xref: /openbmc/u-boot/drivers/misc/cros_ec.c (revision 2a055ea53260ac8addeeb94eb671172844bc9106)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Chromium OS cros_ec driver
4  *
5  * Copyright (c) 2012 The Chromium OS Authors.
6  */
7 
8 /*
9  * This is the interface to the Chrome OS EC. It provides keyboard functions,
10  * power control and battery management. Quite a few other functions are
11  * provided to enable the EC software to be updated, talk to the EC's I2C bus
12  * and store a small amount of data in a memory which persists while the EC
13  * is not reset.
14  */
15 
16 #define LOG_CATEGORY UCLASS_CROS_EC
17 
18 #include <common.h>
19 #include <command.h>
20 #include <dm.h>
21 #include <i2c.h>
22 #include <cros_ec.h>
23 #include <fdtdec.h>
24 #include <malloc.h>
25 #include <spi.h>
26 #include <linux/errno.h>
27 #include <asm/io.h>
28 #include <asm-generic/gpio.h>
29 #include <dm/device-internal.h>
30 #include <dm/of_extra.h>
31 #include <dm/uclass-internal.h>
32 
33 #ifdef DEBUG_TRACE
34 #define debug_trace(fmt, b...)	debug(fmt, #b)
35 #else
36 #define debug_trace(fmt, b...)
37 #endif
38 
39 enum {
40 	/* Timeout waiting for a flash erase command to complete */
41 	CROS_EC_CMD_TIMEOUT_MS	= 5000,
42 	/* Timeout waiting for a synchronous hash to be recomputed */
43 	CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
44 };
45 
46 #define INVALID_HCMD 0xFF
47 
48 /*
49  * Map UHEPI masks to non UHEPI commands in order to support old EC FW
50  * which does not support UHEPI command.
51  */
52 static const struct {
53 	u8 set_cmd;
54 	u8 clear_cmd;
55 	u8 get_cmd;
56 } event_map[] = {
57 	[EC_HOST_EVENT_MAIN] = {
58 		INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR,
59 		INVALID_HCMD,
60 	},
61 	[EC_HOST_EVENT_B] = {
62 		INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR_B,
63 		EC_CMD_HOST_EVENT_GET_B,
64 	},
65 	[EC_HOST_EVENT_SCI_MASK] = {
66 		EC_CMD_HOST_EVENT_SET_SCI_MASK, INVALID_HCMD,
67 		EC_CMD_HOST_EVENT_GET_SCI_MASK,
68 	},
69 	[EC_HOST_EVENT_SMI_MASK] = {
70 		EC_CMD_HOST_EVENT_SET_SMI_MASK, INVALID_HCMD,
71 		EC_CMD_HOST_EVENT_GET_SMI_MASK,
72 	},
73 	[EC_HOST_EVENT_ALWAYS_REPORT_MASK] = {
74 		INVALID_HCMD, INVALID_HCMD, INVALID_HCMD,
75 	},
76 	[EC_HOST_EVENT_ACTIVE_WAKE_MASK] = {
77 		EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
78 		EC_CMD_HOST_EVENT_GET_WAKE_MASK,
79 	},
80 	[EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX] = {
81 		EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
82 		EC_CMD_HOST_EVENT_GET_WAKE_MASK,
83 	},
84 	[EC_HOST_EVENT_LAZY_WAKE_MASK_S3] = {
85 		EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
86 		EC_CMD_HOST_EVENT_GET_WAKE_MASK,
87 	},
88 	[EC_HOST_EVENT_LAZY_WAKE_MASK_S5] = {
89 		EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
90 		EC_CMD_HOST_EVENT_GET_WAKE_MASK,
91 	},
92 };
93 
cros_ec_dump_data(const char * name,int cmd,const uint8_t * data,int len)94 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
95 {
96 #ifdef DEBUG
97 	int i;
98 
99 	printf("%s: ", name);
100 	if (cmd != -1)
101 		printf("cmd=%#x: ", cmd);
102 	for (i = 0; i < len; i++)
103 		printf("%02x ", data[i]);
104 	printf("\n");
105 #endif
106 }
107 
108 /*
109  * Calculate a simple 8-bit checksum of a data block
110  *
111  * @param data	Data block to checksum
112  * @param size	Size of data block in bytes
113  * @return checksum value (0 to 255)
114  */
cros_ec_calc_checksum(const uint8_t * data,int size)115 int cros_ec_calc_checksum(const uint8_t *data, int size)
116 {
117 	int csum, i;
118 
119 	for (i = csum = 0; i < size; i++)
120 		csum += data[i];
121 	return csum & 0xff;
122 }
123 
124 /**
125  * Create a request packet for protocol version 3.
126  *
127  * The packet is stored in the device's internal output buffer.
128  *
129  * @param dev		CROS-EC device
130  * @param cmd		Command to send (EC_CMD_...)
131  * @param cmd_version	Version of command to send (EC_VER_...)
132  * @param dout          Output data (may be NULL If dout_len=0)
133  * @param dout_len      Size of output data in bytes
134  * @return packet size in bytes, or <0 if error.
135  */
create_proto3_request(struct cros_ec_dev * cdev,int cmd,int cmd_version,const void * dout,int dout_len)136 static int create_proto3_request(struct cros_ec_dev *cdev,
137 				 int cmd, int cmd_version,
138 				 const void *dout, int dout_len)
139 {
140 	struct ec_host_request *rq = (struct ec_host_request *)cdev->dout;
141 	int out_bytes = dout_len + sizeof(*rq);
142 
143 	/* Fail if output size is too big */
144 	if (out_bytes > (int)sizeof(cdev->dout)) {
145 		debug("%s: Cannot send %d bytes\n", __func__, dout_len);
146 		return -EC_RES_REQUEST_TRUNCATED;
147 	}
148 
149 	/* Fill in request packet */
150 	rq->struct_version = EC_HOST_REQUEST_VERSION;
151 	rq->checksum = 0;
152 	rq->command = cmd;
153 	rq->command_version = cmd_version;
154 	rq->reserved = 0;
155 	rq->data_len = dout_len;
156 
157 	/* Copy data after header */
158 	memcpy(rq + 1, dout, dout_len);
159 
160 	/* Write checksum field so the entire packet sums to 0 */
161 	rq->checksum = (uint8_t)(-cros_ec_calc_checksum(cdev->dout, out_bytes));
162 
163 	cros_ec_dump_data("out", cmd, cdev->dout, out_bytes);
164 
165 	/* Return size of request packet */
166 	return out_bytes;
167 }
168 
169 /**
170  * Prepare the device to receive a protocol version 3 response.
171  *
172  * @param dev		CROS-EC device
173  * @param din_len       Maximum size of response in bytes
174  * @return maximum expected number of bytes in response, or <0 if error.
