1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27
28 #include "resource.h"
29 #include "include/irq_service_interface.h"
30 #include "link_encoder.h"
31 #include "stream_encoder.h"
32 #include "opp.h"
33 #include "timing_generator.h"
34 #include "transform.h"
35 #include "dccg.h"
36 #include "dchubbub.h"
37 #include "dpp.h"
38 #include "core_types.h"
39 #include "set_mode_types.h"
40 #include "virtual/virtual_stream_encoder.h"
41 #include "dpcd_defs.h"
42 #include "link_enc_cfg.h"
43 #include "link.h"
44 #include "virtual/virtual_link_hwss.h"
45 #include "link/hwss/link_hwss_dio.h"
46 #include "link/hwss/link_hwss_dpia.h"
47 #include "link/hwss/link_hwss_hpo_dp.h"
48 #include "link/hwss/link_hwss_dio_fixed_vs_pe_retimer.h"
49 #include "link/hwss/link_hwss_hpo_fixed_vs_pe_retimer_dp.h"
50
51 #if defined(CONFIG_DRM_AMD_DC_SI)
52 #include "dce60/dce60_resource.h"
53 #endif
54 #include "dce80/dce80_resource.h"
55 #include "dce100/dce100_resource.h"
56 #include "dce110/dce110_resource.h"
57 #include "dce112/dce112_resource.h"
58 #include "dce120/dce120_resource.h"
59 #include "dcn10/dcn10_resource.h"
60 #include "dcn20/dcn20_resource.h"
61 #include "dcn21/dcn21_resource.h"
62 #include "dcn201/dcn201_resource.h"
63 #include "dcn30/dcn30_resource.h"
64 #include "dcn301/dcn301_resource.h"
65 #include "dcn302/dcn302_resource.h"
66 #include "dcn303/dcn303_resource.h"
67 #include "dcn31/dcn31_resource.h"
68 #include "dcn314/dcn314_resource.h"
69 #include "dcn315/dcn315_resource.h"
70 #include "dcn316/dcn316_resource.h"
71 #include "../dcn32/dcn32_resource.h"
72 #include "../dcn321/dcn321_resource.h"
73
74 #define VISUAL_CONFIRM_BASE_DEFAULT 3
75 #define VISUAL_CONFIRM_BASE_MIN 1
76 #define VISUAL_CONFIRM_BASE_MAX 10
77 /* we choose 240 because it is a common denominator of common v addressable
78 * such as 2160, 1440, 1200, 960. So we take 1/240 portion of v addressable as
79 * the visual confirm dpp offset height. So visual confirm height can stay
80 * relatively the same independent from timing used.
81 */
82 #define VISUAL_CONFIRM_DPP_OFFSET_DENO 240
83
84 #define DC_LOGGER_INIT(logger)
85
86 #define UNABLE_TO_SPLIT -1
87
resource_parse_asic_id(struct hw_asic_id asic_id)88 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
89 {
90 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
91
92 switch (asic_id.chip_family) {
93
94 #if defined(CONFIG_DRM_AMD_DC_SI)
95 case FAMILY_SI:
96 if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
97 ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
98 ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
99 dc_version = DCE_VERSION_6_0;
100 else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
101 dc_version = DCE_VERSION_6_4;
102 else
103 dc_version = DCE_VERSION_6_1;
104 break;
105 #endif
106 case FAMILY_CI:
107 dc_version = DCE_VERSION_8_0;
108 break;
109 case FAMILY_KV:
110 if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
111 ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
112 ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
113 dc_version = DCE_VERSION_8_3;
114 else
115 dc_version = DCE_VERSION_8_1;
116 break;
117 case FAMILY_CZ:
118 dc_version = DCE_VERSION_11_0;
119 break;
120
121 case FAMILY_VI:
122 if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
123 ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
124 dc_version = DCE_VERSION_10_0;
125 break;
126 }
127 if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
128 ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
129 ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
130 dc_version = DCE_VERSION_11_2;
131 }
132 if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
133 dc_version = DCE_VERSION_11_22;
134 break;
135 case FAMILY_AI:
136 if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
137 dc_version = DCE_VERSION_12_1;
138 else
139 dc_version = DCE_VERSION_12_0;
140 break;
141 case FAMILY_RV:
142 dc_version = DCN_VERSION_1_0;
143 if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
144 dc_version = DCN_VERSION_1_01;
145 if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
146 dc_version = DCN_VERSION_2_1;
147 if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
148 dc_version = DCN_VERSION_2_1;
149 break;
150
151 case FAMILY_NV:
152 dc_version = DCN_VERSION_2_0;
153 if (asic_id.chip_id == DEVICE_ID_NV_13FE || asic_id.chip_id == DEVICE_ID_NV_143F) {
154 dc_version = DCN_VERSION_2_01;
155 break;
156 }
157 if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
158 dc_version = DCN_VERSION_3_0;
159 if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
160 dc_version = DCN_VERSION_3_02;
161 if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
162 dc_version = DCN_VERSION_3_03;
163 break;
164
165 case FAMILY_VGH:
166 dc_version = DCN_VERSION_3_01;
167 break;
168
169 case FAMILY_YELLOW_CARP:
170 if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
171 dc_version = DCN_VERSION_3_1;
172 break;
173 case AMDGPU_FAMILY_GC_10_3_6:
174 if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
175 dc_version = DCN_VERSION_3_15;
176 break;
177 case AMDGPU_FAMILY_GC_10_3_7:
178 if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
179 dc_version = DCN_VERSION_3_16;
180 break;
181 case AMDGPU_FAMILY_GC_11_0_0:
182 dc_version = DCN_VERSION_3_2;
183 if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
184 dc_version = DCN_VERSION_3_21;
185 break;
186 case AMDGPU_FAMILY_GC_11_0_1:
187 dc_version = DCN_VERSION_3_14;
188 break;
189 default:
190 dc_version = DCE_VERSION_UNKNOWN;
191 break;
192 }
193 return dc_version;
194 }
195
dc_create_resource_pool(struct dc * dc,const struct dc_init_data * init_data,enum dce_version dc_version)196 struct resource_pool *dc_create_resource_pool(struct dc *dc,
197 const struct dc_init_data *init_data,
198 enum dce_version dc_version)
199 {
200 struct resource_pool *res_pool = NULL;
201
202 switch (dc_version) {
203 #if defined(CONFIG_DRM_AMD_DC_SI)
204 case DCE_VERSION_6_0:
205 res_pool = dce60_create_resource_pool(
206 init_data->num_virtual_links, dc);
207 break;
208 case DCE_VERSION_6_1:
209 res_pool = dce61_create_resource_pool(
210 init_data->num_virtual_links, dc);
211 break;
212 case DCE_VERSION_6_4:
213 res_pool = dce64_create_resource_pool(
214 init_data->num_virtual_links, dc);
215 break;
216 #endif
217 case DCE_VERSION_8_0:
218 res_pool = dce80_create_resource_pool(
219 init_data->num_virtual_links, dc);
220 break;
221 case DCE_VERSION_8_1:
222 res_pool = dce81_create_resource_pool(
223 init_data->num_virtual_links, dc);
224 break;
225 case DCE_VERSION_8_3:
226 res_pool = dce83_create_resource_pool(
227 init_data->num_virtual_links, dc);
228 break;
229 case DCE_VERSION_10_0:
230 res_pool = dce100_create_resource_pool(
231 init_data->num_virtual_links, dc);
232 break;
233 case DCE_VERSION_11_0:
234 res_pool = dce110_create_resource_pool(
235 init_data->num_virtual_links, dc,
236 init_data->asic_id);
237 break;
238 case DCE_VERSION_11_2:
239 case DCE_VERSION_11_22:
240 res_pool = dce112_create_resource_pool(
241 init_data->num_virtual_links, dc);
242 break;
243 case DCE_VERSION_12_0:
244 case DCE_VERSION_12_1:
245 res_pool = dce120_create_resource_pool(
246 init_data->num_virtual_links, dc);
247 break;
248
249 #if defined(CONFIG_DRM_AMD_DC_FP)
250 case DCN_VERSION_1_0:
251 case DCN_VERSION_1_01:
252 res_pool = dcn10_create_resource_pool(init_data, dc);
253 break;
254 case DCN_VERSION_2_0:
255 res_pool = dcn20_create_resource_pool(init_data, dc);
256 break;
257 case DCN_VERSION_2_1:
258 res_pool = dcn21_create_resource_pool(init_data, dc);
259 break;
260 case DCN_VERSION_2_01:
261 res_pool = dcn201_create_resource_pool(init_data, dc);
262 break;
263 case DCN_VERSION_3_0:
264 res_pool = dcn30_create_resource_pool(init_data, dc);
265 break;
266 case DCN_VERSION_3_01:
267 res_pool = dcn301_create_resource_pool(init_data, dc);
268 break;
269 case DCN_VERSION_3_02:
270 res_pool = dcn302_create_resource_pool(init_data, dc);
271 break;
272 case DCN_VERSION_3_03:
273 res_pool = dcn303_create_resource_pool(init_data, dc);
274 break;
275 case DCN_VERSION_3_1:
276 res_pool = dcn31_create_resource_pool(init_data, dc);
277 break;
278 case DCN_VERSION_3_14:
279 res_pool = dcn314_create_resource_pool(init_data, dc);
280 break;
281 case DCN_VERSION_3_15:
282 res_pool = dcn315_create_resource_pool(init_data, dc);
283 break;
284 case DCN_VERSION_3_16:
285 res_pool = dcn316_create_resource_pool(init_data, dc);
286 break;
287 case DCN_VERSION_3_2:
288 res_pool = dcn32_create_resource_pool(init_data, dc);
289 break;
290 case DCN_VERSION_3_21:
291 res_pool = dcn321_create_resource_pool(init_data, dc);
292 break;
293 #endif /* CONFIG_DRM_AMD_DC_FP */
294 default:
295 break;
296 }
297
298 if (res_pool != NULL) {
299 if (dc->ctx->dc_bios->fw_info_valid) {
300 res_pool->ref_clocks.xtalin_clock_inKhz =
301 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
302 /* initialize with firmware data first, no all
303 * ASIC have DCCG SW component. FPGA or
304 * simulation need initialization of
305 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
306 * with xtalin_clock_inKhz
307 */
308 res_pool->ref_clocks.dccg_ref_clock_inKhz =
309 res_pool->ref_clocks.xtalin_clock_inKhz;
310 res_pool->ref_clocks.dchub_ref_clock_inKhz =
311 res_pool->ref_clocks.xtalin_clock_inKhz;
312 } else
313 ASSERT_CRITICAL(false);
314 }
315
316 return res_pool;
317 }
318
dc_destroy_resource_pool(struct dc * dc)319 void dc_destroy_resource_pool(struct dc *dc)
320 {
321 if (dc) {
322 if (dc->res_pool)
323 dc->res_pool->funcs->destroy(&dc->res_pool);
324
325 kfree(dc->hwseq);
326 }
327 }
328
update_num_audio(const struct resource_straps * straps,unsigned int * num_audio,struct audio_support * aud_support)329 static void update_num_audio(
330 const struct resource_straps *straps,
331 unsigned int *num_audio,
332 struct audio_support *aud_support)
333 {
334 aud_support->dp_audio = true;
335 aud_support->hdmi_audio_native = false;
336 aud_support->hdmi_audio_on_dongle = false;
337
338 if (straps->hdmi_disable == 0) {
339 if (straps->dc_pinstraps_audio & 0x2) {
340 aud_support->hdmi_audio_on_dongle = true;
341 aud_support->hdmi_audio_native = true;
342 }
343 }
344
345 switch (straps->audio_stream_number) {
346 case 0: /* multi streams supported */
347 break;
348 case 1: /* multi streams not supported */
349 *num_audio = 1;
350 break;
351 default:
352 DC_ERR("DC: unexpected audio fuse!\n");
353 }
354 }
355
resource_construct(unsigned int num_virtual_links,struct dc * dc,struct resource_pool * pool,const struct resource_create_funcs * create_funcs)356 bool resource_construct(
357 unsigned int num_virtual_links,
358 struct dc *dc,
359 struct resource_pool *pool,
360 const struct resource_create_funcs *create_funcs)
361 {
362 struct dc_context *ctx = dc->ctx;
363 const struct resource_caps *caps = pool->res_cap;
364 int i;
365 unsigned int num_audio = caps->num_audio;
366 struct resource_straps straps = {0};
367
368 if (create_funcs->read_dce_straps)
369 create_funcs->read_dce_straps(dc->ctx, &straps);
370
371 pool->audio_count = 0;
372 if (create_funcs->create_audio) {
373 /* find the total number of streams available via the
374 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
375 * registers (one for each pin) starting from pin 1
376 * up to the max number of audio pins.
377 * We stop on the first pin where
378 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
379 */
380 update_num_audio(&straps, &num_audio, &pool->audio_support);
381 for (i = 0; i < caps->num_audio; i++) {
382 struct audio *aud = create_funcs->create_audio(ctx, i);
383
384 if (aud == NULL) {
385 DC_ERR("DC: failed to create audio!\n");
386 return false;
387 }
388 if (!aud->funcs->endpoint_valid(aud)) {
389 aud->funcs->destroy(&aud);
390 break;
391 }
392 pool->audios[i] = aud;
393 pool->audio_count++;
394 }
395 }
396
397 pool->stream_enc_count = 0;
398 if (create_funcs->create_stream_encoder) {
399 for (i = 0; i < caps->num_stream_encoder; i++) {
400 pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
401 if (pool->stream_enc[i] == NULL)
402 DC_ERR("DC: failed to create stream_encoder!\n");
403 pool->stream_enc_count++;
404 }
405 }
406
407 pool->hpo_dp_stream_enc_count = 0;
408 if (create_funcs->create_hpo_dp_stream_encoder) {
409 for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
410 pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
411 if (pool->hpo_dp_stream_enc[i] == NULL)
412 DC_ERR("DC: failed to create HPO DP stream encoder!\n");
413 pool->hpo_dp_stream_enc_count++;
414
415 }
416 }
417
418 pool->hpo_dp_link_enc_count = 0;
419 if (create_funcs->create_hpo_dp_link_encoder) {
420 for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
421 pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
422 if (pool->hpo_dp_link_enc[i] == NULL)
423 DC_ERR("DC: failed to create HPO DP link encoder!\n");
424 pool->hpo_dp_link_enc_count++;
425 }
426 }
427
428 for (i = 0; i < caps->num_mpc_3dlut; i++) {
429 pool->mpc_lut[i] = dc_create_3dlut_func();
430 if (pool->mpc_lut[i] == NULL)
431 DC_ERR("DC: failed to create MPC 3dlut!\n");
432 pool->mpc_shaper[i] = dc_create_transfer_func();
433 if (pool->mpc_shaper[i] == NULL)
434 DC_ERR("DC: failed to create MPC shaper!\n");
435 }
436
437 dc->caps.dynamic_audio = false;
438 if (pool->audio_count < pool->stream_enc_count) {
439 dc->caps.dynamic_audio = true;
440 }
441 for (i = 0; i < num_virtual_links; i++) {
442 pool->stream_enc[pool->stream_enc_count] =
443 virtual_stream_encoder_create(
444 ctx, ctx->dc_bios);
445 if (pool->stream_enc[pool->stream_enc_count] == NULL) {
446 DC_ERR("DC: failed to create stream_encoder!\n");
447 return false;
448 }
449 pool->stream_enc_count++;
450 }
451
452 dc->hwseq = create_funcs->create_hwseq(ctx);
453
454 return true;
455 }
find_matching_clock_source(const struct resource_pool * pool,struct clock_source * clock_source)456 static int find_matching_clock_source(
457 const struct resource_pool *pool,
458 struct clock_source *clock_source)
459 {
460
461 int i;
462
463 for (i = 0; i < pool->clk_src_count; i++) {
464 if (pool->clock_sources[i] == clock_source)
465 return i;
466 }
467 return -1;
468 }
469
resource_unreference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)470 void resource_unreference_clock_source(
471 struct resource_context *res_ctx,
472 const struct resource_pool *pool,
473 struct clock_source *clock_source)
474 {
475 int i = find_matching_clock_source(pool, clock_source);
476
477 if (i > -1)
478 res_ctx->clock_source_ref_count[i]--;
479
480 if (pool->dp_clock_source == clock_source)
481 res_ctx->dp_clock_source_ref_count--;
482 }
483
resource_reference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)484 void resource_reference_clock_source(
485 struct resource_context *res_ctx,
486 const struct resource_pool *pool,
487 struct clock_source *clock_source)
488 {
489 int i = find_matching_clock_source(pool, clock_source);
490
491 if (i > -1)
492 res_ctx->clock_source_ref_count[i]++;
493
494 if (pool->dp_clock_source == clock_source)
495 res_ctx->dp_clock_source_ref_count++;
496 }
497
resource_get_clock_source_reference(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)498 int resource_get_clock_source_reference(
499 struct resource_context *res_ctx,
500 const struct resource_pool *pool,
501 struct clock_source *clock_source)
502 {
503 int i = find_matching_clock_source(pool, clock_source);
504
505 if (i > -1)
506 return res_ctx->clock_source_ref_count[i];
507
508 if (pool->dp_clock_source == clock_source)
509 return res_ctx->dp_clock_source_ref_count;
510
511 return -1;
512 }
513
resource_are_vblanks_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)514 bool resource_are_vblanks_synchronizable(
515 struct dc_stream_state *stream1,
516 struct dc_stream_state *stream2)
517 {
518 uint32_t base60_refresh_rates[] = {10, 20, 5};
519 uint8_t i;
520 uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
521 uint64_t frame_time_diff;
522
523 if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
524 stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
525 dc_is_dp_signal(stream1->signal) &&
526 dc_is_dp_signal(stream2->signal) &&
527 false == stream1->has_non_synchronizable_pclk &&
528 false == stream2->has_non_synchronizable_pclk &&
529 stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
530 stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
531 /* disable refresh rates higher than 60Hz for now */
532 if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
533 stream1->timing.v_total > 60)
534 return false;
535 if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
536 stream2->timing.v_total > 60)
537 return false;
538 frame_time_diff = (uint64_t)10000 *
539 stream1->timing.h_total *
540 stream1->timing.v_total *
541 stream2->timing.pix_clk_100hz;
542 frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
543 frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
544 frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
545 for (i = 0; i < rr_count; i++) {
546 int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
547
548 if (diff < 0)
549 diff = -diff;
550 if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
551 return true;
552 }
553 }
554 return false;
555 }
556
resource_are_streams_timing_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)557 bool resource_are_streams_timing_synchronizable(
558 struct dc_stream_state *stream1,
559 struct dc_stream_state *stream2)
560 {
561 if (stream1->timing.h_total != stream2->timing.h_total)
562 return false;
563
564 if (stream1->timing.v_total != stream2->timing.v_total)
565 return false;
566
567 if (stream1->timing.h_addressable
568 != stream2->timing.h_addressable)
569 return false;
570
571 if (stream1->timing.v_addressable
572 != stream2->timing.v_addressable)
573 return false;
574
575 if (stream1->timing.v_front_porch
576 != stream2->timing.v_front_porch)
577 return false;
578
579 if (stream1->timing.pix_clk_100hz
580 != stream2->timing.pix_clk_100hz)
581 return false;
582
583 if (stream1->clamping.c_depth != stream2->clamping.c_depth)
584 return false;
585
586 if (stream1->phy_pix_clk != stream2->phy_pix_clk
587 && (!dc_is_dp_signal(stream1->signal)
588 || !dc_is_dp_signal(stream2->signal)))
589 return false;
590
591 if (stream1->view_format != stream2->view_format)
592 return false;
593
594 if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
595 return false;
596
597 return true;
598 }
is_dp_and_hdmi_sharable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)599 static bool is_dp_and_hdmi_sharable(
600 struct dc_stream_state *stream1,
