xref: /openbmc/linux/kernel/sched/fair.c (revision 8ebc80a25f9d9bf7a8e368b266d5b740c485c362)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include <linux/sched/cond_resched.h>
55 
56 #include "sched.h"
57 #include "stats.h"
58 #include "autogroup.h"
59 
60 /*
61  * The initial- and re-scaling of tunables is configurable
62  *
63  * Options are:
64  *
65  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
66  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
67  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
68  *
69  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
70  */
71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
72 
73 /*
74  * Minimal preemption granularity for CPU-bound tasks:
75  *
76  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
77  */
78 unsigned int sysctl_sched_base_slice			= 750000ULL;
79 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
80 
81 /*
82  * After fork, child runs first. If set to 0 (default) then
83  * parent will (try to) run first.
84  */
85 unsigned int sysctl_sched_child_runs_first __read_mostly;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)90 static int __init setup_sched_thermal_decay_shift(char *str)
91 {
92 	int _shift = 0;
93 
94 	if (kstrtoint(str, 0, &_shift))
95 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96 
97 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 	return 1;
99 }
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101 
102 #ifdef CONFIG_SMP
103 /*
104  * For asym packing, by default the lower numbered CPU has higher priority.
105  */
arch_asym_cpu_priority(int cpu)106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 	return -cpu;
109 }
110 
111 /*
112  * The margin used when comparing utilization with CPU capacity.
113  *
114  * (default: ~20%)
115  */
116 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
117 
118 /*
119  * The margin used when comparing CPU capacities.
120  * is 'cap1' noticeably greater than 'cap2'
121  *
122  * (default: ~5%)
123  */
124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
125 #endif
126 
127 #ifdef CONFIG_CFS_BANDWIDTH
128 /*
129  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
130  * each time a cfs_rq requests quota.
131  *
132  * Note: in the case that the slice exceeds the runtime remaining (either due
133  * to consumption or the quota being specified to be smaller than the slice)
134  * we will always only issue the remaining available time.
135  *
136  * (default: 5 msec, units: microseconds)
137  */
138 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
139 #endif
140 
141 #ifdef CONFIG_NUMA_BALANCING
142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
144 #endif
145 
146 #ifdef CONFIG_SYSCTL
147 static struct ctl_table sched_fair_sysctls[] = {
148 	{
149 		.procname       = "sched_child_runs_first",
150 		.data           = &sysctl_sched_child_runs_first,
151 		.maxlen         = sizeof(unsigned int),
152 		.mode           = 0644,
153 		.proc_handler   = proc_dointvec,
154 	},
155 #ifdef CONFIG_CFS_BANDWIDTH
156 	{
157 		.procname       = "sched_cfs_bandwidth_slice_us",
158 		.data           = &sysctl_sched_cfs_bandwidth_slice,
159 		.maxlen         = sizeof(unsigned int),
160 		.mode           = 0644,
161 		.proc_handler   = proc_dointvec_minmax,
162 		.extra1         = SYSCTL_ONE,
163 	},
164 #endif
165 #ifdef CONFIG_NUMA_BALANCING
166 	{
167 		.procname	= "numa_balancing_promote_rate_limit_MBps",
168 		.data		= &sysctl_numa_balancing_promote_rate_limit,
169 		.maxlen		= sizeof(unsigned int),
170 		.mode		= 0644,
171 		.proc_handler	= proc_dointvec_minmax,
172 		.extra1		= SYSCTL_ZERO,
173 	},
174 #endif /* CONFIG_NUMA_BALANCING */
175 	{}
176 };
177 
sched_fair_sysctl_init(void)178 static int __init sched_fair_sysctl_init(void)
179 {
180 	register_sysctl_init("kernel", sched_fair_sysctls);
181 	return 0;
182 }
183 late_initcall(sched_fair_sysctl_init);
184 #endif
185 
update_load_add(struct load_weight * lw,unsigned long inc)186 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
187 {
188 	lw->weight += inc;
189 	lw->inv_weight = 0;
190 }
191 
update_load_sub(struct load_weight * lw,unsigned long dec)192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
193 {
194 	lw->weight -= dec;
195 	lw->inv_weight = 0;
196 }
197 
update_load_set(struct load_weight * lw,unsigned long w)198 static inline void update_load_set(struct load_weight *lw, unsigned long w)
199 {
200 	lw->weight = w;
201 	lw->inv_weight = 0;
202 }
203 
204 /*
205  * Increase the granularity value when there are more CPUs,
206  * because with more CPUs the 'effective latency' as visible
207  * to users decreases. But the relationship is not linear,
208  * so pick a second-best guess by going with the log2 of the
209  * number of CPUs.
210  *
211  * This idea comes from the SD scheduler of Con Kolivas:
212  */
get_update_sysctl_factor(void)213 static unsigned int get_update_sysctl_factor(void)
214 {
215 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
216 	unsigned int factor;
217 
218 	switch (sysctl_sched_tunable_scaling) {
219 	case SCHED_TUNABLESCALING_NONE:
220 		factor = 1;
221 		break;
222 	case SCHED_TUNABLESCALING_LINEAR:
223 		factor = cpus;
224 		break;
225 	case SCHED_TUNABLESCALING_LOG:
226 	default:
227 		factor = 1 + ilog2(cpus);
228 		break;
229 	}
230 
231 	return factor;
232 }
233 
update_sysctl(void)234 static void update_sysctl(void)
235 {
236 	unsigned int factor = get_update_sysctl_factor();
237 
238 #define SET_SYSCTL(name) \
239 	(sysctl_##name = (factor) * normalized_sysctl_##name)
240 	SET_SYSCTL(sched_base_slice);
241 #undef SET_SYSCTL
242 }
243 
sched_init_granularity(void)244 void __init sched_init_granularity(void)
245 {
246 	update_sysctl();
247 }
248 
249 #define WMULT_CONST	(~0U)
250 #define WMULT_SHIFT	32
251 
__update_inv_weight(struct load_weight * lw)252 static void __update_inv_weight(struct load_weight *lw)
253 {
254 	unsigned long w;
255 
256 	if (likely(lw->inv_weight))
257 		return;
258 
259 	w = scale_load_down(lw->weight);
260 
261 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
262 		lw->inv_weight = 1;
263 	else if (unlikely(!w))
264 		lw->inv_weight = WMULT_CONST;
265 	else
266 		lw->inv_weight = WMULT_CONST / w;
267 }
268 
269 /*
270  * delta_exec * weight / lw.weight
271  *   OR
272  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
273  *
274  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
275  * we're guaranteed shift stays positive because inv_weight is guaranteed to
276  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
277  *
278  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
279  * weight/lw.weight <= 1, and therefore our shift will also be positive.
280  */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
282 {
283 	u64 fact = scale_load_down(weight);
284 	u32 fact_hi = (u32)(fact >> 32);
285 	int shift = WMULT_SHIFT;
286 	int fs;
287 
288 	__update_inv_weight(lw);
289 
290 	if (unlikely(fact_hi)) {
291 		fs = fls(fact_hi);
292 		shift -= fs;
293 		fact >>= fs;
294 	}
295 
296 	fact = mul_u32_u32(fact, lw->inv_weight);
297 
298 	fact_hi = (u32)(fact >> 32);
299 	if (fact_hi) {
300 		fs = fls(fact_hi);
301 		shift -= fs;
302 		fact >>= fs;
303 	}
304 
305 	return mul_u64_u32_shr(delta_exec, fact, shift);
306 }
307 
308 /*
309  * delta /= w
310  */
calc_delta_fair(u64 delta,struct sched_entity * se)311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
312 {
313 	if (unlikely(se->load.weight != NICE_0_LOAD))
314 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
315 
316 	return delta;
317 }
318 
319 const struct sched_class fair_sched_class;
320 
321 /**************************************************************
322  * CFS operations on generic schedulable entities:
323  */
324 
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 
327 /* Walk up scheduling entities hierarchy */
328 #define for_each_sched_entity(se) \
329 		for (; se; se = se->parent)
330 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
332 {
333 	struct rq *rq = rq_of(cfs_rq);
334 	int cpu = cpu_of(rq);
335 
336 	if (cfs_rq->on_list)
337 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
338 
339 	cfs_rq->on_list = 1;
340 
341 	/*
342 	 * Ensure we either appear before our parent (if already
343 	 * enqueued) or force our parent to appear after us when it is
344 	 * enqueued. The fact that we always enqueue bottom-up
345 	 * reduces this to two cases and a special case for the root
346 	 * cfs_rq. Furthermore, it also means that we will always reset
347 	 * tmp_alone_branch either when the branch is connected
348 	 * to a tree or when we reach the top of the tree
349 	 */
350 	if (cfs_rq->tg->parent &&
351 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
352 		/*
353 		 * If parent is already on the list, we add the child
354 		 * just before. Thanks to circular linked property of
355 		 * the list, this means to put the child at the tail
356 		 * of the list that starts by parent.
357 		 */
358 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
359 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
360 		/*
361 		 * The branch is now connected to its tree so we can
362 		 * reset tmp_alone_branch to the beginning of the
363 		 * list.
364 		 */
365 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 		return true;
367 	}
368 
369 	if (!cfs_rq->tg->parent) {
370 		/*
371 		 * cfs rq without parent should be put
372 		 * at the tail of the list.
373 		 */
374 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
375 			&rq->leaf_cfs_rq_list);
376 		/*
377 		 * We have reach the top of a tree so we can reset
378 		 * tmp_alone_branch to the beginning of the list.
379 		 */
380 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
381 		return true;
382 	}
383 
384 	/*
385 	 * The parent has not already been added so we want to
386 	 * make sure that it will be put after us.
387 	 * tmp_alone_branch points to the begin of the branch
388 	 * where we will add parent.
389 	 */
390 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
391 	/*
392 	 * update tmp_alone_branch to points to the new begin
393 	 * of the branch
394 	 */
395 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
396 	return false;
397 }
398 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
400 {
401 	if (cfs_rq->on_list) {
402 		struct rq *rq = rq_of(cfs_rq);
403 
404 		/*
405 		 * With cfs_rq being unthrottled/throttled during an enqueue,
406 		 * it can happen the tmp_alone_branch points the a leaf that
407 		 * we finally want to del. In this case, tmp_alone_branch moves
408 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
409 		 * at the end of the enqueue.
410 		 */
411 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
412 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
413 
414 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
415 		cfs_rq->on_list = 0;
416 	}
417 }
418 
assert_list_leaf_cfs_rq(struct rq * rq)419 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
420 {
421 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
422 }
423 
424 /* Iterate thr' all leaf cfs_rq's on a runqueue */
425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
426 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
427 				 leaf_cfs_rq_list)
428 
429 /* Do the two (enqueued) entities belong to the same group ? */
430 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)431 is_same_group(struct sched_entity *se, struct sched_entity *pse)
432 {
433 	if (se->cfs_rq == pse->cfs_rq)
434 		return se->cfs_rq;
435 
436 	return NULL;
437 }
438 
parent_entity(const struct sched_entity * se)439 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
440 {
441 	return se->parent;
442 }
443 
444 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)445 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
446 {
447 	int se_depth, pse_depth;
448 
449 	/*
450 	 * preemption test can be made between sibling entities who are in the
451 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
452 	 * both tasks until we find their ancestors who are siblings of common
453 	 * parent.
454 	 */
455 
456 	/* First walk up until both entities are at same depth */
457 	se_depth = (*se)->depth;
458 	pse_depth = (*pse)->depth;
459 
460 	while (se_depth > pse_depth) {
461 		se_depth--;
462 		*se = parent_entity(*se);
463 	}
464 
465 	while (pse_depth > se_depth) {
466 		pse_depth--;
467 		*pse = parent_entity(*pse);
468 	}
469 
470 	while (!is_same_group(*se, *pse)) {
471 		*se = parent_entity(*se);
472 		*pse = parent_entity(*pse);
473 	}
474 }
475 
tg_is_idle(struct task_group * tg)476 static int tg_is_idle(struct task_group *tg)
477 {
478 	return tg->idle > 0;
479 }
480 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
482 {
483 	return cfs_rq->idle > 0;
484 }
485 
se_is_idle(struct sched_entity * se)486 static int se_is_idle(struct sched_entity *se)
487 {
488 	if (entity_is_task(se))
489 		return task_has_idle_policy(task_of(se));
490 	return cfs_rq_is_idle(group_cfs_rq(se));
491 }
492 
493 #else	/* !CONFIG_FAIR_GROUP_SCHED */
494 
495 #define for_each_sched_entity(se) \
496 		for (; se; se = NULL)
497 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
499 {
500 	return true;
501 }
502 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
504 {
505 }
506 
assert_list_leaf_cfs_rq(struct rq * rq)507 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
508 {
509 }
510 
511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
512 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
513 
parent_entity(struct sched_entity * se)514 static inline struct sched_entity *parent_entity(struct sched_entity *se)
515 {
516 	return NULL;
517 }
518 
519 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)520 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
521 {
522 }
523 
tg_is_idle(struct task_group * tg)524 static inline int tg_is_idle(struct task_group *tg)
525 {
526 	return 0;
527 }
528 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
530 {
531 	return 0;
532 }
533 
se_is_idle(struct sched_entity * se)534 static int se_is_idle(struct sched_entity *se)
535 {
536 	return task_has_idle_policy(task_of(se));
537 }
538 
539 #endif	/* CONFIG_FAIR_GROUP_SCHED */
540 
541 static __always_inline
542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
543 
544 /**************************************************************
545  * Scheduling class tree data structure manipulation methods:
546  */
547 
max_vruntime(u64 max_vruntime,u64 vruntime)548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
549 {
550 	s64 delta = (s64)(vruntime - max_vruntime);
551 	if (delta > 0)
552 		max_vruntime = vruntime;
553 
554 	return max_vruntime;
555 }
556 
min_vruntime(u64 min_vruntime,u64 vruntime)557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
558 {
559 	s64 delta = (s64)(vruntime - min_vruntime);
560 	if (delta < 0)
561 		min_vruntime = vruntime;
562 
563 	return min_vruntime;
564 }
565 
entity_before(const struct sched_entity * a,const struct sched_entity * b)566 static inline bool entity_before(const struct sched_entity *a,
567 				 const struct sched_entity *b)
568 {
569 	return (s64)(a->vruntime - b->vruntime) < 0;
570 }
571 
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 {
574 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
575 }
576 
577 #define __node_2_se(node) \
578 	rb_entry((node), struct sched_entity, run_node)
579 
580 /*
581  * Compute virtual time from the per-task service numbers:
582  *
583  * Fair schedulers conserve lag:
584  *
585  *   \Sum lag_i = 0
586  *
587  * Where lag_i is given by:
588  *
589  *   lag_i = S - s_i = w_i * (V - v_i)
590  *
591  * Where S is the ideal service time and V is it's virtual time counterpart.
592  * Therefore:
593  *
594  *   \Sum lag_i = 0
595  *   \Sum w_i * (V - v_i) = 0
596  *   \Sum w_i * V - w_i * v_i = 0
597  *
598  * From which we can solve an expression for V in v_i (which we have in
599  * se->vruntime):
600  *
601  *       \Sum v_i * w_i   \Sum v_i * w_i
602  *   V = -------------- = --------------
603  *          \Sum w_i            W
604  *
605  * Specifically, this is the weighted average of all entity virtual runtimes.
606  *
607  * [[ NOTE: this is only equal to the ideal scheduler under the condition
608  *          that join/leave operations happen at lag_i = 0, otherwise the
609  *          virtual time has non-continguous motion equivalent to:
610  *
611  *	      V +-= lag_i / W
612  *
613  *	    Also see the comment in place_entity() that deals with this. ]]
614  *
615  * However, since v_i is u64, and the multiplcation could easily overflow
616  * transform it into a relative form that uses smaller quantities:
617  *
618  * Substitute: v_i == (v_i - v0) + v0
619  *
620  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
621  * V = ---------------------------- = --------------------- + v0
622  *                  W                            W
623  *
624  * Which we track using:
625  *
626  *                    v0 := cfs_rq->min_vruntime
627  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
628  *              \Sum w_i := cfs_rq->avg_load
629  *
630  * Since min_vruntime is a monotonic increasing variable that closely tracks
631  * the per-task service, these deltas: (v_i - v), will be in the order of the
632  * maximal (virtual) lag induced in the system due to quantisation.
633  *
634  * Also, we use scale_load_down() to reduce the size.
635  *
636  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
637  */
638 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 {
641 	unsigned long weight = scale_load_down(se->load.weight);
642 	s64 key = entity_key(cfs_rq, se);
643 
644 	cfs_rq->avg_vruntime += key * weight;
645 	cfs_rq->avg_load += weight;
646 }
647 
648 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
650 {
651 	unsigned long weight = scale_load_down(se->load.weight);
652 	s64 key = entity_key(cfs_rq, se);
653 
654 	cfs_rq->avg_vruntime -= key * weight;
655 	cfs_rq->avg_load -= weight;
656 }
657 
658 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
660 {
661 	/*
662 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
663 	 */
664 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
665 }
666 
667 /*
668  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
669  * For this to be so, the result of this function must have a left bias.
670  */
avg_vruntime(struct cfs_rq * cfs_rq)671 u64 avg_vruntime(struct cfs_rq *cfs_rq)
672 {
673 	struct sched_entity *curr = cfs_rq->curr;
674 	s64 avg = cfs_rq->avg_vruntime;
675 	long load = cfs_rq->avg_load;
676 
677 	if (curr && curr->on_rq) {
678 		unsigned long weight = scale_load_down(curr->load.weight);
679 
680 		avg += entity_key(cfs_rq, curr) * weight;
681 		load += weight;
682 	}
683 
684 	if (load) {
685 		/* sign flips effective floor / ceil */
686 		if (avg < 0)
687 			avg -= (load - 1);
688 		avg = div_s64(avg, load);
689 	}
690 
691 	return cfs_rq->min_vruntime + avg;
692 }
693 
694 /*
695  * lag_i = S - s_i = w_i * (V - v_i)
696  *
697  * However, since V is approximated by the weighted average of all entities it
698  * is possible -- by addition/removal/reweight to the tree -- to move V around
699  * and end up with a larger lag than we started with.
700  *
701  * Limit this to either double the slice length with a minimum of TICK_NSEC
702  * since that is the timing granularity.
703  *
704  * EEVDF gives the following limit for a steady state system:
705  *
706  *   -r_max < lag < max(r_max, q)
707  *
708  * XXX could add max_slice to the augmented data to track this.
709  */
entity_lag(u64 avruntime,struct sched_entity * se)710 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
711 {
712 	s64 vlag, limit;
713 
714 	vlag = avruntime - se->vruntime;
715 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
716 
717 	return clamp(vlag, -limit, limit);
718 }
719 
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)720 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
721 {
722 	SCHED_WARN_ON(!se->on_rq);
723 
724 	se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
725 }
726 
727 /*
728  * Entity is eligible once it received less service than it ought to have,
729  * eg. lag >= 0.
730  *
731  * lag_i = S - s_i = w_i*(V - v_i)
732  *
733  * lag_i >= 0 -> V >= v_i
734  *
735  *     \Sum (v_i - v)*w_i
736  * V = ------------------ + v
737  *          \Sum w_i
738  *
739  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
740  *
741  * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
742  *       to the loss in precision caused by the division.
743  */
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)744 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
745 {
746 	struct sched_entity *curr = cfs_rq->curr;
747 	s64 avg = cfs_rq->avg_vruntime;
748 	long load = cfs_rq->avg_load;
749 
750 	if (curr && curr->on_rq) {
751 		unsigned long weight = scale_load_down(curr->load.weight);
752 
753 		avg += entity_key(cfs_rq, curr) * weight;
754 		load += weight;
755 	}
756 
757 	return avg >= entity_key(cfs_rq, se) * load;
758 }
759 
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)760 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
761 {
762 	u64 min_vruntime = cfs_rq->min_vruntime;
763 	/*
764 	 * open coded max_vruntime() to allow updating avg_vruntime
765 	 */
766 	s64 delta = (s64)(vruntime - min_vruntime);
767 	if (delta > 0) {
768 		avg_vruntime_update(cfs_rq, delta);
769 		min_vruntime = vruntime;
770 	}
771 	return min_vruntime;
772 }
773 
update_min_vruntime(struct cfs_rq * cfs_rq)774 static void update_min_vruntime(struct cfs_rq *cfs_rq)
775 {
776 	struct sched_entity *se = __pick_first_entity(cfs_rq);
777 	struct sched_entity *curr = cfs_rq->curr;
778 
779 	u64 vruntime = cfs_rq->min_vruntime;
780 
781 	if (curr) {
782 		if (curr->on_rq)
783 			vruntime = curr->vruntime;
784 		else
785 			curr = NULL;
786 	}
787 
788 	if (se) {
789 		if (!curr)
790 			vruntime = se->vruntime;
791 		else
792 			vruntime = min_vruntime(vruntime, se->vruntime);
793 	}
794 
795 	/* ensure we never gain time by being placed backwards. */
796 	u64_u32_store(cfs_rq->min_vruntime,
797 		      __update_min_vruntime(cfs_rq, vruntime));
798 }
799 
__entity_less(struct rb_node * a,const struct rb_node * b)800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
801 {
802 	return entity_before(__node_2_se(a), __node_2_se(b));
803 }
804 
805 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
806 
__update_min_deadline(struct sched_entity * se,struct rb_node * node)807 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node)
808 {
809 	if (node) {
810 		struct sched_entity *rse = __node_2_se(node);
811 		if (deadline_gt(min_deadline, se, rse))
812 			se->min_deadline = rse->min_deadline;
813 	}
814 }
815 
816 /*
817  * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline)
818  */
min_deadline_update(struct sched_entity * se,bool exit)819 static inline bool min_deadline_update(struct sched_entity *se, bool exit)
820 {
821 	u64 old_min_deadline = se->min_deadline;
822 	struct rb_node *node = &se->run_node;
823 
824 	se->min_deadline = se->deadline;
825 	__update_min_deadline(se, node->rb_right);
826 	__update_min_deadline(se, node->rb_left);
827 
828 	return se->min_deadline == old_min_deadline;
829 }
830 
831 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity,
832 		     run_node, min_deadline, min_deadline_update);
833 
834 /*
835  * Enqueue an entity into the rb-tree:
836  */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)837 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
838 {
839 	avg_vruntime_add(cfs_rq, se);
840 	se->min_deadline = se->deadline;
841 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
842 				__entity_less, &min_deadline_cb);
843 }
844 
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)845 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
846 {
847 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
848 				  &min_deadline_cb);
849 	avg_vruntime_sub(cfs_rq, se);
850 }
851 
__pick_first_entity(struct cfs_rq * cfs_rq)852 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
853 {
854 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
855 
856 	if (!left)
857 		return NULL;
858 
859 	return __node_2_se(left);
860 }
861 
862 /*
863  * Earliest Eligible Virtual Deadline First
864  *
865  * In order to provide latency guarantees for different request sizes
866  * EEVDF selects the best runnable task from two criteria:
867  *
868  *  1) the task must be eligible (must be owed service)
869  *
870  *  2) from those tasks that meet 1), we select the one
871  *     with the earliest virtual deadline.
872  *
873  * We can do this in O(log n) time due to an augmented RB-tree. The
874  * tree keeps the entries sorted on service, but also functions as a
875  * heap based on the deadline by keeping:
876  *
877  *  se->min_deadline = min(se->deadline, se->{left,right}->min_deadline)
878  *
879  * Which allows an EDF like search on (sub)trees.
880  */
__pick_eevdf(struct cfs_rq * cfs_rq)881 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq)
882 {
883 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
884 	struct sched_entity *curr = cfs_rq->curr;
885 	struct sched_entity *best = NULL;
886 	struct sched_entity *best_left = NULL;
887 
888 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
889 		curr = NULL;
890 	best = curr;
891 
892 	/*
893 	 * Once selected, run a task until it either becomes non-eligible or
894 	 * until it gets a new slice. See the HACK in set_next_entity().
895 	 */
896 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
897 		return curr;
898 
899 	while (node) {
900 		struct sched_entity *se = __node_2_se(node);
901 
902 		/*
903 		 * If this entity is not eligible, try the left subtree.
904 		 */
905 		if (!entity_eligible(cfs_rq, se)) {
906 			node = node->rb_left;
907 			continue;
908 		}
909 
910 		/*
911 		 * Now we heap search eligible trees for the best (min_)deadline
912 		 */
913 		if (!best || deadline_gt(deadline, best, se))
914 			best = se;
915 
916 		/*
917 		 * Every se in a left branch is eligible, keep track of the
918 		 * branch with the best min_deadline
919 		 */
920 		if (node->rb_left) {
921 			struct sched_entity *left = __node_2_se(node->rb_left);
922 
923 			if (!best_left || deadline_gt(min_deadline, best_left, left))
924 				best_left = left;
925 
926 			/*
927 			 * min_deadline is in the left branch. rb_left and all
928 			 * descendants are eligible, so immediately switch to the second
929 			 * loop.
930 			 */
931 			if (left->min_deadline == se->min_deadline)
932 				break;
933 		}
934 
935 		/* min_deadline is at this node, no need to look right */
936 		if (se->deadline == se->min_deadline)
937 			break;
938 
939 		/* else min_deadline is in the right branch. */
940 		node = node->rb_right;
941 	}
942 
943 	/*
944 	 * We ran into an eligible node which is itself the best.
945 	 * (Or nr_running == 0 and both are NULL)
946 	 */
947 	if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0)
948 		return best;
949 
950 	/*
951 	 * Now best_left and all of its children are eligible, and we are just
952 	 * looking for deadline == min_deadline
953 	 */
954 	node = &best_left->run_node;
955 	while (node) {
956 		struct sched_entity *se = __node_2_se(node);
957 
958 		/* min_deadline is the current node */
959 		if (se->deadline == se->min_deadline)
960 			return se;
961 
962 		/* min_deadline is in the left branch */
963 		if (node->rb_left &&
964 		    __node_2_se(node->rb_left)->min_deadline == se->min_deadline) {
965 			node = node->rb_left;
966 			continue;
967 		}
968 
969 		/* else min_deadline is in the right branch */
970 		node = node->rb_right;
971 	}
972 	return NULL;
973 }
974 
pick_eevdf(struct cfs_rq * cfs_rq)975 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
976 {
977 	struct sched_entity *se = __pick_eevdf(cfs_rq);
978 
979 	if (!se) {
980 		struct sched_entity *left = __pick_first_entity(cfs_rq);
981 		if (left) {
982 			pr_err("EEVDF scheduling fail, picking leftmost\n");
983 			return left;
984 		}
985 	}
986 
987 	return se;
988 }
989 
990 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)991 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
992 {
993 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
994 
995 	if (!last)
996 		return NULL;
997 
998 	return __node_2_se(last);
999 }
1000 
1001 /**************************************************************
1002  * Scheduling class statistics methods:
1003  */
1004 #ifdef CONFIG_SMP
sched_update_scaling(void)1005 int sched_update_scaling(void)
1006 {
1007 	unsigned int factor = get_update_sysctl_factor();
1008 
1009 #define WRT_SYSCTL(name) \
1010 	(normalized_sysctl_##name = sysctl_##name / (factor))
1011 	WRT_SYSCTL(sched_base_slice);
1012 #undef WRT_SYSCTL
1013 
1014 	return 0;
1015 }
1016 #endif
1017 #endif
1018 
1019 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1020 
1021 /*
1022  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1023  * this is probably good enough.
1024  */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1025 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1026 {
1027 	if ((s64)(se->vruntime - se->deadline) < 0)
1028 		return;
1029 
1030 	/*
1031 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1032 	 * nice) while the request time r_i is determined by
1033 	 * sysctl_sched_base_slice.
1034 	 */
1035 	se->slice = sysctl_sched_base_slice;
1036 
1037 	/*
1038 	 * EEVDF: vd_i = ve_i + r_i / w_i
1039 	 */
1040 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1041 
1042 	/*
1043 	 * The task has consumed its request, reschedule.
1044 	 */
1045 	if (cfs_rq->nr_running > 1) {
1046 		resched_curr(rq_of(cfs_rq));
1047 		clear_buddies(cfs_rq, se);
1048 	}
1049 }
1050 
1051 #include "pelt.h"
1052 #ifdef CONFIG_SMP
1053 
1054 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1055 static unsigned long task_h_load(struct task_struct *p);
1056 static unsigned long capacity_of(int cpu);
1057 
1058 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1059 void init_entity_runnable_average(struct sched_entity *se)
1060 {
1061 	struct sched_avg *sa = &se->avg;
1062 
1063 	memset(sa, 0, sizeof(*sa));
1064 
1065 	/*
1066 	 * Tasks are initialized with full load to be seen as heavy tasks until
1067 	 * they get a chance to stabilize to their real load level.
1068 	 * Group entities are initialized with zero load to reflect the fact that
1069 	 * nothing has been attached to the task group yet.
1070 	 */
1071 	if (entity_is_task(se))
1072 		sa->load_avg = scale_load_down(se->load.weight);
1073 
1074 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1075 }
1076 
1077 /*
1078  * With new tasks being created, their initial util_avgs are extrapolated
1079  * based on the cfs_rq's current util_avg:
1080  *
1081  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1082  *
1083  * However, in many cases, the above util_avg does not give a desired
1084  * value. Moreover, the sum of the util_avgs may be divergent, such
1085  * as when the series is a harmonic series.
1086  *
1087  * To solve this problem, we also cap the util_avg of successive tasks to
1088  * only 1/2 of the left utilization budget:
1089  *
1090  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1091  *
1092  * where n denotes the nth task and cpu_scale the CPU capacity.
1093  *
1094  * For example, for a CPU with 1024 of capacity, a simplest series from
1095  * the beginning would be like:
1096  *
1097  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1098  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1099  *
1100  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1101  * if util_avg > util_avg_cap.
1102  */
post_init_entity_util_avg(struct task_struct * p)1103 void post_init_entity_util_avg(struct task_struct *p)
1104 {
1105 	struct sched_entity *se = &p->se;
1106 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1107 	struct sched_avg *sa = &se->avg;
1108 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1109 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1110 
1111 	if (p->sched_class != &fair_sched_class) {
1112 		/*
1113 		 * For !fair tasks do:
1114 		 *
1115 		update_cfs_rq_load_avg(now, cfs_rq);
1116 		attach_entity_load_avg(cfs_rq, se);
1117 		switched_from_fair(rq, p);
1118 		 *
1119 		 * such that the next switched_to_fair() has the
1120 		 * expected state.
1121 		 */
1122 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1123 		return;
1124 	}
1125 
1126 	if (cap > 0) {
1127 		if (cfs_rq->avg.util_avg != 0) {
1128 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
1129 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1130 
1131 			if (sa->util_avg > cap)
1132 				sa->util_avg = cap;
1133 		} else {
1134 			sa->util_avg = cap;
1135 		}
1136 	}
1137 
1138 	sa->runnable_avg = sa->util_avg;
1139 }
1140 
1141 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)1142 void init_entity_runnable_average(struct sched_entity *se)
1143 {
1144 }
post_init_entity_util_avg(struct task_struct * p)1145 void post_init_entity_util_avg(struct task_struct *p)
1146 {
1147 }
update_tg_load_avg(struct cfs_rq * cfs_rq)1148 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1149 {
1150 }
1151 #endif /* CONFIG_SMP */
1152 
update_curr_se(struct rq * rq,struct sched_entity * curr)1153 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1154 {
1155 	u64 now = rq_clock_task(rq);
1156 	s64 delta_exec;
1157 
1158 	delta_exec = now - curr->exec_start;
1159 	if (unlikely(delta_exec <= 0))
1160 		return delta_exec;
1161 
1162 	curr->exec_start = now;
1163 	curr->sum_exec_runtime += delta_exec;
1164 
1165 	if (schedstat_enabled()) {
1166 		struct sched_statistics *stats;
1167 
1168 		stats = __schedstats_from_se(curr);
1169 		__schedstat_set(stats->exec_max,
1170 				max(delta_exec, stats->exec_max));
1171 	}
1172 
1173 	return delta_exec;
1174 }
1175 
update_curr_task(struct task_struct * p,s64 delta_exec)1176 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1177 {
1178 	trace_sched_stat_runtime(p, delta_exec);
1179 	account_group_exec_runtime(p, delta_exec);
1180 	cgroup_account_cputime(p, delta_exec);
1181 }
1182 
1183 /*
1184  * Used by other classes to account runtime.
1185  */
update_curr_common(struct rq * rq)1186 s64 update_curr_common(struct rq *rq)
1187 {
1188 	struct task_struct *curr = rq->curr;
1189 	s64 delta_exec;
1190 
1191 	delta_exec = update_curr_se(rq, &curr->se);
1192 	if (likely(delta_exec > 0))
1193 		update_curr_task(curr, delta_exec);
1194 
1195 	return delta_exec;
1196 }
1197 
1198 /*
1199  * Update the current task's runtime statistics.
1200  */
update_curr(struct cfs_rq * cfs_rq)1201 static void update_curr(struct cfs_rq *cfs_rq)
1202 {
1203 	struct sched_entity *curr = cfs_rq->curr;
1204 	s64 delta_exec;
1205 
1206 	if (unlikely(!curr))
1207 		return;
1208 
1209 	delta_exec = update_curr_se(rq_of(cfs_rq), curr);
1210 	if (unlikely(delta_exec <= 0))
1211 		return;
1212 
1213 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1214 	update_deadline(cfs_rq, curr);
1215 	update_min_vruntime(cfs_rq);
1216 
1217 	if (entity_is_task(curr))
1218 		update_curr_task(task_of(curr), delta_exec);
1219 
1220 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1221 }
1222 
update_curr_fair(struct rq * rq)1223 static void update_curr_fair(struct rq *rq)
1224 {
1225 	update_curr(cfs_rq_of(&rq->curr->se));
1226 }
1227 
1228 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1229 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1230 {
1231 	struct sched_statistics *stats;
1232 	struct task_struct *p = NULL;
1233 
1234 	if (!schedstat_enabled())
1235 		return;
1236 
1237 	stats = __schedstats_from_se(se);
1238 
1239 	if (entity_is_task(se))
1240 		p = task_of(se);
1241 
1242 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1243 }
1244 
1245 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1246 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1247 {
1248 	struct sched_statistics *stats;
1249 	struct task_struct *p = NULL;
1250 
1251 	if (!schedstat_enabled())
1252 		return;
1253 
1254 	stats = __schedstats_from_se(se);
1255 
1256 	/*
1257 	 * When the sched_schedstat changes from 0 to 1, some sched se
1258 	 * maybe already in the runqueue, the se->statistics.wait_start
1259 	 * will be 0.So it will let the delta wrong. We need to avoid this
1260 	 * scenario.
1261 	 */
1262 	if (unlikely(!schedstat_val(stats->wait_start)))
1263 		return;
1264 
1265 	if (entity_is_task(se))
1266 		p = task_of(se);
1267 
1268 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1269 }
1270 
1271 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1272 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1273 {
1274 	struct sched_statistics *stats;
1275 	struct task_struct *tsk = NULL;
1276 
1277 	if (!schedstat_enabled())
1278 		return;
1279 
1280 	stats = __schedstats_from_se(se);
1281 
1282 	if (entity_is_task(se))
1283 		tsk = task_of(se);
1284 
1285 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1286 }
1287 
1288 /*
1289  * Task is being enqueued - update stats:
1290  */
1291 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1292 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1293 {
1294 	if (!schedstat_enabled())
1295 		return;
1296 
1297 	/*
1298 	 * Are we enqueueing a waiting task? (for current tasks
1299 	 * a dequeue/enqueue event is a NOP)
1300 	 */
1301 	if (se != cfs_rq->curr)
1302 		update_stats_wait_start_fair(cfs_rq, se);
1303 
1304 	if (flags & ENQUEUE_WAKEUP)
1305 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1306 }
1307 
1308 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1309 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1310 {
1311 
1312 	if (!schedstat_enabled())
1313 		return;
1314 
1315 	/*
1316 	 * Mark the end of the wait period if dequeueing a
1317 	 * waiting task:
1318 	 */
1319 	if (se != cfs_rq->curr)
1320 		update_stats_wait_end_fair(cfs_rq, se);
1321 
1322 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1323 		struct task_struct *tsk = task_of(se);
1324 		unsigned int state;
1325 
1326 		/* XXX racy against TTWU */
1327 		state = READ_ONCE(tsk->__state);
1328 		if (state & TASK_INTERRUPTIBLE)
1329 			__schedstat_set(tsk->stats.sleep_start,
1330 				      rq_clock(rq_of(cfs_rq)));
1331 		if (state & TASK_UNINTERRUPTIBLE)
1332 			__schedstat_set(tsk->stats.block_start,
1333 				      rq_clock(rq_of(cfs_rq)));
1334 	}
1335 }
1336 
1337 /*
1338  * We are picking a new current task - update its stats:
1339  */
1340 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1341 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1342 {
1343 	/*
1344 	 * We are starting a new run period:
1345 	 */
1346 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1347 }
1348 
1349 /**************************************************
1350  * Scheduling class queueing methods:
1351  */
1352 
is_core_idle(int cpu)1353 static inline bool is_core_idle(int cpu)
1354 {
1355 #ifdef CONFIG_SCHED_SMT
1356 	int sibling;
1357 
1358 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1359 		if (cpu == sibling)
1360 			continue;
1361 
1362 		if (!idle_cpu(sibling))
1363 			return false;
1364 	}
1365 #endif
1366 
1367 	return true;
1368 }
1369 
1370 #ifdef CONFIG_NUMA
1371 #define NUMA_IMBALANCE_MIN 2
1372 
1373 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1374 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1375 {
1376 	/*
1377 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1378 	 * threshold. Above this threshold, individual tasks may be contending
1379 	 * for both memory bandwidth and any shared HT resources.  This is an
1380 	 * approximation as the number of running tasks may not be related to
1381 	 * the number of busy CPUs due to sched_setaffinity.
1382 	 */
1383 	if (dst_running > imb_numa_nr)
1384 		return imbalance;
1385 
1386 	/*
1387 	 * Allow a small imbalance based on a simple pair of communicating
1388 	 * tasks that remain local when the destination is lightly loaded.
1389 	 */
1390 	if (imbalance <= NUMA_IMBALANCE_MIN)
1391 		return 0;
1392 
1393 	return imbalance;
1394 }
1395 #endif /* CONFIG_NUMA */
1396 
1397 #ifdef CONFIG_NUMA_BALANCING
1398 /*
1399  * Approximate time to scan a full NUMA task in ms. The task scan period is
1400  * calculated based on the tasks virtual memory size and
1401  * numa_balancing_scan_size.
1402  */
1403 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1404 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1405 
1406 /* Portion of address space to scan in MB */
1407 unsigned int sysctl_numa_balancing_scan_size = 256;
1408 
1409 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1410 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1411 
1412 /* The page with hint page fault latency < threshold in ms is considered hot */
1413 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1414 
1415 struct numa_group {
1416 	refcount_t refcount;
1417 
1418 	spinlock_t lock; /* nr_tasks, tasks */
1419 	int nr_tasks;
1420 	pid_t gid;
1421 	int active_nodes;
1422 
1423 	struct rcu_head rcu;
1424 	unsigned long total_faults;
1425 	unsigned long max_faults_cpu;
1426 	/*
1427 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1428 	 *
1429 	 * Faults_cpu is used to decide whether memory should move
1430 	 * towards the CPU. As a consequence, these stats are weighted
1431 	 * more by CPU use than by memory faults.
1432 	 */
1433 	unsigned long faults[];
1434 };
1435 
1436 /*
1437  * For functions that can be called in multiple contexts that permit reading
1438  * ->numa_group (see struct task_struct for locking rules).
1439  */
deref_task_numa_group(struct task_struct * p)1440 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1441 {
1442 	return rcu_dereference_check(p->numa_group, p == current ||
1443 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1444 }
1445 
deref_curr_numa_group(struct task_struct * p)1446 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1447 {
1448 	return rcu_dereference_protected(p->numa_group, p == current);
1449 }
1450 
1451 static inline unsigned long group_faults_priv(struct numa_group *ng);
1452 static inline unsigned long group_faults_shared(struct numa_group *ng);
1453 
task_nr_scan_windows(struct task_struct * p)1454 static unsigned int task_nr_scan_windows(struct task_struct *p)
1455 {
1456 	unsigned long rss = 0;
1457 	unsigned long nr_scan_pages;
1458 
1459 	/*
1460 	 * Calculations based on RSS as non-present and empty pages are skipped
1461 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1462 	 * on resident pages
1463 	 */
1464 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1465 	rss = get_mm_rss(p->mm);
1466 	if (!rss)
1467 		rss = nr_scan_pages;
1468 
1469 	rss = round_up(rss, nr_scan_pages);
1470 	return rss / nr_scan_pages;
1471 }
1472 
1473 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1474 #define MAX_SCAN_WINDOW 2560
1475 
task_scan_min(struct task_struct * p)1476 static unsigned int task_scan_min(struct task_struct *p)
1477 {
1478 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1479 	unsigned int scan, floor;
1480 	unsigned int windows = 1;
1481 
1482 	if (scan_size < MAX_SCAN_WINDOW)
1483 		windows = MAX_SCAN_WINDOW / scan_size;
1484 	floor = 1000 / windows;
1485 
1486 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1487 	return max_t(unsigned int, floor, scan);
1488 }
1489 
task_scan_start(struct task_struct * p)1490 static unsigned int task_scan_start(struct task_struct *p)
1491 {
1492 	unsigned long smin = task_scan_min(p);
1493 	unsigned long period = smin;
1494 	struct numa_group *ng;
1495 
1496 	/* Scale the maximum scan period with the amount of shared memory. */
1497 	rcu_read_lock();
1498 	ng = rcu_dereference(p->numa_group);
1499 	if (ng) {
1500 		unsigned long shared = group_faults_shared(ng);
1501 		unsigned long private = group_faults_priv(ng);
1502 
1503 		period *= refcount_read(&ng->refcount);
1504 		period *= shared + 1;
1505 		period /= private + shared + 1;
1506 	}
1507 	rcu_read_unlock();
1508 
1509 	return max(smin, period);
1510 }
1511 
task_scan_max(struct task_struct * p)1512 static unsigned int task_scan_max(struct task_struct *p)
1513 {
1514 	unsigned long smin = task_scan_min(p);
1515 	unsigned long smax;
1516 	struct numa_group *ng;
1517 
1518 	/* Watch for min being lower than max due to floor calculations */
1519 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1520 
1521 	/* Scale the maximum scan period with the amount of shared memory. */
1522 	ng = deref_curr_numa_group(p);
1523 	if (ng) {
1524 		unsigned long shared = group_faults_shared(ng);
1525 		unsigned long private = group_faults_priv(ng);
1526 		unsigned long period = smax;
1527 
1528 		period *= refcount_read(&ng->refcount);
1529 		period *= shared + 1;
1530 		period /= private + shared + 1;
1531 
1532 		smax = max(smax, period);
1533 	}
1534 
1535 	return max(smin, smax);
1536 }
1537 
account_numa_enqueue(struct rq * rq,struct task_struct * p)1538 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1539 {
1540 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1541 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1542 }
1543 
account_numa_dequeue(struct rq * rq,struct task_struct * p)1544 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1545 {
1546 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1547 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1548 }
1549 
1550 /* Shared or private faults. */
1551 #define NR_NUMA_HINT_FAULT_TYPES 2
1552 
1553 /* Memory and CPU locality */
1554 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1555 
1556 /* Averaged statistics, and temporary buffers. */
1557 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1558 
task_numa_group_id(struct task_struct * p)1559 pid_t task_numa_group_id(struct task_struct *p)
1560 {
1561 	struct numa_group *ng;
1562 	pid_t gid = 0;
1563 
1564 	rcu_read_lock();
1565 	ng = rcu_dereference(p->numa_group);
1566 	if (ng)
1567 		gid = ng->gid;
1568 	rcu_read_unlock();
1569 
1570 	return gid;
1571 }
1572 
1573 /*
1574  * The averaged statistics, shared & private, memory & CPU,
1575  * occupy the first half of the array. The second half of the
1576  * array is for current counters, which are averaged into the
1577  * first set by task_numa_placement.
1578  */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1579 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1580 {
1581 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1582 }
1583 
task_faults(struct task_struct * p,int nid)1584 static inline unsigned long task_faults(struct task_struct *p, int nid)
1585 {
1586 	if (!p->numa_faults)
1587 		return 0;
1588 
1589 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1590 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1591 }
1592 
group_faults(struct task_struct * p,int nid)1593 static inline unsigned long group_faults(struct task_struct *p, int nid)
1594 {
1595 	struct numa_group *ng = deref_task_numa_group(p);
1596 
1597 	if (!ng)
1598 		return 0;
1599 
1600 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1601 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1602 }
1603 
group_faults_cpu(struct numa_group * group,int nid)1604 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1605 {
1606 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1607 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1608 }
1609 
group_faults_priv(struct numa_group * ng)1610 static inline unsigned long group_faults_priv(struct numa_group *ng)
1611 {
1612 	unsigned long faults = 0;
1613 	int node;
1614 
1615 	for_each_online_node(node) {
1616 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1617 	}
1618 
1619 	return faults;
1620 }
1621 
group_faults_shared(struct numa_group * ng)1622 static inline unsigned long group_faults_shared(struct numa_group *ng)
1623 {
1624 	unsigned long faults = 0;
1625 	int node;
1626 
1627 	for_each_online_node(node) {
1628 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1629 	}
1630 
1631 	return faults;
1632 }
1633 
1634 /*
1635  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1636  * considered part of a numa group's pseudo-interleaving set. Migrations
1637  * between these nodes are slowed down, to allow things to settle down.
1638  */
1639 #define ACTIVE_NODE_FRACTION 3
1640 
numa_is_active_node(int nid,struct numa_group * ng)1641 static bool numa_is_active_node(int nid, struct numa_group *ng)
1642 {
1643 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1644 }
1645 
1646 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1647 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1648 					int lim_dist, bool task)
1649 {
1650 	unsigned long score = 0;
1651 	int node, max_dist;
1652 
1653 	/*
1654 	 * All nodes are directly connected, and the same distance
1655 	 * from each other. No need for fancy placement algorithms.
1656 	 */
1657 	if (sched_numa_topology_type == NUMA_DIRECT)
1658 		return 0;
1659 
1660 	/* sched_max_numa_distance may be changed in parallel. */
1661 	max_dist = READ_ONCE(sched_max_numa_distance);
1662 	/*
1663 	 * This code is called for each node, introducing N^2 complexity,
1664 	 * which should be ok given the number of nodes rarely exceeds 8.
1665 	 */
1666 	for_each_online_node(node) {
1667 		unsigned long faults;
1668 		int dist = node_distance(nid, node);
1669 
1670 		/*
1671 		 * The furthest away nodes in the system are not interesting
1672 		 * for placement; nid was already counted.
1673 		 */
1674 		if (dist >= max_dist || node == nid)
1675 			continue;
1676 
1677 		/*
1678 		 * On systems with a backplane NUMA topology, compare groups
1679 		 * of nodes, and move tasks towards the group with the most
1680 		 * memory accesses. When comparing two nodes at distance
1681 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1682 		 * of each group. Skip other nodes.
1683 		 */
1684 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1685 			continue;
1686 
1687 		/* Add up the faults from nearby nodes. */
1688 		if (task)
1689 			faults = task_faults(p, node);
1690 		else
1691 			faults = group_faults(p, node);
1692 
1693 		/*
1694 		 * On systems with a glueless mesh NUMA topology, there are
1695 		 * no fixed "groups of nodes". Instead, nodes that are not
1696 		 * directly connected bounce traffic through intermediate
1697 		 * nodes; a numa_group can occupy any set of nodes.
1698 		 * The further away a node is, the less the faults count.
1699 		 * This seems to result in good task placement.
1700 		 */
1701 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1702 			faults *= (max_dist - dist);
1703 			faults /= (max_dist - LOCAL_DISTANCE);
1704 		}
1705 
1706 		score += faults;
1707 	}
1708 
1709 	return score;
1710 }
1711 
1712 /*
1713  * These return the fraction of accesses done by a particular task, or
1714  * task group, on a particular numa node.  The group weight is given a
1715  * larger multiplier, in order to group tasks together that are almost
1716  * evenly spread out between numa nodes.
1717  */
task_weight(struct task_struct * p,int nid,int dist)1718 static inline unsigned long task_weight(struct task_struct *p, int nid,
1719 					int dist)
1720 {
1721 	unsigned long faults, total_faults;
1722 
1723 	if (!p->numa_faults)
1724 		return 0;
1725 
1726 	total_faults = p->total_numa_faults;
1727 
1728 	if (!total_faults)
1729 		return 0;
1730 
1731 	faults = task_faults(p, nid);
1732 	faults += score_nearby_nodes(p, nid, dist, true);
1733 
1734 	return 1000 * faults / total_faults;
1735 }
1736 
group_weight(struct task_struct * p,int nid,int dist)1737 static inline unsigned long group_weight(struct task_struct *p, int nid,
1738 					 int dist)
1739 {
1740 	struct numa_group *ng = deref_task_numa_group(p);
1741 	unsigned long faults, total_faults;
1742 
1743 	if (!ng)
1744 		return 0;
1745 
1746 	total_faults = ng->total_faults;
1747 
1748 	if (!total_faults)
1749 		return 0;
1750 
1751 	faults = group_faults(p, nid);
1752 	faults += score_nearby_nodes(p, nid, dist, false);
1753 
1754 	return 1000 * faults / total_faults;
1755 }
1756 
1757 /*
1758  * If memory tiering mode is enabled, cpupid of slow memory page is
1759  * used to record scan time instead of CPU and PID.  When tiering mode
1760  * is disabled at run time, the scan time (in cpupid) will be
1761  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1762  * access out of array bound.
1763  */
cpupid_valid(int cpupid)1764 static inline bool cpupid_valid(int cpupid)
1765 {
1766 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1767 }
1768 
1769 /*
1770  * For memory tiering mode, if there are enough free pages (more than
1771  * enough watermark defined here) in fast memory node, to take full
1772  * advantage of fast memory capacity, all recently accessed slow
1773  * memory pages will be migrated to fast memory node without
1774  * considering hot threshold.
1775  */
pgdat_free_space_enough(struct pglist_data * pgdat)1776 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1777 {
1778 	int z;
1779 	unsigned long enough_wmark;
1780 
1781 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1782 			   pgdat->node_present_pages >> 4);
1783 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1784 		struct zone *zone = pgdat->node_zones + z;
1785 
1786 		if (!populated_zone(zone))
1787 			continue;
1788 
1789 		if (zone_watermark_ok(zone, 0,
1790 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1791 				      ZONE_MOVABLE, 0))
1792 			return true;
1793 	}
1794 	return false;
1795 }
1796 
1797 /*
1798  * For memory tiering mode, when page tables are scanned, the scan
1799  * time will be recorded in struct page in addition to make page
1800  * PROT_NONE for slow memory page.  So when the page is accessed, in
1801  * hint page fault handler, the hint page fault latency is calculated
1802  * via,
1803  *
1804  *	hint page fault latency = hint page fault time - scan time
1805  *
1806  * The smaller the hint page fault latency, the higher the possibility
1807  * for the page to be hot.
