xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 5a4c98323b01d52382575a7a4d6bf7bf5f326047)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <linux/units.h>
32 #include <trace/events/power.h>
33 
34 static LIST_HEAD(cpufreq_policy_list);
35 
36 /* Macros to iterate over CPU policies */
37 #define for_each_suitable_policy(__policy, __active)			 \
38 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39 		if ((__active) == !policy_is_inactive(__policy))
40 
41 #define for_each_active_policy(__policy)		\
42 	for_each_suitable_policy(__policy, true)
43 #define for_each_inactive_policy(__policy)		\
44 	for_each_suitable_policy(__policy, false)
45 
46 /* Iterate over governors */
47 static LIST_HEAD(cpufreq_governor_list);
48 #define for_each_governor(__governor)				\
49 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50 
51 static char default_governor[CPUFREQ_NAME_LEN];
52 
53 /*
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61 
62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
cpufreq_supports_freq_invariance(void)63 bool cpufreq_supports_freq_invariance(void)
64 {
65 	return static_branch_likely(&cpufreq_freq_invariance);
66 }
67 
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70 
has_target(void)71 static inline bool has_target(void)
72 {
73 	return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75 
has_target_index(void)76 bool has_target_index(void)
77 {
78 	return !!cpufreq_driver->target_index;
79 }
80 
81 /* internal prototypes */
82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
83 static int cpufreq_init_governor(struct cpufreq_policy *policy);
84 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
85 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
86 static int cpufreq_set_policy(struct cpufreq_policy *policy,
87 			      struct cpufreq_governor *new_gov,
88 			      unsigned int new_pol);
89 static bool cpufreq_boost_supported(void);
90 
91 /*
92  * Two notifier lists: the "policy" list is involved in the
93  * validation process for a new CPU frequency policy; the
94  * "transition" list for kernel code that needs to handle
95  * changes to devices when the CPU clock speed changes.
96  * The mutex locks both lists.
97  */
98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
100 
101 static int off __read_mostly;
cpufreq_disabled(void)102 static int cpufreq_disabled(void)
103 {
104 	return off;
105 }
disable_cpufreq(void)106 void disable_cpufreq(void)
107 {
108 	off = 1;
109 }
110 static DEFINE_MUTEX(cpufreq_governor_mutex);
111 
have_governor_per_policy(void)112 bool have_governor_per_policy(void)
113 {
114 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
115 }
116 EXPORT_SYMBOL_GPL(have_governor_per_policy);
117 
118 static struct kobject *cpufreq_global_kobject;
119 
get_governor_parent_kobj(struct cpufreq_policy * policy)120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122 	if (have_governor_per_policy())
123 		return &policy->kobj;
124 	else
125 		return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128 
get_cpu_idle_time_jiffy(unsigned int cpu,u64 * wall)129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131 	struct kernel_cpustat kcpustat;
132 	u64 cur_wall_time;
133 	u64 idle_time;
134 	u64 busy_time;
135 
136 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137 
138 	kcpustat_cpu_fetch(&kcpustat, cpu);
139 
140 	busy_time = kcpustat.cpustat[CPUTIME_USER];
141 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
142 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
143 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
144 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
145 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
146 
147 	idle_time = cur_wall_time - busy_time;
148 	if (wall)
149 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
150 
151 	return div_u64(idle_time, NSEC_PER_USEC);
152 }
153 
get_cpu_idle_time(unsigned int cpu,u64 * wall,int io_busy)154 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
155 {
156 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
157 
158 	if (idle_time == -1ULL)
159 		return get_cpu_idle_time_jiffy(cpu, wall);
160 	else if (!io_busy)
161 		idle_time += get_cpu_iowait_time_us(cpu, wall);
162 
163 	return idle_time;
164 }
165 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
166 
167 /*
168  * This is a generic cpufreq init() routine which can be used by cpufreq
169  * drivers of SMP systems. It will do following:
170  * - validate & show freq table passed
171  * - set policies transition latency
172  * - policy->cpus with all possible CPUs
173  */
cpufreq_generic_init(struct cpufreq_policy * policy,struct cpufreq_frequency_table * table,unsigned int transition_latency)174 void cpufreq_generic_init(struct cpufreq_policy *policy,
175 		struct cpufreq_frequency_table *table,
176 		unsigned int transition_latency)
177 {
178 	policy->freq_table = table;
179 	policy->cpuinfo.transition_latency = transition_latency;
180 
181 	/*
182 	 * The driver only supports the SMP configuration where all processors
183 	 * share the clock and voltage and clock.
184 	 */
185 	cpumask_setall(policy->cpus);
186 }
187 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188 
cpufreq_cpu_get_raw(unsigned int cpu)189 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190 {
191 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192 
193 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
194 }
195 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196 
cpufreq_generic_get(unsigned int cpu)197 unsigned int cpufreq_generic_get(unsigned int cpu)
198 {
199 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200 
201 	if (!policy || IS_ERR(policy->clk)) {
202 		pr_err("%s: No %s associated to cpu: %d\n",
203 		       __func__, policy ? "clk" : "policy", cpu);
204 		return 0;
205 	}
206 
207 	return clk_get_rate(policy->clk) / 1000;
208 }
209 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210 
211 /**
212  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213  * @cpu: CPU to find the policy for.
214  *
215  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216  * the kobject reference counter of that policy.  Return a valid policy on
217  * success or NULL on failure.
218  *
219  * The policy returned by this function has to be released with the help of
220  * cpufreq_cpu_put() to balance its kobject reference counter properly.
221  */
cpufreq_cpu_get(unsigned int cpu)222 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223 {
224 	struct cpufreq_policy *policy = NULL;
225 	unsigned long flags;
226 
227 	if (WARN_ON(cpu >= nr_cpu_ids))
228 		return NULL;
229 
230 	/* get the cpufreq driver */
231 	read_lock_irqsave(&cpufreq_driver_lock, flags);
232 
233 	if (cpufreq_driver) {
234 		/* get the CPU */
235 		policy = cpufreq_cpu_get_raw(cpu);
236 		if (policy)
237 			kobject_get(&policy->kobj);
238 	}
239 
240 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241 
242 	return policy;
243 }
244 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245 
246 /**
247  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248  * @policy: cpufreq policy returned by cpufreq_cpu_get().
249  */
cpufreq_cpu_put(struct cpufreq_policy * policy)250 void cpufreq_cpu_put(struct cpufreq_policy *policy)
251 {
252 	kobject_put(&policy->kobj);
253 }
254 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255 
256 /**
257  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259  */
cpufreq_cpu_release(struct cpufreq_policy * policy)260 void cpufreq_cpu_release(struct cpufreq_policy *policy)
261 {
262 	if (WARN_ON(!policy))
263 		return;
264 
265 	lockdep_assert_held(&policy->rwsem);
266 
267 	up_write(&policy->rwsem);
268 
269 	cpufreq_cpu_put(policy);
270 }
271 
272 /**
273  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274  * @cpu: CPU to find the policy for.
275  *
276  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277  * if the policy returned by it is not NULL, acquire its rwsem for writing.
278  * Return the policy if it is active or release it and return NULL otherwise.
279  *
280  * The policy returned by this function has to be released with the help of
281  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282  * counter properly.
283  */
cpufreq_cpu_acquire(unsigned int cpu)284 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285 {
286 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287 
288 	if (!policy)
289 		return NULL;
290 
291 	down_write(&policy->rwsem);
292 
293 	if (policy_is_inactive(policy)) {
294 		cpufreq_cpu_release(policy);
295 		return NULL;
296 	}
297 
298 	return policy;
299 }
300 
301 /*********************************************************************
302  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
303  *********************************************************************/
304 
305 /**
306  * adjust_jiffies - Adjust the system "loops_per_jiffy".
307  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
308  * @ci: Frequency change information.
309  *
310  * This function alters the system "loops_per_jiffy" for the clock
311  * speed change. Note that loops_per_jiffy cannot be updated on SMP
312  * systems as each CPU might be scaled differently. So, use the arch
313  * per-CPU loops_per_jiffy value wherever possible.
314  */
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)315 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
316 {
317 #ifndef CONFIG_SMP
318 	static unsigned long l_p_j_ref;
319 	static unsigned int l_p_j_ref_freq;
320 
321 	if (ci->flags & CPUFREQ_CONST_LOOPS)
322 		return;
323 
324 	if (!l_p_j_ref_freq) {
325 		l_p_j_ref = loops_per_jiffy;
326 		l_p_j_ref_freq = ci->old;
327 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
328 			 l_p_j_ref, l_p_j_ref_freq);
329 	}
330 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
331 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
332 								ci->new);
333 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
334 			 loops_per_jiffy, ci->new);
335 	}
336 #endif
337 }
338 
339 /**
340  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
341  * @policy: cpufreq policy to enable fast frequency switching for.
342  * @freqs: contain details of the frequency update.
343  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
344  *
345  * This function calls the transition notifiers and adjust_jiffies().
346  *
347  * It is called twice on all CPU frequency changes that have external effects.
348  */
cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)349 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
350 				      struct cpufreq_freqs *freqs,
351 				      unsigned int state)
352 {
353 	int cpu;
354 
355 	BUG_ON(irqs_disabled());
356 
357 	if (cpufreq_disabled())
358 		return;
359 
360 	freqs->policy = policy;
361 	freqs->flags = cpufreq_driver->flags;
362 	pr_debug("notification %u of frequency transition to %u kHz\n",
363 		 state, freqs->new);
364 
365 	switch (state) {
366 	case CPUFREQ_PRECHANGE:
367 		/*
368 		 * Detect if the driver reported a value as "old frequency"
369 		 * which is not equal to what the cpufreq core thinks is
370 		 * "old frequency".
371 		 */
372 		if (policy->cur && policy->cur != freqs->old) {
373 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
374 				 freqs->old, policy->cur);
375 			freqs->old = policy->cur;
376 		}
377 
378 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379 					 CPUFREQ_PRECHANGE, freqs);
380 
381 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
382 		break;
383 
384 	case CPUFREQ_POSTCHANGE:
385 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
386 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
387 			 cpumask_pr_args(policy->cpus));
388 
389 		for_each_cpu(cpu, policy->cpus)
390 			trace_cpu_frequency(freqs->new, cpu);
391 
392 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
393 					 CPUFREQ_POSTCHANGE, freqs);
394 
395 		cpufreq_stats_record_transition(policy, freqs->new);
396 		policy->cur = freqs->new;
397 	}
398 }
399 
400 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)401 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
402 		struct cpufreq_freqs *freqs, int transition_failed)
403 {
404 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 	if (!transition_failed)
406 		return;
407 
408 	swap(freqs->old, freqs->new);
409 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
410 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
411 }
412 
cpufreq_freq_transition_begin(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs)413 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
414 		struct cpufreq_freqs *freqs)
415 {
416 
417 	/*
418 	 * Catch double invocations of _begin() which lead to self-deadlock.
419 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
420 	 * doesn't invoke _begin() on their behalf, and hence the chances of
421 	 * double invocations are very low. Moreover, there are scenarios
422 	 * where these checks can emit false-positive warnings in these
423 	 * drivers; so we avoid that by skipping them altogether.