601 struct dc_stream_state *stream2)
602 {
603 if (stream1->ctx->dc->caps.disable_dp_clk_share)
604 return false;
605
606 if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
607 stream2->clamping.c_depth != COLOR_DEPTH_888)
608 return false;
609
610 return true;
611
612 }
613
is_sharable_clk_src(const struct pipe_ctx * pipe_with_clk_src,const struct pipe_ctx * pipe)614 static bool is_sharable_clk_src(
615 const struct pipe_ctx *pipe_with_clk_src,
616 const struct pipe_ctx *pipe)
617 {
618 if (pipe_with_clk_src->clock_source == NULL)
619 return false;
620
621 if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
622 return false;
623
624 if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
625 (dc_is_dp_signal(pipe->stream->signal) &&
626 !is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
627 pipe->stream)))
628 return false;
629
630 if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
631 && dc_is_dual_link_signal(pipe->stream->signal))
632 return false;
633
634 if (dc_is_hdmi_signal(pipe->stream->signal)
635 && dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
636 return false;
637
638 if (!resource_are_streams_timing_synchronizable(
639 pipe_with_clk_src->stream, pipe->stream))
640 return false;
641
642 return true;
643 }
644
resource_find_used_clk_src_for_sharing(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx)645 struct clock_source *resource_find_used_clk_src_for_sharing(
646 struct resource_context *res_ctx,
647 struct pipe_ctx *pipe_ctx)
648 {
649 int i;
650
651 for (i = 0; i < MAX_PIPES; i++) {
652 if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
653 return res_ctx->pipe_ctx[i].clock_source;
654 }
655
656 return NULL;
657 }
658
convert_pixel_format_to_dalsurface(enum surface_pixel_format surface_pixel_format)659 static enum pixel_format convert_pixel_format_to_dalsurface(
660 enum surface_pixel_format surface_pixel_format)
661 {
662 enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
663
664 switch (surface_pixel_format) {
665 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
666 dal_pixel_format = PIXEL_FORMAT_INDEX8;
667 break;
668 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
669 dal_pixel_format = PIXEL_FORMAT_RGB565;
670 break;
671 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
672 dal_pixel_format = PIXEL_FORMAT_RGB565;
673 break;
674 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
675 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
676 break;
677 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
678 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
679 break;
680 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
681 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
682 break;
683 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
684 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
685 break;
686 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
687 dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
688 break;
689 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
690 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
691 dal_pixel_format = PIXEL_FORMAT_FP16;
692 break;
693 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
694 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
695 dal_pixel_format = PIXEL_FORMAT_420BPP8;
696 break;
697 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
698 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
699 dal_pixel_format = PIXEL_FORMAT_420BPP10;
700 break;
701 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
702 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
703 default:
704 dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
705 break;
706 }
707 return dal_pixel_format;
708 }
709
get_vp_scan_direction(enum dc_rotation_angle rotation,bool horizontal_mirror,bool * orthogonal_rotation,bool * flip_vert_scan_dir,bool * flip_horz_scan_dir)710 static inline void get_vp_scan_direction(
711 enum dc_rotation_angle rotation,
712 bool horizontal_mirror,
713 bool *orthogonal_rotation,
714 bool *flip_vert_scan_dir,
715 bool *flip_horz_scan_dir)
716 {
717 *orthogonal_rotation = false;
718 *flip_vert_scan_dir = false;
719 *flip_horz_scan_dir = false;
720 if (rotation == ROTATION_ANGLE_180) {
721 *flip_vert_scan_dir = true;
722 *flip_horz_scan_dir = true;
723 } else if (rotation == ROTATION_ANGLE_90) {
724 *orthogonal_rotation = true;
725 *flip_horz_scan_dir = true;
726 } else if (rotation == ROTATION_ANGLE_270) {
727 *orthogonal_rotation = true;
728 *flip_vert_scan_dir = true;
729 }
730
731 if (horizontal_mirror)
732 *flip_horz_scan_dir = !*flip_horz_scan_dir;
733 }
734
resource_get_num_mpc_splits(const struct pipe_ctx * pipe)735 int resource_get_num_mpc_splits(const struct pipe_ctx *pipe)
736 {
737 int mpc_split_count = 0;
738 const struct pipe_ctx *other_pipe = pipe->bottom_pipe;
739
740 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
741 mpc_split_count++;
742 other_pipe = other_pipe->bottom_pipe;
743 }
744 other_pipe = pipe->top_pipe;
745 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
746 mpc_split_count++;
747 other_pipe = other_pipe->top_pipe;
748 }
749
750 return mpc_split_count;
751 }
752
resource_get_num_odm_splits(const struct pipe_ctx * pipe)753 int resource_get_num_odm_splits(const struct pipe_ctx *pipe)
754 {
755 int odm_split_count = 0;
756
757 pipe = resource_get_otg_master(pipe);
758
759 while (pipe->next_odm_pipe) {
760 odm_split_count++;
761 pipe = pipe->next_odm_pipe;
762 }
763 return odm_split_count;
764 }
765
get_odm_split_index(struct pipe_ctx * pipe_ctx)766 static int get_odm_split_index(struct pipe_ctx *pipe_ctx)
767 {
768 int index = 0;
769
770 pipe_ctx = resource_get_opp_head(pipe_ctx);
771 if (!pipe_ctx)
772 return 0;
773
774 while (pipe_ctx->prev_odm_pipe) {
775 index++;
776 pipe_ctx = pipe_ctx->prev_odm_pipe;
777 }
778
779 return index;
780 }
781
get_mpc_split_index(struct pipe_ctx * pipe_ctx)782 static int get_mpc_split_index(struct pipe_ctx *pipe_ctx)
783 {
784 struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
785 int index = 0;
786
787 while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
788 index++;
789 split_pipe = split_pipe->top_pipe;
790 }
791
792 return index;
793 }
794
795 /*
796 * This is a preliminary vp size calculation to allow us to check taps support.
797 * The result is completely overridden afterwards.
798 */
calculate_viewport_size(struct pipe_ctx * pipe_ctx)799 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
800 {
801 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
802
803 data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
804 data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
805 data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
806 data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
807 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
808 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
809 swap(data->viewport.width, data->viewport.height);
810 swap(data->viewport_c.width, data->viewport_c.height);
811 }
812 }
813
intersect_rec(const struct rect * r0,const struct rect * r1)814 static struct rect intersect_rec(const struct rect *r0, const struct rect *r1)
815 {
816 struct rect rec;
817 int r0_x_end = r0->x + r0->width;
818 int r1_x_end = r1->x + r1->width;
819 int r0_y_end = r0->y + r0->height;
820 int r1_y_end = r1->y + r1->height;
821
822 rec.x = r0->x > r1->x ? r0->x : r1->x;
823 rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
824 rec.y = r0->y > r1->y ? r0->y : r1->y;
825 rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
826
827 /* in case that there is no intersection */
828 if (rec.width < 0 || rec.height < 0)
829 memset(&rec, 0, sizeof(rec));
830
831 return rec;
832 }
833
shift_rec(const struct rect * rec_in,int x,int y)834 static struct rect shift_rec(const struct rect *rec_in, int x, int y)
835 {
836 struct rect rec_out = *rec_in;
837
838 rec_out.x += x;
839 rec_out.y += y;
840
841 return rec_out;
842 }
843
calculate_odm_slice_in_timing_active(struct pipe_ctx * pipe_ctx)844 static struct rect calculate_odm_slice_in_timing_active(struct pipe_ctx *pipe_ctx)
845 {
846 const struct dc_stream_state *stream = pipe_ctx->stream;
847 int odm_slice_count = resource_get_num_odm_splits(pipe_ctx) + 1;
848 int odm_slice_idx = get_odm_split_index(pipe_ctx);
849 bool is_last_odm_slice = (odm_slice_idx + 1) == odm_slice_count;
850 int h_active = stream->timing.h_addressable +
851 stream->timing.h_border_left +
852 stream->timing.h_border_right;
853 int odm_slice_width = h_active / odm_slice_count;
854 struct rect odm_rec;
855
856 odm_rec.x = odm_slice_width * odm_slice_idx;
857 odm_rec.width = is_last_odm_slice ?
858 /* last slice width is the reminder of h_active */
859 h_active - odm_slice_width * (odm_slice_count - 1) :
860 /* odm slice width is the floor of h_active / count */
861 odm_slice_width;
862 odm_rec.y = 0;
863 odm_rec.height = stream->timing.v_addressable +
864 stream->timing.v_border_bottom +
865 stream->timing.v_border_top;
866
867 return odm_rec;
868 }
869
calculate_plane_rec_in_timing_active(struct pipe_ctx * pipe_ctx,const struct rect * rec_in)870 static struct rect calculate_plane_rec_in_timing_active(
871 struct pipe_ctx *pipe_ctx,
872 const struct rect *rec_in)
873 {
874 /*
875 * The following diagram shows an example where we map a 1920x1200
876 * desktop to a 2560x1440 timing with a plane rect in the middle
877 * of the screen. To map a plane rect from Stream Source to Timing
878 * Active space, we first multiply stream scaling ratios (i.e 2304/1920
879 * horizontal and 1440/1200 vertical) to the plane's x and y, then
880 * we add stream destination offsets (i.e 128 horizontal, 0 vertical).
881 * This will give us a plane rect's position in Timing Active. However
882 * we have to remove the fractional. The rule is that we find left/right
883 * and top/bottom positions and round the value to the adjacent integer.
884 *
885 * Stream Source Space
886 * ------------
887 * __________________________________________________
888 * |Stream Source (1920 x 1200) ^ |
889 * | y |
890 * | <------- w --------|> |
891 * | __________________V |
892 * |<-- x -->|Plane//////////////| ^ |
893 * | |(pre scale)////////| | |
894 * | |///////////////////| | |
895 * | |///////////////////| h |
896 * | |///////////////////| | |
897 * | |///////////////////| | |
898 * | |///////////////////| V |
899 * | |
900 * | |
901 * |__________________________________________________|
902 *
903 *
904 * Timing Active Space
905 * ---------------------------------
906 *
907 * Timing Active (2560 x 1440)
908 * __________________________________________________
909 * |*****| Stteam Destination (2304 x 1440) |*****|
910 * |*****| |*****|
911 * |<128>| |*****|
912 * |*****| __________________ |*****|
913 * |*****| |Plane/////////////| |*****|
914 * |*****| |(post scale)//////| |*****|
915 * |*****| |//////////////////| |*****|
916 * |*****| |//////////////////| |*****|
917 * |*****| |//////////////////| |*****|
918 * |*****| |//////////////////| |*****|
919 * |*****| |*****|
920 * |*****| |*****|
921 * |*****| |*****|
922 * |*****|______________________________________|*****|
923 *
924 * So the resulting formulas are shown below:
925 *
926 * recout_x = 128 + round(plane_x * 2304 / 1920)
927 * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
928 * recout_y = 0 + round(plane_y * 1440 / 1280)
929 * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
930 *
931 * NOTE: fixed point division is not error free. To reduce errors
932 * introduced by fixed point division, we divide only after
933 * multiplication is complete.
934 */
935 const struct dc_stream_state *stream = pipe_ctx->stream;
936 struct rect rec_out = {0};
937 struct fixed31_32 temp;
938
939 temp = dc_fixpt_from_fraction(rec_in->x * stream->dst.width,
940 stream->src.width);
941 rec_out.x = stream->dst.x + dc_fixpt_round(temp);
942
943 temp = dc_fixpt_from_fraction(
944 (rec_in->x + rec_in->width) * stream->dst.width,
945 stream->src.width);
946 rec_out.width = stream->dst.x + dc_fixpt_round(temp) - rec_out.x;
947
948 temp = dc_fixpt_from_fraction(rec_in->y * stream->dst.height,
949 stream->src.height);
950 rec_out.y = stream->dst.y + dc_fixpt_round(temp);
951
952 temp = dc_fixpt_from_fraction(
953 (rec_in->y + rec_in->height) * stream->dst.height,
954 stream->src.height);
955 rec_out.height = stream->dst.y + dc_fixpt_round(temp) - rec_out.y;
956
957 return rec_out;
958 }
959
calculate_mpc_slice_in_timing_active(struct pipe_ctx * pipe_ctx,struct rect * plane_clip_rec)960 static struct rect calculate_mpc_slice_in_timing_active(
961 struct pipe_ctx *pipe_ctx,
962 struct rect *plane_clip_rec)
963 {
964 const struct dc_stream_state *stream = pipe_ctx->stream;
965 int mpc_slice_count = resource_get_num_mpc_splits(pipe_ctx) + 1;
966 int mpc_slice_idx = get_mpc_split_index(pipe_ctx);
967 int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
968 struct rect mpc_rec;
969
970 mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
971 mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
972 mpc_rec.height = plane_clip_rec->height;
973 mpc_rec.y = plane_clip_rec->y;
974 ASSERT(mpc_slice_count == 1 ||
975 stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE ||
976 mpc_rec.width % 2 == 0);
977
978 /* extra pixels in the division remainder need to go to pipes after
979 * the extra pixel index minus one(epimo) defined here as:
980 */
981 if (mpc_slice_idx > epimo) {
982 mpc_rec.x += mpc_slice_idx - epimo - 1;
983 mpc_rec.width += 1;
984 }
985
986 if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
987 ASSERT(mpc_rec.height % 2 == 0);
988 mpc_rec.height /= 2;
989 }
990 return mpc_rec;
991 }
992
adjust_recout_for_visual_confirm(struct rect * recout,struct pipe_ctx * pipe_ctx)993 static void adjust_recout_for_visual_confirm(struct rect *recout,
994 struct pipe_ctx *pipe_ctx)
995 {
996 struct dc *dc = pipe_ctx->stream->ctx->dc;
997 int dpp_offset, base_offset;
998
999 if (dc->debug.visual_confirm == VISUAL_CONFIRM_DISABLE || !pipe_ctx->plane_res.dpp)
1000 return;
1001
1002 dpp_offset = pipe_ctx->stream->timing.v_addressable / VISUAL_CONFIRM_DPP_OFFSET_DENO;
1003 dpp_offset *= pipe_ctx->plane_res.dpp->inst;
1004
1005 if ((dc->debug.visual_confirm_rect_height >= VISUAL_CONFIRM_BASE_MIN) &&
1006 dc->debug.visual_confirm_rect_height <= VISUAL_CONFIRM_BASE_MAX)
1007 base_offset = dc->debug.visual_confirm_rect_height;
1008 else
1009 base_offset = VISUAL_CONFIRM_BASE_DEFAULT;
1010
1011 recout->height -= base_offset;
1012 recout->height -= dpp_offset;
1013 }
1014
1015 /*
1016 * The function maps a plane clip from Stream Source Space to ODM Slice Space
1017 * and calculates the rec of the overlapping area of MPC slice of the plane
1018 * clip, ODM slice associated with the pipe context and stream destination rec.
1019 */
calculate_recout(struct pipe_ctx * pipe_ctx)1020 static void calculate_recout(struct pipe_ctx *pipe_ctx)
1021 {
1022 /*
1023 * A plane clip represents the desired plane size and position in Stream
1024 * Source Space. Stream Source is the destination where all planes are
1025 * blended (i.e. positioned, scaled and overlaid). It is a canvas where
1026 * all planes associated with the current stream are drawn together.
1027 * After Stream Source is completed, we will further scale and
1028 * reposition the entire canvas of the stream source to Stream
1029 * Destination in Timing Active Space. This could be due to display
1030 * overscan adjustment where we will need to rescale and reposition all
1031 * the planes so they can fit into a TV with overscan or downscale
1032 * upscale features such as GPU scaling or VSR.
1033 *
1034 * This two step blending is a virtual procedure in software. In
1035 * hardware there is no such thing as Stream Source. all planes are
1036 * blended once in Timing Active Space. Software virtualizes a Stream
1037 * Source space to decouple the math complicity so scaling param
1038 * calculation focuses on one step at a time.
1039 *
1040 * In the following two diagrams, user applied 10% overscan adjustment
1041 * so the Stream Source needs to be scaled down a little before mapping
1042 * to Timing Active Space. As a result the Plane Clip is also scaled
1043 * down by the same ratio, Plane Clip position (i.e. x and y) with
1044 * respect to Stream Source is also scaled down. To map it in Timing
1045 * Active Space additional x and y offsets from Stream Destination are
1046 * added to Plane Clip as well.
1047 *
1048 * Stream Source Space
1049 * ------------
1050 * __________________________________________________
1051 * |Stream Source (3840 x 2160) ^ |
1052 * | y |
1053 * | | |
1054 * | __________________V |
1055 * |<-- x -->|Plane Clip/////////| |
1056 * | |(pre scale)////////| |
1057 * | |///////////////////| |
1058 * | |///////////////////| |
1059 * | |///////////////////| |
1060 * | |///////////////////| |
1061 * | |///////////////////| |
1062 * | |
1063 * | |
1064 * |__________________________________________________|
1065 *
1066 *
1067 * Timing Active Space (3840 x 2160)
1068 * ---------------------------------
1069 *
1070 * Timing Active
1071 * __________________________________________________
1072 * | y_____________________________________________ |
1073 * |x |Stream Destination (3456 x 1944) | |
1074 * | | | |
1075 * | | __________________ | |
1076 * | | |Plane Clip////////| | |
1077 * | | |(post scale)//////| | |
1078 * | | |//////////////////| | |
1079 * | | |//////////////////| | |
1080 * | | |//////////////////| | |
1081 * | | |//////////////////| | |
1082 * | | | |
1083 * | | | |
1084 * | |____________________________________________| |
1085 * |__________________________________________________|
1086 *
1087 *
1088 * In Timing Active Space a plane clip could be further sliced into
1089 * pieces called MPC slices. Each Pipe Context is responsible for
1090 * processing only one MPC slice so the plane processing workload can be
1091 * distributed to multiple DPP Pipes. MPC slices could be blended
1092 * together to a single ODM slice. Each ODM slice is responsible for
1093 * processing a portion of Timing Active divided horizontally so the
1094 * output pixel processing workload can be distributed to multiple OPP
1095 * pipes. All ODM slices are mapped together in ODM block so all MPC
1096 * slices belong to different ODM slices could be pieced together to
1097 * form a single image in Timing Active. MPC slices must belong to
1098 * single ODM slice. If an MPC slice goes across ODM slice boundary, it
1099 * needs to be divided into two MPC slices one for each ODM slice.
