1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 # include <linux/entry-common.h>
71 # endif
72 #endif
73
74 #include <uapi/linux/sched/types.h>
75
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
85
86 #include "sched.h"
87 #include "stats.h"
88 #include "autogroup.h"
89
90 #include "autogroup.h"
91 #include "pelt.h"
92 #include "smp.h"
93 #include "stats.h"
94
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101
102 /*
103 * Export tracepoints that act as a bare tracehook (ie: have no trace event
104 * associated with them) to allow external modules to probe them.
105 */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117
118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
119
120 #ifdef CONFIG_SCHED_DEBUG
121 /*
122 * Debugging: various feature bits
123 *
124 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125 * sysctl_sched_features, defined in sched.h, to allow constants propagation
126 * at compile time and compiler optimization based on features default.
127 */
128 #define SCHED_FEAT(name, enabled) \
129 (1UL << __SCHED_FEAT_##name) * enabled |
130 const_debug unsigned int sysctl_sched_features =
131 #include "features.h"
132 0;
133 #undef SCHED_FEAT
134
135 /*
136 * Print a warning if need_resched is set for the given duration (if
137 * LATENCY_WARN is enabled).
138 *
139 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140 * per boot.
141 */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 #endif /* CONFIG_SCHED_DEBUG */
145
146 /*
147 * Number of tasks to iterate in a single balance run.
148 * Limited because this is done with IRQs disabled.
149 */
150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151
152 __read_mostly int scheduler_running;
153
154 #ifdef CONFIG_SCHED_CORE
155
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157
158 /* kernel prio, less is more */
__task_prio(const struct task_struct * p)159 static inline int __task_prio(const struct task_struct *p)
160 {
161 if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 return -2;
163
164 if (rt_prio(p->prio)) /* includes deadline */
165 return p->prio; /* [-1, 99] */
166
167 if (p->sched_class == &idle_sched_class)
168 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169
170 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171 }
172
173 /*
174 * l(a,b)
175 * le(a,b) := !l(b,a)
176 * g(a,b) := l(b,a)
177 * ge(a,b) := !l(a,b)
178 */
179
180 /* real prio, less is less */
prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)181 static inline bool prio_less(const struct task_struct *a,
182 const struct task_struct *b, bool in_fi)
183 {
184
185 int pa = __task_prio(a), pb = __task_prio(b);
186
187 if (-pa < -pb)
188 return true;
189
190 if (-pb < -pa)
191 return false;
192
193 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 return !dl_time_before(a->dl.deadline, b->dl.deadline);
195
196 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
197 return cfs_prio_less(a, b, in_fi);
198
199 return false;
200 }
201
__sched_core_less(const struct task_struct * a,const struct task_struct * b)202 static inline bool __sched_core_less(const struct task_struct *a,
203 const struct task_struct *b)
204 {
205 if (a->core_cookie < b->core_cookie)
206 return true;
207
208 if (a->core_cookie > b->core_cookie)
209 return false;
210
211 /* flip prio, so high prio is leftmost */
212 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
213 return true;
214
215 return false;
216 }
217
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221 {
222 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223 }
224
rb_sched_core_cmp(const void * key,const struct rb_node * node)225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226 {
227 const struct task_struct *p = __node_2_sc(node);
228 unsigned long cookie = (unsigned long)key;
229
230 if (cookie < p->core_cookie)
231 return -1;
232
233 if (cookie > p->core_cookie)
234 return 1;
235
236 return 0;
237 }
238
sched_core_enqueue(struct rq * rq,struct task_struct * p)239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240 {
241 rq->core->core_task_seq++;
242
243 if (!p->core_cookie)
244 return;
245
246 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247 }
248
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250 {
251 rq->core->core_task_seq++;
252
253 if (sched_core_enqueued(p)) {
254 rb_erase(&p->core_node, &rq->core_tree);
255 RB_CLEAR_NODE(&p->core_node);
256 }
257
258 /*
259 * Migrating the last task off the cpu, with the cpu in forced idle
260 * state. Reschedule to create an accounting edge for forced idle,
261 * and re-examine whether the core is still in forced idle state.
262 */
263 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 rq->core->core_forceidle_count && rq->curr == rq->idle)
265 resched_curr(rq);
266 }
267
sched_task_is_throttled(struct task_struct * p,int cpu)268 static int sched_task_is_throttled(struct task_struct *p, int cpu)
269 {
270 if (p->sched_class->task_is_throttled)
271 return p->sched_class->task_is_throttled(p, cpu);
272
273 return 0;
274 }
275
sched_core_next(struct task_struct * p,unsigned long cookie)276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277 {
278 struct rb_node *node = &p->core_node;
279 int cpu = task_cpu(p);
280
281 do {
282 node = rb_next(node);
283 if (!node)
284 return NULL;
285
286 p = __node_2_sc(node);
287 if (p->core_cookie != cookie)
288 return NULL;
289
290 } while (sched_task_is_throttled(p, cpu));
291
292 return p;
293 }
294
295 /*
296 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297 * If no suitable task is found, NULL will be returned.
298 */
sched_core_find(struct rq * rq,unsigned long cookie)299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300 {
301 struct task_struct *p;
302 struct rb_node *node;
303
304 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
305 if (!node)
306 return NULL;
307
308 p = __node_2_sc(node);
309 if (!sched_task_is_throttled(p, rq->cpu))
310 return p;
311
312 return sched_core_next(p, cookie);
313 }
314
315 /*
316 * Magic required such that:
317 *
318 * raw_spin_rq_lock(rq);
319 * ...
320 * raw_spin_rq_unlock(rq);
321 *
322 * ends up locking and unlocking the _same_ lock, and all CPUs
323 * always agree on what rq has what lock.
324 *
325 * XXX entirely possible to selectively enable cores, don't bother for now.
326 */
327
328 static DEFINE_MUTEX(sched_core_mutex);
329 static atomic_t sched_core_count;
330 static struct cpumask sched_core_mask;
331
sched_core_lock(int cpu,unsigned long * flags)332 static void sched_core_lock(int cpu, unsigned long *flags)
333 {
334 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 int t, i = 0;
336
337 local_irq_save(*flags);
338 for_each_cpu(t, smt_mask)
339 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340 }
341
sched_core_unlock(int cpu,unsigned long * flags)342 static void sched_core_unlock(int cpu, unsigned long *flags)
343 {
344 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 int t;
346
347 for_each_cpu(t, smt_mask)
348 raw_spin_unlock(&cpu_rq(t)->__lock);
349 local_irq_restore(*flags);
350 }
351
__sched_core_flip(bool enabled)352 static void __sched_core_flip(bool enabled)
353 {
354 unsigned long flags;
355 int cpu, t;
356
357 cpus_read_lock();
358
359 /*
360 * Toggle the online cores, one by one.
361 */
362 cpumask_copy(&sched_core_mask, cpu_online_mask);
363 for_each_cpu(cpu, &sched_core_mask) {
364 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365
366 sched_core_lock(cpu, &flags);
367
368 for_each_cpu(t, smt_mask)
369 cpu_rq(t)->core_enabled = enabled;
370
371 cpu_rq(cpu)->core->core_forceidle_start = 0;
372
373 sched_core_unlock(cpu, &flags);
374
375 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
376 }
377
378 /*
379 * Toggle the offline CPUs.
380 */
381 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 cpu_rq(cpu)->core_enabled = enabled;
383
384 cpus_read_unlock();
385 }
386
sched_core_assert_empty(void)387 static void sched_core_assert_empty(void)
388 {
389 int cpu;
390
391 for_each_possible_cpu(cpu)
392 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393 }
394
__sched_core_enable(void)395 static void __sched_core_enable(void)
396 {
397 static_branch_enable(&__sched_core_enabled);
398 /*
399 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 * and future ones will observe !sched_core_disabled().
401 */
402 synchronize_rcu();
403 __sched_core_flip(true);
404 sched_core_assert_empty();
405 }
406
__sched_core_disable(void)407 static void __sched_core_disable(void)
408 {
409 sched_core_assert_empty();
410 __sched_core_flip(false);
411 static_branch_disable(&__sched_core_enabled);
412 }
413
sched_core_get(void)414 void sched_core_get(void)
415 {
416 if (atomic_inc_not_zero(&sched_core_count))
417 return;
418
419 mutex_lock(&sched_core_mutex);
420 if (!atomic_read(&sched_core_count))
421 __sched_core_enable();
422
423 smp_mb__before_atomic();
424 atomic_inc(&sched_core_count);
425 mutex_unlock(&sched_core_mutex);
426 }
427
__sched_core_put(struct work_struct * work)428 static void __sched_core_put(struct work_struct *work)
429 {
430 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
431 __sched_core_disable();
432 mutex_unlock(&sched_core_mutex);
433 }
434 }
435
sched_core_put(void)436 void sched_core_put(void)
437 {
438 static DECLARE_WORK(_work, __sched_core_put);
439
440 /*
441 * "There can be only one"
442 *
443 * Either this is the last one, or we don't actually need to do any
444 * 'work'. If it is the last *again*, we rely on
445 * WORK_STRUCT_PENDING_BIT.
446 */
447 if (!atomic_add_unless(&sched_core_count, -1, 1))
448 schedule_work(&_work);
449 }
450
451 #else /* !CONFIG_SCHED_CORE */
452
sched_core_enqueue(struct rq * rq,struct task_struct * p)453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
454 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
456
457 #endif /* CONFIG_SCHED_CORE */
458
459 /*
460 * Serialization rules:
461 *
462 * Lock order:
463 *
464 * p->pi_lock
465 * rq->lock
466 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467 *
468 * rq1->lock
469 * rq2->lock where: rq1 < rq2
470 *
471 * Regular state:
472 *
473 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474 * local CPU's rq->lock, it optionally removes the task from the runqueue and
475 * always looks at the local rq data structures to find the most eligible task
476 * to run next.
477 *
478 * Task enqueue is also under rq->lock, possibly taken from another CPU.
479 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480 * the local CPU to avoid bouncing the runqueue state around [ see
481 * ttwu_queue_wakelist() ]
482 *
483 * Task wakeup, specifically wakeups that involve migration, are horribly
484 * complicated to avoid having to take two rq->locks.
485 *
486 * Special state:
487 *
488 * System-calls and anything external will use task_rq_lock() which acquires
489 * both p->pi_lock and rq->lock. As a consequence the state they change is
490 * stable while holding either lock:
491 *
492 * - sched_setaffinity()/
493 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
494 * - set_user_nice(): p->se.load, p->*prio
495 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
496 * p->se.load, p->rt_priority,
497 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
498 * - sched_setnuma(): p->numa_preferred_nid
499 * - sched_move_task(): p->sched_task_group
500 * - uclamp_update_active() p->uclamp*
501 *
502 * p->state <- TASK_*:
503 *
504 * is changed locklessly using set_current_state(), __set_current_state() or
505 * set_special_state(), see their respective comments, or by
506 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
507 * concurrent self.
508 *
509 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510 *
511 * is set by activate_task() and cleared by deactivate_task(), under
512 * rq->lock. Non-zero indicates the task is runnable, the special
513 * ON_RQ_MIGRATING state is used for migration without holding both
514 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515 *
516 * p->on_cpu <- { 0, 1 }:
517 *
518 * is set by prepare_task() and cleared by finish_task() such that it will be
519 * set before p is scheduled-in and cleared after p is scheduled-out, both
520 * under rq->lock. Non-zero indicates the task is running on its CPU.
521 *
522 * [ The astute reader will observe that it is possible for two tasks on one
523 * CPU to have ->on_cpu = 1 at the same time. ]
524 *
525 * task_cpu(p): is changed by set_task_cpu(), the rules are:
526 *
527 * - Don't call set_task_cpu() on a blocked task:
528 *
529 * We don't care what CPU we're not running on, this simplifies hotplug,
530 * the CPU assignment of blocked tasks isn't required to be valid.
531 *
532 * - for try_to_wake_up(), called under p->pi_lock:
533 *
534 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
535 *
536 * - for migration called under rq->lock:
537 * [ see task_on_rq_migrating() in task_rq_lock() ]
538 *
539 * o move_queued_task()
540 * o detach_task()
541 *
542 * - for migration called under double_rq_lock():
543 *
544 * o __migrate_swap_task()
545 * o push_rt_task() / pull_rt_task()
546 * o push_dl_task() / pull_dl_task()
547 * o dl_task_offline_migration()
548 *
549 */
550
raw_spin_rq_lock_nested(struct rq * rq,int subclass)551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552 {
553 raw_spinlock_t *lock;
554
555 /* Matches synchronize_rcu() in __sched_core_enable() */
556 preempt_disable();
557 if (sched_core_disabled()) {
558 raw_spin_lock_nested(&rq->__lock, subclass);
559 /* preempt_count *MUST* be > 1 */
560 preempt_enable_no_resched();
561 return;
562 }
563
564 for (;;) {
565 lock = __rq_lockp(rq);
566 raw_spin_lock_nested(lock, subclass);
567 if (likely(lock == __rq_lockp(rq))) {
568 /* preempt_count *MUST* be > 1 */
569 preempt_enable_no_resched();
570 return;
571 }
572 raw_spin_unlock(lock);
573 }
574 }
575
raw_spin_rq_trylock(struct rq * rq)576 bool raw_spin_rq_trylock(struct rq *rq)
577 {
578 raw_spinlock_t *lock;
579 bool ret;
580
581 /* Matches synchronize_rcu() in __sched_core_enable() */
582 preempt_disable();
583 if (sched_core_disabled()) {
584 ret = raw_spin_trylock(&rq->__lock);
585 preempt_enable();
586 return ret;
587 }
588
589 for (;;) {
590 lock = __rq_lockp(rq);
591 ret = raw_spin_trylock(lock);
592 if (!ret || (likely(lock == __rq_lockp(rq)))) {
593 preempt_enable();
594 return ret;
595 }
596 raw_spin_unlock(lock);
597 }
598 }
599
raw_spin_rq_unlock(struct rq * rq)600 void raw_spin_rq_unlock(struct rq *rq)
601 {
602 raw_spin_unlock(rq_lockp(rq));
603 }
604
605 #ifdef CONFIG_SMP
606 /*
607 * double_rq_lock - safely lock two runqueues
608 */
double_rq_lock(struct rq * rq1,struct rq * rq2)609 void double_rq_lock(struct rq *rq1, struct rq *rq2)
610 {
611 lockdep_assert_irqs_disabled();
612
613 if (rq_order_less(rq2, rq1))
614 swap(rq1, rq2);
615
616 raw_spin_rq_lock(rq1);
617 if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
619
620 double_rq_clock_clear_update(rq1, rq2);
621 }
622 #endif
623
624 /*
625 * __task_rq_lock - lock the rq @p resides on.
626 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
628 __acquires(rq->lock)
629 {
630 struct rq *rq;
631
632 lockdep_assert_held(&p->pi_lock);
633
634 for (;;) {
635 rq = task_rq(p);
636 raw_spin_rq_lock(rq);
637 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
638 rq_pin_lock(rq, rf);
639 return rq;
640 }
641 raw_spin_rq_unlock(rq);
642
643 while (unlikely(task_on_rq_migrating(p)))
644 cpu_relax();
645 }
646 }
647
648 /*
649 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 __acquires(p->pi_lock)
653 __acquires(rq->lock)
654 {
655 struct rq *rq;
656
657 for (;;) {
658 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
659 rq = task_rq(p);
660 raw_spin_rq_lock(rq);
661 /*
662 * move_queued_task() task_rq_lock()
663 *
664 * ACQUIRE (rq->lock)
665 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
666 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
667 * [S] ->cpu = new_cpu [L] task_rq()
668 * [L] ->on_rq
669 * RELEASE (rq->lock)
670 *
671 * If we observe the old CPU in task_rq_lock(), the acquire of
672 * the old rq->lock will fully serialize against the stores.
673 *
674 * If we observe the new CPU in task_rq_lock(), the address
675 * dependency headed by '[L] rq = task_rq()' and the acquire
676 * will pair with the WMB to ensure we then also see migrating.