1808  */
numa_hint_fault_latency(struct page * page)1809 static int numa_hint_fault_latency(struct page *page)
1810 {
1811 	int last_time, time;
1812 
1813 	time = jiffies_to_msecs(jiffies);
1814 	last_time = xchg_page_access_time(page, time);
1815 
1816 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1817 }
1818 
1819 /*
1820  * For memory tiering mode, too high promotion/demotion throughput may
1821  * hurt application latency.  So we provide a mechanism to rate limit
1822  * the number of pages that are tried to be promoted.
1823  */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1824 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1825 				      unsigned long rate_limit, int nr)
1826 {
1827 	unsigned long nr_cand;
1828 	unsigned int now, start;
1829 
1830 	now = jiffies_to_msecs(jiffies);
1831 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1832 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1833 	start = pgdat->nbp_rl_start;
1834 	if (now - start > MSEC_PER_SEC &&
1835 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1836 		pgdat->nbp_rl_nr_cand = nr_cand;
1837 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1838 		return true;
1839 	return false;
1840 }
1841 
1842 #define NUMA_MIGRATION_ADJUST_STEPS	16
1843 
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1844 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1845 					    unsigned long rate_limit,
1846 					    unsigned int ref_th)
1847 {
1848 	unsigned int now, start, th_period, unit_th, th;
1849 	unsigned long nr_cand, ref_cand, diff_cand;
1850 
1851 	now = jiffies_to_msecs(jiffies);
1852 	th_period = sysctl_numa_balancing_scan_period_max;
1853 	start = pgdat->nbp_th_start;
1854 	if (now - start > th_period &&
1855 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1856 		ref_cand = rate_limit *
1857 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1858 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1859 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1860 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1861 		th = pgdat->nbp_threshold ? : ref_th;
1862 		if (diff_cand > ref_cand * 11 / 10)
1863 			th = max(th - unit_th, unit_th);
1864 		else if (diff_cand < ref_cand * 9 / 10)
1865 			th = min(th + unit_th, ref_th * 2);
1866 		pgdat->nbp_th_nr_cand = nr_cand;
1867 		pgdat->nbp_threshold = th;
1868 	}
1869 }
1870 
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1871 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1872 				int src_nid, int dst_cpu)
1873 {
1874 	struct numa_group *ng = deref_curr_numa_group(p);
1875 	int dst_nid = cpu_to_node(dst_cpu);
1876 	int last_cpupid, this_cpupid;
1877 
1878 	/*
1879 	 * The pages in slow memory node should be migrated according
1880 	 * to hot/cold instead of private/shared.
1881 	 */
1882 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1883 	    !node_is_toptier(src_nid)) {
1884 		struct pglist_data *pgdat;
1885 		unsigned long rate_limit;
1886 		unsigned int latency, th, def_th;
1887 
1888 		pgdat = NODE_DATA(dst_nid);
1889 		if (pgdat_free_space_enough(pgdat)) {
1890 			/* workload changed, reset hot threshold */
1891 			pgdat->nbp_threshold = 0;
1892 			return true;
1893 		}
1894 
1895 		def_th = sysctl_numa_balancing_hot_threshold;
1896 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1897 			(20 - PAGE_SHIFT);
1898 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1899 
1900 		th = pgdat->nbp_threshold ? : def_th;
1901 		latency = numa_hint_fault_latency(page);
1902 		if (latency >= th)
1903 			return false;
1904 
1905 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1906 						  thp_nr_pages(page));
1907 	}
1908 
1909 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1910 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1911 
1912 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1913 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1914 		return false;
1915 
1916 	/*
1917 	 * Allow first faults or private faults to migrate immediately early in
1918 	 * the lifetime of a task. The magic number 4 is based on waiting for
1919 	 * two full passes of the "multi-stage node selection" test that is
1920 	 * executed below.
1921 	 */
1922 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1923 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1924 		return true;
1925 
1926 	/*
1927 	 * Multi-stage node selection is used in conjunction with a periodic
1928 	 * migration fault to build a temporal task<->page relation. By using
1929 	 * a two-stage filter we remove short/unlikely relations.
1930 	 *
1931 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1932 	 * a task's usage of a particular page (n_p) per total usage of this
1933 	 * page (n_t) (in a given time-span) to a probability.
1934 	 *
1935 	 * Our periodic faults will sample this probability and getting the
1936 	 * same result twice in a row, given these samples are fully
1937 	 * independent, is then given by P(n)^2, provided our sample period
1938 	 * is sufficiently short compared to the usage pattern.
1939 	 *
1940 	 * This quadric squishes small probabilities, making it less likely we
1941 	 * act on an unlikely task<->page relation.
1942 	 */
1943 	if (!cpupid_pid_unset(last_cpupid) &&
1944 				cpupid_to_nid(last_cpupid) != dst_nid)
1945 		return false;
1946 
1947 	/* Always allow migrate on private faults */
1948 	if (cpupid_match_pid(p, last_cpupid))
1949 		return true;
1950 
1951 	/* A shared fault, but p->numa_group has not been set up yet. */
1952 	if (!ng)
1953 		return true;
1954 
1955 	/*
1956 	 * Destination node is much more heavily used than the source
1957 	 * node? Allow migration.
1958 	 */
1959 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1960 					ACTIVE_NODE_FRACTION)
1961 		return true;
1962 
1963 	/*
1964 	 * Distribute memory according to CPU & memory use on each node,
1965 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1966 	 *
1967 	 * faults_cpu(dst)   3   faults_cpu(src)
1968 	 * --------------- * - > ---------------
1969 	 * faults_mem(dst)   4   faults_mem(src)
1970 	 */
1971 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1972 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1973 }
1974 
1975 /*
1976  * 'numa_type' describes the node at the moment of load balancing.
1977  */
1978 enum numa_type {
1979 	/* The node has spare capacity that can be used to run more tasks.  */
1980 	node_has_spare = 0,
1981 	/*
1982 	 * The node is fully used and the tasks don't compete for more CPU
1983 	 * cycles. Nevertheless, some tasks might wait before running.
1984 	 */
1985 	node_fully_busy,
1986 	/*
1987 	 * The node is overloaded and can't provide expected CPU cycles to all
1988 	 * tasks.
1989 	 */
1990 	node_overloaded
1991 };
1992 
1993 /* Cached statistics for all CPUs within a node */
1994 struct numa_stats {
1995 	unsigned long load;
1996 	unsigned long runnable;
1997 	unsigned long util;
1998 	/* Total compute capacity of CPUs on a node */
1999 	unsigned long compute_capacity;
2000 	unsigned int nr_running;
2001 	unsigned int weight;
2002 	enum numa_type node_type;
2003 	int idle_cpu;
2004 };
2005 
2006 struct task_numa_env {
2007 	struct task_struct *p;
2008 
2009 	int src_cpu, src_nid;
2010 	int dst_cpu, dst_nid;
2011 	int imb_numa_nr;
2012 
2013 	struct numa_stats src_stats, dst_stats;
2014 
2015 	int imbalance_pct;
2016 	int dist;
2017 
2018 	struct task_struct *best_task;
2019 	long best_imp;
2020 	int best_cpu;
2021 };
2022 
2023 static unsigned long cpu_load(struct rq *rq);
2024 static unsigned long cpu_runnable(struct rq *rq);
2025 
2026 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2027 numa_type numa_classify(unsigned int imbalance_pct,
2028 			 struct numa_stats *ns)
2029 {
2030 	if ((ns->nr_running > ns->weight) &&
2031 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2032 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2033 		return node_overloaded;
2034 
2035 	if ((ns->nr_running < ns->weight) ||
2036 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2037 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2038 		return node_has_spare;
2039 
2040 	return node_fully_busy;
2041 }
2042 
2043 #ifdef CONFIG_SCHED_SMT
2044 /* Forward declarations of select_idle_sibling helpers */
2045 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2046 static inline int numa_idle_core(int idle_core, int cpu)
2047 {
2048 	if (!static_branch_likely(&sched_smt_present) ||
2049 	    idle_core >= 0 || !test_idle_cores(cpu))
2050 		return idle_core;
2051 
2052 	/*
2053 	 * Prefer cores instead of packing HT siblings
2054 	 * and triggering future load balancing.
2055 	 */
2056 	if (is_core_idle(cpu))
2057 		idle_core = cpu;
2058 
2059 	return idle_core;
2060 }
2061 #else
numa_idle_core(int idle_core,int cpu)2062 static inline int numa_idle_core(int idle_core, int cpu)
2063 {
2064 	return idle_core;
2065 }
2066 #endif
2067 
2068 /*
2069  * Gather all necessary information to make NUMA balancing placement
2070  * decisions that are compatible with standard load balancer. This
2071  * borrows code and logic from update_sg_lb_stats but sharing a
2072  * common implementation is impractical.
2073  */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2074 static void update_numa_stats(struct task_numa_env *env,
2075 			      struct numa_stats *ns, int nid,
2076 			      bool find_idle)
2077 {
2078 	int cpu, idle_core = -1;
2079 
2080 	memset(ns, 0, sizeof(*ns));
2081 	ns->idle_cpu = -1;
2082 
2083 	rcu_read_lock();
2084 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2085 		struct rq *rq = cpu_rq(cpu);
2086 
2087 		ns->load += cpu_load(rq);
2088 		ns->runnable += cpu_runnable(rq);
2089 		ns->util += cpu_util_cfs(cpu);
2090 		ns->nr_running += rq->cfs.h_nr_running;
2091 		ns->compute_capacity += capacity_of(cpu);
2092 
2093 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2094 			if (READ_ONCE(rq->numa_migrate_on) ||
2095 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2096 				continue;
2097 
2098 			if (ns->idle_cpu == -1)
2099 				ns->idle_cpu = cpu;
2100 
2101 			idle_core = numa_idle_core(idle_core, cpu);
2102 		}
2103 	}
2104 	rcu_read_unlock();
2105 
2106 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2107 
2108 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2109 
2110 	if (idle_core >= 0)
2111 		ns->idle_cpu = idle_core;
2112 }
2113 
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2114 static void task_numa_assign(struct task_numa_env *env,
2115 			     struct task_struct *p, long imp)
2116 {
2117 	struct rq *rq = cpu_rq(env->dst_cpu);
2118 
2119 	/* Check if run-queue part of active NUMA balance. */
2120 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2121 		int cpu;
2122 		int start = env->dst_cpu;
2123 
2124 		/* Find alternative idle CPU. */
2125 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2126 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2127 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2128 				continue;
2129 			}
2130 
2131 			env->dst_cpu = cpu;
2132 			rq = cpu_rq(env->dst_cpu);
2133 			if (!xchg(&rq->numa_migrate_on, 1))
2134 				goto assign;
2135 		}
2136 
2137 		/* Failed to find an alternative idle CPU */
2138 		return;
2139 	}
2140 
2141 assign:
2142 	/*
2143 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2144 	 * found a better CPU to move/swap.
2145 	 */
2146 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2147 		rq = cpu_rq(env->best_cpu);
2148 		WRITE_ONCE(rq->numa_migrate_on, 0);
2149 	}
2150 
2151 	if (env->best_task)
2152 		put_task_struct(env->best_task);
2153 	if (p)
2154 		get_task_struct(p);
2155 
2156 	env->best_task = p;
2157 	env->best_imp = imp;
2158 	env->best_cpu = env->dst_cpu;
2159 }
2160 
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2161 static bool load_too_imbalanced(long src_load, long dst_load,
2162 				struct task_numa_env *env)
2163 {
2164 	long imb, old_imb;
2165 	long orig_src_load, orig_dst_load;
2166 	long src_capacity, dst_capacity;
2167 
2168 	/*
2169 	 * The load is corrected for the CPU capacity available on each node.
2170 	 *
2171 	 * src_load        dst_load
2172 	 * ------------ vs ---------
2173 	 * src_capacity    dst_capacity
2174 	 */
2175 	src_capacity = env->src_stats.compute_capacity;
2176 	dst_capacity = env->dst_stats.compute_capacity;
2177 
2178 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2179 
2180 	orig_src_load = env->src_stats.load;
2181 	orig_dst_load = env->dst_stats.load;
2182 
2183 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2184 
2185 	/* Would this change make things worse? */
2186 	return (imb > old_imb);
2187 }
2188 
2189 /*
2190  * Maximum NUMA importance can be 1998 (2*999);
2191  * SMALLIMP @ 30 would be close to 1998/64.
2192  * Used to deter task migration.
2193  */
2194 #define SMALLIMP	30
2195 
2196 /*
2197  * This checks if the overall compute and NUMA accesses of the system would
2198  * be improved if the source tasks was migrated to the target dst_cpu taking
2199  * into account that it might be best if task running on the dst_cpu should
2200  * be exchanged with the source task
2201  */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2202 static bool task_numa_compare(struct task_numa_env *env,
2203 			      long taskimp, long groupimp, bool maymove)
2204 {
2205 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2206 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2207 	long imp = p_ng ? groupimp : taskimp;
2208 	struct task_struct *cur;
2209 	long src_load, dst_load;
2210 	int dist = env->dist;
2211 	long moveimp = imp;
2212 	long load;
2213 	bool stopsearch = false;
2214 
2215 	if (READ_ONCE(dst_rq->numa_migrate_on))
2216 		return false;
2217 
2218 	rcu_read_lock();
2219 	cur = rcu_dereference(dst_rq->curr);
2220 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2221 		cur = NULL;
2222 
2223 	/*
2224 	 * Because we have preemption enabled we can get migrated around and
2225 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2226 	 */
2227 	if (cur == env->p) {
2228 		stopsearch = true;
2229 		goto unlock;
2230 	}
2231 
2232 	if (!cur) {
2233 		if (maymove && moveimp >= env->best_imp)
2234 			goto assign;
2235 		else
2236 			goto unlock;
2237 	}
2238 
2239 	/* Skip this swap candidate if cannot move to the source cpu. */
2240 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2241 		goto unlock;
2242 
2243 	/*
2244 	 * Skip this swap candidate if it is not moving to its preferred
2245 	 * node and the best task is.
2246 	 */
2247 	if (env->best_task &&
2248 	    env->best_task->numa_preferred_nid == env->src_nid &&
2249 	    cur->numa_preferred_nid != env->src_nid) {
2250 		goto unlock;
2251 	}
2252 
2253 	/*
2254 	 * "imp" is the fault differential for the source task between the
2255 	 * source and destination node. Calculate the total differential for
2256 	 * the source task and potential destination task. The more negative
2257 	 * the value is, the more remote accesses that would be expected to
2258 	 * be incurred if the tasks were swapped.
2259 	 *
2260 	 * If dst and source tasks are in the same NUMA group, or not
2261 	 * in any group then look only at task weights.
2262 	 */
2263 	cur_ng = rcu_dereference(cur->numa_group);
2264 	if (cur_ng == p_ng) {
2265 		/*
2266 		 * Do not swap within a group or between tasks that have
2267 		 * no group if there is spare capacity. Swapping does
2268 		 * not address the load imbalance and helps one task at
2269 		 * the cost of punishing another.
2270 		 */
2271 		if (env->dst_stats.node_type == node_has_spare)
2272 			goto unlock;
2273 
2274 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2275 		      task_weight(cur, env->dst_nid, dist);
2276 		/*
2277 		 * Add some hysteresis to prevent swapping the
2278 		 * tasks within a group over tiny differences.
2279 		 */
2280 		if (cur_ng)
2281 			imp -= imp / 16;
2282 	} else {
2283 		/*
2284 		 * Compare the group weights. If a task is all by itself
2285 		 * (not part of a group), use the task weight instead.
2286 		 */
2287 		if (cur_ng && p_ng)
2288 			imp += group_weight(cur, env->src_nid, dist) -
2289 			       group_weight(cur, env->dst_nid, dist);
2290 		else
2291 			imp += task_weight(cur, env->src_nid, dist) -
2292 			       task_weight(cur, env->dst_nid, dist);
2293 	}
2294 
2295 	/* Discourage picking a task already on its preferred node */
2296 	if (cur->numa_preferred_nid == env->dst_nid)
2297 		imp -= imp / 16;
2298 
2299 	/*
2300 	 * Encourage picking a task that moves to its preferred node.
2301 	 * This potentially makes imp larger than it's maximum of
2302 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2303 	 * case, it does not matter.
2304 	 */
2305 	if (cur->numa_preferred_nid == env->src_nid)
2306 		imp += imp / 8;
2307 
2308 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2309 		imp = moveimp;
2310 		cur = NULL;
2311 		goto assign;
2312 	}
2313 
2314 	/*
2315 	 * Prefer swapping with a task moving to its preferred node over a
2316 	 * task that is not.
2317 	 */
2318 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2319 	    env->best_task->numa_preferred_nid != env->src_nid) {
2320 		goto assign;
2321 	}
2322 
2323 	/*
2324 	 * If the NUMA importance is less than SMALLIMP,
2325 	 * task migration might only result in ping pong
2326 	 * of tasks and also hurt performance due to cache
2327 	 * misses.
2328 	 */
2329 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2330 		goto unlock;
2331 
2332 	/*
2333 	 * In the overloaded case, try and keep the load balanced.
2334 	 */
2335 	load = task_h_load(env->p) - task_h_load(cur);
2336 	if (!load)
2337 		goto assign;
2338 
2339 	dst_load = env->dst_stats.load + load;
2340 	src_load = env->src_stats.load - load;
2341 
2342 	if (load_too_imbalanced(src_load, dst_load, env))
2343 		goto unlock;
2344 
2345 assign:
2346 	/* Evaluate an idle CPU for a task numa move. */
2347 	if (!cur) {
2348 		int cpu = env->dst_stats.idle_cpu;
2349 
2350 		/* Nothing cached so current CPU went idle since the search. */
2351 		if (cpu < 0)
2352 			cpu = env->dst_cpu;
2353 
2354 		/*
2355 		 * If the CPU is no longer truly idle and the previous best CPU
2356 		 * is, keep using it.
2357 		 */
2358 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2359 		    idle_cpu(env->best_cpu)) {
2360 			cpu = env->best_cpu;
2361 		}
2362 
2363 		env->dst_cpu = cpu;
2364 	}
2365 
2366 	task_numa_assign(env, cur, imp);
2367 
2368 	/*
2369 	 * If a move to idle is allowed because there is capacity or load
2370 	 * balance improves then stop the search. While a better swap
2371 	 * candidate may exist, a search is not free.
2372 	 */
2373 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2374 		stopsearch = true;
2375 
2376 	/*
2377 	 * If a swap candidate must be identified and the current best task
2378 	 * moves its preferred node then stop the search.
2379 	 */
2380 	if (!maymove && env->best_task &&
2381 	    env->best_task->numa_preferred_nid == env->src_nid) {
2382 		stopsearch = true;
2383 	}
2384 unlock:
2385 	rcu_read_unlock();
2386 
2387 	return stopsearch;
2388 }
2389 
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2390 static void task_numa_find_cpu(struct task_numa_env *env,
2391 				long taskimp, long groupimp)
2392 {
2393 	bool maymove = false;
2394 	int cpu;
2395 
2396 	/*
2397 	 * If dst node has spare capacity, then check if there is an
2398 	 * imbalance that would be overruled by the load balancer.
2399 	 */
2400 	if (env->dst_stats.node_type == node_has_spare) {
2401 		unsigned int imbalance;
2402 		int src_running, dst_running;
2403 
2404 		/*
2405 		 * Would movement cause an imbalance? Note that if src has
2406 		 * more running tasks that the imbalance is ignored as the
2407 		 * move improves the imbalance from the perspective of the
2408 		 * CPU load balancer.
2409 		 * */
2410 		src_running = env->src_stats.nr_running - 1;
2411 		dst_running = env->dst_stats.nr_running + 1;
2412 		imbalance = max(0, dst_running - src_running);
2413 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2414 						  env->imb_numa_nr);
2415 
2416 		/* Use idle CPU if there is no imbalance */
2417 		if (!imbalance) {
2418 			maymove = true;
2419 			if (env->dst_stats.idle_cpu >= 0) {
2420 				env->dst_cpu = env->dst_stats.idle_cpu;
2421 				task_numa_assign(env, NULL, 0);
2422 				return;
2423 			}
2424 		}
2425 	} else {
2426 		long src_load, dst_load, load;
2427 		/*
2428 		 * If the improvement from just moving env->p direction is better
2429 		 * than swapping tasks around, check if a move is possible.
2430 		 */
2431 		load = task_h_load(env->p);
2432 		dst_load = env->dst_stats.load + load;
2433 		src_load = env->src_stats.load - load;
2434 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2435 	}
2436 
2437 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2438 		/* Skip this CPU if the source task cannot migrate */
2439 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2440 			continue;
2441 
2442 		env->dst_cpu = cpu;
2443 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2444 			break;
2445 	}
2446 }
2447 
task_numa_migrate(struct task_struct * p)2448 static int task_numa_migrate(struct task_struct *p)
2449 {
2450 	struct task_numa_env env = {
2451 		.p = p,
2452 
2453 		.src_cpu = task_cpu(p),
2454 		.src_nid = task_node(p),
2455 
2456 		.imbalance_pct = 112,
2457 
2458 		.best_task = NULL,
2459 		.best_imp = 0,
2460 		.best_cpu = -1,
2461 	};
2462 	unsigned long taskweight, groupweight;
2463 	struct sched_domain *sd;
2464 	long taskimp, groupimp;
2465 	struct numa_group *ng;
2466 	struct rq *best_rq;
2467 	int nid, ret, dist;
2468 
2469 	/*
2470 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2471 	 * imbalance and would be the first to start moving tasks about.
2472 	 *
2473 	 * And we want to avoid any moving of tasks about, as that would create
2474 	 * random movement of tasks -- counter the numa conditions we're trying
2475 	 * to satisfy here.
2476 	 */
2477 	rcu_read_lock();
2478 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2479 	if (sd) {
2480 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2481 		env.imb_numa_nr = sd->imb_numa_nr;
2482 	}
2483 	rcu_read_unlock();
2484 
2485 	/*
2486 	 * Cpusets can break the scheduler domain tree into smaller
2487 	 * balance domains, some of which do not cross NUMA boundaries.
2488 	 * Tasks that are "trapped" in such domains cannot be migrated
2489 	 * elsewhere, so there is no point in (re)trying.
2490 	 */
2491 	if (unlikely(!sd)) {
2492 		sched_setnuma(p, task_node(p));
2493 		return -EINVAL;
2494 	}
2495 
2496 	env.dst_nid = p->numa_preferred_nid;
2497 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2498 	taskweight = task_weight(p, env.src_nid, dist);
2499 	groupweight = group_weight(p, env.src_nid, dist);
2500 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2501 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2502 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2503 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2504 
2505 	/* Try to find a spot on the preferred nid. */
2506 	task_numa_find_cpu(&env, taskimp, groupimp);
2507 
2508 	/*
2509 	 * Look at other nodes in these cases:
2510 	 * - there is no space available on the preferred_nid
2511 	 * - the task is part of a numa_group that is interleaved across
2512 	 *   multiple NUMA nodes; in order to better consolidate the group,
2513 	 *   we need to check other locations.
2514 	 */
2515 	ng = deref_curr_numa_group(p);
2516 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2517 		for_each_node_state(nid, N_CPU) {
2518 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2519 				continue;
2520 
2521 			dist = node_distance(env.src_nid, env.dst_nid);
2522 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2523 						dist != env.dist) {
2524 				taskweight = task_weight(p, env.src_nid, dist);
2525 				groupweight = group_weight(p, env.src_nid, dist);
2526 			}
2527 
2528 			/* Only consider nodes where both task and groups benefit */
2529 			taskimp = task_weight(p, nid, dist) - taskweight;
2530 			groupimp = group_weight(p, nid, dist) - groupweight;
2531 			if (taskimp < 0 && groupimp < 0)
2532 				continue;
2533 
2534 			env.dist = dist;
2535 			env.dst_nid = nid;
2536 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2537 			task_numa_find_cpu(&env, taskimp, groupimp);
2538 		}
2539 	}
2540 
2541 	/*
2542 	 * If the task is part of a workload that spans multiple NUMA nodes,
2543 	 * and is migrating into one of the workload's active nodes, remember
2544 	 * this node as the task's preferred numa node, so the workload can
2545 	 * settle down.
2546 	 * A task that migrated to a second choice node will be better off
2547 	 * trying for a better one later. Do not set the preferred node here.
2548 	 */
2549 	if (ng) {
2550 		if (env.best_cpu == -1)
2551 			nid = env.src_nid;
2552 		else
2553 			nid = cpu_to_node(env.best_cpu);
2554 
2555 		if (nid != p->numa_preferred_nid)
2556 			sched_setnuma(p, nid);
2557 	}
2558 
2559 	/* No better CPU than the current one was found. */
2560 	if (env.best_cpu == -1) {
2561 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2562 		return -EAGAIN;
2563 	}
2564 
2565 	best_rq = cpu_rq(env.best_cpu);
2566 	if (env.best_task == NULL) {
2567 		ret = migrate_task_to(p, env.best_cpu);
2568 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2569 		if (ret != 0)
2570 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2571 		return ret;
2572 	}
2573 
2574 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2575 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2576 
2577 	if (ret != 0)
2578 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2579 	put_task_struct(env.best_task);
2580 	return ret;
2581 }
2582 
2583 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2584 static void numa_migrate_preferred(struct task_struct *p)
2585 {
2586 	unsigned long interval = HZ;
2587 
2588 	/* This task has no NUMA fault statistics yet */
2589 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2590 		return;
2591 
2592 	/* Periodically retry migrating the task to the preferred node */
2593 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2594 	p->numa_migrate_retry = jiffies + interval;
2595 
2596 	/* Success if task is already running on preferred CPU */
2597 	if (task_node(p) == p->numa_preferred_nid)
2598 		return;
2599 
2600 	/* Otherwise, try migrate to a CPU on the preferred node */
2601 	task_numa_migrate(p);
2602 }
2603 
2604 /*
2605  * Find out how many nodes the workload is actively running on. Do this by
2606  * tracking the nodes from which NUMA hinting faults are triggered. This can
2607  * be different from the set of nodes where the workload's memory is currently
2608  * located.
2609  */
numa_group_count_active_nodes(struct numa_group * numa_group)2610 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2611 {
2612 	unsigned long faults, max_faults = 0;
2613 	int nid, active_nodes = 0;
2614 
2615 	for_each_node_state(nid, N_CPU) {
2616 		faults = group_faults_cpu(numa_group, nid);
2617 		if (faults > max_faults)
2618 			max_faults = faults;
2619 	}
2620 
2621 	for_each_node_state(nid, N_CPU) {
2622 		faults = group_faults_cpu(numa_group, nid);
2623 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2624 			active_nodes++;
2625 	}
2626 
2627 	numa_group->max_faults_cpu = max_faults;
2628 	numa_group->active_nodes = active_nodes;
2629 }
2630 
2631 /*
2632  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2633  * increments. The more local the fault statistics are, the higher the scan
2634  * period will be for the next scan window. If local/(local+remote) ratio is
2635  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2636  * the scan period will decrease. Aim for 70% local accesses.
2637  */
2638 #define NUMA_PERIOD_SLOTS 10
2639 #define NUMA_PERIOD_THRESHOLD 7
2640 
2641 /*
2642  * Increase the scan period (slow down scanning) if the majority of
2643  * our memory is already on our local node, or if the majority of
2644  * the page accesses are shared with other processes.
2645  * Otherwise, decrease the scan period.
2646  */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2647 static void update_task_scan_period(struct task_struct *p,
2648 			unsigned long shared, unsigned long private)
2649 {
2650 	unsigned int period_slot;
2651 	int lr_ratio, ps_ratio;
2652 	int diff;
2653 
2654 	unsigned long remote = p->numa_faults_locality[0];
2655 	unsigned long local = p->numa_faults_locality[1];
2656 
2657 	/*
2658 	 * If there were no record hinting faults then either the task is
2659 	 * completely idle or all activity is in areas that are not of interest
2660 	 * to automatic numa balancing. Related to that, if there were failed
2661 	 * migration then it implies we are migrating too quickly or the local
2662 	 * node is overloaded. In either case, scan slower
2663 	 */
2664 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2665 		p->numa_scan_period = min(p->numa_scan_period_max,
2666 			p->numa_scan_period << 1);
2667 
2668 		p->mm->numa_next_scan = jiffies +
2669 			msecs_to_jiffies(p->numa_scan_period);
2670 
2671 		return;
2672 	}
2673 
2674 	/*
2675 	 * Prepare to scale scan period relative to the current period.
2676 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2677 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2678 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2679 	 */
2680 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2681 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2682 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2683 
2684 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2685 		/*
2686 		 * Most memory accesses are local. There is no need to
2687 		 * do fast NUMA scanning, since memory is already local.
2688 		 */
2689 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2690 		if (!slot)
2691 			slot = 1;
2692 		diff = slot * period_slot;
2693 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2694 		/*
2695 		 * Most memory accesses are shared with other tasks.
2696 		 * There is no point in continuing fast NUMA scanning,
2697 		 * since other tasks may just move the memory elsewhere.
2698 		 */
2699 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2700 		if (!slot)
2701 			slot = 1;
2702 		diff = slot * period_slot;
2703 	} else {
2704 		/*
2705 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2706 		 * yet they are not on the local NUMA node. Speed up
2707 		 * NUMA scanning to get the memory moved over.
2708 		 */
2709 		int ratio = max(lr_ratio, ps_ratio);
2710 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2711 	}
2712 
2713 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2714 			task_scan_min(p), task_scan_max(p));
2715 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2716 }
2717 
2718 /*
2719  * Get the fraction of time the task has been running since the last
2720  * NUMA placement cycle. The scheduler keeps similar statistics, but
2721  * decays those on a 32ms period, which is orders of magnitude off
2722  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2723  * stats only if the task is so new there are no NUMA statistics yet.
2724  */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2725 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2726 {
2727 	u64 runtime, delta, now;
2728 	/* Use the start of this time slice to avoid calculations. */
2729 	now = p->se.exec_start;
2730 	runtime = p->se.sum_exec_runtime;
2731 
2732 	if (p->last_task_numa_placement) {
2733 		delta = runtime - p->last_sum_exec_runtime;
2734 		*period = now - p->last_task_numa_placement;
2735 
2736 		/* Avoid time going backwards, prevent potential divide error: */
2737 		if (unlikely((s64)*period < 0))
2738 			*period = 0;
2739 	} else {
2740 		delta = p->se.avg.load_sum;
2741 		*period = LOAD_AVG_MAX;
2742 	}
2743 
2744 	p->last_sum_exec_runtime = runtime;
2745 	p->last_task_numa_placement = now;
2746 
2747 	return delta;
2748 }
2749 
2750 /*
2751  * Determine the preferred nid for a task in a numa_group. This needs to
2752  * be done in a way that produces consistent results with group_weight,
2753  * otherwise workloads might not converge.
2754  */
preferred_group_nid(struct task_struct * p,int nid)2755 static int preferred_group_nid(struct task_struct *p, int nid)
2756 {
2757 	nodemask_t nodes;
2758 	int dist;
2759 
2760 	/* Direct connections between all NUMA nodes. */
2761 	if (sched_numa_topology_type == NUMA_DIRECT)
2762 		return nid;
2763 
2764 	/*
2765 	 * On a system with glueless mesh NUMA topology, group_weight
2766 	 * scores nodes according to the number of NUMA hinting faults on
2767 	 * both the node itself, and on nearby nodes.
2768 	 */
2769 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2770 		unsigned long score, max_score = 0;
2771 		int node, max_node = nid;
2772 
2773 		dist = sched_max_numa_distance;
2774 
2775 		for_each_node_state(node, N_CPU) {
2776 			score = group_weight(p, node, dist);
2777 			if (score > max_score) {
2778 				max_score = score;
2779 				max_node = node;
2780 			}
2781 		}
2782 		return max_node;
2783 	}
2784 
2785 	/*
2786 	 * Finding the preferred nid in a system with NUMA backplane
2787 	 * interconnect topology is more involved. The goal is to locate
2788 	 * tasks from numa_groups near each other in the system, and
2789 	 * untangle workloads from different sides of the system. This requires
2790 	 * searching down the hierarchy of node groups, recursively searching
2791 	 * inside the highest scoring group of nodes. The nodemask tricks
2792 	 * keep the complexity of the search down.
2793 	 */
2794 	nodes = node_states[N_CPU];
2795 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2796 		unsigned long max_faults = 0;
2797 		nodemask_t max_group = NODE_MASK_NONE;
2798 		int a, b;
2799 
2800 		/* Are there nodes at this distance from each other? */
2801 		if (!find_numa_distance(dist))
2802 			continue;
2803 
2804 		for_each_node_mask(a, nodes) {
2805 			unsigned long faults = 0;
2806 			nodemask_t this_group;
2807 			nodes_clear(this_group);
2808 
2809 			/* Sum group's NUMA faults; includes a==b case. */
2810 			for_each_node_mask(b, nodes) {
2811 				if (node_distance(a, b) < dist) {
2812 					faults += group_faults(p, b);
2813 					node_set(b, this_group);
2814 					node_clear(b, nodes);
2815 				}
2816 			}
2817 
2818 			/* Remember the top group. */
2819 			if (faults > max_faults) {
2820 				max_faults = faults;
2821 				max_group = this_group;
2822 				/*
2823 				 * subtle: at the smallest distance there is
2824 				 * just one node left in each "group", the
2825 				 * winner is the preferred nid.
2826 				 */
2827 				nid = a;
2828 			}
2829 		}
2830 		/* Next round, evaluate the nodes within max_group. */
2831 		if (!max_faults)
2832 			break;
2833 		nodes = max_group;
2834 	}
2835 	return nid;
2836 }
2837 
task_numa_placement(struct task_struct * p)2838 static void task_numa_placement(struct task_struct *p)
2839 {
2840 	int seq, nid, max_nid = NUMA_NO_NODE;
2841 	unsigned long max_faults = 0;
2842 	unsigned long fault_types[2] = { 0, 0 };
2843 	unsigned long total_faults;
2844 	u64 runtime, period;
2845 	spinlock_t *group_lock = NULL;
2846 	struct numa_group *ng;
2847 
2848 	/*
2849 	 * The p->mm->numa_scan_seq field gets updated without
2850 	 * exclusive access. Use READ_ONCE() here to ensure
2851 	 * that the field is read in a single access:
2852 	 */
2853 	seq = READ_ONCE(p->mm->numa_scan_seq);
2854 	if (p->numa_scan_seq == seq)
2855 		return;
2856 	p->numa_scan_seq = seq;
2857 	p->numa_scan_period_max = task_scan_max(p);
2858 
2859 	total_faults = p->numa_faults_locality[0] +
2860 		       p->numa_faults_locality[1];
2861 	runtime = numa_get_avg_runtime(p, &period);
2862 
2863 	/* If the task is part of a group prevent parallel updates to group stats */
2864 	ng = deref_curr_numa_group(p);
2865 	if (ng) {
2866 		group_lock = &ng->lock;
2867 		spin_lock_irq(group_lock);
2868 	}
2869 
2870 	/* Find the node with the highest number of faults */
2871 	for_each_online_node(nid) {
2872 		/* Keep track of the offsets in numa_faults array */
2873 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2874 		unsigned long faults = 0, group_faults = 0;
2875 		int priv;
2876 
2877 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2878 			long diff, f_diff, f_weight;
2879 
2880 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2881 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2882 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2883 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2884 
2885 			/* Decay existing window, copy faults since last scan */
2886 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2887 			fault_types[priv] += p->numa_faults[membuf_idx];
2888 			p->numa_faults[membuf_idx] = 0;
2889 
2890 			/*
2891 			 * Normalize the faults_from, so all tasks in a group
2892 			 * count according to CPU use, instead of by the raw
2893 			 * number of faults. Tasks with little runtime have
2894 			 * little over-all impact on throughput, and thus their
2895 			 * faults are less important.
2896 			 */
2897 			f_weight = div64_u64(runtime << 16, period + 1);
2898 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2899 				   (total_faults + 1);
2900 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2901 			p->numa_faults[cpubuf_idx] = 0;
2902 
2903 			p->numa_faults[mem_idx] += diff;
2904 			p->numa_faults[cpu_idx] += f_diff;
2905 			faults += p->numa_faults[mem_idx];
2906 			p->total_numa_faults += diff;
2907 			if (ng) {
2908 				/*
2909 				 * safe because we can only change our own group
2910 				 *
2911 				 * mem_idx represents the offset for a given
2912 				 * nid and priv in a specific region because it
2913 				 * is at the beginning of the numa_faults array.
2914 				 */
2915 				ng->faults[mem_idx] += diff;
2916 				ng->faults[cpu_idx] += f_diff;
2917 				ng->total_faults += diff;
2918 				group_faults += ng->faults[mem_idx];
2919 			}
2920 		}
2921 
2922 		if (!ng) {
2923 			if (faults > max_faults) {
2924 				max_faults = faults;
2925 				max_nid = nid;
2926 			}
2927 		} else if (group_faults > max_faults) {
2928 			max_faults = group_faults;
2929 			max_nid = nid;
2930 		}
2931 	}
2932 
2933 	/* Cannot migrate task to CPU-less node */
2934 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2935 		int near_nid = max_nid;
2936 		int distance, near_distance = INT_MAX;
2937 
2938 		for_each_node_state(nid, N_CPU) {
2939 			distance = node_distance(max_nid, nid);
2940 			if (distance < near_distance) {
2941 				near_nid = nid;
2942 				near_distance = distance;
2943 			}
2944 		}
2945 		max_nid = near_nid;
2946 	}
2947 
2948 	if (ng) {
2949 		numa_group_count_active_nodes(ng);
2950 		spin_unlock_irq(group_lock);
2951 		max_nid = preferred_group_nid(p, max_nid);
2952 	}
2953 
2954 	if (max_faults) {
2955 		/* Set the new preferred node */
2956 		if (max_nid != p->numa_preferred_nid)
2957 			sched_setnuma(p, max_nid);
2958 	}
2959 
2960 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2961 }
2962 
get_numa_group(struct numa_group * grp)2963 static inline int get_numa_group(struct numa_group *grp)
2964 {
2965 	return refcount_inc_not_zero(&grp->refcount);
2966 }
2967 
put_numa_group(struct numa_group * grp)2968 static inline void put_numa_group(struct numa_group *grp)
2969 {
2970 	if (refcount_dec_and_test(&grp->refcount))
2971 		kfree_rcu(grp, rcu);
2972 }
2973 
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2974 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2975 			int *priv)
2976 {
2977 	struct numa_group *grp, *my_grp;
2978 	struct task_struct *tsk;
2979 	bool join = false;
2980 	int cpu = cpupid_to_cpu(cpupid);
2981 	int i;
2982 
2983 	if (unlikely(!deref_curr_numa_group(p))) {
2984 		unsigned int size = sizeof(struct numa_group) +
2985 				    NR_NUMA_HINT_FAULT_STATS *
2986 				    nr_node_ids * sizeof(unsigned long);
2987 
2988 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2989 		if (!grp)
2990 			return;
2991 
2992 		refcount_set(&grp->refcount, 1);
2993 		grp->active_nodes = 1;
2994 		grp->max_faults_cpu = 0;
2995 		spin_lock_init(&grp->lock);
2996 		grp->gid = p->pid;
2997 
2998 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2999 			grp->faults[i] = p->numa_faults[i];
3000 
3001 		grp->total_faults = p->total_numa_faults;
3002 
3003 		grp->nr_tasks++;
3004 		rcu_assign_pointer(p->numa_group, grp);
3005 	}
3006 
3007 	rcu_read_lock();
3008 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3009 
3010 	if (!cpupid_match_pid(tsk, cpupid))
3011 		goto no_join;
3012 
3013 	grp = rcu_dereference(tsk->numa_group);
3014 	if (!grp)
3015 		goto no_join;
3016 
3017 	my_grp = deref_curr_numa_group(p);
3018 	if (grp == my_grp)
3019 		goto no_join;
3020 
3021 	/*
3022 	 * Only join the other group if its bigger; if we're the bigger group,
3023 	 * the other task will join us.
3024 	 */
3025 	if (my_grp->nr_tasks > grp->nr_tasks)
3026 		goto no_join;
3027 
3028 	/*
3029 	 * Tie-break on the grp address.
3030 	 */
3031 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3032 		goto no_join;
3033 
3034 	/* Always join threads in the same process. */
3035 	if (tsk->mm == current->mm)
3036 		join = true;
3037 
3038 	/* Simple filter to avoid false positives due to PID collisions */
3039 	if (flags & TNF_SHARED)
3040 		join = true;
3041 
3042 	/* Update priv based on whether false sharing was detected */
3043 	*priv = !join;
3044 
3045 	if (join && !get_numa_group(grp))
3046 		goto no_join;
3047 
3048 	rcu_read_unlock();
3049 
3050 	if (!join)
3051 		return;
3052 
3053 	WARN_ON_ONCE(irqs_disabled());
3054 	double_lock_irq(&my_grp->lock, &grp->lock);
3055 
3056 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3057 		my_grp->faults[i] -= p->numa_faults[i];
3058 		grp->faults[i] += p->numa_faults[i];
3059 	}
3060 	my_grp->total_faults -= p->total_numa_faults;
3061 	grp->total_faults += p->total_numa_faults;
3062 
3063 	my_grp->nr_tasks--;
3064 	grp->nr_tasks++;
3065 
3066 	spin_unlock(&my_grp->lock);
3067 	spin_unlock_irq(&grp->lock);
3068 
3069 	rcu_assign_pointer(p->numa_group, grp);
3070 
3071 	put_numa_group(my_grp);
3072 	return;
3073 
3074 no_join:
3075 	rcu_read_unlock();
3076 	return;
3077 }
3078 
3079 /*
3080  * Get rid of NUMA statistics associated with a task (either current or dead).
3081  * If @final is set, the task is dead and has reached refcount zero, so we can
3082  * safely free all relevant data structures. Otherwise, there might be
3083  * concurrent reads from places like load balancing and procfs, and we should
3084  * reset the data back to default state without freeing ->numa_faults.
3085  */
task_numa_free(struct task_struct * p,bool final)3086 void task_numa_free(struct task_struct *p, bool final)
3087 {
3088 	/* safe: p either is current or is being freed by current */
3089 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3090 	unsigned long *numa_faults = p->numa_faults;
3091 	unsigned long flags;
3092 	int i;
3093 
3094 	if (!numa_faults)
3095 		return;
3096 
3097 	if (grp) {
3098 		spin_lock_irqsave(&grp->lock, flags);
3099 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3100 			grp->faults[i] -= p->numa_faults[i];
3101 		grp->total_faults -= p->total_numa_faults;
3102 
3103 		grp->nr_tasks--;
3104 		spin_unlock_irqrestore(&grp->lock, flags);
3105 		RCU_INIT_POINTER(p->numa_group, NULL);
3106 		put_numa_group(grp);
3107 	}
3108 
3109 	if (final) {
3110 		p->numa_faults = NULL;
3111 		kfree(numa_faults);
3112 	} else {
3113 		p->total_numa_faults = 0;
3114 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3115 			numa_faults[i] = 0;
3116 	}
3117 }
3118 
3119 /*
3120  * Got a PROT_NONE fault for a page on @node.
3121  */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3122 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3123 {
3124 	struct task_struct *p = current;
3125 	bool migrated = flags & TNF_MIGRATED;
3126 	int cpu_node = task_node(current);
3127 	int local = !!(flags & TNF_FAULT_LOCAL);
3128 	struct numa_group *ng;
3129 	int priv;
3130 
3131 	if (!static_branch_likely(&sched_numa_balancing))
3132 		return;
3133 
3134 	/* for example, ksmd faulting in a user's mm */
3135 	if (!p->mm)
3136 		return;
3137 
3138 	/*
3139 	 * NUMA faults statistics are unnecessary for the slow memory
3140 	 * node for memory tiering mode.
3141 	 */
3142 	if (!node_is_toptier(mem_node) &&
3143 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3144 	     !cpupid_valid(last_cpupid)))
3145 		return;
3146 
3147 	/* Allocate buffer to track faults on a per-node basis */
3148 	if (unlikely(!p->numa_faults)) {
3149 		int size = sizeof(*p->numa_faults) *
3150 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3151 
3152 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3153 		if (!p->numa_faults)
3154 			return;
3155 
3156 		p->total_numa_faults = 0;
3157 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3158 	}
3159 
3160 	/*
3161 	 * First accesses are treated as private, otherwise consider accesses
3162 	 * to be private if the accessing pid has not changed
3163 	 */
3164 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3165 		priv = 1;
3166 	} else {
3167 		priv = cpupid_match_pid(p, last_cpupid);
3168 		if (!priv && !(flags & TNF_NO_GROUP))
3169 			task_numa_group(p, last_cpupid, flags, &priv);
3170 	}
3171 
3172 	/*
3173 	 * If a workload spans multiple NUMA nodes, a shared fault that
3174 	 * occurs wholly within the set of nodes that the workload is
3175 	 * actively using should be counted as local. This allows the
3176 	 * scan rate to slow down when a workload has settled down.
3177 	 */
3178 	ng = deref_curr_numa_group(p);
3179 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3180 				numa_is_active_node(cpu_node, ng) &&
3181 				numa_is_active_node(mem_node, ng))
3182 		local = 1;
3183 
3184 	/*
3185 	 * Retry to migrate task to preferred node periodically, in case it
3186 	 * previously failed, or the scheduler moved us.
3187 	 */
3188 	if (time_after(jiffies, p->numa_migrate_retry)) {
3189 		task_numa_placement(p);
3190 		numa_migrate_preferred(p);
3191 	}
3192 
3193 	if (migrated)
3194 		p->numa_pages_migrated += pages;
3195 	if (flags & TNF_MIGRATE_FAIL)
3196 		p->numa_faults_locality[2] += pages;
3197 
3198 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3199 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3200 	p->numa_faults_locality[local] += pages;
3201 }
3202 
reset_ptenuma_scan(struct task_struct * p)3203 static void reset_ptenuma_scan(struct task_struct *p)
3204 {
3205 	/*
3206 	 * We only did a read acquisition of the mmap sem, so
3207 	 * p->mm->numa_scan_seq is written to without exclusive access
3208 	 * and the update is not guaranteed to be atomic. That's not
3209 	 * much of an issue though, since this is just used for
3210 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3211 	 * expensive, to avoid any form of compiler optimizations:
3212 	 */
3213 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3214 	p->mm->numa_scan_offset = 0;
3215 }
3216 
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3217 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3218 {
3219 	unsigned long pids;
3220 	/*
3221 	 * Allow unconditional access first two times, so that all the (pages)
3222 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3223 	 * This is also done to avoid any side effect of task scanning
3224 	 * amplifying the unfairness of disjoint set of VMAs' access.
3225 	 */
3226 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3227 		return true;
3228 
3229 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3230 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3231 		return true;
3232 
3233 	/*
3234 	 * Complete a scan that has already started regardless of PID access, or
3235 	 * some VMAs may never be scanned in multi-threaded applications:
3236 	 */
3237 	if (mm->numa_scan_offset > vma->vm_start) {
3238 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3239 		return true;
3240 	}
3241 
3242 	/*
3243 	 * This vma has not been accessed for a while, and if the number
3244 	 * the threads in the same process is low, which means no other
3245 	 * threads can help scan this vma, force a vma scan.
3246 	 */
3247 	if (READ_ONCE(mm->numa_scan_seq) >
3248 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3249 		return true;
3250 
3251 	return false;
3252 }
3253 
3254 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3255 
3256 /*
3257  * The expensive part of numa migration is done from task_work context.
3258  * Triggered from task_tick_numa().
3259  */
task_numa_work(struct callback_head * work)3260 static void task_numa_work(struct callback_head *work)
3261 {
3262 	unsigned long migrate, next_scan, now = jiffies;
3263 	struct task_struct *p = current;
3264 	struct mm_struct *mm = p->mm;
3265 	u64 runtime = p->se.sum_exec_runtime;
3266 	struct vm_area_struct *vma;
3267 	unsigned long start, end;
3268 	unsigned long nr_pte_updates = 0;
3269 	long pages, virtpages;
3270 	struct vma_iterator vmi;
3271 	bool vma_pids_skipped;
3272 	bool vma_pids_forced = false;
3273 
3274 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3275 
3276 	work->next = work;
3277 	/*
3278 	 * Who cares about NUMA placement when they're dying.
3279 	 *
3280 	 * NOTE: make sure not to dereference p->mm before this check,
3281 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3282 	 * without p->mm even though we still had it when we enqueued this
3283 	 * work.
3284 	 */
3285 	if (p->flags & PF_EXITING)
3286 		return;
3287 
3288 	if (!mm->numa_next_scan) {
3289 		mm->numa_next_scan = now +
3290 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3291 	}
3292 
3293 	/*
3294 	 * Enforce maximal scan/migration frequency..
3295 	 */
3296 	migrate = mm->numa_next_scan;
3297 	if (time_before(now, migrate))
3298 		return;
3299 
3300 	if (p->numa_scan_period == 0) {
3301 		p->numa_scan_period_max = task_scan_max(p);
3302 		p->numa_scan_period = task_scan_start(p);
3303 	}
3304 
3305 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3306 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3307 		return;
3308 
3309 	/*
3310 	 * Delay this task enough that another task of this mm will likely win
3311 	 * the next time around.
3312 	 */
3313 	p->node_stamp += 2 * TICK_NSEC;
3314 
3315 	pages = sysctl_numa_balancing_scan_size;
3316 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3317 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3318 	if (!pages)
3319 		return;
3320 
3321 
3322 	if (!mmap_read_trylock(mm))
3323 		return;
3324 
3325 	/*
3326 	 * VMAs are skipped if the current PID has not trapped a fault within
3327 	 * the VMA recently. Allow scanning to be forced if there is no
3328 	 * suitable VMA remaining.
3329 	 */
3330 	vma_pids_skipped = false;
3331 
3332 retry_pids:
3333 	start = mm->numa_scan_offset;
3334 	vma_iter_init(&vmi, mm, start);
3335 	vma = vma_next(&vmi);
3336 	if (!vma) {
3337 		reset_ptenuma_scan(p);
3338 		start = 0;
3339 		vma_iter_set(&vmi, start);
3340 		vma = vma_next(&vmi);
3341 	}
3342 
3343 	for (; vma; vma = vma_next(&vmi)) {
3344 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3345 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3346 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3347 			continue;
3348 		}
3349 
3350 		/*
3351 		 * Shared library pages mapped by multiple processes are not
3352 		 * migrated as it is expected they are cache replicated. Avoid
3353 		 * hinting faults in read-only file-backed mappings or the vdso
3354 		 * as migrating the pages will be of marginal benefit.