1100 *
1101 * In the following diagram the output pixel processing workload is
1102 * divided horizontally into two ODM slices one for each OPP blend tree.
1103 * OPP0 blend tree is responsible for processing left half of Timing
1104 * Active, while OPP2 blend tree is responsible for processing right
1105 * half.
1106 *
1107 * The plane has two MPC slices. However since the right MPC slice goes
1108 * across ODM boundary, two DPP pipes are needed one for each OPP blend
1109 * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
1110 *
1111 * Assuming that we have a Pipe Context associated with OPP0 and DPP1
1112 * working on processing the plane in the diagram. We want to know the
1113 * width and height of the shaded rectangle and its relative position
1114 * with respect to the ODM slice0. This is called the recout of the pipe
1115 * context.
1116 *
1117 * Planes can be at arbitrary size and position and there could be an
1118 * arbitrary number of MPC and ODM slices. The algorithm needs to take
1119 * all scenarios into account.
1120 *
1121 * Timing Active Space (3840 x 2160)
1122 * ---------------------------------
1123 *
1124 * Timing Active
1125 * __________________________________________________
1126 * |OPP0(ODM slice0)^ |OPP2(ODM slice1) |
1127 * | y | |
1128 * | | <- w -> |
1129 * | _____V________|____ |
1130 * | |DPP0 ^ |DPP1 |DPP2| |
1131 * |<------ x |-----|->|/////| | |
1132 * | | | |/////| | |
1133 * | | h |/////| | |
1134 * | | | |/////| | |
1135 * | |_____V__|/////|____| |
1136 * | | |
1137 * | | |
1138 * | | |
1139 * |_________________________|________________________|
1140 *
1141 *
1142 */
1143 struct rect plane_clip;
1144 struct rect mpc_slice_of_plane_clip;
1145 struct rect odm_slice;
1146 struct rect overlapping_area;
1147
1148 plane_clip = calculate_plane_rec_in_timing_active(pipe_ctx,
1149 &pipe_ctx->plane_state->clip_rect);
1150 /* guard plane clip from drawing beyond stream dst here */
1151 plane_clip = intersect_rec(&plane_clip,
1152 &pipe_ctx->stream->dst);
1153 mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
1154 pipe_ctx, &plane_clip);
1155 odm_slice = calculate_odm_slice_in_timing_active(pipe_ctx);
1156 overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice);
1157 if (overlapping_area.height > 0 &&
1158 overlapping_area.width > 0) {
1159 /* shift the overlapping area so it is with respect to current
1160 * ODM slice's position
1161 */
1162 pipe_ctx->plane_res.scl_data.recout = shift_rec(
1163 &overlapping_area,
1164 -odm_slice.x, -odm_slice.y);
1165 adjust_recout_for_visual_confirm(
1166 &pipe_ctx->plane_res.scl_data.recout,
1167 pipe_ctx);
1168 } else {
1169 /* if there is no overlap, zero recout */
1170 memset(&pipe_ctx->plane_res.scl_data.recout, 0,
1171 sizeof(struct rect));
1172 }
1173
1174 }
1175
calculate_scaling_ratios(struct pipe_ctx * pipe_ctx)1176 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
1177 {
1178 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1179 const struct dc_stream_state *stream = pipe_ctx->stream;
1180 struct rect surf_src = plane_state->src_rect;
1181 const int in_w = stream->src.width;
1182 const int in_h = stream->src.height;
1183 const int out_w = stream->dst.width;
1184 const int out_h = stream->dst.height;
1185
1186 /*Swap surf_src height and width since scaling ratios are in recout rotation*/
1187 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
1188 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
1189 swap(surf_src.height, surf_src.width);
1190
1191 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
1192 surf_src.width,
1193 plane_state->dst_rect.width);
1194 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
1195 surf_src.height,
1196 plane_state->dst_rect.height);
1197
1198 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1199 pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
1200 else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1201 pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
1202
1203 pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
1204 pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
1205 pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
1206 pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
1207
1208 pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
1209 pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
1210
1211 if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
1212 || pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
1213 pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
1214 pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
1215 }
1216 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
1217 pipe_ctx->plane_res.scl_data.ratios.horz, 19);
1218 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
1219 pipe_ctx->plane_res.scl_data.ratios.vert, 19);
1220 pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
1221 pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
1222 pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
1223 pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
1224 }
1225
1226
1227 /*
1228 * We completely calculate vp offset, size and inits here based entirely on scaling
1229 * ratios and recout for pixel perfect pipe combine.
1230 */
calculate_init_and_vp(bool flip_scan_dir,int recout_offset_within_recout_full,int recout_size,int src_size,int taps,struct fixed31_32 ratio,struct fixed31_32 * init,int * vp_offset,int * vp_size)1231 static void calculate_init_and_vp(
1232 bool flip_scan_dir,
1233 int recout_offset_within_recout_full,
1234 int recout_size,
1235 int src_size,
1236 int taps,
1237 struct fixed31_32 ratio,
1238 struct fixed31_32 *init,
1239 int *vp_offset,
1240 int *vp_size)
1241 {
1242 struct fixed31_32 temp;
1243 int int_part;
1244
1245 /*
1246 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
1247 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
1248 * All following calculations are based on this logic.
1249 *
1250 * Init calculated according to formula:
1251 * init = (scaling_ratio + number_of_taps + 1) / 2
1252 * init_bot = init + scaling_ratio
1253 * to get pixel perfect combine add the fraction from calculating vp offset
1254 */
1255 temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
1256 *vp_offset = dc_fixpt_floor(temp);
1257 temp.value &= 0xffffffff;
1258 *init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
1259 dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
1260 /*
1261 * If viewport has non 0 offset and there are more taps than covered by init then
1262 * we should decrease the offset and increase init so we are never sampling
1263 * outside of viewport.
1264 */
1265 int_part = dc_fixpt_floor(*init);
1266 if (int_part < taps) {
1267 int_part = taps - int_part;
1268 if (int_part > *vp_offset)
1269 int_part = *vp_offset;
1270 *vp_offset -= int_part;
1271 *init = dc_fixpt_add_int(*init, int_part);
1272 }
1273 /*
1274 * If taps are sampling outside of viewport at end of recout and there are more pixels
1275 * available in the surface we should increase the viewport size, regardless set vp to
1276 * only what is used.
1277 */
1278 temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
1279 *vp_size = dc_fixpt_floor(temp);
1280 if (*vp_size + *vp_offset > src_size)
1281 *vp_size = src_size - *vp_offset;
1282
1283 /* We did all the math assuming we are scanning same direction as display does,
1284 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
1285 * is flipped we simply need to calculate offset from the other side of plane.
1286 * Note that outside of viewport all scaling hardware works in recout space.
1287 */
1288 if (flip_scan_dir)
1289 *vp_offset = src_size - *vp_offset - *vp_size;
1290 }
1291
calculate_inits_and_viewports(struct pipe_ctx * pipe_ctx)1292 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
1293 {
1294 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1295 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1296 struct rect src = plane_state->src_rect;
1297 struct rect recout_dst_in_active_timing;
1298 struct rect recout_clip_in_active_timing;
1299 struct rect recout_clip_in_recout_dst;
1300 struct rect overlap_in_active_timing;
1301 struct rect odm_slice = calculate_odm_slice_in_timing_active(pipe_ctx);
1302 int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1303 || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1304 bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1305
1306 recout_clip_in_active_timing = shift_rec(
1307 &data->recout, odm_slice.x, odm_slice.y);
1308 recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
1309 pipe_ctx, &plane_state->dst_rect);
1310 overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
1311 &recout_dst_in_active_timing);
1312 if (overlap_in_active_timing.width > 0 &&
1313 overlap_in_active_timing.height > 0)
1314 recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
1315 -recout_dst_in_active_timing.x,
1316 -recout_dst_in_active_timing.y);
1317 else
1318 memset(&recout_clip_in_recout_dst, 0, sizeof(struct rect));
1319
1320 /*
1321 * Work in recout rotation since that requires less transformations
1322 */
1323 get_vp_scan_direction(
1324 plane_state->rotation,
1325 plane_state->horizontal_mirror,
1326 &orthogonal_rotation,
1327 &flip_vert_scan_dir,
1328 &flip_horz_scan_dir);
1329
1330 if (orthogonal_rotation) {
1331 swap(src.width, src.height);
1332 swap(flip_vert_scan_dir, flip_horz_scan_dir);
1333 }
1334
1335 calculate_init_and_vp(
1336 flip_horz_scan_dir,
1337 recout_clip_in_recout_dst.x,
1338 data->recout.width,
1339 src.width,
1340 data->taps.h_taps,
1341 data->ratios.horz,
1342 &data->inits.h,
1343 &data->viewport.x,
1344 &data->viewport.width);
1345 calculate_init_and_vp(
1346 flip_horz_scan_dir,
1347 recout_clip_in_recout_dst.x,
1348 data->recout.width,
1349 src.width / vpc_div,
1350 data->taps.h_taps_c,
1351 data->ratios.horz_c,
1352 &data->inits.h_c,
1353 &data->viewport_c.x,
1354 &data->viewport_c.width);
1355 calculate_init_and_vp(
1356 flip_vert_scan_dir,
1357 recout_clip_in_recout_dst.y,
1358 data->recout.height,
1359 src.height,
1360 data->taps.v_taps,
1361 data->ratios.vert,
1362 &data->inits.v,
1363 &data->viewport.y,
1364 &data->viewport.height);
1365 calculate_init_and_vp(
1366 flip_vert_scan_dir,
1367 recout_clip_in_recout_dst.y,
1368 data->recout.height,
1369 src.height / vpc_div,
1370 data->taps.v_taps_c,
1371 data->ratios.vert_c,
1372 &data->inits.v_c,
1373 &data->viewport_c.y,
1374 &data->viewport_c.height);
1375 if (orthogonal_rotation) {
1376 swap(data->viewport.x, data->viewport.y);
1377 swap(data->viewport.width, data->viewport.height);
1378 swap(data->viewport_c.x, data->viewport_c.y);
1379 swap(data->viewport_c.width, data->viewport_c.height);
1380 }
1381 data->viewport.x += src.x;
1382 data->viewport.y += src.y;
1383 ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1384 data->viewport_c.x += src.x / vpc_div;
1385 data->viewport_c.y += src.y / vpc_div;
1386 }
1387
resource_build_scaling_params(struct pipe_ctx * pipe_ctx)1388 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1389 {
1390 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1391 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1392 const struct rect odm_slice_rec = calculate_odm_slice_in_timing_active(pipe_ctx);
1393 bool res = false;
1394 DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1395
1396 /* Invalid input */
1397 if (!plane_state ||
1398 !plane_state->dst_rect.width ||
1399 !plane_state->dst_rect.height ||
1400 !plane_state->src_rect.width ||
1401 !plane_state->src_rect.height) {
1402 ASSERT(0);
1403 return false;
1404 }
1405
1406 pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1407 pipe_ctx->plane_state->format);
1408
1409 /* Timing borders are part of vactive that we are also supposed to skip in addition
1410 * to any stream dst offset. Since dm logic assumes dst is in addressable
1411 * space we need to add the left and top borders to dst offsets temporarily.
1412 * TODO: fix in DM, stream dst is supposed to be in vactive
1413 */
1414 pipe_ctx->stream->dst.x += timing->h_border_left;
1415 pipe_ctx->stream->dst.y += timing->v_border_top;
1416
1417 /* Calculate H and V active size */
1418 pipe_ctx->plane_res.scl_data.h_active = odm_slice_rec.width;
1419 pipe_ctx->plane_res.scl_data.v_active = odm_slice_rec.height;
1420
1421 /* depends on h_active */
1422 calculate_recout(pipe_ctx);
1423 /* depends on pixel format */
1424 calculate_scaling_ratios(pipe_ctx);
1425 /* depends on scaling ratios and recout, does not calculate offset yet */
1426 calculate_viewport_size(pipe_ctx);
1427
1428 if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1429 /* Stopgap for validation of ODM + MPO on one side of screen case */
1430 if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1431 pipe_ctx->plane_res.scl_data.viewport.width < 1)
1432 return false;
1433 }
1434
1435 /*
1436 * LB calculations depend on vp size, h/v_active and scaling ratios
1437 * Setting line buffer pixel depth to 24bpp yields banding
1438 * on certain displays, such as the Sharp 4k. 36bpp is needed
1439 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1440 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1441 * precision on DCN display engines, but apparently not for DCE, as
1442 * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1443 * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1444 * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1445 * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1446 */
1447 if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1448 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1449 else
1450 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1451
1452 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1453
1454 if (pipe_ctx->plane_res.xfm != NULL)
1455 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1456 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1457
1458 if (pipe_ctx->plane_res.dpp != NULL)
1459 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1460 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1461
1462
1463 if (!res) {
1464 /* Try 24 bpp linebuffer */
1465 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1466
1467 if (pipe_ctx->plane_res.xfm != NULL)
1468 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1469 pipe_ctx->plane_res.xfm,
1470 &pipe_ctx->plane_res.scl_data,
1471 &plane_state->scaling_quality);
1472
1473 if (pipe_ctx->plane_res.dpp != NULL)
1474 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1475 pipe_ctx->plane_res.dpp,
1476 &pipe_ctx->plane_res.scl_data,
1477 &plane_state->scaling_quality);
1478 }
1479
1480 /*
1481 * Depends on recout, scaling ratios, h_active and taps
1482 * May need to re-check lb size after this in some obscure scenario
1483 */
1484 if (res)
1485 calculate_inits_and_viewports(pipe_ctx);
1486
1487 /*
1488 * Handle side by side and top bottom 3d recout offsets after vp calculation
1489 * since 3d is special and needs to calculate vp as if there is no recout offset
1490 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1491 */
1492 if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1493 ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1494 (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1495 pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1496 if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1497 pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1498 else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1499 pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1500 }
1501
1502 /* Clamp minimum viewport size */
1503 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1504 pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1505 if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1506 pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1507
1508
1509 DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d Recout: height:%d width:%d x:%d y:%d HACTIVE:%d VACTIVE:%d\n"
1510 "src_rect: height:%d width:%d x:%d y:%d dst_rect: height:%d width:%d x:%d y:%d clip_rect: height:%d width:%d x:%d y:%d\n",
1511 __func__,
1512 pipe_ctx->pipe_idx,
1513 pipe_ctx->plane_res.scl_data.viewport.height,
1514 pipe_ctx->plane_res.scl_data.viewport.width,
1515 pipe_ctx->plane_res.scl_data.viewport.x,
1516 pipe_ctx->plane_res.scl_data.viewport.y,
1517 pipe_ctx->plane_res.scl_data.recout.height,
1518 pipe_ctx->plane_res.scl_data.recout.width,
1519 pipe_ctx->plane_res.scl_data.recout.x,
1520 pipe_ctx->plane_res.scl_data.recout.y,
1521 pipe_ctx->plane_res.scl_data.h_active,
1522 pipe_ctx->plane_res.scl_data.v_active,
1523 plane_state->src_rect.height,
1524 plane_state->src_rect.width,
1525 plane_state->src_rect.x,
1526 plane_state->src_rect.y,
1527 plane_state->dst_rect.height,
1528 plane_state->dst_rect.width,
1529 plane_state->dst_rect.x,
1530 plane_state->dst_rect.y,
1531 plane_state->clip_rect.height,
1532 plane_state->clip_rect.width,
1533 plane_state->clip_rect.x,
1534 plane_state->clip_rect.y);
1535
1536 pipe_ctx->stream->dst.x -= timing->h_border_left;
1537 pipe_ctx->stream->dst.y -= timing->v_border_top;
1538
1539 return res;
1540 }
1541
1542
resource_build_scaling_params_for_context(const struct dc * dc,struct dc_state * context)1543 enum dc_status resource_build_scaling_params_for_context(
1544 const struct dc *dc,
1545 struct dc_state *context)
1546 {
1547 int i;
1548
1549 for (i = 0; i < MAX_PIPES; i++) {
1550 if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1551 context->res_ctx.pipe_ctx[i].stream != NULL)
1552 if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1553 return DC_FAIL_SCALING;
1554 }
1555
1556 return DC_OK;
1557 }
1558
resource_find_free_secondary_pipe_legacy(struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1559 struct pipe_ctx *resource_find_free_secondary_pipe_legacy(
1560 struct resource_context *res_ctx,
1561 const struct resource_pool *pool,
1562 const struct pipe_ctx *primary_pipe)
1563 {
1564 int i;
1565 struct pipe_ctx *secondary_pipe = NULL;
1566
1567 /*
1568 * We add a preferred pipe mapping to avoid the chance that
1569 * MPCCs already in use will need to be reassigned to other trees.
1570 * For example, if we went with the strict, assign backwards logic:
1571 *
1572 * (State 1)
1573 * Display A on, no surface, top pipe = 0
1574 * Display B on, no surface, top pipe = 1
1575 *
1576 * (State 2)
1577 * Display A on, no surface, top pipe = 0
1578 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1579 *
1580 * (State 3)
1581 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1582 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1583 *
1584 * The state 2->3 transition requires remapping MPCC 5 from display B
1585 * to display A.
1586 *
1587 * However, with the preferred pipe logic, state 2 would look like:
1588 *
1589 * (State 2)
1590 * Display A on, no surface, top pipe = 0
1591 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1592 *
1593 * This would then cause 2->3 to not require remapping any MPCCs.