677 */
678 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
679 rq_pin_lock(rq, rf);
680 return rq;
681 }
682 raw_spin_rq_unlock(rq);
683 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
684
685 while (unlikely(task_on_rq_migrating(p)))
686 cpu_relax();
687 }
688 }
689
690 /*
691 * RQ-clock updating methods:
692 */
693
update_rq_clock_task(struct rq * rq,s64 delta)694 static void update_rq_clock_task(struct rq *rq, s64 delta)
695 {
696 /*
697 * In theory, the compile should just see 0 here, and optimize out the call
698 * to sched_rt_avg_update. But I don't trust it...
699 */
700 s64 __maybe_unused steal = 0, irq_delta = 0;
701
702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
704
705 /*
706 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 * this case when a previous update_rq_clock() happened inside a
708 * {soft,}irq region.
709 *
710 * When this happens, we stop ->clock_task and only update the
711 * prev_irq_time stamp to account for the part that fit, so that a next
712 * update will consume the rest. This ensures ->clock_task is
713 * monotonic.
714 *
715 * It does however cause some slight miss-attribution of {soft,}irq
716 * time, a more accurate solution would be to update the irq_time using
717 * the current rq->clock timestamp, except that would require using
718 * atomic ops.
719 */
720 if (irq_delta > delta)
721 irq_delta = delta;
722
723 rq->prev_irq_time += irq_delta;
724 delta -= irq_delta;
725 delayacct_irq(rq->curr, irq_delta);
726 #endif
727 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
728 if (static_key_false((¶virt_steal_rq_enabled))) {
729 steal = paravirt_steal_clock(cpu_of(rq));
730 steal -= rq->prev_steal_time_rq;
731
732 if (unlikely(steal > delta))
733 steal = delta;
734
735 rq->prev_steal_time_rq += steal;
736 delta -= steal;
737 }
738 #endif
739
740 rq->clock_task += delta;
741
742 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
743 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
744 update_irq_load_avg(rq, irq_delta + steal);
745 #endif
746 update_rq_clock_pelt(rq, delta);
747 }
748
update_rq_clock(struct rq * rq)749 void update_rq_clock(struct rq *rq)
750 {
751 s64 delta;
752
753 lockdep_assert_rq_held(rq);
754
755 if (rq->clock_update_flags & RQCF_ACT_SKIP)
756 return;
757
758 #ifdef CONFIG_SCHED_DEBUG
759 if (sched_feat(WARN_DOUBLE_CLOCK))
760 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
761 rq->clock_update_flags |= RQCF_UPDATED;
762 #endif
763
764 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
765 if (delta < 0)
766 return;
767 rq->clock += delta;
768 update_rq_clock_task(rq, delta);
769 }
770
771 #ifdef CONFIG_SCHED_HRTICK
772 /*
773 * Use HR-timers to deliver accurate preemption points.
774 */
775
hrtick_clear(struct rq * rq)776 static void hrtick_clear(struct rq *rq)
777 {
778 if (hrtimer_active(&rq->hrtick_timer))
779 hrtimer_cancel(&rq->hrtick_timer);
780 }
781
782 /*
783 * High-resolution timer tick.
784 * Runs from hardirq context with interrupts disabled.
785 */
hrtick(struct hrtimer * timer)786 static enum hrtimer_restart hrtick(struct hrtimer *timer)
787 {
788 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
789 struct rq_flags rf;
790
791 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
792
793 rq_lock(rq, &rf);
794 update_rq_clock(rq);
795 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
796 rq_unlock(rq, &rf);
797
798 return HRTIMER_NORESTART;
799 }
800
801 #ifdef CONFIG_SMP
802
__hrtick_restart(struct rq * rq)803 static void __hrtick_restart(struct rq *rq)
804 {
805 struct hrtimer *timer = &rq->hrtick_timer;
806 ktime_t time = rq->hrtick_time;
807
808 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
809 }
810
811 /*
812 * called from hardirq (IPI) context
813 */
__hrtick_start(void * arg)814 static void __hrtick_start(void *arg)
815 {
816 struct rq *rq = arg;
817 struct rq_flags rf;
818
819 rq_lock(rq, &rf);
820 __hrtick_restart(rq);
821 rq_unlock(rq, &rf);
822 }
823
824 /*
825 * Called to set the hrtick timer state.
826 *
827 * called with rq->lock held and irqs disabled
828 */
hrtick_start(struct rq * rq,u64 delay)829 void hrtick_start(struct rq *rq, u64 delay)
830 {
831 struct hrtimer *timer = &rq->hrtick_timer;
832 s64 delta;
833
834 /*
835 * Don't schedule slices shorter than 10000ns, that just
836 * doesn't make sense and can cause timer DoS.
837 */
838 delta = max_t(s64, delay, 10000LL);
839 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
840
841 if (rq == this_rq())
842 __hrtick_restart(rq);
843 else
844 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
845 }
846
847 #else
848 /*
849 * Called to set the hrtick timer state.
850 *
851 * called with rq->lock held and irqs disabled
852 */
hrtick_start(struct rq * rq,u64 delay)853 void hrtick_start(struct rq *rq, u64 delay)
854 {
855 /*
856 * Don't schedule slices shorter than 10000ns, that just
857 * doesn't make sense. Rely on vruntime for fairness.
858 */
859 delay = max_t(u64, delay, 10000LL);
860 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
861 HRTIMER_MODE_REL_PINNED_HARD);
862 }
863
864 #endif /* CONFIG_SMP */
865
hrtick_rq_init(struct rq * rq)866 static void hrtick_rq_init(struct rq *rq)
867 {
868 #ifdef CONFIG_SMP
869 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
870 #endif
871 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
872 rq->hrtick_timer.function = hrtick;
873 }
874 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)875 static inline void hrtick_clear(struct rq *rq)
876 {
877 }
878
hrtick_rq_init(struct rq * rq)879 static inline void hrtick_rq_init(struct rq *rq)
880 {
881 }
882 #endif /* CONFIG_SCHED_HRTICK */
883
884 /*
885 * cmpxchg based fetch_or, macro so it works for different integer types
886 */
887 #define fetch_or(ptr, mask) \
888 ({ \
889 typeof(ptr) _ptr = (ptr); \
890 typeof(mask) _mask = (mask); \
891 typeof(*_ptr) _val = *_ptr; \
892 \
893 do { \
894 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
895 _val; \
896 })
897
898 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
899 /*
900 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
901 * this avoids any races wrt polling state changes and thereby avoids
902 * spurious IPIs.
903 */
set_nr_and_not_polling(struct task_struct * p)904 static inline bool set_nr_and_not_polling(struct task_struct *p)
905 {
906 struct thread_info *ti = task_thread_info(p);
907 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
908 }
909
910 /*
911 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
912 *
913 * If this returns true, then the idle task promises to call
914 * sched_ttwu_pending() and reschedule soon.
915 */
set_nr_if_polling(struct task_struct * p)916 static bool set_nr_if_polling(struct task_struct *p)
917 {
918 struct thread_info *ti = task_thread_info(p);
919 typeof(ti->flags) val = READ_ONCE(ti->flags);
920
921 for (;;) {
922 if (!(val & _TIF_POLLING_NRFLAG))
923 return false;
924 if (val & _TIF_NEED_RESCHED)
925 return true;
926 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
927 break;
928 }
929 return true;
930 }
931
932 #else
set_nr_and_not_polling(struct task_struct * p)933 static inline bool set_nr_and_not_polling(struct task_struct *p)
934 {
935 set_tsk_need_resched(p);
936 return true;
937 }
938
939 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)940 static inline bool set_nr_if_polling(struct task_struct *p)
941 {
942 return false;
943 }
944 #endif
945 #endif
946
__wake_q_add(struct wake_q_head * head,struct task_struct * task)947 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
948 {
949 struct wake_q_node *node = &task->wake_q;
950
951 /*
952 * Atomically grab the task, if ->wake_q is !nil already it means
953 * it's already queued (either by us or someone else) and will get the
954 * wakeup due to that.
955 *
956 * In order to ensure that a pending wakeup will observe our pending
957 * state, even in the failed case, an explicit smp_mb() must be used.
958 */
959 smp_mb__before_atomic();
960 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
961 return false;
962
963 /*
964 * The head is context local, there can be no concurrency.
965 */
966 *head->lastp = node;
967 head->lastp = &node->next;
968 return true;
969 }
970
971 /**
972 * wake_q_add() - queue a wakeup for 'later' waking.
973 * @head: the wake_q_head to add @task to
974 * @task: the task to queue for 'later' wakeup
975 *
976 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
977 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
978 * instantly.
979 *
980 * This function must be used as-if it were wake_up_process(); IOW the task
981 * must be ready to be woken at this location.
982 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)983 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
984 {
985 if (__wake_q_add(head, task))
986 get_task_struct(task);
987 }
988
989 /**
990 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
991 * @head: the wake_q_head to add @task to
992 * @task: the task to queue for 'later' wakeup
993 *
994 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
995 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
996 * instantly.
997 *
998 * This function must be used as-if it were wake_up_process(); IOW the task
999 * must be ready to be woken at this location.
1000 *
1001 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1002 * that already hold reference to @task can call the 'safe' version and trust
1003 * wake_q to do the right thing depending whether or not the @task is already
1004 * queued for wakeup.
1005 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1006 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1007 {
1008 if (!__wake_q_add(head, task))
1009 put_task_struct(task);
1010 }
1011
wake_up_q(struct wake_q_head * head)1012 void wake_up_q(struct wake_q_head *head)
1013 {
1014 struct wake_q_node *node = head->first;
1015
1016 while (node != WAKE_Q_TAIL) {
1017 struct task_struct *task;
1018
1019 task = container_of(node, struct task_struct, wake_q);
1020 /* Task can safely be re-inserted now: */
1021 node = node->next;
1022 task->wake_q.next = NULL;
1023
1024 /*
1025 * wake_up_process() executes a full barrier, which pairs with
1026 * the queueing in wake_q_add() so as not to miss wakeups.
1027 */
1028 wake_up_process(task);
1029 put_task_struct(task);
1030 }
1031 }
1032
1033 /*
1034 * resched_curr - mark rq's current task 'to be rescheduled now'.
1035 *
1036 * On UP this means the setting of the need_resched flag, on SMP it
1037 * might also involve a cross-CPU call to trigger the scheduler on
1038 * the target CPU.
1039 */
resched_curr(struct rq * rq)1040 void resched_curr(struct rq *rq)
1041 {
1042 struct task_struct *curr = rq->curr;
1043 int cpu;
1044
1045 lockdep_assert_rq_held(rq);
1046
1047 if (test_tsk_need_resched(curr))
1048 return;
1049
1050 cpu = cpu_of(rq);
1051
1052 if (cpu == smp_processor_id()) {
1053 set_tsk_need_resched(curr);
1054 set_preempt_need_resched();
1055 return;
1056 }
1057
1058 if (set_nr_and_not_polling(curr))
1059 smp_send_reschedule(cpu);
1060 else
1061 trace_sched_wake_idle_without_ipi(cpu);
1062 }
1063
resched_cpu(int cpu)1064 void resched_cpu(int cpu)
1065 {
1066 struct rq *rq = cpu_rq(cpu);
1067 unsigned long flags;
1068
1069 raw_spin_rq_lock_irqsave(rq, flags);
1070 if (cpu_online(cpu) || cpu == smp_processor_id())
1071 resched_curr(rq);
1072 raw_spin_rq_unlock_irqrestore(rq, flags);
1073 }
1074
1075 #ifdef CONFIG_SMP
1076 #ifdef CONFIG_NO_HZ_COMMON
1077 /*
1078 * In the semi idle case, use the nearest busy CPU for migrating timers
1079 * from an idle CPU. This is good for power-savings.
1080 *
1081 * We don't do similar optimization for completely idle system, as
1082 * selecting an idle CPU will add more delays to the timers than intended
1083 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1084 */
get_nohz_timer_target(void)1085 int get_nohz_timer_target(void)
1086 {
1087 int i, cpu = smp_processor_id(), default_cpu = -1;
1088 struct sched_domain *sd;
1089 const struct cpumask *hk_mask;
1090
1091 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1092 if (!idle_cpu(cpu))
1093 return cpu;
1094 default_cpu = cpu;
1095 }
1096
1097 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1098
1099 guard(rcu)();
1100
1101 for_each_domain(cpu, sd) {
1102 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1103 if (cpu == i)
1104 continue;
1105
1106 if (!idle_cpu(i))
1107 return i;
1108 }
1109 }
1110
1111 if (default_cpu == -1)
1112 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1113
1114 return default_cpu;
1115 }
1116
1117 /*
1118 * When add_timer_on() enqueues a timer into the timer wheel of an
1119 * idle CPU then this timer might expire before the next timer event
1120 * which is scheduled to wake up that CPU. In case of a completely
1121 * idle system the next event might even be infinite time into the
1122 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1123 * leaves the inner idle loop so the newly added timer is taken into
1124 * account when the CPU goes back to idle and evaluates the timer
1125 * wheel for the next timer event.
1126 */
wake_up_idle_cpu(int cpu)1127 static void wake_up_idle_cpu(int cpu)
1128 {
1129 struct rq *rq = cpu_rq(cpu);
1130
1131 if (cpu == smp_processor_id())
1132 return;
1133
1134 if (set_nr_and_not_polling(rq->idle))
1135 smp_send_reschedule(cpu);
1136 else
1137 trace_sched_wake_idle_without_ipi(cpu);
1138 }
1139
wake_up_full_nohz_cpu(int cpu)1140 static bool wake_up_full_nohz_cpu(int cpu)
1141 {
1142 /*
1143 * We just need the target to call irq_exit() and re-evaluate
1144 * the next tick. The nohz full kick at least implies that.
1145 * If needed we can still optimize that later with an
1146 * empty IRQ.
1147 */
1148 if (cpu_is_offline(cpu))
1149 return true; /* Don't try to wake offline CPUs. */
1150 if (tick_nohz_full_cpu(cpu)) {
1151 if (cpu != smp_processor_id() ||
1152 tick_nohz_tick_stopped())
1153 tick_nohz_full_kick_cpu(cpu);
1154 return true;
1155 }
1156
1157 return false;
1158 }
1159
1160 /*
1161 * Wake up the specified CPU. If the CPU is going offline, it is the
1162 * caller's responsibility to deal with the lost wakeup, for example,
1163 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1164 */
wake_up_nohz_cpu(int cpu)1165 void wake_up_nohz_cpu(int cpu)
1166 {
1167 if (!wake_up_full_nohz_cpu(cpu))
1168 wake_up_idle_cpu(cpu);
1169 }
1170
nohz_csd_func(void * info)1171 static void nohz_csd_func(void *info)
1172 {
1173 struct rq *rq = info;
1174 int cpu = cpu_of(rq);
1175 unsigned int flags;
1176
1177 /*
1178 * Release the rq::nohz_csd.
1179 */
1180 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1181 WARN_ON(!(flags & NOHZ_KICK_MASK));
1182
1183 rq->idle_balance = idle_cpu(cpu);
1184 if (rq->idle_balance) {
1185 rq->nohz_idle_balance = flags;
1186 __raise_softirq_irqoff(SCHED_SOFTIRQ);
1187 }
1188 }
1189
1190 #endif /* CONFIG_NO_HZ_COMMON */
1191
1192 #ifdef CONFIG_NO_HZ_FULL
__need_bw_check(struct rq * rq,struct task_struct * p)1193 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1194 {
1195 if (rq->nr_running != 1)
1196 return false;
1197
1198 if (p->sched_class != &fair_sched_class)
1199 return false;
1200
1201 if (!task_on_rq_queued(p))
1202 return false;
1203
1204 return true;
1205 }
1206
sched_can_stop_tick(struct rq * rq)1207 bool sched_can_stop_tick(struct rq *rq)
1208 {
1209 int fifo_nr_running;
1210
1211 /* Deadline tasks, even if single, need the tick */
1212 if (rq->dl.dl_nr_running)
1213 return false;
1214
1215 /*
1216 * If there are more than one RR tasks, we need the tick to affect the
1217 * actual RR behaviour.
1218 */
1219 if (rq->rt.rr_nr_running) {
1220 if (rq->rt.rr_nr_running == 1)
1221 return true;
1222 else
1223 return false;
1224 }
1225
1226 /*
1227 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1228 * forced preemption between FIFO tasks.
1229 */
1230 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1231 if (fifo_nr_running)
1232 return true;
1233
1234 /*
1235 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1236 * if there's more than one we need the tick for involuntary
1237 * preemption.