175  */
prepare_proto3_response_buffer(struct cros_ec_dev * cdev,int din_len)176 static int prepare_proto3_response_buffer(struct cros_ec_dev *cdev, int din_len)
177 {
178 	int in_bytes = din_len + sizeof(struct ec_host_response);
179 
180 	/* Fail if input size is too big */
181 	if (in_bytes > (int)sizeof(cdev->din)) {
182 		debug("%s: Cannot receive %d bytes\n", __func__, din_len);
183 		return -EC_RES_RESPONSE_TOO_BIG;
184 	}
185 
186 	/* Return expected size of response packet */
187 	return in_bytes;
188 }
189 
190 /**
191  * Handle a protocol version 3 response packet.
192  *
193  * The packet must already be stored in the device's internal input buffer.
194  *
195  * @param dev		CROS-EC device
196  * @param dinp          Returns pointer to response data
197  * @param din_len       Maximum size of response in bytes
198  * @return number of bytes of response data, or <0 if error. Note that error
199  * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they
200  * overlap!)
201  */
handle_proto3_response(struct cros_ec_dev * dev,uint8_t ** dinp,int din_len)202 static int handle_proto3_response(struct cros_ec_dev *dev,
203 				  uint8_t **dinp, int din_len)
204 {
205 	struct ec_host_response *rs = (struct ec_host_response *)dev->din;
206 	int in_bytes;
207 	int csum;
208 
209 	cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));
210 
211 	/* Check input data */
212 	if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
213 		debug("%s: EC response version mismatch\n", __func__);
214 		return -EC_RES_INVALID_RESPONSE;
215 	}
216 
217 	if (rs->reserved) {
218 		debug("%s: EC response reserved != 0\n", __func__);
219 		return -EC_RES_INVALID_RESPONSE;
220 	}
221 
222 	if (rs->data_len > din_len) {
223 		debug("%s: EC returned too much data\n", __func__);
224 		return -EC_RES_RESPONSE_TOO_BIG;
225 	}
226 
227 	cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);
228 
229 	/* Update in_bytes to actual data size */
230 	in_bytes = sizeof(*rs) + rs->data_len;
231 
232 	/* Verify checksum */
233 	csum = cros_ec_calc_checksum(dev->din, in_bytes);
234 	if (csum) {
235 		debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
236 		      csum);
237 		return -EC_RES_INVALID_CHECKSUM;
238 	}
239 
240 	/* Return error result, if any */
241 	if (rs->result)
242 		return -(int)rs->result;
243 
244 	/* If we're still here, set response data pointer and return length */
245 	*dinp = (uint8_t *)(rs + 1);
246 
247 	return rs->data_len;
248 }
249 
send_command_proto3(struct cros_ec_dev * cdev,int cmd,int cmd_version,const void * dout,int dout_len,uint8_t ** dinp,int din_len)250 static int send_command_proto3(struct cros_ec_dev *cdev,
251 			       int cmd, int cmd_version,
252 			       const void *dout, int dout_len,
253 			       uint8_t **dinp, int din_len)
254 {
255 	struct dm_cros_ec_ops *ops;
256 	int out_bytes, in_bytes;
257 	int rv;
258 
259 	/* Create request packet */
260 	out_bytes = create_proto3_request(cdev, cmd, cmd_version,
261 					  dout, dout_len);
262 	if (out_bytes < 0)
263 		return out_bytes;
264 
265 	/* Prepare response buffer */
266 	in_bytes = prepare_proto3_response_buffer(cdev, din_len);
267 	if (in_bytes < 0)
268 		return in_bytes;
269 
270 	ops = dm_cros_ec_get_ops(cdev->dev);
271 	rv = ops->packet ? ops->packet(cdev->dev, out_bytes, in_bytes) :
272 			-ENOSYS;
273 	if (rv < 0)
274 		return rv;
275 
276 	/* Process the response */
277 	return handle_proto3_response(cdev, dinp, din_len);
278 }
279 
send_command(struct cros_ec_dev * dev,uint cmd,int cmd_version,const void * dout,int dout_len,uint8_t ** dinp,int din_len)280 static int send_command(struct cros_ec_dev *dev, uint cmd, int cmd_version,
281 			const void *dout, int dout_len,
282 			uint8_t **dinp, int din_len)
283 {
284 	struct dm_cros_ec_ops *ops;
285 	int ret = -1;
286 
287 	/* Handle protocol version 3 support */
288 	if (dev->protocol_version == 3) {
289 		return send_command_proto3(dev, cmd, cmd_version,
290 					   dout, dout_len, dinp, din_len);
291 	}
292 
293 	ops = dm_cros_ec_get_ops(dev->dev);
294 	ret = ops->command(dev->dev, cmd, cmd_version,
295 			   (const uint8_t *)dout, dout_len, dinp, din_len);
296 
297 	return ret;
298 }
299 
300 /**
301  * Send a command to the CROS-EC device and return the reply.
302  *
303  * The device's internal input/output buffers are used.
304  *
305  * @param dev		CROS-EC device
306  * @param cmd		Command to send (EC_CMD_...)
307  * @param cmd_version	Version of command to send (EC_VER_...)
308  * @param dout          Output data (may be NULL If dout_len=0)
309  * @param dout_len      Size of output data in bytes
310  * @param dinp          Response data (may be NULL If din_len=0).
311  *			If not NULL, it will be updated to point to the data
312  *			and will always be double word aligned (64-bits)
313  * @param din_len       Maximum size of response in bytes
314  * @return number of bytes in response, or -ve on error
315  */
ec_command_inptr(struct udevice * dev,uint8_t cmd,int cmd_version,const void * dout,int dout_len,uint8_t ** dinp,int din_len)316 static int ec_command_inptr(struct udevice *dev, uint8_t cmd,
317 			    int cmd_version, const void *dout, int dout_len,
318 			    uint8_t **dinp, int din_len)
319 {
320 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
321 	uint8_t *din = NULL;
322 	int len;
323 
324 	len = send_command(cdev, cmd, cmd_version, dout, dout_len, &din,
325 			   din_len);
326 
327 	/* If the command doesn't complete, wait a while */
328 	if (len == -EC_RES_IN_PROGRESS) {
329 		struct ec_response_get_comms_status *resp = NULL;
330 		ulong start;
331 
332 		/* Wait for command to complete */
333 		start = get_timer(0);
334 		do {
335 			int ret;
336 
337 			mdelay(50);	/* Insert some reasonable delay */
338 			ret = send_command(cdev, EC_CMD_GET_COMMS_STATUS, 0,
339 					   NULL, 0,
340 					   (uint8_t **)&resp, sizeof(*resp));
341 			if (ret < 0)
342 				return ret;
343 
344 			if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
345 				debug("%s: Command %#02x timeout\n",
346 				      __func__, cmd);
347 				return -EC_RES_TIMEOUT;
348 			}
349 		} while (resp->flags & EC_COMMS_STATUS_PROCESSING);
350 
351 		/* OK it completed, so read the status response */
352 		/* not sure why it was 0 for the last argument */
353 		len = send_command(cdev, EC_CMD_RESEND_RESPONSE, 0, NULL, 0,
354 				   &din, din_len);
355 	}
356 
357 	debug("%s: len=%d, din=%p\n", __func__, len, din);
358 	if (dinp) {
359 		/* If we have any data to return, it must be 64bit-aligned */
360 		assert(len <= 0 || !((uintptr_t)din & 7));
361 		*dinp = din;
362 	}
363 
364 	return len;
365 }
366 
367 /**
368  * Send a command to the CROS-EC device and return the reply.
