1 /*
2 * Freescale Ethernet controllers
3 *
4 * Copyright (c) 2005 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * This file is licensed under the terms of the GNU General Public License
11 * version 2. This program is licensed "as is" without any warranty of any
12 * kind, whether express or implied.
13 */
14
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/crc32.h>
22 #include <linux/ioport.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/bitops.h>
32 #include <linux/fs.h>
33 #include <linux/platform_device.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/gfp.h>
37
38 #include <asm/irq.h>
39 #include <linux/uaccess.h>
40
41 #include "fs_enet.h"
42 #include "fec.h"
43
44 /*************************************************/
45
46 #if defined(CONFIG_CPM1)
47 /* for a CPM1 __raw_xxx's are sufficient */
48 #define __fs_out32(addr, x) __raw_writel(x, addr)
49 #define __fs_out16(addr, x) __raw_writew(x, addr)
50 #define __fs_in32(addr) __raw_readl(addr)
51 #define __fs_in16(addr) __raw_readw(addr)
52 #else
53 /* for others play it safe */
54 #define __fs_out32(addr, x) out_be32(addr, x)
55 #define __fs_out16(addr, x) out_be16(addr, x)
56 #define __fs_in32(addr) in_be32(addr)
57 #define __fs_in16(addr) in_be16(addr)
58 #endif
59
60 /* write */
61 #define FW(_fecp, _reg, _v) __fs_out32(&(_fecp)->fec_ ## _reg, (_v))
62
63 /* read */
64 #define FR(_fecp, _reg) __fs_in32(&(_fecp)->fec_ ## _reg)
65
66 /* set bits */
67 #define FS(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) | (_v))
68
69 /* clear bits */
70 #define FC(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) & ~(_v))
71
72 /*
73 * Delay to wait for FEC reset command to complete (in us)
74 */
75 #define FEC_RESET_DELAY 50
76
whack_reset(struct fec __iomem * fecp)77 static int whack_reset(struct fec __iomem *fecp)
78 {
79 int i;
80
81 FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET);
82 for (i = 0; i < FEC_RESET_DELAY; i++) {
83 if ((FR(fecp, ecntrl) & FEC_ECNTRL_RESET) == 0)
84 return 0; /* OK */
85 udelay(1);
86 }
87
88 return -1;
89 }
90
do_pd_setup(struct fs_enet_private * fep)91 static int do_pd_setup(struct fs_enet_private *fep)
92 {
93 struct platform_device *ofdev = to_platform_device(fep->dev);
94
95 fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
96 if (!fep->interrupt)
97 return -EINVAL;
98
99 fep->fec.fecp = of_iomap(ofdev->dev.of_node, 0);
100 if (!fep->fec.fecp)
101 return -EINVAL;
102
103 return 0;
104 }
105
106 #define FEC_NAPI_EVENT_MSK (FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_TXF)
107 #define FEC_EVENT (FEC_ENET_RXF | FEC_ENET_TXF)
108 #define FEC_ERR_EVENT_MSK (FEC_ENET_HBERR | FEC_ENET_BABR | \
109 FEC_ENET_BABT | FEC_ENET_EBERR)
110
setup_data(struct net_device * dev)111 static int setup_data(struct net_device *dev)
112 {
113 struct fs_enet_private *fep = netdev_priv(dev);
114
115 if (do_pd_setup(fep) != 0)
116 return -EINVAL;
117
118 fep->fec.hthi = 0;
119 fep->fec.htlo = 0;
120
121 fep->ev_napi = FEC_NAPI_EVENT_MSK;
122 fep->ev = FEC_EVENT;
123 fep->ev_err = FEC_ERR_EVENT_MSK;
124
125 return 0;
126 }
127
allocate_bd(struct net_device * dev)128 static int allocate_bd(struct net_device *dev)
129 {
130 struct fs_enet_private *fep = netdev_priv(dev);
131 const struct fs_platform_info *fpi = fep->fpi;
132
