1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <linux/units.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 /* Macros to iterate over CPU policies */
37 #define for_each_suitable_policy(__policy, __active) \
38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39 if ((__active) == !policy_is_inactive(__policy))
40
41 #define for_each_active_policy(__policy) \
42 for_each_suitable_policy(__policy, true)
43 #define for_each_inactive_policy(__policy) \
44 for_each_suitable_policy(__policy, false)
45
46 /* Iterate over governors */
47 static LIST_HEAD(cpufreq_governor_list);
48 #define for_each_governor(__governor) \
49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50
51 static char default_governor[CPUFREQ_NAME_LEN];
52
53 /*
54 * The "cpufreq driver" - the arch- or hardware-dependent low
55 * level driver of CPUFreq support, and its spinlock. This lock
56 * also protects the cpufreq_cpu_data array.
57 */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
cpufreq_supports_freq_invariance(void)63 bool cpufreq_supports_freq_invariance(void)
64 {
65 return static_branch_likely(&cpufreq_freq_invariance);
66 }
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
has_target(void)71 static inline bool has_target(void)
72 {
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
has_target_index(void)76 bool has_target_index(void)
77 {
78 return !!cpufreq_driver->target_index;
79 }
80
81 /* internal prototypes */
82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
83 static int cpufreq_init_governor(struct cpufreq_policy *policy);
84 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
85 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
86 static int cpufreq_set_policy(struct cpufreq_policy *policy,
87 struct cpufreq_governor *new_gov,
88 unsigned int new_pol);
89 static bool cpufreq_boost_supported(void);
90
91 /*
92 * Two notifier lists: the "policy" list is involved in the
93 * validation process for a new CPU frequency policy; the
94 * "transition" list for kernel code that needs to handle
95 * changes to devices when the CPU clock speed changes.
96 * The mutex locks both lists.
97 */
98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
100
101 static int off __read_mostly;
cpufreq_disabled(void)102 static int cpufreq_disabled(void)
103 {
104 return off;
105 }
disable_cpufreq(void)106 void disable_cpufreq(void)
107 {
108 off = 1;
109 }
110 static DEFINE_MUTEX(cpufreq_governor_mutex);
111
have_governor_per_policy(void)112 bool have_governor_per_policy(void)
113 {
114 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
115 }
116 EXPORT_SYMBOL_GPL(have_governor_per_policy);
117
118 static struct kobject *cpufreq_global_kobject;
119
get_governor_parent_kobj(struct cpufreq_policy * policy)120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122 if (have_governor_per_policy())
123 return &policy->kobj;
124 else
125 return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
get_cpu_idle_time_jiffy(unsigned int cpu,u64 * wall)129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131 struct kernel_cpustat kcpustat;
132 u64 cur_wall_time;
133 u64 idle_time;
134 u64 busy_time;
135
136 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137
138 kcpustat_cpu_fetch(&kcpustat, cpu);
139
140 busy_time = kcpustat.cpustat[CPUTIME_USER];
141 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
142 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
143 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
144 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
145 busy_time += kcpustat.cpustat[CPUTIME_NICE];
146
147 idle_time = cur_wall_time - busy_time;
148 if (wall)
149 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
150
151 return div_u64(idle_time, NSEC_PER_USEC);
152 }
153
get_cpu_idle_time(unsigned int cpu,u64 * wall,int io_busy)154 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
155 {
156 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
157
158 if (idle_time == -1ULL)
159 return get_cpu_idle_time_jiffy(cpu, wall);
160 else if (!io_busy)
161 idle_time += get_cpu_iowait_time_us(cpu, wall);
162
163 return idle_time;
164 }
165 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
166
167 /*
168 * This is a generic cpufreq init() routine which can be used by cpufreq
169 * drivers of SMP systems. It will do following:
170 * - validate & show freq table passed
171 * - set policies transition latency
172 * - policy->cpus with all possible CPUs
173 */
cpufreq_generic_init(struct cpufreq_policy * policy,struct cpufreq_frequency_table * table,unsigned int transition_latency)174 void cpufreq_generic_init(struct cpufreq_policy *policy,
175 struct cpufreq_frequency_table *table,
176 unsigned int transition_latency)
177 {
178 policy->freq_table = table;
179 policy->cpuinfo.transition_latency = transition_latency;
180
181 /*
182 * The driver only supports the SMP configuration where all processors
183 * share the clock and voltage and clock.
184 */
185 cpumask_setall(policy->cpus);
186 }
187 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188
cpufreq_cpu_get_raw(unsigned int cpu)189 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190 {
191 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192
193 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
194 }
195 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196
cpufreq_generic_get(unsigned int cpu)197 unsigned int cpufreq_generic_get(unsigned int cpu)
198 {
199 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200
201 if (!policy || IS_ERR(policy->clk)) {
202 pr_err("%s: No %s associated to cpu: %d\n",
203 __func__, policy ? "clk" : "policy", cpu);
204 return 0;
205 }
206
207 return clk_get_rate(policy->clk) / 1000;
208 }
209 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210
211 /**
212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213 * @cpu: CPU to find the policy for.
214 *
215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216 * the kobject reference counter of that policy. Return a valid policy on
217 * success or NULL on failure.
218 *
219 * The policy returned by this function has to be released with the help of
220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
221 */
cpufreq_cpu_get(unsigned int cpu)222 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223 {
224 struct cpufreq_policy *policy = NULL;
225 unsigned long flags;
226
227 if (WARN_ON(cpu >= nr_cpu_ids))
228 return NULL;
229
230 /* get the cpufreq driver */
231 read_lock_irqsave(&cpufreq_driver_lock, flags);
232
233 if (cpufreq_driver) {
234 /* get the CPU */
235 policy = cpufreq_cpu_get_raw(cpu);
236 if (policy)
237 kobject_get(&policy->kobj);
238 }
239
240 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241
242 return policy;
243 }
244 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245
246 /**
247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
249 */
cpufreq_cpu_put(struct cpufreq_policy * policy)250 void cpufreq_cpu_put(struct cpufreq_policy *policy)
251 {
252 kobject_put(&policy->kobj);
253 }
254 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255
256 /**
257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259 */
cpufreq_cpu_release(struct cpufreq_policy * policy)260 void cpufreq_cpu_release(struct cpufreq_policy *policy)
261 {
262 if (WARN_ON(!policy))
263 return;
264
265 lockdep_assert_held(&policy->rwsem);
266
267 up_write(&policy->rwsem);
268
269 cpufreq_cpu_put(policy);
270 }
271
272 /**
273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274 * @cpu: CPU to find the policy for.
275 *
276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
278 * Return the policy if it is active or release it and return NULL otherwise.
279 *
280 * The policy returned by this function has to be released with the help of
281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282 * counter properly.
283 */
cpufreq_cpu_acquire(unsigned int cpu)284 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285 {
286 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287
288 if (!policy)
289 return NULL;
290
291 down_write(&policy->rwsem);
292
293 if (policy_is_inactive(policy)) {
294 cpufreq_cpu_release(policy);
295 return NULL;
296 }
297
298 return policy;
299 }
300
301 /*********************************************************************
302 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
303 *********************************************************************/
304
305 /**
306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
308 * @ci: Frequency change information.
309 *
310 * This function alters the system "loops_per_jiffy" for the clock
311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
312 * systems as each CPU might be scaled differently. So, use the arch
313 * per-CPU loops_per_jiffy value wherever possible.
314 */
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)315 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
316 {
317 #ifndef CONFIG_SMP
318 static unsigned long l_p_j_ref;
319 static unsigned int l_p_j_ref_freq;
320
321 if (ci->flags & CPUFREQ_CONST_LOOPS)
322 return;
323
324 if (!l_p_j_ref_freq) {
325 l_p_j_ref = loops_per_jiffy;
326 l_p_j_ref_freq = ci->old;
327 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
328 l_p_j_ref, l_p_j_ref_freq);
329 }
330 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
331 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
332 ci->new);
333 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
334 loops_per_jiffy, ci->new);
335 }
336 #endif
337 }
338
339 /**
340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
341 * @policy: cpufreq policy to enable fast frequency switching for.
342 * @freqs: contain details of the frequency update.
343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
344 *
345 * This function calls the transition notifiers and adjust_jiffies().
346 *
347 * It is called twice on all CPU frequency changes that have external effects.
348 */
cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)349 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
350 struct cpufreq_freqs *freqs,
351 unsigned int state)
352 {
353 int cpu;
354
355 BUG_ON(irqs_disabled());
356
357 if (cpufreq_disabled())
358 return;
359
360 freqs->policy = policy;
361 freqs->flags = cpufreq_driver->flags;
362 pr_debug("notification %u of frequency transition to %u kHz\n",
363 state, freqs->new);
364
365 switch (state) {
366 case CPUFREQ_PRECHANGE:
367 /*
368 * Detect if the driver reported a value as "old frequency"
369 * which is not equal to what the cpufreq core thinks is
370 * "old frequency".
371 */
372 if (policy->cur && policy->cur != freqs->old) {
373 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
374 freqs->old, policy->cur);
375 freqs->old = policy->cur;
376 }
377
378 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379 CPUFREQ_PRECHANGE, freqs);
380
381 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
382 break;
383
384 case CPUFREQ_POSTCHANGE:
385 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
386 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
387 cpumask_pr_args(policy->cpus));
388
389 for_each_cpu(cpu, policy->cpus)
390 trace_cpu_frequency(freqs->new, cpu);
391
392 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
393 CPUFREQ_POSTCHANGE, freqs);
394
395 cpufreq_stats_record_transition(policy, freqs->new);
396 policy->cur = freqs->new;
397 }
398 }
399
400 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)401 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
402 struct cpufreq_freqs *freqs, int transition_failed)
403 {
404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 if (!transition_failed)
406 return;
407
408 swap(freqs->old, freqs->new);
409 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
410 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
411 }
412
cpufreq_freq_transition_begin(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs)413 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
414 struct cpufreq_freqs *freqs)
415 {
416
417 /*
418 * Catch double invocations of _begin() which lead to self-deadlock.
419 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
420 * doesn't invoke _begin() on their behalf, and hence the chances of
421 * double invocations are very low. Moreover, there are scenarios
422 * where these checks can emit false-positive warnings in these
423 * drivers; so we avoid that by skipping them altogether.
424 */
425 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
426 && current == policy->transition_task);
427
428 wait:
429 wait_event(policy->transition_wait, !policy->transition_ongoing);
430
431 spin_lock(&policy->transition_lock);
432
433 if (unlikely(policy->transition_ongoing)) {
434 spin_unlock(&policy->transition_lock);
435 goto wait;
436 }
437
438 policy->transition_ongoing = true;
439 policy->transition_task = current;
440
441 spin_unlock(&policy->transition_lock);
442
443 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
444 }
445 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
446
cpufreq_freq_transition_end(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)447 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
448 struct cpufreq_freqs *freqs, int transition_failed)
449 {
450 if (WARN_ON(!policy->transition_ongoing))
451 return;
452
453 cpufreq_notify_post_transition(policy, freqs, transition_failed);
454
455 arch_set_freq_scale(policy->related_cpus,
456 policy->cur,
457 policy->cpuinfo.max_freq);
458
459 spin_lock(&policy->transition_lock);
460 policy->transition_ongoing = false;
461 policy->transition_task = NULL;
462 spin_unlock(&policy->transition_lock);
463
464 wake_up(&policy->transition_wait);
465 }
466 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
467
468 /*
469 * Fast frequency switching status count. Positive means "enabled", negative
470 * means "disabled" and 0 means "not decided yet".