1594 */
1595 if (primary_pipe) {
1596 int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1597 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1598 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1599 secondary_pipe->pipe_idx = preferred_pipe_idx;
1600 }
1601 }
1602
1603 /*
1604 * search backwards for the second pipe to keep pipe
1605 * assignment more consistent
1606 */
1607 if (!secondary_pipe)
1608 for (i = pool->pipe_count - 1; i >= 0; i--) {
1609 if (res_ctx->pipe_ctx[i].stream == NULL) {
1610 secondary_pipe = &res_ctx->pipe_ctx[i];
1611 secondary_pipe->pipe_idx = i;
1612 break;
1613 }
1614 }
1615
1616 return secondary_pipe;
1617 }
1618
resource_find_free_pipe_used_in_cur_mpc_blending_tree(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct pipe_ctx * cur_opp_head)1619 int resource_find_free_pipe_used_in_cur_mpc_blending_tree(
1620 const struct resource_context *cur_res_ctx,
1621 struct resource_context *new_res_ctx,
1622 const struct pipe_ctx *cur_opp_head)
1623 {
1624 const struct pipe_ctx *cur_sec_dpp = cur_opp_head->bottom_pipe;
1625 struct pipe_ctx *new_pipe;
1626 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1627
1628 while (cur_sec_dpp) {
1629 /* find a free pipe used in current opp blend tree,
1630 * this is to avoid MPO pipe switching to different opp blending
1631 * tree
1632 */
1633 new_pipe = &new_res_ctx->pipe_ctx[cur_sec_dpp->pipe_idx];
1634 if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1635 free_pipe_idx = cur_sec_dpp->pipe_idx;
1636 break;
1637 }
1638 cur_sec_dpp = cur_sec_dpp->bottom_pipe;
1639 }
1640
1641 return free_pipe_idx;
1642 }
1643
recource_find_free_pipe_not_used_in_cur_res_ctx(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1644 int recource_find_free_pipe_not_used_in_cur_res_ctx(
1645 const struct resource_context *cur_res_ctx,
1646 struct resource_context *new_res_ctx,
1647 const struct resource_pool *pool)
1648 {
1649 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1650 const struct pipe_ctx *new_pipe, *cur_pipe;
1651 int i;
1652
1653 for (i = 0; i < pool->pipe_count; i++) {
1654 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1655 new_pipe = &new_res_ctx->pipe_ctx[i];
1656
1657 if (resource_is_pipe_type(cur_pipe, FREE_PIPE) &&
1658 resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1659 free_pipe_idx = i;
1660 break;
1661 }
1662 }
1663
1664 return free_pipe_idx;
1665 }
1666
resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1667 int resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
1668 const struct resource_context *cur_res_ctx,
1669 struct resource_context *new_res_ctx,
1670 const struct resource_pool *pool)
1671 {
1672 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1673 const struct pipe_ctx *new_pipe, *cur_pipe;
1674 int i;
1675
1676 for (i = 0; i < pool->pipe_count; i++) {
1677 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1678 new_pipe = &new_res_ctx->pipe_ctx[i];
1679
1680 if (resource_is_pipe_type(cur_pipe, DPP_PIPE) &&
1681 !resource_is_pipe_type(cur_pipe, OPP_HEAD) &&
1682 resource_is_for_mpcc_combine(cur_pipe) &&
1683 resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1684 free_pipe_idx = i;
1685 break;
1686 }
1687 }
1688
1689 return free_pipe_idx;
1690 }
1691
resource_find_any_free_pipe(struct resource_context * new_res_ctx,const struct resource_pool * pool)1692 int resource_find_any_free_pipe(struct resource_context *new_res_ctx,
1693 const struct resource_pool *pool)
1694 {
1695 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1696 const struct pipe_ctx *new_pipe;
1697 int i;
1698
1699 for (i = 0; i < pool->pipe_count; i++) {
1700 new_pipe = &new_res_ctx->pipe_ctx[i];
1701
1702 if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1703 free_pipe_idx = i;
1704 break;
1705 }
1706 }
1707
1708 return free_pipe_idx;
1709 }
1710
resource_is_pipe_type(const struct pipe_ctx * pipe_ctx,enum pipe_type type)1711 bool resource_is_pipe_type(const struct pipe_ctx *pipe_ctx, enum pipe_type type)
1712 {
1713 #ifdef DBG
1714 if (pipe_ctx->stream == NULL) {
1715 /* a free pipe with dangling states */
1716 ASSERT(!pipe_ctx->plane_state);
1717 ASSERT(!pipe_ctx->prev_odm_pipe);
1718 ASSERT(!pipe_ctx->next_odm_pipe);
1719 ASSERT(!pipe_ctx->top_pipe);
1720 ASSERT(!pipe_ctx->bottom_pipe);
1721 } else if (pipe_ctx->top_pipe) {
1722 /* a secondary DPP pipe must be signed to a plane */
1723 ASSERT(pipe_ctx->plane_state)
1724 }
1725 /* Add more checks here to prevent corrupted pipe ctx. It is very hard
1726 * to debug this issue afterwards because we can't pinpoint the code
1727 * location causing inconsistent pipe context states.
1728 */
1729 #endif
1730 switch (type) {
1731 case OTG_MASTER:
1732 return !pipe_ctx->prev_odm_pipe &&
1733 !pipe_ctx->top_pipe &&
1734 pipe_ctx->stream;
1735 case OPP_HEAD:
1736 return !pipe_ctx->top_pipe && pipe_ctx->stream;
1737 case DPP_PIPE:
1738 return pipe_ctx->plane_state && pipe_ctx->stream;
1739 case FREE_PIPE:
1740 return !pipe_ctx->plane_state && !pipe_ctx->stream;
1741 default:
1742 return false;
1743 }
1744 }
1745
resource_is_for_mpcc_combine(const struct pipe_ctx * pipe_ctx)1746 bool resource_is_for_mpcc_combine(const struct pipe_ctx *pipe_ctx)
1747 {
1748 return resource_get_num_mpc_splits(pipe_ctx) > 0;
1749 }
1750
resource_get_otg_master_for_stream(struct resource_context * res_ctx,struct dc_stream_state * stream)1751 struct pipe_ctx *resource_get_otg_master_for_stream(
1752 struct resource_context *res_ctx,
1753 struct dc_stream_state *stream)
1754 {
1755 int i;
1756
1757 for (i = 0; i < MAX_PIPES; i++) {
1758 if (res_ctx->pipe_ctx[i].stream == stream &&
1759 resource_is_pipe_type(&res_ctx->pipe_ctx[i], OTG_MASTER))
1760 return &res_ctx->pipe_ctx[i];
1761 }
1762 return NULL;
1763 }
1764
resource_get_otg_master(const struct pipe_ctx * pipe_ctx)1765 struct pipe_ctx *resource_get_otg_master(const struct pipe_ctx *pipe_ctx)
1766 {
1767 struct pipe_ctx *otg_master = resource_get_opp_head(pipe_ctx);
1768
1769 while (otg_master->prev_odm_pipe)
1770 otg_master = otg_master->prev_odm_pipe;
1771 return otg_master;
1772 }
1773
resource_get_opp_head(const struct pipe_ctx * pipe_ctx)1774 struct pipe_ctx *resource_get_opp_head(const struct pipe_ctx *pipe_ctx)
1775 {
1776 struct pipe_ctx *opp_head = (struct pipe_ctx *) pipe_ctx;
1777
1778 ASSERT(!resource_is_pipe_type(opp_head, FREE_PIPE));
1779 while (opp_head->top_pipe)
1780 opp_head = opp_head->top_pipe;
1781 return opp_head;
1782 }
1783
get_tail_pipe(struct pipe_ctx * head_pipe)1784 static struct pipe_ctx *get_tail_pipe(
1785 struct pipe_ctx *head_pipe)
1786 {
1787 struct pipe_ctx *tail_pipe = head_pipe->bottom_pipe;
1788
1789 while (tail_pipe) {
1790 head_pipe = tail_pipe;
1791 tail_pipe = tail_pipe->bottom_pipe;
1792 }
1793
1794 return head_pipe;
1795 }
1796
acquire_first_split_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)1797 static int acquire_first_split_pipe(
1798 struct resource_context *res_ctx,
1799 const struct resource_pool *pool,
1800 struct dc_stream_state *stream)
1801 {
1802 int i;
1803
1804 for (i = 0; i < pool->pipe_count; i++) {
1805 struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1806
1807 if (split_pipe->top_pipe &&
1808 split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1809 split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1810 if (split_pipe->bottom_pipe)
1811 split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1812
1813 if (split_pipe->top_pipe->plane_state)
1814 resource_build_scaling_params(split_pipe->top_pipe);
1815
1816 memset(split_pipe, 0, sizeof(*split_pipe));
1817 split_pipe->stream_res.tg = pool->timing_generators[i];
1818 split_pipe->plane_res.hubp = pool->hubps[i];
1819 split_pipe->plane_res.ipp = pool->ipps[i];
1820 split_pipe->plane_res.dpp = pool->dpps[i];
1821 split_pipe->stream_res.opp = pool->opps[i];
1822 split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1823 split_pipe->pipe_idx = i;
1824
1825 split_pipe->stream = stream;
1826 return i;
1827 }
1828 }
1829 return UNABLE_TO_SPLIT;
1830 }
1831
add_plane_to_opp_head_pipes(struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state,struct dc_state * context)1832 static bool add_plane_to_opp_head_pipes(struct pipe_ctx *otg_master_pipe,
1833 struct dc_plane_state *plane_state,
1834 struct dc_state *context)
1835 {
1836 struct pipe_ctx *opp_head_pipe = otg_master_pipe;
1837
1838 while (opp_head_pipe) {
1839 if (opp_head_pipe->plane_state) {
1840 ASSERT(0);
1841 return false;
1842 }
1843 opp_head_pipe->plane_state = plane_state;
1844 opp_head_pipe = opp_head_pipe->next_odm_pipe;
1845 }
1846
1847 return true;
1848 }
1849
insert_secondary_dpp_pipe_with_plane(struct pipe_ctx * opp_head_pipe,struct pipe_ctx * sec_pipe,struct dc_plane_state * plane_state)1850 static void insert_secondary_dpp_pipe_with_plane(struct pipe_ctx *opp_head_pipe,
1851 struct pipe_ctx *sec_pipe, struct dc_plane_state *plane_state)
1852 {
1853 struct pipe_ctx *tail_pipe = get_tail_pipe(opp_head_pipe);
1854
1855 tail_pipe->bottom_pipe = sec_pipe;
1856 sec_pipe->top_pipe = tail_pipe;
1857 if (tail_pipe->prev_odm_pipe) {
1858 ASSERT(tail_pipe->prev_odm_pipe->bottom_pipe);
1859 sec_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1860 tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = sec_pipe;
1861 }
1862 sec_pipe->plane_state = plane_state;
1863 }
1864
1865 /* for each opp head pipe of an otg master pipe, acquire a secondary dpp pipe
1866 * and add the plane. So the plane is added to all MPC blend trees associated
1867 * with the otg master pipe.
1868 */
acquire_secondary_dpp_pipes_and_add_plane(struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state,struct dc_state * new_ctx,struct dc_state * cur_ctx,struct resource_pool * pool)1869 static bool acquire_secondary_dpp_pipes_and_add_plane(
1870 struct pipe_ctx *otg_master_pipe,
1871 struct dc_plane_state *plane_state,
1872 struct dc_state *new_ctx,
1873 struct dc_state *cur_ctx,
1874 struct resource_pool *pool)
1875 {
1876 struct pipe_ctx *opp_head_pipe, *sec_pipe;
1877
1878 if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe)
1879 return false;
1880
1881 opp_head_pipe = otg_master_pipe;
1882 while (opp_head_pipe) {
1883 sec_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
1884 cur_ctx,
1885 new_ctx,
1886 pool,
1887 opp_head_pipe);
1888 if (!sec_pipe) {
1889 /* try tearing down MPCC combine */
1890 int pipe_idx = acquire_first_split_pipe(
1891 &new_ctx->res_ctx, pool,
1892 otg_master_pipe->stream);
1893
1894 if (pipe_idx >= 0)
1895 sec_pipe = &new_ctx->res_ctx.pipe_ctx[pipe_idx];
1896 }
1897
1898 if (!sec_pipe)
1899 return false;
1900
1901 insert_secondary_dpp_pipe_with_plane(opp_head_pipe, sec_pipe,
1902 plane_state);
1903 opp_head_pipe = opp_head_pipe->next_odm_pipe;
1904 }
1905 return true;
1906 }
1907
dc_add_plane_to_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1908 bool dc_add_plane_to_context(
1909 const struct dc *dc,
1910 struct dc_stream_state *stream,
1911 struct dc_plane_state *plane_state,
1912 struct dc_state *context)
1913 {
1914 struct resource_pool *pool = dc->res_pool;
1915 struct pipe_ctx *otg_master_pipe;
1916 struct dc_stream_status *stream_status = NULL;
1917 bool added = false;
1918
1919 stream_status = dc_stream_get_status_from_state(context, stream);
1920 if (stream_status == NULL) {
1921 dm_error("Existing stream not found; failed to attach surface!\n");
1922 goto out;
1923 } else if (stream_status->plane_count == MAX_SURFACE_NUM) {
1924 dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1925 plane_state, MAX_SURFACE_NUM);
1926 goto out;
1927 }
1928
1929 otg_master_pipe = resource_get_otg_master_for_stream(
1930 &context->res_ctx, stream);
1931 if (otg_master_pipe->plane_state == NULL)
1932 added = add_plane_to_opp_head_pipes(otg_master_pipe,
1933 plane_state, context);
1934 else
1935 added = acquire_secondary_dpp_pipes_and_add_plane(
1936 otg_master_pipe, plane_state, context,
1937 dc->current_state, pool);
1938 if (added) {
1939 stream_status->plane_states[stream_status->plane_count] =
1940 plane_state;
1941 stream_status->plane_count++;
1942 dc_plane_state_retain(plane_state);
1943 }
1944
1945 out:
1946 return added;
1947 }
1948
dc_remove_plane_from_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1949 bool dc_remove_plane_from_context(
1950 const struct dc *dc,
1951 struct dc_stream_state *stream,
1952 struct dc_plane_state *plane_state,
1953 struct dc_state *context)
1954 {
1955 int i;
1956 struct dc_stream_status *stream_status = NULL;
1957 struct resource_pool *pool = dc->res_pool;
1958
1959 if (!plane_state)
1960 return true;
1961
1962 for (i = 0; i < context->stream_count; i++)
1963 if (context->streams[i] == stream) {
1964 stream_status = &context->stream_status[i];
1965 break;
1966 }
1967
1968 if (stream_status == NULL) {
1969 dm_error("Existing stream not found; failed to remove plane.\n");
1970 return false;
1971 }
1972
1973 /* release pipe for plane*/
1974 for (i = pool->pipe_count - 1; i >= 0; i--) {
1975 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1976
1977 if (pipe_ctx->plane_state == plane_state) {
1978 if (pipe_ctx->top_pipe)
1979 pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1980
1981 /* Second condition is to avoid setting NULL to top pipe
1982 * of tail pipe making it look like head pipe in subsequent
1983 * deletes
1984 */
1985 if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1986 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1987
1988 /*
1989 * For head pipe detach surfaces from pipe for tail
1990 * pipe just zero it out
1991 */
1992 if (!pipe_ctx->top_pipe)
1993 pipe_ctx->plane_state = NULL;
1994 else
1995 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1996 }
1997 }
1998
1999
2000 for (i = 0; i < stream_status->plane_count; i++) {
2001 if (stream_status->plane_states[i] == plane_state) {
2002 dc_plane_state_release(stream_status->plane_states[i]);
2003 break;
2004 }
2005 }
2006
2007 if (i == stream_status->plane_count) {
2008 dm_error("Existing plane_state not found; failed to detach it!\n");
2009 return false;
2010 }
2011
2012 stream_status->plane_count--;
2013
2014 /* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
2015 for (; i < stream_status->plane_count; i++)
2016 stream_status->plane_states[i] = stream_status->plane_states[i + 1];
2017
2018 stream_status->plane_states[stream_status->plane_count] = NULL;
2019
2020 return true;
2021 }
2022
2023 /**
2024 * dc_rem_all_planes_for_stream - Remove planes attached to the target stream.
2025 *
2026 * @dc: Current dc state.
2027 * @stream: Target stream, which we want to remove the attached plans.
2028 * @context: New context.
2029 *
2030 * Return:
2031 * Return true if DC was able to remove all planes from the target
2032 * stream, otherwise, return false.
2033 */
dc_rem_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)2034 bool dc_rem_all_planes_for_stream(
2035 const struct dc *dc,
2036 struct dc_stream_state *stream,
2037 struct dc_state *context)
2038 {
2039 int i, old_plane_count;
2040 struct dc_stream_status *stream_status = NULL;
2041 struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
2042
2043 for (i = 0; i < context->stream_count; i++)
2044 if (context->streams[i] == stream) {
2045 stream_status = &context->stream_status[i];
2046 break;
2047 }
2048
2049 if (stream_status == NULL) {
2050 dm_error("Existing stream %p not found!\n", stream);
2051 return false;
2052 }
2053
2054 old_plane_count = stream_status->plane_count;
2055
2056 for (i = 0; i < old_plane_count; i++)
2057 del_planes[i] = stream_status->plane_states[i];
2058
2059 for (i = 0; i < old_plane_count; i++)
2060 if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
2061 return false;
2062
2063 return true;
2064 }
2065
add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count,struct dc_state * context)2066 static bool add_all_planes_for_stream(
2067 const struct dc *dc,
2068 struct dc_stream_state *stream,
2069 const struct dc_validation_set set[],
2070 int set_count,
2071 struct dc_state *context)
2072 {
2073 int i, j;
2074
2075 for (i = 0; i < set_count; i++)
2076 if (set[i].stream == stream)
2077 break;
2078
2079 if (i == set_count) {
2080 dm_error("Stream %p not found in set!\n", stream);
2081 return false;
2082 }
2083
2084 for (j = 0; j < set[i].plane_count; j++)
2085 if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
2086 return false;
2087
2088 return true;
2089 }
2090
dc_add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * const * plane_states,int plane_count,struct dc_state * context)2091 bool dc_add_all_planes_for_stream(
2092 const struct dc *dc,
2093 struct dc_stream_state *stream,
2094 struct dc_plane_state * const *plane_states,
2095 int plane_count,
2096 struct dc_state *context)
2097 {
2098 struct dc_validation_set set;
2099 int i;
2100
2101 set.stream = stream;
2102 set.plane_count = plane_count;
2103
2104 for (i = 0; i < plane_count; i++)
2105 set.plane_states[i] = plane_states[i];
2106
2107 return add_all_planes_for_stream(dc, stream, &set, 1, context);
2108 }
2109
dc_is_timing_changed(struct dc_stream_state * cur_stream,struct dc_stream_state * new_stream)2110 bool dc_is_timing_changed(struct dc_stream_state *cur_stream,
2111 struct dc_stream_state *new_stream)
2112 {
2113 if (cur_stream == NULL)
2114 return true;
2115
2116 /* If output color space is changed, need to reprogram info frames */
2117 if (cur_stream->output_color_space != new_stream->output_color_space)
2118 return true;
2119
2120 return memcmp(
2121 &cur_stream->timing,
2122 &new_stream->timing,
2123 sizeof(struct dc_crtc_timing)) != 0;
2124 }
2125
are_stream_backends_same(struct dc_stream_state * stream_a,struct dc_stream_state * stream_b)2126 static bool are_stream_backends_same(
2127 struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
2128 {
2129 if (stream_a == stream_b)
2130 return true;
2131
2132 if (stream_a == NULL || stream_b == NULL)
2133 return false;
2134
2135 if (dc_is_timing_changed(stream_a, stream_b))
2136 return false;
2137
2138 if (stream_a->signal != stream_b->signal)
2139 return false;
2140
2141 if (stream_a->dpms_off != stream_b->dpms_off)
2142 return false;
2143
2144 return true;
2145 }
2146
2147 /*
2148 * dc_is_stream_unchanged() - Compare two stream states for equivalence.