3355 		 */
3356 		if (!vma->vm_mm ||
3357 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3358 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3359 			continue;
3360 		}
3361 
3362 		/*
3363 		 * Skip inaccessible VMAs to avoid any confusion between
3364 		 * PROT_NONE and NUMA hinting ptes
3365 		 */
3366 		if (!vma_is_accessible(vma)) {
3367 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3368 			continue;
3369 		}
3370 
3371 		/* Initialise new per-VMA NUMAB state. */
3372 		if (!vma->numab_state) {
3373 			struct vma_numab_state *ptr;
3374 
3375 			ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3376 			if (!ptr)
3377 				continue;
3378 
3379 			if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3380 				kfree(ptr);
3381 				continue;
3382 			}
3383 
3384 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3385 
3386 			vma->numab_state->next_scan = now +
3387 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3388 
3389 			/* Reset happens after 4 times scan delay of scan start */
3390 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3391 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3392 
3393 			/*
3394 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3395 			 * to prevent VMAs being skipped prematurely on the
3396 			 * first scan:
3397 			 */
3398 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3399 		}
3400 
3401 		/*
3402 		 * Scanning the VMA's of short lived tasks add more overhead. So
3403 		 * delay the scan for new VMAs.
3404 		 */
3405 		if (mm->numa_scan_seq && time_before(jiffies,
3406 						vma->numab_state->next_scan)) {
3407 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3408 			continue;
3409 		}
3410 
3411 		/* RESET access PIDs regularly for old VMAs. */
3412 		if (mm->numa_scan_seq &&
3413 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3414 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3415 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3416 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3417 			vma->numab_state->pids_active[1] = 0;
3418 		}
3419 
3420 		/* Do not rescan VMAs twice within the same sequence. */
3421 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3422 			mm->numa_scan_offset = vma->vm_end;
3423 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3424 			continue;
3425 		}
3426 
3427 		/*
3428 		 * Do not scan the VMA if task has not accessed it, unless no other
3429 		 * VMA candidate exists.
3430 		 */
3431 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3432 			vma_pids_skipped = true;
3433 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3434 			continue;
3435 		}
3436 
3437 		do {
3438 			start = max(start, vma->vm_start);
3439 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3440 			end = min(end, vma->vm_end);
3441 			nr_pte_updates = change_prot_numa(vma, start, end);
3442 
3443 			/*
3444 			 * Try to scan sysctl_numa_balancing_size worth of
3445 			 * hpages that have at least one present PTE that
3446 			 * is not already pte-numa. If the VMA contains
3447 			 * areas that are unused or already full of prot_numa
3448 			 * PTEs, scan up to virtpages, to skip through those
3449 			 * areas faster.
3450 			 */
3451 			if (nr_pte_updates)
3452 				pages -= (end - start) >> PAGE_SHIFT;
3453 			virtpages -= (end - start) >> PAGE_SHIFT;
3454 
3455 			start = end;
3456 			if (pages <= 0 || virtpages <= 0)
3457 				goto out;
3458 
3459 			cond_resched();
3460 		} while (end != vma->vm_end);
3461 
3462 		/* VMA scan is complete, do not scan until next sequence. */
3463 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3464 
3465 		/*
3466 		 * Only force scan within one VMA at a time, to limit the
3467 		 * cost of scanning a potentially uninteresting VMA.
3468 		 */
3469 		if (vma_pids_forced)
3470 			break;
3471 	}
3472 
3473 	/*
3474 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3475 	 * not accessing the VMA previously, then force a scan to ensure
3476 	 * forward progress:
3477 	 */
3478 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3479 		vma_pids_forced = true;
3480 		goto retry_pids;
3481 	}
3482 
3483 out:
3484 	/*
3485 	 * It is possible to reach the end of the VMA list but the last few
3486 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3487 	 * would find the !migratable VMA on the next scan but not reset the
3488 	 * scanner to the start so check it now.
3489 	 */
3490 	if (vma)
3491 		mm->numa_scan_offset = start;
3492 	else
3493 		reset_ptenuma_scan(p);
3494 	mmap_read_unlock(mm);
3495 
3496 	/*
3497 	 * Make sure tasks use at least 32x as much time to run other code
3498 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3499 	 * Usually update_task_scan_period slows down scanning enough; on an
3500 	 * overloaded system we need to limit overhead on a per task basis.
3501 	 */
3502 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3503 		u64 diff = p->se.sum_exec_runtime - runtime;
3504 		p->node_stamp += 32 * diff;
3505 	}
3506 }
3507 
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3508 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3509 {
3510 	int mm_users = 0;
3511 	struct mm_struct *mm = p->mm;
3512 
3513 	if (mm) {
3514 		mm_users = atomic_read(&mm->mm_users);
3515 		if (mm_users == 1) {
3516 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3517 			mm->numa_scan_seq = 0;
3518 		}
3519 	}
3520 	p->node_stamp			= 0;
3521 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3522 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3523 	p->numa_migrate_retry		= 0;
3524 	/* Protect against double add, see task_tick_numa and task_numa_work */
3525 	p->numa_work.next		= &p->numa_work;
3526 	p->numa_faults			= NULL;
3527 	p->numa_pages_migrated		= 0;
3528 	p->total_numa_faults		= 0;
3529 	RCU_INIT_POINTER(p->numa_group, NULL);
3530 	p->last_task_numa_placement	= 0;
3531 	p->last_sum_exec_runtime	= 0;
3532 
3533 	init_task_work(&p->numa_work, task_numa_work);
3534 
3535 	/* New address space, reset the preferred nid */
3536 	if (!(clone_flags & CLONE_VM)) {
3537 		p->numa_preferred_nid = NUMA_NO_NODE;
3538 		return;
3539 	}
3540 
3541 	/*
3542 	 * New thread, keep existing numa_preferred_nid which should be copied
3543 	 * already by arch_dup_task_struct but stagger when scans start.
3544 	 */
3545 	if (mm) {
3546 		unsigned int delay;
3547 
3548 		delay = min_t(unsigned int, task_scan_max(current),
3549 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3550 		delay += 2 * TICK_NSEC;
3551 		p->node_stamp = delay;
3552 	}
3553 }
3554 
3555 /*
3556  * Drive the periodic memory faults..
3557  */
task_tick_numa(struct rq * rq,struct task_struct * curr)3558 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3559 {
3560 	struct callback_head *work = &curr->numa_work;
3561 	u64 period, now;
3562 
3563 	/*
3564 	 * We don't care about NUMA placement if we don't have memory.
3565 	 */
3566 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3567 		return;
3568 
3569 	/*
3570 	 * Using runtime rather than walltime has the dual advantage that
3571 	 * we (mostly) drive the selection from busy threads and that the
3572 	 * task needs to have done some actual work before we bother with
3573 	 * NUMA placement.
3574 	 */
3575 	now = curr->se.sum_exec_runtime;
3576 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3577 
3578 	if (now > curr->node_stamp + period) {
3579 		if (!curr->node_stamp)
3580 			curr->numa_scan_period = task_scan_start(curr);
3581 		curr->node_stamp += period;
3582 
3583 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3584 			task_work_add(curr, work, TWA_RESUME);
3585 	}
3586 }
3587 
update_scan_period(struct task_struct * p,int new_cpu)3588 static void update_scan_period(struct task_struct *p, int new_cpu)
3589 {
3590 	int src_nid = cpu_to_node(task_cpu(p));
3591 	int dst_nid = cpu_to_node(new_cpu);
3592 
3593 	if (!static_branch_likely(&sched_numa_balancing))
3594 		return;
3595 
3596 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3597 		return;
3598 
3599 	if (src_nid == dst_nid)
3600 		return;
3601 
3602 	/*
3603 	 * Allow resets if faults have been trapped before one scan
3604 	 * has completed. This is most likely due to a new task that
3605 	 * is pulled cross-node due to wakeups or load balancing.
3606 	 */
3607 	if (p->numa_scan_seq) {
3608 		/*
3609 		 * Avoid scan adjustments if moving to the preferred
3610 		 * node or if the task was not previously running on
3611 		 * the preferred node.
3612 		 */
3613 		if (dst_nid == p->numa_preferred_nid ||
3614 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3615 			src_nid != p->numa_preferred_nid))
3616 			return;
3617 	}
3618 
3619 	p->numa_scan_period = task_scan_start(p);
3620 }
3621 
3622 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3623 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3624 {
3625 }
3626 
account_numa_enqueue(struct rq * rq,struct task_struct * p)3627 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3628 {
3629 }
3630 
account_numa_dequeue(struct rq * rq,struct task_struct * p)3631 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3632 {
3633 }
3634 
update_scan_period(struct task_struct * p,int new_cpu)3635 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3636 {
3637 }
3638 
3639 #endif /* CONFIG_NUMA_BALANCING */
3640 
3641 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3642 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3643 {
3644 	update_load_add(&cfs_rq->load, se->load.weight);
3645 #ifdef CONFIG_SMP
3646 	if (entity_is_task(se)) {
3647 		struct rq *rq = rq_of(cfs_rq);
3648 
3649 		account_numa_enqueue(rq, task_of(se));
3650 		list_add(&se->group_node, &rq->cfs_tasks);
3651 	}
3652 #endif
3653 	cfs_rq->nr_running++;
3654 	if (se_is_idle(se))
3655 		cfs_rq->idle_nr_running++;
3656 }
3657 
3658 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3659 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3660 {
3661 	update_load_sub(&cfs_rq->load, se->load.weight);
3662 #ifdef CONFIG_SMP
3663 	if (entity_is_task(se)) {
3664 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3665 		list_del_init(&se->group_node);
3666 	}
3667 #endif
3668 	cfs_rq->nr_running--;
3669 	if (se_is_idle(se))
3670 		cfs_rq->idle_nr_running--;
3671 }
3672 
3673 /*
3674  * Signed add and clamp on underflow.
3675  *
3676  * Explicitly do a load-store to ensure the intermediate value never hits
3677  * memory. This allows lockless observations without ever seeing the negative
3678  * values.
3679  */
3680 #define add_positive(_ptr, _val) do {                           \
3681 	typeof(_ptr) ptr = (_ptr);                              \
3682 	typeof(_val) val = (_val);                              \
3683 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3684 								\
3685 	res = var + val;                                        \
3686 								\
3687 	if (val < 0 && res > var)                               \
3688 		res = 0;                                        \
3689 								\
3690 	WRITE_ONCE(*ptr, res);                                  \
3691 } while (0)
3692 
3693 /*
3694  * Unsigned subtract and clamp on underflow.
3695  *
3696  * Explicitly do a load-store to ensure the intermediate value never hits
3697  * memory. This allows lockless observations without ever seeing the negative
3698  * values.
3699  */
3700 #define sub_positive(_ptr, _val) do {				\
3701 	typeof(_ptr) ptr = (_ptr);				\
3702 	typeof(*ptr) val = (_val);				\
3703 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3704 	res = var - val;					\
3705 	if (res > var)						\
3706 		res = 0;					\
3707 	WRITE_ONCE(*ptr, res);					\
3708 } while (0)
3709 
3710 /*
3711  * Remove and clamp on negative, from a local variable.
3712  *
3713  * A variant of sub_positive(), which does not use explicit load-store
3714  * and is thus optimized for local variable updates.
3715  */
3716 #define lsub_positive(_ptr, _val) do {				\
3717 	typeof(_ptr) ptr = (_ptr);				\
3718 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3719 } while (0)
3720 
3721 #ifdef CONFIG_SMP
3722 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3723 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3724 {
3725 	cfs_rq->avg.load_avg += se->avg.load_avg;
3726 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3727 }
3728 
3729 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3730 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3731 {
3732 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3733 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3734 	/* See update_cfs_rq_load_avg() */
3735 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3736 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3737 }
3738 #else
3739 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3740 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3741 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3742 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3743 #endif
3744 
reweight_eevdf(struct sched_entity * se,u64 avruntime,unsigned long weight)3745 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3746 			   unsigned long weight)
3747 {
3748 	unsigned long old_weight = se->load.weight;
3749 	s64 vlag, vslice;
3750 
3751 	/*
3752 	 * VRUNTIME
3753 	 * ========
3754 	 *
3755 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3756 	 * adjusted if re-weight at !0-lag point.
3757 	 *
3758 	 * Proof: For contradiction assume this is not true, so we can
3759 	 * re-weight without changing vruntime at !0-lag point.
3760 	 *
3761 	 *             Weight	VRuntime   Avg-VRuntime
3762 	 *     before    w          v            V
3763 	 *      after    w'         v'           V'
3764 	 *
3765 	 * Since lag needs to be preserved through re-weight:
3766 	 *
3767 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3768 	 *	==>	V' = (V - v)*w/w' + v		(1)
3769 	 *
3770 	 * Let W be the total weight of the entities before reweight,
3771 	 * since V' is the new weighted average of entities:
3772 	 *
3773 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3774 	 *
3775 	 * by using (1) & (2) we obtain:
3776 	 *
3777 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3778 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3779 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3780 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3781 	 *
3782 	 * Since we are doing at !0-lag point which means V != v, we
3783 	 * can simplify (3):
3784 	 *
3785 	 *	==>	W / (W + w' - w) = w / w'
3786 	 *	==>	Ww' = Ww + ww' - ww
3787 	 *	==>	W * (w' - w) = w * (w' - w)
3788 	 *	==>	W = w	(re-weight indicates w' != w)
3789 	 *
3790 	 * So the cfs_rq contains only one entity, hence vruntime of
3791 	 * the entity @v should always equal to the cfs_rq's weighted
3792 	 * average vruntime @V, which means we will always re-weight
3793 	 * at 0-lag point, thus breach assumption. Proof completed.
3794 	 *
3795 	 *
3796 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3797 	 * vruntime of all the entities.
3798 	 *
3799 	 * Proof: According to corollary #1, Eq. (1) should be:
3800 	 *
3801 	 *	(V - v)*w = (V' - v')*w'
3802 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3803 	 *
3804 	 * According to the weighted average formula, we have:
3805 	 *
3806 	 *	V' = (WV - wv + w'v') / (W - w + w')
3807 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3808 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3809 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3810 	 *
3811 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3812 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3813 	 *
3814 	 * If the entity is the only one in the cfs_rq, then reweight
3815 	 * always occurs at 0-lag point, so V won't change. Or else
3816 	 * there are other entities, hence W != w, then Eq. (5) turns
3817 	 * into V' = V. So V won't change in either case, proof done.
3818 	 *
3819 	 *
3820 	 * So according to corollary #1 & #2, the effect of re-weight
3821 	 * on vruntime should be:
3822 	 *
3823 	 *	v' = V' - (V - v) * w / w'		(4)
3824 	 *	   = V  - (V - v) * w / w'
3825 	 *	   = V  - vl * w / w'
3826 	 *	   = V  - vl'
3827 	 */
3828 	if (avruntime != se->vruntime) {
3829 		vlag = entity_lag(avruntime, se);
3830 		vlag = div_s64(vlag * old_weight, weight);
3831 		se->vruntime = avruntime - vlag;
3832 	}
3833 
3834 	/*
3835 	 * DEADLINE
3836 	 * ========
3837 	 *
3838 	 * When the weight changes, the virtual time slope changes and
3839 	 * we should adjust the relative virtual deadline accordingly.
3840 	 *
3841 	 *	d' = v' + (d - v)*w/w'
3842 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3843 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3844 	 *	   = V  + (d - V)*w/w'
3845 	 */
3846 	vslice = (s64)(se->deadline - avruntime);
3847 	vslice = div_s64(vslice * old_weight, weight);
3848 	se->deadline = avruntime + vslice;
3849 }
3850 
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3851 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3852 			    unsigned long weight)
3853 {
3854 	bool curr = cfs_rq->curr == se;
3855 	u64 avruntime;
3856 
3857 	if (se->on_rq) {
3858 		/* commit outstanding execution time */
3859 		update_curr(cfs_rq);
3860 		avruntime = avg_vruntime(cfs_rq);
3861 		if (!curr)
3862 			__dequeue_entity(cfs_rq, se);
3863 		update_load_sub(&cfs_rq->load, se->load.weight);
3864 	}
3865 	dequeue_load_avg(cfs_rq, se);
3866 
3867 	if (se->on_rq) {
3868 		reweight_eevdf(se, avruntime, weight);
3869 	} else {
3870 		/*
3871 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3872 		 * we need to scale se->vlag when w_i changes.
3873 		 */
3874 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3875 	}
3876 
3877 	update_load_set(&se->load, weight);
3878 
3879 #ifdef CONFIG_SMP
3880 	do {
3881 		u32 divider = get_pelt_divider(&se->avg);
3882 
3883 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3884 	} while (0);
3885 #endif
3886 
3887 	enqueue_load_avg(cfs_rq, se);
3888 	if (se->on_rq) {
3889 		update_load_add(&cfs_rq->load, se->load.weight);
3890 		if (!curr)
3891 			__enqueue_entity(cfs_rq, se);
3892 
3893 		/*
3894 		 * The entity's vruntime has been adjusted, so let's check
3895 		 * whether the rq-wide min_vruntime needs updated too. Since
3896 		 * the calculations above require stable min_vruntime rather
3897 		 * than up-to-date one, we do the update at the end of the
3898 		 * reweight process.
3899 		 */
3900 		update_min_vruntime(cfs_rq);
3901 	}
3902 }
3903 
reweight_task(struct task_struct * p,const struct load_weight * lw)3904 void reweight_task(struct task_struct *p, const struct load_weight *lw)
3905 {
3906 	struct sched_entity *se = &p->se;
3907 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3908 	struct load_weight *load = &se->load;
3909 
3910 	reweight_entity(cfs_rq, se, lw->weight);
3911 	load->inv_weight = lw->inv_weight;
3912 }
3913 
3914 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3915 
3916 #ifdef CONFIG_FAIR_GROUP_SCHED
3917 #ifdef CONFIG_SMP
3918 /*
3919  * All this does is approximate the hierarchical proportion which includes that
3920  * global sum we all love to hate.
3921  *
3922  * That is, the weight of a group entity, is the proportional share of the
3923  * group weight based on the group runqueue weights. That is:
3924  *
3925  *                     tg->weight * grq->load.weight
3926  *   ge->load.weight = -----------------------------               (1)
3927  *                       \Sum grq->load.weight
3928  *
3929  * Now, because computing that sum is prohibitively expensive to compute (been
3930  * there, done that) we approximate it with this average stuff. The average
3931  * moves slower and therefore the approximation is cheaper and more stable.
3932  *
3933  * So instead of the above, we substitute:
3934  *
3935  *   grq->load.weight -> grq->avg.load_avg                         (2)
3936  *
3937  * which yields the following:
3938  *
3939  *                     tg->weight * grq->avg.load_avg
3940  *   ge->load.weight = ------------------------------              (3)
3941  *                             tg->load_avg
3942  *
3943  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3944  *
3945  * That is shares_avg, and it is right (given the approximation (2)).
3946  *
3947  * The problem with it is that because the average is slow -- it was designed
3948  * to be exactly that of course -- this leads to transients in boundary
3949  * conditions. In specific, the case where the group was idle and we start the
3950  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3951  * yielding bad latency etc..
3952  *
3953  * Now, in that special case (1) reduces to:
3954  *
3955  *                     tg->weight * grq->load.weight
3956  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3957  *                         grp->load.weight
3958  *
3959  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3960  *
3961  * So what we do is modify our approximation (3) to approach (4) in the (near)
3962  * UP case, like:
3963  *
3964  *   ge->load.weight =
3965  *
3966  *              tg->weight * grq->load.weight
3967  *     ---------------------------------------------------         (5)
3968  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3969  *
3970  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3971  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3972  *
3973  *
3974  *                     tg->weight * grq->load.weight
3975  *   ge->load.weight = -----------------------------		   (6)
3976  *                             tg_load_avg'
3977  *
3978  * Where:
3979  *
3980  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3981  *                  max(grq->load.weight, grq->avg.load_avg)
3982  *
3983  * And that is shares_weight and is icky. In the (near) UP case it approaches
3984  * (4) while in the normal case it approaches (3). It consistently
3985  * overestimates the ge->load.weight and therefore:
3986  *
3987  *   \Sum ge->load.weight >= tg->weight
3988  *
3989  * hence icky!
3990  */
calc_group_shares(struct cfs_rq * cfs_rq)3991 static long calc_group_shares(struct cfs_rq *cfs_rq)
3992 {
3993 	long tg_weight, tg_shares, load, shares;
3994 	struct task_group *tg = cfs_rq->tg;
3995 
3996 	tg_shares = READ_ONCE(tg->shares);
3997 
3998 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3999 
4000 	tg_weight = atomic_long_read(&tg->load_avg);
4001 
4002 	/* Ensure tg_weight >= load */
4003 	tg_weight -= cfs_rq->tg_load_avg_contrib;
4004 	tg_weight += load;
4005 
4006 	shares = (tg_shares * load);
4007 	if (tg_weight)
4008 		shares /= tg_weight;
4009 
4010 	/*
4011 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
4012 	 * of a group with small tg->shares value. It is a floor value which is
4013 	 * assigned as a minimum load.weight to the sched_entity representing
4014 	 * the group on a CPU.
4015 	 *
4016 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
4017 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
4018 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
4019 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
4020 	 * instead of 0.
4021 	 */
4022 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
4023 }
4024 #endif /* CONFIG_SMP */
4025 
4026 /*
4027  * Recomputes the group entity based on the current state of its group
4028  * runqueue.
4029  */
update_cfs_group(struct sched_entity * se)4030 static void update_cfs_group(struct sched_entity *se)
4031 {
4032 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4033 	long shares;
4034 
4035 	if (!gcfs_rq)
4036 		return;
4037 
4038 	if (throttled_hierarchy(gcfs_rq))
4039 		return;
4040 
4041 #ifndef CONFIG_SMP
4042 	shares = READ_ONCE(gcfs_rq->tg->shares);
4043 #else
4044 	shares = calc_group_shares(gcfs_rq);
4045 #endif
4046 	if (unlikely(se->load.weight != shares))
4047 		reweight_entity(cfs_rq_of(se), se, shares);
4048 }
4049 
4050 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)4051 static inline void update_cfs_group(struct sched_entity *se)
4052 {
4053 }
4054 #endif /* CONFIG_FAIR_GROUP_SCHED */
4055 
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)4056 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4057 {
4058 	struct rq *rq = rq_of(cfs_rq);
4059 
4060 	if (&rq->cfs == cfs_rq) {
4061 		/*
4062 		 * There are a few boundary cases this might miss but it should
4063 		 * get called often enough that that should (hopefully) not be
4064 		 * a real problem.
4065 		 *
4066 		 * It will not get called when we go idle, because the idle
4067 		 * thread is a different class (!fair), nor will the utilization
4068 		 * number include things like RT tasks.
4069 		 *
4070 		 * As is, the util number is not freq-invariant (we'd have to
4071 		 * implement arch_scale_freq_capacity() for that).
4072 		 *
4073 		 * See cpu_util_cfs().
4074 		 */
4075 		cpufreq_update_util(rq, flags);
4076 	}
4077 }
4078 
4079 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)4080 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4081 {
4082 	if (sa->load_sum)
4083 		return false;
4084 
4085 	if (sa->util_sum)
4086 		return false;
4087 
4088 	if (sa->runnable_sum)
4089 		return false;
4090 
4091 	/*
4092 	 * _avg must be null when _sum are null because _avg = _sum / divider
4093 	 * Make sure that rounding and/or propagation of PELT values never
4094 	 * break this.
4095 	 */
4096 	SCHED_WARN_ON(sa->load_avg ||
4097 		      sa->util_avg ||
4098 		      sa->runnable_avg);
4099 
4100 	return true;
4101 }
4102 
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4103 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4104 {
4105 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4106 				 cfs_rq->last_update_time_copy);
4107 }
4108 #ifdef CONFIG_FAIR_GROUP_SCHED
4109 /*
4110  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4111  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4112  * bottom-up, we only have to test whether the cfs_rq before us on the list
4113  * is our child.
4114  * If cfs_rq is not on the list, test whether a child needs its to be added to
4115  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4116  */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4117 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4118 {
4119 	struct cfs_rq *prev_cfs_rq;
4120 	struct list_head *prev;
4121 	struct rq *rq = rq_of(cfs_rq);
4122 
4123 	if (cfs_rq->on_list) {
4124 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4125 	} else {
4126 		prev = rq->tmp_alone_branch;
4127 	}
4128 
4129 	if (prev == &rq->leaf_cfs_rq_list)
4130 		return false;
4131 
4132 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4133 
4134 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4135 }
4136 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4137 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4138 {
4139 	if (cfs_rq->load.weight)
4140 		return false;
4141 
4142 	if (!load_avg_is_decayed(&cfs_rq->avg))
4143 		return false;
4144 
4145 	if (child_cfs_rq_on_list(cfs_rq))
4146 		return false;
4147 
4148 	return true;
4149 }
4150 
4151 /**
4152  * update_tg_load_avg - update the tg's load avg
4153  * @cfs_rq: the cfs_rq whose avg changed
4154  *
4155  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4156  * However, because tg->load_avg is a global value there are performance
4157  * considerations.
4158  *
4159  * In order to avoid having to look at the other cfs_rq's, we use a
4160  * differential update where we store the last value we propagated. This in
4161  * turn allows skipping updates if the differential is 'small'.
4162  *
4163  * Updating tg's load_avg is necessary before update_cfs_share().
4164  */
update_tg_load_avg(struct cfs_rq * cfs_rq)4165 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4166 {
4167 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4168 
4169 	/*
4170 	 * No need to update load_avg for root_task_group as it is not used.
4171 	 */
4172 	if (cfs_rq->tg == &root_task_group)
4173 		return;
4174 
4175 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4176 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4177 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4178 	}
4179 }
4180 
4181 /*
4182  * Called within set_task_rq() right before setting a task's CPU. The
4183  * caller only guarantees p->pi_lock is held; no other assumptions,
4184  * including the state of rq->lock, should be made.
4185  */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4186 void set_task_rq_fair(struct sched_entity *se,
4187 		      struct cfs_rq *prev, struct cfs_rq *next)
4188 {
4189 	u64 p_last_update_time;
4190 	u64 n_last_update_time;
4191 
4192 	if (!sched_feat(ATTACH_AGE_LOAD))
4193 		return;
4194 
4195 	/*
4196 	 * We are supposed to update the task to "current" time, then its up to
4197 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4198 	 * getting what current time is, so simply throw away the out-of-date
4199 	 * time. This will result in the wakee task is less decayed, but giving
4200 	 * the wakee more load sounds not bad.
4201 	 */
4202 	if (!(se->avg.last_update_time && prev))
4203 		return;
4204 
4205 	p_last_update_time = cfs_rq_last_update_time(prev);
4206 	n_last_update_time = cfs_rq_last_update_time(next);
4207 
4208 	__update_load_avg_blocked_se(p_last_update_time, se);
4209 	se->avg.last_update_time = n_last_update_time;
4210 }
4211 
4212 /*
4213  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4214  * propagate its contribution. The key to this propagation is the invariant
4215  * that for each group:
4216  *
4217  *   ge->avg == grq->avg						(1)
4218  *
4219  * _IFF_ we look at the pure running and runnable sums. Because they
4220  * represent the very same entity, just at different points in the hierarchy.
4221  *
4222  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4223  * and simply copies the running/runnable sum over (but still wrong, because
4224  * the group entity and group rq do not have their PELT windows aligned).
4225  *
4226  * However, update_tg_cfs_load() is more complex. So we have:
4227  *
4228  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4229  *
4230  * And since, like util, the runnable part should be directly transferable,
4231  * the following would _appear_ to be the straight forward approach:
4232  *
4233  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4234  *
4235  * And per (1) we have:
4236  *
4237  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4238  *
4239  * Which gives:
4240  *
4241  *                      ge->load.weight * grq->avg.load_avg
4242  *   ge->avg.load_avg = -----------------------------------		(4)
4243  *                               grq->load.weight
4244  *
4245  * Except that is wrong!
4246  *
4247  * Because while for entities historical weight is not important and we
4248  * really only care about our future and therefore can consider a pure
4249  * runnable sum, runqueues can NOT do this.
4250  *
4251  * We specifically want runqueues to have a load_avg that includes
4252  * historical weights. Those represent the blocked load, the load we expect
4253  * to (shortly) return to us. This only works by keeping the weights as
4254  * integral part of the sum. We therefore cannot decompose as per (3).
4255  *
4256  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4257  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4258  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4259  * runnable section of these tasks overlap (or not). If they were to perfectly
4260  * align the rq as a whole would be runnable 2/3 of the time. If however we
4261  * always have at least 1 runnable task, the rq as a whole is always runnable.
4262  *
4263  * So we'll have to approximate.. :/
4264  *
4265  * Given the constraint:
4266  *
4267  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4268  *
4269  * We can construct a rule that adds runnable to a rq by assuming minimal
4270  * overlap.
4271  *
4272  * On removal, we'll assume each task is equally runnable; which yields:
4273  *
4274  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4275  *
4276  * XXX: only do this for the part of runnable > running ?
4277  *
4278  */
4279 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4280 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4281 {
4282 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4283 	u32 new_sum, divider;
4284 
4285 	/* Nothing to update */
4286 	if (!delta_avg)
4287 		return;
4288 
4289 	/*
4290 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4291 	 * See ___update_load_avg() for details.
4292 	 */
4293 	divider = get_pelt_divider(&cfs_rq->avg);
4294 
4295 
4296 	/* Set new sched_entity's utilization */
4297 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4298 	new_sum = se->avg.util_avg * divider;
4299 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4300 	se->avg.util_sum = new_sum;
4301 
4302 	/* Update parent cfs_rq utilization */
4303 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4304 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4305 
4306 	/* See update_cfs_rq_load_avg() */
4307 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4308 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4309 }
4310 
4311 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4312 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4313 {
4314 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4315 	u32 new_sum, divider;
4316 
4317 	/* Nothing to update */
4318 	if (!delta_avg)
4319 		return;
4320 
4321 	/*
4322 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4323 	 * See ___update_load_avg() for details.
4324 	 */
4325 	divider = get_pelt_divider(&cfs_rq->avg);
4326 
4327 	/* Set new sched_entity's runnable */
4328 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4329 	new_sum = se->avg.runnable_avg * divider;
4330 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4331 	se->avg.runnable_sum = new_sum;
4332 
4333 	/* Update parent cfs_rq runnable */
4334 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4335 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4336 	/* See update_cfs_rq_load_avg() */
4337 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4338 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4339 }
4340 
4341 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4342 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4343 {
4344 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4345 	unsigned long load_avg;
4346 	u64 load_sum = 0;
4347 	s64 delta_sum;
4348 	u32 divider;
4349 
4350 	if (!runnable_sum)
4351 		return;
4352 
4353 	gcfs_rq->prop_runnable_sum = 0;
4354 
4355 	/*
4356 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4357 	 * See ___update_load_avg() for details.
4358 	 */
4359 	divider = get_pelt_divider(&cfs_rq->avg);
4360 
4361 	if (runnable_sum >= 0) {
4362 		/*
4363 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4364 		 * the CPU is saturated running == runnable.
4365 		 */
4366 		runnable_sum += se->avg.load_sum;
4367 		runnable_sum = min_t(long, runnable_sum, divider);
4368 	} else {
4369 		/*
4370 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4371 		 * assuming all tasks are equally runnable.
4372 		 */
4373 		if (scale_load_down(gcfs_rq->load.weight)) {
4374 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4375 				scale_load_down(gcfs_rq->load.weight));
4376 		}
4377 
4378 		/* But make sure to not inflate se's runnable */
4379 		runnable_sum = min(se->avg.load_sum, load_sum);
4380 	}
4381 
4382 	/*
4383 	 * runnable_sum can't be lower than running_sum
4384 	 * Rescale running sum to be in the same range as runnable sum
4385 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4386 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4387 	 */
4388 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4389 	runnable_sum = max(runnable_sum, running_sum);
4390 
4391 	load_sum = se_weight(se) * runnable_sum;
4392 	load_avg = div_u64(load_sum, divider);
4393 
4394 	delta_avg = load_avg - se->avg.load_avg;
4395 	if (!delta_avg)
4396 		return;
4397 
4398 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4399 
4400 	se->avg.load_sum = runnable_sum;
4401 	se->avg.load_avg = load_avg;
4402 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4403 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4404 	/* See update_cfs_rq_load_avg() */
4405 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4406 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4407 }
4408 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4409 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4410 {
4411 	cfs_rq->propagate = 1;
4412 	cfs_rq->prop_runnable_sum += runnable_sum;
4413 }
4414 
4415 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4416 static inline int propagate_entity_load_avg(struct sched_entity *se)
4417 {
4418 	struct cfs_rq *cfs_rq, *gcfs_rq;
4419 
4420 	if (entity_is_task(se))
4421 		return 0;
4422 
4423 	gcfs_rq = group_cfs_rq(se);
4424 	if (!gcfs_rq->propagate)
4425 		return 0;
4426 
4427 	gcfs_rq->propagate = 0;
4428 
4429 	cfs_rq = cfs_rq_of(se);
4430 
4431 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4432 
4433 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4434 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4435 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4436 
4437 	trace_pelt_cfs_tp(cfs_rq);
4438 	trace_pelt_se_tp(se);
4439 
4440 	return 1;
4441 }
4442 
4443 /*
4444  * Check if we need to update the load and the utilization of a blocked
4445  * group_entity:
4446  */
skip_blocked_update(struct sched_entity * se)4447 static inline bool skip_blocked_update(struct sched_entity *se)
4448 {
4449 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4450 
4451 	/*
4452 	 * If sched_entity still have not zero load or utilization, we have to
4453 	 * decay it:
4454 	 */
4455 	if (se->avg.load_avg || se->avg.util_avg)
4456 		return false;
4457 
4458 	/*
4459 	 * If there is a pending propagation, we have to update the load and
4460 	 * the utilization of the sched_entity:
4461 	 */
4462 	if (gcfs_rq->propagate)
4463 		return false;
4464 
4465 	/*
4466 	 * Otherwise, the load and the utilization of the sched_entity is
4467 	 * already zero and there is no pending propagation, so it will be a
4468 	 * waste of time to try to decay it:
4469 	 */
4470 	return true;
4471 }
4472 
4473 #else /* CONFIG_FAIR_GROUP_SCHED */
4474 
update_tg_load_avg(struct cfs_rq * cfs_rq)4475 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4476 
propagate_entity_load_avg(struct sched_entity * se)4477 static inline int propagate_entity_load_avg(struct sched_entity *se)
4478 {
4479 	return 0;
4480 }
4481 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4482 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4483 
4484 #endif /* CONFIG_FAIR_GROUP_SCHED */
4485 
4486 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4487 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4488 {
4489 	u64 throttled = 0, now, lut;
4490 	struct cfs_rq *cfs_rq;
4491 	struct rq *rq;
4492 	bool is_idle;
4493 
4494 	if (load_avg_is_decayed(&se->avg))
4495 		return;
4496 
4497 	cfs_rq = cfs_rq_of(se);
4498 	rq = rq_of(cfs_rq);
4499 
4500 	rcu_read_lock();
4501 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4502 	rcu_read_unlock();
4503 
4504 	/*
4505 	 * The lag estimation comes with a cost we don't want to pay all the
4506 	 * time. Hence, limiting to the case where the source CPU is idle and
4507 	 * we know we are at the greatest risk to have an outdated clock.
4508 	 */
4509 	if (!is_idle)
4510 		return;
4511 
4512 	/*
4513 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4514 	 *
4515 	 *   last_update_time (the cfs_rq's last_update_time)
4516 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4517 	 *      = rq_clock_pelt()@cfs_rq_idle
4518 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4519 	 *
4520 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4521 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4522 	 *
4523 	 *   rq_idle_lag (delta between now and rq's update)
4524 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4525 	 *
4526 	 * We can then write:
4527 	 *
4528 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4529 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4530 	 * Where:
4531 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4532 	 *      rq_clock()@rq_idle      is rq->clock_idle
4533 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4534 	 *                              is cfs_rq->throttled_pelt_idle
4535 	 */
4536 
4537 #ifdef CONFIG_CFS_BANDWIDTH
4538 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4539 	/* The clock has been stopped for throttling */
4540 	if (throttled == U64_MAX)
4541 		return;
4542 #endif
4543 	now = u64_u32_load(rq->clock_pelt_idle);
4544 	/*
4545 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4546 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4547 	 * which lead to an underestimation. The opposite would lead to an
4548 	 * overestimation.
4549 	 */
4550 	smp_rmb();
4551 	lut = cfs_rq_last_update_time(cfs_rq);
4552 
4553 	now -= throttled;
4554 	if (now < lut)
4555 		/*
4556 		 * cfs_rq->avg.last_update_time is more recent than our
4557 		 * estimation, let's use it.
4558 		 */
4559 		now = lut;
4560 	else
4561 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4562 
4563 	__update_load_avg_blocked_se(now, se);
4564 }
4565 #else
migrate_se_pelt_lag(struct sched_entity * se)4566 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4567 #endif
4568 
4569 /**
4570  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4571  * @now: current time, as per cfs_rq_clock_pelt()
4572  * @cfs_rq: cfs_rq to update
4573  *
4574  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4575  * avg. The immediate corollary is that all (fair) tasks must be attached.
4576  *
4577  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4578  *
4579  * Return: true if the load decayed or we removed load.
4580  *
4581  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4582  * call update_tg_load_avg() when this function returns true.
4583  */
4584 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4585 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4586 {
4587 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4588 	struct sched_avg *sa = &cfs_rq->avg;
4589 	int decayed = 0;
4590 
4591 	if (cfs_rq->removed.nr) {
4592 		unsigned long r;
4593 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4594 
4595 		raw_spin_lock(&cfs_rq->removed.lock);
4596 		swap(cfs_rq->removed.util_avg, removed_util);
4597 		swap(cfs_rq->removed.load_avg, removed_load);
4598 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4599 		cfs_rq->removed.nr = 0;
4600 		raw_spin_unlock(&cfs_rq->removed.lock);
4601 
4602 		r = removed_load;
4603 		sub_positive(&sa->load_avg, r);
4604 		sub_positive(&sa->load_sum, r * divider);
4605 		/* See sa->util_sum below */
4606 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4607 
4608 		r = removed_util;
4609 		sub_positive(&sa->util_avg, r);
4610 		sub_positive(&sa->util_sum, r * divider);
4611 		/*
4612 		 * Because of rounding, se->util_sum might ends up being +1 more than
4613 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4614 		 * a lot of tasks with the rounding problem between 2 updates of
4615 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4616 		 * cfs_util_avg is not.
4617 		 * Check that util_sum is still above its lower bound for the new
4618 		 * util_avg. Given that period_contrib might have moved since the last
4619 		 * sync, we are only sure that util_sum must be above or equal to
4620 		 *    util_avg * minimum possible divider
4621 		 */
4622 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4623 
4624 		r = removed_runnable;
4625 		sub_positive(&sa->runnable_avg, r);
4626 		sub_positive(&sa->runnable_sum, r * divider);
4627 		/* See sa->util_sum above */
4628 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4629 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4630 
4631 		/*
4632 		 * removed_runnable is the unweighted version of removed_load so we
4633 		 * can use it to estimate removed_load_sum.
4634 		 */
4635 		add_tg_cfs_propagate(cfs_rq,
4636 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4637 
4638 		decayed = 1;
4639 	}
4640 
4641 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4642 	u64_u32_store_copy(sa->last_update_time,
4643 			   cfs_rq->last_update_time_copy,
4644 			   sa->last_update_time);
4645 	return decayed;
4646 }
4647 
4648 /**
4649  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4650  * @cfs_rq: cfs_rq to attach to
4651  * @se: sched_entity to attach
4652  *
4653  * Must call update_cfs_rq_load_avg() before this, since we rely on
4654  * cfs_rq->avg.last_update_time being current.
4655  */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4656 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4657 {
4658 	/*
4659 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4660 	 * See ___update_load_avg() for details.
4661 	 */
4662 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4663 
4664 	/*
4665 	 * When we attach the @se to the @cfs_rq, we must align the decay
4666 	 * window because without that, really weird and wonderful things can
4667 	 * happen.
4668 	 *
4669 	 * XXX illustrate
4670 	 */
4671 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4672 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4673 
4674 	/*
4675 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4676 	 * period_contrib. This isn't strictly correct, but since we're
4677 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4678 	 * _sum a little.
4679 	 */
4680 	se->avg.util_sum = se->avg.util_avg * divider;
4681 
4682 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4683 
4684 	se->avg.load_sum = se->avg.load_avg * divider;
4685 	if (se_weight(se) < se->avg.load_sum)
4686 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4687 	else
4688 		se->avg.load_sum = 1;
4689 
4690 	enqueue_load_avg(cfs_rq, se);
4691 	cfs_rq->avg.util_avg += se->avg.util_avg;
4692 	cfs_rq->avg.util_sum += se->avg.util_sum;
4693 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4694 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4695 
4696 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4697 
4698 	cfs_rq_util_change(cfs_rq, 0);
4699 
4700 	trace_pelt_cfs_tp(cfs_rq);
4701 }
4702 
4703 /**
4704  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4705  * @cfs_rq: cfs_rq to detach from
4706  * @se: sched_entity to detach
4707  *
4708  * Must call update_cfs_rq_load_avg() before this, since we rely on
4709  * cfs_rq->avg.last_update_time being current.
4710  */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4711 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4712 {
4713 	dequeue_load_avg(cfs_rq, se);
4714 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4715 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4716 	/* See update_cfs_rq_load_avg() */
4717 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4718 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4719 
4720 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4721 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4722 	/* See update_cfs_rq_load_avg() */
4723 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4724 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4725 
4726 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4727 
4728 	cfs_rq_util_change(cfs_rq, 0);
4729 
4730 	trace_pelt_cfs_tp(cfs_rq);
4731 }
4732 
4733 /*
4734  * Optional action to be done while updating the load average
4735  */
4736 #define UPDATE_TG	0x1
4737 #define SKIP_AGE_LOAD	0x2
4738 #define DO_ATTACH	0x4
4739 #define DO_DETACH	0x8
4740 
4741 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4742 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4743 {
4744 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4745 	int decayed;
4746 
4747 	/*
4748 	 * Track task load average for carrying it to new CPU after migrated, and
4749 	 * track group sched_entity load average for task_h_load calc in migration
4750 	 */
4751 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4752 		__update_load_avg_se(now, cfs_rq, se);
4753 
4754 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4755 	decayed |= propagate_entity_load_avg(se);
4756 
4757 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4758 
4759 		/*
4760 		 * DO_ATTACH means we're here from enqueue_entity().
4761 		 * !last_update_time means we've passed through
4762 		 * migrate_task_rq_fair() indicating we migrated.
4763 		 *
4764 		 * IOW we're enqueueing a task on a new CPU.
4765 		 */
4766 		attach_entity_load_avg(cfs_rq, se);
4767 		update_tg_load_avg(cfs_rq);
4768 
4769 	} else if (flags & DO_DETACH) {
4770 		/*
4771 		 * DO_DETACH means we're here from dequeue_entity()
4772 		 * and we are migrating task out of the CPU.
4773 		 */
4774 		detach_entity_load_avg(cfs_rq, se);
4775 		update_tg_load_avg(cfs_rq);
4776 	} else if (decayed) {
4777 		cfs_rq_util_change(cfs_rq, 0);
4778 
4779 		if (flags & UPDATE_TG)
4780 			update_tg_load_avg(cfs_rq);
4781 	}
4782 }
4783 
4784 /*
4785  * Synchronize entity load avg of dequeued entity without locking
4786  * the previous rq.
4787  */
sync_entity_load_avg(struct sched_entity * se)4788 static void sync_entity_load_avg(struct sched_entity *se)
4789 {
4790 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4791 	u64 last_update_time;
4792 
4793 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4794 	__update_load_avg_blocked_se(last_update_time, se);
4795 }
4796 
4797 /*
4798  * Task first catches up with cfs_rq, and then subtract
4799  * itself from the cfs_rq (task must be off the queue now).
4800  */
remove_entity_load_avg(struct sched_entity * se)4801 static void remove_entity_load_avg(struct sched_entity *se)
4802 {
4803 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4804 	unsigned long flags;
4805 
4806 	/*
4807 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4808 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4809 	 * so we can remove unconditionally.
4810 	 */
4811 
4812 	sync_entity_load_avg(se);
4813 
4814 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4815 	++cfs_rq->removed.nr;
4816 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4817 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4818 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4819 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4820 }
4821 
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4822 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4823 {
4824 	return cfs_rq->avg.runnable_avg;
4825 }
4826 
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4827 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4828 {
4829 	return cfs_rq->avg.load_avg;
4830 }
4831 
4832 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4833 
task_util(struct task_struct * p)4834 static inline unsigned long task_util(struct task_struct *p)
4835 {
4836 	return READ_ONCE(p->se.avg.util_avg);
4837 }
4838 
_task_util_est(struct task_struct * p)4839 static inline unsigned long _task_util_est(struct task_struct *p)
4840 {
4841 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4842 
4843 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4844 }
4845 
task_util_est(struct task_struct * p)4846 static inline unsigned long task_util_est(struct task_struct *p)
4847 {
4848 	return max(task_util(p), _task_util_est(p));
4849 }
4850 
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4851 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4852 				    struct task_struct *p)
4853 {
4854 	unsigned int enqueued;
4855 
4856 	if (!sched_feat(UTIL_EST))
4857 		return;
4858 
4859 	/* Update root cfs_rq's estimated utilization */
4860 	enqueued  = cfs_rq->avg.util_est.enqueued;
4861 	enqueued += _task_util_est(p);
4862 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4863 
4864 	trace_sched_util_est_cfs_tp(cfs_rq);
4865 }
4866 
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4867 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4868 				    struct task_struct *p)
4869 {
4870 	unsigned int enqueued;
4871 
4872 	if (!sched_feat(UTIL_EST))
4873 		return;
4874 
4875 	/* Update root cfs_rq's estimated utilization */
4876 	enqueued  = cfs_rq->avg.util_est.enqueued;
4877 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4878 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4879 
4880 	trace_sched_util_est_cfs_tp(cfs_rq);
4881 }
4882 
4883 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4884 
4885 /*
4886  * Check if a (signed) value is within a specified (unsigned) margin,
4887  * based on the observation that:
4888  *
4889  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4890  *
4891  * NOTE: this only works when value + margin < INT_MAX.
4892  */
within_margin(int value,int margin)4893 static inline bool within_margin(int value, int margin)
4894 {
4895 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4896 }
4897 
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4898 static inline void util_est_update(struct cfs_rq *cfs_rq,
4899 				   struct task_struct *p,
4900 				   bool task_sleep)
4901 {
4902 	long last_ewma_diff, last_enqueued_diff;
4903 	struct util_est ue;
4904 
4905 	if (!sched_feat(UTIL_EST))
4906 		return;
4907 
4908 	/*
4909 	 * Skip update of task's estimated utilization when the task has not
4910 	 * yet completed an activation, e.g. being migrated.
4911 	 */
4912 	if (!task_sleep)
4913 		return;
4914 
4915 	/*
4916 	 * If the PELT values haven't changed since enqueue time,
4917 	 * skip the util_est update.
4918 	 */
4919 	ue = p->se.avg.util_est;
4920 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4921 		return;
4922 
4923 	last_enqueued_diff = ue.enqueued;
4924 
4925 	/*
4926 	 * Reset EWMA on utilization increases, the moving average is used only
4927 	 * to smooth utilization decreases.
4928 	 */
4929 	ue.enqueued = task_util(p);
4930 	if (sched_feat(UTIL_EST_FASTUP)) {
4931 		if (ue.ewma < ue.enqueued) {
4932 			ue.ewma = ue.enqueued;
4933 			goto done;
4934 		}
4935 	}
4936 
4937 	/*
4938 	 * Skip update of task's estimated utilization when its members are
4939 	 * already ~1% close to its last activation value.
4940 	 */
4941 	last_ewma_diff = ue.enqueued - ue.ewma;
4942 	last_enqueued_diff -= ue.enqueued;
4943 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4944 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4945 			goto done;
4946 
4947 		return;
4948 	}
4949 
4950 	/*
4951 	 * To avoid overestimation of actual task utilization, skip updates if
4952 	 * we cannot grant there is idle time in this CPU.
4953 	 */
4954 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4955 		return;
4956 
4957 	/*
4958 	 * Update Task's estimated utilization
4959 	 *
4960 	 * When *p completes an activation we can consolidate another sample
4961 	 * of the task size. This is done by storing the current PELT value
4962 	 * as ue.enqueued and by using this value to update the Exponential
4963 	 * Weighted Moving Average (EWMA):
4964 	 *
4965 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4966 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4967 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4968 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4969 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4970 	 *
4971 	 * Where 'w' is the weight of new samples, which is configured to be
4972 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4973 	 */
4974 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4975 	ue.ewma  += last_ewma_diff;
4976 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4977 done:
4978 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4979 	WRITE_ONCE(p->se.avg.util_est, ue);
4980 
4981 	trace_sched_util_est_se_tp(&p->se);
4982 }
4983 
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4984 static inline int util_fits_cpu(unsigned long util,
4985 				unsigned long uclamp_min,
4986 				unsigned long uclamp_max,
4987 				int cpu)
4988 {
4989 	unsigned long capacity_orig, capacity_orig_thermal;
4990 	unsigned long capacity = capacity_of(cpu);
4991 	bool fits, uclamp_max_fits;
4992 
4993 	/*
4994 	 * Check if the real util fits without any uclamp boost/cap applied.
4995 	 */
4996 	fits = fits_capacity(util, capacity);
4997 
4998 	if (!uclamp_is_used())
4999 		return fits;
5000 
5001 	/*
5002 	 * We must use capacity_orig_of() for comparing against uclamp_min and
5003 	 * uclamp_max. We only care about capacity pressure (by using
5004 	 * capacity_of()) for comparing against the real util.
5005 	 *
5006 	 * If a task is boosted to 1024 for example, we don't want a tiny
5007 	 * pressure to skew the check whether it fits a CPU or not.
5008 	 *
5009 	 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
5010 	 * should fit a little cpu even if there's some pressure.
5011 	 *
5012 	 * Only exception is for thermal pressure since it has a direct impact
5013 	 * on available OPP of the system.
5014 	 *
5015 	 * We honour it for uclamp_min only as a drop in performance level
5016 	 * could result in not getting the requested minimum performance level.
5017 	 *
5018 	 * For uclamp_max, we can tolerate a drop in performance level as the
5019 	 * goal is to cap the task. So it's okay if it's getting less.
5020 	 */
5021 	capacity_orig = capacity_orig_of(cpu);
5022 	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
5023 
5024 	/*
5025 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5026 	 * But we do have some corner cases to cater for..
5027 	 *
5028 	 *
5029 	 *                                 C=z
5030 	 *   |                             ___
5031 	 *   |                  C=y       |   |
5032 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5033 	 *   |      C=x        |   |      |   |
5034 	 *   |      ___        |   |      |   |
5035 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5036 	 *   |     |   |       |   |      |   |
5037 	 *   |     |   |       |   |      |   |
5038 	 *   +----------------------------------------
5039 	 *         cpu0        cpu1       cpu2
5040 	 *
5041 	 *   In the above example if a task is capped to a specific performance
5042 	 *   point, y, then when:
5043 	 *
5044 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
5045 	 *     to cpu1
5046 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
5047 	 *     uclamp_max request.