1238 */
1239 if (rq->nr_running > 1)
1240 return false;
1241
1242 /*
1243 * If there is one task and it has CFS runtime bandwidth constraints
1244 * and it's on the cpu now we don't want to stop the tick.
1245 * This check prevents clearing the bit if a newly enqueued task here is
1246 * dequeued by migrating while the constrained task continues to run.
1247 * E.g. going from 2->1 without going through pick_next_task().
1248 */
1249 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1250 if (cfs_task_bw_constrained(rq->curr))
1251 return false;
1252 }
1253
1254 return true;
1255 }
1256 #endif /* CONFIG_NO_HZ_FULL */
1257 #endif /* CONFIG_SMP */
1258
1259 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1260 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1261 /*
1262 * Iterate task_group tree rooted at *from, calling @down when first entering a
1263 * node and @up when leaving it for the final time.
1264 *
1265 * Caller must hold rcu_lock or sufficient equivalent.
1266 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1267 int walk_tg_tree_from(struct task_group *from,
1268 tg_visitor down, tg_visitor up, void *data)
1269 {
1270 struct task_group *parent, *child;
1271 int ret;
1272
1273 parent = from;
1274
1275 down:
1276 ret = (*down)(parent, data);
1277 if (ret)
1278 goto out;
1279 list_for_each_entry_rcu(child, &parent->children, siblings) {
1280 parent = child;
1281 goto down;
1282
1283 up:
1284 continue;
1285 }
1286 ret = (*up)(parent, data);
1287 if (ret || parent == from)
1288 goto out;
1289
1290 child = parent;
1291 parent = parent->parent;
1292 if (parent)
1293 goto up;
1294 out:
1295 return ret;
1296 }
1297
tg_nop(struct task_group * tg,void * data)1298 int tg_nop(struct task_group *tg, void *data)
1299 {
1300 return 0;
1301 }
1302 #endif
1303
set_load_weight(struct task_struct * p,bool update_load)1304 static void set_load_weight(struct task_struct *p, bool update_load)
1305 {
1306 int prio = p->static_prio - MAX_RT_PRIO;
1307 struct load_weight lw;
1308
1309 if (task_has_idle_policy(p)) {
1310 lw.weight = scale_load(WEIGHT_IDLEPRIO);
1311 lw.inv_weight = WMULT_IDLEPRIO;
1312 } else {
1313 lw.weight = scale_load(sched_prio_to_weight[prio]);
1314 lw.inv_weight = sched_prio_to_wmult[prio];
1315 }
1316
1317 /*
1318 * SCHED_OTHER tasks have to update their load when changing their
1319 * weight
1320 */
1321 if (update_load && p->sched_class == &fair_sched_class)
1322 reweight_task(p, &lw);
1323 else
1324 p->se.load = lw;
1325 }
1326
1327 #ifdef CONFIG_UCLAMP_TASK
1328 /*
1329 * Serializes updates of utilization clamp values
1330 *
1331 * The (slow-path) user-space triggers utilization clamp value updates which
1332 * can require updates on (fast-path) scheduler's data structures used to
1333 * support enqueue/dequeue operations.
1334 * While the per-CPU rq lock protects fast-path update operations, user-space
1335 * requests are serialized using a mutex to reduce the risk of conflicting
1336 * updates or API abuses.
1337 */
1338 static DEFINE_MUTEX(uclamp_mutex);
1339
1340 /* Max allowed minimum utilization */
1341 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1342
1343 /* Max allowed maximum utilization */
1344 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1345
1346 /*
1347 * By default RT tasks run at the maximum performance point/capacity of the
1348 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1349 * SCHED_CAPACITY_SCALE.
1350 *
1351 * This knob allows admins to change the default behavior when uclamp is being
1352 * used. In battery powered devices, particularly, running at the maximum
1353 * capacity and frequency will increase energy consumption and shorten the
1354 * battery life.
1355 *
1356 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1357 *
1358 * This knob will not override the system default sched_util_clamp_min defined
1359 * above.
1360 */
1361 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1362
1363 /* All clamps are required to be less or equal than these values */
1364 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1365
1366 /*
1367 * This static key is used to reduce the uclamp overhead in the fast path. It
1368 * primarily disables the call to uclamp_rq_{inc, dec}() in
1369 * enqueue/dequeue_task().
1370 *
1371 * This allows users to continue to enable uclamp in their kernel config with
1372 * minimum uclamp overhead in the fast path.
1373 *
1374 * As soon as userspace modifies any of the uclamp knobs, the static key is
1375 * enabled, since we have an actual users that make use of uclamp
1376 * functionality.
1377 *
1378 * The knobs that would enable this static key are:
1379 *
1380 * * A task modifying its uclamp value with sched_setattr().
1381 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1382 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1383 */
1384 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1385
1386 /* Integer rounded range for each bucket */
1387 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1388
1389 #define for_each_clamp_id(clamp_id) \
1390 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1391
uclamp_bucket_id(unsigned int clamp_value)1392 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1393 {
1394 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1395 }
1396
uclamp_none(enum uclamp_id clamp_id)1397 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1398 {
1399 if (clamp_id == UCLAMP_MIN)
1400 return 0;
1401 return SCHED_CAPACITY_SCALE;
1402 }
1403
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1404 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1405 unsigned int value, bool user_defined)
1406 {
1407 uc_se->value = value;
1408 uc_se->bucket_id = uclamp_bucket_id(value);
1409 uc_se->user_defined = user_defined;
1410 }
1411
1412 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1413 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1414 unsigned int clamp_value)
1415 {
1416 /*
1417 * Avoid blocked utilization pushing up the frequency when we go
1418 * idle (which drops the max-clamp) by retaining the last known
1419 * max-clamp.
1420 */
1421 if (clamp_id == UCLAMP_MAX) {
1422 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1423 return clamp_value;
1424 }
1425
1426 return uclamp_none(UCLAMP_MIN);
1427 }
1428
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1429 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1430 unsigned int clamp_value)
1431 {
1432 /* Reset max-clamp retention only on idle exit */
1433 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1434 return;
1435
1436 uclamp_rq_set(rq, clamp_id, clamp_value);
1437 }
1438
1439 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1440 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1441 unsigned int clamp_value)
1442 {
1443 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1444 int bucket_id = UCLAMP_BUCKETS - 1;
1445
1446 /*
1447 * Since both min and max clamps are max aggregated, find the
1448 * top most bucket with tasks in.
1449 */
1450 for ( ; bucket_id >= 0; bucket_id--) {
1451 if (!bucket[bucket_id].tasks)
1452 continue;
1453 return bucket[bucket_id].value;
1454 }
1455
1456 /* No tasks -- default clamp values */
1457 return uclamp_idle_value(rq, clamp_id, clamp_value);
1458 }
1459
__uclamp_update_util_min_rt_default(struct task_struct * p)1460 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1461 {
1462 unsigned int default_util_min;
1463 struct uclamp_se *uc_se;
1464
1465 lockdep_assert_held(&p->pi_lock);
1466
1467 uc_se = &p->uclamp_req[UCLAMP_MIN];
1468
1469 /* Only sync if user didn't override the default */
1470 if (uc_se->user_defined)
1471 return;
1472
1473 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1474 uclamp_se_set(uc_se, default_util_min, false);
1475 }
1476
uclamp_update_util_min_rt_default(struct task_struct * p)1477 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1478 {
1479 struct rq_flags rf;
1480 struct rq *rq;
1481
1482 if (!rt_task(p))
1483 return;
1484
1485 /* Protect updates to p->uclamp_* */
1486 rq = task_rq_lock(p, &rf);
1487 __uclamp_update_util_min_rt_default(p);
1488 task_rq_unlock(rq, p, &rf);
1489 }
1490
1491 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1492 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1493 {
1494 /* Copy by value as we could modify it */
1495 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1496 #ifdef CONFIG_UCLAMP_TASK_GROUP
1497 unsigned int tg_min, tg_max, value;
1498
1499 /*
1500 * Tasks in autogroups or root task group will be
1501 * restricted by system defaults.
1502 */
1503 if (task_group_is_autogroup(task_group(p)))
1504 return uc_req;
1505 if (task_group(p) == &root_task_group)
1506 return uc_req;
1507
1508 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1509 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1510 value = uc_req.value;
1511 value = clamp(value, tg_min, tg_max);
1512 uclamp_se_set(&uc_req, value, false);
1513 #endif
1514
1515 return uc_req;
1516 }
1517
1518 /*
1519 * The effective clamp bucket index of a task depends on, by increasing
1520 * priority:
1521 * - the task specific clamp value, when explicitly requested from userspace
1522 * - the task group effective clamp value, for tasks not either in the root
1523 * group or in an autogroup
1524 * - the system default clamp value, defined by the sysadmin
1525 */
1526 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1527 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1528 {
1529 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1530 struct uclamp_se uc_max = uclamp_default[clamp_id];
1531
1532 /* System default restrictions always apply */
1533 if (unlikely(uc_req.value > uc_max.value))
1534 return uc_max;
1535
1536 return uc_req;
1537 }
1538
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1539 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1540 {
1541 struct uclamp_se uc_eff;
1542
1543 /* Task currently refcounted: use back-annotated (effective) value */
1544 if (p->uclamp[clamp_id].active)
1545 return (unsigned long)p->uclamp[clamp_id].value;
1546
1547 uc_eff = uclamp_eff_get(p, clamp_id);
1548
1549 return (unsigned long)uc_eff.value;
1550 }
1551
1552 /*
1553 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1554 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1555 * updates the rq's clamp value if required.
1556 *
1557 * Tasks can have a task-specific value requested from user-space, track
1558 * within each bucket the maximum value for tasks refcounted in it.
1559 * This "local max aggregation" allows to track the exact "requested" value
1560 * for each bucket when all its RUNNABLE tasks require the same clamp.
1561 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1562 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1563 enum uclamp_id clamp_id)
1564 {
1565 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1566 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1567 struct uclamp_bucket *bucket;
1568
1569 lockdep_assert_rq_held(rq);
1570
1571 /* Update task effective clamp */
1572 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1573
1574 bucket = &uc_rq->bucket[uc_se->bucket_id];
1575 bucket->tasks++;
1576 uc_se->active = true;
1577
1578 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1579
1580 /*
1581 * Local max aggregation: rq buckets always track the max
1582 * "requested" clamp value of its RUNNABLE tasks.
1583 */
1584 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1585 bucket->value = uc_se->value;
1586
1587 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1588 uclamp_rq_set(rq, clamp_id, uc_se->value);
1589 }
1590
1591 /*
1592 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1593 * is released. If this is the last task reference counting the rq's max
1594 * active clamp value, then the rq's clamp value is updated.
1595 *
1596 * Both refcounted tasks and rq's cached clamp values are expected to be
1597 * always valid. If it's detected they are not, as defensive programming,
1598 * enforce the expected state and warn.
1599 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1600 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1601 enum uclamp_id clamp_id)
1602 {
1603 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1604 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1605 struct uclamp_bucket *bucket;
1606 unsigned int bkt_clamp;
1607 unsigned int rq_clamp;
1608
1609 lockdep_assert_rq_held(rq);
1610
1611 /*
1612 * If sched_uclamp_used was enabled after task @p was enqueued,
1613 * we could end up with unbalanced call to uclamp_rq_dec_id().
1614 *
1615 * In this case the uc_se->active flag should be false since no uclamp
1616 * accounting was performed at enqueue time and we can just return
1617 * here.
1618 *
1619 * Need to be careful of the following enqueue/dequeue ordering
1620 * problem too
1621 *
1622 * enqueue(taskA)
1623 * // sched_uclamp_used gets enabled
1624 * enqueue(taskB)
1625 * dequeue(taskA)
1626 * // Must not decrement bucket->tasks here
1627 * dequeue(taskB)
1628 *
1629 * where we could end up with stale data in uc_se and
1630 * bucket[uc_se->bucket_id].
1631 *
1632 * The following check here eliminates the possibility of such race.
1633 */
1634 if (unlikely(!uc_se->active))
1635 return;
1636
1637 bucket = &uc_rq->bucket[uc_se->bucket_id];
1638
1639 SCHED_WARN_ON(!bucket->tasks);
1640 if (likely(bucket->tasks))
1641 bucket->tasks--;
1642
1643 uc_se->active = false;
1644
1645 /*
1646 * Keep "local max aggregation" simple and accept to (possibly)
1647 * overboost some RUNNABLE tasks in the same bucket.
1648 * The rq clamp bucket value is reset to its base value whenever
1649 * there are no more RUNNABLE tasks refcounting it.
1650 */
1651 if (likely(bucket->tasks))
1652 return;
1653
1654 rq_clamp = uclamp_rq_get(rq, clamp_id);
1655 /*
1656 * Defensive programming: this should never happen. If it happens,
1657 * e.g. due to future modification, warn and fixup the expected value.
1658 */
1659 SCHED_WARN_ON(bucket->value > rq_clamp);
1660 if (bucket->value >= rq_clamp) {
1661 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1662 uclamp_rq_set(rq, clamp_id, bkt_clamp);
1663 }
1664 }
1665
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1666 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1667 {
1668 enum uclamp_id clamp_id;
1669
1670 /*
1671 * Avoid any overhead until uclamp is actually used by the userspace.
1672 *
1673 * The condition is constructed such that a NOP is generated when
1674 * sched_uclamp_used is disabled.
1675 */
1676 if (!static_branch_unlikely(&sched_uclamp_used))
1677 return;
1678
1679 if (unlikely(!p->sched_class->uclamp_enabled))
1680 return;
1681
1682 for_each_clamp_id(clamp_id)
1683 uclamp_rq_inc_id(rq, p, clamp_id);
1684
1685 /* Reset clamp idle holding when there is one RUNNABLE task */
1686 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1687 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1688 }
1689
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1690 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1691 {
1692 enum uclamp_id clamp_id;
1693
1694 /*
1695 * Avoid any overhead until uclamp is actually used by the userspace.
1696 *
1697 * The condition is constructed such that a NOP is generated when
1698 * sched_uclamp_used is disabled.
1699 */
1700 if (!static_branch_unlikely(&sched_uclamp_used))
1701 return;
1702
1703 if (unlikely(!p->sched_class->uclamp_enabled))
1704 return;
1705
1706 for_each_clamp_id(clamp_id)
1707 uclamp_rq_dec_id(rq, p, clamp_id);
1708 }
1709
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1710 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1711 enum uclamp_id clamp_id)
1712 {
1713 if (!p->uclamp[clamp_id].active)
1714 return;
1715
1716 uclamp_rq_dec_id(rq, p, clamp_id);
1717 uclamp_rq_inc_id(rq, p, clamp_id);
1718
1719 /*
1720 * Make sure to clear the idle flag if we've transiently reached 0
1721 * active tasks on rq.
1722 */
1723 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1724 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1725 }
1726
1727 static inline void
uclamp_update_active(struct task_struct * p)1728 uclamp_update_active(struct task_struct *p)
1729 {
1730 enum uclamp_id clamp_id;
1731 struct rq_flags rf;
1732 struct rq *rq;
1733
1734 /*
1735 * Lock the task and the rq where the task is (or was) queued.
1736 *
1737 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1738 * price to pay to safely serialize util_{min,max} updates with
1739 * enqueues, dequeues and migration operations.
1740 * This is the same locking schema used by __set_cpus_allowed_ptr().
1741 */
1742 rq = task_rq_lock(p, &rf);
1743
1744 /*
1745 * Setting the clamp bucket is serialized by task_rq_lock().
1746 * If the task is not yet RUNNABLE and its task_struct is not
1747 * affecting a valid clamp bucket, the next time it's enqueued,
1748 * it will already see the updated clamp bucket value.