2149 *
2150 * Checks if there a difference between the two states
2151 * that would require a mode change.
2152 *
2153 * Does not compare cursor position or attributes.
2154 */
dc_is_stream_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)2155 bool dc_is_stream_unchanged(
2156 struct dc_stream_state *old_stream, struct dc_stream_state *stream)
2157 {
2158 if (!old_stream || !stream)
2159 return false;
2160
2161 if (!are_stream_backends_same(old_stream, stream))
2162 return false;
2163
2164 if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
2165 return false;
2166
2167 /*compare audio info*/
2168 if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
2169 return false;
2170
2171 return true;
2172 }
2173
2174 /*
2175 * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
2176 */
dc_is_stream_scaling_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)2177 bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
2178 struct dc_stream_state *stream)
2179 {
2180 if (old_stream == stream)
2181 return true;
2182
2183 if (old_stream == NULL || stream == NULL)
2184 return false;
2185
2186 if (memcmp(&old_stream->src,
2187 &stream->src,
2188 sizeof(struct rect)) != 0)
2189 return false;
2190
2191 if (memcmp(&old_stream->dst,
2192 &stream->dst,
2193 sizeof(struct rect)) != 0)
2194 return false;
2195
2196 return true;
2197 }
2198
update_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct stream_encoder * stream_enc,bool acquired)2199 static void update_stream_engine_usage(
2200 struct resource_context *res_ctx,
2201 const struct resource_pool *pool,
2202 struct stream_encoder *stream_enc,
2203 bool acquired)
2204 {
2205 int i;
2206
2207 for (i = 0; i < pool->stream_enc_count; i++) {
2208 if (pool->stream_enc[i] == stream_enc)
2209 res_ctx->is_stream_enc_acquired[i] = acquired;
2210 }
2211 }
2212
update_hpo_dp_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct hpo_dp_stream_encoder * hpo_dp_stream_enc,bool acquired)2213 static void update_hpo_dp_stream_engine_usage(
2214 struct resource_context *res_ctx,
2215 const struct resource_pool *pool,
2216 struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
2217 bool acquired)
2218 {
2219 int i;
2220
2221 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2222 if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
2223 res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
2224 }
2225 }
2226
find_acquired_hpo_dp_link_enc_for_link(const struct resource_context * res_ctx,const struct dc_link * link)2227 static inline int find_acquired_hpo_dp_link_enc_for_link(
2228 const struct resource_context *res_ctx,
2229 const struct dc_link *link)
2230 {
2231 int i;
2232
2233 for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
2234 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
2235 res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
2236 return i;
2237
2238 return -1;
2239 }
2240
find_free_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * pool)2241 static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
2242 const struct resource_pool *pool)
2243 {
2244 int i;
2245
2246 for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
2247 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
2248 break;
2249
2250 return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
2251 i < pool->hpo_dp_link_enc_count) ? i : -1;
2252 }
2253
acquire_hpo_dp_link_enc(struct resource_context * res_ctx,unsigned int link_index,int enc_index)2254 static inline void acquire_hpo_dp_link_enc(
2255 struct resource_context *res_ctx,
2256 unsigned int link_index,
2257 int enc_index)
2258 {
2259 res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
2260 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
2261 }
2262
retain_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2263 static inline void retain_hpo_dp_link_enc(
2264 struct resource_context *res_ctx,
2265 int enc_index)
2266 {
2267 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
2268 }
2269
release_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2270 static inline void release_hpo_dp_link_enc(
2271 struct resource_context *res_ctx,
2272 int enc_index)
2273 {
2274 ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
2275 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
2276 }
2277
add_hpo_dp_link_enc_to_ctx(struct resource_context * res_ctx,const struct resource_pool * pool,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2278 static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
2279 const struct resource_pool *pool,
2280 struct pipe_ctx *pipe_ctx,
2281 struct dc_stream_state *stream)
2282 {
2283 int enc_index;
2284
2285 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2286
2287 if (enc_index >= 0) {
2288 retain_hpo_dp_link_enc(res_ctx, enc_index);
2289 } else {
2290 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
2291 if (enc_index >= 0)
2292 acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
2293 }
2294
2295 if (enc_index >= 0)
2296 pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
2297
2298 return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
2299 }
2300
remove_hpo_dp_link_enc_from_ctx(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2301 static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
2302 struct pipe_ctx *pipe_ctx,
2303 struct dc_stream_state *stream)
2304 {
2305 int enc_index;
2306
2307 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2308
2309 if (enc_index >= 0) {
2310 release_hpo_dp_link_enc(res_ctx, enc_index);
2311 pipe_ctx->link_res.hpo_dp_link_enc = NULL;
2312 }
2313 }
2314
2315 /* TODO: release audio object */
update_audio_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct audio * audio,bool acquired)2316 void update_audio_usage(
2317 struct resource_context *res_ctx,
2318 const struct resource_pool *pool,
2319 struct audio *audio,
2320 bool acquired)
2321 {
2322 int i;
2323 for (i = 0; i < pool->audio_count; i++) {
2324 if (pool->audios[i] == audio)
2325 res_ctx->is_audio_acquired[i] = acquired;
2326 }
2327 }
2328
acquire_first_free_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2329 static int acquire_first_free_pipe(
2330 struct resource_context *res_ctx,
2331 const struct resource_pool *pool,
2332 struct dc_stream_state *stream)
2333 {
2334 int i;
2335
2336 for (i = 0; i < pool->pipe_count; i++) {
2337 if (!res_ctx->pipe_ctx[i].stream) {
2338 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
2339
2340 pipe_ctx->stream_res.tg = pool->timing_generators[i];
2341 pipe_ctx->plane_res.mi = pool->mis[i];
2342 pipe_ctx->plane_res.hubp = pool->hubps[i];
2343 pipe_ctx->plane_res.ipp = pool->ipps[i];
2344 pipe_ctx->plane_res.xfm = pool->transforms[i];
2345 pipe_ctx->plane_res.dpp = pool->dpps[i];
2346 pipe_ctx->stream_res.opp = pool->opps[i];
2347 if (pool->dpps[i])
2348 pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
2349 pipe_ctx->pipe_idx = i;
2350
2351 if (i >= pool->timing_generator_count) {
2352 int tg_inst = pool->timing_generator_count - 1;
2353
2354 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2355 pipe_ctx->stream_res.opp = pool->opps[tg_inst];
2356 }
2357
2358 pipe_ctx->stream = stream;
2359 return i;
2360 }
2361 }
2362 return -1;
2363 }
2364
find_first_free_match_hpo_dp_stream_enc_for_link(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2365 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
2366 struct resource_context *res_ctx,
2367 const struct resource_pool *pool,
2368 struct dc_stream_state *stream)
2369 {
2370 int i;
2371
2372 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2373 if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
2374 pool->hpo_dp_stream_enc[i]) {
2375
2376 return pool->hpo_dp_stream_enc[i];
2377 }
2378 }
2379
2380 return NULL;
2381 }
2382
find_first_free_audio(struct resource_context * res_ctx,const struct resource_pool * pool,enum engine_id id,enum dce_version dc_version)2383 static struct audio *find_first_free_audio(
2384 struct resource_context *res_ctx,
2385 const struct resource_pool *pool,
2386 enum engine_id id,
2387 enum dce_version dc_version)
2388 {
2389 int i, available_audio_count;
2390
2391 if (id == ENGINE_ID_UNKNOWN)
2392 return NULL;
2393
2394 available_audio_count = pool->audio_count;
2395
2396 for (i = 0; i < available_audio_count; i++) {
2397 if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
2398 /*we have enough audio endpoint, find the matching inst*/
2399 if (id != i)
2400 continue;
2401 return pool->audios[i];
2402 }
2403 }
2404
2405 /* use engine id to find free audio */
2406 if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
2407 return pool->audios[id];
2408 }
2409 /*not found the matching one, first come first serve*/
2410 for (i = 0; i < available_audio_count; i++) {
2411 if (res_ctx->is_audio_acquired[i] == false) {
2412 return pool->audios[i];
2413 }
2414 }
2415 return NULL;
2416 }
2417
2418 /*
2419 * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
2420 */
dc_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)2421 enum dc_status dc_add_stream_to_ctx(
2422 struct dc *dc,
2423 struct dc_state *new_ctx,
2424 struct dc_stream_state *stream)
2425 {
2426 enum dc_status res;
2427 DC_LOGGER_INIT(dc->ctx->logger);
2428
2429 if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
2430 DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
2431 return DC_ERROR_UNEXPECTED;
2432 }
2433
2434 new_ctx->streams[new_ctx->stream_count] = stream;
2435 dc_stream_retain(stream);
2436 new_ctx->stream_count++;
2437
2438 res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
2439 if (res != DC_OK)
2440 DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
2441
2442 return res;
2443 }
2444
2445 /*
2446 * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
2447 */
dc_remove_stream_from_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)2448 enum dc_status dc_remove_stream_from_ctx(
2449 struct dc *dc,
2450 struct dc_state *new_ctx,
2451 struct dc_stream_state *stream)
2452 {
2453 int i;
2454 struct dc_context *dc_ctx = dc->ctx;
2455 struct pipe_ctx *del_pipe = resource_get_otg_master_for_stream(&new_ctx->res_ctx, stream);
2456 struct pipe_ctx *odm_pipe;
2457
2458 if (!del_pipe) {
2459 DC_ERROR("Pipe not found for stream %p !\n", stream);
2460 return DC_ERROR_UNEXPECTED;
2461 }
2462
2463 odm_pipe = del_pipe->next_odm_pipe;
2464
2465 /* Release primary pipe */
2466 ASSERT(del_pipe->stream_res.stream_enc);
2467 update_stream_engine_usage(
2468 &new_ctx->res_ctx,
2469 dc->res_pool,
2470 del_pipe->stream_res.stream_enc,
2471 false);
2472
2473 if (dc->link_srv->dp_is_128b_132b_signal(del_pipe)) {
2474 update_hpo_dp_stream_engine_usage(
2475 &new_ctx->res_ctx, dc->res_pool,
2476 del_pipe->stream_res.hpo_dp_stream_enc,
2477 false);
2478 remove_hpo_dp_link_enc_from_ctx(&new_ctx->res_ctx, del_pipe, del_pipe->stream);
2479 }
2480
2481 if (del_pipe->stream_res.audio)
2482 update_audio_usage(
2483 &new_ctx->res_ctx,
2484 dc->res_pool,
2485 del_pipe->stream_res.audio,
2486 false);
2487
2488 resource_unreference_clock_source(&new_ctx->res_ctx,
2489 dc->res_pool,
2490 del_pipe->clock_source);
2491
2492 if (dc->res_pool->funcs->remove_stream_from_ctx)
2493 dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
2494
2495 while (odm_pipe) {
2496 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
2497
2498 memset(odm_pipe, 0, sizeof(*odm_pipe));
2499 odm_pipe = next_odm_pipe;
2500 }
2501 memset(del_pipe, 0, sizeof(*del_pipe));
2502
2503 for (i = 0; i < new_ctx->stream_count; i++)
2504 if (new_ctx->streams[i] == stream)
2505 break;
2506
2507 if (new_ctx->streams[i] != stream) {
2508 DC_ERROR("Context doesn't have stream %p !\n", stream);
2509 return DC_ERROR_UNEXPECTED;
2510 }
2511
2512 dc_stream_release(new_ctx->streams[i]);
2513 new_ctx->stream_count--;
2514
2515 /* Trim back arrays */
2516 for (; i < new_ctx->stream_count; i++) {
2517 new_ctx->streams[i] = new_ctx->streams[i + 1];
2518 new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
2519 }
2520
2521 new_ctx->streams[new_ctx->stream_count] = NULL;
2522 memset(
2523 &new_ctx->stream_status[new_ctx->stream_count],
2524 0,
2525 sizeof(new_ctx->stream_status[0]));
2526
2527 return DC_OK;
2528 }
2529
find_pll_sharable_stream(struct dc_stream_state * stream_needs_pll,struct dc_state * context)2530 static struct dc_stream_state *find_pll_sharable_stream(
2531 struct dc_stream_state *stream_needs_pll,
2532 struct dc_state *context)
2533 {
2534 int i;
2535
2536 for (i = 0; i < context->stream_count; i++) {
2537 struct dc_stream_state *stream_has_pll = context->streams[i];
2538
2539 /* We are looking for non dp, non virtual stream */
2540 if (resource_are_streams_timing_synchronizable(
2541 stream_needs_pll, stream_has_pll)
2542 && !dc_is_dp_signal(stream_has_pll->signal)
2543 && stream_has_pll->link->connector_signal
2544 != SIGNAL_TYPE_VIRTUAL)
2545 return stream_has_pll;
2546
2547 }
2548
2549 return NULL;
2550 }
2551
get_norm_pix_clk(const struct dc_crtc_timing * timing)2552 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
2553 {
2554 uint32_t pix_clk = timing->pix_clk_100hz;
2555 uint32_t normalized_pix_clk = pix_clk;
2556
2557 if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
2558 pix_clk /= 2;
2559 if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
2560 switch (timing->display_color_depth) {
2561 case COLOR_DEPTH_666:
2562 case COLOR_DEPTH_888:
2563 normalized_pix_clk = pix_clk;
2564 break;
2565 case COLOR_DEPTH_101010:
2566 normalized_pix_clk = (pix_clk * 30) / 24;
2567 break;
2568 case COLOR_DEPTH_121212:
2569 normalized_pix_clk = (pix_clk * 36) / 24;
2570 break;
2571 case COLOR_DEPTH_141414:
2572 normalized_pix_clk = (pix_clk * 42) / 24;
2573 break;
2574 case COLOR_DEPTH_161616:
2575 normalized_pix_clk = (pix_clk * 48) / 24;
2576 break;
2577 default:
2578 ASSERT(0);
2579 break;
2580 }
2581 }
2582 return normalized_pix_clk;
2583 }
2584
calculate_phy_pix_clks(struct dc_stream_state * stream)2585 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
2586 {
2587 /* update actual pixel clock on all streams */
2588 if (dc_is_hdmi_signal(stream->signal))
2589 stream->phy_pix_clk = get_norm_pix_clk(
2590 &stream->timing) / 10;
2591 else
2592 stream->phy_pix_clk =
2593 stream->timing.pix_clk_100hz / 10;
2594
2595 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
2596 stream->phy_pix_clk *= 2;
2597 }
2598
acquire_resource_from_hw_enabled_state(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2599 static int acquire_resource_from_hw_enabled_state(
2600 struct resource_context *res_ctx,
2601 const struct resource_pool *pool,
2602 struct dc_stream_state *stream)
2603 {
2604 struct dc_link *link = stream->link;
2605 unsigned int i, inst, tg_inst = 0;
2606 uint32_t numPipes = 1;
2607 uint32_t id_src[4] = {0};
2608
2609 /* Check for enabled DIG to identify enabled display */
2610 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
2611 return -1;
2612
2613 inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
2614
2615 if (inst == ENGINE_ID_UNKNOWN)
2616 return -1;
2617
2618 for (i = 0; i < pool->stream_enc_count; i++) {
2619 if (pool->stream_enc[i]->id == inst) {
2620 tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
2621 pool->stream_enc[i]);
2622 break;
2623 }
2624 }
2625
2626 // tg_inst not found
2627 if (i == pool->stream_enc_count)
2628 return -1;
2629
2630 if (tg_inst >= pool->timing_generator_count)
2631 return -1;
2632
2633 if (!res_ctx->pipe_ctx[tg_inst].stream) {
2634 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
2635
2636 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2637 id_src[0] = tg_inst;
2638
2639 if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
2640 pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
2641 &numPipes, &id_src[0], &id_src[1]);
2642
2643 if (id_src[0] == 0xf && id_src[1] == 0xf) {
2644 id_src[0] = tg_inst;
2645 numPipes = 1;
2646 }
2647
2648 for (i = 0; i < numPipes; i++) {
2649 //Check if src id invalid
2650 if (id_src[i] == 0xf)
2651 return -1;
2652
2653 pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
2654
2655 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2656 pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
2657 pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
2658 pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
2659 pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
2660 pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
2661 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2662
2663 if (pool->dpps[id_src[i]]) {
2664 pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
2665
2666 if (pool->mpc->funcs->read_mpcc_state) {
2667 struct mpcc_state s = {0};
2668
2669 pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
2670
2671 if (s.dpp_id < MAX_MPCC)
2672 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
2673 s.dpp_id;
2674
2675 if (s.bot_mpcc_id < MAX_MPCC)
2676 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
2677 &pool->mpc->mpcc_array[s.bot_mpcc_id];
2678
2679 if (s.opp_id < MAX_OPP)
2680 pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
2681 }
2682 }
2683 pipe_ctx->pipe_idx = id_src[i];
2684
2685 if (id_src[i] >= pool->timing_generator_count) {
2686 id_src[i] = pool->timing_generator_count - 1;
2687
2688 pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
2689 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2690 }
2691
2692 pipe_ctx->stream = stream;
2693 }
2694
2695 if (numPipes == 2) {
2696 stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
2697 res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
2698 res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
2699 res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
2700 res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
2701 } else
2702 stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
2703
2704 return id_src[0];
2705 }
2706
2707 return -1;
2708 }
2709
mark_seamless_boot_stream(const struct dc * dc,struct dc_stream_state * stream)2710 static void mark_seamless_boot_stream(
2711 const struct dc *dc,
2712 struct dc_stream_state *stream)
2713 {
2714 struct dc_bios *dcb = dc->ctx->dc_bios;
2715
2716 if (dc->config.allow_seamless_boot_optimization &&
2717 !dcb->funcs->is_accelerated_mode(dcb)) {
2718 if (dc_validate_boot_timing(dc, stream->sink, &stream->timing))
2719 stream->apply_seamless_boot_optimization = true;
2720 }
2721 }
2722
resource_map_pool_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)2723 enum dc_status resource_map_pool_resources(
2724 const struct dc *dc,
2725 struct dc_state *context,
2726 struct dc_stream_state *stream)
2727 {
2728 const struct resource_pool *pool = dc->res_pool;
2729 int i;
2730 struct dc_context *dc_ctx = dc->ctx;
2731 struct pipe_ctx *pipe_ctx = NULL;
2732 int pipe_idx = -1;
2733
2734 calculate_phy_pix_clks(stream);
2735
2736 mark_seamless_boot_stream(dc, stream);
2737
2738 if (stream->apply_seamless_boot_optimization) {
2739 pipe_idx = acquire_resource_from_hw_enabled_state(
2740 &context->res_ctx,
2741 pool,
2742 stream);
2743 if (pipe_idx < 0)
2744 /* hw resource was assigned to other stream */
2745 stream->apply_seamless_boot_optimization = false;
2746 }
2747
2748 if (pipe_idx < 0)
2749 /* acquire new resources */
2750 pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2751
2752 if (pipe_idx < 0)
2753 pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2754
2755 if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2756 return DC_NO_CONTROLLER_RESOURCE;
2757
2758 pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2759
2760 pipe_ctx->stream_res.stream_enc =
2761 dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2762 &context->res_ctx, pool, stream);
2763
2764 if (!pipe_ctx->stream_res.stream_enc)
2765 return DC_NO_STREAM_ENC_RESOURCE;
2766
2767 update_stream_engine_usage(
2768 &context->res_ctx, pool,
2769 pipe_ctx->stream_res.stream_enc,
2770 true);
2771
2772 /* Allocate DP HPO Stream Encoder based on signal, hw capabilities
2773 * and link settings
2774 */
2775 if (dc_is_dp_signal(stream->signal)) {
2776 if (!dc->link_srv->dp_decide_link_settings(stream, &pipe_ctx->link_config.dp_link_settings))
2777 return DC_FAIL_DP_LINK_BANDWIDTH;
2778 if (dc->link_srv->dp_get_encoding_format(
2779 &pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
2780 pipe_ctx->stream_res.hpo_dp_stream_enc =
2781 find_first_free_match_hpo_dp_stream_enc_for_link(
2782 &context->res_ctx, pool, stream);
2783
2784 if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
2785 return DC_NO_STREAM_ENC_RESOURCE;
2786
2787 update_hpo_dp_stream_engine_usage(
2788 &context->res_ctx, pool,
2789 pipe_ctx->stream_res.hpo_dp_stream_enc,
2790 true);
2791 if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
2792 return DC_NO_LINK_ENC_RESOURCE;
2793 }
2794 }
2795
2796 /* TODO: Add check if ASIC support and EDID audio */
2797 if (!stream->converter_disable_audio &&
2798 dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2799 stream->audio_info.mode_count && stream->audio_info.flags.all) {
2800 pipe_ctx->stream_res.audio = find_first_free_audio(
2801 &context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2802
2803 /*
2804 * Audio assigned in order first come first get.