133 fep->ring_base = (void __force __iomem *)dma_alloc_coherent(fep->dev,
134 (fpi->tx_ring + fpi->rx_ring) *
135 sizeof(cbd_t), &fep->ring_mem_addr,
136 GFP_KERNEL);
137 if (fep->ring_base == NULL)
138 return -ENOMEM;
139
140 return 0;
141 }
142
free_bd(struct net_device * dev)143 static void free_bd(struct net_device *dev)
144 {
145 struct fs_enet_private *fep = netdev_priv(dev);
146 const struct fs_platform_info *fpi = fep->fpi;
147
148 if(fep->ring_base)
149 dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring)
150 * sizeof(cbd_t),
151 (void __force *)fep->ring_base,
152 fep->ring_mem_addr);
153 }
154
cleanup_data(struct net_device * dev)155 static void cleanup_data(struct net_device *dev)
156 {
157 /* nothing */
158 }
159
set_promiscuous_mode(struct net_device * dev)160 static void set_promiscuous_mode(struct net_device *dev)
161 {
162 struct fs_enet_private *fep = netdev_priv(dev);
163 struct fec __iomem *fecp = fep->fec.fecp;
164
165 FS(fecp, r_cntrl, FEC_RCNTRL_PROM);
166 }
167
set_multicast_start(struct net_device * dev)168 static void set_multicast_start(struct net_device *dev)
169 {
170 struct fs_enet_private *fep = netdev_priv(dev);
171
172 fep->fec.hthi = 0;
173 fep->fec.htlo = 0;
174 }
175
set_multicast_one(struct net_device * dev,const u8 * mac)176 static void set_multicast_one(struct net_device *dev, const u8 *mac)
177 {
178 struct fs_enet_private *fep = netdev_priv(dev);
179 int temp, hash_index;
180 u32 crc, csrVal;
181
182 crc = ether_crc(6, mac);
183
184 temp = (crc & 0x3f) >> 1;
185 hash_index = ((temp & 0x01) << 4) |
186 ((temp & 0x02) << 2) |
187 ((temp & 0x04)) |
188 ((temp & 0x08) >> 2) |
189 ((temp & 0x10) >> 4);
190 csrVal = 1 << hash_index;
191 if (crc & 1)
192 fep->fec.hthi |= csrVal;
193 else
194 fep->fec.htlo |= csrVal;
195 }
196
set_multicast_finish(struct net_device * dev)197 static void set_multicast_finish(struct net_device *dev)
198 {
199 struct fs_enet_private *fep = netdev_priv(dev);
200 struct fec __iomem *fecp = fep->fec.fecp;
201
202 /* if all multi or too many multicasts; just enable all */
203 if ((dev->flags & IFF_ALLMULTI) != 0 ||
204 netdev_mc_count(dev) > FEC_MAX_MULTICAST_ADDRS) {
205 fep->fec.hthi = 0xffffffffU;
206 fep->fec.htlo = 0xffffffffU;
207 }
208
209 FC(fecp, r_cntrl, FEC_RCNTRL_PROM);
210 FW(fecp, grp_hash_table_high, fep->fec.hthi);
211 FW(fecp, grp_hash_table_low, fep->fec.htlo);
212 }
213
set_multicast_list(struct net_device * dev)214 static void set_multicast_list(struct net_device *dev)
215 {
216 struct netdev_hw_addr *ha;
217
218 if ((dev->flags & IFF_PROMISC) == 0) {
219 set_multicast_start(dev);
220 netdev_for_each_mc_addr(ha, dev)
221 set_multicast_one(dev, ha->addr);
222 set_multicast_finish(dev);
223 } else
224 set_promiscuous_mode(dev);
225 }
226
restart(struct net_device * dev)227 static void restart(struct net_device *dev)
228 {
229 struct fs_enet_private *fep = netdev_priv(dev);
230 struct fec __iomem *fecp = fep->fec.fecp;
231 const struct fs_platform_info *fpi = fep->fpi;
232 dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
233 int r;
234 u32 addrhi, addrlo;
235
236 struct mii_bus *mii = dev->phydev->mdio.bus;
237 struct fec_info* fec_inf = mii->priv;
238
239 r = whack_reset(fep->fec.fecp);
240 if (r != 0)
241 dev_err(fep->dev, "FEC Reset FAILED!\n");
242 /*
243 * Set station address.