1749 */
1750 for_each_clamp_id(clamp_id)
1751 uclamp_rq_reinc_id(rq, p, clamp_id);
1752
1753 task_rq_unlock(rq, p, &rf);
1754 }
1755
1756 #ifdef CONFIG_UCLAMP_TASK_GROUP
1757 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1758 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1759 {
1760 struct css_task_iter it;
1761 struct task_struct *p;
1762
1763 css_task_iter_start(css, 0, &it);
1764 while ((p = css_task_iter_next(&it)))
1765 uclamp_update_active(p);
1766 css_task_iter_end(&it);
1767 }
1768
1769 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1770 #endif
1771
1772 #ifdef CONFIG_SYSCTL
1773 #ifdef CONFIG_UCLAMP_TASK
1774 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1775 static void uclamp_update_root_tg(void)
1776 {
1777 struct task_group *tg = &root_task_group;
1778
1779 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1780 sysctl_sched_uclamp_util_min, false);
1781 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1782 sysctl_sched_uclamp_util_max, false);
1783
1784 rcu_read_lock();
1785 cpu_util_update_eff(&root_task_group.css);
1786 rcu_read_unlock();
1787 }
1788 #else
uclamp_update_root_tg(void)1789 static void uclamp_update_root_tg(void) { }
1790 #endif
1791
uclamp_sync_util_min_rt_default(void)1792 static void uclamp_sync_util_min_rt_default(void)
1793 {
1794 struct task_struct *g, *p;
1795
1796 /*
1797 * copy_process() sysctl_uclamp
1798 * uclamp_min_rt = X;
1799 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1800 * // link thread smp_mb__after_spinlock()
1801 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1802 * sched_post_fork() for_each_process_thread()
1803 * __uclamp_sync_rt() __uclamp_sync_rt()
1804 *
1805 * Ensures that either sched_post_fork() will observe the new
1806 * uclamp_min_rt or for_each_process_thread() will observe the new
1807 * task.
1808 */
1809 read_lock(&tasklist_lock);
1810 smp_mb__after_spinlock();
1811 read_unlock(&tasklist_lock);
1812
1813 rcu_read_lock();
1814 for_each_process_thread(g, p)
1815 uclamp_update_util_min_rt_default(p);
1816 rcu_read_unlock();
1817 }
1818
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1819 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1820 void *buffer, size_t *lenp, loff_t *ppos)
1821 {
1822 bool update_root_tg = false;
1823 int old_min, old_max, old_min_rt;
1824 int result;
1825
1826 guard(mutex)(&uclamp_mutex);
1827
1828 old_min = sysctl_sched_uclamp_util_min;
1829 old_max = sysctl_sched_uclamp_util_max;
1830 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1831
1832 result = proc_dointvec(table, write, buffer, lenp, ppos);
1833 if (result)
1834 goto undo;
1835 if (!write)
1836 return 0;
1837
1838 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1839 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1840 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1841
1842 result = -EINVAL;
1843 goto undo;
1844 }
1845
1846 if (old_min != sysctl_sched_uclamp_util_min) {
1847 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1848 sysctl_sched_uclamp_util_min, false);
1849 update_root_tg = true;
1850 }
1851 if (old_max != sysctl_sched_uclamp_util_max) {
1852 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1853 sysctl_sched_uclamp_util_max, false);
1854 update_root_tg = true;
1855 }
1856
1857 if (update_root_tg) {
1858 static_branch_enable(&sched_uclamp_used);
1859 uclamp_update_root_tg();
1860 }
1861
1862 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1863 static_branch_enable(&sched_uclamp_used);
1864 uclamp_sync_util_min_rt_default();
1865 }
1866
1867 /*
1868 * We update all RUNNABLE tasks only when task groups are in use.
1869 * Otherwise, keep it simple and do just a lazy update at each next
1870 * task enqueue time.
1871 */
1872 return 0;
1873
1874 undo:
1875 sysctl_sched_uclamp_util_min = old_min;
1876 sysctl_sched_uclamp_util_max = old_max;
1877 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1878 return result;
1879 }
1880 #endif
1881 #endif
1882
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1883 static int uclamp_validate(struct task_struct *p,
1884 const struct sched_attr *attr)
1885 {
1886 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1887 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1888
1889 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1890 util_min = attr->sched_util_min;
1891
1892 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1893 return -EINVAL;
1894 }
1895
1896 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1897 util_max = attr->sched_util_max;
1898
1899 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1900 return -EINVAL;
1901 }
1902
1903 if (util_min != -1 && util_max != -1 && util_min > util_max)
1904 return -EINVAL;
1905
1906 /*
1907 * We have valid uclamp attributes; make sure uclamp is enabled.
1908 *
1909 * We need to do that here, because enabling static branches is a
1910 * blocking operation which obviously cannot be done while holding
1911 * scheduler locks.
1912 */
1913 static_branch_enable(&sched_uclamp_used);
1914
1915 return 0;
1916 }
1917
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1918 static bool uclamp_reset(const struct sched_attr *attr,
1919 enum uclamp_id clamp_id,
1920 struct uclamp_se *uc_se)
1921 {
1922 /* Reset on sched class change for a non user-defined clamp value. */
1923 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1924 !uc_se->user_defined)
1925 return true;
1926
1927 /* Reset on sched_util_{min,max} == -1. */
1928 if (clamp_id == UCLAMP_MIN &&
1929 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1930 attr->sched_util_min == -1) {
1931 return true;
1932 }
1933
1934 if (clamp_id == UCLAMP_MAX &&
1935 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1936 attr->sched_util_max == -1) {
1937 return true;
1938 }
1939
1940 return false;
1941 }
1942
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1943 static void __setscheduler_uclamp(struct task_struct *p,
1944 const struct sched_attr *attr)
1945 {
1946 enum uclamp_id clamp_id;
1947
1948 for_each_clamp_id(clamp_id) {
1949 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1950 unsigned int value;
1951
1952 if (!uclamp_reset(attr, clamp_id, uc_se))
1953 continue;
1954
1955 /*
1956 * RT by default have a 100% boost value that could be modified
1957 * at runtime.
1958 */
1959 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1960 value = sysctl_sched_uclamp_util_min_rt_default;
1961 else
1962 value = uclamp_none(clamp_id);
1963
1964 uclamp_se_set(uc_se, value, false);
1965
1966 }
1967
1968 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1969 return;
1970
1971 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1972 attr->sched_util_min != -1) {
1973 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1974 attr->sched_util_min, true);
1975 }
1976
1977 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1978 attr->sched_util_max != -1) {
1979 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1980 attr->sched_util_max, true);
1981 }
1982 }
1983
uclamp_fork(struct task_struct * p)1984 static void uclamp_fork(struct task_struct *p)
1985 {
1986 enum uclamp_id clamp_id;
1987
1988 /*
1989 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1990 * as the task is still at its early fork stages.
1991 */
1992 for_each_clamp_id(clamp_id)
1993 p->uclamp[clamp_id].active = false;
1994
1995 if (likely(!p->sched_reset_on_fork))
1996 return;
1997
1998 for_each_clamp_id(clamp_id) {
1999 uclamp_se_set(&p->uclamp_req[clamp_id],
2000 uclamp_none(clamp_id), false);
2001 }
2002 }
2003
uclamp_post_fork(struct task_struct * p)2004 static void uclamp_post_fork(struct task_struct *p)
2005 {
2006 uclamp_update_util_min_rt_default(p);
2007 }
2008
init_uclamp_rq(struct rq * rq)2009 static void __init init_uclamp_rq(struct rq *rq)
2010 {
2011 enum uclamp_id clamp_id;
2012 struct uclamp_rq *uc_rq = rq->uclamp;
2013
2014 for_each_clamp_id(clamp_id) {
2015 uc_rq[clamp_id] = (struct uclamp_rq) {
2016 .value = uclamp_none(clamp_id)
2017 };
2018 }
2019
2020 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2021 }
2022
init_uclamp(void)2023 static void __init init_uclamp(void)
2024 {
2025 struct uclamp_se uc_max = {};
2026 enum uclamp_id clamp_id;
2027 int cpu;
2028
2029 for_each_possible_cpu(cpu)
2030 init_uclamp_rq(cpu_rq(cpu));
2031
2032 for_each_clamp_id(clamp_id) {
2033 uclamp_se_set(&init_task.uclamp_req[clamp_id],
2034 uclamp_none(clamp_id), false);
2035 }
2036
2037 /* System defaults allow max clamp values for both indexes */
2038 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2039 for_each_clamp_id(clamp_id) {
2040 uclamp_default[clamp_id] = uc_max;
2041 #ifdef CONFIG_UCLAMP_TASK_GROUP
2042 root_task_group.uclamp_req[clamp_id] = uc_max;
2043 root_task_group.uclamp[clamp_id] = uc_max;
2044 #endif
2045 }
2046 }
2047
2048 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)2049 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2050 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)2051 static inline int uclamp_validate(struct task_struct *p,
2052 const struct sched_attr *attr)
2053 {
2054 return -EOPNOTSUPP;
2055 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)2056 static void __setscheduler_uclamp(struct task_struct *p,
2057 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)2058 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2059 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2060 static inline void init_uclamp(void) { }
2061 #endif /* CONFIG_UCLAMP_TASK */
2062
sched_task_on_rq(struct task_struct * p)2063 bool sched_task_on_rq(struct task_struct *p)
2064 {
2065 return task_on_rq_queued(p);
2066 }
2067
get_wchan(struct task_struct * p)2068 unsigned long get_wchan(struct task_struct *p)
2069 {
2070 unsigned long ip = 0;
2071 unsigned int state;
2072
2073 if (!p || p == current)
2074 return 0;
2075
2076 /* Only get wchan if task is blocked and we can keep it that way. */
2077 raw_spin_lock_irq(&p->pi_lock);
2078 state = READ_ONCE(p->__state);
2079 smp_rmb(); /* see try_to_wake_up() */
2080 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2081 ip = __get_wchan(p);
2082 raw_spin_unlock_irq(&p->pi_lock);
2083
2084 return ip;
2085 }
2086
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2087 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2088 {
2089 if (!(flags & ENQUEUE_NOCLOCK))
2090 update_rq_clock(rq);
2091
2092 if (!(flags & ENQUEUE_RESTORE)) {
2093 sched_info_enqueue(rq, p);
2094 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2095 }
2096
2097 uclamp_rq_inc(rq, p);
2098 p->sched_class->enqueue_task(rq, p, flags);
2099
2100 if (sched_core_enabled(rq))
2101 sched_core_enqueue(rq, p);
2102 }
2103
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2104 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2105 {
2106 if (sched_core_enabled(rq))
2107 sched_core_dequeue(rq, p, flags);
2108
2109 if (!(flags & DEQUEUE_NOCLOCK))
2110 update_rq_clock(rq);
2111
2112 if (!(flags & DEQUEUE_SAVE)) {
2113 sched_info_dequeue(rq, p);
2114 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2115 }
2116
2117 uclamp_rq_dec(rq, p);
2118 p->sched_class->dequeue_task(rq, p, flags);
2119 }
2120
activate_task(struct rq * rq,struct task_struct * p,int flags)2121 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2122 {
2123 if (task_on_rq_migrating(p))
2124 flags |= ENQUEUE_MIGRATED;
2125 if (flags & ENQUEUE_MIGRATED)
2126 sched_mm_cid_migrate_to(rq, p);
2127
2128 enqueue_task(rq, p, flags);
2129
2130 p->on_rq = TASK_ON_RQ_QUEUED;
2131 }
2132
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2133 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2134 {
2135 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2136
2137 dequeue_task(rq, p, flags);
2138 }
2139
__normal_prio(int policy,int rt_prio,int nice)2140 static inline int __normal_prio(int policy, int rt_prio, int nice)
2141 {
2142 int prio;
2143
2144 if (dl_policy(policy))
2145 prio = MAX_DL_PRIO - 1;
2146 else if (rt_policy(policy))
2147 prio = MAX_RT_PRIO - 1 - rt_prio;
2148 else
2149 prio = NICE_TO_PRIO(nice);
2150
2151 return prio;
2152 }
2153
2154 /*
2155 * Calculate the expected normal priority: i.e. priority
2156 * without taking RT-inheritance into account. Might be
2157 * boosted by interactivity modifiers. Changes upon fork,
2158 * setprio syscalls, and whenever the interactivity
2159 * estimator recalculates.
2160 */
normal_prio(struct task_struct * p)2161 static inline int normal_prio(struct task_struct *p)
2162 {
2163 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2164 }
2165
2166 /*
2167 * Calculate the current priority, i.e. the priority
2168 * taken into account by the scheduler. This value might
2169 * be boosted by RT tasks, or might be boosted by
2170 * interactivity modifiers. Will be RT if the task got
2171 * RT-boosted. If not then it returns p->normal_prio.
2172 */
effective_prio(struct task_struct * p)2173 static int effective_prio(struct task_struct *p)
2174 {
2175 p->normal_prio = normal_prio(p);
2176 /*
2177 * If we are RT tasks or we were boosted to RT priority,
2178 * keep the priority unchanged. Otherwise, update priority
2179 * to the normal priority:
2180 */
2181 if (!rt_prio(p->prio))
2182 return p->normal_prio;
2183 return p->prio;
2184 }
2185
2186 /**
2187 * task_curr - is this task currently executing on a CPU?
2188 * @p: the task in question.
2189 *
2190 * Return: 1 if the task is currently executing. 0 otherwise.
2191 */
task_curr(const struct task_struct * p)2192 inline int task_curr(const struct task_struct *p)
2193 {
2194 return cpu_curr(task_cpu(p)) == p;
2195 }
2196
2197 /*
2198 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2199 * use the balance_callback list if you want balancing.
2200 *
2201 * this means any call to check_class_changed() must be followed by a call to
2202 * balance_callback().
2203 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2204 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2205 const struct sched_class *prev_class,
2206 int oldprio)
2207 {
2208 if (prev_class != p->sched_class) {
2209 if (prev_class->switched_from)
2210 prev_class->switched_from(rq, p);
2211
2212 p->sched_class->switched_to(rq, p);
2213 } else if (oldprio != p->prio || dl_task(p))
2214 p->sched_class->prio_changed(rq, p, oldprio);
2215 }
2216
wakeup_preempt(struct rq * rq,struct task_struct * p,int flags)2217 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2218 {
2219 if (p->sched_class == rq->curr->sched_class)
2220 rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2221 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2222 resched_curr(rq);
2223
2224 /*
2225 * A queue event has occurred, and we're going to schedule. In
2226 * this case, we can save a useless back to back clock update.
2227 */
2228 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2229 rq_clock_skip_update(rq);
2230 }
2231
2232 static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2233 int __task_state_match(struct task_struct *p, unsigned int state)
2234 {
2235 if (READ_ONCE(p->__state) & state)
2236 return 1;
2237
2238 #ifdef CONFIG_PREEMPT_RT
2239 if (READ_ONCE(p->saved_state) & state)
2240 return -1;
2241 #endif
2242 return 0;
2243 }
2244
2245 static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2246 int task_state_match(struct task_struct *p, unsigned int state)
2247 {
2248 #ifdef CONFIG_PREEMPT_RT
2249 int match;
2250
2251 /*
2252 * Serialize against current_save_and_set_rtlock_wait_state() and
2253 * current_restore_rtlock_saved_state().
2254 */
2255 raw_spin_lock_irq(&p->pi_lock);
2256 match = __task_state_match(p, state);
2257 raw_spin_unlock_irq(&p->pi_lock);
2258
2259 return match;
2260 #else
2261 return __task_state_match(p, state);
2262 #endif
2263 }
2264
2265 /*
2266 * wait_task_inactive - wait for a thread to unschedule.
2267 *
2268 * Wait for the thread to block in any of the states set in @match_state.
2269 * If it changes, i.e. @p might have woken up, then return zero. When we
2270 * succeed in waiting for @p to be off its CPU, we return a positive number
2271 * (its total switch count). If a second call a short while later returns the
2272 * same number, the caller can be sure that @p has remained unscheduled the
2273 * whole time.
2274 *
2275 * The caller must ensure that the task *will* unschedule sometime soon,
2276 * else this function might spin for a *long* time. This function can't
2277 * be called with interrupts off, or it may introduce deadlock with
2278 * smp_call_function() if an IPI is sent by the same process we are
2279 * waiting to become inactive.
2280 */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2281 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2282 {
2283 int running, queued, match;
2284 struct rq_flags rf;
2285 unsigned long ncsw;
2286 struct rq *rq;
2287
2288 for (;;) {
2289 /*
2290 * We do the initial early heuristics without holding
2291 * any task-queue locks at all. We'll only try to get
2292 * the runqueue lock when things look like they will
2293 * work out!
2294 */
2295 rq = task_rq(p);
2296
2297 /*
2298 * If the task is actively running on another CPU
2299 * still, just relax and busy-wait without holding
2300 * any locks.