369  *
370  * The device's internal input/output buffers are used.
371  *
372  * @param dev		CROS-EC device
373  * @param cmd		Command to send (EC_CMD_...)
374  * @param cmd_version	Version of command to send (EC_VER_...)
375  * @param dout          Output data (may be NULL If dout_len=0)
376  * @param dout_len      Size of output data in bytes
377  * @param din           Response data (may be NULL If din_len=0).
378  *			It not NULL, it is a place for ec_command() to copy the
379  *      data to.
380  * @param din_len       Maximum size of response in bytes
381  * @return number of bytes in response, or -ve on error
382  */
ec_command(struct udevice * dev,uint cmd,int cmd_version,const void * dout,int dout_len,void * din,int din_len)383 static int ec_command(struct udevice *dev, uint cmd, int cmd_version,
384 		      const void *dout, int dout_len,
385 		      void *din, int din_len)
386 {
387 	uint8_t *in_buffer;
388 	int len;
389 
390 	assert((din_len == 0) || din);
391 	len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
392 			       &in_buffer, din_len);
393 	if (len > 0) {
394 		/*
395 		 * If we were asked to put it somewhere, do so, otherwise just
396 		 * disregard the result.
397 		 */
398 		if (din && in_buffer) {
399 			assert(len <= din_len);
400 			memmove(din, in_buffer, len);
401 		}
402 	}
403 	return len;
404 }
405 
cros_ec_scan_keyboard(struct udevice * dev,struct mbkp_keyscan * scan)406 int cros_ec_scan_keyboard(struct udevice *dev, struct mbkp_keyscan *scan)
407 {
408  	if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
409 		       sizeof(scan->data)) != sizeof(scan->data))
410 		return -1;
411 
412 	return 0;
413 }
414 
cros_ec_read_id(struct udevice * dev,char * id,int maxlen)415 int cros_ec_read_id(struct udevice *dev, char *id, int maxlen)
416 {
417 	struct ec_response_get_version *r;
418 	int ret;
419 
420 	ret = ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
421 			       (uint8_t **)&r, sizeof(*r));
422 	if (ret != sizeof(*r)) {
423 		log_err("Got rc %d, expected %u\n", ret, (uint)sizeof(*r));
424 		return -1;
425 	}
426 
427 	if (maxlen > (int)sizeof(r->version_string_ro))
428 		maxlen = sizeof(r->version_string_ro);
429 
430 	switch (r->current_image) {
431 	case EC_IMAGE_RO:
432 		memcpy(id, r->version_string_ro, maxlen);
433 		break;
434 	case EC_IMAGE_RW:
435 		memcpy(id, r->version_string_rw, maxlen);
436 		break;
437 	default:
438 		log_err("Invalid EC image %d\n", r->current_image);
439 		return -1;
440 	}
441 
442 	id[maxlen - 1] = '\0';
443 	return 0;
444 }
445 
cros_ec_read_version(struct udevice * dev,struct ec_response_get_version ** versionp)446 int cros_ec_read_version(struct udevice *dev,
447 			 struct ec_response_get_version **versionp)
448 {
449 	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
450 			(uint8_t **)versionp, sizeof(**versionp))
451 			!= sizeof(**versionp))
452 		return -1;
453 
454 	return 0;
455 }
456 
cros_ec_read_build_info(struct udevice * dev,char ** strp)457 int cros_ec_read_build_info(struct udevice *dev, char **strp)
458 {
459 	if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
460 			(uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
461 		return -1;
462 
463 	return 0;
464 }
465 
cros_ec_read_current_image(struct udevice * dev,enum ec_current_image * image)466 int cros_ec_read_current_image(struct udevice *dev,
467 			       enum ec_current_image *image)
468 {
469 	struct ec_response_get_version *r;
470 
471 	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
472 			(uint8_t **)&r, sizeof(*r)) != sizeof(*r))
473 		return -1;
474 
475 	*image = r->current_image;
476 	return 0;
477 }
478 
cros_ec_wait_on_hash_done(struct udevice * dev,struct ec_response_vboot_hash * hash)479 static int cros_ec_wait_on_hash_done(struct udevice *dev,
480 				     struct ec_response_vboot_hash *hash)
481 {
482 	struct ec_params_vboot_hash p;
483 	ulong start;
484 
485 	start = get_timer(0);
486 	while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
487 		mdelay(50);	/* Insert some reasonable delay */
488 
489 		p.cmd = EC_VBOOT_HASH_GET;
490 		if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
491 		       hash, sizeof(*hash)) < 0)
492 			return -1;
493 
494 		if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
495 			debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
496 			return -EC_RES_TIMEOUT;
497 		}
498 	}
499 	return 0;
500 }
501 
cros_ec_read_hash(struct udevice * dev,uint hash_offset,struct ec_response_vboot_hash * hash)502 int cros_ec_read_hash(struct udevice *dev, uint hash_offset,
503 		      struct ec_response_vboot_hash *hash)
504 {
505 	struct ec_params_vboot_hash p;
506 	int rv;
507 
508 	p.cmd = EC_VBOOT_HASH_GET;
509 	p.offset = hash_offset;
510 	if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
511 		       hash, sizeof(*hash)) < 0)
512 		return -1;
513 
514 	/* If the EC is busy calculating the hash, fidget until it's done. */
515 	rv = cros_ec_wait_on_hash_done(dev, hash);
516 	if (rv)
517 		return rv;
518 
519 	/* If the hash is valid, we're done. Otherwise, we have to kick it off
520 	 * again and wait for it to complete. Note that we explicitly assume
521 	 * that hashing zero bytes is always wrong, even though that would
522 	 * produce a valid hash value. */
523 	if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
524 		return 0;
525 
526 	debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
527 	      __func__, hash->status, hash->size);
528 
529 	p.cmd = EC_VBOOT_HASH_START;
530 	p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
531 	p.nonce_size = 0;
532 	p.offset = hash_offset;
533 
534 	if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
535 		       hash, sizeof(*hash)) < 0)
536 		return -1;
537 
538 	rv = cros_ec_wait_on_hash_done(dev, hash);
539 	if (rv)
540 		return rv;
541 
542 	debug("%s: hash done\n", __func__);
543 
544 	return 0;
545 }
546 
cros_ec_invalidate_hash(struct udevice * dev)547 static int cros_ec_invalidate_hash(struct udevice *dev)
548 {
549 	struct ec_params_vboot_hash p;
550 	struct ec_response_vboot_hash *hash;
551 
552 	/* We don't have an explict command for the EC to discard its current
553 	 * hash value, so we'll just tell it to calculate one that we know is
554 	 * wrong (we claim that hashing zero bytes is always invalid).