424 	 */
425 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
426 				&& current == policy->transition_task);
427 
428 wait:
429 	wait_event(policy->transition_wait, !policy->transition_ongoing);
430 
431 	spin_lock(&policy->transition_lock);
432 
433 	if (unlikely(policy->transition_ongoing)) {
434 		spin_unlock(&policy->transition_lock);
435 		goto wait;
436 	}
437 
438 	policy->transition_ongoing = true;
439 	policy->transition_task = current;
440 
441 	spin_unlock(&policy->transition_lock);
442 
443 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
444 }
445 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
446 
cpufreq_freq_transition_end(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)447 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
448 		struct cpufreq_freqs *freqs, int transition_failed)
449 {
450 	if (WARN_ON(!policy->transition_ongoing))
451 		return;
452 
453 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
454 
455 	arch_set_freq_scale(policy->related_cpus,
456 			    policy->cur,
457 			    policy->cpuinfo.max_freq);
458 
459 	spin_lock(&policy->transition_lock);
460 	policy->transition_ongoing = false;
461 	policy->transition_task = NULL;
462 	spin_unlock(&policy->transition_lock);
463 
464 	wake_up(&policy->transition_wait);
465 }
466 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
467 
468 /*
469  * Fast frequency switching status count.  Positive means "enabled", negative
470  * means "disabled" and 0 means "not decided yet".
471  */
472 static int cpufreq_fast_switch_count;
473 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
474 
cpufreq_list_transition_notifiers(void)475 static void cpufreq_list_transition_notifiers(void)
476 {
477 	struct notifier_block *nb;
478 
479 	pr_info("Registered transition notifiers:\n");
480 
481 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
482 
483 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
484 		pr_info("%pS\n", nb->notifier_call);
485 
486 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
487 }
488 
489 /**
490  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
491  * @policy: cpufreq policy to enable fast frequency switching for.
492  *
493  * Try to enable fast frequency switching for @policy.
494  *
495  * The attempt will fail if there is at least one transition notifier registered
496  * at this point, as fast frequency switching is quite fundamentally at odds
497  * with transition notifiers.  Thus if successful, it will make registration of
498  * transition notifiers fail going forward.
499  */
cpufreq_enable_fast_switch(struct cpufreq_policy * policy)500 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
501 {
502 	lockdep_assert_held(&policy->rwsem);
503 
504 	if (!policy->fast_switch_possible)
505 		return;
506 
507 	mutex_lock(&cpufreq_fast_switch_lock);
508 	if (cpufreq_fast_switch_count >= 0) {
509 		cpufreq_fast_switch_count++;
510 		policy->fast_switch_enabled = true;
511 	} else {
512 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
513 			policy->cpu);
514 		cpufreq_list_transition_notifiers();
515 	}
516 	mutex_unlock(&cpufreq_fast_switch_lock);
517 }
518 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
519 
520 /**
521  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
522  * @policy: cpufreq policy to disable fast frequency switching for.
523  */
cpufreq_disable_fast_switch(struct cpufreq_policy * policy)524 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
525 {
526 	mutex_lock(&cpufreq_fast_switch_lock);
527 	if (policy->fast_switch_enabled) {
528 		policy->fast_switch_enabled = false;
529 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
530 			cpufreq_fast_switch_count--;
531 	}
532 	mutex_unlock(&cpufreq_fast_switch_lock);
533 }
534 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
535 
__resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int min,unsigned int max,unsigned int relation)536 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
537 				   unsigned int target_freq,
538 				   unsigned int min, unsigned int max,
539 				   unsigned int relation)
540 {
541 	unsigned int idx;
542 
543 	target_freq = clamp_val(target_freq, min, max);
544 
545 	if (!policy->freq_table)
546 		return target_freq;
547 
548 	idx = cpufreq_frequency_table_target(policy, target_freq, min, max, relation);
549 	policy->cached_resolved_idx = idx;
550 	policy->cached_target_freq = target_freq;
551 	return policy->freq_table[idx].frequency;
552 }
553 
554 /**
555  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
556  * one.
557  * @policy: associated policy to interrogate
558  * @target_freq: target frequency to resolve.
559  *
560  * The target to driver frequency mapping is cached in the policy.
561  *
562  * Return: Lowest driver-supported frequency greater than or equal to the
563  * given target_freq, subject to policy (min/max) and driver limitations.
564  */
cpufreq_driver_resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq)565 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
566 					 unsigned int target_freq)
567 {
568 	unsigned int min = READ_ONCE(policy->min);
569 	unsigned int max = READ_ONCE(policy->max);
570 
571 	/*
572 	 * If this function runs in parallel with cpufreq_set_policy(), it may
573 	 * read policy->min before the update and policy->max after the update
574 	 * or the other way around, so there is no ordering guarantee.
575 	 *
576 	 * Resolve this by always honoring the max (in case it comes from
577 	 * thermal throttling or similar).
578 	 */
579 	if (unlikely(min > max))
580 		min = max;
581 
582 	return __resolve_freq(policy, target_freq, min, max, CPUFREQ_RELATION_LE);
583 }
584 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
585 
cpufreq_policy_transition_delay_us(struct cpufreq_policy * policy)586 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
587 {
588 	unsigned int latency;
589 
590 	if (policy->transition_delay_us)
591 		return policy->transition_delay_us;
592 
593 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
594 	if (latency) {
595 		/*
596 		 * For platforms that can change the frequency very fast (< 10
597 		 * us), the above formula gives a decent transition delay. But
598 		 * for platforms where transition_latency is in milliseconds, it
599 		 * ends up giving unrealistic values.
600 		 *
601 		 * Cap the default transition delay to 10 ms, which seems to be
602 		 * a reasonable amount of time after which we should reevaluate
603 		 * the frequency.
604 		 */
605 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
606 	}
607 
608 	return LATENCY_MULTIPLIER;
609 }
610 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
611 
612 /*********************************************************************
613  *                          SYSFS INTERFACE                          *
614  *********************************************************************/
show_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)615 static ssize_t show_boost(struct kobject *kobj,
616 			  struct kobj_attribute *attr, char *buf)
617 {
618 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
619 }
620 
store_boost(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)621 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
622 			   const char *buf, size_t count)
623 {
624 	int ret, enable;
625 
626 	ret = sscanf(buf, "%d", &enable);
627 	if (ret != 1 || enable < 0 || enable > 1)
628 		return -EINVAL;
629 
630 	if (cpufreq_boost_trigger_state(enable)) {
631 		pr_err("%s: Cannot %s BOOST!\n",
632 		       __func__, enable ? "enable" : "disable");
633 		return -EINVAL;
634 	}
635 
636 	pr_debug("%s: cpufreq BOOST %s\n",
637 		 __func__, enable ? "enabled" : "disabled");
638 
639 	return count;
640 }
641 define_one_global_rw(boost);
642 
show_local_boost(struct cpufreq_policy * policy,char * buf)643 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
644 {
645 	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
646 }
647 
store_local_boost(struct cpufreq_policy * policy,const char * buf,size_t count)648 static ssize_t store_local_boost(struct cpufreq_policy *policy,
649 				 const char *buf, size_t count)
650 {
651 	int ret, enable;
652 
653 	ret = kstrtoint(buf, 10, &enable);
654 	if (ret || enable < 0 || enable > 1)
655 		return -EINVAL;
656 
657 	if (!cpufreq_driver->boost_enabled)
658 		return -EINVAL;
659 
660 	if (policy->boost_enabled == enable)
661 		return count;
662 
663 	policy->boost_enabled = enable;
664 
665 	cpus_read_lock();
666 	ret = cpufreq_driver->set_boost(policy, enable);
667 	cpus_read_unlock();
668 
669 	if (ret) {
670 		policy->boost_enabled = !policy->boost_enabled;
671 		return ret;
672 	}
673 
674 	return count;
675 }
676 
677 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
678 
find_governor(const char * str_governor)679 static struct cpufreq_governor *find_governor(const char *str_governor)
680 {
681 	struct cpufreq_governor *t;
682 
683 	for_each_governor(t)
684 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
685 			return t;
686 
687 	return NULL;
688 }
689 
get_governor(const char * str_governor)690 static struct cpufreq_governor *get_governor(const char *str_governor)
691 {
692 	struct cpufreq_governor *t;
693 
694 	mutex_lock(&cpufreq_governor_mutex);
695 	t = find_governor(str_governor);
696 	if (!t)
697 		goto unlock;
698 
699 	if (!try_module_get(t->owner))
700 		t = NULL;
701 
702 unlock:
703 	mutex_unlock(&cpufreq_governor_mutex);
704 
705 	return t;
706 }
707 
cpufreq_parse_policy(char * str_governor)708 static unsigned int cpufreq_parse_policy(char *str_governor)
709 {
710 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
711 		return CPUFREQ_POLICY_PERFORMANCE;
712 
713 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
714 		return CPUFREQ_POLICY_POWERSAVE;
715 
716 	return CPUFREQ_POLICY_UNKNOWN;
717 }
718 
719 /**
720  * cpufreq_parse_governor - parse a governor string only for has_target()
721  * @str_governor: Governor name.
722  */
cpufreq_parse_governor(char * str_governor)723 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
724 {
725 	struct cpufreq_governor *t;
726 
727 	t = get_governor(str_governor);
728 	if (t)
729 		return t;
730 
731 	if (request_module("cpufreq_%s", str_governor))
732 		return NULL;
733 
734 	return get_governor(str_governor);
735 }
736 
737 /*
738  * cpufreq_per_cpu_attr_read() / show_##file_name() -
739  * print out cpufreq information
740  *
741  * Write out information from cpufreq_driver->policy[cpu]; object must be
742  * "unsigned int".