5048 	 *
5049 	 *   which is what we're enforcing here. A task always fits if
5050 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5051 	 *   the normal upmigration rules should withhold still.
5052 	 *
5053 	 *   Only exception is when we are on max capacity, then we need to be
5054 	 *   careful not to block overutilized state. This is so because:
5055 	 *
5056 	 *     1. There's no concept of capping at max_capacity! We can't go
5057 	 *        beyond this performance level anyway.
5058 	 *     2. The system is being saturated when we're operating near
5059 	 *        max capacity, it doesn't make sense to block overutilized.
5060 	 */
5061 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5062 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5063 	fits = fits || uclamp_max_fits;
5064 
5065 	/*
5066 	 *
5067 	 *                                 C=z
5068 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5069 	 *   |                  C=y       |   |
5070 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5071 	 *   |      C=x        |   |      |   |
5072 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5073 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5074 	 *   |     |   |       |   |      |   |
5075 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5076 	 *   +----------------------------------------
5077 	 *         cpu0        cpu1       cpu2
5078 	 *
5079 	 * a) If util > uclamp_max, then we're capped, we don't care about
5080 	 *    actual fitness value here. We only care if uclamp_max fits
5081 	 *    capacity without taking margin/pressure into account.
5082 	 *    See comment above.
5083 	 *
5084 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5085 	 *    fits_capacity() rules apply. Except we need to ensure that we
5086 	 *    enforce we remain within uclamp_max, see comment above.
5087 	 *
5088 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5089 	 *    need to take into account the boosted value fits the CPU without
5090 	 *    taking margin/pressure into account.
5091 	 *
5092 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5093 	 * just need to consider an extra check for case (c) after ensuring we
5094 	 * handle the case uclamp_min > uclamp_max.
5095 	 */
5096 	uclamp_min = min(uclamp_min, uclamp_max);
5097 	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
5098 		return -1;
5099 
5100 	return fits;
5101 }
5102 
task_fits_cpu(struct task_struct * p,int cpu)5103 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5104 {
5105 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5106 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5107 	unsigned long util = task_util_est(p);
5108 	/*
5109 	 * Return true only if the cpu fully fits the task requirements, which
5110 	 * include the utilization but also the performance hints.
5111 	 */
5112 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5113 }
5114 
update_misfit_status(struct task_struct * p,struct rq * rq)5115 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5116 {
5117 	if (!sched_asym_cpucap_active())
5118 		return;
5119 
5120 	if (!p || p->nr_cpus_allowed == 1) {
5121 		rq->misfit_task_load = 0;
5122 		return;
5123 	}
5124 
5125 	if (task_fits_cpu(p, cpu_of(rq))) {
5126 		rq->misfit_task_load = 0;
5127 		return;
5128 	}
5129 
5130 	/*
5131 	 * Make sure that misfit_task_load will not be null even if
5132 	 * task_h_load() returns 0.
5133 	 */
5134 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5135 }
5136 
5137 #else /* CONFIG_SMP */
5138 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)5139 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5140 {
5141 	return !cfs_rq->nr_running;
5142 }
5143 
5144 #define UPDATE_TG	0x0
5145 #define SKIP_AGE_LOAD	0x0
5146 #define DO_ATTACH	0x0
5147 #define DO_DETACH	0x0
5148 
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)5149 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5150 {
5151 	cfs_rq_util_change(cfs_rq, 0);
5152 }
5153 
remove_entity_load_avg(struct sched_entity * se)5154 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5155 
5156 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5157 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5158 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5159 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5160 
newidle_balance(struct rq * rq,struct rq_flags * rf)5161 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5162 {
5163 	return 0;
5164 }
5165 
5166 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5167 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5168 
5169 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5170 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5171 
5172 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5173 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5174 		bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)5175 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5176 
5177 #endif /* CONFIG_SMP */
5178 
5179 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5180 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5181 {
5182 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5183 	s64 lag = 0;
5184 
5185 	se->slice = sysctl_sched_base_slice;
5186 	vslice = calc_delta_fair(se->slice, se);
5187 
5188 	/*
5189 	 * Due to how V is constructed as the weighted average of entities,
5190 	 * adding tasks with positive lag, or removing tasks with negative lag
5191 	 * will move 'time' backwards, this can screw around with the lag of
5192 	 * other tasks.
5193 	 *
5194 	 * EEVDF: placement strategy #1 / #2
5195 	 */
5196 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5197 		struct sched_entity *curr = cfs_rq->curr;
5198 		unsigned long load;
5199 
5200 		lag = se->vlag;
5201 
5202 		/*
5203 		 * If we want to place a task and preserve lag, we have to
5204 		 * consider the effect of the new entity on the weighted
5205 		 * average and compensate for this, otherwise lag can quickly
5206 		 * evaporate.
5207 		 *
5208 		 * Lag is defined as:
5209 		 *
5210 		 *   lag_i = S - s_i = w_i * (V - v_i)
5211 		 *
5212 		 * To avoid the 'w_i' term all over the place, we only track
5213 		 * the virtual lag:
5214 		 *
5215 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5216 		 *
5217 		 * And we take V to be the weighted average of all v:
5218 		 *
5219 		 *   V = (\Sum w_j*v_j) / W
5220 		 *
5221 		 * Where W is: \Sum w_j
5222 		 *
5223 		 * Then, the weighted average after adding an entity with lag
5224 		 * vl_i is given by:
5225 		 *
5226 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5227 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5228 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5229 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5230 		 *      = V - w_i*vl_i / (W + w_i)
5231 		 *
5232 		 * And the actual lag after adding an entity with vl_i is:
5233 		 *
5234 		 *   vl'_i = V' - v_i
5235 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5236 		 *         = vl_i - w_i*vl_i / (W + w_i)
5237 		 *
5238 		 * Which is strictly less than vl_i. So in order to preserve lag
5239 		 * we should inflate the lag before placement such that the
5240 		 * effective lag after placement comes out right.
5241 		 *
5242 		 * As such, invert the above relation for vl'_i to get the vl_i
5243 		 * we need to use such that the lag after placement is the lag
5244 		 * we computed before dequeue.
5245 		 *
5246 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5247 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5248 		 *
5249 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5250 		 *                   = W*vl_i
5251 		 *
5252 		 *   vl_i = (W + w_i)*vl'_i / W
5253 		 */
5254 		load = cfs_rq->avg_load;
5255 		if (curr && curr->on_rq)
5256 			load += scale_load_down(curr->load.weight);
5257 
5258 		lag *= load + scale_load_down(se->load.weight);
5259 		if (WARN_ON_ONCE(!load))
5260 			load = 1;
5261 		lag = div_s64(lag, load);
5262 	}
5263 
5264 	se->vruntime = vruntime - lag;
5265 
5266 	/*
5267 	 * When joining the competition; the exisiting tasks will be,
5268 	 * on average, halfway through their slice, as such start tasks
5269 	 * off with half a slice to ease into the competition.
5270 	 */
5271 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5272 		vslice /= 2;
5273 
5274 	/*
5275 	 * EEVDF: vd_i = ve_i + r_i/w_i
5276 	 */
5277 	se->deadline = se->vruntime + vslice;
5278 }
5279 
5280 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5281 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5282 
5283 static inline bool cfs_bandwidth_used(void);
5284 
5285 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5286 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5287 {
5288 	bool curr = cfs_rq->curr == se;
5289 
5290 	/*
5291 	 * If we're the current task, we must renormalise before calling
5292 	 * update_curr().
5293 	 */
5294 	if (curr)
5295 		place_entity(cfs_rq, se, flags);
5296 
5297 	update_curr(cfs_rq);
5298 
5299 	/*
5300 	 * When enqueuing a sched_entity, we must:
5301 	 *   - Update loads to have both entity and cfs_rq synced with now.
5302 	 *   - For group_entity, update its runnable_weight to reflect the new
5303 	 *     h_nr_running of its group cfs_rq.
5304 	 *   - For group_entity, update its weight to reflect the new share of
5305 	 *     its group cfs_rq
5306 	 *   - Add its new weight to cfs_rq->load.weight
5307 	 */
5308 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5309 	se_update_runnable(se);
5310 	/*
5311 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5312 	 * but update_cfs_group() here will re-adjust the weight and have to
5313 	 * undo/redo all that. Seems wasteful.
5314 	 */
5315 	update_cfs_group(se);
5316 
5317 	/*
5318 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5319 	 * we can place the entity.
5320 	 */
5321 	if (!curr)
5322 		place_entity(cfs_rq, se, flags);
5323 
5324 	account_entity_enqueue(cfs_rq, se);
5325 
5326 	/* Entity has migrated, no longer consider this task hot */
5327 	if (flags & ENQUEUE_MIGRATED)
5328 		se->exec_start = 0;
5329 
5330 	check_schedstat_required();
5331 	update_stats_enqueue_fair(cfs_rq, se, flags);
5332 	if (!curr)
5333 		__enqueue_entity(cfs_rq, se);
5334 	se->on_rq = 1;
5335 
5336 	if (cfs_rq->nr_running == 1) {
5337 		check_enqueue_throttle(cfs_rq);
5338 		if (!throttled_hierarchy(cfs_rq)) {
5339 			list_add_leaf_cfs_rq(cfs_rq);
5340 		} else {
5341 #ifdef CONFIG_CFS_BANDWIDTH
5342 			struct rq *rq = rq_of(cfs_rq);
5343 
5344 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5345 				cfs_rq->throttled_clock = rq_clock(rq);
5346 			if (!cfs_rq->throttled_clock_self)
5347 				cfs_rq->throttled_clock_self = rq_clock(rq);
5348 #endif
5349 		}
5350 	}
5351 }
5352 
__clear_buddies_next(struct sched_entity * se)5353 static void __clear_buddies_next(struct sched_entity *se)
5354 {
5355 	for_each_sched_entity(se) {
5356 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5357 		if (cfs_rq->next != se)
5358 			break;
5359 
5360 		cfs_rq->next = NULL;
5361 	}
5362 }
5363 
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5364 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5365 {
5366 	if (cfs_rq->next == se)
5367 		__clear_buddies_next(se);
5368 }
5369 
5370 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5371 
5372 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5373 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5374 {
5375 	int action = UPDATE_TG;
5376 
5377 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5378 		action |= DO_DETACH;
5379 
5380 	/*
5381 	 * Update run-time statistics of the 'current'.
5382 	 */
5383 	update_curr(cfs_rq);
5384 
5385 	/*
5386 	 * When dequeuing a sched_entity, we must:
5387 	 *   - Update loads to have both entity and cfs_rq synced with now.
5388 	 *   - For group_entity, update its runnable_weight to reflect the new
5389 	 *     h_nr_running of its group cfs_rq.
5390 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5391 	 *   - For group entity, update its weight to reflect the new share
5392 	 *     of its group cfs_rq.
5393 	 */
5394 	update_load_avg(cfs_rq, se, action);
5395 	se_update_runnable(se);
5396 
5397 	update_stats_dequeue_fair(cfs_rq, se, flags);
5398 
5399 	clear_buddies(cfs_rq, se);
5400 
5401 	update_entity_lag(cfs_rq, se);
5402 	if (se != cfs_rq->curr)
5403 		__dequeue_entity(cfs_rq, se);
5404 	se->on_rq = 0;
5405 	account_entity_dequeue(cfs_rq, se);
5406 
5407 	/* return excess runtime on last dequeue */
5408 	return_cfs_rq_runtime(cfs_rq);
5409 
5410 	update_cfs_group(se);
5411 
5412 	/*
5413 	 * Now advance min_vruntime if @se was the entity holding it back,
5414 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5415 	 * put back on, and if we advance min_vruntime, we'll be placed back
5416 	 * further than we started -- ie. we'll be penalized.
5417 	 */
5418 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5419 		update_min_vruntime(cfs_rq);
5420 
5421 	if (cfs_rq->nr_running == 0)
5422 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5423 }
5424 
5425 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5426 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5427 {
5428 	clear_buddies(cfs_rq, se);
5429 
5430 	/* 'current' is not kept within the tree. */
5431 	if (se->on_rq) {
5432 		/*
5433 		 * Any task has to be enqueued before it get to execute on
5434 		 * a CPU. So account for the time it spent waiting on the
5435 		 * runqueue.
5436 		 */
5437 		update_stats_wait_end_fair(cfs_rq, se);
5438 		__dequeue_entity(cfs_rq, se);
5439 		update_load_avg(cfs_rq, se, UPDATE_TG);
5440 		/*
5441 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5442 		 * which isn't used until dequeue.
5443 		 */
5444 		se->vlag = se->deadline;
5445 	}
5446 
5447 	update_stats_curr_start(cfs_rq, se);
5448 	cfs_rq->curr = se;
5449 
5450 	/*
5451 	 * Track our maximum slice length, if the CPU's load is at
5452 	 * least twice that of our own weight (i.e. dont track it
5453 	 * when there are only lesser-weight tasks around):
5454 	 */
5455 	if (schedstat_enabled() &&
5456 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5457 		struct sched_statistics *stats;
5458 
5459 		stats = __schedstats_from_se(se);
5460 		__schedstat_set(stats->slice_max,
5461 				max((u64)stats->slice_max,
5462 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5463 	}
5464 
5465 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5466 }
5467 
5468 /*
5469  * Pick the next process, keeping these things in mind, in this order:
5470  * 1) keep things fair between processes/task groups
5471  * 2) pick the "next" process, since someone really wants that to run
5472  * 3) pick the "last" process, for cache locality
5473  * 4) do not run the "skip" process, if something else is available
5474  */
5475 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)5476 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5477 {
5478 	/*
5479 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5480 	 */
5481 	if (sched_feat(NEXT_BUDDY) &&
5482 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5483 		return cfs_rq->next;
5484 
5485 	return pick_eevdf(cfs_rq);
5486 }
5487 
5488 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5489 
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5490 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5491 {
5492 	/*
5493 	 * If still on the runqueue then deactivate_task()
5494 	 * was not called and update_curr() has to be done:
5495 	 */
5496 	if (prev->on_rq)
5497 		update_curr(cfs_rq);
5498 
5499 	/* throttle cfs_rqs exceeding runtime */
5500 	check_cfs_rq_runtime(cfs_rq);
5501 
5502 	if (prev->on_rq) {
5503 		update_stats_wait_start_fair(cfs_rq, prev);
5504 		/* Put 'current' back into the tree. */
5505 		__enqueue_entity(cfs_rq, prev);
5506 		/* in !on_rq case, update occurred at dequeue */
5507 		update_load_avg(cfs_rq, prev, 0);
5508 	}
5509 	cfs_rq->curr = NULL;
5510 }
5511 
5512 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5513 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5514 {
5515 	/*
5516 	 * Update run-time statistics of the 'current'.
5517 	 */
5518 	update_curr(cfs_rq);
5519 
5520 	/*
5521 	 * Ensure that runnable average is periodically updated.
5522 	 */
5523 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5524 	update_cfs_group(curr);
5525 
5526 #ifdef CONFIG_SCHED_HRTICK
5527 	/*
5528 	 * queued ticks are scheduled to match the slice, so don't bother
5529 	 * validating it and just reschedule.
5530 	 */
5531 	if (queued) {
5532 		resched_curr(rq_of(cfs_rq));
5533 		return;
5534 	}
5535 	/*
5536 	 * don't let the period tick interfere with the hrtick preemption
5537 	 */
5538 	if (!sched_feat(DOUBLE_TICK) &&
5539 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5540 		return;
5541 #endif
5542 }
5543 
5544 
5545 /**************************************************
5546  * CFS bandwidth control machinery
5547  */
5548 
5549 #ifdef CONFIG_CFS_BANDWIDTH
5550 
5551 #ifdef CONFIG_JUMP_LABEL
5552 static struct static_key __cfs_bandwidth_used;
5553 
cfs_bandwidth_used(void)5554 static inline bool cfs_bandwidth_used(void)
5555 {
5556 	return static_key_false(&__cfs_bandwidth_used);
5557 }
5558 
cfs_bandwidth_usage_inc(void)5559 void cfs_bandwidth_usage_inc(void)
5560 {
5561 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5562 }
5563 
cfs_bandwidth_usage_dec(void)5564 void cfs_bandwidth_usage_dec(void)
5565 {
5566 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5567 }
5568 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5569 static bool cfs_bandwidth_used(void)
5570 {
5571 	return true;
5572 }
5573 
cfs_bandwidth_usage_inc(void)5574 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5575 void cfs_bandwidth_usage_dec(void) {}
5576 #endif /* CONFIG_JUMP_LABEL */
5577 
5578 /*
5579  * default period for cfs group bandwidth.
5580  * default: 0.1s, units: nanoseconds
5581  */
default_cfs_period(void)5582 static inline u64 default_cfs_period(void)
5583 {
5584 	return 100000000ULL;
5585 }
5586 
sched_cfs_bandwidth_slice(void)5587 static inline u64 sched_cfs_bandwidth_slice(void)
5588 {
5589 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5590 }
5591 
5592 /*
5593  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5594  * directly instead of rq->clock to avoid adding additional synchronization
5595  * around rq->lock.
5596  *
5597  * requires cfs_b->lock
5598  */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5599 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5600 {
5601 	s64 runtime;
5602 
5603 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5604 		return;
5605 
5606 	cfs_b->runtime += cfs_b->quota;
5607 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5608 	if (runtime > 0) {
5609 		cfs_b->burst_time += runtime;
5610 		cfs_b->nr_burst++;
5611 	}
5612 
5613 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5614 	cfs_b->runtime_snap = cfs_b->runtime;
5615 }
5616 
tg_cfs_bandwidth(struct task_group * tg)5617 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5618 {
5619 	return &tg->cfs_bandwidth;
5620 }
5621 
5622 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5623 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5624 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5625 {
5626 	u64 min_amount, amount = 0;
5627 
5628 	lockdep_assert_held(&cfs_b->lock);
5629 
5630 	/* note: this is a positive sum as runtime_remaining <= 0 */
5631 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5632 
5633 	if (cfs_b->quota == RUNTIME_INF)
5634 		amount = min_amount;
5635 	else {
5636 		start_cfs_bandwidth(cfs_b);
5637 
5638 		if (cfs_b->runtime > 0) {
5639 			amount = min(cfs_b->runtime, min_amount);
5640 			cfs_b->runtime -= amount;
5641 			cfs_b->idle = 0;
5642 		}
5643 	}
5644 
5645 	cfs_rq->runtime_remaining += amount;
5646 
5647 	return cfs_rq->runtime_remaining > 0;
5648 }
5649 
5650 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5651 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5652 {
5653 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5654 	int ret;
5655 
5656 	raw_spin_lock(&cfs_b->lock);
5657 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5658 	raw_spin_unlock(&cfs_b->lock);
5659 
5660 	return ret;
5661 }
5662 
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5663 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5664 {
5665 	/* dock delta_exec before expiring quota (as it could span periods) */
5666 	cfs_rq->runtime_remaining -= delta_exec;
5667 
5668 	if (likely(cfs_rq->runtime_remaining > 0))
5669 		return;
5670 
5671 	if (cfs_rq->throttled)
5672 		return;
5673 	/*
5674 	 * if we're unable to extend our runtime we resched so that the active
5675 	 * hierarchy can be throttled
5676 	 */
5677 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5678 		resched_curr(rq_of(cfs_rq));
5679 }
5680 
5681 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5682 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5683 {
5684 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5685 		return;
5686 
5687 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5688 }
5689 
cfs_rq_throttled(struct cfs_rq * cfs_rq)5690 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5691 {
5692 	return cfs_bandwidth_used() && cfs_rq->throttled;
5693 }
5694 
5695 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5696 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5697 {
5698 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5699 }
5700 
5701 /*
5702  * Ensure that neither of the group entities corresponding to src_cpu or
5703  * dest_cpu are members of a throttled hierarchy when performing group
5704  * load-balance operations.
5705  */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5706 static inline int throttled_lb_pair(struct task_group *tg,
5707 				    int src_cpu, int dest_cpu)
5708 {
5709 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5710 
5711 	src_cfs_rq = tg->cfs_rq[src_cpu];
5712 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5713 
5714 	return throttled_hierarchy(src_cfs_rq) ||
5715 	       throttled_hierarchy(dest_cfs_rq);
5716 }
5717 
tg_unthrottle_up(struct task_group * tg,void * data)5718 static int tg_unthrottle_up(struct task_group *tg, void *data)
5719 {
5720 	struct rq *rq = data;
5721 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5722 
5723 	cfs_rq->throttle_count--;
5724 	if (!cfs_rq->throttle_count) {
5725 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5726 					     cfs_rq->throttled_clock_pelt;
5727 
5728 		/* Add cfs_rq with load or one or more already running entities to the list */
5729 		if (!cfs_rq_is_decayed(cfs_rq))
5730 			list_add_leaf_cfs_rq(cfs_rq);
5731 
5732 		if (cfs_rq->throttled_clock_self) {
5733 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5734 
5735 			cfs_rq->throttled_clock_self = 0;
5736 
5737 			if (SCHED_WARN_ON((s64)delta < 0))
5738 				delta = 0;
5739 
5740 			cfs_rq->throttled_clock_self_time += delta;
5741 		}
5742 	}
5743 
5744 	return 0;
5745 }
5746 
tg_throttle_down(struct task_group * tg,void * data)5747 static int tg_throttle_down(struct task_group *tg, void *data)
5748 {
5749 	struct rq *rq = data;
5750 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5751 
5752 	/* group is entering throttled state, stop time */
5753 	if (!cfs_rq->throttle_count) {
5754 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5755 		list_del_leaf_cfs_rq(cfs_rq);
5756 
5757 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5758 		if (cfs_rq->nr_running)
5759 			cfs_rq->throttled_clock_self = rq_clock(rq);
5760 	}
5761 	cfs_rq->throttle_count++;
5762 
5763 	return 0;
5764 }
5765 
throttle_cfs_rq(struct cfs_rq * cfs_rq)5766 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5767 {
5768 	struct rq *rq = rq_of(cfs_rq);
5769 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5770 	struct sched_entity *se;
5771 	long task_delta, idle_task_delta, dequeue = 1;
5772 
5773 	raw_spin_lock(&cfs_b->lock);
5774 	/* This will start the period timer if necessary */
5775 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5776 		/*
5777 		 * We have raced with bandwidth becoming available, and if we
5778 		 * actually throttled the timer might not unthrottle us for an
5779 		 * entire period. We additionally needed to make sure that any
5780 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5781 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5782 		 * for 1ns of runtime rather than just check cfs_b.
5783 		 */
5784 		dequeue = 0;
5785 	} else {
5786 		list_add_tail_rcu(&cfs_rq->throttled_list,
5787 				  &cfs_b->throttled_cfs_rq);
5788 	}
5789 	raw_spin_unlock(&cfs_b->lock);
5790 
5791 	if (!dequeue)
5792 		return false;  /* Throttle no longer required. */
5793 
5794 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5795 
5796 	/* freeze hierarchy runnable averages while throttled */
5797 	rcu_read_lock();
5798 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5799 	rcu_read_unlock();
5800 
5801 	task_delta = cfs_rq->h_nr_running;
5802 	idle_task_delta = cfs_rq->idle_h_nr_running;
5803 	for_each_sched_entity(se) {
5804 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5805 		/* throttled entity or throttle-on-deactivate */
5806 		if (!se->on_rq)
5807 			goto done;
5808 
5809 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5810 
5811 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5812 			idle_task_delta = cfs_rq->h_nr_running;
5813 
5814 		qcfs_rq->h_nr_running -= task_delta;
5815 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5816 
5817 		if (qcfs_rq->load.weight) {
5818 			/* Avoid re-evaluating load for this entity: */
5819 			se = parent_entity(se);
5820 			break;
5821 		}
5822 	}
5823 
5824 	for_each_sched_entity(se) {
5825 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5826 		/* throttled entity or throttle-on-deactivate */
5827 		if (!se->on_rq)
5828 			goto done;
5829 
5830 		update_load_avg(qcfs_rq, se, 0);
5831 		se_update_runnable(se);
5832 
5833 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5834 			idle_task_delta = cfs_rq->h_nr_running;
5835 
5836 		qcfs_rq->h_nr_running -= task_delta;
5837 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5838 	}
5839 
5840 	/* At this point se is NULL and we are at root level*/
5841 	sub_nr_running(rq, task_delta);
5842 
5843 done:
5844 	/*
5845 	 * Note: distribution will already see us throttled via the
5846 	 * throttled-list.  rq->lock protects completion.
5847 	 */
5848 	cfs_rq->throttled = 1;
5849 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5850 	if (cfs_rq->nr_running)
5851 		cfs_rq->throttled_clock = rq_clock(rq);
5852 	return true;
5853 }
5854 
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5855 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5856 {
5857 	struct rq *rq = rq_of(cfs_rq);
5858 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5859 	struct sched_entity *se;
5860 	long task_delta, idle_task_delta;
5861 
5862 	se = cfs_rq->tg->se[cpu_of(rq)];
5863 
5864 	cfs_rq->throttled = 0;
5865 
5866 	update_rq_clock(rq);
5867 
5868 	raw_spin_lock(&cfs_b->lock);
5869 	if (cfs_rq->throttled_clock) {
5870 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5871 		cfs_rq->throttled_clock = 0;
5872 	}
5873 	list_del_rcu(&cfs_rq->throttled_list);
5874 	raw_spin_unlock(&cfs_b->lock);
5875 
5876 	/* update hierarchical throttle state */
5877 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5878 
5879 	if (!cfs_rq->load.weight) {
5880 		if (!cfs_rq->on_list)
5881 			return;
5882 		/*
5883 		 * Nothing to run but something to decay (on_list)?
5884 		 * Complete the branch.
5885 		 */
5886 		for_each_sched_entity(se) {
5887 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5888 				break;
5889 		}
5890 		goto unthrottle_throttle;
5891 	}
5892 
5893 	task_delta = cfs_rq->h_nr_running;
5894 	idle_task_delta = cfs_rq->idle_h_nr_running;
5895 	for_each_sched_entity(se) {
5896 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5897 
5898 		if (se->on_rq)
5899 			break;
5900 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5901 
5902 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5903 			idle_task_delta = cfs_rq->h_nr_running;
5904 
5905 		qcfs_rq->h_nr_running += task_delta;
5906 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5907 
5908 		/* end evaluation on encountering a throttled cfs_rq */
5909 		if (cfs_rq_throttled(qcfs_rq))
5910 			goto unthrottle_throttle;
5911 	}
5912 
5913 	for_each_sched_entity(se) {
5914 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5915 
5916 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5917 		se_update_runnable(se);
5918 
5919 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5920 			idle_task_delta = cfs_rq->h_nr_running;
5921 
5922 		qcfs_rq->h_nr_running += task_delta;
5923 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5924 
5925 		/* end evaluation on encountering a throttled cfs_rq */
5926 		if (cfs_rq_throttled(qcfs_rq))
5927 			goto unthrottle_throttle;
5928 	}
5929 
5930 	/* At this point se is NULL and we are at root level*/
5931 	add_nr_running(rq, task_delta);
5932 
5933 unthrottle_throttle:
5934 	assert_list_leaf_cfs_rq(rq);
5935 
5936 	/* Determine whether we need to wake up potentially idle CPU: */
5937 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5938 		resched_curr(rq);
5939 }
5940 
5941 #ifdef CONFIG_SMP
__cfsb_csd_unthrottle(void * arg)5942 static void __cfsb_csd_unthrottle(void *arg)
5943 {
5944 	struct cfs_rq *cursor, *tmp;
5945 	struct rq *rq = arg;
5946 	struct rq_flags rf;
5947 
5948 	rq_lock(rq, &rf);
5949 
5950 	/*
5951 	 * Iterating over the list can trigger several call to
5952 	 * update_rq_clock() in unthrottle_cfs_rq().
5953 	 * Do it once and skip the potential next ones.
5954 	 */
5955 	update_rq_clock(rq);
5956 	rq_clock_start_loop_update(rq);
5957 
5958 	/*
5959 	 * Since we hold rq lock we're safe from concurrent manipulation of
5960 	 * the CSD list. However, this RCU critical section annotates the
5961 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5962 	 * race with group being freed in the window between removing it
5963 	 * from the list and advancing to the next entry in the list.
5964 	 */
5965 	rcu_read_lock();
5966 
5967 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5968 				 throttled_csd_list) {
5969 		list_del_init(&cursor->throttled_csd_list);
5970 
5971 		if (cfs_rq_throttled(cursor))
5972 			unthrottle_cfs_rq(cursor);
5973 	}
5974 
5975 	rcu_read_unlock();
5976 
5977 	rq_clock_stop_loop_update(rq);
5978 	rq_unlock(rq, &rf);
5979 }
5980 
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5981 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5982 {
5983 	struct rq *rq = rq_of(cfs_rq);
5984 	bool first;
5985 
5986 	if (rq == this_rq()) {
5987 		unthrottle_cfs_rq(cfs_rq);
5988 		return;
5989 	}
5990 
5991 	/* Already enqueued */
5992 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5993 		return;
5994 
5995 	first = list_empty(&rq->cfsb_csd_list);
5996 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5997 	if (first)
5998 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5999 }
6000 #else
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6001 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6002 {
6003 	unthrottle_cfs_rq(cfs_rq);
6004 }
6005 #endif
6006 
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6007 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6008 {
6009 	lockdep_assert_rq_held(rq_of(cfs_rq));
6010 
6011 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6012 	    cfs_rq->runtime_remaining <= 0))
6013 		return;
6014 
6015 	__unthrottle_cfs_rq_async(cfs_rq);
6016 }
6017 
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)6018 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6019 {
6020 	struct cfs_rq *local_unthrottle = NULL;
6021 	int this_cpu = smp_processor_id();
6022 	u64 runtime, remaining = 1;
6023 	bool throttled = false;
6024 	struct cfs_rq *cfs_rq;
6025 	struct rq_flags rf;
6026 	struct rq *rq;
6027 
6028 	rcu_read_lock();
6029 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6030 				throttled_list) {
6031 		rq = rq_of(cfs_rq);
6032 
6033 		if (!remaining) {
6034 			throttled = true;
6035 			break;
6036 		}
6037 
6038 		rq_lock_irqsave(rq, &rf);
6039 		if (!cfs_rq_throttled(cfs_rq))
6040 			goto next;
6041 
6042 #ifdef CONFIG_SMP
6043 		/* Already queued for async unthrottle */
6044 		if (!list_empty(&cfs_rq->throttled_csd_list))
6045 			goto next;
6046 #endif
6047 
6048 		/* By the above checks, this should never be true */
6049 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6050 
6051 		raw_spin_lock(&cfs_b->lock);
6052 		runtime = -cfs_rq->runtime_remaining + 1;
6053 		if (runtime > cfs_b->runtime)
6054 			runtime = cfs_b->runtime;
6055 		cfs_b->runtime -= runtime;
6056 		remaining = cfs_b->runtime;
6057 		raw_spin_unlock(&cfs_b->lock);
6058 
6059 		cfs_rq->runtime_remaining += runtime;
6060 
6061 		/* we check whether we're throttled above */
6062 		if (cfs_rq->runtime_remaining > 0) {
6063 			if (cpu_of(rq) != this_cpu ||
6064 			    SCHED_WARN_ON(local_unthrottle))
6065 				unthrottle_cfs_rq_async(cfs_rq);
6066 			else
6067 				local_unthrottle = cfs_rq;
6068 		} else {
6069 			throttled = true;
6070 		}
6071 
6072 next:
6073 		rq_unlock_irqrestore(rq, &rf);
6074 	}
6075 	rcu_read_unlock();
6076 
6077 	if (local_unthrottle) {
6078 		rq = cpu_rq(this_cpu);
6079 		rq_lock_irqsave(rq, &rf);
6080 		if (cfs_rq_throttled(local_unthrottle))
6081 			unthrottle_cfs_rq(local_unthrottle);
6082 		rq_unlock_irqrestore(rq, &rf);
6083 	}
6084 
6085 	return throttled;
6086 }
6087 
6088 /*
6089  * Responsible for refilling a task_group's bandwidth and unthrottling its
6090  * cfs_rqs as appropriate. If there has been no activity within the last
6091  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6092  * used to track this state.
6093  */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6094 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6095 {
6096 	int throttled;
6097 
6098 	/* no need to continue the timer with no bandwidth constraint */
6099 	if (cfs_b->quota == RUNTIME_INF)
6100 		goto out_deactivate;
6101 
6102 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6103 	cfs_b->nr_periods += overrun;
6104 
6105 	/* Refill extra burst quota even if cfs_b->idle */
6106 	__refill_cfs_bandwidth_runtime(cfs_b);
6107 
6108 	/*
6109 	 * idle depends on !throttled (for the case of a large deficit), and if
6110 	 * we're going inactive then everything else can be deferred
6111 	 */
6112 	if (cfs_b->idle && !throttled)
6113 		goto out_deactivate;
6114 
6115 	if (!throttled) {
6116 		/* mark as potentially idle for the upcoming period */
6117 		cfs_b->idle = 1;
6118 		return 0;
6119 	}
6120 
6121 	/* account preceding periods in which throttling occurred */
6122 	cfs_b->nr_throttled += overrun;
6123 
6124 	/*
6125 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6126 	 */
6127 	while (throttled && cfs_b->runtime > 0) {
6128 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6129 		/* we can't nest cfs_b->lock while distributing bandwidth */
6130 		throttled = distribute_cfs_runtime(cfs_b);
6131 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6132 	}
6133 
6134 	/*
6135 	 * While we are ensured activity in the period following an
6136 	 * unthrottle, this also covers the case in which the new bandwidth is
6137 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6138 	 * timer to remain active while there are any throttled entities.)
6139 	 */
6140 	cfs_b->idle = 0;
6141 
6142 	return 0;
6143 
6144 out_deactivate:
6145 	return 1;
6146 }
6147 
6148 /* a cfs_rq won't donate quota below this amount */
6149 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6150 /* minimum remaining period time to redistribute slack quota */
6151 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6152 /* how long we wait to gather additional slack before distributing */
6153 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6154 
6155 /*
6156  * Are we near the end of the current quota period?
6157  *
6158  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6159  * hrtimer base being cleared by hrtimer_start. In the case of
6160  * migrate_hrtimers, base is never cleared, so we are fine.
6161  */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6162 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6163 {
6164 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6165 	s64 remaining;
6166 
6167 	/* if the call-back is running a quota refresh is already occurring */
6168 	if (hrtimer_callback_running(refresh_timer))
6169 		return 1;
6170 
6171 	/* is a quota refresh about to occur? */
6172 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6173 	if (remaining < (s64)min_expire)
6174 		return 1;
6175 
6176 	return 0;
6177 }
6178 
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6179 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6180 {
6181 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6182 
6183 	/* if there's a quota refresh soon don't bother with slack */
6184 	if (runtime_refresh_within(cfs_b, min_left))
6185 		return;
6186 
6187 	/* don't push forwards an existing deferred unthrottle */
6188 	if (cfs_b->slack_started)
6189 		return;
6190 	cfs_b->slack_started = true;
6191 
6192 	hrtimer_start(&cfs_b->slack_timer,
6193 			ns_to_ktime(cfs_bandwidth_slack_period),
6194 			HRTIMER_MODE_REL);
6195 }
6196 
6197 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6198 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6199 {
6200 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6201 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6202 
6203 	if (slack_runtime <= 0)
6204 		return;
6205 
6206 	raw_spin_lock(&cfs_b->lock);
6207 	if (cfs_b->quota != RUNTIME_INF) {
6208 		cfs_b->runtime += slack_runtime;
6209 
6210 		/* we are under rq->lock, defer unthrottling using a timer */
6211 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6212 		    !list_empty(&cfs_b->throttled_cfs_rq))
6213 			start_cfs_slack_bandwidth(cfs_b);
6214 	}
6215 	raw_spin_unlock(&cfs_b->lock);
6216 
6217 	/* even if it's not valid for return we don't want to try again */
6218 	cfs_rq->runtime_remaining -= slack_runtime;
6219 }
6220 
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6221 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6222 {
6223 	if (!cfs_bandwidth_used())
6224 		return;
6225 
6226 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6227 		return;
6228 
6229 	__return_cfs_rq_runtime(cfs_rq);
6230 }
6231 
6232 /*
6233  * This is done with a timer (instead of inline with bandwidth return) since
6234  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6235  */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6236 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6237 {
6238 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6239 	unsigned long flags;
6240 
6241 	/* confirm we're still not at a refresh boundary */
6242 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6243 	cfs_b->slack_started = false;
6244 
6245 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6246 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6247 		return;
6248 	}
6249 
6250 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6251 		runtime = cfs_b->runtime;
6252 
6253 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6254 
6255 	if (!runtime)
6256 		return;
6257 
6258 	distribute_cfs_runtime(cfs_b);
6259 }
6260 
6261 /*
6262  * When a group wakes up we want to make sure that its quota is not already
6263  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6264  * runtime as update_curr() throttling can not trigger until it's on-rq.
6265  */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6266 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6267 {
6268 	if (!cfs_bandwidth_used())
6269 		return;
6270 
6271 	/* an active group must be handled by the update_curr()->put() path */
6272 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6273 		return;
6274 
6275 	/* ensure the group is not already throttled */
6276 	if (cfs_rq_throttled(cfs_rq))
6277 		return;
6278 
6279 	/* update runtime allocation */
6280 	account_cfs_rq_runtime(cfs_rq, 0);
6281 	if (cfs_rq->runtime_remaining <= 0)
6282 		throttle_cfs_rq(cfs_rq);
6283 }
6284 
sync_throttle(struct task_group * tg,int cpu)6285 static void sync_throttle(struct task_group *tg, int cpu)
6286 {
6287 	struct cfs_rq *pcfs_rq, *cfs_rq;
6288 
6289 	if (!cfs_bandwidth_used())
6290 		return;
6291 
6292 	if (!tg->parent)
6293 		return;
6294 
6295 	cfs_rq = tg->cfs_rq[cpu];
6296 	pcfs_rq = tg->parent->cfs_rq[cpu];
6297 
6298 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6299 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6300 }
6301 
6302 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6303 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6304 {
6305 	if (!cfs_bandwidth_used())
6306 		return false;
6307 
6308 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6309 		return false;
6310 
6311 	/*
6312 	 * it's possible for a throttled entity to be forced into a running
6313 	 * state (e.g. set_curr_task), in this case we're finished.
6314 	 */
6315 	if (cfs_rq_throttled(cfs_rq))
6316 		return true;
6317 
6318 	return throttle_cfs_rq(cfs_rq);
6319 }
6320 
sched_cfs_slack_timer(struct hrtimer * timer)6321 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6322 {
6323 	struct cfs_bandwidth *cfs_b =
6324 		container_of(timer, struct cfs_bandwidth, slack_timer);
6325 
6326 	do_sched_cfs_slack_timer(cfs_b);
6327 
6328 	return HRTIMER_NORESTART;
6329 }
6330 
6331 extern const u64 max_cfs_quota_period;
6332 
sched_cfs_period_timer(struct hrtimer * timer)6333 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6334 {
6335 	struct cfs_bandwidth *cfs_b =
6336 		container_of(timer, struct cfs_bandwidth, period_timer);
6337 	unsigned long flags;
6338 	int overrun;
6339 	int idle = 0;
6340 	int count = 0;
6341 
6342 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6343 	for (;;) {
6344 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6345 		if (!overrun)
6346 			break;
6347 
6348 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6349 
6350 		if (++count > 3) {
6351 			u64 new, old = ktime_to_ns(cfs_b->period);
6352 
6353 			/*
6354 			 * Grow period by a factor of 2 to avoid losing precision.
6355 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6356 			 * to fail.
6357 			 */
6358 			new = old * 2;
6359 			if (new < max_cfs_quota_period) {
6360 				cfs_b->period = ns_to_ktime(new);
6361 				cfs_b->quota *= 2;
6362 				cfs_b->burst *= 2;
6363 
6364 				pr_warn_ratelimited(
6365 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6366 					smp_processor_id(),
6367 					div_u64(new, NSEC_PER_USEC),
6368 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6369 			} else {
6370 				pr_warn_ratelimited(
6371 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6372 					smp_processor_id(),
6373 					div_u64(old, NSEC_PER_USEC),
6374 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6375 			}
6376 
6377 			/* reset count so we don't come right back in here */
6378 			count = 0;
6379 		}
6380 	}
6381 	if (idle)
6382 		cfs_b->period_active = 0;
6383 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6384 
6385 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6386 }
6387 
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6388 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6389 {
6390 	raw_spin_lock_init(&cfs_b->lock);
6391 	cfs_b->runtime = 0;
6392 	cfs_b->quota = RUNTIME_INF;
6393 	cfs_b->period = ns_to_ktime(default_cfs_period());
6394 	cfs_b->burst = 0;
6395 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6396 
6397 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6398 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6399 	cfs_b->period_timer.function = sched_cfs_period_timer;
6400 
6401 	/* Add a random offset so that timers interleave */
6402 	hrtimer_set_expires(&cfs_b->period_timer,
6403 			    get_random_u32_below(cfs_b->period));
6404 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6405 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6406 	cfs_b->slack_started = false;
6407 }
6408 
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6409 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6410 {
6411 	cfs_rq->runtime_enabled = 0;
6412 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6413 #ifdef CONFIG_SMP
6414 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6415 #endif
6416 }
6417 
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6418 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6419 {
6420 	lockdep_assert_held(&cfs_b->lock);
6421 
6422 	if (cfs_b->period_active)
6423 		return;
6424 
6425 	cfs_b->period_active = 1;
6426 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6427 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6428 }
6429 
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6430 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6431 {
6432 	int __maybe_unused i;
6433 
6434 	/* init_cfs_bandwidth() was not called */
6435 	if (!cfs_b->throttled_cfs_rq.next)
6436 		return;
6437 
6438 	hrtimer_cancel(&cfs_b->period_timer);
6439 	hrtimer_cancel(&cfs_b->slack_timer);
6440 
6441 	/*
6442 	 * It is possible that we still have some cfs_rq's pending on a CSD
6443 	 * list, though this race is very rare. In order for this to occur, we
6444 	 * must have raced with the last task leaving the group while there
6445 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6446 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6447 	 * we can simply flush all pending CSD work inline here. We're
6448 	 * guaranteed at this point that no additional cfs_rq of this group can
6449 	 * join a CSD list.
6450 	 */
6451 #ifdef CONFIG_SMP
6452 	for_each_possible_cpu(i) {
6453 		struct rq *rq = cpu_rq(i);
6454 		unsigned long flags;
6455 
6456 		if (list_empty(&rq->cfsb_csd_list))
6457 			continue;
6458 
6459 		local_irq_save(flags);
6460 		__cfsb_csd_unthrottle(rq);
6461 		local_irq_restore(flags);
6462 	}
6463 #endif
6464 }
6465 
6466 /*
6467  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6468  *
6469  * The race is harmless, since modifying bandwidth settings of unhooked group
6470  * bits doesn't do much.
6471  */
6472 
6473 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6474 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6475 {
6476 	struct task_group *tg;
6477 
6478 	lockdep_assert_rq_held(rq);
6479 
6480 	rcu_read_lock();
6481 	list_for_each_entry_rcu(tg, &task_groups, list) {
6482 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6483 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6484 
6485 		raw_spin_lock(&cfs_b->lock);
6486 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6487 		raw_spin_unlock(&cfs_b->lock);
6488 	}
6489 	rcu_read_unlock();
6490 }
6491 
6492 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6493 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6494 {
6495 	struct task_group *tg;
6496 
6497 	lockdep_assert_rq_held(rq);
6498 
6499 	/*
6500 	 * The rq clock has already been updated in the
6501 	 * set_rq_offline(), so we should skip updating
6502 	 * the rq clock again in unthrottle_cfs_rq().
6503 	 */
6504 	rq_clock_start_loop_update(rq);
6505 
6506 	rcu_read_lock();
6507 	list_for_each_entry_rcu(tg, &task_groups, list) {
6508 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6509 
6510 		if (!cfs_rq->runtime_enabled)
6511 			continue;
6512 
6513 		/*
6514 		 * clock_task is not advancing so we just need to make sure
6515 		 * there's some valid quota amount
6516 		 */
6517 		cfs_rq->runtime_remaining = 1;
6518 		/*
6519 		 * Offline rq is schedulable till CPU is completely disabled
6520 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6521 		 */
6522 		cfs_rq->runtime_enabled = 0;
6523 
6524 		if (cfs_rq_throttled(cfs_rq))
6525 			unthrottle_cfs_rq(cfs_rq);
6526 	}
6527 	rcu_read_unlock();
6528 
6529 	rq_clock_stop_loop_update(rq);
6530 }
6531 
cfs_task_bw_constrained(struct task_struct * p)6532 bool cfs_task_bw_constrained(struct task_struct *p)
6533 {
6534 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6535 
6536 	if (!cfs_bandwidth_used())
6537 		return false;
6538 
6539 	if (cfs_rq->runtime_enabled ||
6540 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6541 		return true;
6542 
6543 	return false;
6544 }
6545 
6546 #ifdef CONFIG_NO_HZ_FULL
6547 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6548 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6549 {
6550 	int cpu = cpu_of(rq);
6551 
6552 	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6553 		return;
6554 
6555 	if (!tick_nohz_full_cpu(cpu))
6556 		return;
6557 
6558 	if (rq->nr_running != 1)
6559 		return;
6560 
6561 	/*
6562 	 *  We know there is only one task runnable and we've just picked it. The
6563 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6564 	 *  be otherwise able to stop the tick. Just need to check if we are using
6565 	 *  bandwidth control.
6566 	 */
6567 	if (cfs_task_bw_constrained(p))
6568 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6569 }
6570 #endif
6571 
6572 #else /* CONFIG_CFS_BANDWIDTH */
6573 
cfs_bandwidth_used(void)6574 static inline bool cfs_bandwidth_used(void)
6575 {
6576 	return false;
6577 }
6578 
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6579 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6580 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6581 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6582 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6583 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6584 
cfs_rq_throttled(struct cfs_rq * cfs_rq)6585 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6586 {
6587 	return 0;
6588 }
6589 
throttled_hierarchy(struct cfs_rq * cfs_rq)6590 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6591 {
6592 	return 0;
6593 }
6594 
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6595 static inline int throttled_lb_pair(struct task_group *tg,
6596 				    int src_cpu, int dest_cpu)
6597 {
6598 	return 0;
6599 }
6600 
6601 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6602 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6603 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6604 #endif
6605 
tg_cfs_bandwidth(struct task_group * tg)6606 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6607 {
6608 	return NULL;
6609 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6610 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6611 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6612 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6613 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6614 bool cfs_task_bw_constrained(struct task_struct *p)
6615 {
6616 	return false;
6617 }
6618 #endif
6619 #endif /* CONFIG_CFS_BANDWIDTH */
6620 
6621 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6622 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6623 #endif
6624 
6625 /**************************************************
6626  * CFS operations on tasks:
6627  */
6628 
6629 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6630 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6631 {
6632 	struct sched_entity *se = &p->se;
6633 
6634 	SCHED_WARN_ON(task_rq(p) != rq);
6635 
6636 	if (rq->cfs.h_nr_running > 1) {
6637 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6638 		u64 slice = se->slice;
6639 		s64 delta = slice - ran;
6640 
6641 		if (delta < 0) {
6642 			if (task_current(rq, p))
6643 				resched_curr(rq);
6644 			return;
6645 		}
6646 		hrtick_start(rq, delta);
6647 	}
6648 }
6649 
6650 /*
6651  * called from enqueue/dequeue and updates the hrtick when the
6652  * current task is from our class and nr_running is low enough
6653  * to matter.
6654  */
hrtick_update(struct rq * rq)6655 static void hrtick_update(struct rq *rq)
6656 {
6657 	struct task_struct *curr = rq->curr;
6658 
6659 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6660 		return;
6661 
6662 	hrtick_start_fair(rq, curr);
6663 }
6664 #else /* !CONFIG_SCHED_HRTICK */
6665 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6666 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6667 {
6668 }
6669 
hrtick_update(struct rq * rq)6670 static inline void hrtick_update(struct rq *rq)
6671 {
6672 }
6673 #endif
6674 
6675 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6676 static inline bool cpu_overutilized(int cpu)
6677 {
6678 	unsigned long  rq_util_min, rq_util_max;
6679 
6680 	if (!sched_energy_enabled())
6681 		return false;
6682 
6683 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6684 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6685 
6686 	/* Return true only if the utilization doesn't fit CPU's capacity */
6687 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6688 }
6689 
set_rd_overutilized_status(struct root_domain * rd,unsigned int status)6690 static inline void set_rd_overutilized_status(struct root_domain *rd,
6691 					      unsigned int status)
6692 {
6693 	if (!sched_energy_enabled())
6694 		return;
6695 
6696 	WRITE_ONCE(rd->overutilized, status);
6697 	trace_sched_overutilized_tp(rd, !!status);
6698 }
6699 
check_update_overutilized_status(struct rq * rq)6700 static inline void check_update_overutilized_status(struct rq *rq)
6701 {
6702 	/*
6703 	 * overutilized field is used for load balancing decisions only
6704 	 * if energy aware scheduler is being used
6705 	 */
6706 	if (!sched_energy_enabled())
6707 		return;
6708 
6709 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
6710 		set_rd_overutilized_status(rq->rd, SG_OVERUTILIZED);
6711 }
6712 #else
check_update_overutilized_status(struct rq * rq)6713 static inline void check_update_overutilized_status(struct rq *rq) { }
6714 #endif
6715 
6716 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6717 static int sched_idle_rq(struct rq *rq)
6718 {
6719 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6720 			rq->nr_running);
6721 }
6722 
6723 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6724 static int sched_idle_cpu(int cpu)
6725 {
6726 	return sched_idle_rq(cpu_rq(cpu));
6727 }
6728 #endif
6729 
6730 /*
6731  * The enqueue_task method is called before nr_running is
6732  * increased. Here we update the fair scheduling stats and
6733  * then put the task into the rbtree:
6734  */
6735 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6736 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6737 {
6738 	struct cfs_rq *cfs_rq;
6739 	struct sched_entity *se = &p->se;
6740 	int idle_h_nr_running = task_has_idle_policy(p);
6741 	int task_new = !(flags & ENQUEUE_WAKEUP);
6742 
6743 	/*
6744 	 * The code below (indirectly) updates schedutil which looks at
6745 	 * the cfs_rq utilization to select a frequency.
6746 	 * Let's add the task's estimated utilization to the cfs_rq's
6747 	 * estimated utilization, before we update schedutil.
6748 	 */
6749 	util_est_enqueue(&rq->cfs, p);
6750 
6751 	/*
6752 	 * If in_iowait is set, the code below may not trigger any cpufreq
6753 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6754 	 * passed.