555 	 */
556 	p.cmd = EC_VBOOT_HASH_RECALC;
557 	p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
558 	p.nonce_size = 0;
559 	p.offset = 0;
560 	p.size = 0;
561 
562 	debug("%s:\n", __func__);
563 
564 	if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
565 		       (uint8_t **)&hash, sizeof(*hash)) < 0)
566 		return -1;
567 
568 	/* No need to wait for it to finish */
569 	return 0;
570 }
571 
cros_ec_reboot(struct udevice * dev,enum ec_reboot_cmd cmd,uint8_t flags)572 int cros_ec_reboot(struct udevice *dev, enum ec_reboot_cmd cmd, uint8_t flags)
573 {
574 	struct ec_params_reboot_ec p;
575 
576 	p.cmd = cmd;
577 	p.flags = flags;
578 
579 	if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
580 			< 0)
581 		return -1;
582 
583 	if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
584 		/*
585 		 * EC reboot will take place immediately so delay to allow it
586 		 * to complete.  Note that some reboot types (EC_REBOOT_COLD)
587 		 * will reboot the AP as well, in which case we won't actually
588 		 * get to this point.
589 		 */
590 		/*
591 		 * TODO(rspangler@chromium.org): Would be nice if we had a
592 		 * better way to determine when the reboot is complete.  Could
593 		 * we poll a memory-mapped LPC value?
594 		 */
595 		udelay(50000);
596 	}
597 
598 	return 0;
599 }
600 
cros_ec_interrupt_pending(struct udevice * dev)601 int cros_ec_interrupt_pending(struct udevice *dev)
602 {
603 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
604 
605 	/* no interrupt support : always poll */
606 	if (!dm_gpio_is_valid(&cdev->ec_int))
607 		return -ENOENT;
608 
609 	return dm_gpio_get_value(&cdev->ec_int);
610 }
611 
cros_ec_info(struct udevice * dev,struct ec_response_mkbp_info * info)612 int cros_ec_info(struct udevice *dev, struct ec_response_mkbp_info *info)
613 {
614 	if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
615 		       sizeof(*info)) != sizeof(*info))
616 		return -1;
617 
618 	return 0;
619 }
620 
cros_ec_get_event_mask(struct udevice * dev,uint type,uint32_t * mask)621 int cros_ec_get_event_mask(struct udevice *dev, uint type, uint32_t *mask)
622 {
623 	struct ec_response_host_event_mask rsp;
624 	int ret;
625 
626 	ret = ec_command(dev, type, 0, NULL, 0, &rsp, sizeof(rsp));
627 	if (ret < 0)
628 		return ret;
629 	else if (ret != sizeof(rsp))
630 		return -EINVAL;
631 
632 	*mask = rsp.mask;
633 
634 	return 0;
635 }
636 
cros_ec_set_event_mask(struct udevice * dev,uint type,uint32_t mask)637 int cros_ec_set_event_mask(struct udevice *dev, uint type, uint32_t mask)
638 {
639 	struct ec_params_host_event_mask req;
640 	int ret;
641 
642 	req.mask = mask;
643 
644 	ret = ec_command(dev, type, 0, &req, sizeof(req), NULL, 0);
645 	if (ret < 0)
646 		return ret;
647 
648 	return 0;
649 }
650 
cros_ec_get_host_events(struct udevice * dev,uint32_t * events_ptr)651 int cros_ec_get_host_events(struct udevice *dev, uint32_t *events_ptr)
652 {
653 	struct ec_response_host_event_mask *resp;
654 
655 	/*
656 	 * Use the B copy of the event flags, because the main copy is already
657 	 * used by ACPI/SMI.
658 	 */
659 	if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
660 		       (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
661 		return -1;
662 
663 	if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
664 		return -1;
665 
666 	*events_ptr = resp->mask;
667 	return 0;
668 }
669 
cros_ec_clear_host_events(struct udevice * dev,uint32_t events)670 int cros_ec_clear_host_events(struct udevice *dev, uint32_t events)
671 {
672 	struct ec_params_host_event_mask params;
673 
674 	params.mask = events;
675 
676 	/*
677 	 * Use the B copy of the event flags, so it affects the data returned
678 	 * by cros_ec_get_host_events().
679 	 */
680 	if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
681 		       &params, sizeof(params), NULL, 0) < 0)
682 		return -1;
683 
684 	return 0;
685 }
686 
cros_ec_flash_protect(struct udevice * dev,uint32_t set_mask,uint32_t set_flags,struct ec_response_flash_protect * resp)687 int cros_ec_flash_protect(struct udevice *dev, uint32_t set_mask,
688 			  uint32_t set_flags,
689 			  struct ec_response_flash_protect *resp)
690 {
691 	struct ec_params_flash_protect params;
692 
693 	params.mask = set_mask;
694 	params.flags = set_flags;
695 
696 	if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
697 		       &params, sizeof(params),
698 		       resp, sizeof(*resp)) != sizeof(*resp))
699 		return -1;
700 
701 	return 0;
702 }
703 
cros_ec_entering_mode(struct udevice * dev,int mode)704 int cros_ec_entering_mode(struct udevice *dev, int mode)
705 {
706 	int rc;
707 
708 	rc = ec_command(dev, EC_CMD_ENTERING_MODE, 0, &mode, sizeof(mode),
709 			NULL, 0);
710 	if (rc)
711 		return -1;
712 	return 0;
713 }
714 
cros_ec_check_version(struct udevice * dev)715 static int cros_ec_check_version(struct udevice *dev)
716 {
717 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
718 	struct ec_params_hello req;
719 	struct ec_response_hello *resp;
720 
721 	struct dm_cros_ec_ops *ops;
722 	int ret;
723 
724 	ops = dm_cros_ec_get_ops(dev);
725 	if (ops->check_version) {
726 		ret = ops->check_version(dev);
727 		if (ret)
728 			return ret;
729 	}
730 
731 	/*
732 	 * TODO(sjg@chromium.org).
733 	 * There is a strange oddity here with the EC. We could just ignore
734 	 * the response, i.e. pass the last two parameters as NULL and 0.
735 	 * In this case we won't read back very many bytes from the EC.
736 	 * On the I2C bus the EC gets upset about this and will try to send
737 	 * the bytes anyway. This means that we will have to wait for that
738 	 * to complete before continuing with a new EC command.
739 	 *
740 	 * This problem is probably unique to the I2C bus.
741 	 *
742 	 * So for now, just read all the data anyway.
743 	 */
744 
745 	/* Try sending a version 3 packet */
746 	cdev->protocol_version = 3;
747 	req.in_data = 0;
748 	if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
749 			     (uint8_t **)&resp, sizeof(*resp)) > 0)
750 		return 0;
751 
752 	/* Try sending a version 2 packet */
753 	cdev->protocol_version = 2;
754 	if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
755 			     (uint8_t **)&resp, sizeof(*resp)) > 0)
756 		return 0;
757 
758 	/*
759 	 * Fail if we're still here, since the EC doesn't understand any
760 	 * protcol version we speak.  Version 1 interface without command
761 	 * version is no longer supported, and we don't know about any new
762 	 * protocol versions.