244 */
245 addrhi = ((u32) dev->dev_addr[0] << 24) |
246 ((u32) dev->dev_addr[1] << 16) |
247 ((u32) dev->dev_addr[2] << 8) |
248 (u32) dev->dev_addr[3];
249 addrlo = ((u32) dev->dev_addr[4] << 24) |
250 ((u32) dev->dev_addr[5] << 16);
251 FW(fecp, addr_low, addrhi);
252 FW(fecp, addr_high, addrlo);
253
254 /*
255 * Reset all multicast.
256 */
257 FW(fecp, grp_hash_table_high, fep->fec.hthi);
258 FW(fecp, grp_hash_table_low, fep->fec.htlo);
259
260 /*
261 * Set maximum receive buffer size.
262 */
263 FW(fecp, r_buff_size, PKT_MAXBLR_SIZE);
264 #ifdef CONFIG_FS_ENET_MPC5121_FEC
265 FW(fecp, r_cntrl, PKT_MAXBUF_SIZE << 16);
266 #else
267 FW(fecp, r_hash, PKT_MAXBUF_SIZE);
268 #endif
269
270 /* get physical address */
271 rx_bd_base_phys = fep->ring_mem_addr;
272 tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
273
274 /*
275 * Set receive and transmit descriptor base.
276 */
277 FW(fecp, r_des_start, rx_bd_base_phys);
278 FW(fecp, x_des_start, tx_bd_base_phys);
279
280 fs_init_bds(dev);
281
282 /*
283 * Enable big endian and don't care about SDMA FC.
284 */
285 #ifdef CONFIG_FS_ENET_MPC5121_FEC
286 FS(fecp, dma_control, 0xC0000000);
287 #else
288 FW(fecp, fun_code, 0x78000000);
289 #endif
290
291 /*
292 * Set MII speed.
293 */
294 FW(fecp, mii_speed, fec_inf->mii_speed);
295
296 /*
297 * Clear any outstanding interrupt.
298 */
299 FW(fecp, ievent, 0xffc0);
300 #ifndef CONFIG_FS_ENET_MPC5121_FEC
301 FW(fecp, ivec, (virq_to_hw(fep->interrupt) / 2) << 29);
302
303 FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
304 #else
305 /*
306 * Only set MII/RMII mode - do not touch maximum frame length
307 * configured before.
308 */
309 FS(fecp, r_cntrl, fpi->use_rmii ?
310 FEC_RCNTRL_RMII_MODE : FEC_RCNTRL_MII_MODE);
311 #endif
312 /*
313 * adjust to duplex mode
314 */
315 if (dev->phydev->duplex) {
316 FC(fecp, r_cntrl, FEC_RCNTRL_DRT);
317 FS(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD enable */
318 } else {
319 FS(fecp, r_cntrl, FEC_RCNTRL_DRT);
320 FC(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD disable */
321 }
322
323 /* Restore multicast and promiscuous settings */
324 set_multicast_list(dev);
325
326 /*
327 * Enable interrupts we wish to service.
328 */
329 FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB |
330 FEC_ENET_RXF | FEC_ENET_RXB);
331
332 /*
333 * And last, enable the transmit and receive processing.
334 */
335 FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
336 FW(fecp, r_des_active, 0x01000000);
337 }
338
stop(struct net_device * dev)339 static void stop(struct net_device *dev)
340 {
341 struct fs_enet_private *fep = netdev_priv(dev);
342 struct fec __iomem *fecp = fep->fec.fecp;
343 int i;
344
345 if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0)
346 return; /* already down */
347
348 FW(fecp, x_cntrl, 0x01); /* Graceful transmit stop */
349 for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) &&
350 i < FEC_RESET_DELAY; i++)
351 udelay(1);
352
353 if (i == FEC_RESET_DELAY)
354 dev_warn(fep->dev, "FEC timeout on graceful transmit stop\n");
355 /*
356 * Disable FEC. Let only MII interrupts.