471 */
472 static int cpufreq_fast_switch_count;
473 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
474
cpufreq_list_transition_notifiers(void)475 static void cpufreq_list_transition_notifiers(void)
476 {
477 struct notifier_block *nb;
478
479 pr_info("Registered transition notifiers:\n");
480
481 mutex_lock(&cpufreq_transition_notifier_list.mutex);
482
483 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
484 pr_info("%pS\n", nb->notifier_call);
485
486 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
487 }
488
489 /**
490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
491 * @policy: cpufreq policy to enable fast frequency switching for.
492 *
493 * Try to enable fast frequency switching for @policy.
494 *
495 * The attempt will fail if there is at least one transition notifier registered
496 * at this point, as fast frequency switching is quite fundamentally at odds
497 * with transition notifiers. Thus if successful, it will make registration of
498 * transition notifiers fail going forward.
499 */
cpufreq_enable_fast_switch(struct cpufreq_policy * policy)500 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
501 {
502 lockdep_assert_held(&policy->rwsem);
503
504 if (!policy->fast_switch_possible)
505 return;
506
507 mutex_lock(&cpufreq_fast_switch_lock);
508 if (cpufreq_fast_switch_count >= 0) {
509 cpufreq_fast_switch_count++;
510 policy->fast_switch_enabled = true;
511 } else {
512 pr_warn("CPU%u: Fast frequency switching not enabled\n",
513 policy->cpu);
514 cpufreq_list_transition_notifiers();
515 }
516 mutex_unlock(&cpufreq_fast_switch_lock);
517 }
518 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
519
520 /**
521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
522 * @policy: cpufreq policy to disable fast frequency switching for.
523 */
cpufreq_disable_fast_switch(struct cpufreq_policy * policy)524 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
525 {
526 mutex_lock(&cpufreq_fast_switch_lock);
527 if (policy->fast_switch_enabled) {
528 policy->fast_switch_enabled = false;
529 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
530 cpufreq_fast_switch_count--;
531 }
532 mutex_unlock(&cpufreq_fast_switch_lock);
533 }
534 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
535
__resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int min,unsigned int max,unsigned int relation)536 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
537 unsigned int target_freq,
538 unsigned int min, unsigned int max,
539 unsigned int relation)
540 {
541 unsigned int idx;
542
543 target_freq = clamp_val(target_freq, min, max);
544
545 if (!policy->freq_table)
546 return target_freq;
547
548 idx = cpufreq_frequency_table_target(policy, target_freq, min, max, relation);
549 policy->cached_resolved_idx = idx;
550 policy->cached_target_freq = target_freq;
551 return policy->freq_table[idx].frequency;
552 }
553
554 /**
555 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
556 * one.
557 * @policy: associated policy to interrogate
558 * @target_freq: target frequency to resolve.
559 *
560 * The target to driver frequency mapping is cached in the policy.
561 *
562 * Return: Lowest driver-supported frequency greater than or equal to the
563 * given target_freq, subject to policy (min/max) and driver limitations.
564 */
cpufreq_driver_resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq)565 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
566 unsigned int target_freq)
567 {
568 unsigned int min = READ_ONCE(policy->min);
569 unsigned int max = READ_ONCE(policy->max);
570
571 /*
572 * If this function runs in parallel with cpufreq_set_policy(), it may
573 * read policy->min before the update and policy->max after the update
574 * or the other way around, so there is no ordering guarantee.
575 *
576 * Resolve this by always honoring the max (in case it comes from
577 * thermal throttling or similar).
578 */
579 if (unlikely(min > max))
580 min = max;
581
582 return __resolve_freq(policy, target_freq, min, max, CPUFREQ_RELATION_LE);
583 }
584 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
585
cpufreq_policy_transition_delay_us(struct cpufreq_policy * policy)586 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
587 {
588 unsigned int latency;
589
590 if (policy->transition_delay_us)
591 return policy->transition_delay_us;
592
593 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
594 if (latency) {
595 /*
596 * For platforms that can change the frequency very fast (< 10
597 * us), the above formula gives a decent transition delay. But
598 * for platforms where transition_latency is in milliseconds, it
599 * ends up giving unrealistic values.
600 *
601 * Cap the default transition delay to 10 ms, which seems to be
602 * a reasonable amount of time after which we should reevaluate
603 * the frequency.
604 */
605 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
606 }
607
608 return LATENCY_MULTIPLIER;
609 }
610 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
611
612 /*********************************************************************
613 * SYSFS INTERFACE *
614 *********************************************************************/
show_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)615 static ssize_t show_boost(struct kobject *kobj,
616 struct kobj_attribute *attr, char *buf)
617 {
618 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
619 }
620
store_boost(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)621 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
622 const char *buf, size_t count)
623 {
624 int ret, enable;
625
626 ret = sscanf(buf, "%d", &enable);
627 if (ret != 1 || enable < 0 || enable > 1)
628 return -EINVAL;
629
630 if (cpufreq_boost_trigger_state(enable)) {
631 pr_err("%s: Cannot %s BOOST!\n",
632 __func__, enable ? "enable" : "disable");
633 return -EINVAL;
634 }
635
636 pr_debug("%s: cpufreq BOOST %s\n",
637 __func__, enable ? "enabled" : "disabled");
638
639 return count;
640 }
641 define_one_global_rw(boost);
642
show_local_boost(struct cpufreq_policy * policy,char * buf)643 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
644 {
645 return sysfs_emit(buf, "%d\n", policy->boost_enabled);
646 }
647
store_local_boost(struct cpufreq_policy * policy,const char * buf,size_t count)648 static ssize_t store_local_boost(struct cpufreq_policy *policy,
649 const char *buf, size_t count)
650 {
651 int ret, enable;
652
653 ret = kstrtoint(buf, 10, &enable);
654 if (ret || enable < 0 || enable > 1)
655 return -EINVAL;
656
657 if (!cpufreq_driver->boost_enabled)
658 return -EINVAL;
659
660 if (policy->boost_enabled == enable)
661 return count;
662
663 policy->boost_enabled = enable;
664
665 cpus_read_lock();
666 ret = cpufreq_driver->set_boost(policy, enable);
667 cpus_read_unlock();
668
669 if (ret) {
670 policy->boost_enabled = !policy->boost_enabled;
671 return ret;
672 }
673
674 return count;
675 }
676
677 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
678
find_governor(const char * str_governor)679 static struct cpufreq_governor *find_governor(const char *str_governor)
680 {
681 struct cpufreq_governor *t;
682
683 for_each_governor(t)
684 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
685 return t;
686
687 return NULL;
688 }
689
get_governor(const char * str_governor)690 static struct cpufreq_governor *get_governor(const char *str_governor)
691 {
692 struct cpufreq_governor *t;
693
694 mutex_lock(&cpufreq_governor_mutex);
695 t = find_governor(str_governor);
696 if (!t)
697 goto unlock;
698
699 if (!try_module_get(t->owner))
700 t = NULL;
701
702 unlock:
703 mutex_unlock(&cpufreq_governor_mutex);
704
705 return t;
706 }
707
cpufreq_parse_policy(char * str_governor)708 static unsigned int cpufreq_parse_policy(char *str_governor)
709 {
710 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
711 return CPUFREQ_POLICY_PERFORMANCE;
712
713 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
714 return CPUFREQ_POLICY_POWERSAVE;
715
716 return CPUFREQ_POLICY_UNKNOWN;
717 }
718
719 /**
720 * cpufreq_parse_governor - parse a governor string only for has_target()
721 * @str_governor: Governor name.
722 */
cpufreq_parse_governor(char * str_governor)723 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
724 {
725 struct cpufreq_governor *t;
726
727 t = get_governor(str_governor);
728 if (t)
729 return t;
730
731 if (request_module("cpufreq_%s", str_governor))
732 return NULL;
733
734 return get_governor(str_governor);
735 }
736
737 /*
738 * cpufreq_per_cpu_attr_read() / show_##file_name() -
739 * print out cpufreq information
740 *
741 * Write out information from cpufreq_driver->policy[cpu]; object must be
742 * "unsigned int".