763 	 */
764 	cdev->protocol_version = 0;
765 	printf("%s: ERROR: old EC interface not supported\n", __func__);
766 	return -1;
767 }
768 
cros_ec_test(struct udevice * dev)769 int cros_ec_test(struct udevice *dev)
770 {
771 	struct ec_params_hello req;
772 	struct ec_response_hello *resp;
773 
774 	req.in_data = 0x12345678;
775 	if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
776 		       (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) {
777 		printf("ec_command_inptr() returned error\n");
778 		return -1;
779 	}
780 	if (resp->out_data != req.in_data + 0x01020304) {
781 		printf("Received invalid handshake %x\n", resp->out_data);
782 		return -1;
783 	}
784 
785 	return 0;
786 }
787 
cros_ec_flash_offset(struct udevice * dev,enum ec_flash_region region,uint32_t * offset,uint32_t * size)788 int cros_ec_flash_offset(struct udevice *dev, enum ec_flash_region region,
789 		      uint32_t *offset, uint32_t *size)
790 {
791 	struct ec_params_flash_region_info p;
792 	struct ec_response_flash_region_info *r;
793 	int ret;
794 
795 	p.region = region;
796 	ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
797 			 EC_VER_FLASH_REGION_INFO,
798 			 &p, sizeof(p), (uint8_t **)&r, sizeof(*r));
799 	if (ret != sizeof(*r))
800 		return -1;
801 
802 	if (offset)
803 		*offset = r->offset;
804 	if (size)
805 		*size = r->size;
806 
807 	return 0;
808 }
809 
cros_ec_flash_erase(struct udevice * dev,uint32_t offset,uint32_t size)810 int cros_ec_flash_erase(struct udevice *dev, uint32_t offset, uint32_t size)
811 {
812 	struct ec_params_flash_erase p;
813 
814 	p.offset = offset;
815 	p.size = size;
816 	return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
817 			NULL, 0);
818 }
819 
820 /**
821  * Write a single block to the flash
822  *
823  * Write a block of data to the EC flash. The size must not exceed the flash
824  * write block size which you can obtain from cros_ec_flash_write_burst_size().
825  *
826  * The offset starts at 0. You can obtain the region information from
827  * cros_ec_flash_offset() to find out where to write for a particular region.
828  *
829  * Attempting to write to the region where the EC is currently running from
830  * will result in an error.
831  *
832  * @param dev		CROS-EC device
833  * @param data		Pointer to data buffer to write
834  * @param offset	Offset within flash to write to.
835  * @param size		Number of bytes to write
836  * @return 0 if ok, -1 on error
837  */
cros_ec_flash_write_block(struct udevice * dev,const uint8_t * data,uint32_t offset,uint32_t size)838 static int cros_ec_flash_write_block(struct udevice *dev, const uint8_t *data,
839 				     uint32_t offset, uint32_t size)
840 {
841 	struct ec_params_flash_write *p;
842 	int ret;
843 
844 	p = malloc(sizeof(*p) + size);
845 	if (!p)
846 		return -ENOMEM;
847 
848 	p->offset = offset;
849 	p->size = size;
850 	assert(data && p->size <= EC_FLASH_WRITE_VER0_SIZE);
851 	memcpy(p + 1, data, p->size);
852 
853 	ret = ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
854 			  p, sizeof(*p) + size, NULL, 0) >= 0 ? 0 : -1;
855 
856 	free(p);
857 
858 	return ret;
859 }
860 
861 /**
862  * Return optimal flash write burst size
863  */
cros_ec_flash_write_burst_size(struct udevice * dev)864 static int cros_ec_flash_write_burst_size(struct udevice *dev)
865 {
866 	return EC_FLASH_WRITE_VER0_SIZE;
867 }
868 
869 /**
870  * Check if a block of data is erased (all 0xff)
871  *
872  * This function is useful when dealing with flash, for checking whether a
873  * data block is erased and thus does not need to be programmed.
874  *
875  * @param data		Pointer to data to check (must be word-aligned)
876  * @param size		Number of bytes to check (must be word-aligned)
877  * @return 0 if erased, non-zero if any word is not erased
878  */
cros_ec_data_is_erased(const uint32_t * data,int size)879 static int cros_ec_data_is_erased(const uint32_t *data, int size)
880 {
881 	assert(!(size & 3));
882 	size /= sizeof(uint32_t);
883 	for (; size > 0; size -= 4, data++)
884 		if (*data != -1U)
885 			return 0;
886 
887 	return 1;
888 }
889 
890 /**
891  * Read back flash parameters
892  *
893  * This function reads back parameters of the flash as reported by the EC
894  *
895  * @param dev  Pointer to device
896  * @param info Pointer to output flash info struct
897  */
cros_ec_read_flashinfo(struct udevice * dev,struct ec_response_flash_info * info)898 int cros_ec_read_flashinfo(struct udevice *dev,
899 			   struct ec_response_flash_info *info)
900 {
901 	int ret;
902 
903 	ret = ec_command(dev, EC_CMD_FLASH_INFO, 0,
904 			 NULL, 0, info, sizeof(*info));
905 	if (ret < 0)
906 		return ret;
907 
908 	return ret < sizeof(*info) ? -1 : 0;
909 }
910 
cros_ec_flash_write(struct udevice * dev,const uint8_t * data,uint32_t offset,uint32_t size)911 int cros_ec_flash_write(struct udevice *dev, const uint8_t *data,
912 			uint32_t offset, uint32_t size)
913 {
914 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
915 	uint32_t burst = cros_ec_flash_write_burst_size(dev);
916 	uint32_t end, off;
917 	int ret;
918 
919 	if (!burst)
920 		return -EINVAL;
921 
922 	/*
923 	 * TODO: round up to the nearest multiple of write size.  Can get away
924 	 * without that on link right now because its write size is 4 bytes.
925 	 */
926 	end = offset + size;
927 	for (off = offset; off < end; off += burst, data += burst) {
928 		uint32_t todo;
929 
930 		/* If the data is empty, there is no point in programming it */
931 		todo = min(end - off, burst);
932 		if (cdev->optimise_flash_write &&
933 		    cros_ec_data_is_erased((uint32_t *)data, todo))
934 			continue;
935 
936 		ret = cros_ec_flash_write_block(dev, data, off, todo);
937 		if (ret)
938 			return ret;
939 	}
940 
941 	return 0;
942 }
943 
944 /**
945  * Run verification on a slot
946  *
947  * @param me     CrosEc instance
948  * @param region Region to run verification on
949  * @return 0 if success or not applicable. Non-zero if verification failed.