2805 * There are asics which has number of audio
2806 * resources less then number of pipes
2807 */
2808 if (pipe_ctx->stream_res.audio)
2809 update_audio_usage(&context->res_ctx, pool,
2810 pipe_ctx->stream_res.audio, true);
2811 }
2812
2813 /* Add ABM to the resource if on EDP */
2814 if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2815 if (pool->abm)
2816 pipe_ctx->stream_res.abm = pool->abm;
2817 else
2818 pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2819 }
2820
2821 for (i = 0; i < context->stream_count; i++)
2822 if (context->streams[i] == stream) {
2823 context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2824 context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2825 context->stream_status[i].audio_inst =
2826 pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2827
2828 return DC_OK;
2829 }
2830
2831 DC_ERROR("Stream %p not found in new ctx!\n", stream);
2832 return DC_ERROR_UNEXPECTED;
2833 }
2834
2835 /**
2836 * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2837 *
2838 * @dc: copy out of dc->current_state
2839 * @dst_ctx: copy into this
2840 *
2841 * This function makes a shallow copy of the current DC state and increments
2842 * refcounts on existing streams and planes.
2843 */
dc_resource_state_copy_construct_current(const struct dc * dc,struct dc_state * dst_ctx)2844 void dc_resource_state_copy_construct_current(
2845 const struct dc *dc,
2846 struct dc_state *dst_ctx)
2847 {
2848 dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2849 }
2850
2851
dc_resource_state_construct(const struct dc * dc,struct dc_state * dst_ctx)2852 void dc_resource_state_construct(
2853 const struct dc *dc,
2854 struct dc_state *dst_ctx)
2855 {
2856 dst_ctx->clk_mgr = dc->clk_mgr;
2857
2858 /* Initialise DIG link encoder resource tracking variables. */
2859 link_enc_cfg_init(dc, dst_ctx);
2860 }
2861
2862
dc_resource_is_dsc_encoding_supported(const struct dc * dc)2863 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2864 {
2865 if (dc->res_pool == NULL)
2866 return false;
2867
2868 return dc->res_pool->res_cap->num_dsc > 0;
2869 }
2870
planes_changed_for_existing_stream(struct dc_state * context,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count)2871 static bool planes_changed_for_existing_stream(struct dc_state *context,
2872 struct dc_stream_state *stream,
2873 const struct dc_validation_set set[],
2874 int set_count)
2875 {
2876 int i, j;
2877 struct dc_stream_status *stream_status = NULL;
2878
2879 for (i = 0; i < context->stream_count; i++) {
2880 if (context->streams[i] == stream) {
2881 stream_status = &context->stream_status[i];
2882 break;
2883 }
2884 }
2885
2886 if (!stream_status) {
2887 ASSERT(0);
2888 return false;
2889 }
2890
2891 for (i = 0; i < set_count; i++)
2892 if (set[i].stream == stream)
2893 break;
2894
2895 if (i == set_count)
2896 ASSERT(0);
2897
2898 if (set[i].plane_count != stream_status->plane_count)
2899 return true;
2900
2901 for (j = 0; j < set[i].plane_count; j++)
2902 if (set[i].plane_states[j] != stream_status->plane_states[j])
2903 return true;
2904
2905 return false;
2906 }
2907
2908 /**
2909 * dc_validate_with_context - Validate and update the potential new stream in the context object
2910 *
2911 * @dc: Used to get the current state status
2912 * @set: An array of dc_validation_set with all the current streams reference
2913 * @set_count: Total of streams
2914 * @context: New context
2915 * @fast_validate: Enable or disable fast validation
2916 *
2917 * This function updates the potential new stream in the context object. It
2918 * creates multiple lists for the add, remove, and unchanged streams. In
2919 * particular, if the unchanged streams have a plane that changed, it is
2920 * necessary to remove all planes from the unchanged streams. In summary, this
2921 * function is responsible for validating the new context.
2922 *
2923 * Return:
2924 * In case of success, return DC_OK (1), otherwise, return a DC error.
2925 */
dc_validate_with_context(struct dc * dc,const struct dc_validation_set set[],int set_count,struct dc_state * context,bool fast_validate)2926 enum dc_status dc_validate_with_context(struct dc *dc,
2927 const struct dc_validation_set set[],
2928 int set_count,
2929 struct dc_state *context,
2930 bool fast_validate)
2931 {
2932 struct dc_stream_state *unchanged_streams[MAX_PIPES] = { 0 };
2933 struct dc_stream_state *del_streams[MAX_PIPES] = { 0 };
2934 struct dc_stream_state *add_streams[MAX_PIPES] = { 0 };
2935 int old_stream_count = context->stream_count;
2936 enum dc_status res = DC_ERROR_UNEXPECTED;
2937 int unchanged_streams_count = 0;
2938 int del_streams_count = 0;
2939 int add_streams_count = 0;
2940 bool found = false;
2941 int i, j, k;
2942
2943 DC_LOGGER_INIT(dc->ctx->logger);
2944
2945 /* First build a list of streams to be remove from current context */
2946 for (i = 0; i < old_stream_count; i++) {
2947 struct dc_stream_state *stream = context->streams[i];
2948
2949 for (j = 0; j < set_count; j++) {
2950 if (stream == set[j].stream) {
2951 found = true;
2952 break;
2953 }
2954 }
2955
2956 if (!found)
2957 del_streams[del_streams_count++] = stream;
2958
2959 found = false;
2960 }
2961
2962 /* Second, build a list of new streams */
2963 for (i = 0; i < set_count; i++) {
2964 struct dc_stream_state *stream = set[i].stream;
2965
2966 for (j = 0; j < old_stream_count; j++) {
2967 if (stream == context->streams[j]) {
2968 found = true;
2969 break;
2970 }
2971 }
2972
2973 if (!found)
2974 add_streams[add_streams_count++] = stream;
2975
2976 found = false;
2977 }
2978
2979 /* Build a list of unchanged streams which is necessary for handling
2980 * planes change such as added, removed, and updated.
2981 */
2982 for (i = 0; i < set_count; i++) {
2983 /* Check if stream is part of the delete list */
2984 for (j = 0; j < del_streams_count; j++) {
2985 if (set[i].stream == del_streams[j]) {
2986 found = true;
2987 break;
2988 }
2989 }
2990
2991 if (!found) {
2992 /* Check if stream is part of the add list */
2993 for (j = 0; j < add_streams_count; j++) {
2994 if (set[i].stream == add_streams[j]) {
2995 found = true;
2996 break;
2997 }
2998 }
2999 }
3000
3001 if (!found)
3002 unchanged_streams[unchanged_streams_count++] = set[i].stream;
3003
3004 found = false;
3005 }
3006
3007 /* Remove all planes for unchanged streams if planes changed */
3008 for (i = 0; i < unchanged_streams_count; i++) {
3009 if (planes_changed_for_existing_stream(context,
3010 unchanged_streams[i],
3011 set,
3012 set_count)) {
3013 if (!dc_rem_all_planes_for_stream(dc,
3014 unchanged_streams[i],
3015 context)) {
3016 res = DC_FAIL_DETACH_SURFACES;
3017 goto fail;
3018 }
3019 }
3020 }
3021
3022 /* Remove all planes for removed streams and then remove the streams */
3023 for (i = 0; i < del_streams_count; i++) {
3024 /* Need to cpy the dwb data from the old stream in order to efc to work */
3025 if (del_streams[i]->num_wb_info > 0) {
3026 for (j = 0; j < add_streams_count; j++) {
3027 if (del_streams[i]->sink == add_streams[j]->sink) {
3028 add_streams[j]->num_wb_info = del_streams[i]->num_wb_info;
3029 for (k = 0; k < del_streams[i]->num_wb_info; k++)
3030 add_streams[j]->writeback_info[k] = del_streams[i]->writeback_info[k];
3031 }
3032 }
3033 }
3034
3035 if (!dc_rem_all_planes_for_stream(dc, del_streams[i], context)) {
3036 res = DC_FAIL_DETACH_SURFACES;
3037 goto fail;
3038 }
3039
3040 res = dc_remove_stream_from_ctx(dc, context, del_streams[i]);
3041 if (res != DC_OK)
3042 goto fail;
3043 }
3044
3045 /* Swap seamless boot stream to pipe 0 (if needed) to ensure pipe_ctx
3046 * matches. This may change in the future if seamless_boot_stream can be
3047 * multiple.
3048 */
3049 for (i = 0; i < add_streams_count; i++) {
3050 mark_seamless_boot_stream(dc, add_streams[i]);
3051 if (add_streams[i]->apply_seamless_boot_optimization && i != 0) {
3052 struct dc_stream_state *temp = add_streams[0];
3053
3054 add_streams[0] = add_streams[i];
3055 add_streams[i] = temp;
3056 break;
3057 }
3058 }
3059
3060 /* Add new streams and then add all planes for the new stream */
3061 for (i = 0; i < add_streams_count; i++) {
3062 calculate_phy_pix_clks(add_streams[i]);
3063 res = dc_add_stream_to_ctx(dc, context, add_streams[i]);
3064 if (res != DC_OK)
3065 goto fail;
3066
3067 if (!add_all_planes_for_stream(dc, add_streams[i], set, set_count, context)) {
3068 res = DC_FAIL_ATTACH_SURFACES;
3069 goto fail;
3070 }
3071 }
3072
3073 /* Add all planes for unchanged streams if planes changed */
3074 for (i = 0; i < unchanged_streams_count; i++) {
3075 if (planes_changed_for_existing_stream(context,
3076 unchanged_streams[i],
3077 set,
3078 set_count)) {
3079 if (!add_all_planes_for_stream(dc, unchanged_streams[i], set, set_count, context)) {
3080 res = DC_FAIL_ATTACH_SURFACES;
3081 goto fail;
3082 }
3083 }
3084 }
3085
3086 res = dc_validate_global_state(dc, context, fast_validate);
3087
3088 fail:
3089 if (res != DC_OK)
3090 DC_LOG_WARNING("%s:resource validation failed, dc_status:%d\n",
3091 __func__,
3092 res);
3093
3094 return res;
3095 }
3096
3097 /**
3098 * dc_validate_global_state() - Determine if hardware can support a given state
3099 *
3100 * @dc: dc struct for this driver
3101 * @new_ctx: state to be validated
3102 * @fast_validate: set to true if only yes/no to support matters
3103 *
3104 * Checks hardware resource availability and bandwidth requirement.
3105 *
3106 * Return:
3107 * DC_OK if the result can be programmed. Otherwise, an error code.
3108 */
dc_validate_global_state(struct dc * dc,struct dc_state * new_ctx,bool fast_validate)3109 enum dc_status dc_validate_global_state(
3110 struct dc *dc,
3111 struct dc_state *new_ctx,
3112 bool fast_validate)
3113 {
3114 enum dc_status result = DC_ERROR_UNEXPECTED;
3115 int i, j;
3116
3117 if (!new_ctx)
3118 return DC_ERROR_UNEXPECTED;
3119
3120 if (dc->res_pool->funcs->validate_global) {
3121 result = dc->res_pool->funcs->validate_global(dc, new_ctx);
3122 if (result != DC_OK)
3123 return result;
3124 }
3125
3126 for (i = 0; i < new_ctx->stream_count; i++) {
3127 struct dc_stream_state *stream = new_ctx->streams[i];
3128
3129 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3130 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
3131
3132 if (pipe_ctx->stream != stream)
3133 continue;
3134
3135 if (dc->res_pool->funcs->patch_unknown_plane_state &&
3136 pipe_ctx->plane_state &&
3137 pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
3138 result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
3139 if (result != DC_OK)
3140 return result;
3141 }
3142
3143 /* Switch to dp clock source only if there is
3144 * no non dp stream that shares the same timing
3145 * with the dp stream.
3146 */
3147 if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
3148 !find_pll_sharable_stream(stream, new_ctx)) {
3149
3150 resource_unreference_clock_source(
3151 &new_ctx->res_ctx,
3152 dc->res_pool,
3153 pipe_ctx->clock_source);
3154
3155 pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
3156 resource_reference_clock_source(
3157 &new_ctx->res_ctx,
3158 dc->res_pool,
3159 pipe_ctx->clock_source);
3160 }
3161 }
3162 }
3163
3164 result = resource_build_scaling_params_for_context(dc, new_ctx);
3165
3166 if (result == DC_OK)
3167 if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
3168 result = DC_FAIL_BANDWIDTH_VALIDATE;
3169
3170 /*
3171 * Only update link encoder to stream assignment after bandwidth validation passed.
3172 * TODO: Split out assignment and validation.