743 */
744
745 #define show_one(file_name, object) \
746 static ssize_t show_##file_name \
747 (struct cpufreq_policy *policy, char *buf) \
748 { \
749 return sprintf(buf, "%u\n", policy->object); \
750 }
751
752 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
753 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
754 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
755 show_one(scaling_min_freq, min);
756 show_one(scaling_max_freq, max);
757
arch_freq_get_on_cpu(int cpu)758 __weak unsigned int arch_freq_get_on_cpu(int cpu)
759 {
760 return 0;
761 }
762
show_scaling_cur_freq(struct cpufreq_policy * policy,char * buf)763 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
764 {
765 ssize_t ret;
766 unsigned int freq;
767
768 freq = arch_freq_get_on_cpu(policy->cpu);
769 if (freq)
770 ret = sprintf(buf, "%u\n", freq);
771 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
772 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
773 else
774 ret = sprintf(buf, "%u\n", policy->cur);
775 return ret;
776 }
777
778 /*
779 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
780 */
781 #define store_one(file_name, object) \
782 static ssize_t store_##file_name \
783 (struct cpufreq_policy *policy, const char *buf, size_t count) \
784 { \
785 unsigned long val; \
786 int ret; \
787 \
788 ret = kstrtoul(buf, 0, &val); \
789 if (ret) \
790 return ret; \
791 \
792 ret = freq_qos_update_request(policy->object##_freq_req, val);\
793 return ret >= 0 ? count : ret; \
794 }
795
796 store_one(scaling_min_freq, min);
797 store_one(scaling_max_freq, max);
798
799 /*
800 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
801 */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)802 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
803 char *buf)
804 {
805 unsigned int cur_freq = __cpufreq_get(policy);
806
807 if (cur_freq)
808 return sprintf(buf, "%u\n", cur_freq);
809
810 return sprintf(buf, "<unknown>\n");
811 }
812
813 /*
814 * show_scaling_governor - show the current policy for the specified CPU
815 */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)816 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
817 {
818 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
819 return sprintf(buf, "powersave\n");
820 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
821 return sprintf(buf, "performance\n");
822 else if (policy->governor)
823 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
824 policy->governor->name);
825 return -EINVAL;
826 }
827
828 /*
829 * store_scaling_governor - store policy for the specified CPU
830 */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)831 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
832 const char *buf, size_t count)
833 {
834 char str_governor[16];
835 int ret;
836
837 ret = sscanf(buf, "%15s", str_governor);
838 if (ret != 1)
839 return -EINVAL;
840
841 if (cpufreq_driver->setpolicy) {
842 unsigned int new_pol;
843
844 new_pol = cpufreq_parse_policy(str_governor);
845 if (!new_pol)
846 return -EINVAL;
847
848 ret = cpufreq_set_policy(policy, NULL, new_pol);
849 } else {
850 struct cpufreq_governor *new_gov;
851
852 new_gov = cpufreq_parse_governor(str_governor);
853 if (!new_gov)
854 return -EINVAL;
855
856 ret = cpufreq_set_policy(policy, new_gov,
857 CPUFREQ_POLICY_UNKNOWN);
858
859 module_put(new_gov->owner);
860 }
861
862 return ret ? ret : count;
863 }
864
865 /*
866 * show_scaling_driver - show the cpufreq driver currently loaded
867 */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)868 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
869 {
870 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
871 }
872
873 /*
874 * show_scaling_available_governors - show the available CPUfreq governors
875 */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)876 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
877 char *buf)
878 {
879 ssize_t i = 0;
880 struct cpufreq_governor *t;
881
882 if (!has_target()) {
883 i += sprintf(buf, "performance powersave");
884 goto out;
885 }
886
887 mutex_lock(&cpufreq_governor_mutex);
888 for_each_governor(t) {
889 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
890 - (CPUFREQ_NAME_LEN + 2)))
891 break;
892 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
893 }
894 mutex_unlock(&cpufreq_governor_mutex);
895 out:
896 i += sprintf(&buf[i], "\n");
897 return i;
898 }
899
cpufreq_show_cpus(const struct cpumask * mask,char * buf)900 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
901 {
902 ssize_t i = 0;
903 unsigned int cpu;
904
905 for_each_cpu(cpu, mask) {
906 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
907 if (i >= (PAGE_SIZE - 5))
908 break;
909 }
910
911 /* Remove the extra space at the end */
912 i--;
913
914 i += sprintf(&buf[i], "\n");
915 return i;
916 }
917 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
918
919 /*
920 * show_related_cpus - show the CPUs affected by each transition even if
921 * hw coordination is in use
922 */
show_related_cpus(struct cpufreq_policy * policy,char * buf)923 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
924 {
925 return cpufreq_show_cpus(policy->related_cpus, buf);
926 }
927
928 /*
929 * show_affected_cpus - show the CPUs affected by each transition
930 */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)931 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
932 {
933 return cpufreq_show_cpus(policy->cpus, buf);
934 }
935
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)936 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
937 const char *buf, size_t count)
938 {
939 unsigned int freq = 0;
940 unsigned int ret;
941
942 if (!policy->governor || !policy->governor->store_setspeed)
943 return -EINVAL;
944
945 ret = sscanf(buf, "%u", &freq);
946 if (ret != 1)
947 return -EINVAL;
948
949 policy->governor->store_setspeed(policy, freq);
950
951 return count;
952 }
953
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)954 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
955 {
956 if (!policy->governor || !policy->governor->show_setspeed)
957 return sprintf(buf, "<unsupported>\n");
958
959 return policy->governor->show_setspeed(policy, buf);
960 }
961
962 /*
963 * show_bios_limit - show the current cpufreq HW/BIOS limitation
964 */
show_bios_limit(struct cpufreq_policy * policy,char * buf)965 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
966 {
967 unsigned int limit;
968 int ret;
969 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
970 if (!ret)
971 return sprintf(buf, "%u\n", limit);
972 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
973 }
974
975 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
976 cpufreq_freq_attr_ro(cpuinfo_min_freq);
977 cpufreq_freq_attr_ro(cpuinfo_max_freq);
978 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
979 cpufreq_freq_attr_ro(scaling_available_governors);
980 cpufreq_freq_attr_ro(scaling_driver);
981 cpufreq_freq_attr_ro(scaling_cur_freq);
982 cpufreq_freq_attr_ro(bios_limit);
983 cpufreq_freq_attr_ro(related_cpus);
984 cpufreq_freq_attr_ro(affected_cpus);
985 cpufreq_freq_attr_rw(scaling_min_freq);
986 cpufreq_freq_attr_rw(scaling_max_freq);
987 cpufreq_freq_attr_rw(scaling_governor);
988 cpufreq_freq_attr_rw(scaling_setspeed);
989
990 static struct attribute *cpufreq_attrs[] = {
991 &cpuinfo_min_freq.attr,
992 &cpuinfo_max_freq.attr,
993 &cpuinfo_transition_latency.attr,
994 &scaling_min_freq.attr,
995 &scaling_max_freq.attr,
996 &affected_cpus.attr,
997 &related_cpus.attr,
998 &scaling_governor.attr,
999 &scaling_driver.attr,
1000 &scaling_available_governors.attr,
1001 &scaling_setspeed.attr,
1002 NULL
1003 };
1004 ATTRIBUTE_GROUPS(cpufreq);
1005
1006 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
1007 #define to_attr(a) container_of(a, struct freq_attr, attr)
1008
show(struct kobject * kobj,struct attribute * attr,char * buf)1009 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1010 {
1011 struct cpufreq_policy *policy = to_policy(kobj);
1012 struct freq_attr *fattr = to_attr(attr);
1013 ssize_t ret = -EBUSY;
1014
1015 if (!fattr->show)
1016 return -EIO;
1017
1018 down_read(&policy->rwsem);
1019 if (likely(!policy_is_inactive(policy)))
1020 ret = fattr->show(policy, buf);
1021 up_read(&policy->rwsem);
1022
1023 return ret;
1024 }
1025
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1026 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1027 const char *buf, size_t count)
1028 {
1029 struct cpufreq_policy *policy = to_policy(kobj);
1030 struct freq_attr *fattr = to_attr(attr);
1031 ssize_t ret = -EBUSY;
1032
1033 if (!fattr->store)
1034 return -EIO;
1035
1036 down_write(&policy->rwsem);
1037 if (likely(!policy_is_inactive(policy)))
1038 ret = fattr->store(policy, buf, count);
1039 up_write(&policy->rwsem);
1040
1041 return ret;
1042 }
1043
cpufreq_sysfs_release(struct kobject * kobj)1044 static void cpufreq_sysfs_release(struct kobject *kobj)
1045 {
1046 struct cpufreq_policy *policy = to_policy(kobj);
1047 pr_debug("last reference is dropped\n");
1048 complete(&policy->kobj_unregister);
1049 }
1050
1051 static const struct sysfs_ops sysfs_ops = {
1052 .show = show,
1053 .store = store,
1054 };
1055
1056 static const struct kobj_type ktype_cpufreq = {
1057 .sysfs_ops = &sysfs_ops,
1058 .default_groups = cpufreq_groups,
1059 .release = cpufreq_sysfs_release,
1060 };
1061
add_cpu_dev_symlink(struct cpufreq_policy * policy,unsigned int cpu,struct device * dev)1062 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1063 struct device *dev)
1064 {
1065 if (unlikely(!dev))
1066 return;
1067
1068 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1069 return;
1070
1071 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1072 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1073 dev_err(dev, "cpufreq symlink creation failed\n");
1074 }
1075
remove_cpu_dev_symlink(struct cpufreq_policy * policy,int cpu,struct device * dev)1076 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1077 struct device *dev)
1078 {
1079 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1080 sysfs_remove_link(&dev->kobj, "cpufreq");
1081 cpumask_clear_cpu(cpu, policy->real_cpus);
1082 }
1083
cpufreq_add_dev_interface(struct cpufreq_policy * policy)1084 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1085 {
1086 struct freq_attr **drv_attr;
1087 int ret = 0;
1088
1089 /* set up files for this cpu device */
1090 drv_attr = cpufreq_driver->attr;
1091 while (drv_attr && *drv_attr) {
1092 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1093 if (ret)
1094 return ret;
1095 drv_attr++;
1096 }
1097 if (cpufreq_driver->get) {
1098 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1099 if (ret)
1100 return ret;
1101 }
1102
1103 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1104 if (ret)
1105 return ret;
1106
1107 if (cpufreq_driver->bios_limit) {
1108 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1109 if (ret)
1110 return ret;
1111 }
1112
1113 if (cpufreq_boost_supported()) {
1114 ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1115 if (ret)
1116 return ret;
1117 }
1118
1119 return 0;
1120 }
1121
cpufreq_init_policy(struct cpufreq_policy * policy)1122 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1123 {
1124 struct cpufreq_governor *gov = NULL;
1125 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1126 int ret;
1127
1128 if (has_target()) {
1129 /* Update policy governor to the one used before hotplug. */
1130 gov = get_governor(policy->last_governor);
1131 if (gov) {
1132 pr_debug("Restoring governor %s for cpu %d\n",
1133 gov->name, policy->cpu);
1134 } else {
1135 gov = get_governor(default_governor);
1136 }
1137
1138 if (!gov) {
1139 gov = cpufreq_default_governor();
1140 __module_get(gov->owner);
1141 }
1142
1143 } else {
1144
1145 /* Use the default policy if there is no last_policy. */
1146 if (policy->last_policy) {
1147 pol = policy->last_policy;
1148 } else {
1149 pol = cpufreq_parse_policy(default_governor);
1150 /*
1151 * In case the default governor is neither "performance"
1152 * nor "powersave", fall back to the initial policy
1153 * value set by the driver.
1154 */
1155 if (pol == CPUFREQ_POLICY_UNKNOWN)
1156 pol = policy->policy;
1157 }
1158 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1159 pol != CPUFREQ_POLICY_POWERSAVE)
1160 return -ENODATA;
1161 }
1162
1163 ret = cpufreq_set_policy(policy, gov, pol);
1164 if (gov)
1165 module_put(gov->owner);
1166
1167 return ret;
1168 }
1169
cpufreq_add_policy_cpu(struct cpufreq_policy * policy,unsigned int cpu)1170 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1171 {
1172 int ret = 0;
1173
1174 /* Has this CPU been taken care of already? */
1175 if (cpumask_test_cpu(cpu, policy->cpus))
1176 return 0;
1177
1178 down_write(&policy->rwsem);
1179 if (has_target())
1180 cpufreq_stop_governor(policy);
1181
1182 cpumask_set_cpu(cpu, policy->cpus);
1183
1184 if (has_target()) {
1185 ret = cpufreq_start_governor(policy);
1186 if (ret)
1187 pr_err("%s: Failed to start governor\n", __func__);
1188 }
1189 up_write(&policy->rwsem);
1190 return ret;
1191 }
1192
refresh_frequency_limits(struct cpufreq_policy * policy)1193 void refresh_frequency_limits(struct cpufreq_policy *policy)
1194 {
1195 if (!policy_is_inactive(policy)) {
1196 pr_debug("updating policy for CPU %u\n", policy->cpu);
1197
1198 cpufreq_set_policy(policy, policy->governor, policy->policy);
1199 }
1200 }
1201 EXPORT_SYMBOL(refresh_frequency_limits);
1202
handle_update(struct work_struct * work)1203 static void handle_update(struct work_struct *work)
1204 {
1205 struct cpufreq_policy *policy =
1206 container_of(work, struct cpufreq_policy, update);
1207
1208 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1209 down_write(&policy->rwsem);
1210 refresh_frequency_limits(policy);
1211 up_write(&policy->rwsem);
1212 }
1213
cpufreq_notifier_min(struct notifier_block * nb,unsigned long freq,void * data)1214 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1215 void *data)
1216 {
1217 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1218
1219 schedule_work(&policy->update);
1220 return 0;
1221 }
1222
cpufreq_notifier_max(struct notifier_block * nb,unsigned long freq,void * data)1223 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1224 void *data)
1225 {
1226 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1227
1228 schedule_work(&policy->update);
1229 return 0;
1230 }
1231
cpufreq_policy_put_kobj(struct cpufreq_policy * policy)1232 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1233 {
1234 struct kobject *kobj;
1235 struct completion *cmp;
1236
1237 down_write(&policy->rwsem);
1238 cpufreq_stats_free_table(policy);
1239 kobj = &policy->kobj;
1240 cmp = &policy->kobj_unregister;
1241 up_write(&policy->rwsem);
1242 kobject_put(kobj);
1243
1244 /*
1245 * We need to make sure that the underlying kobj is
1246 * actually not referenced anymore by anybody before we
1247 * proceed with unloading.