950  */
cros_ec_efs_verify(struct udevice * dev,enum ec_flash_region region)951 int cros_ec_efs_verify(struct udevice *dev, enum ec_flash_region region)
952 {
953 	struct ec_params_efs_verify p;
954 	int rv;
955 
956 	log_info("EFS: EC is verifying updated image...\n");
957 	p.region = region;
958 
959 	rv = ec_command(dev, EC_CMD_EFS_VERIFY, 0, &p, sizeof(p), NULL, 0);
960 	if (rv >= 0) {
961 		log_info("EFS: Verification success\n");
962 		return 0;
963 	}
964 	if (rv == -EC_RES_INVALID_COMMAND) {
965 		log_info("EFS: EC doesn't support EFS_VERIFY command\n");
966 		return 0;
967 	}
968 	log_info("EFS: Verification failed\n");
969 
970 	return rv;
971 }
972 
973 /**
974  * Read a single block from the flash
975  *
976  * Read a block of data from the EC flash. The size must not exceed the flash
977  * write block size which you can obtain from cros_ec_flash_write_burst_size().
978  *
979  * The offset starts at 0. You can obtain the region information from
980  * cros_ec_flash_offset() to find out where to read for a particular region.
981  *
982  * @param dev		CROS-EC device
983  * @param data		Pointer to data buffer to read into
984  * @param offset	Offset within flash to read from
985  * @param size		Number of bytes to read
986  * @return 0 if ok, -1 on error
987  */
cros_ec_flash_read_block(struct udevice * dev,uint8_t * data,uint32_t offset,uint32_t size)988 static int cros_ec_flash_read_block(struct udevice *dev, uint8_t *data,
989 				    uint32_t offset, uint32_t size)
990 {
991 	struct ec_params_flash_read p;
992 
993 	p.offset = offset;
994 	p.size = size;
995 
996 	return ec_command(dev, EC_CMD_FLASH_READ, 0,
997 			  &p, sizeof(p), data, size) >= 0 ? 0 : -1;
998 }
999 
cros_ec_flash_read(struct udevice * dev,uint8_t * data,uint32_t offset,uint32_t size)1000 int cros_ec_flash_read(struct udevice *dev, uint8_t *data, uint32_t offset,
1001 		       uint32_t size)
1002 {
1003 	uint32_t burst = cros_ec_flash_write_burst_size(dev);
1004 	uint32_t end, off;
1005 	int ret;
1006 
1007 	end = offset + size;
1008 	for (off = offset; off < end; off += burst, data += burst) {
1009 		ret = cros_ec_flash_read_block(dev, data, off,
1010 					    min(end - off, burst));
1011 		if (ret)
1012 			return ret;
1013 	}
1014 
1015 	return 0;
1016 }
1017 
cros_ec_flash_update_rw(struct udevice * dev,const uint8_t * image,int image_size)1018 int cros_ec_flash_update_rw(struct udevice *dev, const uint8_t *image,
1019 			    int image_size)
1020 {
1021 	uint32_t rw_offset, rw_size;
1022 	int ret;
1023 
1024 	if (cros_ec_flash_offset(dev, EC_FLASH_REGION_ACTIVE, &rw_offset,
1025 		&rw_size))
1026 		return -1;
1027 	if (image_size > (int)rw_size)
1028 		return -1;
1029 
1030 	/* Invalidate the existing hash, just in case the AP reboots
1031 	 * unexpectedly during the update. If that happened, the EC RW firmware
1032 	 * would be invalid, but the EC would still have the original hash.
1033 	 */
1034 	ret = cros_ec_invalidate_hash(dev);
1035 	if (ret)
1036 		return ret;
1037 
1038 	/*
1039 	 * Erase the entire RW section, so that the EC doesn't see any garbage
1040 	 * past the new image if it's smaller than the current image.
1041 	 *
1042 	 * TODO: could optimize this to erase just the current image, since
1043 	 * presumably everything past that is 0xff's.  But would still need to
1044 	 * round up to the nearest multiple of erase size.
1045 	 */
1046 	ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
1047 	if (ret)
1048 		return ret;
1049 
1050 	/* Write the image */
1051 	ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
1052 	if (ret)
1053 		return ret;
1054 
1055 	return 0;
1056 }
1057 
cros_ec_read_nvdata(struct udevice * dev,uint8_t * block,int size)1058 int cros_ec_read_nvdata(struct udevice *dev, uint8_t *block, int size)
1059 {
1060 	struct ec_params_vbnvcontext p;
1061 	int len;
1062 
1063 	if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2)
1064 		return -EINVAL;
1065 
1066 	p.op = EC_VBNV_CONTEXT_OP_READ;
1067 
1068 	len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
1069 			 &p, sizeof(uint32_t) + size, block, size);
1070 	if (len != size) {
1071 		log_err("Expected %d bytes, got %d\n", size, len);
1072 		return -EIO;
1073 	}
1074 
1075 	return 0;
1076 }
1077 
cros_ec_write_nvdata(struct udevice * dev,const uint8_t * block,int size)1078 int cros_ec_write_nvdata(struct udevice *dev, const uint8_t *block, int size)
1079 {
1080 	struct ec_params_vbnvcontext p;
1081 	int len;
1082 
1083 	if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2)
1084 		return -EINVAL;
1085 	p.op = EC_VBNV_CONTEXT_OP_WRITE;
1086 	memcpy(p.block, block, size);
1087 
1088 	len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
1089 			&p, sizeof(uint32_t) + size, NULL, 0);
1090 	if (len < 0)
1091 		return -1;
1092 
1093 	return 0;
1094 }
1095 
cros_ec_battery_cutoff(struct udevice * dev,uint8_t flags)1096 int cros_ec_battery_cutoff(struct udevice *dev, uint8_t flags)
1097 {
1098 	struct ec_params_battery_cutoff p;
1099 	int len;
1100 
1101 	p.flags = flags;
1102 	len = ec_command(dev, EC_CMD_BATTERY_CUT_OFF, 1, &p, sizeof(p),
1103 			 NULL, 0);
1104 
1105 	if (len < 0)
1106 		return -1;
1107 	return 0;
1108 }
1109 
cros_ec_set_ldo(struct udevice * dev,uint8_t index,uint8_t state)1110 int cros_ec_set_ldo(struct udevice *dev, uint8_t index, uint8_t state)
1111 {
1112 	struct ec_params_ldo_set params;
1113 
1114 	params.index = index;
1115 	params.state = state;
1116 
1117 	if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, &params, sizeof(params),
1118 			     NULL, 0))
1119 		return -1;
1120 
1121 	return 0;
1122 }