6755 	 */
6756 	if (p->in_iowait)
6757 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6758 
6759 	for_each_sched_entity(se) {
6760 		if (se->on_rq)
6761 			break;
6762 		cfs_rq = cfs_rq_of(se);
6763 		enqueue_entity(cfs_rq, se, flags);
6764 
6765 		cfs_rq->h_nr_running++;
6766 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6767 
6768 		if (cfs_rq_is_idle(cfs_rq))
6769 			idle_h_nr_running = 1;
6770 
6771 		/* end evaluation on encountering a throttled cfs_rq */
6772 		if (cfs_rq_throttled(cfs_rq))
6773 			goto enqueue_throttle;
6774 
6775 		flags = ENQUEUE_WAKEUP;
6776 	}
6777 
6778 	for_each_sched_entity(se) {
6779 		cfs_rq = cfs_rq_of(se);
6780 
6781 		update_load_avg(cfs_rq, se, UPDATE_TG);
6782 		se_update_runnable(se);
6783 		update_cfs_group(se);
6784 
6785 		cfs_rq->h_nr_running++;
6786 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6787 
6788 		if (cfs_rq_is_idle(cfs_rq))
6789 			idle_h_nr_running = 1;
6790 
6791 		/* end evaluation on encountering a throttled cfs_rq */
6792 		if (cfs_rq_throttled(cfs_rq))
6793 			goto enqueue_throttle;
6794 	}
6795 
6796 	/* At this point se is NULL and we are at root level*/
6797 	add_nr_running(rq, 1);
6798 
6799 	/*
6800 	 * Since new tasks are assigned an initial util_avg equal to
6801 	 * half of the spare capacity of their CPU, tiny tasks have the
6802 	 * ability to cross the overutilized threshold, which will
6803 	 * result in the load balancer ruining all the task placement
6804 	 * done by EAS. As a way to mitigate that effect, do not account
6805 	 * for the first enqueue operation of new tasks during the
6806 	 * overutilized flag detection.
6807 	 *
6808 	 * A better way of solving this problem would be to wait for
6809 	 * the PELT signals of tasks to converge before taking them
6810 	 * into account, but that is not straightforward to implement,
6811 	 * and the following generally works well enough in practice.
6812 	 */
6813 	if (!task_new)
6814 		check_update_overutilized_status(rq);
6815 
6816 enqueue_throttle:
6817 	assert_list_leaf_cfs_rq(rq);
6818 
6819 	hrtick_update(rq);
6820 }
6821 
6822 static void set_next_buddy(struct sched_entity *se);
6823 
6824 /*
6825  * The dequeue_task method is called before nr_running is
6826  * decreased. We remove the task from the rbtree and
6827  * update the fair scheduling stats:
6828  */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)6829 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6830 {
6831 	struct cfs_rq *cfs_rq;
6832 	struct sched_entity *se = &p->se;
6833 	int task_sleep = flags & DEQUEUE_SLEEP;
6834 	int idle_h_nr_running = task_has_idle_policy(p);
6835 	bool was_sched_idle = sched_idle_rq(rq);
6836 
6837 	util_est_dequeue(&rq->cfs, p);
6838 
6839 	for_each_sched_entity(se) {
6840 		cfs_rq = cfs_rq_of(se);
6841 		dequeue_entity(cfs_rq, se, flags);
6842 
6843 		cfs_rq->h_nr_running--;
6844 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6845 
6846 		if (cfs_rq_is_idle(cfs_rq))
6847 			idle_h_nr_running = 1;
6848 
6849 		/* end evaluation on encountering a throttled cfs_rq */
6850 		if (cfs_rq_throttled(cfs_rq))
6851 			goto dequeue_throttle;
6852 
6853 		/* Don't dequeue parent if it has other entities besides us */
6854 		if (cfs_rq->load.weight) {
6855 			/* Avoid re-evaluating load for this entity: */
6856 			se = parent_entity(se);
6857 			/*
6858 			 * Bias pick_next to pick a task from this cfs_rq, as
6859 			 * p is sleeping when it is within its sched_slice.
6860 			 */
6861 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6862 				set_next_buddy(se);
6863 			break;
6864 		}
6865 		flags |= DEQUEUE_SLEEP;
6866 	}
6867 
6868 	for_each_sched_entity(se) {
6869 		cfs_rq = cfs_rq_of(se);
6870 
6871 		update_load_avg(cfs_rq, se, UPDATE_TG);
6872 		se_update_runnable(se);
6873 		update_cfs_group(se);
6874 
6875 		cfs_rq->h_nr_running--;
6876 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6877 
6878 		if (cfs_rq_is_idle(cfs_rq))
6879 			idle_h_nr_running = 1;
6880 
6881 		/* end evaluation on encountering a throttled cfs_rq */
6882 		if (cfs_rq_throttled(cfs_rq))
6883 			goto dequeue_throttle;
6884 
6885 	}
6886 
6887 	/* At this point se is NULL and we are at root level*/
6888 	sub_nr_running(rq, 1);
6889 
6890 	/* balance early to pull high priority tasks */
6891 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6892 		rq->next_balance = jiffies;
6893 
6894 dequeue_throttle:
6895 	util_est_update(&rq->cfs, p, task_sleep);
6896 	hrtick_update(rq);
6897 }
6898 
6899 #ifdef CONFIG_SMP
6900 
6901 /* Working cpumask for: load_balance, load_balance_newidle. */
6902 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6903 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6904 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6905 
6906 #ifdef CONFIG_NO_HZ_COMMON
6907 
6908 static struct {
6909 	cpumask_var_t idle_cpus_mask;
6910 	atomic_t nr_cpus;
6911 	int has_blocked;		/* Idle CPUS has blocked load */
6912 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6913 	unsigned long next_balance;     /* in jiffy units */
6914 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6915 } nohz ____cacheline_aligned;
6916 
6917 #endif /* CONFIG_NO_HZ_COMMON */
6918 
cpu_load(struct rq * rq)6919 static unsigned long cpu_load(struct rq *rq)
6920 {
6921 	return cfs_rq_load_avg(&rq->cfs);
6922 }
6923 
6924 /*
6925  * cpu_load_without - compute CPU load without any contributions from *p
6926  * @cpu: the CPU which load is requested
6927  * @p: the task which load should be discounted
6928  *
6929  * The load of a CPU is defined by the load of tasks currently enqueued on that
6930  * CPU as well as tasks which are currently sleeping after an execution on that
6931  * CPU.
6932  *
6933  * This method returns the load of the specified CPU by discounting the load of
6934  * the specified task, whenever the task is currently contributing to the CPU
6935  * load.
6936  */
cpu_load_without(struct rq * rq,struct task_struct * p)6937 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6938 {
6939 	struct cfs_rq *cfs_rq;
6940 	unsigned int load;
6941 
6942 	/* Task has no contribution or is new */
6943 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6944 		return cpu_load(rq);
6945 
6946 	cfs_rq = &rq->cfs;
6947 	load = READ_ONCE(cfs_rq->avg.load_avg);
6948 
6949 	/* Discount task's util from CPU's util */
6950 	lsub_positive(&load, task_h_load(p));
6951 
6952 	return load;
6953 }
6954 
cpu_runnable(struct rq * rq)6955 static unsigned long cpu_runnable(struct rq *rq)
6956 {
6957 	return cfs_rq_runnable_avg(&rq->cfs);
6958 }
6959 
cpu_runnable_without(struct rq * rq,struct task_struct * p)6960 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6961 {
6962 	struct cfs_rq *cfs_rq;
6963 	unsigned int runnable;
6964 
6965 	/* Task has no contribution or is new */
6966 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6967 		return cpu_runnable(rq);
6968 
6969 	cfs_rq = &rq->cfs;
6970 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6971 
6972 	/* Discount task's runnable from CPU's runnable */
6973 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6974 
6975 	return runnable;
6976 }
6977 
capacity_of(int cpu)6978 static unsigned long capacity_of(int cpu)
6979 {
6980 	return cpu_rq(cpu)->cpu_capacity;
6981 }
6982 
record_wakee(struct task_struct * p)6983 static void record_wakee(struct task_struct *p)
6984 {
6985 	/*
6986 	 * Only decay a single time; tasks that have less then 1 wakeup per
6987 	 * jiffy will not have built up many flips.
6988 	 */
6989 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6990 		current->wakee_flips >>= 1;
6991 		current->wakee_flip_decay_ts = jiffies;
6992 	}
6993 
6994 	if (current->last_wakee != p) {
6995 		current->last_wakee = p;
6996 		current->wakee_flips++;
6997 	}
6998 }
6999 
7000 /*
7001  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7002  *
7003  * A waker of many should wake a different task than the one last awakened
7004  * at a frequency roughly N times higher than one of its wakees.
7005  *
7006  * In order to determine whether we should let the load spread vs consolidating
7007  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7008  * partner, and a factor of lls_size higher frequency in the other.
7009  *
7010  * With both conditions met, we can be relatively sure that the relationship is
7011  * non-monogamous, with partner count exceeding socket size.
7012  *
7013  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7014  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7015  * socket size.
7016  */
wake_wide(struct task_struct * p)7017 static int wake_wide(struct task_struct *p)
7018 {
7019 	unsigned int master = current->wakee_flips;
7020 	unsigned int slave = p->wakee_flips;
7021 	int factor = __this_cpu_read(sd_llc_size);
7022 
7023 	if (master < slave)
7024 		swap(master, slave);
7025 	if (slave < factor || master < slave * factor)
7026 		return 0;
7027 	return 1;
7028 }
7029 
7030 /*
7031  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7032  * soonest. For the purpose of speed we only consider the waking and previous
7033  * CPU.
7034  *
7035  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7036  *			cache-affine and is (or	will be) idle.
7037  *
7038  * wake_affine_weight() - considers the weight to reflect the average
7039  *			  scheduling latency of the CPUs. This seems to work
7040  *			  for the overloaded case.
7041  */
7042 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7043 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7044 {
7045 	/*
7046 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7047 	 * context. Only allow the move if cache is shared. Otherwise an
7048 	 * interrupt intensive workload could force all tasks onto one
7049 	 * node depending on the IO topology or IRQ affinity settings.
7050 	 *
7051 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7052 	 * There is no guarantee that the cache hot data from an interrupt
7053 	 * is more important than cache hot data on the prev_cpu and from
7054 	 * a cpufreq perspective, it's better to have higher utilisation
7055 	 * on one CPU.
7056 	 */
7057 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7058 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7059 
7060 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7061 		return this_cpu;
7062 
7063 	if (available_idle_cpu(prev_cpu))
7064 		return prev_cpu;
7065 
7066 	return nr_cpumask_bits;
7067 }
7068 
7069 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7070 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7071 		   int this_cpu, int prev_cpu, int sync)
7072 {
7073 	s64 this_eff_load, prev_eff_load;
7074 	unsigned long task_load;
7075 
7076 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7077 
7078 	if (sync) {
7079 		unsigned long current_load = task_h_load(current);
7080 
7081 		if (current_load > this_eff_load)
7082 			return this_cpu;
7083 
7084 		this_eff_load -= current_load;
7085 	}
7086 
7087 	task_load = task_h_load(p);
7088 
7089 	this_eff_load += task_load;
7090 	if (sched_feat(WA_BIAS))
7091 		this_eff_load *= 100;
7092 	this_eff_load *= capacity_of(prev_cpu);
7093 
7094 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7095 	prev_eff_load -= task_load;
7096 	if (sched_feat(WA_BIAS))
7097 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7098 	prev_eff_load *= capacity_of(this_cpu);
7099 
7100 	/*
7101 	 * If sync, adjust the weight of prev_eff_load such that if
7102 	 * prev_eff == this_eff that select_idle_sibling() will consider
7103 	 * stacking the wakee on top of the waker if no other CPU is
7104 	 * idle.
7105 	 */
7106 	if (sync)
7107 		prev_eff_load += 1;
7108 
7109 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7110 }
7111 
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7112 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7113 		       int this_cpu, int prev_cpu, int sync)
7114 {
7115 	int target = nr_cpumask_bits;
7116 
7117 	if (sched_feat(WA_IDLE))
7118 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7119 
7120 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7121 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7122 
7123 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7124 	if (target != this_cpu)
7125 		return prev_cpu;
7126 
7127 	schedstat_inc(sd->ttwu_move_affine);
7128 	schedstat_inc(p->stats.nr_wakeups_affine);
7129 	return target;
7130 }
7131 
7132 static struct sched_group *
7133 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7134 
7135 /*
7136  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7137  */
7138 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7139 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7140 {
7141 	unsigned long load, min_load = ULONG_MAX;
7142 	unsigned int min_exit_latency = UINT_MAX;
7143 	u64 latest_idle_timestamp = 0;
7144 	int least_loaded_cpu = this_cpu;
7145 	int shallowest_idle_cpu = -1;
7146 	int i;
7147 
7148 	/* Check if we have any choice: */
7149 	if (group->group_weight == 1)
7150 		return cpumask_first(sched_group_span(group));
7151 
7152 	/* Traverse only the allowed CPUs */
7153 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7154 		struct rq *rq = cpu_rq(i);
7155 
7156 		if (!sched_core_cookie_match(rq, p))
7157 			continue;
7158 
7159 		if (sched_idle_cpu(i))
7160 			return i;
7161 
7162 		if (available_idle_cpu(i)) {
7163 			struct cpuidle_state *idle = idle_get_state(rq);
7164 			if (idle && idle->exit_latency < min_exit_latency) {
7165 				/*
7166 				 * We give priority to a CPU whose idle state
7167 				 * has the smallest exit latency irrespective
7168 				 * of any idle timestamp.
7169 				 */
7170 				min_exit_latency = idle->exit_latency;
7171 				latest_idle_timestamp = rq->idle_stamp;
7172 				shallowest_idle_cpu = i;
7173 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7174 				   rq->idle_stamp > latest_idle_timestamp) {
7175 				/*
7176 				 * If equal or no active idle state, then
7177 				 * the most recently idled CPU might have
7178 				 * a warmer cache.
7179 				 */
7180 				latest_idle_timestamp = rq->idle_stamp;
7181 				shallowest_idle_cpu = i;
7182 			}
7183 		} else if (shallowest_idle_cpu == -1) {
7184 			load = cpu_load(cpu_rq(i));
7185 			if (load < min_load) {
7186 				min_load = load;
7187 				least_loaded_cpu = i;
7188 			}
7189 		}
7190 	}
7191 
7192 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7193 }
7194 
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7195 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7196 				  int cpu, int prev_cpu, int sd_flag)
7197 {
7198 	int new_cpu = cpu;
7199 
7200 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7201 		return prev_cpu;
7202 
7203 	/*
7204 	 * We need task's util for cpu_util_without, sync it up to
7205 	 * prev_cpu's last_update_time.
7206 	 */
7207 	if (!(sd_flag & SD_BALANCE_FORK))
7208 		sync_entity_load_avg(&p->se);
7209 
7210 	while (sd) {
7211 		struct sched_group *group;
7212 		struct sched_domain *tmp;
7213 		int weight;
7214 
7215 		if (!(sd->flags & sd_flag)) {
7216 			sd = sd->child;
7217 			continue;
7218 		}
7219 
7220 		group = find_idlest_group(sd, p, cpu);
7221 		if (!group) {
7222 			sd = sd->child;
7223 			continue;
7224 		}
7225 
7226 		new_cpu = find_idlest_group_cpu(group, p, cpu);
7227 		if (new_cpu == cpu) {
7228 			/* Now try balancing at a lower domain level of 'cpu': */
7229 			sd = sd->child;
7230 			continue;
7231 		}
7232 
7233 		/* Now try balancing at a lower domain level of 'new_cpu': */
7234 		cpu = new_cpu;
7235 		weight = sd->span_weight;
7236 		sd = NULL;
7237 		for_each_domain(cpu, tmp) {
7238 			if (weight <= tmp->span_weight)
7239 				break;
7240 			if (tmp->flags & sd_flag)
7241 				sd = tmp;
7242 		}
7243 	}
7244 
7245 	return new_cpu;
7246 }
7247 
__select_idle_cpu(int cpu,struct task_struct * p)7248 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7249 {
7250 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7251 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7252 		return cpu;
7253 
7254 	return -1;
7255 }
7256 
7257 #ifdef CONFIG_SCHED_SMT
7258 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7259 EXPORT_SYMBOL_GPL(sched_smt_present);
7260 
set_idle_cores(int cpu,int val)7261 static inline void set_idle_cores(int cpu, int val)
7262 {
7263 	struct sched_domain_shared *sds;
7264 
7265 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7266 	if (sds)
7267 		WRITE_ONCE(sds->has_idle_cores, val);
7268 }
7269 
test_idle_cores(int cpu)7270 static inline bool test_idle_cores(int cpu)
7271 {
7272 	struct sched_domain_shared *sds;
7273 
7274 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7275 	if (sds)
7276 		return READ_ONCE(sds->has_idle_cores);
7277 
7278 	return false;
7279 }
7280 
7281 /*
7282  * Scans the local SMT mask to see if the entire core is idle, and records this
7283  * information in sd_llc_shared->has_idle_cores.
7284  *
7285  * Since SMT siblings share all cache levels, inspecting this limited remote
7286  * state should be fairly cheap.
7287  */
__update_idle_core(struct rq * rq)7288 void __update_idle_core(struct rq *rq)
7289 {
7290 	int core = cpu_of(rq);
7291 	int cpu;
7292 
7293 	rcu_read_lock();
7294 	if (test_idle_cores(core))
7295 		goto unlock;
7296 
7297 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7298 		if (cpu == core)
7299 			continue;
7300 
7301 		if (!available_idle_cpu(cpu))
7302 			goto unlock;
7303 	}
7304 
7305 	set_idle_cores(core, 1);
7306 unlock:
7307 	rcu_read_unlock();
7308 }
7309 
7310 /*
7311  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7312  * there are no idle cores left in the system; tracked through
7313  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7314  */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7315 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7316 {
7317 	bool idle = true;
7318 	int cpu;
7319 
7320 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7321 		if (!available_idle_cpu(cpu)) {
7322 			idle = false;
7323 			if (*idle_cpu == -1) {
7324 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7325 					*idle_cpu = cpu;
7326 					break;
7327 				}
7328 				continue;
7329 			}
7330 			break;
7331 		}
7332 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7333 			*idle_cpu = cpu;
7334 	}
7335 
7336 	if (idle)
7337 		return core;
7338 
7339 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7340 	return -1;
7341 }
7342 
7343 /*
7344  * Scan the local SMT mask for idle CPUs.
7345  */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7346 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7347 {
7348 	int cpu;
7349 
7350 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7351 		if (cpu == target)
7352 			continue;
7353 		/*
7354 		 * Check if the CPU is in the LLC scheduling domain of @target.
7355 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7356 		 */
7357 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7358 			continue;
7359 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7360 			return cpu;
7361 	}
7362 
7363 	return -1;
7364 }
7365 
7366 #else /* CONFIG_SCHED_SMT */
7367 
set_idle_cores(int cpu,int val)7368 static inline void set_idle_cores(int cpu, int val)
7369 {
7370 }
7371 
test_idle_cores(int cpu)7372 static inline bool test_idle_cores(int cpu)
7373 {
7374 	return false;
7375 }
7376 
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7377 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7378 {
7379 	return __select_idle_cpu(core, p);
7380 }
7381 
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7382 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7383 {
7384 	return -1;
7385 }
7386 
7387 #endif /* CONFIG_SCHED_SMT */
7388 
7389 /*
7390  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7391  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7392  * average idle time for this rq (as found in rq->avg_idle).
7393  */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7394 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7395 {
7396 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7397 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7398 	struct sched_domain_shared *sd_share;
7399 	struct rq *this_rq = this_rq();
7400 	int this = smp_processor_id();
7401 	struct sched_domain *this_sd = NULL;
7402 	u64 time = 0;
7403 
7404 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7405 
7406 	if (sched_feat(SIS_PROP) && !has_idle_core) {
7407 		u64 avg_cost, avg_idle, span_avg;
7408 		unsigned long now = jiffies;
7409 
7410 		this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
7411 		if (!this_sd)
7412 			return -1;
7413 
7414 		/*
7415 		 * If we're busy, the assumption that the last idle period
7416 		 * predicts the future is flawed; age away the remaining
7417 		 * predicted idle time.
7418 		 */
7419 		if (unlikely(this_rq->wake_stamp < now)) {
7420 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
7421 				this_rq->wake_stamp++;
7422 				this_rq->wake_avg_idle >>= 1;
7423 			}
7424 		}
7425 
7426 		avg_idle = this_rq->wake_avg_idle;
7427 		avg_cost = this_sd->avg_scan_cost + 1;
7428 
7429 		span_avg = sd->span_weight * avg_idle;
7430 		if (span_avg > 4*avg_cost)
7431 			nr = div_u64(span_avg, avg_cost);
7432 		else
7433 			nr = 4;
7434 
7435 		time = cpu_clock(this);
7436 	}
7437 
7438 	if (sched_feat(SIS_UTIL)) {
7439 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7440 		if (sd_share) {
7441 			/* because !--nr is the condition to stop scan */
7442 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7443 			/* overloaded LLC is unlikely to have idle cpu/core */
7444 			if (nr == 1)
7445 				return -1;
7446 		}
7447 	}
7448 
7449 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7450 		if (has_idle_core) {
7451 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7452 			if ((unsigned int)i < nr_cpumask_bits)
7453 				return i;
7454 
7455 		} else {
7456 			if (!--nr)
7457 				return -1;
7458 			idle_cpu = __select_idle_cpu(cpu, p);
7459 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7460 				break;
7461 		}
7462 	}
7463 
7464 	if (has_idle_core)
7465 		set_idle_cores(target, false);
7466 
7467 	if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
7468 		time = cpu_clock(this) - time;
7469 
7470 		/*
7471 		 * Account for the scan cost of wakeups against the average
7472 		 * idle time.
7473 		 */
7474 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
7475 
7476 		update_avg(&this_sd->avg_scan_cost, time);
7477 	}
7478 
7479 	return idle_cpu;
7480 }
7481 
7482 /*
7483  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7484  * the task fits. If no CPU is big enough, but there are idle ones, try to
7485  * maximize capacity.
7486  */
7487 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7488 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7489 {
7490 	unsigned long task_util, util_min, util_max, best_cap = 0;
7491 	int fits, best_fits = 0;
7492 	int cpu, best_cpu = -1;
7493 	struct cpumask *cpus;
7494 
7495 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7496 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7497 
7498 	task_util = task_util_est(p);
7499 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7500 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7501 
7502 	for_each_cpu_wrap(cpu, cpus, target) {
7503 		unsigned long cpu_cap = capacity_of(cpu);
7504 
7505 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7506 			continue;
7507 
7508 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7509 
7510 		/* This CPU fits with all requirements */
7511 		if (fits > 0)
7512 			return cpu;
7513 		/*
7514 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7515 		 * Look for the CPU with best capacity.
7516 		 */
7517 		else if (fits < 0)
7518 			cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
7519 
7520 		/*
7521 		 * First, select CPU which fits better (-1 being better than 0).
7522 		 * Then, select the one with best capacity at same level.
7523 		 */
7524 		if ((fits < best_fits) ||
7525 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7526 			best_cap = cpu_cap;
7527 			best_cpu = cpu;
7528 			best_fits = fits;
7529 		}
7530 	}
7531 
7532 	return best_cpu;
7533 }
7534 
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7535 static inline bool asym_fits_cpu(unsigned long util,
7536 				 unsigned long util_min,
7537 				 unsigned long util_max,
7538 				 int cpu)
7539 {
7540 	if (sched_asym_cpucap_active())
7541 		/*
7542 		 * Return true only if the cpu fully fits the task requirements
7543 		 * which include the utilization and the performance hints.
7544 		 */
7545 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7546 
7547 	return true;
7548 }
7549 
7550 /*
7551  * Try and locate an idle core/thread in the LLC cache domain.
7552  */
select_idle_sibling(struct task_struct * p,int prev,int target)7553 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7554 {
7555 	bool has_idle_core = false;
7556 	struct sched_domain *sd;
7557 	unsigned long task_util, util_min, util_max;
7558 	int i, recent_used_cpu;
7559 
7560 	/*
7561 	 * On asymmetric system, update task utilization because we will check
7562 	 * that the task fits with cpu's capacity.
7563 	 */
7564 	if (sched_asym_cpucap_active()) {
7565 		sync_entity_load_avg(&p->se);
7566 		task_util = task_util_est(p);
7567 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7568 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7569 	}
7570 
7571 	/*
7572 	 * per-cpu select_rq_mask usage
7573 	 */
7574 	lockdep_assert_irqs_disabled();
7575 
7576 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7577 	    asym_fits_cpu(task_util, util_min, util_max, target))
7578 		return target;
7579 
7580 	/*
7581 	 * If the previous CPU is cache affine and idle, don't be stupid:
7582 	 */
7583 	if (prev != target && cpus_share_cache(prev, target) &&
7584 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7585 	    asym_fits_cpu(task_util, util_min, util_max, prev))
7586 		return prev;
7587 
7588 	/*
7589 	 * Allow a per-cpu kthread to stack with the wakee if the
7590 	 * kworker thread and the tasks previous CPUs are the same.
7591 	 * The assumption is that the wakee queued work for the
7592 	 * per-cpu kthread that is now complete and the wakeup is
7593 	 * essentially a sync wakeup. An obvious example of this
7594 	 * pattern is IO completions.
7595 	 */
7596 	if (is_per_cpu_kthread(current) &&
7597 	    in_task() &&
7598 	    prev == smp_processor_id() &&
7599 	    this_rq()->nr_running <= 1 &&
7600 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7601 		return prev;
7602 	}
7603 
7604 	/* Check a recently used CPU as a potential idle candidate: */
7605 	recent_used_cpu = p->recent_used_cpu;
7606 	p->recent_used_cpu = prev;
7607 	if (recent_used_cpu != prev &&
7608 	    recent_used_cpu != target &&
7609 	    cpus_share_cache(recent_used_cpu, target) &&
7610 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7611 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7612 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7613 		return recent_used_cpu;
7614 	}
7615 
7616 	/*
7617 	 * For asymmetric CPU capacity systems, our domain of interest is
7618 	 * sd_asym_cpucapacity rather than sd_llc.
7619 	 */
7620 	if (sched_asym_cpucap_active()) {
7621 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7622 		/*
7623 		 * On an asymmetric CPU capacity system where an exclusive
7624 		 * cpuset defines a symmetric island (i.e. one unique
7625 		 * capacity_orig value through the cpuset), the key will be set
7626 		 * but the CPUs within that cpuset will not have a domain with
7627 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7628 		 * capacity path.
7629 		 */
7630 		if (sd) {
7631 			i = select_idle_capacity(p, sd, target);
7632 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7633 		}
7634 	}
7635 
7636 	sd = rcu_dereference(per_cpu(sd_llc, target));
7637 	if (!sd)
7638 		return target;
7639 
7640 	if (sched_smt_active()) {
7641 		has_idle_core = test_idle_cores(target);
7642 
7643 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7644 			i = select_idle_smt(p, sd, prev);
7645 			if ((unsigned int)i < nr_cpumask_bits)
7646 				return i;
7647 		}
7648 	}
7649 
7650 	i = select_idle_cpu(p, sd, has_idle_core, target);
7651 	if ((unsigned)i < nr_cpumask_bits)
7652 		return i;
7653 
7654 	return target;
7655 }
7656 
7657 /**
7658  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7659  * @cpu: the CPU to get the utilization for
7660  * @p: task for which the CPU utilization should be predicted or NULL
7661  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7662  * @boost: 1 to enable boosting, otherwise 0
7663  *
7664  * The unit of the return value must be the same as the one of CPU capacity
7665  * so that CPU utilization can be compared with CPU capacity.
7666  *
7667  * CPU utilization is the sum of running time of runnable tasks plus the
7668  * recent utilization of currently non-runnable tasks on that CPU.
7669  * It represents the amount of CPU capacity currently used by CFS tasks in
7670  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7671  * capacity at f_max.
7672  *
7673  * The estimated CPU utilization is defined as the maximum between CPU
7674  * utilization and sum of the estimated utilization of the currently
7675  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7676  * previously-executed tasks, which helps better deduce how busy a CPU will
7677  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7678  * of such a task would be significantly decayed at this point of time.
7679  *
7680  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7681  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7682  * utilization. Boosting is implemented in cpu_util() so that internal
7683  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7684  * latter via cpu_util_cfs_boost().
7685  *
7686  * CPU utilization can be higher than the current CPU capacity
7687  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7688  * of rounding errors as well as task migrations or wakeups of new tasks.
7689  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7690  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7691  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7692  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7693  * though since this is useful for predicting the CPU capacity required
7694  * after task migrations (scheduler-driven DVFS).
7695  *
7696  * Return: (Boosted) (estimated) utilization for the specified CPU.
7697  */
7698 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)7699 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7700 {
7701 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7702 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7703 	unsigned long runnable;
7704 
7705 	if (boost) {
7706 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7707 		util = max(util, runnable);
7708 	}
7709 
7710 	/*
7711 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7712 	 * contribution. If @p migrates from another CPU to @cpu add its
7713 	 * contribution. In all the other cases @cpu is not impacted by the
7714 	 * migration so its util_avg is already correct.
7715 	 */
7716 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7717 		lsub_positive(&util, task_util(p));
7718 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7719 		util += task_util(p);
7720 
7721 	if (sched_feat(UTIL_EST)) {
7722 		unsigned long util_est;
7723 
7724 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7725 
7726 		/*
7727 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7728 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7729 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7730 		 * has been enqueued.
7731 		 *
7732 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7733 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7734 		 * Remove it to "simulate" cpu_util without @p's contribution.
7735 		 *
7736 		 * Despite the task_on_rq_queued(@p) check there is still a
7737 		 * small window for a possible race when an exec
7738 		 * select_task_rq_fair() races with LB's detach_task().
7739 		 *
7740 		 *   detach_task()
7741 		 *     deactivate_task()
7742 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7743 		 *       -------------------------------- A
7744 		 *       dequeue_task()                    \
7745 		 *         dequeue_task_fair()              + Race Time
7746 		 *           util_est_dequeue()            /
7747 		 *       -------------------------------- B
7748 		 *
7749 		 * The additional check "current == p" is required to further
7750 		 * reduce the race window.
7751 		 */
7752 		if (dst_cpu == cpu)
7753 			util_est += _task_util_est(p);
7754 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7755 			lsub_positive(&util_est, _task_util_est(p));
7756 
7757 		util = max(util, util_est);
7758 	}
7759 
7760 	return min(util, capacity_orig_of(cpu));
7761 }
7762 
cpu_util_cfs(int cpu)7763 unsigned long cpu_util_cfs(int cpu)
7764 {
7765 	return cpu_util(cpu, NULL, -1, 0);
7766 }
7767 
cpu_util_cfs_boost(int cpu)7768 unsigned long cpu_util_cfs_boost(int cpu)
7769 {
7770 	return cpu_util(cpu, NULL, -1, 1);
7771 }
7772 
7773 /*
7774  * cpu_util_without: compute cpu utilization without any contributions from *p
7775  * @cpu: the CPU which utilization is requested
7776  * @p: the task which utilization should be discounted
7777  *
7778  * The utilization of a CPU is defined by the utilization of tasks currently
7779  * enqueued on that CPU as well as tasks which are currently sleeping after an
7780  * execution on that CPU.
7781  *
7782  * This method returns the utilization of the specified CPU by discounting the
7783  * utilization of the specified task, whenever the task is currently
7784  * contributing to the CPU utilization.
7785  */
cpu_util_without(int cpu,struct task_struct * p)7786 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7787 {
7788 	/* Task has no contribution or is new */
7789 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7790 		p = NULL;
7791 
7792 	return cpu_util(cpu, p, -1, 0);
7793 }
7794 
7795 /*
7796  * energy_env - Utilization landscape for energy estimation.
7797  * @task_busy_time: Utilization contribution by the task for which we test the
7798  *                  placement. Given by eenv_task_busy_time().
7799  * @pd_busy_time:   Utilization of the whole perf domain without the task
7800  *                  contribution. Given by eenv_pd_busy_time().
7801  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7802  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7803  */
7804 struct energy_env {
7805 	unsigned long task_busy_time;
7806 	unsigned long pd_busy_time;
7807 	unsigned long cpu_cap;
7808 	unsigned long pd_cap;
7809 };
7810 
7811 /*
7812  * Compute the task busy time for compute_energy(). This time cannot be
7813  * injected directly into effective_cpu_util() because of the IRQ scaling.
7814  * The latter only makes sense with the most recent CPUs where the task has
7815  * run.
7816  */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)7817 static inline void eenv_task_busy_time(struct energy_env *eenv,
7818 				       struct task_struct *p, int prev_cpu)
7819 {
7820 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7821 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7822 
7823 	if (unlikely(irq >= max_cap))
7824 		busy_time = max_cap;
7825 	else
7826 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7827 
7828 	eenv->task_busy_time = busy_time;
7829 }
7830 
7831 /*
7832  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7833  * utilization for each @pd_cpus, it however doesn't take into account
7834  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7835  * scale the EM reported power consumption at the (eventually clamped)
7836  * cpu_capacity.
7837  *
7838  * The contribution of the task @p for which we want to estimate the
7839  * energy cost is removed (by cpu_util()) and must be calculated
7840  * separately (see eenv_task_busy_time). This ensures:
7841  *
7842  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7843  *     the task on.
7844  *
7845  *   - A fair comparison between CPUs as the task contribution (task_util())
7846  *     will always be the same no matter which CPU utilization we rely on
7847  *     (util_avg or util_est).
7848  *
7849  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7850  * exceed @eenv->pd_cap.
7851  */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)7852 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7853 				     struct cpumask *pd_cpus,
7854 				     struct task_struct *p)
7855 {
7856 	unsigned long busy_time = 0;
7857 	int cpu;
7858 
7859 	for_each_cpu(cpu, pd_cpus) {
7860 		unsigned long util = cpu_util(cpu, p, -1, 0);
7861 
7862 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7863 	}
7864 
7865 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7866 }
7867 
7868 /*
7869  * Compute the maximum utilization for compute_energy() when the task @p
7870  * is placed on the cpu @dst_cpu.
7871  *
7872  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7873  * exceed @eenv->cpu_cap.
7874  */
7875 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7876 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7877 		 struct task_struct *p, int dst_cpu)
7878 {
7879 	unsigned long max_util = 0;
7880 	int cpu;
7881 
7882 	for_each_cpu(cpu, pd_cpus) {
7883 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7884 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7885 		unsigned long eff_util;
7886 
7887 		/*
7888 		 * Performance domain frequency: utilization clamping
7889 		 * must be considered since it affects the selection
7890 		 * of the performance domain frequency.
7891 		 * NOTE: in case RT tasks are running, by default the
7892 		 * FREQUENCY_UTIL's utilization can be max OPP.
7893 		 */
7894 		eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7895 		max_util = max(max_util, eff_util);
7896 	}
7897 
7898 	return min(max_util, eenv->cpu_cap);
7899 }
7900 
7901 /*
7902  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7903  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7904  * contribution is ignored.
7905  */
7906 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7907 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7908 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7909 {
7910 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7911 	unsigned long busy_time = eenv->pd_busy_time;
7912 
7913 	if (dst_cpu >= 0)
7914 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7915 
7916 	return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7917 }
7918 
7919 /*
7920  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7921  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7922  * spare capacity in each performance domain and uses it as a potential
7923  * candidate to execute the task. Then, it uses the Energy Model to figure
7924  * out which of the CPU candidates is the most energy-efficient.
7925  *
7926  * The rationale for this heuristic is as follows. In a performance domain,
7927  * all the most energy efficient CPU candidates (according to the Energy
7928  * Model) are those for which we'll request a low frequency. When there are
7929  * several CPUs for which the frequency request will be the same, we don't
7930  * have enough data to break the tie between them, because the Energy Model
7931  * only includes active power costs. With this model, if we assume that
7932  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7933  * the maximum spare capacity in a performance domain is guaranteed to be among
7934  * the best candidates of the performance domain.
7935  *
7936  * In practice, it could be preferable from an energy standpoint to pack
7937  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7938  * but that could also hurt our chances to go cluster idle, and we have no
7939  * ways to tell with the current Energy Model if this is actually a good
7940  * idea or not. So, find_energy_efficient_cpu() basically favors
7941  * cluster-packing, and spreading inside a cluster. That should at least be
7942  * a good thing for latency, and this is consistent with the idea that most
7943  * of the energy savings of EAS come from the asymmetry of the system, and
7944  * not so much from breaking the tie between identical CPUs. That's also the
7945  * reason why EAS is enabled in the topology code only for systems where
7946  * SD_ASYM_CPUCAPACITY is set.
7947  *
7948  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7949  * they don't have any useful utilization data yet and it's not possible to
7950  * forecast their impact on energy consumption. Consequently, they will be
7951  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7952  * to be energy-inefficient in some use-cases. The alternative would be to
7953  * bias new tasks towards specific types of CPUs first, or to try to infer
7954  * their util_avg from the parent task, but those heuristics could hurt
7955  * other use-cases too. So, until someone finds a better way to solve this,
7956  * let's keep things simple by re-using the existing slow path.
7957  */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)7958 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7959 {
7960 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7961 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7962 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7963 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7964 	struct root_domain *rd = this_rq()->rd;
7965 	int cpu, best_energy_cpu, target = -1;
7966 	int prev_fits = -1, best_fits = -1;
7967 	unsigned long best_thermal_cap = 0;
7968 	unsigned long prev_thermal_cap = 0;
7969 	struct sched_domain *sd;
7970 	struct perf_domain *pd;
7971 	struct energy_env eenv;
7972 
7973 	rcu_read_lock();
7974 	pd = rcu_dereference(rd->pd);
7975 	if (!pd || READ_ONCE(rd->overutilized))
7976 		goto unlock;
7977 
7978 	/*
7979 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7980 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7981 	 */
7982 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7983 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7984 		sd = sd->parent;
7985 	if (!sd)
7986 		goto unlock;
7987 
7988 	target = prev_cpu;
7989 
7990 	sync_entity_load_avg(&p->se);
7991 	if (!task_util_est(p) && p_util_min == 0)
7992 		goto unlock;
7993 
7994 	eenv_task_busy_time(&eenv, p, prev_cpu);
7995 
7996 	for (; pd; pd = pd->next) {
7997 		unsigned long util_min = p_util_min, util_max = p_util_max;
7998 		unsigned long cpu_cap, cpu_thermal_cap, util;
7999 		long prev_spare_cap = -1, max_spare_cap = -1;
8000 		unsigned long rq_util_min, rq_util_max;
8001 		unsigned long cur_delta, base_energy;
8002 		int max_spare_cap_cpu = -1;
8003 		int fits, max_fits = -1;
8004 
8005 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8006 
8007 		if (cpumask_empty(cpus))
8008 			continue;
8009 
8010 		/* Account thermal pressure for the energy estimation */
8011 		cpu = cpumask_first(cpus);
8012 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
8013 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
8014 
8015 		eenv.cpu_cap = cpu_thermal_cap;
8016 		eenv.pd_cap = 0;
8017 
8018 		for_each_cpu(cpu, cpus) {
8019 			struct rq *rq = cpu_rq(cpu);
8020 
8021 			eenv.pd_cap += cpu_thermal_cap;
8022 
8023 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8024 				continue;
8025 
8026 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8027 				continue;
8028 
8029 			util = cpu_util(cpu, p, cpu, 0);
8030 			cpu_cap = capacity_of(cpu);
8031 
8032 			/*
8033 			 * Skip CPUs that cannot satisfy the capacity request.
8034 			 * IOW, placing the task there would make the CPU
8035 			 * overutilized. Take uclamp into account to see how
8036 			 * much capacity we can get out of the CPU; this is
8037 			 * aligned with sched_cpu_util().
8038 			 */
8039 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8040 				/*
8041 				 * Open code uclamp_rq_util_with() except for
8042 				 * the clamp() part. Ie: apply max aggregation
8043 				 * only. util_fits_cpu() logic requires to
8044 				 * operate on non clamped util but must use the
8045 				 * max-aggregated uclamp_{min, max}.
8046 				 */
8047 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8048 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8049 
8050 				util_min = max(rq_util_min, p_util_min);
8051 				util_max = max(rq_util_max, p_util_max);
8052 			}
8053 
8054 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8055 			if (!fits)
8056 				continue;
8057 
8058 			lsub_positive(&cpu_cap, util);
8059 
8060 			if (cpu == prev_cpu) {
8061 				/* Always use prev_cpu as a candidate. */
8062 				prev_spare_cap = cpu_cap;
8063 				prev_fits = fits;
8064 			} else if ((fits > max_fits) ||
8065 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8066 				/*
8067 				 * Find the CPU with the maximum spare capacity
8068 				 * among the remaining CPUs in the performance
8069 				 * domain.
8070 				 */
8071 				max_spare_cap = cpu_cap;
8072 				max_spare_cap_cpu = cpu;
8073 				max_fits = fits;
8074 			}
8075 		}
8076 
8077 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8078 			continue;
8079 
8080 		eenv_pd_busy_time(&eenv, cpus, p);
8081 		/* Compute the 'base' energy of the pd, without @p */
8082 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8083 
8084 		/* Evaluate the energy impact of using prev_cpu. */
8085 		if (prev_spare_cap > -1) {
8086 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8087 						    prev_cpu);
8088 			/* CPU utilization has changed */
8089 			if (prev_delta < base_energy)
8090 				goto unlock;
8091 			prev_delta -= base_energy;
8092 			prev_thermal_cap = cpu_thermal_cap;
8093 			best_delta = min(best_delta, prev_delta);
8094 		}
8095 
8096 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8097 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8098 			/* Current best energy cpu fits better */
8099 			if (max_fits < best_fits)
8100 				continue;
8101 
8102 			/*
8103 			 * Both don't fit performance hint (i.e. uclamp_min)
8104 			 * but best energy cpu has better capacity.
8105 			 */
8106 			if ((max_fits < 0) &&
8107 			    (cpu_thermal_cap <= best_thermal_cap))
8108 				continue;
8109 
8110 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8111 						   max_spare_cap_cpu);
8112 			/* CPU utilization has changed */
8113 			if (cur_delta < base_energy)
8114 				goto unlock;
8115 			cur_delta -= base_energy;
8116 
8117 			/*
8118 			 * Both fit for the task but best energy cpu has lower
8119 			 * energy impact.
8120 			 */
8121 			if ((max_fits > 0) && (best_fits > 0) &&
8122 			    (cur_delta >= best_delta))
8123 				continue;
8124 
8125 			best_delta = cur_delta;
8126 			best_energy_cpu = max_spare_cap_cpu;
8127 			best_fits = max_fits;
8128 			best_thermal_cap = cpu_thermal_cap;
8129 		}
8130 	}
8131 	rcu_read_unlock();
8132 
8133 	if ((best_fits > prev_fits) ||
8134 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8135 	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
8136 		target = best_energy_cpu;
8137 
8138 	return target;
8139 
8140 unlock:
8141 	rcu_read_unlock();
8142 
8143 	return target;
8144 }
8145 
8146 /*
8147  * select_task_rq_fair: Select target runqueue for the waking task in domains
8148  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8149  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8150  *
8151  * Balances load by selecting the idlest CPU in the idlest group, or under
8152  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8153  *
8154  * Returns the target CPU number.
8155  */
8156 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8157 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8158 {
8159 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8160 	struct sched_domain *tmp, *sd = NULL;
8161 	int cpu = smp_processor_id();
8162 	int new_cpu = prev_cpu;
8163 	int want_affine = 0;
8164 	/* SD_flags and WF_flags share the first nibble */
8165 	int sd_flag = wake_flags & 0xF;
8166 
8167 	/*
8168 	 * required for stable ->cpus_allowed
8169 	 */
8170 	lockdep_assert_held(&p->pi_lock);
8171 	if (wake_flags & WF_TTWU) {
8172 		record_wakee(p);
8173 
8174 		if ((wake_flags & WF_CURRENT_CPU) &&
8175 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8176 			return cpu;
8177 
8178 		if (sched_energy_enabled()) {
8179 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8180 			if (new_cpu >= 0)
8181 				return new_cpu;
8182 			new_cpu = prev_cpu;
8183 		}
8184 
8185 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8186 	}
8187 
8188 	rcu_read_lock();
8189 	for_each_domain(cpu, tmp) {
8190 		/*
8191 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8192 		 * cpu is a valid SD_WAKE_AFFINE target.
8193 		 */
8194 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8195 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8196 			if (cpu != prev_cpu)
8197 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8198 
8199 			sd = NULL; /* Prefer wake_affine over balance flags */
8200 			break;
8201 		}
8202 
8203 		/*
8204 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8205 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8206 		 * will usually go to the fast path.
8207 		 */
8208 		if (tmp->flags & sd_flag)
8209 			sd = tmp;
8210 		else if (!want_affine)
8211 			break;
8212 	}
8213 
8214 	if (unlikely(sd)) {
8215 		/* Slow path */
8216 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8217 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8218 		/* Fast path */
8219 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8220 	}
8221 	rcu_read_unlock();
8222 
8223 	return new_cpu;
8224 }
8225 
8226 /*
8227  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8228  * cfs_rq_of(p) references at time of call are still valid and identify the
8229  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8230  */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8231 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8232 {
8233 	struct sched_entity *se = &p->se;
8234 
8235 	if (!task_on_rq_migrating(p)) {
8236 		remove_entity_load_avg(se);
8237 
8238 		/*
8239 		 * Here, the task's PELT values have been updated according to
8240 		 * the current rq's clock. But if that clock hasn't been
8241 		 * updated in a while, a substantial idle time will be missed,
8242 		 * leading to an inflation after wake-up on the new rq.
8243 		 *
8244 		 * Estimate the missing time from the cfs_rq last_update_time
8245 		 * and update sched_avg to improve the PELT continuity after
8246 		 * migration.
8247 		 */
8248 		migrate_se_pelt_lag(se);
8249 	}
8250 
8251 	/* Tell new CPU we are migrated */
8252 	se->avg.last_update_time = 0;
8253 
8254 	update_scan_period(p, new_cpu);
8255 }
8256 
task_dead_fair(struct task_struct * p)8257 static void task_dead_fair(struct task_struct *p)
8258 {
8259 	remove_entity_load_avg(&p->se);
8260 }
8261 
8262 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8263 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8264 {
8265 	if (rq->nr_running)
8266 		return 1;
8267 
8268 	return newidle_balance(rq, rf) != 0;
8269 }
8270 #endif /* CONFIG_SMP */
8271 
set_next_buddy(struct sched_entity * se)8272 static void set_next_buddy(struct sched_entity *se)
8273 {
8274 	for_each_sched_entity(se) {
8275 		if (SCHED_WARN_ON(!se->on_rq))
8276 			return;
8277 		if (se_is_idle(se))
8278 			return;
8279 		cfs_rq_of(se)->next = se;
8280 	}
8281 }
8282 
8283 /*
8284  * Preempt the current task with a newly woken task if needed:
8285  */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8286 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8287 {
8288 	struct task_struct *curr = rq->curr;
8289 	struct sched_entity *se = &curr->se, *pse = &p->se;
8290 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8291 	int next_buddy_marked = 0;
8292 	int cse_is_idle, pse_is_idle;
8293 
8294 	if (unlikely(se == pse))
8295 		return;
8296 
8297 	/*
8298 	 * This is possible from callers such as attach_tasks(), in which we
8299 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8300 	 * lead to a throttle).  This both saves work and prevents false
8301 	 * next-buddy nomination below.
8302 	 */
8303 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8304 		return;
8305 
8306 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8307 		set_next_buddy(pse);
8308 		next_buddy_marked = 1;
8309 	}
8310 
8311 	/*
8312 	 * We can come here with TIF_NEED_RESCHED already set from new task
8313 	 * wake up path.
8314 	 *
8315 	 * Note: this also catches the edge-case of curr being in a throttled
8316 	 * group (e.g. via set_curr_task), since update_curr() (in the
8317 	 * enqueue of curr) will have resulted in resched being set.  This
8318 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8319 	 * below.
8320 	 */
8321 	if (test_tsk_need_resched(curr))
8322 		return;
8323 
8324 	if (!sched_feat(WAKEUP_PREEMPTION))
8325 		return;
8326 
8327 	find_matching_se(&se, &pse);
8328 	WARN_ON_ONCE(!pse);
8329 
8330 	cse_is_idle = se_is_idle(se);
8331 	pse_is_idle = se_is_idle(pse);
8332 
8333 	/*
8334 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8335 	 * in the inverse case).
8336 	 */
8337 	if (cse_is_idle && !pse_is_idle)
8338 		goto preempt;
8339 	if (cse_is_idle != pse_is_idle)
8340 		return;
8341 
8342 	/*
8343 	 * BATCH and IDLE tasks do not preempt others.
8344 	 */
8345 	if (unlikely(p->policy != SCHED_NORMAL))
8346 		return;
8347 
8348 	cfs_rq = cfs_rq_of(se);
8349 	update_curr(cfs_rq);
8350 	/*
8351 	 * XXX pick_eevdf(cfs_rq) != se ?
8352 	 */
8353 	if (pick_eevdf(cfs_rq) == pse)
8354 		goto preempt;
8355 
8356 	return;
8357 
8358 preempt:
8359 	resched_curr(rq);
8360 }
8361 
8362 #ifdef CONFIG_SMP
pick_task_fair(struct rq * rq)8363 static struct task_struct *pick_task_fair(struct rq *rq)
8364 {
8365 	struct sched_entity *se;
8366 	struct cfs_rq *cfs_rq;
8367 
8368 again:
8369 	cfs_rq = &rq->cfs;
8370 	if (!cfs_rq->nr_running)
8371 		return NULL;
8372 
8373 	do {
8374 		struct sched_entity *curr = cfs_rq->curr;
8375 
8376 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8377 		if (curr) {
8378 			if (curr->on_rq)
8379 				update_curr(cfs_rq);
8380 			else
8381 				curr = NULL;
8382 
8383 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8384 				goto again;
8385 		}
8386 
8387 		se = pick_next_entity(cfs_rq, curr);
8388 		cfs_rq = group_cfs_rq(se);
8389 	} while (cfs_rq);
8390 
8391 	return task_of(se);
8392 }
8393 #endif
8394 
8395 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8396 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8397 {
8398 	struct cfs_rq *cfs_rq = &rq->cfs;
8399 	struct sched_entity *se;
8400 	struct task_struct *p;
8401 	int new_tasks;
8402 
8403 again:
8404 	if (!sched_fair_runnable(rq))
8405 		goto idle;
8406 
8407 #ifdef CONFIG_FAIR_GROUP_SCHED
8408 	if (!prev || prev->sched_class != &fair_sched_class)
8409 		goto simple;
8410 
8411 	/*
8412 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8413 	 * likely that a next task is from the same cgroup as the current.
8414 	 *
8415 	 * Therefore attempt to avoid putting and setting the entire cgroup
8416 	 * hierarchy, only change the part that actually changes.
8417 	 */
8418 
8419 	do {
8420 		struct sched_entity *curr = cfs_rq->curr;
8421 
8422 		/*
8423 		 * Since we got here without doing put_prev_entity() we also
8424 		 * have to consider cfs_rq->curr. If it is still a runnable
8425 		 * entity, update_curr() will update its vruntime, otherwise
8426 		 * forget we've ever seen it.