1248 */
1249 pr_debug("waiting for dropping of refcount\n");
1250 wait_for_completion(cmp);
1251 pr_debug("wait complete\n");
1252 }
1253
cpufreq_policy_alloc(unsigned int cpu)1254 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1255 {
1256 struct cpufreq_policy *policy;
1257 struct device *dev = get_cpu_device(cpu);
1258 int ret;
1259
1260 if (!dev)
1261 return NULL;
1262
1263 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1264 if (!policy)
1265 return NULL;
1266
1267 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1268 goto err_free_policy;
1269
1270 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1271 goto err_free_cpumask;
1272
1273 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1274 goto err_free_rcpumask;
1275
1276 init_completion(&policy->kobj_unregister);
1277 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1278 cpufreq_global_kobject, "policy%u", cpu);
1279 if (ret) {
1280 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1281 /*
1282 * The entire policy object will be freed below, but the extra
1283 * memory allocated for the kobject name needs to be freed by
1284 * releasing the kobject.
1285 */
1286 kobject_put(&policy->kobj);
1287 goto err_free_real_cpus;
1288 }
1289
1290 freq_constraints_init(&policy->constraints);
1291
1292 policy->nb_min.notifier_call = cpufreq_notifier_min;
1293 policy->nb_max.notifier_call = cpufreq_notifier_max;
1294
1295 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1296 &policy->nb_min);
1297 if (ret) {
1298 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1299 ret, cpu);
1300 goto err_kobj_remove;
1301 }
1302
1303 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1304 &policy->nb_max);
1305 if (ret) {
1306 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1307 ret, cpu);
1308 goto err_min_qos_notifier;
1309 }
1310
1311 INIT_LIST_HEAD(&policy->policy_list);
1312 init_rwsem(&policy->rwsem);
1313 spin_lock_init(&policy->transition_lock);
1314 init_waitqueue_head(&policy->transition_wait);
1315 INIT_WORK(&policy->update, handle_update);
1316
1317 policy->cpu = cpu;
1318 return policy;
1319
1320 err_min_qos_notifier:
1321 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1322 &policy->nb_min);
1323 err_kobj_remove:
1324 cpufreq_policy_put_kobj(policy);
1325 err_free_real_cpus:
1326 free_cpumask_var(policy->real_cpus);
1327 err_free_rcpumask:
1328 free_cpumask_var(policy->related_cpus);
1329 err_free_cpumask:
1330 free_cpumask_var(policy->cpus);
1331 err_free_policy:
1332 kfree(policy);
1333
1334 return NULL;
1335 }
1336
cpufreq_policy_free(struct cpufreq_policy * policy)1337 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1338 {
1339 unsigned long flags;
1340 int cpu;
1341
1342 /*
1343 * The callers must ensure the policy is inactive by now, to avoid any
1344 * races with show()/store() callbacks.
1345 */
1346 if (unlikely(!policy_is_inactive(policy)))
1347 pr_warn("%s: Freeing active policy\n", __func__);
1348
1349 /* Remove policy from list */
1350 write_lock_irqsave(&cpufreq_driver_lock, flags);
1351 list_del(&policy->policy_list);
1352
1353 for_each_cpu(cpu, policy->related_cpus)
1354 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1355 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1356
1357 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1358 &policy->nb_max);
1359 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1360 &policy->nb_min);
1361
1362 /* Cancel any pending policy->update work before freeing the policy. */
1363 cancel_work_sync(&policy->update);
1364
1365 if (policy->max_freq_req) {
1366 /*
1367 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1368 * notification, since CPUFREQ_CREATE_POLICY notification was
1369 * sent after adding max_freq_req earlier.
1370 */
1371 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1372 CPUFREQ_REMOVE_POLICY, policy);
1373 freq_qos_remove_request(policy->max_freq_req);
1374 }
1375
1376 freq_qos_remove_request(policy->min_freq_req);
1377 kfree(policy->min_freq_req);
1378
1379 cpufreq_policy_put_kobj(policy);
1380 free_cpumask_var(policy->real_cpus);
1381 free_cpumask_var(policy->related_cpus);
1382 free_cpumask_var(policy->cpus);
1383 kfree(policy);
1384 }
1385
cpufreq_online(unsigned int cpu)1386 static int cpufreq_online(unsigned int cpu)
1387 {
1388 struct cpufreq_policy *policy;
1389 bool new_policy;
1390 unsigned long flags;
1391 unsigned int j;
1392 int ret;
1393
1394 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1395
1396 /* Check if this CPU already has a policy to manage it */
1397 policy = per_cpu(cpufreq_cpu_data, cpu);
1398 if (policy) {
1399 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1400 if (!policy_is_inactive(policy))
1401 return cpufreq_add_policy_cpu(policy, cpu);
1402
1403 /* This is the only online CPU for the policy. Start over. */
1404 new_policy = false;
1405 down_write(&policy->rwsem);
1406 policy->cpu = cpu;
1407 policy->governor = NULL;
1408 } else {
1409 new_policy = true;
1410 policy = cpufreq_policy_alloc(cpu);
1411 if (!policy)
1412 return -ENOMEM;
1413 down_write(&policy->rwsem);
1414 }
1415
1416 if (!new_policy && cpufreq_driver->online) {
1417 /* Recover policy->cpus using related_cpus */
1418 cpumask_copy(policy->cpus, policy->related_cpus);
1419
1420 ret = cpufreq_driver->online(policy);
1421 if (ret) {
1422 pr_debug("%s: %d: initialization failed\n", __func__,
1423 __LINE__);
1424 goto out_exit_policy;
1425 }
1426 } else {
1427 cpumask_copy(policy->cpus, cpumask_of(cpu));
1428
1429 /*
1430 * Call driver. From then on the cpufreq must be able
1431 * to accept all calls to ->verify and ->setpolicy for this CPU.
1432 */
1433 ret = cpufreq_driver->init(policy);
1434 if (ret) {
1435 pr_debug("%s: %d: initialization failed\n", __func__,
1436 __LINE__);
1437 goto out_free_policy;
1438 }
1439
1440 /* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1441 if (cpufreq_boost_enabled() && policy_has_boost_freq(policy))
1442 policy->boost_enabled = true;
1443
1444 /*
1445 * The initialization has succeeded and the policy is online.
1446 * If there is a problem with its frequency table, take it
1447 * offline and drop it.
1448 */
1449 ret = cpufreq_table_validate_and_sort(policy);
1450 if (ret)
1451 goto out_offline_policy;
1452
1453 /* related_cpus should at least include policy->cpus. */
1454 cpumask_copy(policy->related_cpus, policy->cpus);
1455 }
1456
1457 /*
1458 * affected cpus must always be the one, which are online. We aren't
1459 * managing offline cpus here.
1460 */
1461 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1462
1463 if (new_policy) {
1464 for_each_cpu(j, policy->related_cpus) {
1465 per_cpu(cpufreq_cpu_data, j) = policy;
1466 add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1467 }
1468
1469 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1470 GFP_KERNEL);
1471 if (!policy->min_freq_req) {
1472 ret = -ENOMEM;
1473 goto out_destroy_policy;
1474 }
1475
1476 ret = freq_qos_add_request(&policy->constraints,
1477 policy->min_freq_req, FREQ_QOS_MIN,
1478 FREQ_QOS_MIN_DEFAULT_VALUE);
1479 if (ret < 0) {
1480 /*
1481 * So we don't call freq_qos_remove_request() for an
1482 * uninitialized request.
1483 */
1484 kfree(policy->min_freq_req);
1485 policy->min_freq_req = NULL;
1486 goto out_destroy_policy;
1487 }
1488
1489 /*
1490 * This must be initialized right here to avoid calling
1491 * freq_qos_remove_request() on uninitialized request in case
1492 * of errors.
1493 */
1494 policy->max_freq_req = policy->min_freq_req + 1;
1495
1496 ret = freq_qos_add_request(&policy->constraints,
1497 policy->max_freq_req, FREQ_QOS_MAX,
1498 FREQ_QOS_MAX_DEFAULT_VALUE);
1499 if (ret < 0) {
1500 policy->max_freq_req = NULL;
1501 goto out_destroy_policy;
1502 }
1503
1504 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1505 CPUFREQ_CREATE_POLICY, policy);
1506 }
1507
1508 if (cpufreq_driver->get && has_target()) {
1509 policy->cur = cpufreq_driver->get(policy->cpu);
1510 if (!policy->cur) {
1511 ret = -EIO;
1512 pr_err("%s: ->get() failed\n", __func__);
1513 goto out_destroy_policy;
1514 }
1515 }
1516
1517 /*
1518 * Sometimes boot loaders set CPU frequency to a value outside of
1519 * frequency table present with cpufreq core. In such cases CPU might be
1520 * unstable if it has to run on that frequency for long duration of time
1521 * and so its better to set it to a frequency which is specified in
1522 * freq-table. This also makes cpufreq stats inconsistent as
1523 * cpufreq-stats would fail to register because current frequency of CPU
1524 * isn't found in freq-table.
1525 *
1526 * Because we don't want this change to effect boot process badly, we go
1527 * for the next freq which is >= policy->cur ('cur' must be set by now,
1528 * otherwise we will end up setting freq to lowest of the table as 'cur'
1529 * is initialized to zero).
1530 *
1531 * We are passing target-freq as "policy->cur - 1" otherwise
1532 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1533 * equal to target-freq.
1534 */
1535 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1536 && has_target()) {
1537 unsigned int old_freq = policy->cur;
1538
1539 /* Are we running at unknown frequency ? */
1540 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1541 if (ret == -EINVAL) {
1542 ret = __cpufreq_driver_target(policy, old_freq - 1,
1543 CPUFREQ_RELATION_L);
1544
1545 /*
1546 * Reaching here after boot in a few seconds may not
1547 * mean that system will remain stable at "unknown"
1548 * frequency for longer duration. Hence, a BUG_ON().
1549 */
1550 BUG_ON(ret);
1551 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1552 __func__, policy->cpu, old_freq, policy->cur);
1553 }
1554 }
1555
1556 if (new_policy) {
1557 ret = cpufreq_add_dev_interface(policy);
1558 if (ret)
1559 goto out_destroy_policy;
1560
1561 cpufreq_stats_create_table(policy);
1562
1563 write_lock_irqsave(&cpufreq_driver_lock, flags);
1564 list_add(&policy->policy_list, &cpufreq_policy_list);
1565 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1566
1567 /*
1568 * Register with the energy model before
1569 * sched_cpufreq_governor_change() is called, which will result
1570 * in rebuilding of the sched domains, which should only be done
1571 * once the energy model is properly initialized for the policy
1572 * first.
1573 *
1574 * Also, this should be called before the policy is registered
1575 * with cooling framework.