743  */
744 
745 #define show_one(file_name, object)			\
746 static ssize_t show_##file_name				\
747 (struct cpufreq_policy *policy, char *buf)		\
748 {							\
749 	return sprintf(buf, "%u\n", policy->object);	\
750 }
751 
752 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
753 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
754 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
755 show_one(scaling_min_freq, min);
756 show_one(scaling_max_freq, max);
757 
arch_freq_get_on_cpu(int cpu)758 __weak unsigned int arch_freq_get_on_cpu(int cpu)
759 {
760 	return 0;
761 }
762 
show_scaling_cur_freq(struct cpufreq_policy * policy,char * buf)763 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
764 {
765 	ssize_t ret;
766 	unsigned int freq;
767 
768 	freq = arch_freq_get_on_cpu(policy->cpu);
769 	if (freq)
770 		ret = sprintf(buf, "%u\n", freq);
771 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
772 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
773 	else
774 		ret = sprintf(buf, "%u\n", policy->cur);
775 	return ret;
776 }
777 
778 /*
779  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
780  */
781 #define store_one(file_name, object)			\
782 static ssize_t store_##file_name					\
783 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
784 {									\
785 	unsigned long val;						\
786 	int ret;							\
787 									\
788 	ret = kstrtoul(buf, 0, &val);					\
789 	if (ret)							\
790 		return ret;						\
791 									\
792 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
793 	return ret >= 0 ? count : ret;					\
794 }
795 
796 store_one(scaling_min_freq, min);
797 store_one(scaling_max_freq, max);
798 
799 /*
800  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
801  */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)802 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
803 					char *buf)
804 {
805 	unsigned int cur_freq = __cpufreq_get(policy);
806 
807 	if (cur_freq)
808 		return sprintf(buf, "%u\n", cur_freq);
809 
810 	return sprintf(buf, "<unknown>\n");
811 }
812 
813 /*
814  * show_scaling_governor - show the current policy for the specified CPU
815  */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)816 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
817 {
818 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
819 		return sprintf(buf, "powersave\n");
820 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
821 		return sprintf(buf, "performance\n");
822 	else if (policy->governor)
823 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
824 				policy->governor->name);
825 	return -EINVAL;
826 }
827 
828 /*
829  * store_scaling_governor - store policy for the specified CPU
830  */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)831 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
832 					const char *buf, size_t count)
833 {
834 	char str_governor[16];
835 	int ret;
836 
837 	ret = sscanf(buf, "%15s", str_governor);
838 	if (ret != 1)
839 		return -EINVAL;
840 
841 	if (cpufreq_driver->setpolicy) {
842 		unsigned int new_pol;
843 
844 		new_pol = cpufreq_parse_policy(str_governor);
845 		if (!new_pol)
846 			return -EINVAL;
847 
848 		ret = cpufreq_set_policy(policy, NULL, new_pol);
849 	} else {
850 		struct cpufreq_governor *new_gov;
851 
852 		new_gov = cpufreq_parse_governor(str_governor);
853 		if (!new_gov)
854 			return -EINVAL;
855 
856 		ret = cpufreq_set_policy(policy, new_gov,
857 					 CPUFREQ_POLICY_UNKNOWN);
858 
859 		module_put(new_gov->owner);
860 	}
861 
862 	return ret ? ret : count;
863 }
864 
865 /*
866  * show_scaling_driver - show the cpufreq driver currently loaded
867  */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)868 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
869 {
870 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
871 }
872 
873 /*
874  * show_scaling_available_governors - show the available CPUfreq governors
875  */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)876 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
877 						char *buf)
878 {
879 	ssize_t i = 0;
880 	struct cpufreq_governor *t;
881 
882 	if (!has_target()) {
883 		i += sprintf(buf, "performance powersave");
884 		goto out;
885 	}
886 
887 	mutex_lock(&cpufreq_governor_mutex);
888 	for_each_governor(t) {
889 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
890 		    - (CPUFREQ_NAME_LEN + 2)))
891 			break;
892 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
893 	}
894 	mutex_unlock(&cpufreq_governor_mutex);
895 out:
896 	i += sprintf(&buf[i], "\n");
897 	return i;
898 }
899 
cpufreq_show_cpus(const struct cpumask * mask,char * buf)900 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
901 {
902 	ssize_t i = 0;
903 	unsigned int cpu;
904 
905 	for_each_cpu(cpu, mask) {
906 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
907 		if (i >= (PAGE_SIZE - 5))
908 			break;
909 	}
910 
911 	/* Remove the extra space at the end */
912 	i--;
913 
914 	i += sprintf(&buf[i], "\n");
915 	return i;
916 }
917 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
918 
919 /*
920  * show_related_cpus - show the CPUs affected by each transition even if
921  * hw coordination is in use
922  */
show_related_cpus(struct cpufreq_policy * policy,char * buf)923 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
924 {
925 	return cpufreq_show_cpus(policy->related_cpus, buf);
926 }
927 
928 /*
929  * show_affected_cpus - show the CPUs affected by each transition
930  */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)931 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
932 {
933 	return cpufreq_show_cpus(policy->cpus, buf);
934 }
935 
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)936 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
937 					const char *buf, size_t count)
938 {
939 	unsigned int freq = 0;
940 	unsigned int ret;
941 
942 	if (!policy->governor || !policy->governor->store_setspeed)
943 		return -EINVAL;
944 
945 	ret = sscanf(buf, "%u", &freq);
946 	if (ret != 1)
947 		return -EINVAL;
948 
949 	policy->governor->store_setspeed(policy, freq);
950 
951 	return count;
952 }
953 
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)954 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
955 {
956 	if (!policy->governor || !policy->governor->show_setspeed)
957 		return sprintf(buf, "<unsupported>\n");
958 
959 	return policy->governor->show_setspeed(policy, buf);
960 }
961 
962 /*
963  * show_bios_limit - show the current cpufreq HW/BIOS limitation
964  */
show_bios_limit(struct cpufreq_policy * policy,char * buf)965 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
966 {
967 	unsigned int limit;
968 	int ret;
969 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
970 	if (!ret)
971 		return sprintf(buf, "%u\n", limit);
972 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
973 }
974 
975 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
976 cpufreq_freq_attr_ro(cpuinfo_min_freq);
977 cpufreq_freq_attr_ro(cpuinfo_max_freq);
978 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
979 cpufreq_freq_attr_ro(scaling_available_governors);
980 cpufreq_freq_attr_ro(scaling_driver);
981 cpufreq_freq_attr_ro(scaling_cur_freq);
982 cpufreq_freq_attr_ro(bios_limit);
983 cpufreq_freq_attr_ro(related_cpus);
984 cpufreq_freq_attr_ro(affected_cpus);
985 cpufreq_freq_attr_rw(scaling_min_freq);
986 cpufreq_freq_attr_rw(scaling_max_freq);
987 cpufreq_freq_attr_rw(scaling_governor);
988 cpufreq_freq_attr_rw(scaling_setspeed);
989 
990 static struct attribute *cpufreq_attrs[] = {
991 	&cpuinfo_min_freq.attr,
992 	&cpuinfo_max_freq.attr,
993 	&cpuinfo_transition_latency.attr,
994 	&scaling_min_freq.attr,
995 	&scaling_max_freq.attr,
996 	&affected_cpus.attr,
997 	&related_cpus.attr,
998 	&scaling_governor.attr,
999 	&scaling_driver.attr,
1000 	&scaling_available_governors.attr,
1001 	&scaling_setspeed.attr,
1002 	NULL
1003 };
1004 ATTRIBUTE_GROUPS(cpufreq);
1005 
1006 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
1007 #define to_attr(a) container_of(a, struct freq_attr, attr)
1008 
show(struct kobject * kobj,struct attribute * attr,char * buf)1009 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1010 {
1011 	struct cpufreq_policy *policy = to_policy(kobj);
1012 	struct freq_attr *fattr = to_attr(attr);
1013 	ssize_t ret = -EBUSY;
1014 
1015 	if (!fattr->show)
1016 		return -EIO;
1017 
1018 	down_read(&policy->rwsem);
1019 	if (likely(!policy_is_inactive(policy)))
1020 		ret = fattr->show(policy, buf);
1021 	up_read(&policy->rwsem);
1022 
1023 	return ret;
1024 }
1025 
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1026 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1027 		     const char *buf, size_t count)
1028 {
1029 	struct cpufreq_policy *policy = to_policy(kobj);
1030 	struct freq_attr *fattr = to_attr(attr);
1031 	ssize_t ret = -EBUSY;
1032 
1033 	if (!fattr->store)
1034 		return -EIO;
1035 
1036 	down_write(&policy->rwsem);
1037 	if (likely(!policy_is_inactive(policy)))
1038 		ret = fattr->store(policy, buf, count);
1039 	up_write(&policy->rwsem);
1040 
1041 	return ret;
1042 }
1043 
cpufreq_sysfs_release(struct kobject * kobj)1044 static void cpufreq_sysfs_release(struct kobject *kobj)
1045 {
1046 	struct cpufreq_policy *policy = to_policy(kobj);
1047 	pr_debug("last reference is dropped\n");
1048 	complete(&policy->kobj_unregister);
1049 }
1050 
1051 static const struct sysfs_ops sysfs_ops = {
1052 	.show	= show,
1053 	.store	= store,
1054 };
1055 
1056 static const struct kobj_type ktype_cpufreq = {
1057 	.sysfs_ops	= &sysfs_ops,
1058 	.default_groups	= cpufreq_groups,
1059 	.release	= cpufreq_sysfs_release,
1060 };
1061 
add_cpu_dev_symlink(struct cpufreq_policy * policy,unsigned int cpu,struct device * dev)1062 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1063 				struct device *dev)
1064 {
1065 	if (unlikely(!dev))
1066 		return;
1067 
1068 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1069 		return;
1070 
1071 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1072 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1073 		dev_err(dev, "cpufreq symlink creation failed\n");
1074 }
1075 
remove_cpu_dev_symlink(struct cpufreq_policy * policy,int cpu,struct device * dev)1076 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1077 				   struct device *dev)
1078 {
1079 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1080 	sysfs_remove_link(&dev->kobj, "cpufreq");
1081 	cpumask_clear_cpu(cpu, policy->real_cpus);
1082 }
1083 
cpufreq_add_dev_interface(struct cpufreq_policy * policy)1084 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1085 {
1086 	struct freq_attr **drv_attr;
1087 	int ret = 0;
1088 
1089 	/* set up files for this cpu device */
1090 	drv_attr = cpufreq_driver->attr;
1091 	while (drv_attr && *drv_attr) {
1092 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1093 		if (ret)
1094 			return ret;
1095 		drv_attr++;
1096 	}
1097 	if (cpufreq_driver->get) {
1098 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1099 		if (ret)
1100 			return ret;
1101 	}
1102 
1103 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1104 	if (ret)
1105 		return ret;
1106 
1107 	if (cpufreq_driver->bios_limit) {
1108 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1109 		if (ret)
1110 			return ret;
1111 	}
1112 
1113 	if (cpufreq_boost_supported()) {
1114 		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1115 		if (ret)
1116 			return ret;
1117 	}
1118 
1119 	return 0;
1120 }
1121 
cpufreq_init_policy(struct cpufreq_policy * policy)1122 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1123 {
1124 	struct cpufreq_governor *gov = NULL;
1125 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1126 	int ret;
1127 
1128 	if (has_target()) {
1129 		/* Update policy governor to the one used before hotplug. */
1130 		gov = get_governor(policy->last_governor);
1131 		if (gov) {
1132 			pr_debug("Restoring governor %s for cpu %d\n",
1133 				 gov->name, policy->cpu);
1134 		} else {
1135 			gov = get_governor(default_governor);
1136 		}
1137 
1138 		if (!gov) {
1139 			gov = cpufreq_default_governor();
1140 			__module_get(gov->owner);
1141 		}
1142 
1143 	} else {
1144 
1145 		/* Use the default policy if there is no last_policy. */
1146 		if (policy->last_policy) {
1147 			pol = policy->last_policy;
1148 		} else {
1149 			pol = cpufreq_parse_policy(default_governor);
1150 			/*
1151 			 * In case the default governor is neither "performance"
1152 			 * nor "powersave", fall back to the initial policy
1153 			 * value set by the driver.
1154 			 */
1155 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1156 				pol = policy->policy;
1157 		}
1158 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1159 		    pol != CPUFREQ_POLICY_POWERSAVE)
1160 			return -ENODATA;
1161 	}
1162 
1163 	ret = cpufreq_set_policy(policy, gov, pol);
1164 	if (gov)
1165 		module_put(gov->owner);
1166 
1167 	return ret;
1168 }
1169 
cpufreq_add_policy_cpu(struct cpufreq_policy * policy,unsigned int cpu)1170 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1171 {
1172 	int ret = 0;
1173 
1174 	/* Has this CPU been taken care of already? */
1175 	if (cpumask_test_cpu(cpu, policy->cpus))
1176 		return 0;
1177 
1178 	down_write(&policy->rwsem);
1179 	if (has_target())
1180 		cpufreq_stop_governor(policy);
1181 
1182 	cpumask_set_cpu(cpu, policy->cpus);
1183 
1184 	if (has_target()) {
1185 		ret = cpufreq_start_governor(policy);
1186 		if (ret)
1187 			pr_err("%s: Failed to start governor\n", __func__);
1188 	}
1189 	up_write(&policy->rwsem);
1190 	return ret;
1191 }
1192 
refresh_frequency_limits(struct cpufreq_policy * policy)1193 void refresh_frequency_limits(struct cpufreq_policy *policy)
1194 {
1195 	if (!policy_is_inactive(policy)) {
1196 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1197 
1198 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1199 	}
1200 }
1201 EXPORT_SYMBOL(refresh_frequency_limits);
1202 
handle_update(struct work_struct * work)1203 static void handle_update(struct work_struct *work)
1204 {
1205 	struct cpufreq_policy *policy =
1206 		container_of(work, struct cpufreq_policy, update);
1207 
1208 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1209 	down_write(&policy->rwsem);
1210 	refresh_frequency_limits(policy);
1211 	up_write(&policy->rwsem);
1212 }
1213 
cpufreq_notifier_min(struct notifier_block * nb,unsigned long freq,void * data)1214 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1215 				void *data)
1216 {
1217 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1218 
1219 	schedule_work(&policy->update);
1220 	return 0;
1221 }
1222 
cpufreq_notifier_max(struct notifier_block * nb,unsigned long freq,void * data)1223 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1224 				void *data)
1225 {
1226 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1227 
1228 	schedule_work(&policy->update);
1229 	return 0;
1230 }
1231 
cpufreq_policy_put_kobj(struct cpufreq_policy * policy)1232 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1233 {
1234 	struct kobject *kobj;
1235 	struct completion *cmp;
1236 
1237 	down_write(&policy->rwsem);
1238 	cpufreq_stats_free_table(policy);
1239 	kobj = &policy->kobj;
1240 	cmp = &policy->kobj_unregister;
1241 	up_write(&policy->rwsem);
1242 	kobject_put(kobj);
1243 
1244 	/*
1245 	 * We need to make sure that the underlying kobj is
1246 	 * actually not referenced anymore by anybody before we
1247 	 * proceed with unloading.