2301 *
2302 * NOTE! Since we don't hold any locks, it's not
2303 * even sure that "rq" stays as the right runqueue!
2304 * But we don't care, since "task_on_cpu()" will
2305 * return false if the runqueue has changed and p
2306 * is actually now running somewhere else!
2307 */
2308 while (task_on_cpu(rq, p)) {
2309 if (!task_state_match(p, match_state))
2310 return 0;
2311 cpu_relax();
2312 }
2313
2314 /*
2315 * Ok, time to look more closely! We need the rq
2316 * lock now, to be *sure*. If we're wrong, we'll
2317 * just go back and repeat.
2318 */
2319 rq = task_rq_lock(p, &rf);
2320 trace_sched_wait_task(p);
2321 running = task_on_cpu(rq, p);
2322 queued = task_on_rq_queued(p);
2323 ncsw = 0;
2324 if ((match = __task_state_match(p, match_state))) {
2325 /*
2326 * When matching on p->saved_state, consider this task
2327 * still queued so it will wait.
2328 */
2329 if (match < 0)
2330 queued = 1;
2331 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2332 }
2333 task_rq_unlock(rq, p, &rf);
2334
2335 /*
2336 * If it changed from the expected state, bail out now.
2337 */
2338 if (unlikely(!ncsw))
2339 break;
2340
2341 /*
2342 * Was it really running after all now that we
2343 * checked with the proper locks actually held?
2344 *
2345 * Oops. Go back and try again..
2346 */
2347 if (unlikely(running)) {
2348 cpu_relax();
2349 continue;
2350 }
2351
2352 /*
2353 * It's not enough that it's not actively running,
2354 * it must be off the runqueue _entirely_, and not
2355 * preempted!
2356 *
2357 * So if it was still runnable (but just not actively
2358 * running right now), it's preempted, and we should
2359 * yield - it could be a while.
2360 */
2361 if (unlikely(queued)) {
2362 ktime_t to = NSEC_PER_SEC / HZ;
2363
2364 set_current_state(TASK_UNINTERRUPTIBLE);
2365 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2366 continue;
2367 }
2368
2369 /*
2370 * Ahh, all good. It wasn't running, and it wasn't
2371 * runnable, which means that it will never become
2372 * running in the future either. We're all done!
2373 */
2374 break;
2375 }
2376
2377 return ncsw;
2378 }
2379
2380 #ifdef CONFIG_SMP
2381
2382 static void
2383 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2384
2385 static int __set_cpus_allowed_ptr(struct task_struct *p,
2386 struct affinity_context *ctx);
2387
migrate_disable_switch(struct rq * rq,struct task_struct * p)2388 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2389 {
2390 struct affinity_context ac = {
2391 .new_mask = cpumask_of(rq->cpu),
2392 .flags = SCA_MIGRATE_DISABLE,
2393 };
2394
2395 if (likely(!p->migration_disabled))
2396 return;
2397
2398 if (p->cpus_ptr != &p->cpus_mask)
2399 return;
2400
2401 /*
2402 * Violates locking rules! see comment in __do_set_cpus_allowed().
2403 */
2404 __do_set_cpus_allowed(p, &ac);
2405 }
2406
migrate_disable(void)2407 void migrate_disable(void)
2408 {
2409 struct task_struct *p = current;
2410
2411 if (p->migration_disabled) {
2412 p->migration_disabled++;
2413 return;
2414 }
2415
2416 preempt_disable();
2417 this_rq()->nr_pinned++;
2418 p->migration_disabled = 1;
2419 preempt_enable();
2420 }
2421 EXPORT_SYMBOL_GPL(migrate_disable);
2422
migrate_enable(void)2423 void migrate_enable(void)
2424 {
2425 struct task_struct *p = current;
2426 struct affinity_context ac = {
2427 .new_mask = &p->cpus_mask,
2428 .flags = SCA_MIGRATE_ENABLE,
2429 };
2430
2431 if (p->migration_disabled > 1) {
2432 p->migration_disabled--;
2433 return;
2434 }
2435
2436 if (WARN_ON_ONCE(!p->migration_disabled))
2437 return;
2438
2439 /*
2440 * Ensure stop_task runs either before or after this, and that
2441 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2442 */
2443 preempt_disable();
2444 if (p->cpus_ptr != &p->cpus_mask)
2445 __set_cpus_allowed_ptr(p, &ac);
2446 /*
2447 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2448 * regular cpus_mask, otherwise things that race (eg.
2449 * select_fallback_rq) get confused.
2450 */
2451 barrier();
2452 p->migration_disabled = 0;
2453 this_rq()->nr_pinned--;
2454 preempt_enable();
2455 }
2456 EXPORT_SYMBOL_GPL(migrate_enable);
2457
rq_has_pinned_tasks(struct rq * rq)2458 static inline bool rq_has_pinned_tasks(struct rq *rq)
2459 {
2460 return rq->nr_pinned;
2461 }
2462
2463 /*
2464 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2465 * __set_cpus_allowed_ptr() and select_fallback_rq().
2466 */
is_cpu_allowed(struct task_struct * p,int cpu)2467 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2468 {
2469 /* When not in the task's cpumask, no point in looking further. */
2470 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2471 return false;
2472
2473 /* migrate_disabled() must be allowed to finish. */
2474 if (is_migration_disabled(p))
2475 return cpu_online(cpu);
2476
2477 /* Non kernel threads are not allowed during either online or offline. */
2478 if (!(p->flags & PF_KTHREAD))
2479 return cpu_active(cpu) && task_cpu_possible(cpu, p);
2480
2481 /* KTHREAD_IS_PER_CPU is always allowed. */
2482 if (kthread_is_per_cpu(p))
2483 return cpu_online(cpu);
2484
2485 /* Regular kernel threads don't get to stay during offline. */
2486 if (cpu_dying(cpu))
2487 return false;
2488
2489 /* But are allowed during online. */
2490 return cpu_online(cpu);
2491 }
2492
2493 /*
2494 * This is how migration works:
2495 *
2496 * 1) we invoke migration_cpu_stop() on the target CPU using
2497 * stop_one_cpu().
2498 * 2) stopper starts to run (implicitly forcing the migrated thread
2499 * off the CPU)
2500 * 3) it checks whether the migrated task is still in the wrong runqueue.
2501 * 4) if it's in the wrong runqueue then the migration thread removes
2502 * it and puts it into the right queue.
2503 * 5) stopper completes and stop_one_cpu() returns and the migration
2504 * is done.
2505 */
2506
2507 /*
2508 * move_queued_task - move a queued task to new rq.
2509 *
2510 * Returns (locked) new rq. Old rq's lock is released.
2511 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2512 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2513 struct task_struct *p, int new_cpu)
2514 {
2515 lockdep_assert_rq_held(rq);
2516
2517 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2518 set_task_cpu(p, new_cpu);
2519 rq_unlock(rq, rf);
2520
2521 rq = cpu_rq(new_cpu);
2522
2523 rq_lock(rq, rf);
2524 WARN_ON_ONCE(task_cpu(p) != new_cpu);
2525 activate_task(rq, p, 0);
2526 wakeup_preempt(rq, p, 0);
2527
2528 return rq;
2529 }
2530
2531 struct migration_arg {
2532 struct task_struct *task;
2533 int dest_cpu;
2534 struct set_affinity_pending *pending;
2535 };
2536
2537 /*
2538 * @refs: number of wait_for_completion()
2539 * @stop_pending: is @stop_work in use
2540 */
2541 struct set_affinity_pending {
2542 refcount_t refs;
2543 unsigned int stop_pending;
2544 struct completion done;
2545 struct cpu_stop_work stop_work;
2546 struct migration_arg arg;
2547 };
2548
2549 /*
2550 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2551 * this because either it can't run here any more (set_cpus_allowed()
2552 * away from this CPU, or CPU going down), or because we're
2553 * attempting to rebalance this task on exec (sched_exec).
2554 *
2555 * So we race with normal scheduler movements, but that's OK, as long
2556 * as the task is no longer on this CPU.
2557 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2558 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2559 struct task_struct *p, int dest_cpu)
2560 {
2561 /* Affinity changed (again). */
2562 if (!is_cpu_allowed(p, dest_cpu))
2563 return rq;
2564
2565 rq = move_queued_task(rq, rf, p, dest_cpu);
2566
2567 return rq;
2568 }
2569
2570 /*
2571 * migration_cpu_stop - this will be executed by a highprio stopper thread
2572 * and performs thread migration by bumping thread off CPU then
2573 * 'pushing' onto another runqueue.
2574 */
migration_cpu_stop(void * data)2575 static int migration_cpu_stop(void *data)
2576 {
2577 struct migration_arg *arg = data;
2578 struct set_affinity_pending *pending = arg->pending;
2579 struct task_struct *p = arg->task;
2580 struct rq *rq = this_rq();
2581 bool complete = false;
2582 struct rq_flags rf;
2583
2584 /*
2585 * The original target CPU might have gone down and we might
2586 * be on another CPU but it doesn't matter.
2587 */
2588 local_irq_save(rf.flags);
2589 /*
2590 * We need to explicitly wake pending tasks before running
2591 * __migrate_task() such that we will not miss enforcing cpus_ptr
2592 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2593 */
2594 flush_smp_call_function_queue();
2595
2596 raw_spin_lock(&p->pi_lock);
2597 rq_lock(rq, &rf);
2598
2599 /*
2600 * If we were passed a pending, then ->stop_pending was set, thus
2601 * p->migration_pending must have remained stable.
2602 */
2603 WARN_ON_ONCE(pending && pending != p->migration_pending);
2604
2605 /*
2606 * If task_rq(p) != rq, it cannot be migrated here, because we're
2607 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2608 * we're holding p->pi_lock.
2609 */
2610 if (task_rq(p) == rq) {
2611 if (is_migration_disabled(p))
2612 goto out;
2613
2614 if (pending) {
2615 p->migration_pending = NULL;
2616 complete = true;
2617
2618 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2619 goto out;
2620 }
2621
2622 if (task_on_rq_queued(p)) {
2623 update_rq_clock(rq);
2624 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2625 } else {
2626 p->wake_cpu = arg->dest_cpu;
2627 }
2628
2629 /*
2630 * XXX __migrate_task() can fail, at which point we might end
2631 * up running on a dodgy CPU, AFAICT this can only happen
2632 * during CPU hotplug, at which point we'll get pushed out
2633 * anyway, so it's probably not a big deal.
2634 */
2635
2636 } else if (pending) {
2637 /*
2638 * This happens when we get migrated between migrate_enable()'s
2639 * preempt_enable() and scheduling the stopper task. At that
2640 * point we're a regular task again and not current anymore.
2641 *
2642 * A !PREEMPT kernel has a giant hole here, which makes it far
2643 * more likely.
2644 */
2645
2646 /*
2647 * The task moved before the stopper got to run. We're holding
2648 * ->pi_lock, so the allowed mask is stable - if it got
2649 * somewhere allowed, we're done.
2650 */
2651 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2652 p->migration_pending = NULL;
2653 complete = true;
2654 goto out;
2655 }
2656
2657 /*
2658 * When migrate_enable() hits a rq mis-match we can't reliably
2659 * determine is_migration_disabled() and so have to chase after
2660 * it.
2661 */
2662 WARN_ON_ONCE(!pending->stop_pending);
2663 preempt_disable();
2664 task_rq_unlock(rq, p, &rf);
2665 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2666 &pending->arg, &pending->stop_work);
2667 preempt_enable();
2668 return 0;
2669 }
2670 out:
2671 if (pending)
2672 pending->stop_pending = false;
2673 task_rq_unlock(rq, p, &rf);
2674
2675 if (complete)
2676 complete_all(&pending->done);
2677
2678 return 0;
2679 }
2680
push_cpu_stop(void * arg)2681 int push_cpu_stop(void *arg)
2682 {
2683 struct rq *lowest_rq = NULL, *rq = this_rq();
2684 struct task_struct *p = arg;
2685
2686 raw_spin_lock_irq(&p->pi_lock);
2687 raw_spin_rq_lock(rq);
2688
2689 if (task_rq(p) != rq)
2690 goto out_unlock;
2691
2692 if (is_migration_disabled(p)) {
2693 p->migration_flags |= MDF_PUSH;
2694 goto out_unlock;
2695 }
2696
2697 p->migration_flags &= ~MDF_PUSH;
2698
2699 if (p->sched_class->find_lock_rq)
2700 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2701
2702 if (!lowest_rq)
2703 goto out_unlock;
2704
2705 // XXX validate p is still the highest prio task
2706 if (task_rq(p) == rq) {
2707 deactivate_task(rq, p, 0);
2708 set_task_cpu(p, lowest_rq->cpu);
2709 activate_task(lowest_rq, p, 0);
2710 resched_curr(lowest_rq);
2711 }
2712
2713 double_unlock_balance(rq, lowest_rq);
2714
2715 out_unlock:
2716 rq->push_busy = false;
2717 raw_spin_rq_unlock(rq);
2718 raw_spin_unlock_irq(&p->pi_lock);
2719
2720 put_task_struct(p);
2721 return 0;
2722 }
2723
2724 /*
2725 * sched_class::set_cpus_allowed must do the below, but is not required to
2726 * actually call this function.
2727 */
set_cpus_allowed_common(struct task_struct * p,struct affinity_context * ctx)2728 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2729 {
2730 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2731 p->cpus_ptr = ctx->new_mask;
2732 return;
2733 }
2734
2735 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2736 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2737
2738 /*
2739 * Swap in a new user_cpus_ptr if SCA_USER flag set
2740 */
2741 if (ctx->flags & SCA_USER)
2742 swap(p->user_cpus_ptr, ctx->user_mask);
2743 }
2744
2745 static void
__do_set_cpus_allowed(struct task_struct * p,struct affinity_context * ctx)2746 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2747 {
2748 struct rq *rq = task_rq(p);
2749 bool queued, running;
2750
2751 /*
2752 * This here violates the locking rules for affinity, since we're only
2753 * supposed to change these variables while holding both rq->lock and
2754 * p->pi_lock.
2755 *
2756 * HOWEVER, it magically works, because ttwu() is the only code that
2757 * accesses these variables under p->pi_lock and only does so after
2758 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2759 * before finish_task().
2760 *
2761 * XXX do further audits, this smells like something putrid.
2762 */
2763 if (ctx->flags & SCA_MIGRATE_DISABLE)
2764 SCHED_WARN_ON(!p->on_cpu);
2765 else
2766 lockdep_assert_held(&p->pi_lock);
2767
2768 queued = task_on_rq_queued(p);
2769 running = task_current(rq, p);
2770
2771 if (queued) {
2772 /*
2773 * Because __kthread_bind() calls this on blocked tasks without
2774 * holding rq->lock.
2775 */
2776 lockdep_assert_rq_held(rq);
2777 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2778 }
2779 if (running)
2780 put_prev_task(rq, p);
2781
2782 p->sched_class->set_cpus_allowed(p, ctx);
2783
2784 if (queued)
2785 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2786 if (running)
2787 set_next_task(rq, p);
2788 }
2789
2790 /*
2791 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2792 * affinity (if any) should be destroyed too.
2793 */
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2794 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2795 {
2796 struct affinity_context ac = {
2797 .new_mask = new_mask,
2798 .user_mask = NULL,
2799 .flags = SCA_USER, /* clear the user requested mask */
2800 };
2801 union cpumask_rcuhead {
2802 cpumask_t cpumask;
2803 struct rcu_head rcu;
2804 };
2805
2806 __do_set_cpus_allowed(p, &ac);
2807
2808 /*
2809 * Because this is called with p->pi_lock held, it is not possible
2810 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2811 * kfree_rcu().
2812 */
2813 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2814 }
2815
alloc_user_cpus_ptr(int node)2816 static cpumask_t *alloc_user_cpus_ptr(int node)
2817 {
2818 /*
2819 * See do_set_cpus_allowed() above for the rcu_head usage.
2820 */
2821 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2822
2823 return kmalloc_node(size, GFP_KERNEL, node);
2824 }
2825
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2826 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2827 int node)
2828 {
2829 cpumask_t *user_mask;
2830 unsigned long flags;
2831
2832 /*
2833 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2834 * may differ by now due to racing.