8427 		 */
8428 		if (curr) {
8429 			if (curr->on_rq)
8430 				update_curr(cfs_rq);
8431 			else
8432 				curr = NULL;
8433 
8434 			/*
8435 			 * This call to check_cfs_rq_runtime() will do the
8436 			 * throttle and dequeue its entity in the parent(s).
8437 			 * Therefore the nr_running test will indeed
8438 			 * be correct.
8439 			 */
8440 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8441 				cfs_rq = &rq->cfs;
8442 
8443 				if (!cfs_rq->nr_running)
8444 					goto idle;
8445 
8446 				goto simple;
8447 			}
8448 		}
8449 
8450 		se = pick_next_entity(cfs_rq, curr);
8451 		cfs_rq = group_cfs_rq(se);
8452 	} while (cfs_rq);
8453 
8454 	p = task_of(se);
8455 
8456 	/*
8457 	 * Since we haven't yet done put_prev_entity and if the selected task
8458 	 * is a different task than we started out with, try and touch the
8459 	 * least amount of cfs_rqs.
8460 	 */
8461 	if (prev != p) {
8462 		struct sched_entity *pse = &prev->se;
8463 
8464 		while (!(cfs_rq = is_same_group(se, pse))) {
8465 			int se_depth = se->depth;
8466 			int pse_depth = pse->depth;
8467 
8468 			if (se_depth <= pse_depth) {
8469 				put_prev_entity(cfs_rq_of(pse), pse);
8470 				pse = parent_entity(pse);
8471 			}
8472 			if (se_depth >= pse_depth) {
8473 				set_next_entity(cfs_rq_of(se), se);
8474 				se = parent_entity(se);
8475 			}
8476 		}
8477 
8478 		put_prev_entity(cfs_rq, pse);
8479 		set_next_entity(cfs_rq, se);
8480 	}
8481 
8482 	goto done;
8483 simple:
8484 #endif
8485 	if (prev)
8486 		put_prev_task(rq, prev);
8487 
8488 	do {
8489 		se = pick_next_entity(cfs_rq, NULL);
8490 		set_next_entity(cfs_rq, se);
8491 		cfs_rq = group_cfs_rq(se);
8492 	} while (cfs_rq);
8493 
8494 	p = task_of(se);
8495 
8496 done: __maybe_unused;
8497 #ifdef CONFIG_SMP
8498 	/*
8499 	 * Move the next running task to the front of
8500 	 * the list, so our cfs_tasks list becomes MRU
8501 	 * one.
8502 	 */
8503 	list_move(&p->se.group_node, &rq->cfs_tasks);
8504 #endif
8505 
8506 	if (hrtick_enabled_fair(rq))
8507 		hrtick_start_fair(rq, p);
8508 
8509 	update_misfit_status(p, rq);
8510 	sched_fair_update_stop_tick(rq, p);
8511 
8512 	return p;
8513 
8514 idle:
8515 	if (!rf)
8516 		return NULL;
8517 
8518 	new_tasks = newidle_balance(rq, rf);
8519 
8520 	/*
8521 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8522 	 * possible for any higher priority task to appear. In that case we
8523 	 * must re-start the pick_next_entity() loop.
8524 	 */
8525 	if (new_tasks < 0)
8526 		return RETRY_TASK;
8527 
8528 	if (new_tasks > 0)
8529 		goto again;
8530 
8531 	/*
8532 	 * rq is about to be idle, check if we need to update the
8533 	 * lost_idle_time of clock_pelt
8534 	 */
8535 	update_idle_rq_clock_pelt(rq);
8536 
8537 	return NULL;
8538 }
8539 
__pick_next_task_fair(struct rq * rq)8540 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8541 {
8542 	return pick_next_task_fair(rq, NULL, NULL);
8543 }
8544 
8545 /*
8546  * Account for a descheduled task:
8547  */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)8548 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8549 {
8550 	struct sched_entity *se = &prev->se;
8551 	struct cfs_rq *cfs_rq;
8552 
8553 	for_each_sched_entity(se) {
8554 		cfs_rq = cfs_rq_of(se);
8555 		put_prev_entity(cfs_rq, se);
8556 	}
8557 }
8558 
8559 /*
8560  * sched_yield() is very simple
8561  */
yield_task_fair(struct rq * rq)8562 static void yield_task_fair(struct rq *rq)
8563 {
8564 	struct task_struct *curr = rq->curr;
8565 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8566 	struct sched_entity *se = &curr->se;
8567 
8568 	/*
8569 	 * Are we the only task in the tree?
8570 	 */
8571 	if (unlikely(rq->nr_running == 1))
8572 		return;
8573 
8574 	clear_buddies(cfs_rq, se);
8575 
8576 	update_rq_clock(rq);
8577 	/*
8578 	 * Update run-time statistics of the 'current'.
8579 	 */
8580 	update_curr(cfs_rq);
8581 	/*
8582 	 * Tell update_rq_clock() that we've just updated,
8583 	 * so we don't do microscopic update in schedule()
8584 	 * and double the fastpath cost.
8585 	 */
8586 	rq_clock_skip_update(rq);
8587 
8588 	se->deadline += calc_delta_fair(se->slice, se);
8589 }
8590 
yield_to_task_fair(struct rq * rq,struct task_struct * p)8591 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8592 {
8593 	struct sched_entity *se = &p->se;
8594 
8595 	/* throttled hierarchies are not runnable */
8596 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8597 		return false;
8598 
8599 	/* Tell the scheduler that we'd really like pse to run next. */
8600 	set_next_buddy(se);
8601 
8602 	yield_task_fair(rq);
8603 
8604 	return true;
8605 }
8606 
8607 #ifdef CONFIG_SMP
8608 /**************************************************
8609  * Fair scheduling class load-balancing methods.
8610  *
8611  * BASICS
8612  *
8613  * The purpose of load-balancing is to achieve the same basic fairness the
8614  * per-CPU scheduler provides, namely provide a proportional amount of compute
8615  * time to each task. This is expressed in the following equation:
8616  *
8617  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8618  *
8619  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8620  * W_i,0 is defined as:
8621  *
8622  *   W_i,0 = \Sum_j w_i,j                                             (2)
8623  *
8624  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8625  * is derived from the nice value as per sched_prio_to_weight[].
8626  *
8627  * The weight average is an exponential decay average of the instantaneous
8628  * weight:
8629  *
8630  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8631  *
8632  * C_i is the compute capacity of CPU i, typically it is the
8633  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8634  * can also include other factors [XXX].
8635  *
8636  * To achieve this balance we define a measure of imbalance which follows
8637  * directly from (1):
8638  *
8639  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8640  *
8641  * We them move tasks around to minimize the imbalance. In the continuous
8642  * function space it is obvious this converges, in the discrete case we get
8643  * a few fun cases generally called infeasible weight scenarios.
8644  *
8645  * [XXX expand on:
8646  *     - infeasible weights;
8647  *     - local vs global optima in the discrete case. ]
8648  *
8649  *
8650  * SCHED DOMAINS
8651  *
8652  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8653  * for all i,j solution, we create a tree of CPUs that follows the hardware
8654  * topology where each level pairs two lower groups (or better). This results
8655  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8656  * tree to only the first of the previous level and we decrease the frequency
8657  * of load-balance at each level inv. proportional to the number of CPUs in
8658  * the groups.
8659  *
8660  * This yields:
8661  *
8662  *     log_2 n     1     n
8663  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8664  *     i = 0      2^i   2^i
8665  *                               `- size of each group
8666  *         |         |     `- number of CPUs doing load-balance
8667  *         |         `- freq
8668  *         `- sum over all levels
8669  *
8670  * Coupled with a limit on how many tasks we can migrate every balance pass,
8671  * this makes (5) the runtime complexity of the balancer.
8672  *
8673  * An important property here is that each CPU is still (indirectly) connected
8674  * to every other CPU in at most O(log n) steps:
8675  *
8676  * The adjacency matrix of the resulting graph is given by:
8677  *
8678  *             log_2 n
8679  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8680  *             k = 0
8681  *
8682  * And you'll find that:
8683  *
8684  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8685  *
8686  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8687  * The task movement gives a factor of O(m), giving a convergence complexity
8688  * of:
8689  *
8690  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8691  *
8692  *
8693  * WORK CONSERVING
8694  *
8695  * In order to avoid CPUs going idle while there's still work to do, new idle
8696  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8697  * tree itself instead of relying on other CPUs to bring it work.
8698  *
8699  * This adds some complexity to both (5) and (8) but it reduces the total idle
8700  * time.
8701  *
8702  * [XXX more?]
8703  *
8704  *
8705  * CGROUPS
8706  *
8707  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8708  *
8709  *                                s_k,i
8710  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8711  *                                 S_k
8712  *
8713  * Where
8714  *
8715  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8716  *
8717  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8718  *
8719  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8720  * property.
8721  *
8722  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8723  *      rewrite all of this once again.]
8724  */
8725 
8726 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8727 
8728 enum fbq_type { regular, remote, all };
8729 
8730 /*
8731  * 'group_type' describes the group of CPUs at the moment of load balancing.
8732  *
8733  * The enum is ordered by pulling priority, with the group with lowest priority
8734  * first so the group_type can simply be compared when selecting the busiest
8735  * group. See update_sd_pick_busiest().
8736  */
8737 enum group_type {
8738 	/* The group has spare capacity that can be used to run more tasks.  */
8739 	group_has_spare = 0,
8740 	/*
8741 	 * The group is fully used and the tasks don't compete for more CPU
8742 	 * cycles. Nevertheless, some tasks might wait before running.
8743 	 */
8744 	group_fully_busy,
8745 	/*
8746 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8747 	 * more powerful CPU.
8748 	 */
8749 	group_misfit_task,
8750 	/*
8751 	 * Balance SMT group that's fully busy. Can benefit from migration
8752 	 * a task on SMT with busy sibling to another CPU on idle core.
8753 	 */
8754 	group_smt_balance,
8755 	/*
8756 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8757 	 * and the task should be migrated to it instead of running on the
8758 	 * current CPU.
8759 	 */
8760 	group_asym_packing,
8761 	/*
8762 	 * The tasks' affinity constraints previously prevented the scheduler
8763 	 * from balancing the load across the system.
8764 	 */
8765 	group_imbalanced,
8766 	/*
8767 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8768 	 * tasks.
8769 	 */
8770 	group_overloaded
8771 };
8772 
8773 enum migration_type {
8774 	migrate_load = 0,
8775 	migrate_util,
8776 	migrate_task,
8777 	migrate_misfit
8778 };
8779 
8780 #define LBF_ALL_PINNED	0x01
8781 #define LBF_NEED_BREAK	0x02
8782 #define LBF_DST_PINNED  0x04
8783 #define LBF_SOME_PINNED	0x08
8784 #define LBF_ACTIVE_LB	0x10
8785 
8786 struct lb_env {
8787 	struct sched_domain	*sd;
8788 
8789 	struct rq		*src_rq;
8790 	int			src_cpu;
8791 
8792 	int			dst_cpu;
8793 	struct rq		*dst_rq;
8794 
8795 	struct cpumask		*dst_grpmask;
8796 	int			new_dst_cpu;
8797 	enum cpu_idle_type	idle;
8798 	long			imbalance;
8799 	/* The set of CPUs under consideration for load-balancing */
8800 	struct cpumask		*cpus;
8801 
8802 	unsigned int		flags;
8803 
8804 	unsigned int		loop;
8805 	unsigned int		loop_break;
8806 	unsigned int		loop_max;
8807 
8808 	enum fbq_type		fbq_type;
8809 	enum migration_type	migration_type;
8810 	struct list_head	tasks;
8811 };
8812 
8813 /*
8814  * Is this task likely cache-hot:
8815  */
task_hot(struct task_struct * p,struct lb_env * env)8816 static int task_hot(struct task_struct *p, struct lb_env *env)
8817 {
8818 	s64 delta;
8819 
8820 	lockdep_assert_rq_held(env->src_rq);
8821 
8822 	if (p->sched_class != &fair_sched_class)
8823 		return 0;
8824 
8825 	if (unlikely(task_has_idle_policy(p)))
8826 		return 0;
8827 
8828 	/* SMT siblings share cache */
8829 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8830 		return 0;
8831 
8832 	/*
8833 	 * Buddy candidates are cache hot:
8834 	 */
8835 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8836 	    (&p->se == cfs_rq_of(&p->se)->next))
8837 		return 1;
8838 
8839 	if (sysctl_sched_migration_cost == -1)
8840 		return 1;
8841 
8842 	/*
8843 	 * Don't migrate task if the task's cookie does not match
8844 	 * with the destination CPU's core cookie.
8845 	 */
8846 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8847 		return 1;
8848 
8849 	if (sysctl_sched_migration_cost == 0)
8850 		return 0;
8851 
8852 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8853 
8854 	return delta < (s64)sysctl_sched_migration_cost;
8855 }
8856 
8857 #ifdef CONFIG_NUMA_BALANCING
8858 /*
8859  * Returns 1, if task migration degrades locality
8860  * Returns 0, if task migration improves locality i.e migration preferred.
8861  * Returns -1, if task migration is not affected by locality.
8862  */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8863 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8864 {
8865 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8866 	unsigned long src_weight, dst_weight;
8867 	int src_nid, dst_nid, dist;
8868 
8869 	if (!static_branch_likely(&sched_numa_balancing))
8870 		return -1;
8871 
8872 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8873 		return -1;
8874 
8875 	src_nid = cpu_to_node(env->src_cpu);
8876 	dst_nid = cpu_to_node(env->dst_cpu);
8877 
8878 	if (src_nid == dst_nid)
8879 		return -1;
8880 
8881 	/* Migrating away from the preferred node is always bad. */
8882 	if (src_nid == p->numa_preferred_nid) {
8883 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8884 			return 1;
8885 		else
8886 			return -1;
8887 	}
8888 
8889 	/* Encourage migration to the preferred node. */
8890 	if (dst_nid == p->numa_preferred_nid)
8891 		return 0;
8892 
8893 	/* Leaving a core idle is often worse than degrading locality. */
8894 	if (env->idle == CPU_IDLE)
8895 		return -1;
8896 
8897 	dist = node_distance(src_nid, dst_nid);
8898 	if (numa_group) {
8899 		src_weight = group_weight(p, src_nid, dist);
8900 		dst_weight = group_weight(p, dst_nid, dist);
8901 	} else {
8902 		src_weight = task_weight(p, src_nid, dist);
8903 		dst_weight = task_weight(p, dst_nid, dist);
8904 	}
8905 
8906 	return dst_weight < src_weight;
8907 }
8908 
8909 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8910 static inline int migrate_degrades_locality(struct task_struct *p,
8911 					     struct lb_env *env)
8912 {
8913 	return -1;
8914 }
8915 #endif
8916 
8917 /*
8918  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8919  */
8920 static
can_migrate_task(struct task_struct * p,struct lb_env * env)8921 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8922 {
8923 	int tsk_cache_hot;
8924 
8925 	lockdep_assert_rq_held(env->src_rq);
8926 	if (p->sched_task_hot)
8927 		p->sched_task_hot = 0;
8928 
8929 	/*
8930 	 * We do not migrate tasks that are:
8931 	 * 1) throttled_lb_pair, or
8932 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8933 	 * 3) running (obviously), or
8934 	 * 4) are cache-hot on their current CPU.
8935 	 */
8936 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8937 		return 0;
8938 
8939 	/* Disregard pcpu kthreads; they are where they need to be. */
8940 	if (kthread_is_per_cpu(p))
8941 		return 0;
8942 
8943 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8944 		int cpu;
8945 
8946 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8947 
8948 		env->flags |= LBF_SOME_PINNED;
8949 
8950 		/*
8951 		 * Remember if this task can be migrated to any other CPU in
8952 		 * our sched_group. We may want to revisit it if we couldn't
8953 		 * meet load balance goals by pulling other tasks on src_cpu.
8954 		 *
8955 		 * Avoid computing new_dst_cpu
8956 		 * - for NEWLY_IDLE
8957 		 * - if we have already computed one in current iteration
8958 		 * - if it's an active balance
8959 		 */
8960 		if (env->idle == CPU_NEWLY_IDLE ||
8961 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8962 			return 0;
8963 
8964 		/* Prevent to re-select dst_cpu via env's CPUs: */
8965 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8966 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8967 				env->flags |= LBF_DST_PINNED;
8968 				env->new_dst_cpu = cpu;
8969 				break;
8970 			}
8971 		}
8972 
8973 		return 0;
8974 	}
8975 
8976 	/* Record that we found at least one task that could run on dst_cpu */
8977 	env->flags &= ~LBF_ALL_PINNED;
8978 
8979 	if (task_on_cpu(env->src_rq, p)) {
8980 		schedstat_inc(p->stats.nr_failed_migrations_running);
8981 		return 0;
8982 	}
8983 
8984 	/*
8985 	 * Aggressive migration if:
8986 	 * 1) active balance
8987 	 * 2) destination numa is preferred
8988 	 * 3) task is cache cold, or
8989 	 * 4) too many balance attempts have failed.
8990 	 */
8991 	if (env->flags & LBF_ACTIVE_LB)
8992 		return 1;
8993 
8994 	tsk_cache_hot = migrate_degrades_locality(p, env);
8995 	if (tsk_cache_hot == -1)
8996 		tsk_cache_hot = task_hot(p, env);
8997 
8998 	if (tsk_cache_hot <= 0 ||
8999 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9000 		if (tsk_cache_hot == 1)
9001 			p->sched_task_hot = 1;
9002 		return 1;
9003 	}
9004 
9005 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9006 	return 0;
9007 }
9008 
9009 /*
9010  * detach_task() -- detach the task for the migration specified in env
9011  */
detach_task(struct task_struct * p,struct lb_env * env)9012 static void detach_task(struct task_struct *p, struct lb_env *env)
9013 {
9014 	lockdep_assert_rq_held(env->src_rq);
9015 
9016 	if (p->sched_task_hot) {
9017 		p->sched_task_hot = 0;
9018 		schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9019 		schedstat_inc(p->stats.nr_forced_migrations);
9020 	}
9021 
9022 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9023 	set_task_cpu(p, env->dst_cpu);
9024 }
9025 
9026 /*
9027  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9028  * part of active balancing operations within "domain".
9029  *
9030  * Returns a task if successful and NULL otherwise.
9031  */
detach_one_task(struct lb_env * env)9032 static struct task_struct *detach_one_task(struct lb_env *env)
9033 {
9034 	struct task_struct *p;
9035 
9036 	lockdep_assert_rq_held(env->src_rq);
9037 
9038 	list_for_each_entry_reverse(p,
9039 			&env->src_rq->cfs_tasks, se.group_node) {
9040 		if (!can_migrate_task(p, env))
9041 			continue;
9042 
9043 		detach_task(p, env);
9044 
9045 		/*
9046 		 * Right now, this is only the second place where
9047 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9048 		 * so we can safely collect stats here rather than
9049 		 * inside detach_tasks().
9050 		 */
9051 		schedstat_inc(env->sd->lb_gained[env->idle]);
9052 		return p;
9053 	}
9054 	return NULL;
9055 }
9056 
9057 /*
9058  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9059  * busiest_rq, as part of a balancing operation within domain "sd".
9060  *
9061  * Returns number of detached tasks if successful and 0 otherwise.
9062  */
detach_tasks(struct lb_env * env)9063 static int detach_tasks(struct lb_env *env)
9064 {
9065 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9066 	unsigned long util, load;
9067 	struct task_struct *p;
9068 	int detached = 0;
9069 
9070 	lockdep_assert_rq_held(env->src_rq);
9071 
9072 	/*
9073 	 * Source run queue has been emptied by another CPU, clear
9074 	 * LBF_ALL_PINNED flag as we will not test any task.
9075 	 */
9076 	if (env->src_rq->nr_running <= 1) {
9077 		env->flags &= ~LBF_ALL_PINNED;
9078 		return 0;
9079 	}
9080 
9081 	if (env->imbalance <= 0)
9082 		return 0;
9083 
9084 	while (!list_empty(tasks)) {
9085 		/*
9086 		 * We don't want to steal all, otherwise we may be treated likewise,
9087 		 * which could at worst lead to a livelock crash.
9088 		 */
9089 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
9090 			break;
9091 
9092 		env->loop++;
9093 		/* We've more or less seen every task there is, call it quits */
9094 		if (env->loop > env->loop_max)
9095 			break;
9096 
9097 		/* take a breather every nr_migrate tasks */
9098 		if (env->loop > env->loop_break) {
9099 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9100 			env->flags |= LBF_NEED_BREAK;
9101 			break;
9102 		}
9103 
9104 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9105 
9106 		if (!can_migrate_task(p, env))
9107 			goto next;
9108 
9109 		switch (env->migration_type) {
9110 		case migrate_load:
9111 			/*
9112 			 * Depending of the number of CPUs and tasks and the
9113 			 * cgroup hierarchy, task_h_load() can return a null
9114 			 * value. Make sure that env->imbalance decreases
9115 			 * otherwise detach_tasks() will stop only after
9116 			 * detaching up to loop_max tasks.
9117 			 */
9118 			load = max_t(unsigned long, task_h_load(p), 1);
9119 
9120 			if (sched_feat(LB_MIN) &&
9121 			    load < 16 && !env->sd->nr_balance_failed)
9122 				goto next;
9123 
9124 			/*
9125 			 * Make sure that we don't migrate too much load.
9126 			 * Nevertheless, let relax the constraint if
9127 			 * scheduler fails to find a good waiting task to
9128 			 * migrate.
9129 			 */
9130 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9131 				goto next;
9132 
9133 			env->imbalance -= load;
9134 			break;
9135 
9136 		case migrate_util:
9137 			util = task_util_est(p);
9138 
9139 			if (util > env->imbalance)
9140 				goto next;
9141 
9142 			env->imbalance -= util;
9143 			break;
9144 
9145 		case migrate_task:
9146 			env->imbalance--;
9147 			break;
9148 
9149 		case migrate_misfit:
9150 			/* This is not a misfit task */
9151 			if (task_fits_cpu(p, env->src_cpu))
9152 				goto next;
9153 
9154 			env->imbalance = 0;
9155 			break;
9156 		}
9157 
9158 		detach_task(p, env);
9159 		list_add(&p->se.group_node, &env->tasks);
9160 
9161 		detached++;
9162 
9163 #ifdef CONFIG_PREEMPTION
9164 		/*
9165 		 * NEWIDLE balancing is a source of latency, so preemptible
9166 		 * kernels will stop after the first task is detached to minimize
9167 		 * the critical section.
9168 		 */
9169 		if (env->idle == CPU_NEWLY_IDLE)
9170 			break;
9171 #endif
9172 
9173 		/*
9174 		 * We only want to steal up to the prescribed amount of
9175 		 * load/util/tasks.
9176 		 */
9177 		if (env->imbalance <= 0)
9178 			break;
9179 
9180 		continue;
9181 next:
9182 		if (p->sched_task_hot)
9183 			schedstat_inc(p->stats.nr_failed_migrations_hot);
9184 
9185 		list_move(&p->se.group_node, tasks);
9186 	}
9187 
9188 	/*
9189 	 * Right now, this is one of only two places we collect this stat
9190 	 * so we can safely collect detach_one_task() stats here rather
9191 	 * than inside detach_one_task().
9192 	 */
9193 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9194 
9195 	return detached;
9196 }
9197 
9198 /*
9199  * attach_task() -- attach the task detached by detach_task() to its new rq.
9200  */
attach_task(struct rq * rq,struct task_struct * p)9201 static void attach_task(struct rq *rq, struct task_struct *p)
9202 {
9203 	lockdep_assert_rq_held(rq);
9204 
9205 	WARN_ON_ONCE(task_rq(p) != rq);
9206 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9207 	wakeup_preempt(rq, p, 0);
9208 }
9209 
9210 /*
9211  * attach_one_task() -- attaches the task returned from detach_one_task() to
9212  * its new rq.
9213  */
attach_one_task(struct rq * rq,struct task_struct * p)9214 static void attach_one_task(struct rq *rq, struct task_struct *p)
9215 {
9216 	struct rq_flags rf;
9217 
9218 	rq_lock(rq, &rf);
9219 	update_rq_clock(rq);
9220 	attach_task(rq, p);
9221 	rq_unlock(rq, &rf);
9222 }
9223 
9224 /*
9225  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9226  * new rq.
9227  */
attach_tasks(struct lb_env * env)9228 static void attach_tasks(struct lb_env *env)
9229 {
9230 	struct list_head *tasks = &env->tasks;
9231 	struct task_struct *p;
9232 	struct rq_flags rf;
9233 
9234 	rq_lock(env->dst_rq, &rf);
9235 	update_rq_clock(env->dst_rq);
9236 
9237 	while (!list_empty(tasks)) {
9238 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9239 		list_del_init(&p->se.group_node);
9240 
9241 		attach_task(env->dst_rq, p);
9242 	}
9243 
9244 	rq_unlock(env->dst_rq, &rf);
9245 }
9246 
9247 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9248 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9249 {
9250 	if (cfs_rq->avg.load_avg)
9251 		return true;
9252 
9253 	if (cfs_rq->avg.util_avg)
9254 		return true;
9255 
9256 	return false;
9257 }
9258 
others_have_blocked(struct rq * rq)9259 static inline bool others_have_blocked(struct rq *rq)
9260 {
9261 	if (READ_ONCE(rq->avg_rt.util_avg))
9262 		return true;
9263 
9264 	if (READ_ONCE(rq->avg_dl.util_avg))
9265 		return true;
9266 
9267 	if (thermal_load_avg(rq))
9268 		return true;
9269 
9270 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9271 	if (READ_ONCE(rq->avg_irq.util_avg))
9272 		return true;
9273 #endif
9274 
9275 	return false;
9276 }
9277 
update_blocked_load_tick(struct rq * rq)9278 static inline void update_blocked_load_tick(struct rq *rq)
9279 {
9280 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9281 }
9282 
update_blocked_load_status(struct rq * rq,bool has_blocked)9283 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9284 {
9285 	if (!has_blocked)
9286 		rq->has_blocked_load = 0;
9287 }
9288 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9289 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9290 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9291 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9292 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9293 #endif
9294 
__update_blocked_others(struct rq * rq,bool * done)9295 static bool __update_blocked_others(struct rq *rq, bool *done)
9296 {
9297 	const struct sched_class *curr_class;
9298 	u64 now = rq_clock_pelt(rq);
9299 	unsigned long thermal_pressure;
9300 	bool decayed;
9301 
9302 	/*
9303 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9304 	 * DL and IRQ signals have been updated before updating CFS.
9305 	 */
9306 	curr_class = rq->curr->sched_class;
9307 
9308 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9309 
9310 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9311 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9312 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9313 		  update_irq_load_avg(rq, 0);
9314 
9315 	if (others_have_blocked(rq))
9316 		*done = false;
9317 
9318 	return decayed;
9319 }
9320 
9321 #ifdef CONFIG_FAIR_GROUP_SCHED
9322 
__update_blocked_fair(struct rq * rq,bool * done)9323 static bool __update_blocked_fair(struct rq *rq, bool *done)
9324 {
9325 	struct cfs_rq *cfs_rq, *pos;
9326 	bool decayed = false;
9327 	int cpu = cpu_of(rq);
9328 
9329 	/*
9330 	 * Iterates the task_group tree in a bottom up fashion, see
9331 	 * list_add_leaf_cfs_rq() for details.
9332 	 */
9333 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9334 		struct sched_entity *se;
9335 
9336 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9337 			update_tg_load_avg(cfs_rq);
9338 
9339 			if (cfs_rq->nr_running == 0)
9340 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9341 
9342 			if (cfs_rq == &rq->cfs)
9343 				decayed = true;
9344 		}
9345 
9346 		/* Propagate pending load changes to the parent, if any: */
9347 		se = cfs_rq->tg->se[cpu];
9348 		if (se && !skip_blocked_update(se))
9349 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9350 
9351 		/*
9352 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9353 		 * decayed cfs_rqs linger on the list.
9354 		 */
9355 		if (cfs_rq_is_decayed(cfs_rq))
9356 			list_del_leaf_cfs_rq(cfs_rq);
9357 
9358 		/* Don't need periodic decay once load/util_avg are null */
9359 		if (cfs_rq_has_blocked(cfs_rq))
9360 			*done = false;
9361 	}
9362 
9363 	return decayed;
9364 }
9365 
9366 /*
9367  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9368  * This needs to be done in a top-down fashion because the load of a child
9369  * group is a fraction of its parents load.
9370  */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9371 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9372 {
9373 	struct rq *rq = rq_of(cfs_rq);
9374 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9375 	unsigned long now = jiffies;
9376 	unsigned long load;
9377 
9378 	if (cfs_rq->last_h_load_update == now)
9379 		return;
9380 
9381 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9382 	for_each_sched_entity(se) {
9383 		cfs_rq = cfs_rq_of(se);
9384 		WRITE_ONCE(cfs_rq->h_load_next, se);
9385 		if (cfs_rq->last_h_load_update == now)
9386 			break;
9387 	}
9388 
9389 	if (!se) {
9390 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9391 		cfs_rq->last_h_load_update = now;
9392 	}
9393 
9394 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9395 		load = cfs_rq->h_load;
9396 		load = div64_ul(load * se->avg.load_avg,
9397 			cfs_rq_load_avg(cfs_rq) + 1);
9398 		cfs_rq = group_cfs_rq(se);
9399 		cfs_rq->h_load = load;
9400 		cfs_rq->last_h_load_update = now;
9401 	}
9402 }
9403 
task_h_load(struct task_struct * p)9404 static unsigned long task_h_load(struct task_struct *p)
9405 {
9406 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9407 
9408 	update_cfs_rq_h_load(cfs_rq);
9409 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9410 			cfs_rq_load_avg(cfs_rq) + 1);
9411 }
9412 #else
__update_blocked_fair(struct rq * rq,bool * done)9413 static bool __update_blocked_fair(struct rq *rq, bool *done)
9414 {
9415 	struct cfs_rq *cfs_rq = &rq->cfs;
9416 	bool decayed;
9417 
9418 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9419 	if (cfs_rq_has_blocked(cfs_rq))
9420 		*done = false;
9421 
9422 	return decayed;
9423 }
9424 
task_h_load(struct task_struct * p)9425 static unsigned long task_h_load(struct task_struct *p)
9426 {
9427 	return p->se.avg.load_avg;
9428 }
9429 #endif
9430 
update_blocked_averages(int cpu)9431 static void update_blocked_averages(int cpu)
9432 {
9433 	bool decayed = false, done = true;
9434 	struct rq *rq = cpu_rq(cpu);
9435 	struct rq_flags rf;
9436 
9437 	rq_lock_irqsave(rq, &rf);
9438 	update_blocked_load_tick(rq);
9439 	update_rq_clock(rq);
9440 
9441 	decayed |= __update_blocked_others(rq, &done);
9442 	decayed |= __update_blocked_fair(rq, &done);
9443 
9444 	update_blocked_load_status(rq, !done);
9445 	if (decayed)
9446 		cpufreq_update_util(rq, 0);
9447 	rq_unlock_irqrestore(rq, &rf);
9448 }
9449 
9450 /********** Helpers for find_busiest_group ************************/
9451 
9452 /*
9453  * sg_lb_stats - stats of a sched_group required for load_balancing
9454  */
9455 struct sg_lb_stats {
9456 	unsigned long avg_load; /*Avg load across the CPUs of the group */
9457 	unsigned long group_load; /* Total load over the CPUs of the group */
9458 	unsigned long group_capacity;
9459 	unsigned long group_util; /* Total utilization over the CPUs of the group */
9460 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9461 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
9462 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9463 	unsigned int idle_cpus;
9464 	unsigned int group_weight;
9465 	enum group_type group_type;
9466 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9467 	unsigned int group_smt_balance;  /* Task on busy SMT be moved */
9468 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9469 #ifdef CONFIG_NUMA_BALANCING
9470 	unsigned int nr_numa_running;
9471 	unsigned int nr_preferred_running;
9472 #endif
9473 };
9474 
9475 /*
9476  * sd_lb_stats - Structure to store the statistics of a sched_domain
9477  *		 during load balancing.
9478  */
9479 struct sd_lb_stats {
9480 	struct sched_group *busiest;	/* Busiest group in this sd */
9481 	struct sched_group *local;	/* Local group in this sd */
9482 	unsigned long total_load;	/* Total load of all groups in sd */
9483 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
9484 	unsigned long avg_load;	/* Average load across all groups in sd */
9485 	unsigned int prefer_sibling; /* tasks should go to sibling first */
9486 
9487 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9488 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
9489 };
9490 
init_sd_lb_stats(struct sd_lb_stats * sds)9491 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9492 {
9493 	/*
9494 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9495 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9496 	 * We must however set busiest_stat::group_type and
9497 	 * busiest_stat::idle_cpus to the worst busiest group because
9498 	 * update_sd_pick_busiest() reads these before assignment.
9499 	 */
9500 	*sds = (struct sd_lb_stats){
9501 		.busiest = NULL,
9502 		.local = NULL,
9503 		.total_load = 0UL,
9504 		.total_capacity = 0UL,
9505 		.busiest_stat = {
9506 			.idle_cpus = UINT_MAX,
9507 			.group_type = group_has_spare,
9508 		},
9509 	};
9510 }
9511 
scale_rt_capacity(int cpu)9512 static unsigned long scale_rt_capacity(int cpu)
9513 {
9514 	struct rq *rq = cpu_rq(cpu);
9515 	unsigned long max = arch_scale_cpu_capacity(cpu);
9516 	unsigned long used, free;
9517 	unsigned long irq;
9518 
9519 	irq = cpu_util_irq(rq);
9520 
9521 	if (unlikely(irq >= max))
9522 		return 1;
9523 
9524 	/*
9525 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9526 	 * (running and not running) with weights 0 and 1024 respectively.
9527 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9528 	 * average uses the actual delta max capacity(load).
9529 	 */
9530 	used = READ_ONCE(rq->avg_rt.util_avg);
9531 	used += READ_ONCE(rq->avg_dl.util_avg);
9532 	used += thermal_load_avg(rq);
9533 
9534 	if (unlikely(used >= max))
9535 		return 1;
9536 
9537 	free = max - used;
9538 
9539 	return scale_irq_capacity(free, irq, max);
9540 }
9541 
update_cpu_capacity(struct sched_domain * sd,int cpu)9542 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9543 {
9544 	unsigned long capacity = scale_rt_capacity(cpu);
9545 	struct sched_group *sdg = sd->groups;
9546 
9547 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9548 
9549 	if (!capacity)
9550 		capacity = 1;
9551 
9552 	cpu_rq(cpu)->cpu_capacity = capacity;
9553 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9554 
9555 	sdg->sgc->capacity = capacity;
9556 	sdg->sgc->min_capacity = capacity;
9557 	sdg->sgc->max_capacity = capacity;
9558 }
9559 
update_group_capacity(struct sched_domain * sd,int cpu)9560 void update_group_capacity(struct sched_domain *sd, int cpu)
9561 {
9562 	struct sched_domain *child = sd->child;
9563 	struct sched_group *group, *sdg = sd->groups;
9564 	unsigned long capacity, min_capacity, max_capacity;
9565 	unsigned long interval;
9566 
9567 	interval = msecs_to_jiffies(sd->balance_interval);
9568 	interval = clamp(interval, 1UL, max_load_balance_interval);
9569 	sdg->sgc->next_update = jiffies + interval;
9570 
9571 	if (!child) {
9572 		update_cpu_capacity(sd, cpu);
9573 		return;
9574 	}
9575 
9576 	capacity = 0;
9577 	min_capacity = ULONG_MAX;
9578 	max_capacity = 0;
9579 
9580 	if (child->flags & SD_OVERLAP) {
9581 		/*
9582 		 * SD_OVERLAP domains cannot assume that child groups
9583 		 * span the current group.
9584 		 */
9585 
9586 		for_each_cpu(cpu, sched_group_span(sdg)) {
9587 			unsigned long cpu_cap = capacity_of(cpu);
9588 
9589 			capacity += cpu_cap;
9590 			min_capacity = min(cpu_cap, min_capacity);
9591 			max_capacity = max(cpu_cap, max_capacity);
9592 		}
9593 	} else  {
9594 		/*
9595 		 * !SD_OVERLAP domains can assume that child groups
9596 		 * span the current group.
9597 		 */
9598 
9599 		group = child->groups;
9600 		do {
9601 			struct sched_group_capacity *sgc = group->sgc;
9602 
9603 			capacity += sgc->capacity;
9604 			min_capacity = min(sgc->min_capacity, min_capacity);
9605 			max_capacity = max(sgc->max_capacity, max_capacity);
9606 			group = group->next;
9607 		} while (group != child->groups);
9608 	}
9609 
9610 	sdg->sgc->capacity = capacity;
9611 	sdg->sgc->min_capacity = min_capacity;
9612 	sdg->sgc->max_capacity = max_capacity;
9613 }
9614 
9615 /*
9616  * Check whether the capacity of the rq has been noticeably reduced by side
9617  * activity. The imbalance_pct is used for the threshold.
9618  * Return true is the capacity is reduced
9619  */
9620 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)9621 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9622 {
9623 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9624 				(rq->cpu_capacity_orig * 100));
9625 }
9626 
9627 /*
9628  * Check whether a rq has a misfit task and if it looks like we can actually
9629  * help that task: we can migrate the task to a CPU of higher capacity, or
9630  * the task's current CPU is heavily pressured.
9631  */
check_misfit_status(struct rq * rq,struct sched_domain * sd)9632 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9633 {
9634 	return rq->misfit_task_load &&
9635 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
9636 		 check_cpu_capacity(rq, sd));
9637 }
9638 
9639 /*
9640  * Group imbalance indicates (and tries to solve) the problem where balancing
9641  * groups is inadequate due to ->cpus_ptr constraints.
9642  *
9643  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9644  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9645  * Something like:
9646  *
9647  *	{ 0 1 2 3 } { 4 5 6 7 }
9648  *	        *     * * *
9649  *
9650  * If we were to balance group-wise we'd place two tasks in the first group and
9651  * two tasks in the second group. Clearly this is undesired as it will overload
9652  * cpu 3 and leave one of the CPUs in the second group unused.
9653  *
9654  * The current solution to this issue is detecting the skew in the first group
9655  * by noticing the lower domain failed to reach balance and had difficulty
9656  * moving tasks due to affinity constraints.
9657  *
9658  * When this is so detected; this group becomes a candidate for busiest; see
9659  * update_sd_pick_busiest(). And calculate_imbalance() and
9660  * find_busiest_group() avoid some of the usual balance conditions to allow it
9661  * to create an effective group imbalance.
9662  *
9663  * This is a somewhat tricky proposition since the next run might not find the
9664  * group imbalance and decide the groups need to be balanced again. A most
9665  * subtle and fragile situation.
9666  */
9667 
sg_imbalanced(struct sched_group * group)9668 static inline int sg_imbalanced(struct sched_group *group)
9669 {
9670 	return group->sgc->imbalance;
9671 }
9672 
9673 /*
9674  * group_has_capacity returns true if the group has spare capacity that could
9675  * be used by some tasks.
9676  * We consider that a group has spare capacity if the number of task is
9677  * smaller than the number of CPUs or if the utilization is lower than the
9678  * available capacity for CFS tasks.
9679  * For the latter, we use a threshold to stabilize the state, to take into
9680  * account the variance of the tasks' load and to return true if the available
9681  * capacity in meaningful for the load balancer.
9682  * As an example, an available capacity of 1% can appear but it doesn't make
9683  * any benefit for the load balance.
9684  */
9685 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9686 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9687 {
9688 	if (sgs->sum_nr_running < sgs->group_weight)
9689 		return true;
9690 
9691 	if ((sgs->group_capacity * imbalance_pct) <
9692 			(sgs->group_runnable * 100))
9693 		return false;
9694 
9695 	if ((sgs->group_capacity * 100) >
9696 			(sgs->group_util * imbalance_pct))
9697 		return true;
9698 
9699 	return false;
9700 }
9701 
9702 /*
9703  *  group_is_overloaded returns true if the group has more tasks than it can
9704  *  handle.
9705  *  group_is_overloaded is not equals to !group_has_capacity because a group
9706  *  with the exact right number of tasks, has no more spare capacity but is not
9707  *  overloaded so both group_has_capacity and group_is_overloaded return
9708  *  false.
9709  */
9710 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9711 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9712 {
9713 	if (sgs->sum_nr_running <= sgs->group_weight)
9714 		return false;
9715 
9716 	if ((sgs->group_capacity * 100) <
9717 			(sgs->group_util * imbalance_pct))
9718 		return true;
9719 
9720 	if ((sgs->group_capacity * imbalance_pct) <
9721 			(sgs->group_runnable * 100))
9722 		return true;
9723 
9724 	return false;
9725 }
9726 
9727 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)9728 group_type group_classify(unsigned int imbalance_pct,
9729 			  struct sched_group *group,
9730 			  struct sg_lb_stats *sgs)
9731 {
9732 	if (group_is_overloaded(imbalance_pct, sgs))
9733 		return group_overloaded;
9734 
9735 	if (sg_imbalanced(group))
9736 		return group_imbalanced;
9737 
9738 	if (sgs->group_asym_packing)
9739 		return group_asym_packing;
9740 
9741 	if (sgs->group_smt_balance)
9742 		return group_smt_balance;
9743 
9744 	if (sgs->group_misfit_task_load)
9745 		return group_misfit_task;
9746 
9747 	if (!group_has_capacity(imbalance_pct, sgs))
9748 		return group_fully_busy;
9749 
9750 	return group_has_spare;
9751 }
9752 
9753 /**
9754  * sched_use_asym_prio - Check whether asym_packing priority must be used
9755  * @sd:		The scheduling domain of the load balancing
9756  * @cpu:	A CPU
9757  *
9758  * Always use CPU priority when balancing load between SMT siblings. When
9759  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9760  * use CPU priority if the whole core is idle.
9761  *
9762  * Returns: True if the priority of @cpu must be followed. False otherwise.
9763  */
sched_use_asym_prio(struct sched_domain * sd,int cpu)9764 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9765 {
9766 	if (!sched_smt_active())
9767 		return true;
9768 
9769 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9770 }
9771 
9772 /**
9773  * sched_asym - Check if the destination CPU can do asym_packing load balance
9774  * @env:	The load balancing environment
9775  * @sds:	Load-balancing data with statistics of the local group
9776  * @sgs:	Load-balancing statistics of the candidate busiest group
9777  * @group:	The candidate busiest group
9778  *
9779  * @env::dst_cpu can do asym_packing if it has higher priority than the
9780  * preferred CPU of @group.
9781  *
9782  * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
9783  * can do asym_packing balance only if all its SMT siblings are idle. Also, it
9784  * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
9785  * imbalances in the number of CPUS are dealt with in find_busiest_group().
9786  *
9787  * If we are balancing load within an SMT core, or at PKG domain level, always
9788  * proceed.
9789  *
9790  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9791  * otherwise.
9792  */
9793 static inline bool
sched_asym(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * sgs,struct sched_group * group)9794 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
9795 	   struct sched_group *group)
9796 {
9797 	/* Ensure that the whole local core is idle, if applicable. */
9798 	if (!sched_use_asym_prio(env->sd, env->dst_cpu))
9799 		return false;
9800 
9801 	/*
9802 	 * CPU priorities does not make sense for SMT cores with more than one
9803 	 * busy sibling.
9804 	 */
9805 	if (group->flags & SD_SHARE_CPUCAPACITY) {
9806 		if (sgs->group_weight - sgs->idle_cpus != 1)
9807 			return false;
9808 	}
9809 
9810 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9811 }
9812 
9813 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)9814 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9815 				    struct sched_group *sg2)
9816 {
9817 	if (!sg1 || !sg2)
9818 		return false;
9819 
9820 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9821 		(sg2->flags & SD_SHARE_CPUCAPACITY);
9822 }
9823 
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)9824 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9825 			       struct sched_group *group)
9826 {
9827 	if (env->idle == CPU_NOT_IDLE)
9828 		return false;
9829 
9830 	/*
9831 	 * For SMT source group, it is better to move a task
9832 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9833 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9834 	 * will not be on.
9835 	 */
9836 	if (group->flags & SD_SHARE_CPUCAPACITY &&
9837 	    sgs->sum_h_nr_running > 1)
9838 		return true;
9839 
9840 	return false;
9841 }
9842 
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)9843 static inline long sibling_imbalance(struct lb_env *env,
9844 				    struct sd_lb_stats *sds,
9845 				    struct sg_lb_stats *busiest,
9846 				    struct sg_lb_stats *local)
9847 {
9848 	int ncores_busiest, ncores_local;
9849 	long imbalance;
9850 
9851 	if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9852 		return 0;
9853 
9854 	ncores_busiest = sds->busiest->cores;
9855 	ncores_local = sds->local->cores;
9856 
9857 	if (ncores_busiest == ncores_local) {
9858 		imbalance = busiest->sum_nr_running;
9859 		lsub_positive(&imbalance, local->sum_nr_running);
9860 		return imbalance;
9861 	}
9862 
9863 	/* Balance such that nr_running/ncores ratio are same on both groups */
9864 	imbalance = ncores_local * busiest->sum_nr_running;
9865 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9866 	/* Normalize imbalance and do rounding on normalization */
9867 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9868 	imbalance /= ncores_local + ncores_busiest;
9869 
9870 	/* Take advantage of resource in an empty sched group */
9871 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9872 	    busiest->sum_nr_running > 1)
9873 		imbalance = 2;
9874 
9875 	return imbalance;
9876 }
9877 
9878 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)9879 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9880 {
9881 	/*
9882 	 * When there is more than 1 task, the group_overloaded case already
9883 	 * takes care of cpu with reduced capacity
9884 	 */
9885 	if (rq->cfs.h_nr_running != 1)
9886 		return false;
9887 
9888 	return check_cpu_capacity(rq, sd);
9889 }
9890 
9891 /**
9892  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9893  * @env: The load balancing environment.
9894  * @sds: Load-balancing data with statistics of the local group.
9895  * @group: sched_group whose statistics are to be updated.
9896  * @sgs: variable to hold the statistics for this group.
9897  * @sg_status: Holds flag indicating the status of the sched_group
9898  */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)9899 static inline void update_sg_lb_stats(struct lb_env *env,
9900 				      struct sd_lb_stats *sds,
9901 				      struct sched_group *group,
9902 				      struct sg_lb_stats *sgs,
9903 				      int *sg_status)
9904 {
9905 	int i, nr_running, local_group;
9906 
9907 	memset(sgs, 0, sizeof(*sgs));
9908 
9909 	local_group = group == sds->local;
9910 
9911 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9912 		struct rq *rq = cpu_rq(i);
9913 		unsigned long load = cpu_load(rq);
9914 
9915 		sgs->group_load += load;
9916 		sgs->group_util += cpu_util_cfs(i);
9917 		sgs->group_runnable += cpu_runnable(rq);
9918 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9919 
9920 		nr_running = rq->nr_running;
9921 		sgs->sum_nr_running += nr_running;
9922 
9923 		if (nr_running > 1)
9924 			*sg_status |= SG_OVERLOAD;
9925 
9926 		if (cpu_overutilized(i))
9927 			*sg_status |= SG_OVERUTILIZED;
9928 
9929 #ifdef CONFIG_NUMA_BALANCING
9930 		sgs->nr_numa_running += rq->nr_numa_running;
9931 		sgs->nr_preferred_running += rq->nr_preferred_running;
9932 #endif
9933 		/*
9934 		 * No need to call idle_cpu() if nr_running is not 0
9935 		 */
9936 		if (!nr_running && idle_cpu(i)) {
9937 			sgs->idle_cpus++;
9938 			/* Idle cpu can't have misfit task */
9939 			continue;
9940 		}
9941 
9942 		if (local_group)
9943 			continue;
9944 
9945 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9946 			/* Check for a misfit task on the cpu */
9947 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9948 				sgs->group_misfit_task_load = rq->misfit_task_load;
9949 				*sg_status |= SG_OVERLOAD;
9950 			}
9951 		} else if ((env->idle != CPU_NOT_IDLE) &&
9952 			   sched_reduced_capacity(rq, env->sd)) {
9953 			/* Check for a task running on a CPU with reduced capacity */
9954 			if (sgs->group_misfit_task_load < load)
9955 				sgs->group_misfit_task_load = load;
9956 		}
9957 	}
9958 
9959 	sgs->group_capacity = group->sgc->capacity;
9960 
9961 	sgs->group_weight = group->group_weight;
9962 
9963 	/* Check if dst CPU is idle and preferred to this group */
9964 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9965 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9966 	    sched_asym(env, sds, sgs, group)) {
9967 		sgs->group_asym_packing = 1;
9968 	}
9969 
9970 	/* Check for loaded SMT group to be balanced to dst CPU */
9971 	if (!local_group && smt_balance(env, sgs, group))
9972 		sgs->group_smt_balance = 1;
9973 
9974 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9975 
9976 	/* Computing avg_load makes sense only when group is overloaded */
9977 	if (sgs->group_type == group_overloaded)
9978 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9979 				sgs->group_capacity;
9980 }
9981 
9982 /**
9983  * update_sd_pick_busiest - return 1 on busiest group
9984  * @env: The load balancing environment.
9985  * @sds: sched_domain statistics
9986  * @sg: sched_group candidate to be checked for being the busiest
9987  * @sgs: sched_group statistics
9988  *
9989  * Determine if @sg is a busier group than the previously selected
9990  * busiest group.
9991  *
9992  * Return: %true if @sg is a busier group than the previously selected
9993  * busiest group. %false otherwise.
9994  */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)9995 static bool update_sd_pick_busiest(struct lb_env *env,
9996 				   struct sd_lb_stats *sds,
9997 				   struct sched_group *sg,
9998 				   struct sg_lb_stats *sgs)
9999 {
10000 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10001 
10002 	/* Make sure that there is at least one task to pull */
10003 	if (!sgs->sum_h_nr_running)
10004 		return false;
10005 
10006 	/*
10007 	 * Don't try to pull misfit tasks we can't help.
10008 	 * We can use max_capacity here as reduction in capacity on some
10009 	 * CPUs in the group should either be possible to resolve
10010 	 * internally or be covered by avg_load imbalance (eventually).
10011 	 */
10012 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10013 	    (sgs->group_type == group_misfit_task) &&
10014 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10015 	     sds->local_stat.group_type != group_has_spare))
10016 		return false;
10017 
10018 	if (sgs->group_type > busiest->group_type)
10019 		return true;
10020 
10021 	if (sgs->group_type < busiest->group_type)
10022 		return false;
10023 
10024 	/*
10025 	 * The candidate and the current busiest group are the same type of
10026 	 * group. Let check which one is the busiest according to the type.
10027 	 */
10028 
10029 	switch (sgs->group_type) {
10030 	case group_overloaded:
10031 		/* Select the overloaded group with highest avg_load. */
10032 		if (sgs->avg_load <= busiest->avg_load)
10033 			return false;
10034 		break;
10035 
10036 	case group_imbalanced:
10037 		/*
10038 		 * Select the 1st imbalanced group as we don't have any way to
10039 		 * choose one more than another.