1248 	 */
1249 	pr_debug("waiting for dropping of refcount\n");
1250 	wait_for_completion(cmp);
1251 	pr_debug("wait complete\n");
1252 }
1253 
cpufreq_policy_alloc(unsigned int cpu)1254 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1255 {
1256 	struct cpufreq_policy *policy;
1257 	struct device *dev = get_cpu_device(cpu);
1258 	int ret;
1259 
1260 	if (!dev)
1261 		return NULL;
1262 
1263 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1264 	if (!policy)
1265 		return NULL;
1266 
1267 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1268 		goto err_free_policy;
1269 
1270 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1271 		goto err_free_cpumask;
1272 
1273 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1274 		goto err_free_rcpumask;
1275 
1276 	init_completion(&policy->kobj_unregister);
1277 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1278 				   cpufreq_global_kobject, "policy%u", cpu);
1279 	if (ret) {
1280 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1281 		/*
1282 		 * The entire policy object will be freed below, but the extra
1283 		 * memory allocated for the kobject name needs to be freed by
1284 		 * releasing the kobject.
1285 		 */
1286 		kobject_put(&policy->kobj);
1287 		goto err_free_real_cpus;
1288 	}
1289 
1290 	freq_constraints_init(&policy->constraints);
1291 
1292 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1293 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1294 
1295 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1296 				    &policy->nb_min);
1297 	if (ret) {
1298 		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1299 			ret, cpu);
1300 		goto err_kobj_remove;
1301 	}
1302 
1303 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1304 				    &policy->nb_max);
1305 	if (ret) {
1306 		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1307 			ret, cpu);
1308 		goto err_min_qos_notifier;
1309 	}
1310 
1311 	INIT_LIST_HEAD(&policy->policy_list);
1312 	init_rwsem(&policy->rwsem);
1313 	spin_lock_init(&policy->transition_lock);
1314 	init_waitqueue_head(&policy->transition_wait);
1315 	INIT_WORK(&policy->update, handle_update);
1316 
1317 	policy->cpu = cpu;
1318 	return policy;
1319 
1320 err_min_qos_notifier:
1321 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1322 				 &policy->nb_min);
1323 err_kobj_remove:
1324 	cpufreq_policy_put_kobj(policy);
1325 err_free_real_cpus:
1326 	free_cpumask_var(policy->real_cpus);
1327 err_free_rcpumask:
1328 	free_cpumask_var(policy->related_cpus);
1329 err_free_cpumask:
1330 	free_cpumask_var(policy->cpus);
1331 err_free_policy:
1332 	kfree(policy);
1333 
1334 	return NULL;
1335 }
1336 
cpufreq_policy_free(struct cpufreq_policy * policy)1337 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1338 {
1339 	unsigned long flags;
1340 	int cpu;
1341 
1342 	/*
1343 	 * The callers must ensure the policy is inactive by now, to avoid any
1344 	 * races with show()/store() callbacks.
1345 	 */
1346 	if (unlikely(!policy_is_inactive(policy)))
1347 		pr_warn("%s: Freeing active policy\n", __func__);
1348 
1349 	/* Remove policy from list */
1350 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1351 	list_del(&policy->policy_list);
1352 
1353 	for_each_cpu(cpu, policy->related_cpus)
1354 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1355 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1356 
1357 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1358 				 &policy->nb_max);
1359 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1360 				 &policy->nb_min);
1361 
1362 	/* Cancel any pending policy->update work before freeing the policy. */
1363 	cancel_work_sync(&policy->update);
1364 
1365 	if (policy->max_freq_req) {
1366 		/*
1367 		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1368 		 * notification, since CPUFREQ_CREATE_POLICY notification was
1369 		 * sent after adding max_freq_req earlier.
1370 		 */
1371 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1372 					     CPUFREQ_REMOVE_POLICY, policy);
1373 		freq_qos_remove_request(policy->max_freq_req);
1374 	}
1375 
1376 	freq_qos_remove_request(policy->min_freq_req);
1377 	kfree(policy->min_freq_req);
1378 
1379 	cpufreq_policy_put_kobj(policy);
1380 	free_cpumask_var(policy->real_cpus);
1381 	free_cpumask_var(policy->related_cpus);
1382 	free_cpumask_var(policy->cpus);
1383 	kfree(policy);
1384 }
1385 
cpufreq_online(unsigned int cpu)1386 static int cpufreq_online(unsigned int cpu)
1387 {
1388 	struct cpufreq_policy *policy;
1389 	bool new_policy;
1390 	unsigned long flags;
1391 	unsigned int j;
1392 	int ret;
1393 
1394 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1395 
1396 	/* Check if this CPU already has a policy to manage it */
1397 	policy = per_cpu(cpufreq_cpu_data, cpu);
1398 	if (policy) {
1399 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1400 		if (!policy_is_inactive(policy))
1401 			return cpufreq_add_policy_cpu(policy, cpu);
1402 
1403 		/* This is the only online CPU for the policy.  Start over. */
1404 		new_policy = false;
1405 		down_write(&policy->rwsem);
1406 		policy->cpu = cpu;
1407 		policy->governor = NULL;
1408 	} else {
1409 		new_policy = true;
1410 		policy = cpufreq_policy_alloc(cpu);
1411 		if (!policy)
1412 			return -ENOMEM;
1413 		down_write(&policy->rwsem);
1414 	}
1415 
1416 	if (!new_policy && cpufreq_driver->online) {
1417 		/* Recover policy->cpus using related_cpus */
1418 		cpumask_copy(policy->cpus, policy->related_cpus);
1419 
1420 		ret = cpufreq_driver->online(policy);
1421 		if (ret) {
1422 			pr_debug("%s: %d: initialization failed\n", __func__,
1423 				 __LINE__);
1424 			goto out_exit_policy;
1425 		}
1426 	} else {
1427 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1428 
1429 		/*
1430 		 * Call driver. From then on the cpufreq must be able
1431 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1432 		 */
1433 		ret = cpufreq_driver->init(policy);
1434 		if (ret) {
1435 			pr_debug("%s: %d: initialization failed\n", __func__,
1436 				 __LINE__);
1437 			goto out_free_policy;
1438 		}
1439 
1440 		/* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1441 		if (cpufreq_boost_enabled() && policy_has_boost_freq(policy))
1442 			policy->boost_enabled = true;
1443 
1444 		/*
1445 		 * The initialization has succeeded and the policy is online.
1446 		 * If there is a problem with its frequency table, take it
1447 		 * offline and drop it.
1448 		 */
1449 		ret = cpufreq_table_validate_and_sort(policy);
1450 		if (ret)
1451 			goto out_offline_policy;
1452 
1453 		/* related_cpus should at least include policy->cpus. */
1454 		cpumask_copy(policy->related_cpus, policy->cpus);
1455 	}
1456 
1457 	/*
1458 	 * affected cpus must always be the one, which are online. We aren't
1459 	 * managing offline cpus here.
1460 	 */
1461 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1462 
1463 	if (new_policy) {
1464 		for_each_cpu(j, policy->related_cpus) {
1465 			per_cpu(cpufreq_cpu_data, j) = policy;
1466 			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1467 		}
1468 
1469 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1470 					       GFP_KERNEL);
1471 		if (!policy->min_freq_req) {
1472 			ret = -ENOMEM;
1473 			goto out_destroy_policy;
1474 		}
1475 
1476 		ret = freq_qos_add_request(&policy->constraints,
1477 					   policy->min_freq_req, FREQ_QOS_MIN,
1478 					   FREQ_QOS_MIN_DEFAULT_VALUE);
1479 		if (ret < 0) {
1480 			/*
1481 			 * So we don't call freq_qos_remove_request() for an
1482 			 * uninitialized request.
1483 			 */
1484 			kfree(policy->min_freq_req);
1485 			policy->min_freq_req = NULL;
1486 			goto out_destroy_policy;
1487 		}
1488 
1489 		/*
1490 		 * This must be initialized right here to avoid calling
1491 		 * freq_qos_remove_request() on uninitialized request in case
1492 		 * of errors.
1493 		 */
1494 		policy->max_freq_req = policy->min_freq_req + 1;
1495 
1496 		ret = freq_qos_add_request(&policy->constraints,
1497 					   policy->max_freq_req, FREQ_QOS_MAX,
1498 					   FREQ_QOS_MAX_DEFAULT_VALUE);
1499 		if (ret < 0) {
1500 			policy->max_freq_req = NULL;
1501 			goto out_destroy_policy;
1502 		}
1503 
1504 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1505 				CPUFREQ_CREATE_POLICY, policy);
1506 	}
1507 
1508 	if (cpufreq_driver->get && has_target()) {
1509 		policy->cur = cpufreq_driver->get(policy->cpu);
1510 		if (!policy->cur) {
1511 			ret = -EIO;
1512 			pr_err("%s: ->get() failed\n", __func__);
1513 			goto out_destroy_policy;
1514 		}
1515 	}
1516 
1517 	/*
1518 	 * Sometimes boot loaders set CPU frequency to a value outside of
1519 	 * frequency table present with cpufreq core. In such cases CPU might be
1520 	 * unstable if it has to run on that frequency for long duration of time
1521 	 * and so its better to set it to a frequency which is specified in
1522 	 * freq-table. This also makes cpufreq stats inconsistent as
1523 	 * cpufreq-stats would fail to register because current frequency of CPU
1524 	 * isn't found in freq-table.
1525 	 *
1526 	 * Because we don't want this change to effect boot process badly, we go
1527 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1528 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1529 	 * is initialized to zero).
1530 	 *
1531 	 * We are passing target-freq as "policy->cur - 1" otherwise
1532 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1533 	 * equal to target-freq.
1534 	 */
1535 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1536 	    && has_target()) {
1537 		unsigned int old_freq = policy->cur;
1538 
1539 		/* Are we running at unknown frequency ? */
1540 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1541 		if (ret == -EINVAL) {
1542 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1543 						      CPUFREQ_RELATION_L);
1544 
1545 			/*
1546 			 * Reaching here after boot in a few seconds may not
1547 			 * mean that system will remain stable at "unknown"
1548 			 * frequency for longer duration. Hence, a BUG_ON().
1549 			 */
1550 			BUG_ON(ret);
1551 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1552 				__func__, policy->cpu, old_freq, policy->cur);
1553 		}
1554 	}
1555 
1556 	if (new_policy) {
1557 		ret = cpufreq_add_dev_interface(policy);
1558 		if (ret)
1559 			goto out_destroy_policy;
1560 
1561 		cpufreq_stats_create_table(policy);
1562 
1563 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1564 		list_add(&policy->policy_list, &cpufreq_policy_list);
1565 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1566 
1567 		/*
1568 		 * Register with the energy model before
1569 		 * sched_cpufreq_governor_change() is called, which will result
1570 		 * in rebuilding of the sched domains, which should only be done
1571 		 * once the energy model is properly initialized for the policy
1572 		 * first.