1576 */
1577 if (cpufreq_driver->register_em)
1578 cpufreq_driver->register_em(policy);
1579 }
1580
1581 ret = cpufreq_init_policy(policy);
1582 if (ret) {
1583 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1584 __func__, cpu, ret);
1585 goto out_destroy_policy;
1586 }
1587
1588 up_write(&policy->rwsem);
1589
1590 kobject_uevent(&policy->kobj, KOBJ_ADD);
1591
1592 /* Callback for handling stuff after policy is ready */
1593 if (cpufreq_driver->ready)
1594 cpufreq_driver->ready(policy);
1595
1596 /* Register cpufreq cooling only for a new policy */
1597 if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1598 policy->cdev = of_cpufreq_cooling_register(policy);
1599
1600 pr_debug("initialization complete\n");
1601
1602 return 0;
1603
1604 out_destroy_policy:
1605 for_each_cpu(j, policy->real_cpus)
1606 remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1607
1608 out_offline_policy:
1609 if (cpufreq_driver->offline)
1610 cpufreq_driver->offline(policy);
1611
1612 out_exit_policy:
1613 if (cpufreq_driver->exit)
1614 cpufreq_driver->exit(policy);
1615
1616 out_free_policy:
1617 cpumask_clear(policy->cpus);
1618 up_write(&policy->rwsem);
1619
1620 cpufreq_policy_free(policy);
1621 return ret;
1622 }
1623
1624 /**
1625 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1626 * @dev: CPU device.
1627 * @sif: Subsystem interface structure pointer (not used)
1628 */
cpufreq_add_dev(struct device * dev,struct subsys_interface * sif)1629 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1630 {
1631 struct cpufreq_policy *policy;
1632 unsigned cpu = dev->id;
1633 int ret;
1634
1635 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1636
1637 if (cpu_online(cpu)) {
1638 ret = cpufreq_online(cpu);
1639 if (ret)
1640 return ret;
1641 }
1642
1643 /* Create sysfs link on CPU registration */
1644 policy = per_cpu(cpufreq_cpu_data, cpu);
1645 if (policy)
1646 add_cpu_dev_symlink(policy, cpu, dev);
1647
1648 return 0;
1649 }
1650
__cpufreq_offline(unsigned int cpu,struct cpufreq_policy * policy)1651 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1652 {
1653 int ret;
1654
1655 if (has_target())
1656 cpufreq_stop_governor(policy);
1657
1658 cpumask_clear_cpu(cpu, policy->cpus);
1659
1660 if (!policy_is_inactive(policy)) {
1661 /* Nominate a new CPU if necessary. */
1662 if (cpu == policy->cpu)
1663 policy->cpu = cpumask_any(policy->cpus);
1664
1665 /* Start the governor again for the active policy. */
1666 if (has_target()) {
1667 ret = cpufreq_start_governor(policy);
1668 if (ret)
1669 pr_err("%s: Failed to start governor\n", __func__);
1670 }
1671
1672 return;
1673 }
1674
1675 if (has_target())
1676 strncpy(policy->last_governor, policy->governor->name,
1677 CPUFREQ_NAME_LEN);
1678 else
1679 policy->last_policy = policy->policy;
1680
1681 if (has_target())
1682 cpufreq_exit_governor(policy);
1683
1684 /*
1685 * Perform the ->offline() during light-weight tear-down, as
1686 * that allows fast recovery when the CPU comes back.
1687 */
1688 if (cpufreq_driver->offline) {
1689 cpufreq_driver->offline(policy);
1690 return;
1691 }
1692
1693 if (cpufreq_driver->exit)
1694 cpufreq_driver->exit(policy);
1695
1696 policy->freq_table = NULL;
1697 }
1698
cpufreq_offline(unsigned int cpu)1699 static int cpufreq_offline(unsigned int cpu)
1700 {
1701 struct cpufreq_policy *policy;
1702
1703 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1704
1705 policy = cpufreq_cpu_get_raw(cpu);
1706 if (!policy) {
1707 pr_debug("%s: No cpu_data found\n", __func__);
1708 return 0;
1709 }
1710
1711 down_write(&policy->rwsem);
1712
1713 __cpufreq_offline(cpu, policy);
1714
1715 up_write(&policy->rwsem);
1716 return 0;
1717 }
1718
1719 /*
1720 * cpufreq_remove_dev - remove a CPU device
1721 *
1722 * Removes the cpufreq interface for a CPU device.
1723 */
cpufreq_remove_dev(struct device * dev,struct subsys_interface * sif)1724 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1725 {
1726 unsigned int cpu = dev->id;
1727 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1728
1729 if (!policy)
1730 return;
1731
1732 down_write(&policy->rwsem);
1733
1734 if (cpu_online(cpu))
1735 __cpufreq_offline(cpu, policy);
1736
1737 remove_cpu_dev_symlink(policy, cpu, dev);
1738
1739 if (!cpumask_empty(policy->real_cpus)) {
1740 up_write(&policy->rwsem);
1741 return;
1742 }
1743
1744 /*
1745 * Unregister cpufreq cooling once all the CPUs of the policy are
1746 * removed.
1747 */
1748 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1749 cpufreq_cooling_unregister(policy->cdev);
1750 policy->cdev = NULL;
1751 }
1752
1753 /* We did light-weight exit earlier, do full tear down now */
1754 if (cpufreq_driver->offline && cpufreq_driver->exit)
1755 cpufreq_driver->exit(policy);
1756
1757 up_write(&policy->rwsem);
1758
1759 cpufreq_policy_free(policy);
1760 }
1761
1762 /**
1763 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1764 * @policy: Policy managing CPUs.
1765 * @new_freq: New CPU frequency.
1766 *
1767 * Adjust to the current frequency first and clean up later by either calling
1768 * cpufreq_update_policy(), or scheduling handle_update().
1769 */
cpufreq_out_of_sync(struct cpufreq_policy * policy,unsigned int new_freq)1770 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1771 unsigned int new_freq)
1772 {
1773 struct cpufreq_freqs freqs;
1774
1775 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1776 policy->cur, new_freq);
1777
1778 freqs.old = policy->cur;
1779 freqs.new = new_freq;
1780
1781 cpufreq_freq_transition_begin(policy, &freqs);
1782 cpufreq_freq_transition_end(policy, &freqs, 0);
1783 }
1784
cpufreq_verify_current_freq(struct cpufreq_policy * policy,bool update)1785 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1786 {
1787 unsigned int new_freq;
1788
1789 new_freq = cpufreq_driver->get(policy->cpu);
1790 if (!new_freq)
1791 return 0;
1792
1793 /*
1794 * If fast frequency switching is used with the given policy, the check
1795 * against policy->cur is pointless, so skip it in that case.
1796 */
1797 if (policy->fast_switch_enabled || !has_target())
1798 return new_freq;
1799
1800 if (policy->cur != new_freq) {
1801 /*
1802 * For some platforms, the frequency returned by hardware may be
1803 * slightly different from what is provided in the frequency
1804 * table, for example hardware may return 499 MHz instead of 500
1805 * MHz. In such cases it is better to avoid getting into
1806 * unnecessary frequency updates.
1807 */
1808 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1809 return policy->cur;
1810
1811 cpufreq_out_of_sync(policy, new_freq);
1812 if (update)
1813 schedule_work(&policy->update);
1814 }
1815
1816 return new_freq;
1817 }
1818
1819 /**
1820 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1821 * @cpu: CPU number
1822 *
1823 * This is the last known freq, without actually getting it from the driver.
1824 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1825 */
cpufreq_quick_get(unsigned int cpu)1826 unsigned int cpufreq_quick_get(unsigned int cpu)
1827 {
1828 struct cpufreq_policy *policy;
1829 unsigned int ret_freq = 0;
1830 unsigned long flags;
1831
1832 read_lock_irqsave(&cpufreq_driver_lock, flags);
1833
1834 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1835 ret_freq = cpufreq_driver->get(cpu);
1836 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1837 return ret_freq;
1838 }
1839
1840 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1841
1842 policy = cpufreq_cpu_get(cpu);
1843 if (policy) {
1844 ret_freq = policy->cur;
1845 cpufreq_cpu_put(policy);
1846 }
1847
1848 return ret_freq;
1849 }
1850 EXPORT_SYMBOL(cpufreq_quick_get);
1851
1852 /**
1853 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1854 * @cpu: CPU number
1855 *
1856 * Just return the max possible frequency for a given CPU.
1857 */
cpufreq_quick_get_max(unsigned int cpu)1858 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1859 {
1860 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1861 unsigned int ret_freq = 0;
1862
1863 if (policy) {
1864 ret_freq = policy->max;
1865 cpufreq_cpu_put(policy);
1866 }
1867
1868 return ret_freq;
1869 }
1870 EXPORT_SYMBOL(cpufreq_quick_get_max);
1871
1872 /**
1873 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1874 * @cpu: CPU number
1875 *
1876 * The default return value is the max_freq field of cpuinfo.
1877 */
cpufreq_get_hw_max_freq(unsigned int cpu)1878 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1879 {
1880 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1881 unsigned int ret_freq = 0;
1882
1883 if (policy) {
1884 ret_freq = policy->cpuinfo.max_freq;
1885 cpufreq_cpu_put(policy);
1886 }
1887
1888 return ret_freq;
1889 }
1890 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1891
__cpufreq_get(struct cpufreq_policy * policy)1892 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1893 {
1894 if (unlikely(policy_is_inactive(policy)))
1895 return 0;
1896
1897 return cpufreq_verify_current_freq(policy, true);
1898 }
1899
1900 /**
1901 * cpufreq_get - get the current CPU frequency (in kHz)
1902 * @cpu: CPU number
1903 *
1904 * Get the CPU current (static) CPU frequency
1905 */
cpufreq_get(unsigned int cpu)1906 unsigned int cpufreq_get(unsigned int cpu)
1907 {
1908 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1909 unsigned int ret_freq = 0;
1910
1911 if (policy) {
1912 down_read(&policy->rwsem);
1913 if (cpufreq_driver->get)
1914 ret_freq = __cpufreq_get(policy);
1915 up_read(&policy->rwsem);
1916
1917 cpufreq_cpu_put(policy);
1918 }
1919
1920 return ret_freq;
1921 }
1922 EXPORT_SYMBOL(cpufreq_get);
1923
1924 static struct subsys_interface cpufreq_interface = {
1925 .name = "cpufreq",
1926 .subsys = &cpu_subsys,
1927 .add_dev = cpufreq_add_dev,
1928 .remove_dev = cpufreq_remove_dev,
1929 };
1930
1931 /*
1932 * In case platform wants some specific frequency to be configured
1933 * during suspend..
1934 */
cpufreq_generic_suspend(struct cpufreq_policy * policy)1935 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1936 {
1937 int ret;
1938
1939 if (!policy->suspend_freq) {
1940 pr_debug("%s: suspend_freq not defined\n", __func__);
1941 return 0;
1942 }
1943
1944 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1945 policy->suspend_freq);
1946
1947 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1948 CPUFREQ_RELATION_H);
1949 if (ret)
1950 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1951 __func__, policy->suspend_freq, ret);
1952
1953 return ret;
1954 }
1955 EXPORT_SYMBOL(cpufreq_generic_suspend);
1956
1957 /**
1958 * cpufreq_suspend() - Suspend CPUFreq governors.