10040 		 */
10041 		return false;
10042 
10043 	case group_asym_packing:
10044 		/* Prefer to move from lowest priority CPU's work */
10045 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
10046 			return false;
10047 		break;
10048 
10049 	case group_misfit_task:
10050 		/*
10051 		 * If we have more than one misfit sg go with the biggest
10052 		 * misfit.
10053 		 */
10054 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
10055 			return false;
10056 		break;
10057 
10058 	case group_smt_balance:
10059 		/*
10060 		 * Check if we have spare CPUs on either SMT group to
10061 		 * choose has spare or fully busy handling.
10062 		 */
10063 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10064 			goto has_spare;
10065 
10066 		fallthrough;
10067 
10068 	case group_fully_busy:
10069 		/*
10070 		 * Select the fully busy group with highest avg_load. In
10071 		 * theory, there is no need to pull task from such kind of
10072 		 * group because tasks have all compute capacity that they need
10073 		 * but we can still improve the overall throughput by reducing
10074 		 * contention when accessing shared HW resources.
10075 		 *
10076 		 * XXX for now avg_load is not computed and always 0 so we
10077 		 * select the 1st one, except if @sg is composed of SMT
10078 		 * siblings.
10079 		 */
10080 
10081 		if (sgs->avg_load < busiest->avg_load)
10082 			return false;
10083 
10084 		if (sgs->avg_load == busiest->avg_load) {
10085 			/*
10086 			 * SMT sched groups need more help than non-SMT groups.
10087 			 * If @sg happens to also be SMT, either choice is good.
10088 			 */
10089 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10090 				return false;
10091 		}
10092 
10093 		break;
10094 
10095 	case group_has_spare:
10096 		/*
10097 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10098 		 * as we do not want to pull task off SMT core with one task
10099 		 * and make the core idle.
10100 		 */
10101 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10102 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10103 				return false;
10104 			else
10105 				return true;
10106 		}
10107 has_spare:
10108 
10109 		/*
10110 		 * Select not overloaded group with lowest number of idle cpus
10111 		 * and highest number of running tasks. We could also compare
10112 		 * the spare capacity which is more stable but it can end up
10113 		 * that the group has less spare capacity but finally more idle
10114 		 * CPUs which means less opportunity to pull tasks.
10115 		 */
10116 		if (sgs->idle_cpus > busiest->idle_cpus)
10117 			return false;
10118 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10119 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10120 			return false;
10121 
10122 		break;
10123 	}
10124 
10125 	/*
10126 	 * Candidate sg has no more than one task per CPU and has higher
10127 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10128 	 * throughput. Maximize throughput, power/energy consequences are not
10129 	 * considered.
10130 	 */
10131 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10132 	    (sgs->group_type <= group_fully_busy) &&
10133 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10134 		return false;
10135 
10136 	return true;
10137 }
10138 
10139 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10140 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10141 {
10142 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10143 		return regular;
10144 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10145 		return remote;
10146 	return all;
10147 }
10148 
fbq_classify_rq(struct rq * rq)10149 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10150 {
10151 	if (rq->nr_running > rq->nr_numa_running)
10152 		return regular;
10153 	if (rq->nr_running > rq->nr_preferred_running)
10154 		return remote;
10155 	return all;
10156 }
10157 #else
fbq_classify_group(struct sg_lb_stats * sgs)10158 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10159 {
10160 	return all;
10161 }
10162 
fbq_classify_rq(struct rq * rq)10163 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10164 {
10165 	return regular;
10166 }
10167 #endif /* CONFIG_NUMA_BALANCING */
10168 
10169 
10170 struct sg_lb_stats;
10171 
10172 /*
10173  * task_running_on_cpu - return 1 if @p is running on @cpu.
10174  */
10175 
task_running_on_cpu(int cpu,struct task_struct * p)10176 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10177 {
10178 	/* Task has no contribution or is new */
10179 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10180 		return 0;
10181 
10182 	if (task_on_rq_queued(p))
10183 		return 1;
10184 
10185 	return 0;
10186 }
10187 
10188 /**
10189  * idle_cpu_without - would a given CPU be idle without p ?
10190  * @cpu: the processor on which idleness is tested.
10191  * @p: task which should be ignored.
10192  *
10193  * Return: 1 if the CPU would be idle. 0 otherwise.
10194  */
idle_cpu_without(int cpu,struct task_struct * p)10195 static int idle_cpu_without(int cpu, struct task_struct *p)
10196 {
10197 	struct rq *rq = cpu_rq(cpu);
10198 
10199 	if (rq->curr != rq->idle && rq->curr != p)
10200 		return 0;
10201 
10202 	/*
10203 	 * rq->nr_running can't be used but an updated version without the
10204 	 * impact of p on cpu must be used instead. The updated nr_running
10205 	 * be computed and tested before calling idle_cpu_without().
10206 	 */
10207 
10208 #ifdef CONFIG_SMP
10209 	if (rq->ttwu_pending)
10210 		return 0;
10211 #endif
10212 
10213 	return 1;
10214 }
10215 
10216 /*
10217  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10218  * @sd: The sched_domain level to look for idlest group.
10219  * @group: sched_group whose statistics are to be updated.
10220  * @sgs: variable to hold the statistics for this group.
10221  * @p: The task for which we look for the idlest group/CPU.
10222  */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10223 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10224 					  struct sched_group *group,
10225 					  struct sg_lb_stats *sgs,
10226 					  struct task_struct *p)
10227 {
10228 	int i, nr_running;
10229 
10230 	memset(sgs, 0, sizeof(*sgs));
10231 
10232 	/* Assume that task can't fit any CPU of the group */
10233 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10234 		sgs->group_misfit_task_load = 1;
10235 
10236 	for_each_cpu(i, sched_group_span(group)) {
10237 		struct rq *rq = cpu_rq(i);
10238 		unsigned int local;
10239 
10240 		sgs->group_load += cpu_load_without(rq, p);
10241 		sgs->group_util += cpu_util_without(i, p);
10242 		sgs->group_runnable += cpu_runnable_without(rq, p);
10243 		local = task_running_on_cpu(i, p);
10244 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10245 
10246 		nr_running = rq->nr_running - local;
10247 		sgs->sum_nr_running += nr_running;
10248 
10249 		/*
10250 		 * No need to call idle_cpu_without() if nr_running is not 0
10251 		 */
10252 		if (!nr_running && idle_cpu_without(i, p))
10253 			sgs->idle_cpus++;
10254 
10255 		/* Check if task fits in the CPU */
10256 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10257 		    sgs->group_misfit_task_load &&
10258 		    task_fits_cpu(p, i))
10259 			sgs->group_misfit_task_load = 0;
10260 
10261 	}
10262 
10263 	sgs->group_capacity = group->sgc->capacity;
10264 
10265 	sgs->group_weight = group->group_weight;
10266 
10267 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10268 
10269 	/*
10270 	 * Computing avg_load makes sense only when group is fully busy or
10271 	 * overloaded
10272 	 */
10273 	if (sgs->group_type == group_fully_busy ||
10274 		sgs->group_type == group_overloaded)
10275 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10276 				sgs->group_capacity;
10277 }
10278 
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10279 static bool update_pick_idlest(struct sched_group *idlest,
10280 			       struct sg_lb_stats *idlest_sgs,
10281 			       struct sched_group *group,
10282 			       struct sg_lb_stats *sgs)
10283 {
10284 	if (sgs->group_type < idlest_sgs->group_type)
10285 		return true;
10286 
10287 	if (sgs->group_type > idlest_sgs->group_type)
10288 		return false;
10289 
10290 	/*
10291 	 * The candidate and the current idlest group are the same type of
10292 	 * group. Let check which one is the idlest according to the type.
10293 	 */
10294 
10295 	switch (sgs->group_type) {
10296 	case group_overloaded:
10297 	case group_fully_busy:
10298 		/* Select the group with lowest avg_load. */
10299 		if (idlest_sgs->avg_load <= sgs->avg_load)
10300 			return false;
10301 		break;
10302 
10303 	case group_imbalanced:
10304 	case group_asym_packing:
10305 	case group_smt_balance:
10306 		/* Those types are not used in the slow wakeup path */
10307 		return false;
10308 
10309 	case group_misfit_task:
10310 		/* Select group with the highest max capacity */
10311 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10312 			return false;
10313 		break;
10314 
10315 	case group_has_spare:
10316 		/* Select group with most idle CPUs */
10317 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10318 			return false;
10319 
10320 		/* Select group with lowest group_util */
10321 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10322 			idlest_sgs->group_util <= sgs->group_util)
10323 			return false;
10324 
10325 		break;
10326 	}
10327 
10328 	return true;
10329 }
10330 
10331 /*
10332  * find_idlest_group() finds and returns the least busy CPU group within the
10333  * domain.
10334  *
10335  * Assumes p is allowed on at least one CPU in sd.
10336  */
10337 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10338 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10339 {
10340 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10341 	struct sg_lb_stats local_sgs, tmp_sgs;
10342 	struct sg_lb_stats *sgs;
10343 	unsigned long imbalance;
10344 	struct sg_lb_stats idlest_sgs = {
10345 			.avg_load = UINT_MAX,
10346 			.group_type = group_overloaded,
10347 	};
10348 
10349 	do {
10350 		int local_group;
10351 
10352 		/* Skip over this group if it has no CPUs allowed */
10353 		if (!cpumask_intersects(sched_group_span(group),
10354 					p->cpus_ptr))
10355 			continue;
10356 
10357 		/* Skip over this group if no cookie matched */
10358 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10359 			continue;
10360 
10361 		local_group = cpumask_test_cpu(this_cpu,
10362 					       sched_group_span(group));
10363 
10364 		if (local_group) {
10365 			sgs = &local_sgs;
10366 			local = group;
10367 		} else {
10368 			sgs = &tmp_sgs;
10369 		}
10370 
10371 		update_sg_wakeup_stats(sd, group, sgs, p);
10372 
10373 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10374 			idlest = group;
10375 			idlest_sgs = *sgs;
10376 		}
10377 
10378 	} while (group = group->next, group != sd->groups);
10379 
10380 
10381 	/* There is no idlest group to push tasks to */
10382 	if (!idlest)
10383 		return NULL;
10384 
10385 	/* The local group has been skipped because of CPU affinity */
10386 	if (!local)
10387 		return idlest;
10388 
10389 	/*
10390 	 * If the local group is idler than the selected idlest group
10391 	 * don't try and push the task.
10392 	 */
10393 	if (local_sgs.group_type < idlest_sgs.group_type)
10394 		return NULL;
10395 
10396 	/*
10397 	 * If the local group is busier than the selected idlest group
10398 	 * try and push the task.
10399 	 */
10400 	if (local_sgs.group_type > idlest_sgs.group_type)
10401 		return idlest;
10402 
10403 	switch (local_sgs.group_type) {
10404 	case group_overloaded:
10405 	case group_fully_busy:
10406 
10407 		/* Calculate allowed imbalance based on load */
10408 		imbalance = scale_load_down(NICE_0_LOAD) *
10409 				(sd->imbalance_pct-100) / 100;
10410 
10411 		/*
10412 		 * When comparing groups across NUMA domains, it's possible for
10413 		 * the local domain to be very lightly loaded relative to the
10414 		 * remote domains but "imbalance" skews the comparison making
10415 		 * remote CPUs look much more favourable. When considering
10416 		 * cross-domain, add imbalance to the load on the remote node
10417 		 * and consider staying local.
10418 		 */
10419 
10420 		if ((sd->flags & SD_NUMA) &&
10421 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10422 			return NULL;
10423 
10424 		/*
10425 		 * If the local group is less loaded than the selected
10426 		 * idlest group don't try and push any tasks.
10427 		 */
10428 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10429 			return NULL;
10430 
10431 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10432 			return NULL;
10433 		break;
10434 
10435 	case group_imbalanced:
10436 	case group_asym_packing:
10437 	case group_smt_balance:
10438 		/* Those type are not used in the slow wakeup path */
10439 		return NULL;
10440 
10441 	case group_misfit_task:
10442 		/* Select group with the highest max capacity */
10443 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10444 			return NULL;
10445 		break;
10446 
10447 	case group_has_spare:
10448 #ifdef CONFIG_NUMA
10449 		if (sd->flags & SD_NUMA) {
10450 			int imb_numa_nr = sd->imb_numa_nr;
10451 #ifdef CONFIG_NUMA_BALANCING
10452 			int idlest_cpu;
10453 			/*
10454 			 * If there is spare capacity at NUMA, try to select
10455 			 * the preferred node
10456 			 */
10457 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10458 				return NULL;
10459 
10460 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10461 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10462 				return idlest;
10463 #endif /* CONFIG_NUMA_BALANCING */
10464 			/*
10465 			 * Otherwise, keep the task close to the wakeup source
10466 			 * and improve locality if the number of running tasks
10467 			 * would remain below threshold where an imbalance is
10468 			 * allowed while accounting for the possibility the
10469 			 * task is pinned to a subset of CPUs. If there is a
10470 			 * real need of migration, periodic load balance will
10471 			 * take care of it.
10472 			 */
10473 			if (p->nr_cpus_allowed != NR_CPUS) {
10474 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10475 
10476 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10477 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10478 			}
10479 
10480 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10481 			if (!adjust_numa_imbalance(imbalance,
10482 						   local_sgs.sum_nr_running + 1,
10483 						   imb_numa_nr)) {
10484 				return NULL;
10485 			}
10486 		}
10487 #endif /* CONFIG_NUMA */
10488 
10489 		/*
10490 		 * Select group with highest number of idle CPUs. We could also
10491 		 * compare the utilization which is more stable but it can end
10492 		 * up that the group has less spare capacity but finally more
10493 		 * idle CPUs which means more opportunity to run task.
10494 		 */
10495 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10496 			return NULL;
10497 		break;
10498 	}
10499 
10500 	return idlest;
10501 }
10502 
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10503 static void update_idle_cpu_scan(struct lb_env *env,
10504 				 unsigned long sum_util)
10505 {
10506 	struct sched_domain_shared *sd_share;
10507 	int llc_weight, pct;
10508 	u64 x, y, tmp;
10509 	/*
10510 	 * Update the number of CPUs to scan in LLC domain, which could
10511 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10512 	 * could be expensive because it is within a shared cache line.
10513 	 * So the write of this hint only occurs during periodic load
10514 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10515 	 * can fire way more frequently than the former.
10516 	 */
10517 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10518 		return;
10519 
10520 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10521 	if (env->sd->span_weight != llc_weight)
10522 		return;
10523 
10524 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10525 	if (!sd_share)
10526 		return;
10527 
10528 	/*
10529 	 * The number of CPUs to search drops as sum_util increases, when
10530 	 * sum_util hits 85% or above, the scan stops.
10531 	 * The reason to choose 85% as the threshold is because this is the
10532 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10533 	 *
10534 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10535 	 * and y'= y / SCHED_CAPACITY_SCALE
10536 	 *
10537 	 * x is the ratio of sum_util compared to the CPU capacity:
10538 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10539 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10540 	 * and the number of CPUs to scan is calculated by:
10541 	 *
10542 	 * nr_scan = llc_weight * y'                                    [2]
10543 	 *
10544 	 * When x hits the threshold of overloaded, AKA, when
10545 	 * x = 100 / pct, y drops to 0. According to [1],
10546 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10547 	 *
10548 	 * Scale x by SCHED_CAPACITY_SCALE:
10549 	 * x' = sum_util / llc_weight;                                  [3]
10550 	 *
10551 	 * and finally [1] becomes:
10552 	 * y = SCHED_CAPACITY_SCALE -
10553 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10554 	 *
10555 	 */
10556 	/* equation [3] */
10557 	x = sum_util;
10558 	do_div(x, llc_weight);
10559 
10560 	/* equation [4] */
10561 	pct = env->sd->imbalance_pct;
10562 	tmp = x * x * pct * pct;
10563 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10564 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10565 	y = SCHED_CAPACITY_SCALE - tmp;
10566 
10567 	/* equation [2] */
10568 	y *= llc_weight;
10569 	do_div(y, SCHED_CAPACITY_SCALE);
10570 	if ((int)y != sd_share->nr_idle_scan)
10571 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10572 }
10573 
10574 /**
10575  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10576  * @env: The load balancing environment.
10577  * @sds: variable to hold the statistics for this sched_domain.
10578  */
10579 
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)10580 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10581 {
10582 	struct sched_group *sg = env->sd->groups;
10583 	struct sg_lb_stats *local = &sds->local_stat;
10584 	struct sg_lb_stats tmp_sgs;
10585 	unsigned long sum_util = 0;
10586 	int sg_status = 0;
10587 
10588 	do {
10589 		struct sg_lb_stats *sgs = &tmp_sgs;
10590 		int local_group;
10591 
10592 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10593 		if (local_group) {
10594 			sds->local = sg;
10595 			sgs = local;
10596 
10597 			if (env->idle != CPU_NEWLY_IDLE ||
10598 			    time_after_eq(jiffies, sg->sgc->next_update))
10599 				update_group_capacity(env->sd, env->dst_cpu);
10600 		}
10601 
10602 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10603 
10604 		if (local_group)
10605 			goto next_group;
10606 
10607 
10608 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10609 			sds->busiest = sg;
10610 			sds->busiest_stat = *sgs;
10611 		}
10612 
10613 next_group:
10614 		/* Now, start updating sd_lb_stats */
10615 		sds->total_load += sgs->group_load;
10616 		sds->total_capacity += sgs->group_capacity;
10617 
10618 		sum_util += sgs->group_util;
10619 		sg = sg->next;
10620 	} while (sg != env->sd->groups);
10621 
10622 	/*
10623 	 * Indicate that the child domain of the busiest group prefers tasks
10624 	 * go to a child's sibling domains first. NB the flags of a sched group
10625 	 * are those of the child domain.
10626 	 */
10627 	if (sds->busiest)
10628 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10629 
10630 
10631 	if (env->sd->flags & SD_NUMA)
10632 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10633 
10634 	if (!env->sd->parent) {
10635 		/* update overload indicator if we are at root domain */
10636 		WRITE_ONCE(env->dst_rq->rd->overload, sg_status & SG_OVERLOAD);
10637 
10638 		/* Update over-utilization (tipping point, U >= 0) indicator */
10639 		set_rd_overutilized_status(env->dst_rq->rd,
10640 					   sg_status & SG_OVERUTILIZED);
10641 	} else if (sg_status & SG_OVERUTILIZED) {
10642 		set_rd_overutilized_status(env->dst_rq->rd, SG_OVERUTILIZED);
10643 	}
10644 
10645 	update_idle_cpu_scan(env, sum_util);
10646 }
10647 
10648 /**
10649  * calculate_imbalance - Calculate the amount of imbalance present within the
10650  *			 groups of a given sched_domain during load balance.
10651  * @env: load balance environment
10652  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10653  */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)10654 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10655 {
10656 	struct sg_lb_stats *local, *busiest;
10657 
10658 	local = &sds->local_stat;
10659 	busiest = &sds->busiest_stat;
10660 
10661 	if (busiest->group_type == group_misfit_task) {
10662 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10663 			/* Set imbalance to allow misfit tasks to be balanced. */
10664 			env->migration_type = migrate_misfit;
10665 			env->imbalance = 1;
10666 		} else {
10667 			/*
10668 			 * Set load imbalance to allow moving task from cpu
10669 			 * with reduced capacity.
10670 			 */
10671 			env->migration_type = migrate_load;
10672 			env->imbalance = busiest->group_misfit_task_load;
10673 		}
10674 		return;
10675 	}
10676 
10677 	if (busiest->group_type == group_asym_packing) {
10678 		/*
10679 		 * In case of asym capacity, we will try to migrate all load to
10680 		 * the preferred CPU.
10681 		 */
10682 		env->migration_type = migrate_task;
10683 		env->imbalance = busiest->sum_h_nr_running;
10684 		return;
10685 	}
10686 
10687 	if (busiest->group_type == group_smt_balance) {
10688 		/* Reduce number of tasks sharing CPU capacity */
10689 		env->migration_type = migrate_task;
10690 		env->imbalance = 1;
10691 		return;
10692 	}
10693 
10694 	if (busiest->group_type == group_imbalanced) {
10695 		/*
10696 		 * In the group_imb case we cannot rely on group-wide averages
10697 		 * to ensure CPU-load equilibrium, try to move any task to fix
10698 		 * the imbalance. The next load balance will take care of
10699 		 * balancing back the system.
10700 		 */
10701 		env->migration_type = migrate_task;
10702 		env->imbalance = 1;
10703 		return;
10704 	}
10705 
10706 	/*
10707 	 * Try to use spare capacity of local group without overloading it or
10708 	 * emptying busiest.
10709 	 */
10710 	if (local->group_type == group_has_spare) {
10711 		if ((busiest->group_type > group_fully_busy) &&
10712 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10713 			/*
10714 			 * If busiest is overloaded, try to fill spare
10715 			 * capacity. This might end up creating spare capacity
10716 			 * in busiest or busiest still being overloaded but
10717 			 * there is no simple way to directly compute the
10718 			 * amount of load to migrate in order to balance the
10719 			 * system.
10720 			 */
10721 			env->migration_type = migrate_util;
10722 			env->imbalance = max(local->group_capacity, local->group_util) -
10723 					 local->group_util;
10724 
10725 			/*
10726 			 * In some cases, the group's utilization is max or even
10727 			 * higher than capacity because of migrations but the
10728 			 * local CPU is (newly) idle. There is at least one
10729 			 * waiting task in this overloaded busiest group. Let's
10730 			 * try to pull it.
10731 			 */
10732 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10733 				env->migration_type = migrate_task;
10734 				env->imbalance = 1;
10735 			}
10736 
10737 			return;
10738 		}
10739 
10740 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10741 			/*
10742 			 * When prefer sibling, evenly spread running tasks on
10743 			 * groups.
10744 			 */
10745 			env->migration_type = migrate_task;
10746 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10747 		} else {
10748 
10749 			/*
10750 			 * If there is no overload, we just want to even the number of
10751 			 * idle cpus.
10752 			 */
10753 			env->migration_type = migrate_task;
10754 			env->imbalance = max_t(long, 0,
10755 					       (local->idle_cpus - busiest->idle_cpus));
10756 		}
10757 
10758 #ifdef CONFIG_NUMA
10759 		/* Consider allowing a small imbalance between NUMA groups */
10760 		if (env->sd->flags & SD_NUMA) {
10761 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10762 							       local->sum_nr_running + 1,
10763 							       env->sd->imb_numa_nr);
10764 		}
10765 #endif
10766 
10767 		/* Number of tasks to move to restore balance */
10768 		env->imbalance >>= 1;
10769 
10770 		return;
10771 	}
10772 
10773 	/*
10774 	 * Local is fully busy but has to take more load to relieve the
10775 	 * busiest group
10776 	 */
10777 	if (local->group_type < group_overloaded) {
10778 		/*
10779 		 * Local will become overloaded so the avg_load metrics are
10780 		 * finally needed.
10781 		 */
10782 
10783 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10784 				  local->group_capacity;
10785 
10786 		/*
10787 		 * If the local group is more loaded than the selected
10788 		 * busiest group don't try to pull any tasks.
10789 		 */
10790 		if (local->avg_load >= busiest->avg_load) {
10791 			env->imbalance = 0;
10792 			return;
10793 		}
10794 
10795 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10796 				sds->total_capacity;
10797 
10798 		/*
10799 		 * If the local group is more loaded than the average system
10800 		 * load, don't try to pull any tasks.
10801 		 */
10802 		if (local->avg_load >= sds->avg_load) {
10803 			env->imbalance = 0;
10804 			return;
10805 		}
10806 
10807 	}
10808 
10809 	/*
10810 	 * Both group are or will become overloaded and we're trying to get all
10811 	 * the CPUs to the average_load, so we don't want to push ourselves
10812 	 * above the average load, nor do we wish to reduce the max loaded CPU
10813 	 * below the average load. At the same time, we also don't want to
10814 	 * reduce the group load below the group capacity. Thus we look for
10815 	 * the minimum possible imbalance.
10816 	 */
10817 	env->migration_type = migrate_load;
10818 	env->imbalance = min(
10819 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10820 		(sds->avg_load - local->avg_load) * local->group_capacity
10821 	) / SCHED_CAPACITY_SCALE;
10822 }
10823 
10824 /******* find_busiest_group() helpers end here *********************/
10825 
10826 /*
10827  * Decision matrix according to the local and busiest group type:
10828  *
10829  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10830  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10831  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10832  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10833  * asym_packing     force     force      N/A    N/A  force      force
10834  * imbalanced       force     force      N/A    N/A  force      force
10835  * overloaded       force     force      N/A    N/A  force      avg_load
10836  *
10837  * N/A :      Not Applicable because already filtered while updating
10838  *            statistics.
10839  * balanced : The system is balanced for these 2 groups.
10840  * force :    Calculate the imbalance as load migration is probably needed.
10841  * avg_load : Only if imbalance is significant enough.
10842  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10843  *            different in groups.
10844  */
10845 
10846 /**
10847  * find_busiest_group - Returns the busiest group within the sched_domain
10848  * if there is an imbalance.
10849  * @env: The load balancing environment.
10850  *
10851  * Also calculates the amount of runnable load which should be moved
10852  * to restore balance.
10853  *
10854  * Return:	- The busiest group if imbalance exists.
10855  */
find_busiest_group(struct lb_env * env)10856 static struct sched_group *find_busiest_group(struct lb_env *env)
10857 {
10858 	struct sg_lb_stats *local, *busiest;
10859 	struct sd_lb_stats sds;
10860 
10861 	init_sd_lb_stats(&sds);
10862 
10863 	/*
10864 	 * Compute the various statistics relevant for load balancing at
10865 	 * this level.
10866 	 */
10867 	update_sd_lb_stats(env, &sds);
10868 
10869 	/* There is no busy sibling group to pull tasks from */
10870 	if (!sds.busiest)
10871 		goto out_balanced;
10872 
10873 	busiest = &sds.busiest_stat;
10874 
10875 	/* Misfit tasks should be dealt with regardless of the avg load */
10876 	if (busiest->group_type == group_misfit_task)
10877 		goto force_balance;
10878 
10879 	if (sched_energy_enabled()) {
10880 		struct root_domain *rd = env->dst_rq->rd;
10881 
10882 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10883 			goto out_balanced;
10884 	}
10885 
10886 	/* ASYM feature bypasses nice load balance check */
10887 	if (busiest->group_type == group_asym_packing)
10888 		goto force_balance;
10889 
10890 	/*
10891 	 * If the busiest group is imbalanced the below checks don't
10892 	 * work because they assume all things are equal, which typically
10893 	 * isn't true due to cpus_ptr constraints and the like.
10894 	 */
10895 	if (busiest->group_type == group_imbalanced)
10896 		goto force_balance;
10897 
10898 	local = &sds.local_stat;
10899 	/*
10900 	 * If the local group is busier than the selected busiest group
10901 	 * don't try and pull any tasks.
10902 	 */
10903 	if (local->group_type > busiest->group_type)
10904 		goto out_balanced;
10905 
10906 	/*
10907 	 * When groups are overloaded, use the avg_load to ensure fairness
10908 	 * between tasks.
10909 	 */
10910 	if (local->group_type == group_overloaded) {
10911 		/*
10912 		 * If the local group is more loaded than the selected
10913 		 * busiest group don't try to pull any tasks.
10914 		 */
10915 		if (local->avg_load >= busiest->avg_load)
10916 			goto out_balanced;
10917 
10918 		/* XXX broken for overlapping NUMA groups */
10919 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10920 				sds.total_capacity;
10921 
10922 		/*
10923 		 * Don't pull any tasks if this group is already above the
10924 		 * domain average load.
10925 		 */
10926 		if (local->avg_load >= sds.avg_load)
10927 			goto out_balanced;
10928 
10929 		/*
10930 		 * If the busiest group is more loaded, use imbalance_pct to be
10931 		 * conservative.
10932 		 */
10933 		if (100 * busiest->avg_load <=
10934 				env->sd->imbalance_pct * local->avg_load)
10935 			goto out_balanced;
10936 	}
10937 
10938 	/*
10939 	 * Try to move all excess tasks to a sibling domain of the busiest
10940 	 * group's child domain.
10941 	 */
10942 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10943 	    sibling_imbalance(env, &sds, busiest, local) > 1)
10944 		goto force_balance;
10945 
10946 	if (busiest->group_type != group_overloaded) {
10947 		if (env->idle == CPU_NOT_IDLE) {
10948 			/*
10949 			 * If the busiest group is not overloaded (and as a
10950 			 * result the local one too) but this CPU is already
10951 			 * busy, let another idle CPU try to pull task.
10952 			 */
10953 			goto out_balanced;
10954 		}
10955 
10956 		if (busiest->group_type == group_smt_balance &&
10957 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10958 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10959 			goto force_balance;
10960 		}
10961 
10962 		if (busiest->group_weight > 1 &&
10963 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10964 			/*
10965 			 * If the busiest group is not overloaded
10966 			 * and there is no imbalance between this and busiest
10967 			 * group wrt idle CPUs, it is balanced. The imbalance
10968 			 * becomes significant if the diff is greater than 1
10969 			 * otherwise we might end up to just move the imbalance
10970 			 * on another group. Of course this applies only if
10971 			 * there is more than 1 CPU per group.
10972 			 */
10973 			goto out_balanced;
10974 		}
10975 
10976 		if (busiest->sum_h_nr_running == 1) {
10977 			/*
10978 			 * busiest doesn't have any tasks waiting to run
10979 			 */
10980 			goto out_balanced;
10981 		}
10982 	}
10983 
10984 force_balance:
10985 	/* Looks like there is an imbalance. Compute it */
10986 	calculate_imbalance(env, &sds);
10987 	return env->imbalance ? sds.busiest : NULL;
10988 
10989 out_balanced:
10990 	env->imbalance = 0;
10991 	return NULL;
10992 }
10993 
10994 /*
10995  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10996  */
find_busiest_queue(struct lb_env * env,struct sched_group * group)10997 static struct rq *find_busiest_queue(struct lb_env *env,
10998 				     struct sched_group *group)
10999 {
11000 	struct rq *busiest = NULL, *rq;
11001 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11002 	unsigned int busiest_nr = 0;
11003 	int i;
11004 
11005 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11006 		unsigned long capacity, load, util;
11007 		unsigned int nr_running;
11008 		enum fbq_type rt;
11009 
11010 		rq = cpu_rq(i);
11011 		rt = fbq_classify_rq(rq);
11012 
11013 		/*
11014 		 * We classify groups/runqueues into three groups:
11015 		 *  - regular: there are !numa tasks
11016 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11017 		 *  - all:     there is no distinction
11018 		 *
11019 		 * In order to avoid migrating ideally placed numa tasks,
11020 		 * ignore those when there's better options.
11021 		 *
11022 		 * If we ignore the actual busiest queue to migrate another
11023 		 * task, the next balance pass can still reduce the busiest
11024 		 * queue by moving tasks around inside the node.
11025 		 *
11026 		 * If we cannot move enough load due to this classification
11027 		 * the next pass will adjust the group classification and
11028 		 * allow migration of more tasks.
11029 		 *
11030 		 * Both cases only affect the total convergence complexity.
11031 		 */
11032 		if (rt > env->fbq_type)
11033 			continue;
11034 
11035 		nr_running = rq->cfs.h_nr_running;
11036 		if (!nr_running)
11037 			continue;
11038 
11039 		capacity = capacity_of(i);
11040 
11041 		/*
11042 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11043 		 * eventually lead to active_balancing high->low capacity.
11044 		 * Higher per-CPU capacity is considered better than balancing
11045 		 * average load.
11046 		 */
11047 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11048 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11049 		    nr_running == 1)
11050 			continue;
11051 
11052 		/*
11053 		 * Make sure we only pull tasks from a CPU of lower priority
11054 		 * when balancing between SMT siblings.
11055 		 *
11056 		 * If balancing between cores, let lower priority CPUs help
11057 		 * SMT cores with more than one busy sibling.
11058 		 */
11059 		if ((env->sd->flags & SD_ASYM_PACKING) &&
11060 		    sched_use_asym_prio(env->sd, i) &&
11061 		    sched_asym_prefer(i, env->dst_cpu) &&
11062 		    nr_running == 1)
11063 			continue;
11064 
11065 		switch (env->migration_type) {
11066 		case migrate_load:
11067 			/*
11068 			 * When comparing with load imbalance, use cpu_load()
11069 			 * which is not scaled with the CPU capacity.
11070 			 */
11071 			load = cpu_load(rq);
11072 
11073 			if (nr_running == 1 && load > env->imbalance &&
11074 			    !check_cpu_capacity(rq, env->sd))
11075 				break;
11076 
11077 			/*
11078 			 * For the load comparisons with the other CPUs,
11079 			 * consider the cpu_load() scaled with the CPU
11080 			 * capacity, so that the load can be moved away
11081 			 * from the CPU that is potentially running at a
11082 			 * lower capacity.
11083 			 *
11084 			 * Thus we're looking for max(load_i / capacity_i),
11085 			 * crosswise multiplication to rid ourselves of the
11086 			 * division works out to:
11087 			 * load_i * capacity_j > load_j * capacity_i;
11088 			 * where j is our previous maximum.
11089 			 */
11090 			if (load * busiest_capacity > busiest_load * capacity) {
11091 				busiest_load = load;
11092 				busiest_capacity = capacity;
11093 				busiest = rq;
11094 			}
11095 			break;
11096 
11097 		case migrate_util:
11098 			util = cpu_util_cfs_boost(i);
11099 
11100 			/*
11101 			 * Don't try to pull utilization from a CPU with one
11102 			 * running task. Whatever its utilization, we will fail
11103 			 * detach the task.
11104 			 */
11105 			if (nr_running <= 1)
11106 				continue;
11107 
11108 			if (busiest_util < util) {
11109 				busiest_util = util;
11110 				busiest = rq;
11111 			}
11112 			break;
11113 
11114 		case migrate_task:
11115 			if (busiest_nr < nr_running) {
11116 				busiest_nr = nr_running;
11117 				busiest = rq;
11118 			}
11119 			break;
11120 
11121 		case migrate_misfit:
11122 			/*
11123 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11124 			 * simply seek the "biggest" misfit task.
11125 			 */
11126 			if (rq->misfit_task_load > busiest_load) {
11127 				busiest_load = rq->misfit_task_load;
11128 				busiest = rq;
11129 			}
11130 
11131 			break;
11132 
11133 		}
11134 	}
11135 
11136 	return busiest;
11137 }
11138 
11139 /*
11140  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11141  * so long as it is large enough.
11142  */
11143 #define MAX_PINNED_INTERVAL	512
11144 
11145 static inline bool
asym_active_balance(struct lb_env * env)11146 asym_active_balance(struct lb_env *env)
11147 {
11148 	/*
11149 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11150 	 * priority CPUs in order to pack all tasks in the highest priority
11151 	 * CPUs. When done between cores, do it only if the whole core if the
11152 	 * whole core is idle.
11153 	 *
11154 	 * If @env::src_cpu is an SMT core with busy siblings, let
11155 	 * the lower priority @env::dst_cpu help it. Do not follow
11156 	 * CPU priority.
11157 	 */
11158 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
11159 	       sched_use_asym_prio(env->sd, env->dst_cpu) &&
11160 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11161 		!sched_use_asym_prio(env->sd, env->src_cpu));
11162 }
11163 
11164 static inline bool
imbalanced_active_balance(struct lb_env * env)11165 imbalanced_active_balance(struct lb_env *env)
11166 {
11167 	struct sched_domain *sd = env->sd;
11168 
11169 	/*
11170 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11171 	 * distribution of the load on the system but also the even distribution of the
11172 	 * threads on a system with spare capacity
11173 	 */
11174 	if ((env->migration_type == migrate_task) &&
11175 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11176 		return 1;
11177 
11178 	return 0;
11179 }
11180 
need_active_balance(struct lb_env * env)11181 static int need_active_balance(struct lb_env *env)
11182 {
11183 	struct sched_domain *sd = env->sd;
11184 
11185 	if (asym_active_balance(env))
11186 		return 1;
11187 
11188 	if (imbalanced_active_balance(env))
11189 		return 1;
11190 
11191 	/*
11192 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11193 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11194 	 * because of other sched_class or IRQs if more capacity stays
11195 	 * available on dst_cpu.
11196 	 */
11197 	if ((env->idle != CPU_NOT_IDLE) &&
11198 	    (env->src_rq->cfs.h_nr_running == 1)) {
11199 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11200 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11201 			return 1;
11202 	}
11203 
11204 	if (env->migration_type == migrate_misfit)
11205 		return 1;
11206 
11207 	return 0;
11208 }
11209 
11210 static int active_load_balance_cpu_stop(void *data);
11211 
should_we_balance(struct lb_env * env)11212 static int should_we_balance(struct lb_env *env)
11213 {
11214 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11215 	struct sched_group *sg = env->sd->groups;
11216 	int cpu, idle_smt = -1;
11217 
11218 	/*
11219 	 * Ensure the balancing environment is consistent; can happen
11220 	 * when the softirq triggers 'during' hotplug.
11221 	 */
11222 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11223 		return 0;
11224 
11225 	/*
11226 	 * In the newly idle case, we will allow all the CPUs
11227 	 * to do the newly idle load balance.
11228 	 *
11229 	 * However, we bail out if we already have tasks or a wakeup pending,
11230 	 * to optimize wakeup latency.
11231 	 */
11232 	if (env->idle == CPU_NEWLY_IDLE) {
11233 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11234 			return 0;
11235 		return 1;
11236 	}
11237 
11238 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11239 	/* Try to find first idle CPU */
11240 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11241 		if (!idle_cpu(cpu))
11242 			continue;
11243 
11244 		/*
11245 		 * Don't balance to idle SMT in busy core right away when
11246 		 * balancing cores, but remember the first idle SMT CPU for
11247 		 * later consideration.  Find CPU on an idle core first.
11248 		 */
11249 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11250 			if (idle_smt == -1)
11251 				idle_smt = cpu;
11252 			/*
11253 			 * If the core is not idle, and first SMT sibling which is
11254 			 * idle has been found, then its not needed to check other
11255 			 * SMT siblings for idleness:
11256 			 */
11257 #ifdef CONFIG_SCHED_SMT
11258 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11259 #endif
11260 			continue;
11261 		}
11262 
11263 		/*
11264 		 * Are we the first idle core in a non-SMT domain or higher,
11265 		 * or the first idle CPU in a SMT domain?
11266 		 */
11267 		return cpu == env->dst_cpu;
11268 	}
11269 
11270 	/* Are we the first idle CPU with busy siblings? */
11271 	if (idle_smt != -1)
11272 		return idle_smt == env->dst_cpu;
11273 
11274 	/* Are we the first CPU of this group ? */
11275 	return group_balance_cpu(sg) == env->dst_cpu;
11276 }
11277 
11278 /*
11279  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11280  * tasks if there is an imbalance.
11281  */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11282 static int load_balance(int this_cpu, struct rq *this_rq,
11283 			struct sched_domain *sd, enum cpu_idle_type idle,
11284 			int *continue_balancing)
11285 {
11286 	int ld_moved, cur_ld_moved, active_balance = 0;
11287 	struct sched_domain *sd_parent = sd->parent;
11288 	struct sched_group *group;
11289 	struct rq *busiest;
11290 	struct rq_flags rf;
11291 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11292 	struct lb_env env = {
11293 		.sd		= sd,
11294 		.dst_cpu	= this_cpu,
11295 		.dst_rq		= this_rq,
11296 		.dst_grpmask    = group_balance_mask(sd->groups),
11297 		.idle		= idle,
11298 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11299 		.cpus		= cpus,
11300 		.fbq_type	= all,
11301 		.tasks		= LIST_HEAD_INIT(env.tasks),
11302 	};
11303 
11304 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11305 
11306 	schedstat_inc(sd->lb_count[idle]);
11307 
11308 redo:
11309 	if (!should_we_balance(&env)) {
11310 		*continue_balancing = 0;
11311 		goto out_balanced;
11312 	}
11313 
11314 	group = find_busiest_group(&env);
11315 	if (!group) {
11316 		schedstat_inc(sd->lb_nobusyg[idle]);
11317 		goto out_balanced;
11318 	}
11319 
11320 	busiest = find_busiest_queue(&env, group);
11321 	if (!busiest) {
11322 		schedstat_inc(sd->lb_nobusyq[idle]);
11323 		goto out_balanced;
11324 	}
11325 
11326 	WARN_ON_ONCE(busiest == env.dst_rq);
11327 
11328 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11329 
11330 	env.src_cpu = busiest->cpu;
11331 	env.src_rq = busiest;
11332 
11333 	ld_moved = 0;
11334 	/* Clear this flag as soon as we find a pullable task */
11335 	env.flags |= LBF_ALL_PINNED;
11336 	if (busiest->nr_running > 1) {
11337 		/*
11338 		 * Attempt to move tasks. If find_busiest_group has found
11339 		 * an imbalance but busiest->nr_running <= 1, the group is
11340 		 * still unbalanced. ld_moved simply stays zero, so it is
11341 		 * correctly treated as an imbalance.
11342 		 */
11343 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11344 
11345 more_balance:
11346 		rq_lock_irqsave(busiest, &rf);
11347 		update_rq_clock(busiest);
11348 
11349 		/*
11350 		 * cur_ld_moved - load moved in current iteration
11351 		 * ld_moved     - cumulative load moved across iterations
11352 		 */
11353 		cur_ld_moved = detach_tasks(&env);
11354 
11355 		/*
11356 		 * We've detached some tasks from busiest_rq. Every
11357 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11358 		 * unlock busiest->lock, and we are able to be sure
11359 		 * that nobody can manipulate the tasks in parallel.
11360 		 * See task_rq_lock() family for the details.
11361 		 */
11362 
11363 		rq_unlock(busiest, &rf);
11364 
11365 		if (cur_ld_moved) {
11366 			attach_tasks(&env);
11367 			ld_moved += cur_ld_moved;
11368 		}
11369 
11370 		local_irq_restore(rf.flags);
11371 
11372 		if (env.flags & LBF_NEED_BREAK) {
11373 			env.flags &= ~LBF_NEED_BREAK;
11374 			goto more_balance;
11375 		}
11376 
11377 		/*
11378 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11379 		 * us and move them to an alternate dst_cpu in our sched_group
11380 		 * where they can run. The upper limit on how many times we
11381 		 * iterate on same src_cpu is dependent on number of CPUs in our
11382 		 * sched_group.
11383 		 *
11384 		 * This changes load balance semantics a bit on who can move
11385 		 * load to a given_cpu. In addition to the given_cpu itself
11386 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11387 		 * nohz-idle), we now have balance_cpu in a position to move
11388 		 * load to given_cpu. In rare situations, this may cause
11389 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11390 		 * _independently_ and at _same_ time to move some load to
11391 		 * given_cpu) causing excess load to be moved to given_cpu.
11392 		 * This however should not happen so much in practice and
11393 		 * moreover subsequent load balance cycles should correct the
11394 		 * excess load moved.
11395 		 */
11396 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11397 
11398 			/* Prevent to re-select dst_cpu via env's CPUs */
11399 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11400 
11401 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11402 			env.dst_cpu	 = env.new_dst_cpu;
11403 			env.flags	&= ~LBF_DST_PINNED;
11404 			env.loop	 = 0;
11405 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11406 
11407 			/*
11408 			 * Go back to "more_balance" rather than "redo" since we
11409 			 * need to continue with same src_cpu.
11410 			 */
11411 			goto more_balance;
11412 		}
11413 
11414 		/*
11415 		 * We failed to reach balance because of affinity.
11416 		 */
11417 		if (sd_parent) {
11418 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11419 
11420 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11421 				*group_imbalance = 1;
11422 		}
11423 
11424 		/* All tasks on this runqueue were pinned by CPU affinity */
11425 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11426 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11427 			/*
11428 			 * Attempting to continue load balancing at the current
11429 			 * sched_domain level only makes sense if there are
11430 			 * active CPUs remaining as possible busiest CPUs to
11431 			 * pull load from which are not contained within the
11432 			 * destination group that is receiving any migrated
11433 			 * load.
11434 			 */
11435 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11436 				env.loop = 0;
11437 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11438 				goto redo;
11439 			}
11440 			goto out_all_pinned;
11441 		}
11442 	}
11443 
11444 	if (!ld_moved) {
11445 		schedstat_inc(sd->lb_failed[idle]);
11446 		/*
11447 		 * Increment the failure counter only on periodic balance.
11448 		 * We do not want newidle balance, which can be very
11449 		 * frequent, pollute the failure counter causing
11450 		 * excessive cache_hot migrations and active balances.
11451 		 */
11452 		if (idle != CPU_NEWLY_IDLE)
11453 			sd->nr_balance_failed++;
11454 
11455 		if (need_active_balance(&env)) {
11456 			unsigned long flags;
11457 
11458 			raw_spin_rq_lock_irqsave(busiest, flags);
11459 
11460 			/*
11461 			 * Don't kick the active_load_balance_cpu_stop,
11462 			 * if the curr task on busiest CPU can't be
11463 			 * moved to this_cpu:
11464 			 */
11465 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11466 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11467 				goto out_one_pinned;
11468 			}
11469 
11470 			/* Record that we found at least one task that could run on this_cpu */
11471 			env.flags &= ~LBF_ALL_PINNED;
11472 
11473 			/*
11474 			 * ->active_balance synchronizes accesses to
11475 			 * ->active_balance_work.  Once set, it's cleared
11476 			 * only after active load balance is finished.
11477 			 */
11478 			if (!busiest->active_balance) {
11479 				busiest->active_balance = 1;
11480 				busiest->push_cpu = this_cpu;
11481 				active_balance = 1;
11482 			}
11483 
11484 			preempt_disable();
11485 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11486 			if (active_balance) {
11487 				stop_one_cpu_nowait(cpu_of(busiest),
11488 					active_load_balance_cpu_stop, busiest,
11489 					&busiest->active_balance_work);
11490 			}
11491 			preempt_enable();
11492 		}
11493 	} else {
11494 		sd->nr_balance_failed = 0;
11495 	}
11496 
11497 	if (likely(!active_balance) || need_active_balance(&env)) {
11498 		/* We were unbalanced, so reset the balancing interval */
11499 		sd->balance_interval = sd->min_interval;
11500 	}
11501 
11502 	goto out;
11503 
11504 out_balanced:
11505 	/*
11506 	 * We reach balance although we may have faced some affinity
11507 	 * constraints. Clear the imbalance flag only if other tasks got
11508 	 * a chance to move and fix the imbalance.
11509 	 */
11510 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11511 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11512 
11513 		if (*group_imbalance)
11514 			*group_imbalance = 0;
11515 	}
11516 
11517 out_all_pinned:
11518 	/*
11519 	 * We reach balance because all tasks are pinned at this level so
11520 	 * we can't migrate them. Let the imbalance flag set so parent level
11521 	 * can try to migrate them.
11522 	 */
11523 	schedstat_inc(sd->lb_balanced[idle]);
11524 
11525 	sd->nr_balance_failed = 0;
11526 
11527 out_one_pinned:
11528 	ld_moved = 0;
11529 
11530 	/*
11531 	 * newidle_balance() disregards balance intervals, so we could
11532 	 * repeatedly reach this code, which would lead to balance_interval
11533 	 * skyrocketing in a short amount of time. Skip the balance_interval
11534 	 * increase logic to avoid that.
11535 	 */
11536 	if (env.idle == CPU_NEWLY_IDLE)
11537 		goto out;
11538 
11539 	/* tune up the balancing interval */
11540 	if ((env.flags & LBF_ALL_PINNED &&
11541 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11542 	    sd->balance_interval < sd->max_interval)
11543 		sd->balance_interval *= 2;
11544 out:
11545 	return ld_moved;
11546 }
11547 
11548 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)11549 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11550 {
11551 	unsigned long interval = sd->balance_interval;
11552 
11553 	if (cpu_busy)
11554 		interval *= sd->busy_factor;
11555 
11556 	/* scale ms to jiffies */
11557 	interval = msecs_to_jiffies(interval);
11558 
11559 	/*
11560 	 * Reduce likelihood of busy balancing at higher domains racing with
11561 	 * balancing at lower domains by preventing their balancing periods
11562 	 * from being multiples of each other.
11563 	 */
11564 	if (cpu_busy)
11565 		interval -= 1;
11566 
11567 	interval = clamp(interval, 1UL, max_load_balance_interval);
11568 
11569 	return interval;
11570 }
11571 
11572 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)11573 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11574 {
11575 	unsigned long interval, next;
11576 
11577 	/* used by idle balance, so cpu_busy = 0 */
11578 	interval = get_sd_balance_interval(sd, 0);
11579 	next = sd->last_balance + interval;
11580 
11581 	if (time_after(*next_balance, next))
11582 		*next_balance = next;
11583 }
11584 
11585 /*
11586  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11587  * running tasks off the busiest CPU onto idle CPUs. It requires at
11588  * least 1 task to be running on each physical CPU where possible, and
11589  * avoids physical / logical imbalances.
11590  */
active_load_balance_cpu_stop(void * data)11591 static int active_load_balance_cpu_stop(void *data)
11592 {
11593 	struct rq *busiest_rq = data;
11594 	int busiest_cpu = cpu_of(busiest_rq);
11595 	int target_cpu = busiest_rq->push_cpu;
11596 	struct rq *target_rq = cpu_rq(target_cpu);
11597 	struct sched_domain *sd;
11598 	struct task_struct *p = NULL;
11599 	struct rq_flags rf;
11600 
11601 	rq_lock_irq(busiest_rq, &rf);
11602 	/*
11603 	 * Between queueing the stop-work and running it is a hole in which
11604 	 * CPUs can become inactive. We should not move tasks from or to
11605 	 * inactive CPUs.
11606 	 */
11607 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11608 		goto out_unlock;
11609 
11610 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11611 	if (unlikely(busiest_cpu != smp_processor_id() ||
11612 		     !busiest_rq->active_balance))
11613 		goto out_unlock;
11614 
11615 	/* Is there any task to move? */
11616 	if (busiest_rq->nr_running <= 1)
11617 		goto out_unlock;
11618 
11619 	/*
11620 	 * This condition is "impossible", if it occurs
11621 	 * we need to fix it. Originally reported by
11622 	 * Bjorn Helgaas on a 128-CPU setup.