2835 */
2836 dst->user_cpus_ptr = NULL;
2837
2838 /*
2839 * This check is racy and losing the race is a valid situation.
2840 * It is not worth the extra overhead of taking the pi_lock on
2841 * every fork/clone.
2842 */
2843 if (data_race(!src->user_cpus_ptr))
2844 return 0;
2845
2846 user_mask = alloc_user_cpus_ptr(node);
2847 if (!user_mask)
2848 return -ENOMEM;
2849
2850 /*
2851 * Use pi_lock to protect content of user_cpus_ptr
2852 *
2853 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2854 * do_set_cpus_allowed().
2855 */
2856 raw_spin_lock_irqsave(&src->pi_lock, flags);
2857 if (src->user_cpus_ptr) {
2858 swap(dst->user_cpus_ptr, user_mask);
2859 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2860 }
2861 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2862
2863 if (unlikely(user_mask))
2864 kfree(user_mask);
2865
2866 return 0;
2867 }
2868
clear_user_cpus_ptr(struct task_struct * p)2869 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2870 {
2871 struct cpumask *user_mask = NULL;
2872
2873 swap(p->user_cpus_ptr, user_mask);
2874
2875 return user_mask;
2876 }
2877
release_user_cpus_ptr(struct task_struct * p)2878 void release_user_cpus_ptr(struct task_struct *p)
2879 {
2880 kfree(clear_user_cpus_ptr(p));
2881 }
2882
2883 /*
2884 * This function is wildly self concurrent; here be dragons.
2885 *
2886 *
2887 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2888 * designated task is enqueued on an allowed CPU. If that task is currently
2889 * running, we have to kick it out using the CPU stopper.
2890 *
2891 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2892 * Consider:
2893 *
2894 * Initial conditions: P0->cpus_mask = [0, 1]
2895 *
2896 * P0@CPU0 P1
2897 *
2898 * migrate_disable();
2899 * <preempted>
2900 * set_cpus_allowed_ptr(P0, [1]);
2901 *
2902 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2903 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2904 * This means we need the following scheme:
2905 *
2906 * P0@CPU0 P1
2907 *
2908 * migrate_disable();
2909 * <preempted>
2910 * set_cpus_allowed_ptr(P0, [1]);
2911 * <blocks>
2912 * <resumes>
2913 * migrate_enable();
2914 * __set_cpus_allowed_ptr();
2915 * <wakes local stopper>
2916 * `--> <woken on migration completion>
2917 *
2918 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2919 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2920 * task p are serialized by p->pi_lock, which we can leverage: the one that
2921 * should come into effect at the end of the Migrate-Disable region is the last
2922 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2923 * but we still need to properly signal those waiting tasks at the appropriate
2924 * moment.
2925 *
2926 * This is implemented using struct set_affinity_pending. The first
2927 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2928 * setup an instance of that struct and install it on the targeted task_struct.
2929 * Any and all further callers will reuse that instance. Those then wait for
2930 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2931 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2932 *
2933 *
2934 * (1) In the cases covered above. There is one more where the completion is
2935 * signaled within affine_move_task() itself: when a subsequent affinity request
2936 * occurs after the stopper bailed out due to the targeted task still being
2937 * Migrate-Disable. Consider:
2938 *
2939 * Initial conditions: P0->cpus_mask = [0, 1]
2940 *
2941 * CPU0 P1 P2
2942 * <P0>
2943 * migrate_disable();
2944 * <preempted>
2945 * set_cpus_allowed_ptr(P0, [1]);
2946 * <blocks>
2947 * <migration/0>
2948 * migration_cpu_stop()
2949 * is_migration_disabled()
2950 * <bails>
2951 * set_cpus_allowed_ptr(P0, [0, 1]);
2952 * <signal completion>
2953 * <awakes>
2954 *
2955 * Note that the above is safe vs a concurrent migrate_enable(), as any
2956 * pending affinity completion is preceded by an uninstallation of
2957 * p->migration_pending done with p->pi_lock held.
2958 */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)2959 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2960 int dest_cpu, unsigned int flags)
2961 __releases(rq->lock)
2962 __releases(p->pi_lock)
2963 {
2964 struct set_affinity_pending my_pending = { }, *pending = NULL;
2965 bool stop_pending, complete = false;
2966
2967 /* Can the task run on the task's current CPU? If so, we're done */
2968 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2969 struct task_struct *push_task = NULL;
2970
2971 if ((flags & SCA_MIGRATE_ENABLE) &&
2972 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2973 rq->push_busy = true;
2974 push_task = get_task_struct(p);
2975 }
2976
2977 /*
2978 * If there are pending waiters, but no pending stop_work,
2979 * then complete now.
2980 */
2981 pending = p->migration_pending;
2982 if (pending && !pending->stop_pending) {
2983 p->migration_pending = NULL;
2984 complete = true;
2985 }
2986
2987 preempt_disable();
2988 task_rq_unlock(rq, p, rf);
2989 if (push_task) {
2990 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2991 p, &rq->push_work);
2992 }
2993 preempt_enable();
2994
2995 if (complete)
2996 complete_all(&pending->done);
2997
2998 return 0;
2999 }
3000
3001 if (!(flags & SCA_MIGRATE_ENABLE)) {
3002 /* serialized by p->pi_lock */
3003 if (!p->migration_pending) {
3004 /* Install the request */
3005 refcount_set(&my_pending.refs, 1);
3006 init_completion(&my_pending.done);
3007 my_pending.arg = (struct migration_arg) {
3008 .task = p,
3009 .dest_cpu = dest_cpu,
3010 .pending = &my_pending,
3011 };
3012
3013 p->migration_pending = &my_pending;
3014 } else {
3015 pending = p->migration_pending;
3016 refcount_inc(&pending->refs);
3017 /*
3018 * Affinity has changed, but we've already installed a
3019 * pending. migration_cpu_stop() *must* see this, else
3020 * we risk a completion of the pending despite having a
3021 * task on a disallowed CPU.
3022 *
3023 * Serialized by p->pi_lock, so this is safe.
3024 */
3025 pending->arg.dest_cpu = dest_cpu;
3026 }
3027 }
3028 pending = p->migration_pending;
3029 /*
3030 * - !MIGRATE_ENABLE:
3031 * we'll have installed a pending if there wasn't one already.
3032 *
3033 * - MIGRATE_ENABLE:
3034 * we're here because the current CPU isn't matching anymore,
3035 * the only way that can happen is because of a concurrent
3036 * set_cpus_allowed_ptr() call, which should then still be
3037 * pending completion.
3038 *
3039 * Either way, we really should have a @pending here.
3040 */
3041 if (WARN_ON_ONCE(!pending)) {
3042 task_rq_unlock(rq, p, rf);
3043 return -EINVAL;
3044 }
3045
3046 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3047 /*
3048 * MIGRATE_ENABLE gets here because 'p == current', but for
3049 * anything else we cannot do is_migration_disabled(), punt
3050 * and have the stopper function handle it all race-free.
3051 */
3052 stop_pending = pending->stop_pending;
3053 if (!stop_pending)
3054 pending->stop_pending = true;
3055
3056 if (flags & SCA_MIGRATE_ENABLE)
3057 p->migration_flags &= ~MDF_PUSH;
3058
3059 preempt_disable();
3060 task_rq_unlock(rq, p, rf);
3061 if (!stop_pending) {
3062 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3063 &pending->arg, &pending->stop_work);
3064 }
3065 preempt_enable();
3066
3067 if (flags & SCA_MIGRATE_ENABLE)
3068 return 0;
3069 } else {
3070
3071 if (!is_migration_disabled(p)) {
3072 if (task_on_rq_queued(p))
3073 rq = move_queued_task(rq, rf, p, dest_cpu);
3074
3075 if (!pending->stop_pending) {
3076 p->migration_pending = NULL;
3077 complete = true;
3078 }
3079 }
3080 task_rq_unlock(rq, p, rf);
3081
3082 if (complete)
3083 complete_all(&pending->done);
3084 }
3085
3086 wait_for_completion(&pending->done);
3087
3088 if (refcount_dec_and_test(&pending->refs))
3089 wake_up_var(&pending->refs); /* No UaF, just an address */
3090
3091 /*
3092 * Block the original owner of &pending until all subsequent callers
3093 * have seen the completion and decremented the refcount
3094 */
3095 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3096
3097 /* ARGH */
3098 WARN_ON_ONCE(my_pending.stop_pending);
3099
3100 return 0;
3101 }
3102
3103 /*
3104 * Called with both p->pi_lock and rq->lock held; drops both before returning.
3105 */
__set_cpus_allowed_ptr_locked(struct task_struct * p,struct affinity_context * ctx,struct rq * rq,struct rq_flags * rf)3106 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3107 struct affinity_context *ctx,
3108 struct rq *rq,
3109 struct rq_flags *rf)
3110 __releases(rq->lock)
3111 __releases(p->pi_lock)
3112 {
3113 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3114 const struct cpumask *cpu_valid_mask = cpu_active_mask;
3115 bool kthread = p->flags & PF_KTHREAD;
3116 unsigned int dest_cpu;
3117 int ret = 0;
3118
3119 update_rq_clock(rq);
3120
3121 if (kthread || is_migration_disabled(p)) {
3122 /*
3123 * Kernel threads are allowed on online && !active CPUs,
3124 * however, during cpu-hot-unplug, even these might get pushed
3125 * away if not KTHREAD_IS_PER_CPU.
3126 *
3127 * Specifically, migration_disabled() tasks must not fail the
3128 * cpumask_any_and_distribute() pick below, esp. so on
3129 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3130 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3131 */
3132 cpu_valid_mask = cpu_online_mask;
3133 }
3134
3135 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3136 ret = -EINVAL;
3137 goto out;
3138 }
3139
3140 /*
3141 * Must re-check here, to close a race against __kthread_bind(),
3142 * sched_setaffinity() is not guaranteed to observe the flag.
3143 */
3144 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3145 ret = -EINVAL;
3146 goto out;
3147 }
3148
3149 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3150 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3151 if (ctx->flags & SCA_USER)
3152 swap(p->user_cpus_ptr, ctx->user_mask);
3153 goto out;
3154 }
3155
3156 if (WARN_ON_ONCE(p == current &&
3157 is_migration_disabled(p) &&
3158 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3159 ret = -EBUSY;
3160 goto out;
3161 }
3162 }
3163
3164 /*
3165 * Picking a ~random cpu helps in cases where we are changing affinity
3166 * for groups of tasks (ie. cpuset), so that load balancing is not
3167 * immediately required to distribute the tasks within their new mask.
3168 */
3169 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3170 if (dest_cpu >= nr_cpu_ids) {
3171 ret = -EINVAL;
3172 goto out;
3173 }
3174
3175 __do_set_cpus_allowed(p, ctx);
3176
3177 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3178
3179 out:
3180 task_rq_unlock(rq, p, rf);
3181
3182 return ret;
3183 }
3184
3185 /*
3186 * Change a given task's CPU affinity. Migrate the thread to a
3187 * proper CPU and schedule it away if the CPU it's executing on
3188 * is removed from the allowed bitmask.
3189 *
3190 * NOTE: the caller must have a valid reference to the task, the
3191 * task must not exit() & deallocate itself prematurely. The
3192 * call is not atomic; no spinlocks may be held.
3193 */
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3194 static int __set_cpus_allowed_ptr(struct task_struct *p,
3195 struct affinity_context *ctx)
3196 {
3197 struct rq_flags rf;
3198 struct rq *rq;
3199
3200 rq = task_rq_lock(p, &rf);
3201 /*
3202 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3203 * flags are set.
3204 */
3205 if (p->user_cpus_ptr &&
3206 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3207 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3208 ctx->new_mask = rq->scratch_mask;
3209
3210 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3211 }
3212
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3213 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3214 {
3215 struct affinity_context ac = {
3216 .new_mask = new_mask,
3217 .flags = 0,
3218 };
3219
3220 return __set_cpus_allowed_ptr(p, &ac);
3221 }
3222 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3223
3224 /*
3225 * Change a given task's CPU affinity to the intersection of its current
3226 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3227 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3228 * affinity or use cpu_online_mask instead.
3229 *
3230 * If the resulting mask is empty, leave the affinity unchanged and return
3231 * -EINVAL.
3232 */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3233 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3234 struct cpumask *new_mask,
3235 const struct cpumask *subset_mask)
3236 {
3237 struct affinity_context ac = {
3238 .new_mask = new_mask,
3239 .flags = 0,
3240 };
3241 struct rq_flags rf;
3242 struct rq *rq;
3243 int err;
3244
3245 rq = task_rq_lock(p, &rf);
3246
3247 /*
3248 * Forcefully restricting the affinity of a deadline task is
3249 * likely to cause problems, so fail and noisily override the
3250 * mask entirely.
3251 */
3252 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3253 err = -EPERM;
3254 goto err_unlock;
3255 }
3256
3257 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3258 err = -EINVAL;
3259 goto err_unlock;
3260 }
3261
3262 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3263
3264 err_unlock:
3265 task_rq_unlock(rq, p, &rf);
3266 return err;
3267 }
3268
3269 /*
3270 * Restrict the CPU affinity of task @p so that it is a subset of
3271 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3272 * old affinity mask. If the resulting mask is empty, we warn and walk
3273 * up the cpuset hierarchy until we find a suitable mask.
3274 */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3275 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3276 {
3277 cpumask_var_t new_mask;
3278 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3279
3280 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3281
3282 /*
3283 * __migrate_task() can fail silently in the face of concurrent
3284 * offlining of the chosen destination CPU, so take the hotplug
3285 * lock to ensure that the migration succeeds.
3286 */
3287 cpus_read_lock();
3288 if (!cpumask_available(new_mask))
3289 goto out_set_mask;
3290
3291 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3292 goto out_free_mask;
3293
3294 /*
3295 * We failed to find a valid subset of the affinity mask for the
3296 * task, so override it based on its cpuset hierarchy.
3297 */
3298 cpuset_cpus_allowed(p, new_mask);
3299 override_mask = new_mask;
3300
3301 out_set_mask:
3302 if (printk_ratelimit()) {
3303 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3304 task_pid_nr(p), p->comm,
3305 cpumask_pr_args(override_mask));
3306 }
3307
3308 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3309 out_free_mask:
3310 cpus_read_unlock();
3311 free_cpumask_var(new_mask);
3312 }
3313
3314 static int
3315 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3316
3317 /*
3318 * Restore the affinity of a task @p which was previously restricted by a
3319 * call to force_compatible_cpus_allowed_ptr().
3320 *
3321 * It is the caller's responsibility to serialise this with any calls to
3322 * force_compatible_cpus_allowed_ptr(@p).
3323 */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3324 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3325 {
3326 struct affinity_context ac = {
3327 .new_mask = task_user_cpus(p),
3328 .flags = 0,
3329 };
3330 int ret;
3331
3332 /*
3333 * Try to restore the old affinity mask with __sched_setaffinity().
3334 * Cpuset masking will be done there too.
3335 */
3336 ret = __sched_setaffinity(p, &ac);
3337 WARN_ON_ONCE(ret);
3338 }
3339
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3340 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3341 {
3342 #ifdef CONFIG_SCHED_DEBUG
3343 unsigned int state = READ_ONCE(p->__state);
3344
3345 /*
3346 * We should never call set_task_cpu() on a blocked task,
3347 * ttwu() will sort out the placement.
3348 */
3349 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3350
3351 /*
3352 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3353 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3354 * time relying on p->on_rq.
3355 */
3356 WARN_ON_ONCE(state == TASK_RUNNING &&
3357 p->sched_class == &fair_sched_class &&
3358 (p->on_rq && !task_on_rq_migrating(p)));
3359
3360 #ifdef CONFIG_LOCKDEP
3361 /*
3362 * The caller should hold either p->pi_lock or rq->lock, when changing
3363 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3364 *
3365 * sched_move_task() holds both and thus holding either pins the cgroup,
3366 * see task_group().
3367 *
3368 * Furthermore, all task_rq users should acquire both locks, see
3369 * task_rq_lock().