1959 *
1960 * Called during system wide Suspend/Hibernate cycles for suspending governors
1961 * as some platforms can't change frequency after this point in suspend cycle.
1962 * Because some of the devices (like: i2c, regulators, etc) they use for
1963 * changing frequency are suspended quickly after this point.
1964 */
cpufreq_suspend(void)1965 void cpufreq_suspend(void)
1966 {
1967 struct cpufreq_policy *policy;
1968
1969 if (!cpufreq_driver)
1970 return;
1971
1972 if (!has_target() && !cpufreq_driver->suspend)
1973 goto suspend;
1974
1975 pr_debug("%s: Suspending Governors\n", __func__);
1976
1977 for_each_active_policy(policy) {
1978 if (has_target()) {
1979 down_write(&policy->rwsem);
1980 cpufreq_stop_governor(policy);
1981 up_write(&policy->rwsem);
1982 }
1983
1984 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1985 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1986 cpufreq_driver->name);
1987 }
1988
1989 suspend:
1990 cpufreq_suspended = true;
1991 }
1992
1993 /**
1994 * cpufreq_resume() - Resume CPUFreq governors.
1995 *
1996 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1997 * are suspended with cpufreq_suspend().
1998 */
cpufreq_resume(void)1999 void cpufreq_resume(void)
2000 {
2001 struct cpufreq_policy *policy;
2002 int ret;
2003
2004 if (!cpufreq_driver)
2005 return;
2006
2007 if (unlikely(!cpufreq_suspended))
2008 return;
2009
2010 cpufreq_suspended = false;
2011
2012 if (!has_target() && !cpufreq_driver->resume)
2013 return;
2014
2015 pr_debug("%s: Resuming Governors\n", __func__);
2016
2017 for_each_active_policy(policy) {
2018 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2019 pr_err("%s: Failed to resume driver: %s\n", __func__,
2020 cpufreq_driver->name);
2021 } else if (has_target()) {
2022 down_write(&policy->rwsem);
2023 ret = cpufreq_start_governor(policy);
2024 up_write(&policy->rwsem);
2025
2026 if (ret)
2027 pr_err("%s: Failed to start governor for CPU%u's policy\n",
2028 __func__, policy->cpu);
2029 }
2030 }
2031 }
2032
2033 /**
2034 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2035 * @flags: Flags to test against the current cpufreq driver's flags.
2036 *
2037 * Assumes that the driver is there, so callers must ensure that this is the
2038 * case.
2039 */
cpufreq_driver_test_flags(u16 flags)2040 bool cpufreq_driver_test_flags(u16 flags)
2041 {
2042 return !!(cpufreq_driver->flags & flags);
2043 }
2044
2045 /**
2046 * cpufreq_get_current_driver - Return the current driver's name.
2047 *
2048 * Return the name string of the currently registered cpufreq driver or NULL if
2049 * none.
2050 */
cpufreq_get_current_driver(void)2051 const char *cpufreq_get_current_driver(void)
2052 {
2053 if (cpufreq_driver)
2054 return cpufreq_driver->name;
2055
2056 return NULL;
2057 }
2058 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2059
2060 /**
2061 * cpufreq_get_driver_data - Return current driver data.
2062 *
2063 * Return the private data of the currently registered cpufreq driver, or NULL
2064 * if no cpufreq driver has been registered.
2065 */
cpufreq_get_driver_data(void)2066 void *cpufreq_get_driver_data(void)
2067 {
2068 if (cpufreq_driver)
2069 return cpufreq_driver->driver_data;
2070
2071 return NULL;
2072 }
2073 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2074
2075 /*********************************************************************
2076 * NOTIFIER LISTS INTERFACE *
2077 *********************************************************************/
2078
2079 /**
2080 * cpufreq_register_notifier - Register a notifier with cpufreq.
2081 * @nb: notifier function to register.
2082 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2083 *
2084 * Add a notifier to one of two lists: either a list of notifiers that run on
2085 * clock rate changes (once before and once after every transition), or a list
2086 * of notifiers that ron on cpufreq policy changes.
2087 *
2088 * This function may sleep and it has the same return values as
2089 * blocking_notifier_chain_register().
2090 */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)2091 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2092 {
2093 int ret;
2094
2095 if (cpufreq_disabled())
2096 return -EINVAL;
2097
2098 switch (list) {
2099 case CPUFREQ_TRANSITION_NOTIFIER:
2100 mutex_lock(&cpufreq_fast_switch_lock);
2101
2102 if (cpufreq_fast_switch_count > 0) {
2103 mutex_unlock(&cpufreq_fast_switch_lock);
2104 return -EBUSY;
2105 }
2106 ret = srcu_notifier_chain_register(
2107 &cpufreq_transition_notifier_list, nb);
2108 if (!ret)
2109 cpufreq_fast_switch_count--;
2110
2111 mutex_unlock(&cpufreq_fast_switch_lock);
2112 break;
2113 case CPUFREQ_POLICY_NOTIFIER:
2114 ret = blocking_notifier_chain_register(
2115 &cpufreq_policy_notifier_list, nb);
2116 break;
2117 default:
2118 ret = -EINVAL;
2119 }
2120
2121 return ret;
2122 }
2123 EXPORT_SYMBOL(cpufreq_register_notifier);
2124
2125 /**
2126 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2127 * @nb: notifier block to be unregistered.
2128 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2129 *
2130 * Remove a notifier from one of the cpufreq notifier lists.
2131 *
2132 * This function may sleep and it has the same return values as
2133 * blocking_notifier_chain_unregister().
2134 */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)2135 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2136 {
2137 int ret;
2138
2139 if (cpufreq_disabled())
2140 return -EINVAL;
2141
2142 switch (list) {
2143 case CPUFREQ_TRANSITION_NOTIFIER:
2144 mutex_lock(&cpufreq_fast_switch_lock);
2145
2146 ret = srcu_notifier_chain_unregister(
2147 &cpufreq_transition_notifier_list, nb);
2148 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2149 cpufreq_fast_switch_count++;
2150
2151 mutex_unlock(&cpufreq_fast_switch_lock);
2152 break;
2153 case CPUFREQ_POLICY_NOTIFIER:
2154 ret = blocking_notifier_chain_unregister(
2155 &cpufreq_policy_notifier_list, nb);
2156 break;
2157 default:
2158 ret = -EINVAL;
2159 }
2160
2161 return ret;
2162 }
2163 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2164
2165
2166 /*********************************************************************
2167 * GOVERNORS *
2168 *********************************************************************/
2169
2170 /**
2171 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2172 * @policy: cpufreq policy to switch the frequency for.
2173 * @target_freq: New frequency to set (may be approximate).
2174 *
2175 * Carry out a fast frequency switch without sleeping.
2176 *
2177 * The driver's ->fast_switch() callback invoked by this function must be
2178 * suitable for being called from within RCU-sched read-side critical sections
2179 * and it is expected to select the minimum available frequency greater than or
2180 * equal to @target_freq (CPUFREQ_RELATION_L).
2181 *
2182 * This function must not be called if policy->fast_switch_enabled is unset.
2183 *
2184 * Governors calling this function must guarantee that it will never be invoked
2185 * twice in parallel for the same policy and that it will never be called in
2186 * parallel with either ->target() or ->target_index() for the same policy.
2187 *
2188 * Returns the actual frequency set for the CPU.
2189 *
2190 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2191 * error condition, the hardware configuration must be preserved.
2192 */
cpufreq_driver_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2193 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2194 unsigned int target_freq)
2195 {
2196 unsigned int freq;
2197 int cpu;
2198
2199 target_freq = clamp_val(target_freq, policy->min, policy->max);
2200 freq = cpufreq_driver->fast_switch(policy, target_freq);
2201
2202 if (!freq)
2203 return 0;
2204
2205 policy->cur = freq;
2206 arch_set_freq_scale(policy->related_cpus, freq,
2207 policy->cpuinfo.max_freq);
2208 cpufreq_stats_record_transition(policy, freq);
2209
2210 if (trace_cpu_frequency_enabled()) {
2211 for_each_cpu(cpu, policy->cpus)
2212 trace_cpu_frequency(freq, cpu);
2213 }
2214
2215 return freq;
2216 }
2217 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2218
2219 /**
2220 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2221 * @cpu: Target CPU.
2222 * @min_perf: Minimum (required) performance level (units of @capacity).
2223 * @target_perf: Target (desired) performance level (units of @capacity).
2224 * @capacity: Capacity of the target CPU.
2225 *
2226 * Carry out a fast performance level switch of @cpu without sleeping.
2227 *
2228 * The driver's ->adjust_perf() callback invoked by this function must be
2229 * suitable for being called from within RCU-sched read-side critical sections
2230 * and it is expected to select a suitable performance level equal to or above
2231 * @min_perf and preferably equal to or below @target_perf.
2232 *
2233 * This function must not be called if policy->fast_switch_enabled is unset.
2234 *
2235 * Governors calling this function must guarantee that it will never be invoked
2236 * twice in parallel for the same CPU and that it will never be called in
2237 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2238 * the same CPU.
2239 */
cpufreq_driver_adjust_perf(unsigned int cpu,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)2240 void cpufreq_driver_adjust_perf(unsigned int cpu,
2241 unsigned long min_perf,
2242 unsigned long target_perf,
2243 unsigned long capacity)
2244 {
2245 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2246 }
2247
2248 /**
2249 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2250 *
2251 * Return 'true' if the ->adjust_perf callback is present for the
2252 * current driver or 'false' otherwise.
2253 */
cpufreq_driver_has_adjust_perf(void)2254 bool cpufreq_driver_has_adjust_perf(void)
2255 {
2256 return !!cpufreq_driver->adjust_perf;
2257 }
2258
2259 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int index)2260 static int __target_intermediate(struct cpufreq_policy *policy,
2261 struct cpufreq_freqs *freqs, int index)
2262 {
2263 int ret;
2264
2265 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2266
2267 /* We don't need to switch to intermediate freq */
2268 if (!freqs->new)
2269 return 0;
2270
2271 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2272 __func__, policy->cpu, freqs->old, freqs->new);
2273
2274 cpufreq_freq_transition_begin(policy, freqs);
2275 ret = cpufreq_driver->target_intermediate(policy, index);
2276 cpufreq_freq_transition_end(policy, freqs, ret);
2277
2278 if (ret)
2279 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2280 __func__, ret);
2281
2282 return ret;
2283 }
2284
__target_index(struct cpufreq_policy * policy,int index)2285 static int __target_index(struct cpufreq_policy *policy, int index)
2286 {
2287 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2288 unsigned int restore_freq, intermediate_freq = 0;
2289 unsigned int newfreq = policy->freq_table[index].frequency;
2290 int retval = -EINVAL;
2291 bool notify;
2292
2293 if (newfreq == policy->cur)
2294 return 0;
2295
2296 /* Save last value to restore later on errors */
2297 restore_freq = policy->cur;
2298
2299 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2300 if (notify) {
2301 /* Handle switching to intermediate frequency */
2302 if (cpufreq_driver->get_intermediate) {
2303 retval = __target_intermediate(policy, &freqs, index);
2304 if (retval)
2305 return retval;
2306
2307 intermediate_freq = freqs.new;
2308 /* Set old freq to intermediate */
2309 if (intermediate_freq)
2310 freqs.old = freqs.new;
2311 }
2312
2313 freqs.new = newfreq;
2314 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2315 __func__, policy->cpu, freqs.old, freqs.new);
2316
2317 cpufreq_freq_transition_begin(policy, &freqs);
2318 }
2319
2320 retval = cpufreq_driver->target_index(policy, index);
2321 if (retval)
2322 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2323 retval);
2324
2325 if (notify) {
2326 cpufreq_freq_transition_end(policy, &freqs, retval);
2327
2328 /*
2329 * Failed after setting to intermediate freq? Driver should have
2330 * reverted back to initial frequency and so should we. Check
2331 * here for intermediate_freq instead of get_intermediate, in
2332 * case we haven't switched to intermediate freq at all.