357 */
358 FW(fecp, imask, 0);
359 FC(fecp, ecntrl, FEC_ECNTRL_ETHER_EN);
360
361 fs_cleanup_bds(dev);
362 }
363
napi_clear_event_fs(struct net_device * dev)364 static void napi_clear_event_fs(struct net_device *dev)
365 {
366 struct fs_enet_private *fep = netdev_priv(dev);
367 struct fec __iomem *fecp = fep->fec.fecp;
368
369 FW(fecp, ievent, FEC_NAPI_EVENT_MSK);
370 }
371
napi_enable_fs(struct net_device * dev)372 static void napi_enable_fs(struct net_device *dev)
373 {
374 struct fs_enet_private *fep = netdev_priv(dev);
375 struct fec __iomem *fecp = fep->fec.fecp;
376
377 FS(fecp, imask, FEC_NAPI_EVENT_MSK);
378 }
379
napi_disable_fs(struct net_device * dev)380 static void napi_disable_fs(struct net_device *dev)
381 {
382 struct fs_enet_private *fep = netdev_priv(dev);
383 struct fec __iomem *fecp = fep->fec.fecp;
384
385 FC(fecp, imask, FEC_NAPI_EVENT_MSK);
386 }
387
rx_bd_done(struct net_device * dev)388 static void rx_bd_done(struct net_device *dev)
389 {
390 struct fs_enet_private *fep = netdev_priv(dev);
391 struct fec __iomem *fecp = fep->fec.fecp;
392
393 FW(fecp, r_des_active, 0x01000000);
394 }
395
tx_kickstart(struct net_device * dev)396 static void tx_kickstart(struct net_device *dev)
397 {
398 struct fs_enet_private *fep = netdev_priv(dev);
399 struct fec __iomem *fecp = fep->fec.fecp;
400
401 FW(fecp, x_des_active, 0x01000000);
402 }
403
get_int_events(struct net_device * dev)404 static u32 get_int_events(struct net_device *dev)
405 {
406 struct fs_enet_private *fep = netdev_priv(dev);
407 struct fec __iomem *fecp = fep->fec.fecp;
408
409 return FR(fecp, ievent) & FR(fecp, imask);
410 }
411
clear_int_events(struct net_device * dev,u32 int_events)412 static void clear_int_events(struct net_device *dev, u32 int_events)
413 {
414 struct fs_enet_private *fep = netdev_priv(dev);
415 struct fec __iomem *fecp = fep->fec.fecp;
416
417 FW(fecp, ievent, int_events);
418 }
419
ev_error(struct net_device * dev,u32 int_events)420 static void ev_error(struct net_device *dev, u32 int_events)
421 {
422 struct fs_enet_private *fep = netdev_priv(dev);
423
424 dev_warn(fep->dev, "FEC ERROR(s) 0x%x\n", int_events);
425 }
426
get_regs(struct net_device * dev,void * p,int * sizep)427 static int get_regs(struct net_device *dev, void *p, int *sizep)
428 {
429 struct fs_enet_private *fep = netdev_priv(dev);
430
431 if (*sizep < sizeof(struct fec))
432 return -EINVAL;
433
434 memcpy_fromio(p, fep->fec.fecp, sizeof(struct fec));
435
436 return 0;
437 }
438
get_regs_len(struct net_device * dev)439 static int get_regs_len(struct net_device *dev)
440 {
441 return sizeof(struct fec);
442 }
443
tx_restart(struct net_device * dev)444 static void tx_restart(struct net_device *dev)
445 {
446 /* nothing */
447 }
448
449 /*************************************************************************/
450
451 const struct fs_ops fs_fec_ops = {
452 .setup_data = setup_data,
453 .cleanup_data = cleanup_data,
454 .set_multicast_list = set_multicast_list,
455 .restart = restart,
456 .stop = stop,
457 .napi_clear_event = napi_clear_event_fs,
458 .napi_enable = napi_enable_fs,
459 .napi_disable = napi_disable_fs,
460 .rx_bd_done = rx_bd_done,
461 .tx_kickstart = tx_kickstart,
462 .get_int_events = get_int_events,
463 .clear_int_events = clear_int_events,
464 .ev_error = ev_error,
465 .get_regs = get_regs,
466 .get_regs_len = get_regs_len,
467 .tx_restart = tx_restart,
468 .allocate_bd = allocate_bd,
469 .free_bd = free_bd,
470 };
471
472