3173 */
3174 if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
3175 dc->res_pool->funcs->link_encs_assign(
3176 dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
3177
3178 return result;
3179 }
3180
patch_gamut_packet_checksum(struct dc_info_packet * gamut_packet)3181 static void patch_gamut_packet_checksum(
3182 struct dc_info_packet *gamut_packet)
3183 {
3184 /* For gamut we recalc checksum */
3185 if (gamut_packet->valid) {
3186 uint8_t chk_sum = 0;
3187 uint8_t *ptr;
3188 uint8_t i;
3189
3190 /*start of the Gamut data. */
3191 ptr = &gamut_packet->sb[3];
3192
3193 for (i = 0; i <= gamut_packet->sb[1]; i++)
3194 chk_sum += ptr[i];
3195
3196 gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
3197 }
3198 }
3199
set_avi_info_frame(struct dc_info_packet * info_packet,struct pipe_ctx * pipe_ctx)3200 static void set_avi_info_frame(
3201 struct dc_info_packet *info_packet,
3202 struct pipe_ctx *pipe_ctx)
3203 {
3204 struct dc_stream_state *stream = pipe_ctx->stream;
3205 enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
3206 uint32_t pixel_encoding = 0;
3207 enum scanning_type scan_type = SCANNING_TYPE_NODATA;
3208 enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
3209 bool itc = false;
3210 uint8_t itc_value = 0;
3211 uint8_t cn0_cn1 = 0;
3212 unsigned int cn0_cn1_value = 0;
3213 uint8_t *check_sum = NULL;
3214 uint8_t byte_index = 0;
3215 union hdmi_info_packet hdmi_info;
3216 union display_content_support support = {0};
3217 unsigned int vic = pipe_ctx->stream->timing.vic;
3218 unsigned int rid = pipe_ctx->stream->timing.rid;
3219 unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
3220 enum dc_timing_3d_format format;
3221
3222 memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
3223
3224 color_space = pipe_ctx->stream->output_color_space;
3225 if (color_space == COLOR_SPACE_UNKNOWN)
3226 color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
3227 COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
3228
3229 /* Initialize header */
3230 hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
3231 /* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
3232 * not be used in HDMI 2.0 (Section 10.1) */
3233 hdmi_info.bits.header.version = 2;
3234 hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
3235
3236 /*
3237 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
3238 * according to HDMI 2.0 spec (Section 10.1)
3239 */
3240
3241 switch (stream->timing.pixel_encoding) {
3242 case PIXEL_ENCODING_YCBCR422:
3243 pixel_encoding = 1;
3244 break;
3245
3246 case PIXEL_ENCODING_YCBCR444:
3247 pixel_encoding = 2;
3248 break;
3249 case PIXEL_ENCODING_YCBCR420:
3250 pixel_encoding = 3;
3251 break;
3252
3253 case PIXEL_ENCODING_RGB:
3254 default:
3255 pixel_encoding = 0;
3256 }
3257
3258 /* Y0_Y1_Y2 : The pixel encoding */
3259 /* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
3260 hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
3261
3262 /* A0 = 1 Active Format Information valid */
3263 hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
3264
3265 /* B0, B1 = 3; Bar info data is valid */
3266 hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
3267
3268 hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
3269
3270 /* S0, S1 : Underscan / Overscan */
3271 /* TODO: un-hardcode scan type */
3272 scan_type = SCANNING_TYPE_UNDERSCAN;
3273 hdmi_info.bits.S0_S1 = scan_type;
3274
3275 /* C0, C1 : Colorimetry */
3276 switch (color_space) {
3277 case COLOR_SPACE_YCBCR709:
3278 case COLOR_SPACE_YCBCR709_LIMITED:
3279 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
3280 break;
3281 case COLOR_SPACE_YCBCR601:
3282 case COLOR_SPACE_YCBCR601_LIMITED:
3283 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
3284 break;
3285 case COLOR_SPACE_2020_RGB_FULLRANGE:
3286 case COLOR_SPACE_2020_RGB_LIMITEDRANGE:
3287 case COLOR_SPACE_2020_YCBCR:
3288 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
3289 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
3290 break;
3291 case COLOR_SPACE_ADOBERGB:
3292 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
3293 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
3294 break;
3295 case COLOR_SPACE_SRGB:
3296 default:
3297 hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
3298 break;
3299 }
3300
3301 if (pixel_encoding && color_space == COLOR_SPACE_2020_YCBCR &&
3302 stream->out_transfer_func->tf == TRANSFER_FUNCTION_GAMMA22) {
3303 hdmi_info.bits.EC0_EC2 = 0;
3304 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
3305 }
3306
3307 /* TODO: un-hardcode aspect ratio */
3308 aspect = stream->timing.aspect_ratio;
3309
3310 switch (aspect) {
3311 case ASPECT_RATIO_4_3:
3312 case ASPECT_RATIO_16_9:
3313 hdmi_info.bits.M0_M1 = aspect;
3314 break;
3315
3316 case ASPECT_RATIO_NO_DATA:
3317 case ASPECT_RATIO_64_27:
3318 case ASPECT_RATIO_256_135:
3319 default:
3320 hdmi_info.bits.M0_M1 = 0;
3321 }
3322
3323 /* Active Format Aspect ratio - same as Picture Aspect Ratio. */
3324 hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
3325
3326 /* TODO: un-hardcode cn0_cn1 and itc */
3327
3328 cn0_cn1 = 0;
3329 cn0_cn1_value = 0;
3330
3331 itc = true;
3332 itc_value = 1;
3333
3334 support = stream->content_support;
3335
3336 if (itc) {
3337 if (!support.bits.valid_content_type) {
3338 cn0_cn1_value = 0;
3339 } else {
3340 if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
3341 if (support.bits.graphics_content == 1) {
3342 cn0_cn1_value = 0;
3343 }
3344 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
3345 if (support.bits.photo_content == 1) {
3346 cn0_cn1_value = 1;
3347 } else {
3348 cn0_cn1_value = 0;
3349 itc_value = 0;
3350 }
3351 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
3352 if (support.bits.cinema_content == 1) {
3353 cn0_cn1_value = 2;
3354 } else {
3355 cn0_cn1_value = 0;
3356 itc_value = 0;
3357 }
3358 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
3359 if (support.bits.game_content == 1) {
3360 cn0_cn1_value = 3;
3361 } else {
3362 cn0_cn1_value = 0;
3363 itc_value = 0;
3364 }
3365 }
3366 }
3367 hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
3368 hdmi_info.bits.ITC = itc_value;
3369 }
3370
3371 if (stream->qs_bit == 1) {
3372 if (color_space == COLOR_SPACE_SRGB ||
3373 color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
3374 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_FULL_RANGE;
3375 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
3376 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
3377 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_LIMITED_RANGE;
3378 else
3379 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
3380 } else
3381 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
3382
3383 /* TODO : We should handle YCC quantization */
3384 /* but we do not have matrix calculation */
3385 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
3386
3387 ///VIC
3388 if (pipe_ctx->stream->timing.hdmi_vic != 0)
3389 vic = 0;
3390 format = stream->timing.timing_3d_format;
3391 /*todo, add 3DStereo support*/
3392 if (format != TIMING_3D_FORMAT_NONE) {
3393 // Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
3394 switch (pipe_ctx->stream->timing.hdmi_vic) {
3395 case 1:
3396 vic = 95;
3397 break;
3398 case 2:
3399 vic = 94;
3400 break;
3401 case 3:
3402 vic = 93;
3403 break;
3404 case 4:
3405 vic = 98;
3406 break;
3407 default:
3408 break;
3409 }
3410 }
3411 /* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
3412 hdmi_info.bits.VIC0_VIC7 = vic;
3413 if (vic >= 128)
3414 hdmi_info.bits.header.version = 3;
3415 /* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
3416 * the Source shall use 20 AVI InfoFrame Version 4
3417 */
3418 if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
3419 hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
3420 hdmi_info.bits.header.version = 4;
3421 hdmi_info.bits.header.length = 14;
3422 }
3423
3424 if (rid != 0 && fr_ind != 0) {
3425 hdmi_info.bits.header.version = 5;
3426 hdmi_info.bits.header.length = 15;
3427
3428 hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
3429 hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
3430 hdmi_info.bits.RID0_RID5 = rid;
3431 }
3432
3433 /* pixel repetition
3434 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
3435 * repetition start from 1 */
3436 hdmi_info.bits.PR0_PR3 = 0;
3437
3438 /* Bar Info
3439 * barTop: Line Number of End of Top Bar.
3440 * barBottom: Line Number of Start of Bottom Bar.
3441 * barLeft: Pixel Number of End of Left Bar.
3442 * barRight: Pixel Number of Start of Right Bar. */
3443 hdmi_info.bits.bar_top = stream->timing.v_border_top;
3444 hdmi_info.bits.bar_bottom = (stream->timing.v_total
3445 - stream->timing.v_border_bottom + 1);
3446 hdmi_info.bits.bar_left = stream->timing.h_border_left;
3447 hdmi_info.bits.bar_right = (stream->timing.h_total
3448 - stream->timing.h_border_right + 1);
3449
3450 /* Additional Colorimetry Extension
3451 * Used in conduction with C0-C1 and EC0-EC2
3452 * 0 = DCI-P3 RGB (D65)
3453 * 1 = DCI-P3 RGB (theater)
3454 */
3455 hdmi_info.bits.ACE0_ACE3 = 0;
3456
3457 /* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
3458 check_sum = &hdmi_info.packet_raw_data.sb[0];
3459
3460 *check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
3461
3462 for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
3463 *check_sum += hdmi_info.packet_raw_data.sb[byte_index];
3464
3465 /* one byte complement */
3466 *check_sum = (uint8_t) (0x100 - *check_sum);
3467
3468 /* Store in hw_path_mode */
3469 info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
3470 info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
3471 info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
3472
3473 for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
3474 info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
3475
3476 info_packet->valid = true;
3477 }
3478
set_vendor_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3479 static void set_vendor_info_packet(
3480 struct dc_info_packet *info_packet,
3481 struct dc_stream_state *stream)
3482 {
3483 /* SPD info packet for FreeSync */
3484
3485 /* Check if Freesync is supported. Return if false. If true,
3486 * set the corresponding bit in the info packet
3487 */
3488 if (!stream->vsp_infopacket.valid)
3489 return;
3490
3491 *info_packet = stream->vsp_infopacket;
3492 }
3493
set_spd_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3494 static void set_spd_info_packet(
3495 struct dc_info_packet *info_packet,
3496 struct dc_stream_state *stream)
3497 {
3498 /* SPD info packet for FreeSync */
3499
3500 /* Check if Freesync is supported. Return if false. If true,
3501 * set the corresponding bit in the info packet
3502 */
3503 if (!stream->vrr_infopacket.valid)
3504 return;
3505
3506 *info_packet = stream->vrr_infopacket;
3507 }
3508
set_hdr_static_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3509 static void set_hdr_static_info_packet(
3510 struct dc_info_packet *info_packet,
3511 struct dc_stream_state *stream)
3512 {
3513 /* HDR Static Metadata info packet for HDR10 */
3514
3515 if (!stream->hdr_static_metadata.valid ||
3516 stream->use_dynamic_meta)
3517 return;
3518
3519 *info_packet = stream->hdr_static_metadata;
3520 }
3521
set_vsc_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3522 static void set_vsc_info_packet(
3523 struct dc_info_packet *info_packet,
3524 struct dc_stream_state *stream)
3525 {
3526 if (!stream->vsc_infopacket.valid)
3527 return;
3528
3529 *info_packet = stream->vsc_infopacket;
3530 }
set_hfvs_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3531 static void set_hfvs_info_packet(
3532 struct dc_info_packet *info_packet,
3533 struct dc_stream_state *stream)
3534 {
3535 if (!stream->hfvsif_infopacket.valid)
3536 return;
3537
3538 *info_packet = stream->hfvsif_infopacket;
3539 }
3540
adaptive_sync_override_dp_info_packets_sdp_line_num(const struct dc_crtc_timing * timing,struct enc_sdp_line_num * sdp_line_num,struct _vcs_dpi_display_pipe_dest_params_st * pipe_dlg_param)3541 static void adaptive_sync_override_dp_info_packets_sdp_line_num(
3542 const struct dc_crtc_timing *timing,
3543 struct enc_sdp_line_num *sdp_line_num,
3544 struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
3545 {
3546 uint32_t asic_blank_start = 0;
3547 uint32_t asic_blank_end = 0;
3548 uint32_t v_update = 0;
3549
3550 const struct dc_crtc_timing *tg = timing;
3551
3552 /* blank_start = frame end - front porch */
3553 asic_blank_start = tg->v_total - tg->v_front_porch;
3554
3555 /* blank_end = blank_start - active */
3556 asic_blank_end = (asic_blank_start - tg->v_border_bottom -
3557 tg->v_addressable - tg->v_border_top);
3558
3559 if (pipe_dlg_param->vstartup_start > asic_blank_end) {
3560 v_update = (tg->v_total - (pipe_dlg_param->vstartup_start - asic_blank_end));
3561 sdp_line_num->adaptive_sync_line_num_valid = true;
3562 sdp_line_num->adaptive_sync_line_num = (tg->v_total - v_update - 1);
3563 } else {
3564 sdp_line_num->adaptive_sync_line_num_valid = false;
3565 sdp_line_num->adaptive_sync_line_num = 0;
3566 }
3567 }
3568
set_adaptive_sync_info_packet(struct dc_info_packet * info_packet,const struct dc_stream_state * stream,struct encoder_info_frame * info_frame,struct _vcs_dpi_display_pipe_dest_params_st * pipe_dlg_param)3569 static void set_adaptive_sync_info_packet(
3570 struct dc_info_packet *info_packet,
3571 const struct dc_stream_state *stream,
3572 struct encoder_info_frame *info_frame,
3573 struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
3574 {
3575 if (!stream->adaptive_sync_infopacket.valid)
3576 return;
3577
3578 adaptive_sync_override_dp_info_packets_sdp_line_num(
3579 &stream->timing,
3580 &info_frame->sdp_line_num,
3581 pipe_dlg_param);
3582
3583 *info_packet = stream->adaptive_sync_infopacket;
3584 }
3585
set_vtem_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3586 static void set_vtem_info_packet(
3587 struct dc_info_packet *info_packet,
3588 struct dc_stream_state *stream)
3589 {
3590 if (!stream->vtem_infopacket.valid)
3591 return;
3592
3593 *info_packet = stream->vtem_infopacket;
3594 }
3595
dc_resource_state_destruct(struct dc_state * context)3596 void dc_resource_state_destruct(struct dc_state *context)
3597 {
3598 int i, j;
3599
3600 for (i = 0; i < context->stream_count; i++) {
3601 for (j = 0; j < context->stream_status[i].plane_count; j++)
3602 dc_plane_state_release(
3603 context->stream_status[i].plane_states[j]);
3604
3605 context->stream_status[i].plane_count = 0;
3606 dc_stream_release(context->streams[i]);
3607 context->streams[i] = NULL;
3608 }
3609 context->stream_count = 0;
3610 }
3611
dc_resource_state_copy_construct(const struct dc_state * src_ctx,struct dc_state * dst_ctx)3612 void dc_resource_state_copy_construct(
3613 const struct dc_state *src_ctx,
3614 struct dc_state *dst_ctx)
3615 {
3616 int i, j;
3617 struct kref refcount = dst_ctx->refcount;
3618
3619 *dst_ctx = *src_ctx;
3620
3621 for (i = 0; i < MAX_PIPES; i++) {
3622 struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
3623
3624 if (cur_pipe->top_pipe)
3625 cur_pipe->top_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
3626
3627 if (cur_pipe->bottom_pipe)
3628 cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
3629
3630 if (cur_pipe->next_odm_pipe)
3631 cur_pipe->next_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
3632
3633 if (cur_pipe->prev_odm_pipe)
3634 cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
3635 }
3636
3637 for (i = 0; i < dst_ctx->stream_count; i++) {
3638 dc_stream_retain(dst_ctx->streams[i]);
3639 for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
3640 dc_plane_state_retain(
3641 dst_ctx->stream_status[i].plane_states[j]);
3642 }
3643
3644 /* context refcount should not be overridden */
3645 dst_ctx->refcount = refcount;
3646
3647 }
3648
dc_resource_find_first_free_pll(struct resource_context * res_ctx,const struct resource_pool * pool)3649 struct clock_source *dc_resource_find_first_free_pll(
3650 struct resource_context *res_ctx,
3651 const struct resource_pool *pool)
3652 {
3653 int i;
3654
3655 for (i = 0; i < pool->clk_src_count; ++i) {
3656 if (res_ctx->clock_source_ref_count[i] == 0)
3657 return pool->clock_sources[i];
3658 }
3659
3660 return NULL;
3661 }
3662
resource_build_info_frame(struct pipe_ctx * pipe_ctx)3663 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
3664 {
3665 enum signal_type signal = SIGNAL_TYPE_NONE;
3666 struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
3667
3668 /* default all packets to invalid */
3669 info->avi.valid = false;
3670 info->gamut.valid = false;
3671 info->vendor.valid = false;
3672 info->spd.valid = false;
3673 info->hdrsmd.valid = false;
3674 info->vsc.valid = false;
3675 info->hfvsif.valid = false;
3676 info->vtem.valid = false;
3677 info->adaptive_sync.valid = false;
3678 signal = pipe_ctx->stream->signal;
3679
3680 /* HDMi and DP have different info packets*/
3681 if (dc_is_hdmi_signal(signal)) {
3682 set_avi_info_frame(&info->avi, pipe_ctx);
3683
3684 set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
3685 set_hfvs_info_packet(&info->hfvsif, pipe_ctx->stream);
3686 set_vtem_info_packet(&info->vtem, pipe_ctx->stream);
3687
3688 set_spd_info_packet(&info->spd, pipe_ctx->stream);
3689
3690 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3691
3692 } else if (dc_is_dp_signal(signal)) {
3693 set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
3694
3695 set_spd_info_packet(&info->spd, pipe_ctx->stream);
3696
3697 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3698 set_adaptive_sync_info_packet(&info->adaptive_sync,
3699 pipe_ctx->stream,
3700 info,
3701 &pipe_ctx->pipe_dlg_param);
3702 }
3703
3704 patch_gamut_packet_checksum(&info->gamut);
3705 }
3706
resource_map_clock_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)3707 enum dc_status resource_map_clock_resources(
3708 const struct dc *dc,
3709 struct dc_state *context,
3710 struct dc_stream_state *stream)
3711 {
3712 /* acquire new resources */
3713 const struct resource_pool *pool = dc->res_pool;
3714 struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(
3715 &context->res_ctx, stream);
3716
3717 if (!pipe_ctx)
3718 return DC_ERROR_UNEXPECTED;
3719
3720 if (dc_is_dp_signal(pipe_ctx->stream->signal)
3721 || pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
3722 pipe_ctx->clock_source = pool->dp_clock_source;
3723 else {
3724 pipe_ctx->clock_source = NULL;
3725
3726 if (!dc->config.disable_disp_pll_sharing)
3727 pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
3728 &context->res_ctx,
3729 pipe_ctx);
3730
3731 if (pipe_ctx->clock_source == NULL)
3732 pipe_ctx->clock_source =
3733 dc_resource_find_first_free_pll(
3734 &context->res_ctx,
3735 pool);
3736 }
3737
3738 if (pipe_ctx->clock_source == NULL)
3739 return DC_NO_CLOCK_SOURCE_RESOURCE;
3740
3741 resource_reference_clock_source(
3742 &context->res_ctx, pool,
3743 pipe_ctx->clock_source);
3744
3745 return DC_OK;
3746 }
3747
3748 /*
3749 * Note: We need to disable output if clock sources change,
3750 * since bios does optimization and doesn't apply if changing
3751 * PHY when not already disabled.
3752 */
pipe_need_reprogram(struct pipe_ctx * pipe_ctx_old,struct pipe_ctx * pipe_ctx)3753 bool pipe_need_reprogram(
3754 struct pipe_ctx *pipe_ctx_old,
3755 struct pipe_ctx *pipe_ctx)
3756 {
3757 if (!pipe_ctx_old->stream)
3758 return false;
3759
3760 if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
3761 return true;
3762
3763 if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
3764 return true;
3765
3766 if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
3767 return true;
3768
3769 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
3770 && pipe_ctx_old->stream != pipe_ctx->stream)
3771 return true;
3772
3773 if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
3774 return true;
3775
3776 if (dc_is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
3777 return true;
3778
3779 if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
3780 return true;
3781
3782 if (false == pipe_ctx_old->stream->link->link_state_valid &&
3783 false == pipe_ctx_old->stream->dpms_off)
3784 return true;
3785
3786 if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
3787 return true;
3788
3789 if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
3790 return true;
3791 if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
3792 return true;
3793
3794 /* DIG link encoder resource assignment for stream changed. */
3795 if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
3796 bool need_reprogram = false;
3797 struct dc *dc = pipe_ctx_old->stream->ctx->dc;
3798 struct link_encoder *link_enc_prev =
3799 link_enc_cfg_get_link_enc_used_by_stream_current(dc, pipe_ctx_old->stream);
3800
3801 if (link_enc_prev != pipe_ctx->stream->link_enc)
3802 need_reprogram = true;
3803
3804 return need_reprogram;
3805 }
3806
3807 return false;
3808 }
3809
resource_build_bit_depth_reduction_params(struct dc_stream_state * stream,struct bit_depth_reduction_params * fmt_bit_depth)3810 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
3811 struct bit_depth_reduction_params *fmt_bit_depth)
3812 {
3813 enum dc_dither_option option = stream->dither_option;
3814 enum dc_pixel_encoding pixel_encoding =
3815 stream->timing.pixel_encoding;
3816
3817 memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
3818
3819 if (option == DITHER_OPTION_DEFAULT) {
3820 switch (stream->timing.display_color_depth) {
3821 case COLOR_DEPTH_666:
3822 option = DITHER_OPTION_SPATIAL6;
3823 break;
3824 case COLOR_DEPTH_888:
3825 option = DITHER_OPTION_SPATIAL8;
3826 break;
3827 case COLOR_DEPTH_101010:
3828 option = DITHER_OPTION_SPATIAL10;
3829 break;
3830 default:
3831 option = DITHER_OPTION_DISABLE;
3832 }
3833 }
3834
3835 if (option == DITHER_OPTION_DISABLE)
3836 return;
3837
3838 if (option == DITHER_OPTION_TRUN6) {
3839 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3840 fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
3841 } else if (option == DITHER_OPTION_TRUN8 ||
3842 option == DITHER_OPTION_TRUN8_SPATIAL6 ||
3843 option == DITHER_OPTION_TRUN8_FM6) {
3844 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3845 fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
3846 } else if (option == DITHER_OPTION_TRUN10 ||
3847 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
3848 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
3849 option == DITHER_OPTION_TRUN10_FM8 ||
3850 option == DITHER_OPTION_TRUN10_FM6 ||
3851 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3852 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3853 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3854 }
3855
3856 /* special case - Formatter can only reduce by 4 bits at most.