2333 */
2334 if (unlikely(retval && intermediate_freq)) {
2335 freqs.old = intermediate_freq;
2336 freqs.new = restore_freq;
2337 cpufreq_freq_transition_begin(policy, &freqs);
2338 cpufreq_freq_transition_end(policy, &freqs, 0);
2339 }
2340 }
2341
2342 return retval;
2343 }
2344
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2345 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2346 unsigned int target_freq,
2347 unsigned int relation)
2348 {
2349 unsigned int old_target_freq = target_freq;
2350
2351 if (cpufreq_disabled())
2352 return -ENODEV;
2353
2354 target_freq = __resolve_freq(policy, target_freq, policy->min,
2355 policy->max, relation);
2356
2357 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2358 policy->cpu, target_freq, relation, old_target_freq);
2359
2360 /*
2361 * This might look like a redundant call as we are checking it again
2362 * after finding index. But it is left intentionally for cases where
2363 * exactly same freq is called again and so we can save on few function
2364 * calls.
2365 */
2366 if (target_freq == policy->cur &&
2367 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2368 return 0;
2369
2370 if (cpufreq_driver->target) {
2371 /*
2372 * If the driver hasn't setup a single inefficient frequency,
2373 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2374 */
2375 if (!policy->efficiencies_available)
2376 relation &= ~CPUFREQ_RELATION_E;
2377
2378 return cpufreq_driver->target(policy, target_freq, relation);
2379 }
2380
2381 if (!cpufreq_driver->target_index)
2382 return -EINVAL;
2383
2384 return __target_index(policy, policy->cached_resolved_idx);
2385 }
2386 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2387
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2388 int cpufreq_driver_target(struct cpufreq_policy *policy,
2389 unsigned int target_freq,
2390 unsigned int relation)
2391 {
2392 int ret;
2393
2394 down_write(&policy->rwsem);
2395
2396 ret = __cpufreq_driver_target(policy, target_freq, relation);
2397
2398 up_write(&policy->rwsem);
2399
2400 return ret;
2401 }
2402 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2403
cpufreq_fallback_governor(void)2404 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2405 {
2406 return NULL;
2407 }
2408
cpufreq_init_governor(struct cpufreq_policy * policy)2409 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2410 {
2411 int ret;
2412
2413 /* Don't start any governor operations if we are entering suspend */
2414 if (cpufreq_suspended)
2415 return 0;
2416 /*
2417 * Governor might not be initiated here if ACPI _PPC changed
2418 * notification happened, so check it.
2419 */
2420 if (!policy->governor)
2421 return -EINVAL;
2422
2423 /* Platform doesn't want dynamic frequency switching ? */
2424 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2425 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2426 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2427
2428 if (gov) {
2429 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2430 policy->governor->name, gov->name);
2431 policy->governor = gov;
2432 } else {
2433 return -EINVAL;
2434 }
2435 }
2436
2437 if (!try_module_get(policy->governor->owner))
2438 return -EINVAL;
2439
2440 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2441
2442 if (policy->governor->init) {
2443 ret = policy->governor->init(policy);
2444 if (ret) {
2445 module_put(policy->governor->owner);
2446 return ret;
2447 }
2448 }
2449
2450 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2451
2452 return 0;
2453 }
2454
cpufreq_exit_governor(struct cpufreq_policy * policy)2455 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2456 {
2457 if (cpufreq_suspended || !policy->governor)
2458 return;
2459
2460 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2461
2462 if (policy->governor->exit)
2463 policy->governor->exit(policy);
2464
2465 module_put(policy->governor->owner);
2466 }
2467
cpufreq_start_governor(struct cpufreq_policy * policy)2468 int cpufreq_start_governor(struct cpufreq_policy *policy)
2469 {
2470 int ret;
2471
2472 if (cpufreq_suspended)
2473 return 0;
2474
2475 if (!policy->governor)
2476 return -EINVAL;
2477
2478 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2479
2480 if (cpufreq_driver->get)
2481 cpufreq_verify_current_freq(policy, false);
2482
2483 if (policy->governor->start) {
2484 ret = policy->governor->start(policy);
2485 if (ret)
2486 return ret;
2487 }
2488
2489 if (policy->governor->limits)
2490 policy->governor->limits(policy);
2491
2492 return 0;
2493 }
2494
cpufreq_stop_governor(struct cpufreq_policy * policy)2495 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2496 {
2497 if (cpufreq_suspended || !policy->governor)
2498 return;
2499
2500 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2501
2502 if (policy->governor->stop)
2503 policy->governor->stop(policy);
2504 }
2505
cpufreq_governor_limits(struct cpufreq_policy * policy)2506 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2507 {
2508 if (cpufreq_suspended || !policy->governor)
2509 return;
2510
2511 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2512
2513 if (policy->governor->limits)
2514 policy->governor->limits(policy);
2515 }
2516
cpufreq_register_governor(struct cpufreq_governor * governor)2517 int cpufreq_register_governor(struct cpufreq_governor *governor)
2518 {
2519 int err;
2520
2521 if (!governor)
2522 return -EINVAL;
2523
2524 if (cpufreq_disabled())
2525 return -ENODEV;
2526
2527 mutex_lock(&cpufreq_governor_mutex);
2528
2529 err = -EBUSY;
2530 if (!find_governor(governor->name)) {
2531 err = 0;
2532 list_add(&governor->governor_list, &cpufreq_governor_list);
2533 }
2534
2535 mutex_unlock(&cpufreq_governor_mutex);
2536 return err;
2537 }
2538 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2539
cpufreq_unregister_governor(struct cpufreq_governor * governor)2540 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2541 {
2542 struct cpufreq_policy *policy;
2543 unsigned long flags;
2544
2545 if (!governor)
2546 return;
2547
2548 if (cpufreq_disabled())
2549 return;
2550
2551 /* clear last_governor for all inactive policies */
2552 read_lock_irqsave(&cpufreq_driver_lock, flags);
2553 for_each_inactive_policy(policy) {
2554 if (!strcmp(policy->last_governor, governor->name)) {
2555 policy->governor = NULL;
2556 strcpy(policy->last_governor, "\0");
2557 }
2558 }
2559 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2560
2561 mutex_lock(&cpufreq_governor_mutex);
2562 list_del(&governor->governor_list);
2563 mutex_unlock(&cpufreq_governor_mutex);
2564 }
2565 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2566
2567
2568 /*********************************************************************
2569 * POLICY INTERFACE *
2570 *********************************************************************/
2571
2572 /**
2573 * cpufreq_get_policy - get the current cpufreq_policy
2574 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2575 * is written
2576 * @cpu: CPU to find the policy for
2577 *
2578 * Reads the current cpufreq policy.
2579 */
cpufreq_get_policy(struct cpufreq_policy * policy,unsigned int cpu)2580 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2581 {
2582 struct cpufreq_policy *cpu_policy;
2583 if (!policy)
2584 return -EINVAL;
2585
2586 cpu_policy = cpufreq_cpu_get(cpu);
2587 if (!cpu_policy)
2588 return -EINVAL;
2589
2590 memcpy(policy, cpu_policy, sizeof(*policy));
2591
2592 cpufreq_cpu_put(cpu_policy);
2593 return 0;
2594 }
2595 EXPORT_SYMBOL(cpufreq_get_policy);
2596
2597 /**
2598 * cpufreq_set_policy - Modify cpufreq policy parameters.
2599 * @policy: Policy object to modify.
2600 * @new_gov: Policy governor pointer.
2601 * @new_pol: Policy value (for drivers with built-in governors).
2602 *
2603 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2604 * limits to be set for the policy, update @policy with the verified limits
2605 * values and either invoke the driver's ->setpolicy() callback (if present) or
2606 * carry out a governor update for @policy. That is, run the current governor's
2607 * ->limits() callback (if @new_gov points to the same object as the one in
2608 * @policy) or replace the governor for @policy with @new_gov.
2609 *
2610 * The cpuinfo part of @policy is not updated by this function.
2611 */
cpufreq_set_policy(struct cpufreq_policy * policy,struct cpufreq_governor * new_gov,unsigned int new_pol)2612 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2613 struct cpufreq_governor *new_gov,
2614 unsigned int new_pol)
2615 {
2616 struct cpufreq_policy_data new_data;
2617 struct cpufreq_governor *old_gov;
2618 int ret;
2619
2620 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2621 new_data.freq_table = policy->freq_table;
2622 new_data.cpu = policy->cpu;
2623 /*
2624 * PM QoS framework collects all the requests from users and provide us
2625 * the final aggregated value here.
2626 */
2627 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2628 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2629
2630 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2631 new_data.cpu, new_data.min, new_data.max);
2632
2633 /*
2634 * Verify that the CPU speed can be set within these limits and make sure
2635 * that min <= max.
2636 */
2637 ret = cpufreq_driver->verify(&new_data);
2638 if (ret)
2639 return ret;
2640
2641 /*
2642 * Resolve policy min/max to available frequencies. It ensures
2643 * no frequency resolution will neither overshoot the requested maximum
2644 * nor undershoot the requested minimum.
2645 *
2646 * Avoid storing intermediate values in policy->max or policy->min and
2647 * compiler optimizations around them because they may be accessed
2648 * concurrently by cpufreq_driver_resolve_freq() during the update.
2649 */
2650 WRITE_ONCE(policy->max, __resolve_freq(policy, new_data.max,
2651 new_data.min, new_data.max,
2652 CPUFREQ_RELATION_H));
2653 new_data.min = __resolve_freq(policy, new_data.min, new_data.min,
2654 new_data.max, CPUFREQ_RELATION_L);
2655 WRITE_ONCE(policy->min, new_data.min > policy->max ? policy->max : new_data.min);
2656
2657 trace_cpu_frequency_limits(policy);
2658
2659 policy->cached_target_freq = UINT_MAX;
2660
2661 pr_debug("new min and max freqs are %u - %u kHz\n",
2662 policy->min, policy->max);
2663
2664 if (cpufreq_driver->setpolicy) {
2665 policy->policy = new_pol;
2666 pr_debug("setting range\n");
2667 return cpufreq_driver->setpolicy(policy);
2668 }
2669
2670 if (new_gov == policy->governor) {
2671 pr_debug("governor limits update\n");
2672 cpufreq_governor_limits(policy);
2673 return 0;
2674 }
2675
2676 pr_debug("governor switch\n");
2677
2678 /* save old, working values */
2679 old_gov = policy->governor;
2680 /* end old governor */
2681 if (old_gov) {
2682 cpufreq_stop_governor(policy);
2683 cpufreq_exit_governor(policy);
2684 }
2685
2686 /* start new governor */
2687 policy->governor = new_gov;
2688 ret = cpufreq_init_governor(policy);
2689 if (!ret) {
2690 ret = cpufreq_start_governor(policy);
2691 if (!ret) {
2692 pr_debug("governor change\n");
2693 sched_cpufreq_governor_change(policy, old_gov);
2694 return 0;
2695 }
2696 cpufreq_exit_governor(policy);
2697 }
2698
2699 /* new governor failed, so re-start old one */
2700 pr_debug("starting governor %s failed\n", policy->governor->name);
2701 if (old_gov) {
2702 policy->governor = old_gov;
2703 if (cpufreq_init_governor(policy))
2704 policy->governor = NULL;
2705 else
2706 cpufreq_start_governor(policy);
2707 }
2708
2709 return ret;
2710 }
2711
2712 /**
2713 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2714 * @cpu: CPU to re-evaluate the policy for.