1123 
cros_ec_get_ldo(struct udevice * dev,uint8_t index,uint8_t * state)1124 int cros_ec_get_ldo(struct udevice *dev, uint8_t index, uint8_t *state)
1125 {
1126 	struct ec_params_ldo_get params;
1127 	struct ec_response_ldo_get *resp;
1128 
1129 	params.index = index;
1130 
1131 	if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, &params, sizeof(params),
1132 			     (uint8_t **)&resp, sizeof(*resp)) !=
1133 			     sizeof(*resp))
1134 		return -1;
1135 
1136 	*state = resp->state;
1137 
1138 	return 0;
1139 }
1140 
cros_ec_register(struct udevice * dev)1141 int cros_ec_register(struct udevice *dev)
1142 {
1143 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
1144 	char id[MSG_BYTES];
1145 
1146 	cdev->dev = dev;
1147 	gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int,
1148 			     GPIOD_IS_IN);
1149 	cdev->optimise_flash_write = dev_read_bool(dev, "optimise-flash-write");
1150 
1151 	if (cros_ec_check_version(dev)) {
1152 		debug("%s: Could not detect CROS-EC version\n", __func__);
1153 		return -CROS_EC_ERR_CHECK_VERSION;
1154 	}
1155 
1156 	if (cros_ec_read_id(dev, id, sizeof(id))) {
1157 		debug("%s: Could not read KBC ID\n", __func__);
1158 		return -CROS_EC_ERR_READ_ID;
1159 	}
1160 
1161 	/* Remember this device for use by the cros_ec command */
1162 	debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n",
1163 	      cdev->protocol_version, id);
1164 
1165 	return 0;
1166 }
1167 
cros_ec_decode_ec_flash(struct udevice * dev,struct fdt_cros_ec * config)1168 int cros_ec_decode_ec_flash(struct udevice *dev, struct fdt_cros_ec *config)
1169 {
1170 	ofnode flash_node, node;
1171 
1172 	flash_node = dev_read_subnode(dev, "flash");
1173 	if (!ofnode_valid(flash_node)) {
1174 		debug("Failed to find flash node\n");
1175 		return -1;
1176 	}
1177 
1178 	if (ofnode_read_fmap_entry(flash_node,  &config->flash)) {
1179 		debug("Failed to decode flash node in chrome-ec\n");
1180 		return -1;
1181 	}
1182 
1183 	config->flash_erase_value = ofnode_read_s32_default(flash_node,
1184 							    "erase-value", -1);
1185 	ofnode_for_each_subnode(node, flash_node) {
1186 		const char *name = ofnode_get_name(node);
1187 		enum ec_flash_region region;
1188 
1189 		if (0 == strcmp(name, "ro")) {
1190 			region = EC_FLASH_REGION_RO;
1191 		} else if (0 == strcmp(name, "rw")) {
1192 			region = EC_FLASH_REGION_ACTIVE;
1193 		} else if (0 == strcmp(name, "wp-ro")) {
1194 			region = EC_FLASH_REGION_WP_RO;
1195 		} else {
1196 			debug("Unknown EC flash region name '%s'\n", name);
1197 			return -1;
1198 		}
1199 
1200 		if (ofnode_read_fmap_entry(node, &config->region[region])) {
1201 			debug("Failed to decode flash region in chrome-ec'\n");
1202 			return -1;
1203 		}
1204 	}
1205 
1206 	return 0;
1207 }
1208 
cros_ec_i2c_tunnel(struct udevice * dev,int port,struct i2c_msg * in,int nmsgs)1209 int cros_ec_i2c_tunnel(struct udevice *dev, int port, struct i2c_msg *in,
1210 		       int nmsgs)
1211 {
1212 	union {
1213 		struct ec_params_i2c_passthru p;
1214 		uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
1215 	} params;
1216 	union {
1217 		struct ec_response_i2c_passthru r;
1218 		uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
1219 	} response;
1220 	struct ec_params_i2c_passthru *p = &params.p;
1221 	struct ec_response_i2c_passthru *r = &response.r;
1222 	struct ec_params_i2c_passthru_msg *msg;
1223 	uint8_t *pdata, *read_ptr = NULL;
1224 	int read_len;
1225 	int size;
1226 	int rv;
1227 	int i;
1228 
1229 	p->port = port;
1230 
1231 	p->num_msgs = nmsgs;
1232 	size = sizeof(*p) + p->num_msgs * sizeof(*msg);
1233 
1234 	/* Create a message to write the register address and optional data */
1235 	pdata = (uint8_t *)p + size;
1236 
1237 	read_len = 0;
1238 	for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) {
1239 		bool is_read = in->flags & I2C_M_RD;
1240 
1241 		msg->addr_flags = in->addr;
1242 		msg->len = in->len;
1243 		if (is_read) {
1244 			msg->addr_flags |= EC_I2C_FLAG_READ;
1245 			read_len += in->len;
1246 			read_ptr = in->buf;
1247 			if (sizeof(*r) + read_len > sizeof(response)) {
1248 				puts("Read length too big for buffer\n");
1249 				return -1;
1250 			}
1251 		} else {
1252 			if (pdata - (uint8_t *)p + in->len > sizeof(params)) {
1253 				puts("Params too large for buffer\n");
1254 				return -1;
1255 			}
1256 			memcpy(pdata, in->buf, in->len);
1257 			pdata += in->len;
1258 		}
1259 	}
1260 
1261 	rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p,
1262 			r, sizeof(*r) + read_len);
1263 	if (rv < 0)
1264 		return rv;
1265 
1266 	/* Parse response */
1267 	if (r->i2c_status & EC_I2C_STATUS_ERROR) {
1268 		printf("Transfer failed with status=0x%x\n", r->i2c_status);
1269 		return -1;
1270 	}
1271 
1272 	if (rv < sizeof(*r) + read_len) {
1273 		puts("Truncated read response\n");
1274 		return -1;
1275 	}
1276 
1277 	/* We only support a single read message for each transfer */
1278 	if (read_len)
1279 		memcpy(read_ptr, r->data, read_len);
1280 
1281 	return 0;
1282 }
1283 
cros_ec_check_feature(struct udevice * dev,int feature)1284 int cros_ec_check_feature(struct udevice *dev, int feature)
1285 {
1286 	struct ec_response_get_features r;
1287 	int rv;
1288 
1289 	rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, &r, sizeof(r), NULL, 0);
1290 	if (rv)
1291 		return rv;
1292 
1293 	if (feature >= 8 * sizeof(r.flags))
1294 		return -1;
1295 
1296 	return r.flags[feature / 32] & EC_FEATURE_MASK_0(feature);
1297 }
1298 
1299 /*
1300  * Query the EC for specified mask indicating enabled events.
1301  * The EC maintains separate event masks for SMI, SCI and WAKE.