3857 * When reducing from 12 to 6 bits,
3858 * HW recommends we use trunc with round mode
3859 * (if we did nothing, trunc to 10 bits would be used)
3860 * note that any 12->10 bit reduction is ignored prior to DCE8,
3861 * as the input was 10 bits.
3862 */
3863 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
3864 option == DITHER_OPTION_SPATIAL6 ||
3865 option == DITHER_OPTION_FM6) {
3866 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3867 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3868 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
3869 }
3870
3871 /* spatial dither
3872 * note that spatial modes 1-3 are never used
3873 */
3874 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
3875 option == DITHER_OPTION_SPATIAL6 ||
3876 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
3877 option == DITHER_OPTION_TRUN8_SPATIAL6) {
3878 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3879 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
3880 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3881 fmt_bit_depth->flags.RGB_RANDOM =
3882 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3883 } else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM ||
3884 option == DITHER_OPTION_SPATIAL8 ||
3885 option == DITHER_OPTION_SPATIAL8_FM6 ||
3886 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
3887 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3888 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3889 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
3890 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3891 fmt_bit_depth->flags.RGB_RANDOM =
3892 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3893 } else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
3894 option == DITHER_OPTION_SPATIAL10 ||
3895 option == DITHER_OPTION_SPATIAL10_FM8 ||
3896 option == DITHER_OPTION_SPATIAL10_FM6) {
3897 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3898 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
3899 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3900 fmt_bit_depth->flags.RGB_RANDOM =
3901 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3902 }
3903
3904 if (option == DITHER_OPTION_SPATIAL6 ||
3905 option == DITHER_OPTION_SPATIAL8 ||
3906 option == DITHER_OPTION_SPATIAL10) {
3907 fmt_bit_depth->flags.FRAME_RANDOM = 0;
3908 } else {
3909 fmt_bit_depth->flags.FRAME_RANDOM = 1;
3910 }
3911
3912 //////////////////////
3913 //// temporal dither
3914 //////////////////////
3915 if (option == DITHER_OPTION_FM6 ||
3916 option == DITHER_OPTION_SPATIAL8_FM6 ||
3917 option == DITHER_OPTION_SPATIAL10_FM6 ||
3918 option == DITHER_OPTION_TRUN10_FM6 ||
3919 option == DITHER_OPTION_TRUN8_FM6 ||
3920 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3921 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3922 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
3923 } else if (option == DITHER_OPTION_FM8 ||
3924 option == DITHER_OPTION_SPATIAL10_FM8 ||
3925 option == DITHER_OPTION_TRUN10_FM8) {
3926 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3927 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
3928 } else if (option == DITHER_OPTION_FM10) {
3929 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3930 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
3931 }
3932
3933 fmt_bit_depth->pixel_encoding = pixel_encoding;
3934 }
3935
dc_validate_stream(struct dc * dc,struct dc_stream_state * stream)3936 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
3937 {
3938 if (dc == NULL || stream == NULL)
3939 return DC_ERROR_UNEXPECTED;
3940
3941 struct dc_link *link = stream->link;
3942 struct timing_generator *tg = dc->res_pool->timing_generators[0];
3943 enum dc_status res = DC_OK;
3944
3945 calculate_phy_pix_clks(stream);
3946
3947 if (!tg->funcs->validate_timing(tg, &stream->timing))
3948 res = DC_FAIL_CONTROLLER_VALIDATE;
3949
3950 if (res == DC_OK) {
3951 if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
3952 !link->link_enc->funcs->validate_output_with_stream(
3953 link->link_enc, stream))
3954 res = DC_FAIL_ENC_VALIDATE;
3955 }
3956
3957 /* TODO: validate audio ASIC caps, encoder */
3958
3959 if (res == DC_OK)
3960 res = dc->link_srv->validate_mode_timing(stream,
3961 link,
3962 &stream->timing);
3963
3964 return res;
3965 }
3966
dc_validate_plane(struct dc * dc,const struct dc_plane_state * plane_state)3967 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
3968 {
3969 enum dc_status res = DC_OK;
3970
3971 /* check if surface has invalid dimensions */
3972 if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
3973 plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
3974 return DC_FAIL_SURFACE_VALIDATE;
3975
3976 /* TODO For now validates pixel format only */
3977 if (dc->res_pool->funcs->validate_plane)
3978 return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
3979
3980 return res;
3981 }
3982
resource_pixel_format_to_bpp(enum surface_pixel_format format)3983 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
3984 {
3985 switch (format) {
3986 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
3987 return 8;
3988 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
3989 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
3990 return 12;
3991 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
3992 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
3993 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
3994 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
3995 return 16;
3996 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
3997 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
3998 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
3999 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
4000 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
4001 case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
4002 case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
4003 return 32;
4004 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
4005 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
4006 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
4007 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
4008 return 64;
4009 default:
4010 ASSERT_CRITICAL(false);
4011 return -1;
4012 }
4013 }
get_max_audio_sample_rate(struct audio_mode * modes)4014 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
4015 {
4016 if (modes) {
4017 if (modes->sample_rates.rate.RATE_192)
4018 return 192000;
4019 if (modes->sample_rates.rate.RATE_176_4)
4020 return 176400;
4021 if (modes->sample_rates.rate.RATE_96)
4022 return 96000;
4023 if (modes->sample_rates.rate.RATE_88_2)
4024 return 88200;
4025 if (modes->sample_rates.rate.RATE_48)
4026 return 48000;
4027 if (modes->sample_rates.rate.RATE_44_1)
4028 return 44100;
4029 if (modes->sample_rates.rate.RATE_32)
4030 return 32000;
4031 }
4032 /*original logic when no audio info*/
4033 return 441000;
4034 }
4035
get_audio_check(struct audio_info * aud_modes,struct audio_check * audio_chk)4036 void get_audio_check(struct audio_info *aud_modes,
4037 struct audio_check *audio_chk)
4038 {
4039 unsigned int i;
4040 unsigned int max_sample_rate = 0;
4041
4042 if (aud_modes) {
4043 audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
4044
4045 audio_chk->max_audiosample_rate = 0;
4046 for (i = 0; i < aud_modes->mode_count; i++) {
4047 max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
4048 if (audio_chk->max_audiosample_rate < max_sample_rate)
4049 audio_chk->max_audiosample_rate = max_sample_rate;
4050 /*dts takes the same as type 2: AP = 0.25*/
4051 }
4052 /*check which one take more bandwidth*/
4053 if (audio_chk->max_audiosample_rate > 192000)
4054 audio_chk->audio_packet_type = 0x9;/*AP =1*/
4055 audio_chk->acat = 0;/*not support*/
4056 }
4057 }
4058
get_temp_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * const pool,const struct dc_link * link)4059 static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
4060 const struct resource_context *res_ctx,
4061 const struct resource_pool *const pool,
4062 const struct dc_link *link)
4063 {
4064 struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
4065 int enc_index;
4066
4067 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
4068
4069 if (enc_index < 0)
4070 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
4071
4072 if (enc_index >= 0)
4073 hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
4074
4075 return hpo_dp_link_enc;
4076 }
4077
get_temp_dp_link_res(struct dc_link * link,struct link_resource * link_res,struct dc_link_settings * link_settings)4078 bool get_temp_dp_link_res(struct dc_link *link,
4079 struct link_resource *link_res,
4080 struct dc_link_settings *link_settings)
4081 {
4082 const struct dc *dc = link->dc;
4083 const struct resource_context *res_ctx = &dc->current_state->res_ctx;
4084
4085 memset(link_res, 0, sizeof(*link_res));
4086
4087 if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
4088 link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx,
4089 dc->res_pool, link);
4090 if (!link_res->hpo_dp_link_enc)
4091 return false;
4092 }
4093 return true;
4094 }
4095
reset_syncd_pipes_from_disabled_pipes(struct dc * dc,struct dc_state * context)4096 void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
4097 struct dc_state *context)
4098 {
4099 int i, j;
4100 struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
4101
4102 /* If pipe backend is reset, need to reset pipe syncd status */
4103 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4104 pipe_ctx_old = &dc->current_state->res_ctx.pipe_ctx[i];
4105 pipe_ctx = &context->res_ctx.pipe_ctx[i];
4106
4107 if (!resource_is_pipe_type(pipe_ctx_old, OTG_MASTER))
4108 continue;
4109
4110 if (!pipe_ctx->stream ||
4111 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
4112
4113 /* Reset all the syncd pipes from the disabled pipe */
4114 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4115 pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
4116 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
4117 !IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
4118 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
4119 }
4120 }
4121 }
4122 }
4123
check_syncd_pipes_for_disabled_master_pipe(struct dc * dc,struct dc_state * context,uint8_t disabled_master_pipe_idx)4124 void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
4125 struct dc_state *context,
4126 uint8_t disabled_master_pipe_idx)
4127 {
4128 int i;
4129 struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
4130
4131 pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
4132 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
4133 !IS_PIPE_SYNCD_VALID(pipe_ctx))
4134 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
4135
4136 /* for the pipe disabled, check if any slave pipe exists and assert */
4137 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4138 pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
4139
4140 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
4141 IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx)) {
4142 struct pipe_ctx *first_pipe = pipe_ctx_check;
4143
4144 while (first_pipe->prev_odm_pipe)
4145 first_pipe = first_pipe->prev_odm_pipe;
4146 /* When ODM combine is enabled, this case is expected. If the disabled pipe
4147 * is part of the ODM tree, then we should not print an error.
4148 * */
4149 if (first_pipe->pipe_idx == disabled_master_pipe_idx)
4150 continue;
4151
4152 DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
4153 i, disabled_master_pipe_idx);
4154 }
4155 }
4156 }
4157
reset_sync_context_for_pipe(const struct dc * dc,struct dc_state * context,uint8_t pipe_idx)4158 void reset_sync_context_for_pipe(const struct dc *dc,
4159 struct dc_state *context,
4160 uint8_t pipe_idx)
4161 {
4162 int i;
4163 struct pipe_ctx *pipe_ctx_reset;
4164
4165 /* reset the otg sync context for the pipe and its slave pipes if any */
4166 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4167 pipe_ctx_reset = &context->res_ctx.pipe_ctx[i];
4168
4169 if (((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_reset) == pipe_idx) &&
4170 IS_PIPE_SYNCD_VALID(pipe_ctx_reset)) || (i == pipe_idx))
4171 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_reset, i);
4172 }
4173 }
4174
resource_transmitter_to_phy_idx(const struct dc * dc,enum transmitter transmitter)4175 uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
4176 {
4177 /* TODO - get transmitter to phy idx mapping from DMUB */
4178 uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
4179
4180 if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
4181 dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
4182 switch (transmitter) {
4183 case TRANSMITTER_UNIPHY_A:
4184 phy_idx = 0;
4185 break;
4186 case TRANSMITTER_UNIPHY_B:
4187 phy_idx = 1;
4188 break;
4189 case TRANSMITTER_UNIPHY_C:
4190 phy_idx = 5;
4191 break;
4192 case TRANSMITTER_UNIPHY_D:
4193 phy_idx = 6;
4194 break;
4195 case TRANSMITTER_UNIPHY_E:
4196 phy_idx = 4;
4197 break;
4198 default:
4199 phy_idx = 0;
4200 break;
4201 }
4202 }
4203
4204 return phy_idx;
4205 }
4206
get_link_hwss(const struct dc_link * link,const struct link_resource * link_res)4207 const struct link_hwss *get_link_hwss(const struct dc_link *link,
4208 const struct link_resource *link_res)
4209 {
4210 /* Link_hwss is only accessible by getter function instead of accessing
4211 * by pointers in dc with the intent to protect against breaking polymorphism.
4212 */
4213 if (can_use_hpo_dp_link_hwss(link, link_res))
4214 /* TODO: some assumes that if decided link settings is 128b/132b
4215 * channel coding format hpo_dp_link_enc should be used.
4216 * Others believe that if hpo_dp_link_enc is available in link
4217 * resource then hpo_dp_link_enc must be used. This bound between
4218 * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
4219 * with a premise that both hpo_dp_link_enc pointer and decided link
4220 * settings are determined based on single policy function like
4221 * "decide_link_settings" from upper layer. This "convention"
4222 * cannot be maintained and enforced at current level.
4223 * Therefore a refactor is due so we can enforce a strong bound
4224 * between those two parameters at this level.
4225 *
4226 * To put it simple, we want to make enforcement at low level so that
4227 * we will not return link hwss if caller plans to do 8b/10b
4228 * with an hpo encoder. Or we can return a very dummy one that doesn't
4229 * do work for all functions
4230 */
4231 return (requires_fixed_vs_pe_retimer_hpo_link_hwss(link) ?
4232 get_hpo_fixed_vs_pe_retimer_dp_link_hwss() : get_hpo_dp_link_hwss());
4233 else if (can_use_dpia_link_hwss(link, link_res))
4234 return get_dpia_link_hwss();
4235 else if (can_use_dio_link_hwss(link, link_res))
4236 return (requires_fixed_vs_pe_retimer_dio_link_hwss(link)) ?
4237 get_dio_fixed_vs_pe_retimer_link_hwss() : get_dio_link_hwss();
4238 else
4239 return get_virtual_link_hwss();
4240 }
4241
is_h_timing_divisible_by_2(struct dc_stream_state * stream)4242 bool is_h_timing_divisible_by_2(struct dc_stream_state *stream)
4243 {
4244 bool divisible = false;
4245 uint16_t h_blank_start = 0;
4246 uint16_t h_blank_end = 0;
4247
4248 if (stream) {
4249 h_blank_start = stream->timing.h_total - stream->timing.h_front_porch;
4250 h_blank_end = h_blank_start - stream->timing.h_addressable;
4251
4252 /* HTOTAL, Hblank start/end, and Hsync start/end all must be
4253 * divisible by 2 in order for the horizontal timing params
4254 * to be considered divisible by 2. Hsync start is always 0.
4255 */
4256 divisible = (stream->timing.h_total % 2 == 0) &&
4257 (h_blank_start % 2 == 0) &&
4258 (h_blank_end % 2 == 0) &&
4259 (stream->timing.h_sync_width % 2 == 0);
4260 }
4261 return divisible;
4262 }
4263
dc_resource_acquire_secondary_pipe_for_mpc_odm(const struct dc * dc,struct dc_state * state,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)4264 bool dc_resource_acquire_secondary_pipe_for_mpc_odm(
4265 const struct dc *dc,
4266 struct dc_state *state,
4267 struct pipe_ctx *pri_pipe,
4268 struct pipe_ctx *sec_pipe,
4269 bool odm)
4270 {
4271 int pipe_idx = sec_pipe->pipe_idx;
4272 struct pipe_ctx *sec_top, *sec_bottom, *sec_next, *sec_prev;
4273 const struct resource_pool *pool = dc->res_pool;
4274
4275 sec_top = sec_pipe->top_pipe;
4276 sec_bottom = sec_pipe->bottom_pipe;
4277 sec_next = sec_pipe->next_odm_pipe;
4278 sec_prev = sec_pipe->prev_odm_pipe;
4279
4280 *sec_pipe = *pri_pipe;
4281
4282 sec_pipe->top_pipe = sec_top;
4283 sec_pipe->bottom_pipe = sec_bottom;
4284 sec_pipe->next_odm_pipe = sec_next;
4285 sec_pipe->prev_odm_pipe = sec_prev;
4286
4287 sec_pipe->pipe_idx = pipe_idx;
4288 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
4289 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
4290 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
4291 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
4292 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
4293 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
4294 sec_pipe->stream_res.dsc = NULL;
4295 if (odm) {
4296 if (!sec_pipe->top_pipe)
4297 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
4298 else
4299 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
4300 if (sec_pipe->stream->timing.flags.DSC == 1) {
4301 #if defined(CONFIG_DRM_AMD_DC_FP)
4302 dcn20_acquire_dsc(dc, &state->res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
4303 #endif
4304 ASSERT(sec_pipe->stream_res.dsc);
4305 if (sec_pipe->stream_res.dsc == NULL)
4306 return false;
4307 }
4308 #if defined(CONFIG_DRM_AMD_DC_FP)
4309 dcn20_build_mapped_resource(dc, state, sec_pipe->stream);
4310 #endif
4311 }
4312
4313 return true;
4314 }
4315
update_dp_encoder_resources_for_test_harness(const struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)4316 enum dc_status update_dp_encoder_resources_for_test_harness(const struct dc *dc,
4317 struct dc_state *context,
4318 struct pipe_ctx *pipe_ctx)
4319 {
4320 if (dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
4321 if (pipe_ctx->stream_res.hpo_dp_stream_enc == NULL) {
4322 pipe_ctx->stream_res.hpo_dp_stream_enc =
4323 find_first_free_match_hpo_dp_stream_enc_for_link(
4324 &context->res_ctx, dc->res_pool, pipe_ctx->stream);
4325
4326 if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
4327 return DC_NO_STREAM_ENC_RESOURCE;
4328
4329 update_hpo_dp_stream_engine_usage(
4330 &context->res_ctx, dc->res_pool,
4331 pipe_ctx->stream_res.hpo_dp_stream_enc,
4332 true);
4333 }
4334
4335 if (pipe_ctx->link_res.hpo_dp_link_enc == NULL) {
4336 if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, dc->res_pool, pipe_ctx, pipe_ctx->stream))
4337 return DC_NO_LINK_ENC_RESOURCE;
4338 }
4339 } else {
4340 if (pipe_ctx->stream_res.hpo_dp_stream_enc) {
4341 update_hpo_dp_stream_engine_usage(
4342 &context->res_ctx, dc->res_pool,
4343 pipe_ctx->stream_res.hpo_dp_stream_enc,
4344 false);
4345 pipe_ctx->stream_res.hpo_dp_stream_enc = NULL;
4346 }
4347 if (pipe_ctx->link_res.hpo_dp_link_enc)
4348 remove_hpo_dp_link_enc_from_ctx(&context->res_ctx, pipe_ctx, pipe_ctx->stream);
4349 }
4350
4351 return DC_OK;
4352 }
4353
4354