1573 		 *
1574 		 * Also, this should be called before the policy is registered
1575 		 * with cooling framework.
1576 		 */
1577 		if (cpufreq_driver->register_em)
1578 			cpufreq_driver->register_em(policy);
1579 	}
1580 
1581 	ret = cpufreq_init_policy(policy);
1582 	if (ret) {
1583 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1584 		       __func__, cpu, ret);
1585 		goto out_destroy_policy;
1586 	}
1587 
1588 	up_write(&policy->rwsem);
1589 
1590 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1591 
1592 	/* Callback for handling stuff after policy is ready */
1593 	if (cpufreq_driver->ready)
1594 		cpufreq_driver->ready(policy);
1595 
1596 	/* Register cpufreq cooling only for a new policy */
1597 	if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1598 		policy->cdev = of_cpufreq_cooling_register(policy);
1599 
1600 	pr_debug("initialization complete\n");
1601 
1602 	return 0;
1603 
1604 out_destroy_policy:
1605 	for_each_cpu(j, policy->real_cpus)
1606 		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1607 
1608 out_offline_policy:
1609 	if (cpufreq_driver->offline)
1610 		cpufreq_driver->offline(policy);
1611 
1612 out_exit_policy:
1613 	if (cpufreq_driver->exit)
1614 		cpufreq_driver->exit(policy);
1615 
1616 out_free_policy:
1617 	cpumask_clear(policy->cpus);
1618 	up_write(&policy->rwsem);
1619 
1620 	cpufreq_policy_free(policy);
1621 	return ret;
1622 }
1623 
1624 /**
1625  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1626  * @dev: CPU device.
1627  * @sif: Subsystem interface structure pointer (not used)
1628  */
cpufreq_add_dev(struct device * dev,struct subsys_interface * sif)1629 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1630 {
1631 	struct cpufreq_policy *policy;
1632 	unsigned cpu = dev->id;
1633 	int ret;
1634 
1635 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1636 
1637 	if (cpu_online(cpu)) {
1638 		ret = cpufreq_online(cpu);
1639 		if (ret)
1640 			return ret;
1641 	}
1642 
1643 	/* Create sysfs link on CPU registration */
1644 	policy = per_cpu(cpufreq_cpu_data, cpu);
1645 	if (policy)
1646 		add_cpu_dev_symlink(policy, cpu, dev);
1647 
1648 	return 0;
1649 }
1650 
__cpufreq_offline(unsigned int cpu,struct cpufreq_policy * policy)1651 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1652 {
1653 	int ret;
1654 
1655 	if (has_target())
1656 		cpufreq_stop_governor(policy);
1657 
1658 	cpumask_clear_cpu(cpu, policy->cpus);
1659 
1660 	if (!policy_is_inactive(policy)) {
1661 		/* Nominate a new CPU if necessary. */
1662 		if (cpu == policy->cpu)
1663 			policy->cpu = cpumask_any(policy->cpus);
1664 
1665 		/* Start the governor again for the active policy. */
1666 		if (has_target()) {
1667 			ret = cpufreq_start_governor(policy);
1668 			if (ret)
1669 				pr_err("%s: Failed to start governor\n", __func__);
1670 		}
1671 
1672 		return;
1673 	}
1674 
1675 	if (has_target())
1676 		strncpy(policy->last_governor, policy->governor->name,
1677 			CPUFREQ_NAME_LEN);
1678 	else
1679 		policy->last_policy = policy->policy;
1680 
1681 	if (has_target())
1682 		cpufreq_exit_governor(policy);
1683 
1684 	/*
1685 	 * Perform the ->offline() during light-weight tear-down, as
1686 	 * that allows fast recovery when the CPU comes back.
1687 	 */
1688 	if (cpufreq_driver->offline) {
1689 		cpufreq_driver->offline(policy);
1690 		return;
1691 	}
1692 
1693 	if (cpufreq_driver->exit)
1694 		cpufreq_driver->exit(policy);
1695 
1696 	policy->freq_table = NULL;
1697 }
1698 
cpufreq_offline(unsigned int cpu)1699 static int cpufreq_offline(unsigned int cpu)
1700 {
1701 	struct cpufreq_policy *policy;
1702 
1703 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1704 
1705 	policy = cpufreq_cpu_get_raw(cpu);
1706 	if (!policy) {
1707 		pr_debug("%s: No cpu_data found\n", __func__);
1708 		return 0;
1709 	}
1710 
1711 	down_write(&policy->rwsem);
1712 
1713 	__cpufreq_offline(cpu, policy);
1714 
1715 	up_write(&policy->rwsem);
1716 	return 0;
1717 }
1718 
1719 /*
1720  * cpufreq_remove_dev - remove a CPU device
1721  *
1722  * Removes the cpufreq interface for a CPU device.
1723  */
cpufreq_remove_dev(struct device * dev,struct subsys_interface * sif)1724 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1725 {
1726 	unsigned int cpu = dev->id;
1727 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1728 
1729 	if (!policy)
1730 		return;
1731 
1732 	down_write(&policy->rwsem);
1733 
1734 	if (cpu_online(cpu))
1735 		__cpufreq_offline(cpu, policy);
1736 
1737 	remove_cpu_dev_symlink(policy, cpu, dev);
1738 
1739 	if (!cpumask_empty(policy->real_cpus)) {
1740 		up_write(&policy->rwsem);
1741 		return;
1742 	}
1743 
1744 	/*
1745 	 * Unregister cpufreq cooling once all the CPUs of the policy are
1746 	 * removed.
1747 	 */
1748 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1749 		cpufreq_cooling_unregister(policy->cdev);
1750 		policy->cdev = NULL;
1751 	}
1752 
1753 	/* We did light-weight exit earlier, do full tear down now */
1754 	if (cpufreq_driver->offline && cpufreq_driver->exit)
1755 		cpufreq_driver->exit(policy);
1756 
1757 	up_write(&policy->rwsem);
1758 
1759 	cpufreq_policy_free(policy);
1760 }
1761 
1762 /**
1763  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1764  * @policy: Policy managing CPUs.
1765  * @new_freq: New CPU frequency.
1766  *
1767  * Adjust to the current frequency first and clean up later by either calling
1768  * cpufreq_update_policy(), or scheduling handle_update().
1769  */
cpufreq_out_of_sync(struct cpufreq_policy * policy,unsigned int new_freq)1770 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1771 				unsigned int new_freq)
1772 {
1773 	struct cpufreq_freqs freqs;
1774 
1775 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1776 		 policy->cur, new_freq);
1777 
1778 	freqs.old = policy->cur;
1779 	freqs.new = new_freq;
1780 
1781 	cpufreq_freq_transition_begin(policy, &freqs);
1782 	cpufreq_freq_transition_end(policy, &freqs, 0);
1783 }
1784 
cpufreq_verify_current_freq(struct cpufreq_policy * policy,bool update)1785 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1786 {
1787 	unsigned int new_freq;
1788 
1789 	new_freq = cpufreq_driver->get(policy->cpu);
1790 	if (!new_freq)
1791 		return 0;
1792 
1793 	/*
1794 	 * If fast frequency switching is used with the given policy, the check
1795 	 * against policy->cur is pointless, so skip it in that case.
1796 	 */
1797 	if (policy->fast_switch_enabled || !has_target())
1798 		return new_freq;
1799 
1800 	if (policy->cur != new_freq) {
1801 		/*
1802 		 * For some platforms, the frequency returned by hardware may be
1803 		 * slightly different from what is provided in the frequency
1804 		 * table, for example hardware may return 499 MHz instead of 500
1805 		 * MHz. In such cases it is better to avoid getting into
1806 		 * unnecessary frequency updates.
1807 		 */
1808 		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1809 			return policy->cur;
1810 
1811 		cpufreq_out_of_sync(policy, new_freq);
1812 		if (update)
1813 			schedule_work(&policy->update);
1814 	}
1815 
1816 	return new_freq;
1817 }
1818 
1819 /**
1820  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1821  * @cpu: CPU number
1822  *
1823  * This is the last known freq, without actually getting it from the driver.
1824  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1825  */
cpufreq_quick_get(unsigned int cpu)1826 unsigned int cpufreq_quick_get(unsigned int cpu)
1827 {
1828 	struct cpufreq_policy *policy;
1829 	unsigned int ret_freq = 0;
1830 	unsigned long flags;
1831 
1832 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1833 
1834 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1835 		ret_freq = cpufreq_driver->get(cpu);
1836 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1837 		return ret_freq;
1838 	}
1839 
1840 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1841 
1842 	policy = cpufreq_cpu_get(cpu);
1843 	if (policy) {
1844 		ret_freq = policy->cur;
1845 		cpufreq_cpu_put(policy);
1846 	}
1847 
1848 	return ret_freq;
1849 }
1850 EXPORT_SYMBOL(cpufreq_quick_get);
1851 
1852 /**
1853  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1854  * @cpu: CPU number
1855  *
1856  * Just return the max possible frequency for a given CPU.
1857  */
cpufreq_quick_get_max(unsigned int cpu)1858 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1859 {
1860 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1861 	unsigned int ret_freq = 0;
1862 
1863 	if (policy) {
1864 		ret_freq = policy->max;
1865 		cpufreq_cpu_put(policy);
1866 	}
1867 
1868 	return ret_freq;
1869 }
1870 EXPORT_SYMBOL(cpufreq_quick_get_max);
1871 
1872 /**
1873  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1874  * @cpu: CPU number
1875  *
1876  * The default return value is the max_freq field of cpuinfo.
1877  */
cpufreq_get_hw_max_freq(unsigned int cpu)1878 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1879 {
1880 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1881 	unsigned int ret_freq = 0;
1882 
1883 	if (policy) {
1884 		ret_freq = policy->cpuinfo.max_freq;
1885 		cpufreq_cpu_put(policy);
1886 	}
1887 
1888 	return ret_freq;
1889 }
1890 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1891 
__cpufreq_get(struct cpufreq_policy * policy)1892 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1893 {
1894 	if (unlikely(policy_is_inactive(policy)))
1895 		return 0;
1896 
1897 	return cpufreq_verify_current_freq(policy, true);
1898 }
1899 
1900 /**
1901  * cpufreq_get - get the current CPU frequency (in kHz)
1902  * @cpu: CPU number
1903  *
1904  * Get the CPU current (static) CPU frequency
1905  */
cpufreq_get(unsigned int cpu)1906 unsigned int cpufreq_get(unsigned int cpu)
1907 {
1908 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1909 	unsigned int ret_freq = 0;
1910 
1911 	if (policy) {
1912 		down_read(&policy->rwsem);
1913 		if (cpufreq_driver->get)
1914 			ret_freq = __cpufreq_get(policy);
1915 		up_read(&policy->rwsem);
1916 
1917 		cpufreq_cpu_put(policy);
1918 	}
1919 
1920 	return ret_freq;
1921 }
1922 EXPORT_SYMBOL(cpufreq_get);
1923 
1924 static struct subsys_interface cpufreq_interface = {
1925 	.name		= "cpufreq",
1926 	.subsys		= &cpu_subsys,
1927 	.add_dev	= cpufreq_add_dev,
1928 	.remove_dev	= cpufreq_remove_dev,
1929 };
1930 
1931 /*
1932  * In case platform wants some specific frequency to be configured
1933  * during suspend..
1934  */
cpufreq_generic_suspend(struct cpufreq_policy * policy)1935 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1936 {
1937 	int ret;
1938 
1939 	if (!policy->suspend_freq) {
1940 		pr_debug("%s: suspend_freq not defined\n", __func__);
1941 		return 0;
1942 	}
1943 
1944 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1945 			policy->suspend_freq);
1946 
1947 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1948 			CPUFREQ_RELATION_H);
1949 	if (ret)
1950 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1951 				__func__, policy->suspend_freq, ret);
1952 
1953 	return ret;
1954 }
1955 EXPORT_SYMBOL(cpufreq_generic_suspend);
1956 
1957 /**
1958  * cpufreq_suspend() - Suspend CPUFreq governors.