3370 */
3371 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3372 lockdep_is_held(__rq_lockp(task_rq(p)))));
3373 #endif
3374 /*
3375 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3376 */
3377 WARN_ON_ONCE(!cpu_online(new_cpu));
3378
3379 WARN_ON_ONCE(is_migration_disabled(p));
3380 #endif
3381
3382 trace_sched_migrate_task(p, new_cpu);
3383
3384 if (task_cpu(p) != new_cpu) {
3385 if (p->sched_class->migrate_task_rq)
3386 p->sched_class->migrate_task_rq(p, new_cpu);
3387 p->se.nr_migrations++;
3388 rseq_migrate(p);
3389 sched_mm_cid_migrate_from(p);
3390 perf_event_task_migrate(p);
3391 }
3392
3393 __set_task_cpu(p, new_cpu);
3394 }
3395
3396 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3397 static void __migrate_swap_task(struct task_struct *p, int cpu)
3398 {
3399 if (task_on_rq_queued(p)) {
3400 struct rq *src_rq, *dst_rq;
3401 struct rq_flags srf, drf;
3402
3403 src_rq = task_rq(p);
3404 dst_rq = cpu_rq(cpu);
3405
3406 rq_pin_lock(src_rq, &srf);
3407 rq_pin_lock(dst_rq, &drf);
3408
3409 deactivate_task(src_rq, p, 0);
3410 set_task_cpu(p, cpu);
3411 activate_task(dst_rq, p, 0);
3412 wakeup_preempt(dst_rq, p, 0);
3413
3414 rq_unpin_lock(dst_rq, &drf);
3415 rq_unpin_lock(src_rq, &srf);
3416
3417 } else {
3418 /*
3419 * Task isn't running anymore; make it appear like we migrated
3420 * it before it went to sleep. This means on wakeup we make the
3421 * previous CPU our target instead of where it really is.
3422 */
3423 p->wake_cpu = cpu;
3424 }
3425 }
3426
3427 struct migration_swap_arg {
3428 struct task_struct *src_task, *dst_task;
3429 int src_cpu, dst_cpu;
3430 };
3431
migrate_swap_stop(void * data)3432 static int migrate_swap_stop(void *data)
3433 {
3434 struct migration_swap_arg *arg = data;
3435 struct rq *src_rq, *dst_rq;
3436
3437 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3438 return -EAGAIN;
3439
3440 src_rq = cpu_rq(arg->src_cpu);
3441 dst_rq = cpu_rq(arg->dst_cpu);
3442
3443 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3444 guard(double_rq_lock)(src_rq, dst_rq);
3445
3446 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3447 return -EAGAIN;
3448
3449 if (task_cpu(arg->src_task) != arg->src_cpu)
3450 return -EAGAIN;
3451
3452 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3453 return -EAGAIN;
3454
3455 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3456 return -EAGAIN;
3457
3458 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3459 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3460
3461 return 0;
3462 }
3463
3464 /*
3465 * Cross migrate two tasks
3466 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3467 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3468 int target_cpu, int curr_cpu)
3469 {
3470 struct migration_swap_arg arg;
3471 int ret = -EINVAL;
3472
3473 arg = (struct migration_swap_arg){
3474 .src_task = cur,
3475 .src_cpu = curr_cpu,
3476 .dst_task = p,
3477 .dst_cpu = target_cpu,
3478 };
3479
3480 if (arg.src_cpu == arg.dst_cpu)
3481 goto out;
3482
3483 /*
3484 * These three tests are all lockless; this is OK since all of them
3485 * will be re-checked with proper locks held further down the line.
3486 */
3487 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3488 goto out;
3489
3490 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3491 goto out;
3492
3493 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3494 goto out;
3495
3496 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3497 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3498
3499 out:
3500 return ret;
3501 }
3502 #endif /* CONFIG_NUMA_BALANCING */
3503
3504 /***
3505 * kick_process - kick a running thread to enter/exit the kernel
3506 * @p: the to-be-kicked thread
3507 *
3508 * Cause a process which is running on another CPU to enter
3509 * kernel-mode, without any delay. (to get signals handled.)
3510 *
3511 * NOTE: this function doesn't have to take the runqueue lock,
3512 * because all it wants to ensure is that the remote task enters
3513 * the kernel. If the IPI races and the task has been migrated
3514 * to another CPU then no harm is done and the purpose has been
3515 * achieved as well.
3516 */
kick_process(struct task_struct * p)3517 void kick_process(struct task_struct *p)
3518 {
3519 int cpu;
3520
3521 preempt_disable();
3522 cpu = task_cpu(p);
3523 if ((cpu != smp_processor_id()) && task_curr(p))
3524 smp_send_reschedule(cpu);
3525 preempt_enable();
3526 }
3527 EXPORT_SYMBOL_GPL(kick_process);
3528
3529 /*
3530 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3531 *
3532 * A few notes on cpu_active vs cpu_online:
3533 *
3534 * - cpu_active must be a subset of cpu_online
3535 *
3536 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3537 * see __set_cpus_allowed_ptr(). At this point the newly online
3538 * CPU isn't yet part of the sched domains, and balancing will not
3539 * see it.
3540 *
3541 * - on CPU-down we clear cpu_active() to mask the sched domains and
3542 * avoid the load balancer to place new tasks on the to be removed
3543 * CPU. Existing tasks will remain running there and will be taken
3544 * off.
3545 *
3546 * This means that fallback selection must not select !active CPUs.
3547 * And can assume that any active CPU must be online. Conversely
3548 * select_task_rq() below may allow selection of !active CPUs in order
3549 * to satisfy the above rules.
3550 */
select_fallback_rq(int cpu,struct task_struct * p)3551 static int select_fallback_rq(int cpu, struct task_struct *p)
3552 {
3553 int nid = cpu_to_node(cpu);
3554 const struct cpumask *nodemask = NULL;
3555 enum { cpuset, possible, fail } state = cpuset;
3556 int dest_cpu;
3557
3558 /*
3559 * If the node that the CPU is on has been offlined, cpu_to_node()
3560 * will return -1. There is no CPU on the node, and we should
3561 * select the CPU on the other node.
3562 */
3563 if (nid != -1) {
3564 nodemask = cpumask_of_node(nid);
3565
3566 /* Look for allowed, online CPU in same node. */
3567 for_each_cpu(dest_cpu, nodemask) {
3568 if (is_cpu_allowed(p, dest_cpu))
3569 return dest_cpu;
3570 }
3571 }
3572
3573 for (;;) {
3574 /* Any allowed, online CPU? */
3575 for_each_cpu(dest_cpu, p->cpus_ptr) {
3576 if (!is_cpu_allowed(p, dest_cpu))
3577 continue;
3578
3579 goto out;
3580 }
3581
3582 /* No more Mr. Nice Guy. */
3583 switch (state) {
3584 case cpuset:
3585 if (cpuset_cpus_allowed_fallback(p)) {
3586 state = possible;
3587 break;
3588 }
3589 fallthrough;
3590 case possible:
3591 /*
3592 * XXX When called from select_task_rq() we only
3593 * hold p->pi_lock and again violate locking order.
3594 *
3595 * More yuck to audit.
3596 */
3597 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3598 state = fail;
3599 break;
3600 case fail:
3601 BUG();
3602 break;
3603 }
3604 }
3605
3606 out:
3607 if (state != cpuset) {
3608 /*
3609 * Don't tell them about moving exiting tasks or
3610 * kernel threads (both mm NULL), since they never
3611 * leave kernel.
3612 */
3613 if (p->mm && printk_ratelimit()) {
3614 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3615 task_pid_nr(p), p->comm, cpu);
3616 }
3617 }
3618
3619 return dest_cpu;
3620 }
3621
3622 /*
3623 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3624 */
3625 static inline
select_task_rq(struct task_struct * p,int cpu,int wake_flags)3626 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3627 {
3628 lockdep_assert_held(&p->pi_lock);
3629
3630 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3631 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3632 else
3633 cpu = cpumask_any(p->cpus_ptr);
3634
3635 /*
3636 * In order not to call set_task_cpu() on a blocking task we need
3637 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3638 * CPU.
3639 *
3640 * Since this is common to all placement strategies, this lives here.
3641 *
3642 * [ this allows ->select_task() to simply return task_cpu(p) and
3643 * not worry about this generic constraint ]
3644 */
3645 if (unlikely(!is_cpu_allowed(p, cpu)))
3646 cpu = select_fallback_rq(task_cpu(p), p);
3647
3648 return cpu;
3649 }
3650
sched_set_stop_task(int cpu,struct task_struct * stop)3651 void sched_set_stop_task(int cpu, struct task_struct *stop)
3652 {
3653 static struct lock_class_key stop_pi_lock;
3654 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3655 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3656
3657 if (stop) {
3658 /*
3659 * Make it appear like a SCHED_FIFO task, its something
3660 * userspace knows about and won't get confused about.
3661 *
3662 * Also, it will make PI more or less work without too
3663 * much confusion -- but then, stop work should not
3664 * rely on PI working anyway.
3665 */
3666 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3667
3668 stop->sched_class = &stop_sched_class;
3669
3670 /*
3671 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3672 * adjust the effective priority of a task. As a result,
3673 * rt_mutex_setprio() can trigger (RT) balancing operations,
3674 * which can then trigger wakeups of the stop thread to push
3675 * around the current task.
3676 *
3677 * The stop task itself will never be part of the PI-chain, it
3678 * never blocks, therefore that ->pi_lock recursion is safe.
3679 * Tell lockdep about this by placing the stop->pi_lock in its
3680 * own class.
3681 */
3682 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3683 }
3684
3685 cpu_rq(cpu)->stop = stop;
3686
3687 if (old_stop) {
3688 /*
3689 * Reset it back to a normal scheduling class so that
3690 * it can die in pieces.
3691 */
3692 old_stop->sched_class = &rt_sched_class;
3693 }
3694 }
3695
3696 #else /* CONFIG_SMP */
3697
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3698 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3699 struct affinity_context *ctx)
3700 {
3701 return set_cpus_allowed_ptr(p, ctx->new_mask);
3702 }
3703
migrate_disable_switch(struct rq * rq,struct task_struct * p)3704 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3705
rq_has_pinned_tasks(struct rq * rq)3706 static inline bool rq_has_pinned_tasks(struct rq *rq)
3707 {
3708 return false;
3709 }
3710
alloc_user_cpus_ptr(int node)3711 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3712 {
3713 return NULL;
3714 }
3715
3716 #endif /* !CONFIG_SMP */
3717
3718 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3719 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3720 {
3721 struct rq *rq;
3722
3723 if (!schedstat_enabled())
3724 return;
3725
3726 rq = this_rq();
3727
3728 #ifdef CONFIG_SMP
3729 if (cpu == rq->cpu) {
3730 __schedstat_inc(rq->ttwu_local);
3731 __schedstat_inc(p->stats.nr_wakeups_local);
3732 } else {
3733 struct sched_domain *sd;
3734
3735 __schedstat_inc(p->stats.nr_wakeups_remote);
3736
3737 guard(rcu)();
3738 for_each_domain(rq->cpu, sd) {
3739 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3740 __schedstat_inc(sd->ttwu_wake_remote);
3741 break;
3742 }
3743 }
3744 }
3745
3746 if (wake_flags & WF_MIGRATED)
3747 __schedstat_inc(p->stats.nr_wakeups_migrate);
3748 #endif /* CONFIG_SMP */
3749
3750 __schedstat_inc(rq->ttwu_count);
3751 __schedstat_inc(p->stats.nr_wakeups);
3752
3753 if (wake_flags & WF_SYNC)
3754 __schedstat_inc(p->stats.nr_wakeups_sync);
3755 }
3756
3757 /*
3758 * Mark the task runnable.
3759 */
ttwu_do_wakeup(struct task_struct * p)3760 static inline void ttwu_do_wakeup(struct task_struct *p)
3761 {
3762 WRITE_ONCE(p->__state, TASK_RUNNING);
3763 trace_sched_wakeup(p);
3764 }
3765
3766 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3767 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3768 struct rq_flags *rf)
3769 {
3770 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3771
3772 lockdep_assert_rq_held(rq);
3773
3774 if (p->sched_contributes_to_load)
3775 rq->nr_uninterruptible--;
3776
3777 #ifdef CONFIG_SMP
3778 if (wake_flags & WF_MIGRATED)
3779 en_flags |= ENQUEUE_MIGRATED;
3780 else
3781 #endif
3782 if (p->in_iowait) {
3783 delayacct_blkio_end(p);
3784 atomic_dec(&task_rq(p)->nr_iowait);
3785 }
3786
3787 activate_task(rq, p, en_flags);
3788 wakeup_preempt(rq, p, wake_flags);
3789
3790 ttwu_do_wakeup(p);
3791
3792 #ifdef CONFIG_SMP
3793 if (p->sched_class->task_woken) {
3794 /*
3795 * Our task @p is fully woken up and running; so it's safe to
3796 * drop the rq->lock, hereafter rq is only used for statistics.
3797 */
3798 rq_unpin_lock(rq, rf);
3799 p->sched_class->task_woken(rq, p);
3800 rq_repin_lock(rq, rf);
3801 }
3802
3803 if (rq->idle_stamp) {
3804 u64 delta = rq_clock(rq) - rq->idle_stamp;
3805 u64 max = 2*rq->max_idle_balance_cost;
3806
3807 update_avg(&rq->avg_idle, delta);
3808
3809 if (rq->avg_idle > max)
3810 rq->avg_idle = max;
3811
3812 rq->wake_stamp = jiffies;
3813 rq->wake_avg_idle = rq->avg_idle / 2;
3814
3815 rq->idle_stamp = 0;
3816 }
3817 #endif
3818 }
3819
3820 /*
3821 * Consider @p being inside a wait loop:
3822 *
3823 * for (;;) {
3824 * set_current_state(TASK_UNINTERRUPTIBLE);
3825 *
3826 * if (CONDITION)
3827 * break;
3828 *
3829 * schedule();
3830 * }
3831 * __set_current_state(TASK_RUNNING);
3832 *
3833 * between set_current_state() and schedule(). In this case @p is still
3834 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3835 * an atomic manner.
3836 *
3837 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3838 * then schedule() must still happen and p->state can be changed to
3839 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3840 * need to do a full wakeup with enqueue.
3841 *
3842 * Returns: %true when the wakeup is done,
3843 * %false otherwise.
3844 */
ttwu_runnable(struct task_struct * p,int wake_flags)3845 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3846 {
3847 struct rq_flags rf;
3848 struct rq *rq;
3849 int ret = 0;
3850
3851 rq = __task_rq_lock(p, &rf);
3852 if (task_on_rq_queued(p)) {
3853 if (!task_on_cpu(rq, p)) {
3854 /*
3855 * When on_rq && !on_cpu the task is preempted, see if
3856 * it should preempt the task that is current now.
3857 */
3858 update_rq_clock(rq);
3859 wakeup_preempt(rq, p, wake_flags);
3860 }
3861 ttwu_do_wakeup(p);
3862 ret = 1;
3863 }
3864 __task_rq_unlock(rq, &rf);
3865
3866 return ret;
3867 }
3868
3869 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3870 void sched_ttwu_pending(void *arg)
3871 {
3872 struct llist_node *llist = arg;
3873 struct rq *rq = this_rq();
3874 struct task_struct *p, *t;
3875 struct rq_flags rf;
3876
3877 if (!llist)
3878 return;
3879
3880 rq_lock_irqsave(rq, &rf);
3881 update_rq_clock(rq);
3882
3883 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3884 if (WARN_ON_ONCE(p->on_cpu))
3885 smp_cond_load_acquire(&p->on_cpu, !VAL);
3886
3887 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3888 set_task_cpu(p, cpu_of(rq));
3889
3890 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3891 }
3892
3893 /*
3894 * Must be after enqueueing at least once task such that
3895 * idle_cpu() does not observe a false-negative -- if it does,
3896 * it is possible for select_idle_siblings() to stack a number
3897 * of tasks on this CPU during that window.
3898 *
3899 * It is ok to clear ttwu_pending when another task pending.
3900 * We will receive IPI after local irq enabled and then enqueue it.
3901 * Since now nr_running > 0, idle_cpu() will always get correct result.
3902 */
3903 WRITE_ONCE(rq->ttwu_pending, 0);
3904 rq_unlock_irqrestore(rq, &rf);
3905 }
3906
3907 /*
3908 * Prepare the scene for sending an IPI for a remote smp_call
3909 *
3910 * Returns true if the caller can proceed with sending the IPI.