11623 	 */
11624 	WARN_ON_ONCE(busiest_rq == target_rq);
11625 
11626 	/* Search for an sd spanning us and the target CPU. */
11627 	rcu_read_lock();
11628 	for_each_domain(target_cpu, sd) {
11629 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11630 			break;
11631 	}
11632 
11633 	if (likely(sd)) {
11634 		struct lb_env env = {
11635 			.sd		= sd,
11636 			.dst_cpu	= target_cpu,
11637 			.dst_rq		= target_rq,
11638 			.src_cpu	= busiest_rq->cpu,
11639 			.src_rq		= busiest_rq,
11640 			.idle		= CPU_IDLE,
11641 			.flags		= LBF_ACTIVE_LB,
11642 		};
11643 
11644 		schedstat_inc(sd->alb_count);
11645 		update_rq_clock(busiest_rq);
11646 
11647 		p = detach_one_task(&env);
11648 		if (p) {
11649 			schedstat_inc(sd->alb_pushed);
11650 			/* Active balancing done, reset the failure counter. */
11651 			sd->nr_balance_failed = 0;
11652 		} else {
11653 			schedstat_inc(sd->alb_failed);
11654 		}
11655 	}
11656 	rcu_read_unlock();
11657 out_unlock:
11658 	busiest_rq->active_balance = 0;
11659 	rq_unlock(busiest_rq, &rf);
11660 
11661 	if (p)
11662 		attach_one_task(target_rq, p);
11663 
11664 	local_irq_enable();
11665 
11666 	return 0;
11667 }
11668 
11669 static DEFINE_SPINLOCK(balancing);
11670 
11671 /*
11672  * Scale the max load_balance interval with the number of CPUs in the system.
11673  * This trades load-balance latency on larger machines for less cross talk.
11674  */
update_max_interval(void)11675 void update_max_interval(void)
11676 {
11677 	max_load_balance_interval = HZ*num_online_cpus()/10;
11678 }
11679 
update_newidle_cost(struct sched_domain * sd,u64 cost)11680 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11681 {
11682 	if (cost > sd->max_newidle_lb_cost) {
11683 		/*
11684 		 * Track max cost of a domain to make sure to not delay the
11685 		 * next wakeup on the CPU.
11686 		 */
11687 		sd->max_newidle_lb_cost = cost;
11688 		sd->last_decay_max_lb_cost = jiffies;
11689 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11690 		/*
11691 		 * Decay the newidle max times by ~1% per second to ensure that
11692 		 * it is not outdated and the current max cost is actually
11693 		 * shorter.
11694 		 */
11695 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11696 		sd->last_decay_max_lb_cost = jiffies;
11697 
11698 		return true;
11699 	}
11700 
11701 	return false;
11702 }
11703 
11704 /*
11705  * It checks each scheduling domain to see if it is due to be balanced,
11706  * and initiates a balancing operation if so.
11707  *
11708  * Balancing parameters are set up in init_sched_domains.
11709  */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)11710 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11711 {
11712 	int continue_balancing = 1;
11713 	int cpu = rq->cpu;
11714 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11715 	unsigned long interval;
11716 	struct sched_domain *sd;
11717 	/* Earliest time when we have to do rebalance again */
11718 	unsigned long next_balance = jiffies + 60*HZ;
11719 	int update_next_balance = 0;
11720 	int need_serialize, need_decay = 0;
11721 	u64 max_cost = 0;
11722 
11723 	rcu_read_lock();
11724 	for_each_domain(cpu, sd) {
11725 		/*
11726 		 * Decay the newidle max times here because this is a regular
11727 		 * visit to all the domains.
11728 		 */
11729 		need_decay = update_newidle_cost(sd, 0);
11730 		max_cost += sd->max_newidle_lb_cost;
11731 
11732 		/*
11733 		 * Stop the load balance at this level. There is another
11734 		 * CPU in our sched group which is doing load balancing more
11735 		 * actively.
11736 		 */
11737 		if (!continue_balancing) {
11738 			if (need_decay)
11739 				continue;
11740 			break;
11741 		}
11742 
11743 		interval = get_sd_balance_interval(sd, busy);
11744 
11745 		need_serialize = sd->flags & SD_SERIALIZE;
11746 		if (need_serialize) {
11747 			if (!spin_trylock(&balancing))
11748 				goto out;
11749 		}
11750 
11751 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11752 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11753 				/*
11754 				 * The LBF_DST_PINNED logic could have changed
11755 				 * env->dst_cpu, so we can't know our idle
11756 				 * state even if we migrated tasks. Update it.
11757 				 */
11758 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11759 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11760 			}
11761 			sd->last_balance = jiffies;
11762 			interval = get_sd_balance_interval(sd, busy);
11763 		}
11764 		if (need_serialize)
11765 			spin_unlock(&balancing);
11766 out:
11767 		if (time_after(next_balance, sd->last_balance + interval)) {
11768 			next_balance = sd->last_balance + interval;
11769 			update_next_balance = 1;
11770 		}
11771 	}
11772 	if (need_decay) {
11773 		/*
11774 		 * Ensure the rq-wide value also decays but keep it at a
11775 		 * reasonable floor to avoid funnies with rq->avg_idle.
11776 		 */
11777 		rq->max_idle_balance_cost =
11778 			max((u64)sysctl_sched_migration_cost, max_cost);
11779 	}
11780 	rcu_read_unlock();
11781 
11782 	/*
11783 	 * next_balance will be updated only when there is a need.
11784 	 * When the cpu is attached to null domain for ex, it will not be
11785 	 * updated.
11786 	 */
11787 	if (likely(update_next_balance))
11788 		rq->next_balance = next_balance;
11789 
11790 }
11791 
on_null_domain(struct rq * rq)11792 static inline int on_null_domain(struct rq *rq)
11793 {
11794 	return unlikely(!rcu_dereference_sched(rq->sd));
11795 }
11796 
11797 #ifdef CONFIG_NO_HZ_COMMON
11798 /*
11799  * idle load balancing details
11800  * - When one of the busy CPUs notice that there may be an idle rebalancing
11801  *   needed, they will kick the idle load balancer, which then does idle
11802  *   load balancing for all the idle CPUs.
11803  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11804  *   anywhere yet.
11805  */
11806 
find_new_ilb(void)11807 static inline int find_new_ilb(void)
11808 {
11809 	int ilb;
11810 	const struct cpumask *hk_mask;
11811 
11812 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11813 
11814 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11815 
11816 		if (ilb == smp_processor_id())
11817 			continue;
11818 
11819 		if (idle_cpu(ilb))
11820 			return ilb;
11821 	}
11822 
11823 	return nr_cpu_ids;
11824 }
11825 
11826 /*
11827  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11828  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11829  */
kick_ilb(unsigned int flags)11830 static void kick_ilb(unsigned int flags)
11831 {
11832 	int ilb_cpu;
11833 
11834 	/*
11835 	 * Increase nohz.next_balance only when if full ilb is triggered but
11836 	 * not if we only update stats.
11837 	 */
11838 	if (flags & NOHZ_BALANCE_KICK)
11839 		nohz.next_balance = jiffies+1;
11840 
11841 	ilb_cpu = find_new_ilb();
11842 
11843 	if (ilb_cpu >= nr_cpu_ids)
11844 		return;
11845 
11846 	/*
11847 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11848 	 * the first flag owns it; cleared by nohz_csd_func().
11849 	 */
11850 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11851 	if (flags & NOHZ_KICK_MASK)
11852 		return;
11853 
11854 	/*
11855 	 * This way we generate an IPI on the target CPU which
11856 	 * is idle. And the softirq performing nohz idle load balance
11857 	 * will be run before returning from the IPI.
11858 	 */
11859 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11860 }
11861 
11862 /*
11863  * Current decision point for kicking the idle load balancer in the presence
11864  * of idle CPUs in the system.
11865  */
nohz_balancer_kick(struct rq * rq)11866 static void nohz_balancer_kick(struct rq *rq)
11867 {
11868 	unsigned long now = jiffies;
11869 	struct sched_domain_shared *sds;
11870 	struct sched_domain *sd;
11871 	int nr_busy, i, cpu = rq->cpu;
11872 	unsigned int flags = 0;
11873 
11874 	if (unlikely(rq->idle_balance))
11875 		return;
11876 
11877 	/*
11878 	 * We may be recently in ticked or tickless idle mode. At the first
11879 	 * busy tick after returning from idle, we will update the busy stats.
11880 	 */
11881 	nohz_balance_exit_idle(rq);
11882 
11883 	/*
11884 	 * None are in tickless mode and hence no need for NOHZ idle load
11885 	 * balancing.
11886 	 */
11887 	if (likely(!atomic_read(&nohz.nr_cpus)))
11888 		return;
11889 
11890 	if (READ_ONCE(nohz.has_blocked) &&
11891 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11892 		flags = NOHZ_STATS_KICK;
11893 
11894 	if (time_before(now, nohz.next_balance))
11895 		goto out;
11896 
11897 	if (rq->nr_running >= 2) {
11898 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11899 		goto out;
11900 	}
11901 
11902 	rcu_read_lock();
11903 
11904 	sd = rcu_dereference(rq->sd);
11905 	if (sd) {
11906 		/*
11907 		 * If there's a CFS task and the current CPU has reduced
11908 		 * capacity; kick the ILB to see if there's a better CPU to run
11909 		 * on.
11910 		 */
11911 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11912 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11913 			goto unlock;
11914 		}
11915 	}
11916 
11917 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11918 	if (sd) {
11919 		/*
11920 		 * When ASYM_PACKING; see if there's a more preferred CPU
11921 		 * currently idle; in which case, kick the ILB to move tasks
11922 		 * around.
11923 		 *
11924 		 * When balancing betwen cores, all the SMT siblings of the
11925 		 * preferred CPU must be idle.
11926 		 */
11927 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11928 			if (sched_use_asym_prio(sd, i) &&
11929 			    sched_asym_prefer(i, cpu)) {
11930 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11931 				goto unlock;
11932 			}
11933 		}
11934 	}
11935 
11936 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11937 	if (sd) {
11938 		/*
11939 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11940 		 * to run the misfit task on.
11941 		 */
11942 		if (check_misfit_status(rq, sd)) {
11943 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11944 			goto unlock;
11945 		}
11946 
11947 		/*
11948 		 * For asymmetric systems, we do not want to nicely balance
11949 		 * cache use, instead we want to embrace asymmetry and only
11950 		 * ensure tasks have enough CPU capacity.
11951 		 *
11952 		 * Skip the LLC logic because it's not relevant in that case.
11953 		 */
11954 		goto unlock;
11955 	}
11956 
11957 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11958 	if (sds) {
11959 		/*
11960 		 * If there is an imbalance between LLC domains (IOW we could
11961 		 * increase the overall cache use), we need some less-loaded LLC
11962 		 * domain to pull some load. Likewise, we may need to spread
11963 		 * load within the current LLC domain (e.g. packed SMT cores but
11964 		 * other CPUs are idle). We can't really know from here how busy
11965 		 * the others are - so just get a nohz balance going if it looks
11966 		 * like this LLC domain has tasks we could move.
11967 		 */
11968 		nr_busy = atomic_read(&sds->nr_busy_cpus);
11969 		if (nr_busy > 1) {
11970 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11971 			goto unlock;
11972 		}
11973 	}
11974 unlock:
11975 	rcu_read_unlock();
11976 out:
11977 	if (READ_ONCE(nohz.needs_update))
11978 		flags |= NOHZ_NEXT_KICK;
11979 
11980 	if (flags)
11981 		kick_ilb(flags);
11982 }
11983 
set_cpu_sd_state_busy(int cpu)11984 static void set_cpu_sd_state_busy(int cpu)
11985 {
11986 	struct sched_domain *sd;
11987 
11988 	rcu_read_lock();
11989 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11990 
11991 	if (!sd || !sd->nohz_idle)
11992 		goto unlock;
11993 	sd->nohz_idle = 0;
11994 
11995 	atomic_inc(&sd->shared->nr_busy_cpus);
11996 unlock:
11997 	rcu_read_unlock();
11998 }
11999 
nohz_balance_exit_idle(struct rq * rq)12000 void nohz_balance_exit_idle(struct rq *rq)
12001 {
12002 	SCHED_WARN_ON(rq != this_rq());
12003 
12004 	if (likely(!rq->nohz_tick_stopped))
12005 		return;
12006 
12007 	rq->nohz_tick_stopped = 0;
12008 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12009 	atomic_dec(&nohz.nr_cpus);
12010 
12011 	set_cpu_sd_state_busy(rq->cpu);
12012 }
12013 
set_cpu_sd_state_idle(int cpu)12014 static void set_cpu_sd_state_idle(int cpu)
12015 {
12016 	struct sched_domain *sd;
12017 
12018 	rcu_read_lock();
12019 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12020 
12021 	if (!sd || sd->nohz_idle)
12022 		goto unlock;
12023 	sd->nohz_idle = 1;
12024 
12025 	atomic_dec(&sd->shared->nr_busy_cpus);
12026 unlock:
12027 	rcu_read_unlock();
12028 }
12029 
12030 /*
12031  * This routine will record that the CPU is going idle with tick stopped.
12032  * This info will be used in performing idle load balancing in the future.
12033  */
nohz_balance_enter_idle(int cpu)12034 void nohz_balance_enter_idle(int cpu)
12035 {
12036 	struct rq *rq = cpu_rq(cpu);
12037 
12038 	SCHED_WARN_ON(cpu != smp_processor_id());
12039 
12040 	/* If this CPU is going down, then nothing needs to be done: */
12041 	if (!cpu_active(cpu))
12042 		return;
12043 
12044 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12045 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12046 		return;
12047 
12048 	/*
12049 	 * Can be set safely without rq->lock held
12050 	 * If a clear happens, it will have evaluated last additions because
12051 	 * rq->lock is held during the check and the clear
12052 	 */
12053 	rq->has_blocked_load = 1;
12054 
12055 	/*
12056 	 * The tick is still stopped but load could have been added in the
12057 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12058 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12059 	 * of nohz.has_blocked can only happen after checking the new load
12060 	 */
12061 	if (rq->nohz_tick_stopped)
12062 		goto out;
12063 
12064 	/* If we're a completely isolated CPU, we don't play: */
12065 	if (on_null_domain(rq))
12066 		return;
12067 
12068 	rq->nohz_tick_stopped = 1;
12069 
12070 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12071 	atomic_inc(&nohz.nr_cpus);
12072 
12073 	/*
12074 	 * Ensures that if nohz_idle_balance() fails to observe our
12075 	 * @idle_cpus_mask store, it must observe the @has_blocked
12076 	 * and @needs_update stores.
12077 	 */
12078 	smp_mb__after_atomic();
12079 
12080 	set_cpu_sd_state_idle(cpu);
12081 
12082 	WRITE_ONCE(nohz.needs_update, 1);
12083 out:
12084 	/*
12085 	 * Each time a cpu enter idle, we assume that it has blocked load and
12086 	 * enable the periodic update of the load of idle cpus
12087 	 */
12088 	WRITE_ONCE(nohz.has_blocked, 1);
12089 }
12090 
update_nohz_stats(struct rq * rq)12091 static bool update_nohz_stats(struct rq *rq)
12092 {
12093 	unsigned int cpu = rq->cpu;
12094 
12095 	if (!rq->has_blocked_load)
12096 		return false;
12097 
12098 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12099 		return false;
12100 
12101 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12102 		return true;
12103 
12104 	update_blocked_averages(cpu);
12105 
12106 	return rq->has_blocked_load;
12107 }
12108 
12109 /*
12110  * Internal function that runs load balance for all idle cpus. The load balance
12111  * can be a simple update of blocked load or a complete load balance with
12112  * tasks movement depending of flags.
12113  */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12114 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12115 {
12116 	/* Earliest time when we have to do rebalance again */
12117 	unsigned long now = jiffies;
12118 	unsigned long next_balance = now + 60*HZ;
12119 	bool has_blocked_load = false;
12120 	int update_next_balance = 0;
12121 	int this_cpu = this_rq->cpu;
12122 	int balance_cpu;
12123 	struct rq *rq;
12124 
12125 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12126 
12127 	/*
12128 	 * We assume there will be no idle load after this update and clear
12129 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12130 	 * set the has_blocked flag and trigger another update of idle load.
12131 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12132 	 * setting the flag, we are sure to not clear the state and not
12133 	 * check the load of an idle cpu.
12134 	 *
12135 	 * Same applies to idle_cpus_mask vs needs_update.
12136 	 */
12137 	if (flags & NOHZ_STATS_KICK)
12138 		WRITE_ONCE(nohz.has_blocked, 0);
12139 	if (flags & NOHZ_NEXT_KICK)
12140 		WRITE_ONCE(nohz.needs_update, 0);
12141 
12142 	/*
12143 	 * Ensures that if we miss the CPU, we must see the has_blocked
12144 	 * store from nohz_balance_enter_idle().
12145 	 */
12146 	smp_mb();
12147 
12148 	/*
12149 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12150 	 * chance for other idle cpu to pull load.
12151 	 */
12152 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12153 		if (!idle_cpu(balance_cpu))
12154 			continue;
12155 
12156 		/*
12157 		 * If this CPU gets work to do, stop the load balancing
12158 		 * work being done for other CPUs. Next load
12159 		 * balancing owner will pick it up.
12160 		 */
12161 		if (!idle_cpu(this_cpu) && need_resched()) {
12162 			if (flags & NOHZ_STATS_KICK)
12163 				has_blocked_load = true;
12164 			if (flags & NOHZ_NEXT_KICK)
12165 				WRITE_ONCE(nohz.needs_update, 1);
12166 			goto abort;
12167 		}
12168 
12169 		rq = cpu_rq(balance_cpu);
12170 
12171 		if (flags & NOHZ_STATS_KICK)
12172 			has_blocked_load |= update_nohz_stats(rq);
12173 
12174 		/*
12175 		 * If time for next balance is due,
12176 		 * do the balance.
12177 		 */
12178 		if (time_after_eq(jiffies, rq->next_balance)) {
12179 			struct rq_flags rf;
12180 
12181 			rq_lock_irqsave(rq, &rf);
12182 			update_rq_clock(rq);
12183 			rq_unlock_irqrestore(rq, &rf);
12184 
12185 			if (flags & NOHZ_BALANCE_KICK)
12186 				rebalance_domains(rq, CPU_IDLE);
12187 		}
12188 
12189 		if (time_after(next_balance, rq->next_balance)) {
12190 			next_balance = rq->next_balance;
12191 			update_next_balance = 1;
12192 		}
12193 	}
12194 
12195 	/*
12196 	 * next_balance will be updated only when there is a need.
12197 	 * When the CPU is attached to null domain for ex, it will not be
12198 	 * updated.
12199 	 */
12200 	if (likely(update_next_balance))
12201 		nohz.next_balance = next_balance;
12202 
12203 	if (flags & NOHZ_STATS_KICK)
12204 		WRITE_ONCE(nohz.next_blocked,
12205 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12206 
12207 abort:
12208 	/* There is still blocked load, enable periodic update */
12209 	if (has_blocked_load)
12210 		WRITE_ONCE(nohz.has_blocked, 1);
12211 }
12212 
12213 /*
12214  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12215  * rebalancing for all the cpus for whom scheduler ticks are stopped.
12216  */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12217 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12218 {
12219 	unsigned int flags = this_rq->nohz_idle_balance;
12220 
12221 	if (!flags)
12222 		return false;
12223 
12224 	this_rq->nohz_idle_balance = 0;
12225 
12226 	if (idle != CPU_IDLE)
12227 		return false;
12228 
12229 	_nohz_idle_balance(this_rq, flags);
12230 
12231 	return true;
12232 }
12233 
12234 /*
12235  * Check if we need to run the ILB for updating blocked load before entering
12236  * idle state.
12237  */
nohz_run_idle_balance(int cpu)12238 void nohz_run_idle_balance(int cpu)
12239 {
12240 	unsigned int flags;
12241 
12242 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12243 
12244 	/*
12245 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12246 	 * (ie NOHZ_STATS_KICK set) and will do the same.
12247 	 */
12248 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12249 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12250 }
12251 
nohz_newidle_balance(struct rq * this_rq)12252 static void nohz_newidle_balance(struct rq *this_rq)
12253 {
12254 	int this_cpu = this_rq->cpu;
12255 
12256 	/*
12257 	 * This CPU doesn't want to be disturbed by scheduler
12258 	 * housekeeping
12259 	 */
12260 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12261 		return;
12262 
12263 	/* Will wake up very soon. No time for doing anything else*/
12264 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12265 		return;
12266 
12267 	/* Don't need to update blocked load of idle CPUs*/
12268 	if (!READ_ONCE(nohz.has_blocked) ||
12269 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12270 		return;
12271 
12272 	/*
12273 	 * Set the need to trigger ILB in order to update blocked load
12274 	 * before entering idle state.
12275 	 */
12276 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12277 }
12278 
12279 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)12280 static inline void nohz_balancer_kick(struct rq *rq) { }
12281 
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12282 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12283 {
12284 	return false;
12285 }
12286 
nohz_newidle_balance(struct rq * this_rq)12287 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12288 #endif /* CONFIG_NO_HZ_COMMON */
12289 
12290 /*
12291  * newidle_balance is called by schedule() if this_cpu is about to become
12292  * idle. Attempts to pull tasks from other CPUs.
12293  *
12294  * Returns:
12295  *   < 0 - we released the lock and there are !fair tasks present
12296  *     0 - failed, no new tasks
12297  *   > 0 - success, new (fair) tasks present
12298  */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)12299 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12300 {
12301 	unsigned long next_balance = jiffies + HZ;
12302 	int this_cpu = this_rq->cpu;
12303 	u64 t0, t1, curr_cost = 0;
12304 	struct sched_domain *sd;
12305 	int pulled_task = 0;
12306 
12307 	update_misfit_status(NULL, this_rq);
12308 
12309 	/*
12310 	 * There is a task waiting to run. No need to search for one.
12311 	 * Return 0; the task will be enqueued when switching to idle.
12312 	 */
12313 	if (this_rq->ttwu_pending)
12314 		return 0;
12315 
12316 	/*
12317 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
12318 	 * measure the duration of idle_balance() as idle time.
12319 	 */
12320 	this_rq->idle_stamp = rq_clock(this_rq);
12321 
12322 	/*
12323 	 * Do not pull tasks towards !active CPUs...
12324 	 */
12325 	if (!cpu_active(this_cpu))
12326 		return 0;
12327 
12328 	/*
12329 	 * This is OK, because current is on_cpu, which avoids it being picked
12330 	 * for load-balance and preemption/IRQs are still disabled avoiding
12331 	 * further scheduler activity on it and we're being very careful to
12332 	 * re-start the picking loop.
12333 	 */
12334 	rq_unpin_lock(this_rq, rf);
12335 
12336 	rcu_read_lock();
12337 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12338 
12339 	if (!READ_ONCE(this_rq->rd->overload) ||
12340 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12341 
12342 		if (sd)
12343 			update_next_balance(sd, &next_balance);
12344 		rcu_read_unlock();
12345 
12346 		goto out;
12347 	}
12348 	rcu_read_unlock();
12349 
12350 	raw_spin_rq_unlock(this_rq);
12351 
12352 	t0 = sched_clock_cpu(this_cpu);
12353 	update_blocked_averages(this_cpu);
12354 
12355 	rcu_read_lock();
12356 	for_each_domain(this_cpu, sd) {
12357 		int continue_balancing = 1;
12358 		u64 domain_cost;
12359 
12360 		update_next_balance(sd, &next_balance);
12361 
12362 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12363 			break;
12364 
12365 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12366 
12367 			pulled_task = load_balance(this_cpu, this_rq,
12368 						   sd, CPU_NEWLY_IDLE,
12369 						   &continue_balancing);
12370 
12371 			t1 = sched_clock_cpu(this_cpu);
12372 			domain_cost = t1 - t0;
12373 			update_newidle_cost(sd, domain_cost);
12374 
12375 			curr_cost += domain_cost;
12376 			t0 = t1;
12377 		}
12378 
12379 		/*
12380 		 * Stop searching for tasks to pull if there are
12381 		 * now runnable tasks on this rq.
12382 		 */
12383 		if (pulled_task || this_rq->nr_running > 0 ||
12384 		    this_rq->ttwu_pending)
12385 			break;
12386 	}
12387 	rcu_read_unlock();
12388 
12389 	raw_spin_rq_lock(this_rq);
12390 
12391 	if (curr_cost > this_rq->max_idle_balance_cost)
12392 		this_rq->max_idle_balance_cost = curr_cost;
12393 
12394 	/*
12395 	 * While browsing the domains, we released the rq lock, a task could
12396 	 * have been enqueued in the meantime. Since we're not going idle,
12397 	 * pretend we pulled a task.
12398 	 */
12399 	if (this_rq->cfs.h_nr_running && !pulled_task)
12400 		pulled_task = 1;
12401 
12402 	/* Is there a task of a high priority class? */
12403 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12404 		pulled_task = -1;
12405 
12406 out:
12407 	/* Move the next balance forward */
12408 	if (time_after(this_rq->next_balance, next_balance))
12409 		this_rq->next_balance = next_balance;
12410 
12411 	if (pulled_task)
12412 		this_rq->idle_stamp = 0;
12413 	else
12414 		nohz_newidle_balance(this_rq);
12415 
12416 	rq_repin_lock(this_rq, rf);
12417 
12418 	return pulled_task;
12419 }
12420 
12421 /*
12422  * run_rebalance_domains is triggered when needed from the scheduler tick.
12423  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12424  */
run_rebalance_domains(struct softirq_action * h)12425 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12426 {
12427 	struct rq *this_rq = this_rq();
12428 	enum cpu_idle_type idle = this_rq->idle_balance ?
12429 						CPU_IDLE : CPU_NOT_IDLE;
12430 
12431 	/*
12432 	 * If this CPU has a pending nohz_balance_kick, then do the
12433 	 * balancing on behalf of the other idle CPUs whose ticks are
12434 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12435 	 * give the idle CPUs a chance to load balance. Else we may
12436 	 * load balance only within the local sched_domain hierarchy
12437 	 * and abort nohz_idle_balance altogether if we pull some load.
12438 	 */
12439 	if (nohz_idle_balance(this_rq, idle))
12440 		return;
12441 
12442 	/* normal load balance */
12443 	update_blocked_averages(this_rq->cpu);
12444 	rebalance_domains(this_rq, idle);
12445 }
12446 
12447 /*
12448  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12449  */
trigger_load_balance(struct rq * rq)12450 void trigger_load_balance(struct rq *rq)
12451 {
12452 	/*
12453 	 * Don't need to rebalance while attached to NULL domain or
12454 	 * runqueue CPU is not active
12455 	 */
12456 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12457 		return;
12458 
12459 	if (time_after_eq(jiffies, rq->next_balance))
12460 		raise_softirq(SCHED_SOFTIRQ);
12461 
12462 	nohz_balancer_kick(rq);
12463 }
12464 
rq_online_fair(struct rq * rq)12465 static void rq_online_fair(struct rq *rq)
12466 {
12467 	update_sysctl();
12468 
12469 	update_runtime_enabled(rq);
12470 }
12471 
rq_offline_fair(struct rq * rq)12472 static void rq_offline_fair(struct rq *rq)
12473 {
12474 	update_sysctl();
12475 
12476 	/* Ensure any throttled groups are reachable by pick_next_task */
12477 	unthrottle_offline_cfs_rqs(rq);
12478 }
12479 
12480 #endif /* CONFIG_SMP */
12481 
12482 #ifdef CONFIG_SCHED_CORE
12483 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12484 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12485 {
12486 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12487 	u64 slice = se->slice;
12488 
12489 	return (rtime * min_nr_tasks > slice);
12490 }
12491 
12492 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
task_tick_core(struct rq * rq,struct task_struct * curr)12493 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12494 {
12495 	if (!sched_core_enabled(rq))
12496 		return;
12497 
12498 	/*
12499 	 * If runqueue has only one task which used up its slice and
12500 	 * if the sibling is forced idle, then trigger schedule to
12501 	 * give forced idle task a chance.
12502 	 *
12503 	 * sched_slice() considers only this active rq and it gets the
12504 	 * whole slice. But during force idle, we have siblings acting
12505 	 * like a single runqueue and hence we need to consider runnable
12506 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12507 	 * go through the forced idle rq, but that would be a perf hit.
12508 	 * We can assume that the forced idle CPU has at least
12509 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12510 	 * if we need to give up the CPU.
12511 	 */
12512 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12513 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12514 		resched_curr(rq);
12515 }
12516 
12517 /*
12518  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12519  */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)12520 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12521 			 bool forceidle)
12522 {
12523 	for_each_sched_entity(se) {
12524 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12525 
12526 		if (forceidle) {
12527 			if (cfs_rq->forceidle_seq == fi_seq)
12528 				break;
12529 			cfs_rq->forceidle_seq = fi_seq;
12530 		}
12531 
12532 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12533 	}
12534 }
12535 
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)12536 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12537 {
12538 	struct sched_entity *se = &p->se;
12539 
12540 	if (p->sched_class != &fair_sched_class)
12541 		return;
12542 
12543 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12544 }
12545 
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)12546 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12547 			bool in_fi)
12548 {
12549 	struct rq *rq = task_rq(a);
12550 	const struct sched_entity *sea = &a->se;
12551 	const struct sched_entity *seb = &b->se;
12552 	struct cfs_rq *cfs_rqa;
12553 	struct cfs_rq *cfs_rqb;
12554 	s64 delta;
12555 
12556 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12557 
12558 #ifdef CONFIG_FAIR_GROUP_SCHED
12559 	/*
12560 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12561 	 * are immediate siblings.
12562 	 */
12563 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12564 		int sea_depth = sea->depth;
12565 		int seb_depth = seb->depth;
12566 
12567 		if (sea_depth >= seb_depth)
12568 			sea = parent_entity(sea);
12569 		if (sea_depth <= seb_depth)
12570 			seb = parent_entity(seb);
12571 	}
12572 
12573 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12574 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12575 
12576 	cfs_rqa = sea->cfs_rq;
12577 	cfs_rqb = seb->cfs_rq;
12578 #else
12579 	cfs_rqa = &task_rq(a)->cfs;
12580 	cfs_rqb = &task_rq(b)->cfs;
12581 #endif
12582 
12583 	/*
12584 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12585 	 * min_vruntime_fi, which would have been updated in prior calls
12586 	 * to se_fi_update().
12587 	 */
12588 	delta = (s64)(sea->vruntime - seb->vruntime) +
12589 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12590 
12591 	return delta > 0;
12592 }
12593 
task_is_throttled_fair(struct task_struct * p,int cpu)12594 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12595 {
12596 	struct cfs_rq *cfs_rq;
12597 
12598 #ifdef CONFIG_FAIR_GROUP_SCHED
12599 	cfs_rq = task_group(p)->cfs_rq[cpu];
12600 #else
12601 	cfs_rq = &cpu_rq(cpu)->cfs;
12602 #endif
12603 	return throttled_hierarchy(cfs_rq);
12604 }
12605 #else
task_tick_core(struct rq * rq,struct task_struct * curr)12606 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12607 #endif
12608 
12609 /*
12610  * scheduler tick hitting a task of our scheduling class.
12611  *
12612  * NOTE: This function can be called remotely by the tick offload that
12613  * goes along full dynticks. Therefore no local assumption can be made
12614  * and everything must be accessed through the @rq and @curr passed in
12615  * parameters.
12616  */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)12617 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12618 {
12619 	struct cfs_rq *cfs_rq;
12620 	struct sched_entity *se = &curr->se;
12621 
12622 	for_each_sched_entity(se) {
12623 		cfs_rq = cfs_rq_of(se);
12624 		entity_tick(cfs_rq, se, queued);
12625 	}
12626 
12627 	if (static_branch_unlikely(&sched_numa_balancing))
12628 		task_tick_numa(rq, curr);
12629 
12630 	update_misfit_status(curr, rq);
12631 	check_update_overutilized_status(task_rq(curr));
12632 
12633 	task_tick_core(rq, curr);
12634 }
12635 
12636 /*
12637  * called on fork with the child task as argument from the parent's context
12638  *  - child not yet on the tasklist
12639  *  - preemption disabled
12640  */
task_fork_fair(struct task_struct * p)12641 static void task_fork_fair(struct task_struct *p)
12642 {
12643 	struct sched_entity *se = &p->se, *curr;
12644 	struct cfs_rq *cfs_rq;
12645 	struct rq *rq = this_rq();
12646 	struct rq_flags rf;
12647 
12648 	rq_lock(rq, &rf);
12649 	update_rq_clock(rq);
12650 
12651 	cfs_rq = task_cfs_rq(current);
12652 	curr = cfs_rq->curr;
12653 	if (curr)
12654 		update_curr(cfs_rq);
12655 	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12656 	rq_unlock(rq, &rf);
12657 }
12658 
12659 /*
12660  * Priority of the task has changed. Check to see if we preempt
12661  * the current task.
12662  */
12663 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)12664 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12665 {
12666 	if (!task_on_rq_queued(p))
12667 		return;
12668 
12669 	if (rq->cfs.nr_running == 1)
12670 		return;
12671 
12672 	/*
12673 	 * Reschedule if we are currently running on this runqueue and
12674 	 * our priority decreased, or if we are not currently running on
12675 	 * this runqueue and our priority is higher than the current's
12676 	 */
12677 	if (task_current(rq, p)) {
12678 		if (p->prio > oldprio)
12679 			resched_curr(rq);
12680 	} else
12681 		wakeup_preempt(rq, p, 0);
12682 }
12683 
12684 #ifdef CONFIG_FAIR_GROUP_SCHED
12685 /*
12686  * Propagate the changes of the sched_entity across the tg tree to make it
12687  * visible to the root
12688  */
propagate_entity_cfs_rq(struct sched_entity * se)12689 static void propagate_entity_cfs_rq(struct sched_entity *se)
12690 {
12691 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12692 
12693 	if (cfs_rq_throttled(cfs_rq))
12694 		return;
12695 
12696 	if (!throttled_hierarchy(cfs_rq))
12697 		list_add_leaf_cfs_rq(cfs_rq);
12698 
12699 	/* Start to propagate at parent */
12700 	se = se->parent;
12701 
12702 	for_each_sched_entity(se) {
12703 		cfs_rq = cfs_rq_of(se);
12704 
12705 		update_load_avg(cfs_rq, se, UPDATE_TG);
12706 
12707 		if (cfs_rq_throttled(cfs_rq))
12708 			break;
12709 
12710 		if (!throttled_hierarchy(cfs_rq))
12711 			list_add_leaf_cfs_rq(cfs_rq);
12712 	}
12713 }
12714 #else
propagate_entity_cfs_rq(struct sched_entity * se)12715 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12716 #endif
12717 
detach_entity_cfs_rq(struct sched_entity * se)12718 static void detach_entity_cfs_rq(struct sched_entity *se)
12719 {
12720 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12721 
12722 #ifdef CONFIG_SMP
12723 	/*
12724 	 * In case the task sched_avg hasn't been attached:
12725 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12726 	 * - A task which has been woken up by try_to_wake_up() but is
12727 	 *   waiting for actually being woken up by sched_ttwu_pending().
12728 	 */
12729 	if (!se->avg.last_update_time)
12730 		return;
12731 #endif
12732 
12733 	/* Catch up with the cfs_rq and remove our load when we leave */
12734 	update_load_avg(cfs_rq, se, 0);
12735 	detach_entity_load_avg(cfs_rq, se);
12736 	update_tg_load_avg(cfs_rq);
12737 	propagate_entity_cfs_rq(se);
12738 }
12739 
attach_entity_cfs_rq(struct sched_entity * se)12740 static void attach_entity_cfs_rq(struct sched_entity *se)
12741 {
12742 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12743 
12744 	/* Synchronize entity with its cfs_rq */
12745 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12746 	attach_entity_load_avg(cfs_rq, se);
12747 	update_tg_load_avg(cfs_rq);
12748 	propagate_entity_cfs_rq(se);
12749 }
12750 
detach_task_cfs_rq(struct task_struct * p)12751 static void detach_task_cfs_rq(struct task_struct *p)
12752 {
12753 	struct sched_entity *se = &p->se;
12754 
12755 	detach_entity_cfs_rq(se);
12756 }
12757 
attach_task_cfs_rq(struct task_struct * p)12758 static void attach_task_cfs_rq(struct task_struct *p)
12759 {
12760 	struct sched_entity *se = &p->se;
12761 
12762 	attach_entity_cfs_rq(se);
12763 }
12764 
switched_from_fair(struct rq * rq,struct task_struct * p)12765 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12766 {
12767 	detach_task_cfs_rq(p);
12768 }
12769 
switched_to_fair(struct rq * rq,struct task_struct * p)12770 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12771 {
12772 	attach_task_cfs_rq(p);
12773 
12774 	if (task_on_rq_queued(p)) {
12775 		/*
12776 		 * We were most likely switched from sched_rt, so
12777 		 * kick off the schedule if running, otherwise just see
12778 		 * if we can still preempt the current task.
12779 		 */
12780 		if (task_current(rq, p))
12781 			resched_curr(rq);
12782 		else
12783 			wakeup_preempt(rq, p, 0);
12784 	}
12785 }
12786 
12787 /* Account for a task changing its policy or group.
12788  *
12789  * This routine is mostly called to set cfs_rq->curr field when a task
12790  * migrates between groups/classes.
12791  */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)12792 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12793 {
12794 	struct sched_entity *se = &p->se;
12795 
12796 #ifdef CONFIG_SMP
12797 	if (task_on_rq_queued(p)) {
12798 		/*
12799 		 * Move the next running task to the front of the list, so our
12800 		 * cfs_tasks list becomes MRU one.
12801 		 */
12802 		list_move(&se->group_node, &rq->cfs_tasks);
12803 	}
12804 #endif
12805 
12806 	for_each_sched_entity(se) {
12807 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12808 
12809 		set_next_entity(cfs_rq, se);
12810 		/* ensure bandwidth has been allocated on our new cfs_rq */
12811 		account_cfs_rq_runtime(cfs_rq, 0);
12812 	}
12813 }
12814 
init_cfs_rq(struct cfs_rq * cfs_rq)12815 void init_cfs_rq(struct cfs_rq *cfs_rq)
12816 {
12817 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12818 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12819 #ifdef CONFIG_SMP
12820 	raw_spin_lock_init(&cfs_rq->removed.lock);
12821 #endif
12822 }
12823 
12824 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)12825 static void task_change_group_fair(struct task_struct *p)
12826 {
12827 	/*
12828 	 * We couldn't detach or attach a forked task which
12829 	 * hasn't been woken up by wake_up_new_task().
12830 	 */
12831 	if (READ_ONCE(p->__state) == TASK_NEW)
12832 		return;
12833 
12834 	detach_task_cfs_rq(p);
12835 
12836 #ifdef CONFIG_SMP
12837 	/* Tell se's cfs_rq has been changed -- migrated */
12838 	p->se.avg.last_update_time = 0;
12839 #endif
12840 	set_task_rq(p, task_cpu(p));
12841 	attach_task_cfs_rq(p);
12842 }
12843 
free_fair_sched_group(struct task_group * tg)12844 void free_fair_sched_group(struct task_group *tg)
12845 {
12846 	int i;
12847 
12848 	for_each_possible_cpu(i) {
12849 		if (tg->cfs_rq)
12850 			kfree(tg->cfs_rq[i]);
12851 		if (tg->se)
12852 			kfree(tg->se[i]);
12853 	}
12854 
12855 	kfree(tg->cfs_rq);
12856 	kfree(tg->se);
12857 }
12858 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)12859 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12860 {
12861 	struct sched_entity *se;
12862 	struct cfs_rq *cfs_rq;
12863 	int i;
12864 
12865 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12866 	if (!tg->cfs_rq)
12867 		goto err;
12868 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12869 	if (!tg->se)
12870 		goto err;
12871 
12872 	tg->shares = NICE_0_LOAD;
12873 
12874 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12875 
12876 	for_each_possible_cpu(i) {
12877 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12878 				      GFP_KERNEL, cpu_to_node(i));
12879 		if (!cfs_rq)
12880 			goto err;
12881 
12882 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12883 				  GFP_KERNEL, cpu_to_node(i));
12884 		if (!se)
12885 			goto err_free_rq;
12886 
12887 		init_cfs_rq(cfs_rq);
12888 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12889 		init_entity_runnable_average(se);
12890 	}
12891 
12892 	return 1;
12893 
12894 err_free_rq:
12895 	kfree(cfs_rq);
12896 err:
12897 	return 0;
12898 }
12899 
online_fair_sched_group(struct task_group * tg)12900 void online_fair_sched_group(struct task_group *tg)
12901 {
12902 	struct sched_entity *se;
12903 	struct rq_flags rf;
12904 	struct rq *rq;
12905 	int i;
12906 
12907 	for_each_possible_cpu(i) {
12908 		rq = cpu_rq(i);
12909 		se = tg->se[i];
12910 		rq_lock_irq(rq, &rf);
12911 		update_rq_clock(rq);
12912 		attach_entity_cfs_rq(se);
12913 		sync_throttle(tg, i);
12914 		rq_unlock_irq(rq, &rf);
12915 	}
12916 }
12917 
unregister_fair_sched_group(struct task_group * tg)12918 void unregister_fair_sched_group(struct task_group *tg)
12919 {
12920 	unsigned long flags;
12921 	struct rq *rq;
12922 	int cpu;
12923 
12924 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12925 
12926 	for_each_possible_cpu(cpu) {
12927 		if (tg->se[cpu])
12928 			remove_entity_load_avg(tg->se[cpu]);
12929 
12930 		/*
12931 		 * Only empty task groups can be destroyed; so we can speculatively
12932 		 * check on_list without danger of it being re-added.
12933 		 */
12934 		if (!tg->cfs_rq[cpu]->on_list)
12935 			continue;
12936 
12937 		rq = cpu_rq(cpu);
12938 
12939 		raw_spin_rq_lock_irqsave(rq, flags);
12940 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12941 		raw_spin_rq_unlock_irqrestore(rq, flags);
12942 	}
12943 }
12944 
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)12945 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12946 			struct sched_entity *se, int cpu,
12947 			struct sched_entity *parent)
12948 {
12949 	struct rq *rq = cpu_rq(cpu);
12950 
12951 	cfs_rq->tg = tg;
12952 	cfs_rq->rq = rq;
12953 	init_cfs_rq_runtime(cfs_rq);
12954 
12955 	tg->cfs_rq[cpu] = cfs_rq;
12956 	tg->se[cpu] = se;
12957 
12958 	/* se could be NULL for root_task_group */
12959 	if (!se)
12960 		return;
12961 
12962 	if (!parent) {
12963 		se->cfs_rq = &rq->cfs;
12964 		se->depth = 0;
12965 	} else {
12966 		se->cfs_rq = parent->my_q;
12967 		se->depth = parent->depth + 1;
12968 	}
12969 
12970 	se->my_q = cfs_rq;
12971 	/* guarantee group entities always have weight */
12972 	update_load_set(&se->load, NICE_0_LOAD);
12973 	se->parent = parent;
12974 }
12975 
12976 static DEFINE_MUTEX(shares_mutex);
12977 
__sched_group_set_shares(struct task_group * tg,unsigned long shares)12978 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12979 {
12980 	int i;
12981 
12982 	lockdep_assert_held(&shares_mutex);
12983 
12984 	/*
12985 	 * We can't change the weight of the root cgroup.
12986 	 */
12987 	if (!tg->se[0])
12988 		return -EINVAL;
12989 
12990 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12991 
12992 	if (tg->shares == shares)
12993 		return 0;
12994 
12995 	tg->shares = shares;
12996 	for_each_possible_cpu(i) {
12997 		struct rq *rq = cpu_rq(i);
12998 		struct sched_entity *se = tg->se[i];
12999 		struct rq_flags rf;
13000 
13001 		/* Propagate contribution to hierarchy */
13002 		rq_lock_irqsave(rq, &rf);
13003 		update_rq_clock(rq);
13004 		for_each_sched_entity(se) {
13005 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13006 			update_cfs_group(se);
13007 		}
13008 		rq_unlock_irqrestore(rq, &rf);
13009 	}
13010 
13011 	return 0;
13012 }
13013 
sched_group_set_shares(struct task_group * tg,unsigned long shares)13014 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13015 {
13016 	int ret;
13017 
13018 	mutex_lock(&shares_mutex);
13019 	if (tg_is_idle(tg))
13020 		ret = -EINVAL;
13021 	else
13022 		ret = __sched_group_set_shares(tg, shares);
13023 	mutex_unlock(&shares_mutex);
13024 
13025 	return ret;
13026 }
13027 
sched_group_set_idle(struct task_group * tg,long idle)13028 int sched_group_set_idle(struct task_group *tg, long idle)
13029 {
13030 	int i;
13031 
13032 	if (tg == &root_task_group)
13033 		return -EINVAL;
13034 
13035 	if (idle < 0 || idle > 1)
13036 		return -EINVAL;
13037 
13038 	mutex_lock(&shares_mutex);
13039 
13040 	if (tg->idle == idle) {
13041 		mutex_unlock(&shares_mutex);
13042 		return 0;
13043 	}
13044 
13045 	tg->idle = idle;
13046 
13047 	for_each_possible_cpu(i) {
13048 		struct rq *rq = cpu_rq(i);
13049 		struct sched_entity *se = tg->se[i];
13050 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13051 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13052 		long idle_task_delta;
13053 		struct rq_flags rf;
13054 
13055 		rq_lock_irqsave(rq, &rf);
13056 
13057 		grp_cfs_rq->idle = idle;
13058 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13059 			goto next_cpu;
13060 
13061 		if (se->on_rq) {
13062 			parent_cfs_rq = cfs_rq_of(se);
13063 			if (cfs_rq_is_idle(grp_cfs_rq))
13064 				parent_cfs_rq->idle_nr_running++;
13065 			else
13066 				parent_cfs_rq->idle_nr_running--;
13067 		}
13068 
13069 		idle_task_delta = grp_cfs_rq->h_nr_running -
13070 				  grp_cfs_rq->idle_h_nr_running;
13071 		if (!cfs_rq_is_idle(grp_cfs_rq))
13072 			idle_task_delta *= -1;
13073 
13074 		for_each_sched_entity(se) {
13075 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13076 
13077 			if (!se->on_rq)
13078 				break;
13079 
13080 			cfs_rq->idle_h_nr_running += idle_task_delta;
13081 
13082 			/* Already accounted at parent level and above. */
13083 			if (cfs_rq_is_idle(cfs_rq))
13084 				break;
13085 		}
13086 
13087 next_cpu:
13088 		rq_unlock_irqrestore(rq, &rf);
13089 	}
13090 
13091 	/* Idle groups have minimum weight. */
13092 	if (tg_is_idle(tg))
13093 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13094 	else
13095 		__sched_group_set_shares(tg, NICE_0_LOAD);
13096 
13097 	mutex_unlock(&shares_mutex);
13098 	return 0;
13099 }
13100 
13101 #else /* CONFIG_FAIR_GROUP_SCHED */
13102 
free_fair_sched_group(struct task_group * tg)13103 void free_fair_sched_group(struct task_group *tg) { }
13104 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13105 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13106 {
13107 	return 1;
13108 }
13109 
online_fair_sched_group(struct task_group * tg)13110 void online_fair_sched_group(struct task_group *tg) { }
13111 
unregister_fair_sched_group(struct task_group * tg)13112 void unregister_fair_sched_group(struct task_group *tg) { }
13113 
13114 #endif /* CONFIG_FAIR_GROUP_SCHED */
13115 
13116 
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13117 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13118 {
13119 	struct sched_entity *se = &task->se;
13120 	unsigned int rr_interval = 0;
13121 
13122 	/*
13123 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13124 	 * idle runqueue:
13125 	 */
13126 	if (rq->cfs.load.weight)
13127 		rr_interval = NS_TO_JIFFIES(se->slice);
13128 
13129 	return rr_interval;
13130 }
13131 
13132 /*
13133  * All the scheduling class methods:
13134  */
13135 DEFINE_SCHED_CLASS(fair) = {
13136 
13137 	.enqueue_task		= enqueue_task_fair,
13138 	.dequeue_task		= dequeue_task_fair,
13139 	.yield_task		= yield_task_fair,
13140 	.yield_to_task		= yield_to_task_fair,
13141 
13142 	.wakeup_preempt		= check_preempt_wakeup_fair,
13143 
13144 	.pick_next_task		= __pick_next_task_fair,
13145 	.put_prev_task		= put_prev_task_fair,
13146 	.set_next_task          = set_next_task_fair,
13147 
13148 #ifdef CONFIG_SMP
13149 	.balance		= balance_fair,
13150 	.pick_task		= pick_task_fair,
13151 	.select_task_rq		= select_task_rq_fair,
13152 	.migrate_task_rq	= migrate_task_rq_fair,
13153 
13154 	.rq_online		= rq_online_fair,
13155 	.rq_offline		= rq_offline_fair,
13156 
13157 	.task_dead		= task_dead_fair,
13158 	.set_cpus_allowed	= set_cpus_allowed_common,
13159 #endif
13160 
13161 	.task_tick		= task_tick_fair,
13162 	.task_fork		= task_fork_fair,
13163 
13164 	.prio_changed		= prio_changed_fair,
13165 	.switched_from		= switched_from_fair,
13166 	.switched_to		= switched_to_fair,
13167 
13168 	.get_rr_interval	= get_rr_interval_fair,
13169 
13170 	.update_curr		= update_curr_fair,
13171 
13172 #ifdef CONFIG_FAIR_GROUP_SCHED
13173 	.task_change_group	= task_change_group_fair,
13174 #endif
13175 
13176 #ifdef CONFIG_SCHED_CORE
13177 	.task_is_throttled	= task_is_throttled_fair,
13178 #endif
13179 
13180 #ifdef CONFIG_UCLAMP_TASK
13181 	.uclamp_enabled		= 1,
13182 #endif
13183 };
13184 
13185 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)13186 void print_cfs_stats(struct seq_file *m, int cpu)
13187 {
13188 	struct cfs_rq *cfs_rq, *pos;
13189 
13190 	rcu_read_lock();
13191 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13192 		print_cfs_rq(m, cpu, cfs_rq);
13193 	rcu_read_unlock();
13194 }
13195 
13196 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13197 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13198 {
13199 	int node;
13200 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13201 	struct numa_group *ng;
13202 
13203 	rcu_read_lock();
13204 	ng = rcu_dereference(p->numa_group);
13205 	for_each_online_node(node) {
13206 		if (p->numa_faults) {
13207 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13208 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13209 		}
13210 		if (ng) {
13211 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13212 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13213 		}
13214 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13215 	}
13216 	rcu_read_unlock();
13217 }
13218 #endif /* CONFIG_NUMA_BALANCING */
13219 #endif /* CONFIG_SCHED_DEBUG */
13220 
init_sched_fair_class(void)13221 __init void init_sched_fair_class(void)
13222 {
13223 #ifdef CONFIG_SMP
13224 	int i;
13225 
13226 	for_each_possible_cpu(i) {
13227 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13228 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13229 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13230 					GFP_KERNEL, cpu_to_node(i));
13231 
13232 #ifdef CONFIG_CFS_BANDWIDTH
13233 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13234 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13235 #endif
13236 	}
13237 
13238 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13239 
13240 #ifdef CONFIG_NO_HZ_COMMON
13241 	nohz.next_balance = jiffies;
13242 	nohz.next_blocked = jiffies;
13243 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13244 #endif
13245 #endif /* SMP */
13246 
13247 }
13248