2715 *
2716 * Update the current frequency for the cpufreq policy of @cpu and use
2717 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2718 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2719 * for the policy in question, among other things.
2720 */
cpufreq_update_policy(unsigned int cpu)2721 void cpufreq_update_policy(unsigned int cpu)
2722 {
2723 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2724
2725 if (!policy)
2726 return;
2727
2728 /*
2729 * BIOS might change freq behind our back
2730 * -> ask driver for current freq and notify governors about a change
2731 */
2732 if (cpufreq_driver->get && has_target() &&
2733 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2734 goto unlock;
2735
2736 refresh_frequency_limits(policy);
2737
2738 unlock:
2739 cpufreq_cpu_release(policy);
2740 }
2741 EXPORT_SYMBOL(cpufreq_update_policy);
2742
2743 /**
2744 * cpufreq_update_limits - Update policy limits for a given CPU.
2745 * @cpu: CPU to update the policy limits for.
2746 *
2747 * Invoke the driver's ->update_limits callback if present or call
2748 * cpufreq_update_policy() for @cpu.
2749 */
cpufreq_update_limits(unsigned int cpu)2750 void cpufreq_update_limits(unsigned int cpu)
2751 {
2752 struct cpufreq_policy *policy;
2753
2754 policy = cpufreq_cpu_get(cpu);
2755 if (!policy)
2756 return;
2757
2758 if (cpufreq_driver->update_limits)
2759 cpufreq_driver->update_limits(cpu);
2760 else
2761 cpufreq_update_policy(cpu);
2762
2763 cpufreq_cpu_put(policy);
2764 }
2765 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2766
2767 /*********************************************************************
2768 * BOOST *
2769 *********************************************************************/
cpufreq_boost_set_sw(struct cpufreq_policy * policy,int state)2770 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2771 {
2772 int ret;
2773
2774 if (!policy->freq_table)
2775 return -ENXIO;
2776
2777 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2778 if (ret) {
2779 pr_err("%s: Policy frequency update failed\n", __func__);
2780 return ret;
2781 }
2782
2783 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2784 if (ret < 0)
2785 return ret;
2786
2787 return 0;
2788 }
2789
cpufreq_boost_trigger_state(int state)2790 int cpufreq_boost_trigger_state(int state)
2791 {
2792 struct cpufreq_policy *policy;
2793 unsigned long flags;
2794 int ret = 0;
2795
2796 if (cpufreq_driver->boost_enabled == state)
2797 return 0;
2798
2799 write_lock_irqsave(&cpufreq_driver_lock, flags);
2800 cpufreq_driver->boost_enabled = state;
2801 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2802
2803 cpus_read_lock();
2804 for_each_active_policy(policy) {
2805 policy->boost_enabled = state;
2806 ret = cpufreq_driver->set_boost(policy, state);
2807 if (ret) {
2808 policy->boost_enabled = !policy->boost_enabled;
2809 goto err_reset_state;
2810 }
2811 }
2812 cpus_read_unlock();
2813
2814 return 0;
2815
2816 err_reset_state:
2817 cpus_read_unlock();
2818
2819 write_lock_irqsave(&cpufreq_driver_lock, flags);
2820 cpufreq_driver->boost_enabled = !state;
2821 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2822
2823 pr_err("%s: Cannot %s BOOST\n",
2824 __func__, state ? "enable" : "disable");
2825
2826 return ret;
2827 }
2828
cpufreq_boost_supported(void)2829 static bool cpufreq_boost_supported(void)
2830 {
2831 return cpufreq_driver->set_boost;
2832 }
2833
create_boost_sysfs_file(void)2834 static int create_boost_sysfs_file(void)
2835 {
2836 int ret;
2837
2838 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2839 if (ret)
2840 pr_err("%s: cannot register global BOOST sysfs file\n",
2841 __func__);
2842
2843 return ret;
2844 }
2845
remove_boost_sysfs_file(void)2846 static void remove_boost_sysfs_file(void)
2847 {
2848 if (cpufreq_boost_supported())
2849 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2850 }
2851
cpufreq_enable_boost_support(void)2852 int cpufreq_enable_boost_support(void)
2853 {
2854 if (!cpufreq_driver)
2855 return -EINVAL;
2856
2857 if (cpufreq_boost_supported())
2858 return 0;
2859
2860 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2861
2862 /* This will get removed on driver unregister */
2863 return create_boost_sysfs_file();
2864 }
2865 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2866
cpufreq_boost_enabled(void)2867 int cpufreq_boost_enabled(void)
2868 {
2869 return cpufreq_driver->boost_enabled;
2870 }
2871 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2872
2873 /*********************************************************************
2874 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2875 *********************************************************************/
2876 static enum cpuhp_state hp_online;
2877
cpuhp_cpufreq_online(unsigned int cpu)2878 static int cpuhp_cpufreq_online(unsigned int cpu)
2879 {
2880 cpufreq_online(cpu);
2881
2882 return 0;
2883 }
2884
cpuhp_cpufreq_offline(unsigned int cpu)2885 static int cpuhp_cpufreq_offline(unsigned int cpu)
2886 {
2887 cpufreq_offline(cpu);
2888
2889 return 0;
2890 }
2891
2892 /**
2893 * cpufreq_register_driver - register a CPU Frequency driver
2894 * @driver_data: A struct cpufreq_driver containing the values#
2895 * submitted by the CPU Frequency driver.
2896 *
2897 * Registers a CPU Frequency driver to this core code. This code
2898 * returns zero on success, -EEXIST when another driver got here first
2899 * (and isn't unregistered in the meantime).
2900 *
2901 */
cpufreq_register_driver(struct cpufreq_driver * driver_data)2902 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2903 {
2904 unsigned long flags;
2905 int ret;
2906
2907 if (cpufreq_disabled())
2908 return -ENODEV;
2909
2910 /*
2911 * The cpufreq core depends heavily on the availability of device
2912 * structure, make sure they are available before proceeding further.
2913 */
2914 if (!get_cpu_device(0))
2915 return -EPROBE_DEFER;
2916
2917 if (!driver_data || !driver_data->verify || !driver_data->init ||
2918 !(driver_data->setpolicy || driver_data->target_index ||
2919 driver_data->target) ||
2920 (driver_data->setpolicy && (driver_data->target_index ||
2921 driver_data->target)) ||
2922 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2923 (!driver_data->online != !driver_data->offline) ||
2924 (driver_data->adjust_perf && !driver_data->fast_switch))
2925 return -EINVAL;
2926
2927 pr_debug("trying to register driver %s\n", driver_data->name);
2928
2929 /* Protect against concurrent CPU online/offline. */
2930 cpus_read_lock();
2931
2932 write_lock_irqsave(&cpufreq_driver_lock, flags);
2933 if (cpufreq_driver) {
2934 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2935 ret = -EEXIST;
2936 goto out;
2937 }
2938 cpufreq_driver = driver_data;
2939 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2940
2941 /*
2942 * Mark support for the scheduler's frequency invariance engine for
2943 * drivers that implement target(), target_index() or fast_switch().
2944 */
2945 if (!cpufreq_driver->setpolicy) {
2946 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2947 pr_debug("supports frequency invariance");
2948 }
2949
2950 if (driver_data->setpolicy)
2951 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2952
2953 if (cpufreq_boost_supported()) {
2954 ret = create_boost_sysfs_file();
2955 if (ret)
2956 goto err_null_driver;
2957 }
2958
2959 ret = subsys_interface_register(&cpufreq_interface);
2960 if (ret)
2961 goto err_boost_unreg;
2962
2963 if (unlikely(list_empty(&cpufreq_policy_list))) {
2964 /* if all ->init() calls failed, unregister */
2965 ret = -ENODEV;
2966 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2967 driver_data->name);
2968 goto err_if_unreg;
2969 }
2970
2971 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2972 "cpufreq:online",
2973 cpuhp_cpufreq_online,
2974 cpuhp_cpufreq_offline);
2975 if (ret < 0)
2976 goto err_if_unreg;
2977 hp_online = ret;
2978 ret = 0;
2979
2980 pr_debug("driver %s up and running\n", driver_data->name);
2981 goto out;
2982
2983 err_if_unreg:
2984 subsys_interface_unregister(&cpufreq_interface);
2985 err_boost_unreg:
2986 remove_boost_sysfs_file();
2987 err_null_driver:
2988 write_lock_irqsave(&cpufreq_driver_lock, flags);
2989 cpufreq_driver = NULL;
2990 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2991 out:
2992 cpus_read_unlock();
2993 return ret;
2994 }
2995 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2996
2997 /*
2998 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2999 *
3000 * Unregister the current CPUFreq driver. Only call this if you have
3001 * the right to do so, i.e. if you have succeeded in initialising before!
3002 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
3003 * currently not initialised.
3004 */
cpufreq_unregister_driver(struct cpufreq_driver * driver)3005 void cpufreq_unregister_driver(struct cpufreq_driver *driver)
3006 {
3007 unsigned long flags;
3008
3009 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
3010 return;
3011
3012 pr_debug("unregistering driver %s\n", driver->name);
3013
3014 /* Protect against concurrent cpu hotplug */
3015 cpus_read_lock();
3016 subsys_interface_unregister(&cpufreq_interface);
3017 remove_boost_sysfs_file();
3018 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
3019 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
3020
3021 write_lock_irqsave(&cpufreq_driver_lock, flags);
3022
3023 cpufreq_driver = NULL;
3024
3025 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3026 cpus_read_unlock();
3027 }
3028 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3029
cpufreq_core_init(void)3030 static int __init cpufreq_core_init(void)
3031 {
3032 struct cpufreq_governor *gov = cpufreq_default_governor();
3033 struct device *dev_root;
3034
3035 if (cpufreq_disabled())
3036 return -ENODEV;
3037
3038 dev_root = bus_get_dev_root(&cpu_subsys);
3039 if (dev_root) {
3040 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3041 put_device(dev_root);
3042 }
3043 BUG_ON(!cpufreq_global_kobject);
3044
3045 if (!strlen(default_governor))
3046 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3047
3048 return 0;
3049 }
3050 module_param(off, int, 0444);
3051 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3052 core_initcall(cpufreq_core_init);
3053