1959  *
1960  * Called during system wide Suspend/Hibernate cycles for suspending governors
1961  * as some platforms can't change frequency after this point in suspend cycle.
1962  * Because some of the devices (like: i2c, regulators, etc) they use for
1963  * changing frequency are suspended quickly after this point.
1964  */
cpufreq_suspend(void)1965 void cpufreq_suspend(void)
1966 {
1967 	struct cpufreq_policy *policy;
1968 
1969 	if (!cpufreq_driver)
1970 		return;
1971 
1972 	if (!has_target() && !cpufreq_driver->suspend)
1973 		goto suspend;
1974 
1975 	pr_debug("%s: Suspending Governors\n", __func__);
1976 
1977 	for_each_active_policy(policy) {
1978 		if (has_target()) {
1979 			down_write(&policy->rwsem);
1980 			cpufreq_stop_governor(policy);
1981 			up_write(&policy->rwsem);
1982 		}
1983 
1984 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1985 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1986 				cpufreq_driver->name);
1987 	}
1988 
1989 suspend:
1990 	cpufreq_suspended = true;
1991 }
1992 
1993 /**
1994  * cpufreq_resume() - Resume CPUFreq governors.
1995  *
1996  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1997  * are suspended with cpufreq_suspend().
1998  */
cpufreq_resume(void)1999 void cpufreq_resume(void)
2000 {
2001 	struct cpufreq_policy *policy;
2002 	int ret;
2003 
2004 	if (!cpufreq_driver)
2005 		return;
2006 
2007 	if (unlikely(!cpufreq_suspended))
2008 		return;
2009 
2010 	cpufreq_suspended = false;
2011 
2012 	if (!has_target() && !cpufreq_driver->resume)
2013 		return;
2014 
2015 	pr_debug("%s: Resuming Governors\n", __func__);
2016 
2017 	for_each_active_policy(policy) {
2018 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2019 			pr_err("%s: Failed to resume driver: %s\n", __func__,
2020 				cpufreq_driver->name);
2021 		} else if (has_target()) {
2022 			down_write(&policy->rwsem);
2023 			ret = cpufreq_start_governor(policy);
2024 			up_write(&policy->rwsem);
2025 
2026 			if (ret)
2027 				pr_err("%s: Failed to start governor for CPU%u's policy\n",
2028 				       __func__, policy->cpu);
2029 		}
2030 	}
2031 }
2032 
2033 /**
2034  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2035  * @flags: Flags to test against the current cpufreq driver's flags.
2036  *
2037  * Assumes that the driver is there, so callers must ensure that this is the
2038  * case.
2039  */
cpufreq_driver_test_flags(u16 flags)2040 bool cpufreq_driver_test_flags(u16 flags)
2041 {
2042 	return !!(cpufreq_driver->flags & flags);
2043 }
2044 
2045 /**
2046  * cpufreq_get_current_driver - Return the current driver's name.
2047  *
2048  * Return the name string of the currently registered cpufreq driver or NULL if
2049  * none.
2050  */
cpufreq_get_current_driver(void)2051 const char *cpufreq_get_current_driver(void)
2052 {
2053 	if (cpufreq_driver)
2054 		return cpufreq_driver->name;
2055 
2056 	return NULL;
2057 }
2058 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2059 
2060 /**
2061  * cpufreq_get_driver_data - Return current driver data.
2062  *
2063  * Return the private data of the currently registered cpufreq driver, or NULL
2064  * if no cpufreq driver has been registered.
2065  */
cpufreq_get_driver_data(void)2066 void *cpufreq_get_driver_data(void)
2067 {
2068 	if (cpufreq_driver)
2069 		return cpufreq_driver->driver_data;
2070 
2071 	return NULL;
2072 }
2073 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2074 
2075 /*********************************************************************
2076  *                     NOTIFIER LISTS INTERFACE                      *
2077  *********************************************************************/
2078 
2079 /**
2080  * cpufreq_register_notifier - Register a notifier with cpufreq.
2081  * @nb: notifier function to register.
2082  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2083  *
2084  * Add a notifier to one of two lists: either a list of notifiers that run on
2085  * clock rate changes (once before and once after every transition), or a list
2086  * of notifiers that ron on cpufreq policy changes.
2087  *
2088  * This function may sleep and it has the same return values as
2089  * blocking_notifier_chain_register().
2090  */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)2091 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2092 {
2093 	int ret;
2094 
2095 	if (cpufreq_disabled())
2096 		return -EINVAL;
2097 
2098 	switch (list) {
2099 	case CPUFREQ_TRANSITION_NOTIFIER:
2100 		mutex_lock(&cpufreq_fast_switch_lock);
2101 
2102 		if (cpufreq_fast_switch_count > 0) {
2103 			mutex_unlock(&cpufreq_fast_switch_lock);
2104 			return -EBUSY;
2105 		}
2106 		ret = srcu_notifier_chain_register(
2107 				&cpufreq_transition_notifier_list, nb);
2108 		if (!ret)
2109 			cpufreq_fast_switch_count--;
2110 
2111 		mutex_unlock(&cpufreq_fast_switch_lock);
2112 		break;
2113 	case CPUFREQ_POLICY_NOTIFIER:
2114 		ret = blocking_notifier_chain_register(
2115 				&cpufreq_policy_notifier_list, nb);
2116 		break;
2117 	default:
2118 		ret = -EINVAL;
2119 	}
2120 
2121 	return ret;
2122 }
2123 EXPORT_SYMBOL(cpufreq_register_notifier);
2124 
2125 /**
2126  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2127  * @nb: notifier block to be unregistered.
2128  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2129  *
2130  * Remove a notifier from one of the cpufreq notifier lists.
2131  *
2132  * This function may sleep and it has the same return values as
2133  * blocking_notifier_chain_unregister().
2134  */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)2135 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2136 {
2137 	int ret;
2138 
2139 	if (cpufreq_disabled())
2140 		return -EINVAL;
2141 
2142 	switch (list) {
2143 	case CPUFREQ_TRANSITION_NOTIFIER:
2144 		mutex_lock(&cpufreq_fast_switch_lock);
2145 
2146 		ret = srcu_notifier_chain_unregister(
2147 				&cpufreq_transition_notifier_list, nb);
2148 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2149 			cpufreq_fast_switch_count++;
2150 
2151 		mutex_unlock(&cpufreq_fast_switch_lock);
2152 		break;
2153 	case CPUFREQ_POLICY_NOTIFIER:
2154 		ret = blocking_notifier_chain_unregister(
2155 				&cpufreq_policy_notifier_list, nb);
2156 		break;
2157 	default:
2158 		ret = -EINVAL;
2159 	}
2160 
2161 	return ret;
2162 }
2163 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2164 
2165 
2166 /*********************************************************************
2167  *                              GOVERNORS                            *
2168  *********************************************************************/
2169 
2170 /**
2171  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2172  * @policy: cpufreq policy to switch the frequency for.
2173  * @target_freq: New frequency to set (may be approximate).
2174  *
2175  * Carry out a fast frequency switch without sleeping.
2176  *
2177  * The driver's ->fast_switch() callback invoked by this function must be
2178  * suitable for being called from within RCU-sched read-side critical sections
2179  * and it is expected to select the minimum available frequency greater than or
2180  * equal to @target_freq (CPUFREQ_RELATION_L).
2181  *
2182  * This function must not be called if policy->fast_switch_enabled is unset.
2183  *
2184  * Governors calling this function must guarantee that it will never be invoked
2185  * twice in parallel for the same policy and that it will never be called in
2186  * parallel with either ->target() or ->target_index() for the same policy.
2187  *
2188  * Returns the actual frequency set for the CPU.
2189  *
2190  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2191  * error condition, the hardware configuration must be preserved.
2192  */
cpufreq_driver_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2193 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2194 					unsigned int target_freq)
2195 {
2196 	unsigned int freq;
2197 	int cpu;
2198 
2199 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2200 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2201 
2202 	if (!freq)
2203 		return 0;
2204 
2205 	policy->cur = freq;
2206 	arch_set_freq_scale(policy->related_cpus, freq,
2207 			    policy->cpuinfo.max_freq);
2208 	cpufreq_stats_record_transition(policy, freq);
2209 
2210 	if (trace_cpu_frequency_enabled()) {
2211 		for_each_cpu(cpu, policy->cpus)
2212 			trace_cpu_frequency(freq, cpu);
2213 	}
2214 
2215 	return freq;
2216 }
2217 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2218 
2219 /**
2220  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2221  * @cpu: Target CPU.
2222  * @min_perf: Minimum (required) performance level (units of @capacity).
2223  * @target_perf: Target (desired) performance level (units of @capacity).
2224  * @capacity: Capacity of the target CPU.
2225  *
2226  * Carry out a fast performance level switch of @cpu without sleeping.
2227  *
2228  * The driver's ->adjust_perf() callback invoked by this function must be
2229  * suitable for being called from within RCU-sched read-side critical sections
2230  * and it is expected to select a suitable performance level equal to or above
2231  * @min_perf and preferably equal to or below @target_perf.
2232  *
2233  * This function must not be called if policy->fast_switch_enabled is unset.
2234  *
2235  * Governors calling this function must guarantee that it will never be invoked
2236  * twice in parallel for the same CPU and that it will never be called in
2237  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2238  * the same CPU.
2239  */
cpufreq_driver_adjust_perf(unsigned int cpu,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)2240 void cpufreq_driver_adjust_perf(unsigned int cpu,
2241 				 unsigned long min_perf,
2242 				 unsigned long target_perf,
2243 				 unsigned long capacity)
2244 {
2245 	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2246 }
2247 
2248 /**
2249  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2250  *
2251  * Return 'true' if the ->adjust_perf callback is present for the
2252  * current driver or 'false' otherwise.
2253  */
cpufreq_driver_has_adjust_perf(void)2254 bool cpufreq_driver_has_adjust_perf(void)
2255 {
2256 	return !!cpufreq_driver->adjust_perf;
2257 }
2258 
2259 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int index)2260 static int __target_intermediate(struct cpufreq_policy *policy,
2261 				 struct cpufreq_freqs *freqs, int index)
2262 {
2263 	int ret;
2264 
2265 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2266 
2267 	/* We don't need to switch to intermediate freq */
2268 	if (!freqs->new)
2269 		return 0;
2270 
2271 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2272 		 __func__, policy->cpu, freqs->old, freqs->new);
2273 
2274 	cpufreq_freq_transition_begin(policy, freqs);
2275 	ret = cpufreq_driver->target_intermediate(policy, index);
2276 	cpufreq_freq_transition_end(policy, freqs, ret);
2277 
2278 	if (ret)
2279 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2280 		       __func__, ret);
2281 
2282 	return ret;
2283 }
2284 
__target_index(struct cpufreq_policy * policy,int index)2285 static int __target_index(struct cpufreq_policy *policy, int index)
2286 {
2287 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2288 	unsigned int restore_freq, intermediate_freq = 0;
2289 	unsigned int newfreq = policy->freq_table[index].frequency;
2290 	int retval = -EINVAL;
2291 	bool notify;
2292 
2293 	if (newfreq == policy->cur)
2294 		return 0;
2295 
2296 	/* Save last value to restore later on errors */
2297 	restore_freq = policy->cur;
2298 
2299 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2300 	if (notify) {
2301 		/* Handle switching to intermediate frequency */
2302 		if (cpufreq_driver->get_intermediate) {
2303 			retval = __target_intermediate(policy, &freqs, index);
2304 			if (retval)
2305 				return retval;
2306 
2307 			intermediate_freq = freqs.new;
2308 			/* Set old freq to intermediate */
2309 			if (intermediate_freq)
2310 				freqs.old = freqs.new;
2311 		}
2312 
2313 		freqs.new = newfreq;
2314 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2315 			 __func__, policy->cpu, freqs.old, freqs.new);
2316 
2317 		cpufreq_freq_transition_begin(policy, &freqs);
2318 	}
2319 
2320 	retval = cpufreq_driver->target_index(policy, index);
2321 	if (retval)
2322 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2323 		       retval);
2324 
2325 	if (notify) {
2326 		cpufreq_freq_transition_end(policy, &freqs, retval);
2327 
2328 		/*
2329 		 * Failed after setting to intermediate freq? Driver should have
2330 		 * reverted back to initial frequency and so should we. Check
2331 		 * here for intermediate_freq instead of get_intermediate, in
2332 		 * case we haven't switched to intermediate freq at all.
