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
5155 }
5156 
5157 
5158 /**
5159  *  dc_notify_vsync_int_state - notifies vsync enable/disable state
5160  *  @dc: dc structure
5161  *  @stream: stream where vsync int state changed
5162  *  @enable: whether vsync is enabled or disabled
5163  *
5164  *  Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
5165  *  interrupts after steady state is reached.
5166  */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)5167 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
5168 {
5169 	int i;
5170 	int edp_num;
5171 	struct pipe_ctx *pipe = NULL;
5172 	struct dc_link *link = stream->sink->link;
5173 	struct dc_link *edp_links[MAX_NUM_EDP];
5174 
5175 
5176 	if (link->psr_settings.psr_feature_enabled)
5177 		return;
5178 
5179 	if (link->replay_settings.replay_feature_enabled)
5180 		return;
5181 
5182 	/*find primary pipe associated with stream*/
5183 	for (i = 0; i < MAX_PIPES; i++) {
5184 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5185 
5186 		if (pipe->stream == stream && pipe->stream_res.tg)
5187 			break;
5188 	}
5189 
5190 	if (i == MAX_PIPES) {
5191 		ASSERT(0);
5192 		return;
5193 	}
5194 
5195 	dc_get_edp_links(dc, edp_links, &edp_num);
5196 
5197 	/* Determine panel inst */
5198 	for (i = 0; i < edp_num; i++) {
5199 		if (edp_links[i] == link)
5200 			break;
5201 	}
5202 
5203 	if (i == edp_num) {
5204 		return;
5205 	}
5206 
5207 	if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
5208 		pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
5209 }
5210 
5211 /*****************************************************************************
5212  *  dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
5213  *                          ABM
5214  *  @dc: dc structure
5215  *	@stream: stream where vsync int state changed
5216  *  @pData: abm hw states
5217  *
5218  ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)5219 bool dc_abm_save_restore(
5220 		struct dc *dc,
5221 		struct dc_stream_state *stream,
5222 		struct abm_save_restore *pData)
5223 {
5224 	int i;
5225 	int edp_num;
5226 	struct pipe_ctx *pipe = NULL;
5227 	struct dc_link *link = stream->sink->link;
5228 	struct dc_link *edp_links[MAX_NUM_EDP];
5229 
5230 
5231 	/*find primary pipe associated with stream*/
5232 	for (i = 0; i < MAX_PIPES; i++) {
5233 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5234 
5235 		if (pipe->stream == stream && pipe->stream_res.tg)
5236 			break;
5237 	}
5238 
5239 	if (i == MAX_PIPES) {
5240 		ASSERT(0);
5241 		return false;
5242 	}
5243 
5244 	dc_get_edp_links(dc, edp_links, &edp_num);
5245 
5246 	/* Determine panel inst */
5247 	for (i = 0; i < edp_num; i++)
5248 		if (edp_links[i] == link)
5249 			break;
5250 
5251 	if (i == edp_num)
5252 		return false;
5253 
5254 	if (pipe->stream_res.abm &&
5255 		pipe->stream_res.abm->funcs->save_restore)
5256 		return pipe->stream_res.abm->funcs->save_restore(
5257 				pipe->stream_res.abm,
5258 				i,
5259 				pData);
5260 	return false;
5261 }
5262 
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)5263 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
5264 {
5265 	unsigned int i;
5266 	bool subvp_in_use = false;
5267 
5268 	for (i = 0; i < dc->current_state->stream_count; i++) {
5269 		if (dc->current_state->streams[i]->mall_stream_config.type != SUBVP_NONE) {
5270 			subvp_in_use = true;
5271 			break;
5272 		}
5273 	}
5274 	properties->cursor_size_limit = subvp_in_use ? 64 : dc->caps.max_cursor_size;
5275 }
5276 
5277 /**
5278  *****************************************************************************
5279  * dc_set_edp_power() - DM controls eDP power to be ON/OFF
5280  *
5281  * Called when DM wants to power on/off eDP.
5282  *     Only work on links with flag skip_implict_edp_power_control is set.
5283  *
5284  *****************************************************************************
5285  */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)5286 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
5287 				 bool powerOn)
5288 {
5289 	if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
5290 		return;
5291 
5292 	if (edp_link->skip_implict_edp_power_control == false)
5293 		return;
5294 
5295 	edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
5296 }
5297 
5298