1302  */
cros_ec_uhepi_cmd(struct udevice * dev,uint mask,uint action,uint64_t * value)1303 static int cros_ec_uhepi_cmd(struct udevice *dev, uint mask, uint action,
1304 			     uint64_t *value)
1305 {
1306 	int ret;
1307 	struct ec_params_host_event req;
1308 	struct ec_response_host_event rsp;
1309 
1310 	req.action = action;
1311 	req.mask_type = mask;
1312 	if (action != EC_HOST_EVENT_GET)
1313 		req.value = *value;
1314 	else
1315 		*value = 0;
1316 	ret = ec_command(dev, EC_CMD_HOST_EVENT, 0, &req, sizeof(req), &rsp,
1317 			 sizeof(rsp));
1318 
1319 	if (action != EC_HOST_EVENT_GET)
1320 		return ret;
1321 	if (ret == 0)
1322 		*value = rsp.value;
1323 
1324 	return ret;
1325 }
1326 
cros_ec_handle_non_uhepi_cmd(struct udevice * dev,uint hcmd,uint action,uint64_t * value)1327 static int cros_ec_handle_non_uhepi_cmd(struct udevice *dev, uint hcmd,
1328 					uint action, uint64_t *value)
1329 {
1330 	int ret = -1;
1331 	struct ec_params_host_event_mask req;
1332 	struct ec_response_host_event_mask rsp;
1333 
1334 	if (hcmd == INVALID_HCMD)
1335 		return ret;
1336 
1337 	if (action != EC_HOST_EVENT_GET)
1338 		req.mask = (uint32_t)*value;
1339 	else
1340 		*value = 0;
1341 
1342 	ret = ec_command(dev, hcmd, 0, &req, sizeof(req), &rsp, sizeof(rsp));
1343 	if (action != EC_HOST_EVENT_GET)
1344 		return ret;
1345 	if (ret == 0)
1346 		*value = rsp.mask;
1347 
1348 	return ret;
1349 }
1350 
cros_ec_is_uhepi_supported(struct udevice * dev)1351 bool cros_ec_is_uhepi_supported(struct udevice *dev)
1352 {
1353 #define UHEPI_SUPPORTED 1
1354 #define UHEPI_NOT_SUPPORTED 2
1355 	static int uhepi_support;
1356 
1357 	if (!uhepi_support) {
1358 		uhepi_support = cros_ec_check_feature(dev,
1359 			EC_FEATURE_UNIFIED_WAKE_MASKS) > 0 ? UHEPI_SUPPORTED :
1360 			UHEPI_NOT_SUPPORTED;
1361 		log_debug("Chrome EC: UHEPI %s\n",
1362 			  uhepi_support == UHEPI_SUPPORTED ? "supported" :
1363 			  "not supported");
1364 	}
1365 	return uhepi_support == UHEPI_SUPPORTED;
1366 }
1367 
cros_ec_get_mask(struct udevice * dev,uint type)1368 static int cros_ec_get_mask(struct udevice *dev, uint type)
1369 {
1370 	u64 value = 0;
1371 
1372 	if (cros_ec_is_uhepi_supported(dev)) {
1373 		cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_GET, &value);
1374 	} else {
1375 		assert(type < ARRAY_SIZE(event_map));
1376 		cros_ec_handle_non_uhepi_cmd(dev, event_map[type].get_cmd,
1377 					     EC_HOST_EVENT_GET, &value);
1378 	}
1379 	return value;
1380 }
1381 
cros_ec_clear_mask(struct udevice * dev,uint type,u64 mask)1382 static int cros_ec_clear_mask(struct udevice *dev, uint type, u64 mask)
1383 {
1384 	if (cros_ec_is_uhepi_supported(dev))
1385 		return cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_CLEAR, &mask);
1386 
1387 	assert(type < ARRAY_SIZE(event_map));
1388 
1389 	return cros_ec_handle_non_uhepi_cmd(dev, event_map[type].clear_cmd,
1390 					    EC_HOST_EVENT_CLEAR, &mask);
1391 }
1392 
cros_ec_get_events_b(struct udevice * dev)1393 uint64_t cros_ec_get_events_b(struct udevice *dev)
1394 {
1395 	return cros_ec_get_mask(dev, EC_HOST_EVENT_B);
1396 }
1397 
cros_ec_clear_events_b(struct udevice * dev,uint64_t mask)1398 int cros_ec_clear_events_b(struct udevice *dev, uint64_t mask)
1399 {
1400 	log_debug("Chrome EC: clear events_b mask to 0x%016llx\n", mask);
1401 
1402 	return cros_ec_clear_mask(dev, EC_HOST_EVENT_B, mask);
1403 }
1404 
cros_ec_read_limit_power(struct udevice * dev,int * limit_powerp)1405 int cros_ec_read_limit_power(struct udevice *dev, int *limit_powerp)
1406 {
1407 	struct ec_params_charge_state p;
1408 	struct ec_response_charge_state r;
1409 	int ret;
1410 
1411 	p.cmd = CHARGE_STATE_CMD_GET_PARAM;
1412 	p.get_param.param = CS_PARAM_LIMIT_POWER;
1413 	ret = ec_command(dev, EC_CMD_CHARGE_STATE, 0, &p, sizeof(p),
1414 			 &r, sizeof(r));
1415 
1416 	/*
1417 	 * If our EC doesn't support the LIMIT_POWER parameter, assume that
1418 	 * LIMIT_POWER is not requested.
1419 	 */
1420 	if (ret == -EC_RES_INVALID_PARAM || ret == -EC_RES_INVALID_COMMAND) {
1421 		log_warning("PARAM_LIMIT_POWER not supported by EC\n");
1422 		return -ENOSYS;
1423 	}
1424 
1425 	if (ret != sizeof(r.get_param))
1426 		return -EINVAL;
1427 
1428 	*limit_powerp = r.get_param.value;
1429 	return 0;
1430 }
1431 
cros_ec_config_powerbtn(struct udevice * dev,uint32_t flags)1432 int cros_ec_config_powerbtn(struct udevice *dev, uint32_t flags)
1433 {
1434 	struct ec_params_config_power_button params;
1435 	int ret;
1436 
1437 	params.flags = flags;
1438 	ret = ec_command(dev, EC_CMD_CONFIG_POWER_BUTTON, 0,
1439 			 &params, sizeof(params), NULL, 0);
1440 	if (ret < 0)
1441 		return ret;
1442 
1443 	return 0;
1444 }
1445 
cros_ec_get_lid_shutdown_mask(struct udevice * dev)1446 int cros_ec_get_lid_shutdown_mask(struct udevice *dev)
1447 {
1448 	u32 mask;
1449 	int ret;
1450 
1451 	ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK,
1452 				     &mask);
1453 	if (ret < 0)
1454 		return ret;
1455 
1456 	return !!(mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED));
1457 }
1458 
cros_ec_set_lid_shutdown_mask(struct udevice * dev,int enable)1459 int cros_ec_set_lid_shutdown_mask(struct udevice *dev, int enable)
1460 {
1461 	u32 mask;
1462 	int ret;
1463 
1464 	ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK,
1465 				     &mask);
1466 	if (ret < 0)
1467 		return ret;
1468 
1469 	/* Set lid close event state in the EC SMI event mask */
1470 	if (enable)
1471 		mask |= EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED);
1472 	else
1473 		mask &= ~EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED);
1474 
1475 	ret = cros_ec_set_event_mask(dev, EC_CMD_HOST_EVENT_SET_SMI_MASK, mask);
1476 	if (ret < 0)
1477 		return ret;
1478 
1479 	printf("EC: %sabled lid close event\n", enable ? "en" : "dis");
1480 	return 0;
1481 }
1482 
1483 UCLASS_DRIVER(cros_ec) = {
1484 	.id		= UCLASS_CROS_EC,
1485 	.name		= "cros_ec",
1486 	.per_device_auto_alloc_size = sizeof(struct cros_ec_dev),
1487 	.post_bind	= dm_scan_fdt_dev,
1488 	.flags		= DM_UC_FLAG_ALLOC_PRIV_DMA,
1489 };
1490