2333 		 */
2334 		if (unlikely(retval && intermediate_freq)) {
2335 			freqs.old = intermediate_freq;
2336 			freqs.new = restore_freq;
2337 			cpufreq_freq_transition_begin(policy, &freqs);
2338 			cpufreq_freq_transition_end(policy, &freqs, 0);
2339 		}
2340 	}
2341 
2342 	return retval;
2343 }
2344 
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2345 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2346 			    unsigned int target_freq,
2347 			    unsigned int relation)
2348 {
2349 	unsigned int old_target_freq = target_freq;
2350 
2351 	if (cpufreq_disabled())
2352 		return -ENODEV;
2353 
2354 	target_freq = __resolve_freq(policy, target_freq, policy->min,
2355 				     policy->max, relation);
2356 
2357 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2358 		 policy->cpu, target_freq, relation, old_target_freq);
2359 
2360 	/*
2361 	 * This might look like a redundant call as we are checking it again
2362 	 * after finding index. But it is left intentionally for cases where
2363 	 * exactly same freq is called again and so we can save on few function
2364 	 * calls.
2365 	 */
2366 	if (target_freq == policy->cur &&
2367 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2368 		return 0;
2369 
2370 	if (cpufreq_driver->target) {
2371 		/*
2372 		 * If the driver hasn't setup a single inefficient frequency,
2373 		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2374 		 */
2375 		if (!policy->efficiencies_available)
2376 			relation &= ~CPUFREQ_RELATION_E;
2377 
2378 		return cpufreq_driver->target(policy, target_freq, relation);
2379 	}
2380 
2381 	if (!cpufreq_driver->target_index)
2382 		return -EINVAL;
2383 
2384 	return __target_index(policy, policy->cached_resolved_idx);
2385 }
2386 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2387 
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2388 int cpufreq_driver_target(struct cpufreq_policy *policy,
2389 			  unsigned int target_freq,
2390 			  unsigned int relation)
2391 {
2392 	int ret;
2393 
2394 	down_write(&policy->rwsem);
2395 
2396 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2397 
2398 	up_write(&policy->rwsem);
2399 
2400 	return ret;
2401 }
2402 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2403 
cpufreq_fallback_governor(void)2404 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2405 {
2406 	return NULL;
2407 }
2408 
cpufreq_init_governor(struct cpufreq_policy * policy)2409 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2410 {
2411 	int ret;
2412 
2413 	/* Don't start any governor operations if we are entering suspend */
2414 	if (cpufreq_suspended)
2415 		return 0;
2416 	/*
2417 	 * Governor might not be initiated here if ACPI _PPC changed
2418 	 * notification happened, so check it.
2419 	 */
2420 	if (!policy->governor)
2421 		return -EINVAL;
2422 
2423 	/* Platform doesn't want dynamic frequency switching ? */
2424 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2425 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2426 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2427 
2428 		if (gov) {
2429 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2430 				policy->governor->name, gov->name);
2431 			policy->governor = gov;
2432 		} else {
2433 			return -EINVAL;
2434 		}
2435 	}
2436 
2437 	if (!try_module_get(policy->governor->owner))
2438 		return -EINVAL;
2439 
2440 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2441 
2442 	if (policy->governor->init) {
2443 		ret = policy->governor->init(policy);
2444 		if (ret) {
2445 			module_put(policy->governor->owner);
2446 			return ret;
2447 		}
2448 	}
2449 
2450 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2451 
2452 	return 0;
2453 }
2454 
cpufreq_exit_governor(struct cpufreq_policy * policy)2455 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2456 {
2457 	if (cpufreq_suspended || !policy->governor)
2458 		return;
2459 
2460 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2461 
2462 	if (policy->governor->exit)
2463 		policy->governor->exit(policy);
2464 
2465 	module_put(policy->governor->owner);
2466 }
2467 
cpufreq_start_governor(struct cpufreq_policy * policy)2468 int cpufreq_start_governor(struct cpufreq_policy *policy)
2469 {
2470 	int ret;
2471 
2472 	if (cpufreq_suspended)
2473 		return 0;
2474 
2475 	if (!policy->governor)
2476 		return -EINVAL;
2477 
2478 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2479 
2480 	if (cpufreq_driver->get)
2481 		cpufreq_verify_current_freq(policy, false);
2482 
2483 	if (policy->governor->start) {
2484 		ret = policy->governor->start(policy);
2485 		if (ret)
2486 			return ret;
2487 	}
2488 
2489 	if (policy->governor->limits)
2490 		policy->governor->limits(policy);
2491 
2492 	return 0;
2493 }
2494 
cpufreq_stop_governor(struct cpufreq_policy * policy)2495 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2496 {
2497 	if (cpufreq_suspended || !policy->governor)
2498 		return;
2499 
2500 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2501 
2502 	if (policy->governor->stop)
2503 		policy->governor->stop(policy);
2504 }
2505 
cpufreq_governor_limits(struct cpufreq_policy * policy)2506 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2507 {
2508 	if (cpufreq_suspended || !policy->governor)
2509 		return;
2510 
2511 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2512 
2513 	if (policy->governor->limits)
2514 		policy->governor->limits(policy);
2515 }
2516 
cpufreq_register_governor(struct cpufreq_governor * governor)2517 int cpufreq_register_governor(struct cpufreq_governor *governor)
2518 {
2519 	int err;
2520 
2521 	if (!governor)
2522 		return -EINVAL;
2523 
2524 	if (cpufreq_disabled())
2525 		return -ENODEV;
2526 
2527 	mutex_lock(&cpufreq_governor_mutex);
2528 
2529 	err = -EBUSY;
2530 	if (!find_governor(governor->name)) {
2531 		err = 0;
2532 		list_add(&governor->governor_list, &cpufreq_governor_list);
2533 	}
2534 
2535 	mutex_unlock(&cpufreq_governor_mutex);
2536 	return err;
2537 }
2538 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2539 
cpufreq_unregister_governor(struct cpufreq_governor * governor)2540 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2541 {
2542 	struct cpufreq_policy *policy;
2543 	unsigned long flags;
2544 
2545 	if (!governor)
2546 		return;
2547 
2548 	if (cpufreq_disabled())
2549 		return;
2550 
2551 	/* clear last_governor for all inactive policies */
2552 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2553 	for_each_inactive_policy(policy) {
2554 		if (!strcmp(policy->last_governor, governor->name)) {
2555 			policy->governor = NULL;
2556 			strcpy(policy->last_governor, "\0");
2557 		}
2558 	}
2559 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2560 
2561 	mutex_lock(&cpufreq_governor_mutex);
2562 	list_del(&governor->governor_list);
2563 	mutex_unlock(&cpufreq_governor_mutex);
2564 }
2565 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2566 
2567 
2568 /*********************************************************************
2569  *                          POLICY INTERFACE                         *
2570  *********************************************************************/
2571 
2572 /**
2573  * cpufreq_get_policy - get the current cpufreq_policy
2574  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2575  *	is written
2576  * @cpu: CPU to find the policy for
2577  *
2578  * Reads the current cpufreq policy.
2579  */
cpufreq_get_policy(struct cpufreq_policy * policy,unsigned int cpu)2580 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2581 {
2582 	struct cpufreq_policy *cpu_policy;
2583 	if (!policy)
2584 		return -EINVAL;
2585 
2586 	cpu_policy = cpufreq_cpu_get(cpu);
2587 	if (!cpu_policy)
2588 		return -EINVAL;
2589 
2590 	memcpy(policy, cpu_policy, sizeof(*policy));
2591 
2592 	cpufreq_cpu_put(cpu_policy);
2593 	return 0;
2594 }
2595 EXPORT_SYMBOL(cpufreq_get_policy);
2596 
2597 /**
2598  * cpufreq_set_policy - Modify cpufreq policy parameters.
2599  * @policy: Policy object to modify.
2600  * @new_gov: Policy governor pointer.
2601  * @new_pol: Policy value (for drivers with built-in governors).
2602  *
2603  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2604  * limits to be set for the policy, update @policy with the verified limits
2605  * values and either invoke the driver's ->setpolicy() callback (if present) or
2606  * carry out a governor update for @policy.  That is, run the current governor's
2607  * ->limits() callback (if @new_gov points to the same object as the one in
2608  * @policy) or replace the governor for @policy with @new_gov.
2609  *
2610  * The cpuinfo part of @policy is not updated by this function.
2611  */
cpufreq_set_policy(struct cpufreq_policy * policy,struct cpufreq_governor * new_gov,unsigned int new_pol)2612 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2613 			      struct cpufreq_governor *new_gov,
2614 			      unsigned int new_pol)
2615 {
2616 	struct cpufreq_policy_data new_data;
2617 	struct cpufreq_governor *old_gov;
2618 	int ret;
2619 
2620 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2621 	new_data.freq_table = policy->freq_table;
2622 	new_data.cpu = policy->cpu;
2623 	/*
2624 	 * PM QoS framework collects all the requests from users and provide us
2625 	 * the final aggregated value here.
2626 	 */
2627 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2628 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2629 
2630 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2631 		 new_data.cpu, new_data.min, new_data.max);
2632 
2633 	/*
2634 	 * Verify that the CPU speed can be set within these limits and make sure
2635 	 * that min <= max.
2636 	 */
2637 	ret = cpufreq_driver->verify(&new_data);
2638 	if (ret)
2639 		return ret;
2640 
2641 	/*
2642 	 * Resolve policy min/max to available frequencies. It ensures
2643 	 * no frequency resolution will neither overshoot the requested maximum
2644 	 * nor undershoot the requested minimum.
2645 	 *
2646 	 * Avoid storing intermediate values in policy->max or policy->min and
2647 	 * compiler optimizations around them because they may be accessed
2648 	 * concurrently by cpufreq_driver_resolve_freq() during the update.
2649 	 */
2650 	WRITE_ONCE(policy->max, __resolve_freq(policy, new_data.max,
2651 					       new_data.min, new_data.max,
2652 					       CPUFREQ_RELATION_H));
2653 	new_data.min = __resolve_freq(policy, new_data.min, new_data.min,
2654 				      new_data.max, CPUFREQ_RELATION_L);
2655 	WRITE_ONCE(policy->min, new_data.min > policy->max ? policy->max : new_data.min);
2656 
2657 	trace_cpu_frequency_limits(policy);
2658 
2659 	policy->cached_target_freq = UINT_MAX;
2660 
2661 	pr_debug("new min and max freqs are %u - %u kHz\n",
2662 		 policy->min, policy->max);
2663 
2664 	if (cpufreq_driver->setpolicy) {
2665 		policy->policy = new_pol;
2666 		pr_debug("setting range\n");
2667 		return cpufreq_driver->setpolicy(policy);
2668 	}
2669 
2670 	if (new_gov == policy->governor) {
2671 		pr_debug("governor limits update\n");
2672 		cpufreq_governor_limits(policy);
2673 		return 0;
2674 	}
2675 
2676 	pr_debug("governor switch\n");
2677 
2678 	/* save old, working values */
2679 	old_gov = policy->governor;
2680 	/* end old governor */
2681 	if (old_gov) {
2682 		cpufreq_stop_governor(policy);
2683 		cpufreq_exit_governor(policy);
2684 	}
2685 
2686 	/* start new governor */
2687 	policy->governor = new_gov;
2688 	ret = cpufreq_init_governor(policy);
2689 	if (!ret) {
2690 		ret = cpufreq_start_governor(policy);
2691 		if (!ret) {
2692 			pr_debug("governor change\n");
2693 			sched_cpufreq_governor_change(policy, old_gov);
2694 			return 0;
2695 		}
2696 		cpufreq_exit_governor(policy);
2697 	}
2698 
2699 	/* new governor failed, so re-start old one */
2700 	pr_debug("starting governor %s failed\n", policy->governor->name);
2701 	if (old_gov) {
2702 		policy->governor = old_gov;
2703 		if (cpufreq_init_governor(policy))
2704 			policy->governor = NULL;
2705 		else
2706 			cpufreq_start_governor(policy);
2707 	}
2708 
2709 	return ret;
2710 }
2711 
2712 /**
2713  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2714  * @cpu: CPU to re-evaluate the policy for.
2715  *
2716  * Update the current frequency for the cpufreq policy of @cpu and use
2717  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2718  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2719  * for the policy in question, among other things.
2720  */
cpufreq_update_policy(unsigned int cpu)2721 void cpufreq_update_policy(unsigned int cpu)
2722 {
2723 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2724 
2725 	if (!policy)
2726 		return;
2727 
2728 	/*
2729 	 * BIOS might change freq behind our back
2730 	 * -> ask driver for current freq and notify governors about a change
2731 	 */
2732 	if (cpufreq_driver->get && has_target() &&
2733 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2734 		goto unlock;
2735 
2736 	refresh_frequency_limits(policy);
2737 
2738 unlock:
2739 	cpufreq_cpu_release(policy);
2740 }
2741 EXPORT_SYMBOL(cpufreq_update_policy);
2742 
2743 /**
2744  * cpufreq_update_limits - Update policy limits for a given CPU.
2745  * @cpu: CPU to update the policy limits for.
2746  *
2747  * Invoke the driver's ->update_limits callback if present or call
2748  * cpufreq_update_policy() for @cpu.
2749  */
cpufreq_update_limits(unsigned int cpu)2750 void cpufreq_update_limits(unsigned int cpu)
2751 {
2752 	struct cpufreq_policy *policy;
2753 
2754 	policy = cpufreq_cpu_get(cpu);
2755 	if (!policy)
2756 		return;
2757 
2758 	if (cpufreq_driver->update_limits)
2759 		cpufreq_driver->update_limits(cpu);
2760 	else
2761 		cpufreq_update_policy(cpu);
2762 
2763 	cpufreq_cpu_put(policy);
2764 }
2765 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2766 
2767 /*********************************************************************
2768  *               BOOST						     *
2769  *********************************************************************/
cpufreq_boost_set_sw(struct cpufreq_policy * policy,int state)2770 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2771 {
2772 	int ret;
2773 
2774 	if (!policy->freq_table)
2775 		return -ENXIO;
2776 
2777 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2778 	if (ret) {
2779 		pr_err("%s: Policy frequency update failed\n", __func__);
2780 		return ret;
2781 	}
2782 
2783 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2784 	if (ret < 0)
2785 		return ret;
2786 
2787 	return 0;
2788 }
2789 
cpufreq_boost_trigger_state(int state)2790 int cpufreq_boost_trigger_state(int state)
2791 {
2792 	struct cpufreq_policy *policy;
2793 	unsigned long flags;
2794 	int ret = 0;
2795 
2796 	if (cpufreq_driver->boost_enabled == state)
2797 		return 0;
2798 
2799 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2800 	cpufreq_driver->boost_enabled = state;
2801 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2802 
2803 	cpus_read_lock();
2804 	for_each_active_policy(policy) {
2805 		policy->boost_enabled = state;
2806 		ret = cpufreq_driver->set_boost(policy, state);
2807 		if (ret) {
2808 			policy->boost_enabled = !policy->boost_enabled;
2809 			goto err_reset_state;
2810 		}
2811 	}
2812 	cpus_read_unlock();
2813 
2814 	return 0;
2815 
2816 err_reset_state:
2817 	cpus_read_unlock();
2818 
2819 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2820 	cpufreq_driver->boost_enabled = !state;
2821 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2822 
2823 	pr_err("%s: Cannot %s BOOST\n",
2824 	       __func__, state ? "enable" : "disable");
2825 
2826 	return ret;
2827 }
2828 
cpufreq_boost_supported(void)2829 static bool cpufreq_boost_supported(void)
2830 {
2831 	return cpufreq_driver->set_boost;
2832 }
2833 
create_boost_sysfs_file(void)2834 static int create_boost_sysfs_file(void)
2835 {
2836 	int ret;
2837 
2838 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2839 	if (ret)
2840 		pr_err("%s: cannot register global BOOST sysfs file\n",
2841 		       __func__);
2842 
2843 	return ret;
2844 }
2845 
remove_boost_sysfs_file(void)2846 static void remove_boost_sysfs_file(void)
2847 {
2848 	if (cpufreq_boost_supported())
2849 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2850 }
2851 
cpufreq_enable_boost_support(void)2852 int cpufreq_enable_boost_support(void)
2853 {
2854 	if (!cpufreq_driver)
2855 		return -EINVAL;
2856 
2857 	if (cpufreq_boost_supported())
2858 		return 0;
2859 
2860 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2861 
2862 	/* This will get removed on driver unregister */
2863 	return create_boost_sysfs_file();
2864 }
2865 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2866 
cpufreq_boost_enabled(void)2867 int cpufreq_boost_enabled(void)
2868 {
2869 	return cpufreq_driver->boost_enabled;
2870 }
2871 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2872 
2873 /*********************************************************************
2874  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2875  *********************************************************************/
2876 static enum cpuhp_state hp_online;
2877 
cpuhp_cpufreq_online(unsigned int cpu)2878 static int cpuhp_cpufreq_online(unsigned int cpu)
2879 {
2880 	cpufreq_online(cpu);
2881 
2882 	return 0;
2883 }
2884 
cpuhp_cpufreq_offline(unsigned int cpu)2885 static int cpuhp_cpufreq_offline(unsigned int cpu)
2886 {
2887 	cpufreq_offline(cpu);
2888 
2889 	return 0;
2890 }
2891 
2892 /**
2893  * cpufreq_register_driver - register a CPU Frequency driver
2894  * @driver_data: A struct cpufreq_driver containing the values#
2895  * submitted by the CPU Frequency driver.
2896  *
2897  * Registers a CPU Frequency driver to this core code. This code
2898  * returns zero on success, -EEXIST when another driver got here first
2899  * (and isn't unregistered in the meantime).
2900  *
2901  */
cpufreq_register_driver(struct cpufreq_driver * driver_data)2902 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2903 {
2904 	unsigned long flags;
2905 	int ret;
2906 
2907 	if (cpufreq_disabled())
2908 		return -ENODEV;
2909 
2910 	/*
2911 	 * The cpufreq core depends heavily on the availability of device
2912 	 * structure, make sure they are available before proceeding further.
2913 	 */
2914 	if (!get_cpu_device(0))
2915 		return -EPROBE_DEFER;
2916 
2917 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2918 	    !(driver_data->setpolicy || driver_data->target_index ||
2919 		    driver_data->target) ||
2920 	     (driver_data->setpolicy && (driver_data->target_index ||
2921 		    driver_data->target)) ||
2922 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2923 	     (!driver_data->online != !driver_data->offline) ||
2924 		 (driver_data->adjust_perf && !driver_data->fast_switch))
2925 		return -EINVAL;
2926 
2927 	pr_debug("trying to register driver %s\n", driver_data->name);
2928 
2929 	/* Protect against concurrent CPU online/offline. */
2930 	cpus_read_lock();
2931 
2932 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2933 	if (cpufreq_driver) {
2934 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2935 		ret = -EEXIST;
2936 		goto out;
2937 	}
2938 	cpufreq_driver = driver_data;
2939 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2940 
2941 	/*
2942 	 * Mark support for the scheduler's frequency invariance engine for
2943 	 * drivers that implement target(), target_index() or fast_switch().
2944 	 */
2945 	if (!cpufreq_driver->setpolicy) {
2946 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2947 		pr_debug("supports frequency invariance");
2948 	}
2949 
2950 	if (driver_data->setpolicy)
2951 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2952 
2953 	if (cpufreq_boost_supported()) {
2954 		ret = create_boost_sysfs_file();
2955 		if (ret)
2956 			goto err_null_driver;
2957 	}
2958 
2959 	ret = subsys_interface_register(&cpufreq_interface);
2960 	if (ret)
2961 		goto err_boost_unreg;
2962 
2963 	if (unlikely(list_empty(&cpufreq_policy_list))) {
2964 		/* if all ->init() calls failed, unregister */
2965 		ret = -ENODEV;
2966 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2967 			 driver_data->name);
2968 		goto err_if_unreg;
2969 	}
2970 
2971 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2972 						   "cpufreq:online",
2973 						   cpuhp_cpufreq_online,
2974 						   cpuhp_cpufreq_offline);
2975 	if (ret < 0)
2976 		goto err_if_unreg;
2977 	hp_online = ret;
2978 	ret = 0;
2979 
2980 	pr_debug("driver %s up and running\n", driver_data->name);
2981 	goto out;
2982 
2983 err_if_unreg:
2984 	subsys_interface_unregister(&cpufreq_interface);
2985 err_boost_unreg:
2986 	remove_boost_sysfs_file();
2987 err_null_driver:
2988 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2989 	cpufreq_driver = NULL;
2990 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2991 out:
2992 	cpus_read_unlock();
2993 	return ret;
2994 }
2995 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2996 
2997 /*
2998  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2999  *
3000  * Unregister the current CPUFreq driver. Only call this if you have
3001  * the right to do so, i.e. if you have succeeded in initialising before!
3002  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
3003  * currently not initialised.
3004  */
cpufreq_unregister_driver(struct cpufreq_driver * driver)3005 void cpufreq_unregister_driver(struct cpufreq_driver *driver)
3006 {
3007 	unsigned long flags;
3008 
3009 	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
3010 		return;
3011 
3012 	pr_debug("unregistering driver %s\n", driver->name);
3013 
3014 	/* Protect against concurrent cpu hotplug */
3015 	cpus_read_lock();
3016 	subsys_interface_unregister(&cpufreq_interface);
3017 	remove_boost_sysfs_file();
3018 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
3019 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
3020 
3021 	write_lock_irqsave(&cpufreq_driver_lock, flags);
3022 
3023 	cpufreq_driver = NULL;
3024 
3025 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3026 	cpus_read_unlock();
3027 }
3028 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3029 
cpufreq_core_init(void)3030 static int __init cpufreq_core_init(void)
3031 {
3032 	struct cpufreq_governor *gov = cpufreq_default_governor();
3033 	struct device *dev_root;
3034 
3035 	if (cpufreq_disabled())
3036 		return -ENODEV;
3037 
3038 	dev_root = bus_get_dev_root(&cpu_subsys);
3039 	if (dev_root) {
3040 		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3041 		put_device(dev_root);
3042 	}
3043 	BUG_ON(!cpufreq_global_kobject);
3044 
3045 	if (!strlen(default_governor))
3046 		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3047 
3048 	return 0;
3049 }
3050 module_param(off, int, 0444);
3051 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3052 core_initcall(cpufreq_core_init);
3053