3911 * Returns false otherwise.
3912 */
call_function_single_prep_ipi(int cpu)3913 bool call_function_single_prep_ipi(int cpu)
3914 {
3915 if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3916 trace_sched_wake_idle_without_ipi(cpu);
3917 return false;
3918 }
3919
3920 return true;
3921 }
3922
3923 /*
3924 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3925 * necessary. The wakee CPU on receipt of the IPI will queue the task
3926 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3927 * of the wakeup instead of the waker.
3928 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3929 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3930 {
3931 struct rq *rq = cpu_rq(cpu);
3932
3933 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3934
3935 WRITE_ONCE(rq->ttwu_pending, 1);
3936 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3937 }
3938
wake_up_if_idle(int cpu)3939 void wake_up_if_idle(int cpu)
3940 {
3941 struct rq *rq = cpu_rq(cpu);
3942
3943 guard(rcu)();
3944 if (is_idle_task(rcu_dereference(rq->curr))) {
3945 guard(rq_lock_irqsave)(rq);
3946 if (is_idle_task(rq->curr))
3947 resched_curr(rq);
3948 }
3949 }
3950
cpus_share_cache(int this_cpu,int that_cpu)3951 bool cpus_share_cache(int this_cpu, int that_cpu)
3952 {
3953 if (this_cpu == that_cpu)
3954 return true;
3955
3956 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3957 }
3958
ttwu_queue_cond(struct task_struct * p,int cpu)3959 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3960 {
3961 /*
3962 * Do not complicate things with the async wake_list while the CPU is
3963 * in hotplug state.
3964 */
3965 if (!cpu_active(cpu))
3966 return false;
3967
3968 /* Ensure the task will still be allowed to run on the CPU. */
3969 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3970 return false;
3971
3972 /*
3973 * If the CPU does not share cache, then queue the task on the
3974 * remote rqs wakelist to avoid accessing remote data.
3975 */
3976 if (!cpus_share_cache(smp_processor_id(), cpu))
3977 return true;
3978
3979 if (cpu == smp_processor_id())
3980 return false;
3981
3982 /*
3983 * If the wakee cpu is idle, or the task is descheduling and the
3984 * only running task on the CPU, then use the wakelist to offload
3985 * the task activation to the idle (or soon-to-be-idle) CPU as
3986 * the current CPU is likely busy. nr_running is checked to
3987 * avoid unnecessary task stacking.
3988 *
3989 * Note that we can only get here with (wakee) p->on_rq=0,
3990 * p->on_cpu can be whatever, we've done the dequeue, so
3991 * the wakee has been accounted out of ->nr_running.
3992 */
3993 if (!cpu_rq(cpu)->nr_running)
3994 return true;
3995
3996 return false;
3997 }
3998
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3999 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4000 {
4001 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4002 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4003 __ttwu_queue_wakelist(p, cpu, wake_flags);
4004 return true;
4005 }
4006
4007 return false;
4008 }
4009
4010 #else /* !CONFIG_SMP */
4011
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4012 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4013 {
4014 return false;
4015 }
4016
4017 #endif /* CONFIG_SMP */
4018
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)4019 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4020 {
4021 struct rq *rq = cpu_rq(cpu);
4022 struct rq_flags rf;
4023
4024 if (ttwu_queue_wakelist(p, cpu, wake_flags))
4025 return;
4026
4027 rq_lock(rq, &rf);
4028 update_rq_clock(rq);
4029 ttwu_do_activate(rq, p, wake_flags, &rf);
4030 rq_unlock(rq, &rf);
4031 }
4032
4033 /*
4034 * Invoked from try_to_wake_up() to check whether the task can be woken up.
4035 *
4036 * The caller holds p::pi_lock if p != current or has preemption
4037 * disabled when p == current.
4038 *
4039 * The rules of PREEMPT_RT saved_state:
4040 *
4041 * The related locking code always holds p::pi_lock when updating
4042 * p::saved_state, which means the code is fully serialized in both cases.
4043 *
4044 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
4045 * bits set. This allows to distinguish all wakeup scenarios.
4046 */
4047 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)4048 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4049 {
4050 int match;
4051
4052 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4053 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4054 state != TASK_RTLOCK_WAIT);
4055 }
4056
4057 *success = !!(match = __task_state_match(p, state));
4058
4059 #ifdef CONFIG_PREEMPT_RT
4060 /*
4061 * Saved state preserves the task state across blocking on
4062 * an RT lock. If the state matches, set p::saved_state to
4063 * TASK_RUNNING, but do not wake the task because it waits
4064 * for a lock wakeup. Also indicate success because from
4065 * the regular waker's point of view this has succeeded.
4066 *
4067 * After acquiring the lock the task will restore p::__state
4068 * from p::saved_state which ensures that the regular
4069 * wakeup is not lost. The restore will also set
4070 * p::saved_state to TASK_RUNNING so any further tests will
4071 * not result in false positives vs. @success
4072 */
4073 if (match < 0)
4074 p->saved_state = TASK_RUNNING;
4075 #endif
4076 return match > 0;
4077 }
4078
4079 /*
4080 * Notes on Program-Order guarantees on SMP systems.
4081 *
4082 * MIGRATION
4083 *
4084 * The basic program-order guarantee on SMP systems is that when a task [t]
4085 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4086 * execution on its new CPU [c1].
4087 *
4088 * For migration (of runnable tasks) this is provided by the following means:
4089 *
4090 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4091 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4092 * rq(c1)->lock (if not at the same time, then in that order).
4093 * C) LOCK of the rq(c1)->lock scheduling in task
4094 *
4095 * Release/acquire chaining guarantees that B happens after A and C after B.
4096 * Note: the CPU doing B need not be c0 or c1
4097 *
4098 * Example:
4099 *
4100 * CPU0 CPU1 CPU2
4101 *
4102 * LOCK rq(0)->lock
4103 * sched-out X
4104 * sched-in Y
4105 * UNLOCK rq(0)->lock
4106 *
4107 * LOCK rq(0)->lock // orders against CPU0
4108 * dequeue X
4109 * UNLOCK rq(0)->lock
4110 *
4111 * LOCK rq(1)->lock
4112 * enqueue X
4113 * UNLOCK rq(1)->lock
4114 *
4115 * LOCK rq(1)->lock // orders against CPU2
4116 * sched-out Z
4117 * sched-in X
4118 * UNLOCK rq(1)->lock
4119 *
4120 *
4121 * BLOCKING -- aka. SLEEP + WAKEUP
4122 *
4123 * For blocking we (obviously) need to provide the same guarantee as for
4124 * migration. However the means are completely different as there is no lock
4125 * chain to provide order. Instead we do:
4126 *
4127 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4128 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4129 *
4130 * Example:
4131 *
4132 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4133 *
4134 * LOCK rq(0)->lock LOCK X->pi_lock
4135 * dequeue X
4136 * sched-out X
4137 * smp_store_release(X->on_cpu, 0);
4138 *
4139 * smp_cond_load_acquire(&X->on_cpu, !VAL);
4140 * X->state = WAKING
4141 * set_task_cpu(X,2)
4142 *
4143 * LOCK rq(2)->lock
4144 * enqueue X
4145 * X->state = RUNNING
4146 * UNLOCK rq(2)->lock
4147 *
4148 * LOCK rq(2)->lock // orders against CPU1
4149 * sched-out Z
4150 * sched-in X
4151 * UNLOCK rq(2)->lock
4152 *
4153 * UNLOCK X->pi_lock
4154 * UNLOCK rq(0)->lock
4155 *
4156 *
4157 * However, for wakeups there is a second guarantee we must provide, namely we
4158 * must ensure that CONDITION=1 done by the caller can not be reordered with
4159 * accesses to the task state; see try_to_wake_up() and set_current_state().
4160 */
4161
4162 /**
4163 * try_to_wake_up - wake up a thread
4164 * @p: the thread to be awakened
4165 * @state: the mask of task states that can be woken
4166 * @wake_flags: wake modifier flags (WF_*)
4167 *
4168 * Conceptually does:
4169 *
4170 * If (@state & @p->state) @p->state = TASK_RUNNING.
4171 *
4172 * If the task was not queued/runnable, also place it back on a runqueue.
4173 *
4174 * This function is atomic against schedule() which would dequeue the task.
4175 *
4176 * It issues a full memory barrier before accessing @p->state, see the comment
4177 * with set_current_state().
4178 *
4179 * Uses p->pi_lock to serialize against concurrent wake-ups.
4180 *
4181 * Relies on p->pi_lock stabilizing:
4182 * - p->sched_class
4183 * - p->cpus_ptr
4184 * - p->sched_task_group
4185 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4186 *
4187 * Tries really hard to only take one task_rq(p)->lock for performance.
4188 * Takes rq->lock in:
4189 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4190 * - ttwu_queue() -- new rq, for enqueue of the task;
4191 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4192 *
4193 * As a consequence we race really badly with just about everything. See the
4194 * many memory barriers and their comments for details.
4195 *
4196 * Return: %true if @p->state changes (an actual wakeup was done),
4197 * %false otherwise.
4198 */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4199 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4200 {
4201 guard(preempt)();
4202 int cpu, success = 0;
4203
4204 if (p == current) {
4205 /*
4206 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4207 * == smp_processor_id()'. Together this means we can special
4208 * case the whole 'p->on_rq && ttwu_runnable()' case below
4209 * without taking any locks.
4210 *
4211 * In particular:
4212 * - we rely on Program-Order guarantees for all the ordering,
4213 * - we're serialized against set_special_state() by virtue of
4214 * it disabling IRQs (this allows not taking ->pi_lock).
4215 */
4216 if (!ttwu_state_match(p, state, &success))
4217 goto out;
4218
4219 trace_sched_waking(p);
4220 ttwu_do_wakeup(p);
4221 goto out;
4222 }
4223
4224 /*
4225 * If we are going to wake up a thread waiting for CONDITION we
4226 * need to ensure that CONDITION=1 done by the caller can not be
4227 * reordered with p->state check below. This pairs with smp_store_mb()
4228 * in set_current_state() that the waiting thread does.
4229 */
4230 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4231 smp_mb__after_spinlock();
4232 if (!ttwu_state_match(p, state, &success))
4233 break;
4234
4235 trace_sched_waking(p);
4236
4237 /*
4238 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4239 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4240 * in smp_cond_load_acquire() below.
4241 *
4242 * sched_ttwu_pending() try_to_wake_up()
4243 * STORE p->on_rq = 1 LOAD p->state
4244 * UNLOCK rq->lock
4245 *
4246 * __schedule() (switch to task 'p')
4247 * LOCK rq->lock smp_rmb();
4248 * smp_mb__after_spinlock();
4249 * UNLOCK rq->lock
4250 *
4251 * [task p]
4252 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4253 *
4254 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4255 * __schedule(). See the comment for smp_mb__after_spinlock().
4256 *
4257 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4258 */
4259 smp_rmb();
4260 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4261 break;
4262
4263 #ifdef CONFIG_SMP
4264 /*
4265 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4266 * possible to, falsely, observe p->on_cpu == 0.
4267 *
4268 * One must be running (->on_cpu == 1) in order to remove oneself
4269 * from the runqueue.
4270 *
4271 * __schedule() (switch to task 'p') try_to_wake_up()
4272 * STORE p->on_cpu = 1 LOAD p->on_rq
4273 * UNLOCK rq->lock
4274 *
4275 * __schedule() (put 'p' to sleep)
4276 * LOCK rq->lock smp_rmb();
4277 * smp_mb__after_spinlock();
4278 * STORE p->on_rq = 0 LOAD p->on_cpu
4279 *
4280 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4281 * __schedule(). See the comment for smp_mb__after_spinlock().
4282 *
4283 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4284 * schedule()'s deactivate_task() has 'happened' and p will no longer
4285 * care about it's own p->state. See the comment in __schedule().
4286 */
4287 smp_acquire__after_ctrl_dep();
4288
4289 /*
4290 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4291 * == 0), which means we need to do an enqueue, change p->state to
4292 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4293 * enqueue, such as ttwu_queue_wakelist().
4294 */
4295 WRITE_ONCE(p->__state, TASK_WAKING);
4296
4297 /*
4298 * If the owning (remote) CPU is still in the middle of schedule() with
4299 * this task as prev, considering queueing p on the remote CPUs wake_list
4300 * which potentially sends an IPI instead of spinning on p->on_cpu to
4301 * let the waker make forward progress. This is safe because IRQs are
4302 * disabled and the IPI will deliver after on_cpu is cleared.
4303 *
4304 * Ensure we load task_cpu(p) after p->on_cpu:
4305 *
4306 * set_task_cpu(p, cpu);
4307 * STORE p->cpu = @cpu
4308 * __schedule() (switch to task 'p')
4309 * LOCK rq->lock
4310 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4311 * STORE p->on_cpu = 1 LOAD p->cpu
4312 *
4313 * to ensure we observe the correct CPU on which the task is currently
4314 * scheduling.
4315 */
4316 if (smp_load_acquire(&p->on_cpu) &&
4317 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4318 break;
4319
4320 /*
4321 * If the owning (remote) CPU is still in the middle of schedule() with
4322 * this task as prev, wait until it's done referencing the task.
4323 *
4324 * Pairs with the smp_store_release() in finish_task().
4325 *
4326 * This ensures that tasks getting woken will be fully ordered against
4327 * their previous state and preserve Program Order.
4328 */
4329 smp_cond_load_acquire(&p->on_cpu, !VAL);
4330
4331 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4332 if (task_cpu(p) != cpu) {
4333 if (p->in_iowait) {
4334 delayacct_blkio_end(p);
4335 atomic_dec(&task_rq(p)->nr_iowait);
4336 }
4337
4338 wake_flags |= WF_MIGRATED;
4339 psi_ttwu_dequeue(p);
4340 set_task_cpu(p, cpu);
4341 }
4342 #else
4343 cpu = task_cpu(p);
4344 #endif /* CONFIG_SMP */
4345
4346 ttwu_queue(p, cpu, wake_flags);
4347 }
4348 out:
4349 if (success)
4350 ttwu_stat(p, task_cpu(p), wake_flags);
4351
4352 return success;
4353 }
4354
__task_needs_rq_lock(struct task_struct * p)4355 static bool __task_needs_rq_lock(struct task_struct *p)
4356 {
4357 unsigned int state = READ_ONCE(p->__state);
4358
4359 /*
4360 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4361 * the task is blocked. Make sure to check @state since ttwu() can drop
4362 * locks at the end, see ttwu_queue_wakelist().
4363 */
4364 if (state == TASK_RUNNING || state == TASK_WAKING)
4365 return true;
4366
4367 /*
4368 * Ensure we load p->on_rq after p->__state, otherwise it would be
4369 * possible to, falsely, observe p->on_rq == 0.
4370 *
4371 * See try_to_wake_up() for a longer comment.
4372 */
4373 smp_rmb();
4374 if (p->on_rq)
4375 return true;
4376
4377 #ifdef CONFIG_SMP
4378 /*
4379 * Ensure the task has finished __schedule() and will not be referenced
4380 * anymore. Again, see try_to_wake_up() for a longer comment.
4381 */
4382 smp_rmb();
4383 smp_cond_load_acquire(&p->on_cpu, !VAL);
4384 #endif
4385
4386 return false;
4387 }
4388
4389 /**
4390 * task_call_func - Invoke a function on task in fixed state
4391 * @p: Process for which the function is to be invoked, can be @current.
4392 * @func: Function to invoke.
4393 * @arg: Argument to function.
4394 *
4395 * Fix the task in it's current state by avoiding wakeups and or rq operations
4396 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4397 * to work out what the state is, if required. Given that @func can be invoked
4398 * with a runqueue lock held, it had better be quite lightweight.
4399 *
4400 * Returns:
4401 * Whatever @func returns
4402 */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4403 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4404 {
4405 struct rq *rq = NULL;
4406 struct rq_flags rf;
4407 int ret;
4408
4409 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4410
4411 if (__task_needs_rq_lock(p))
4412 rq = __task_rq_lock(p, &rf);
4413
4414 /*
4415 * At this point the task is pinned; either:
4416 * - blocked and we're holding off wakeups (pi->lock)
4417 * - woken, and we're holding off enqueue (rq->lock)
4418 * - queued, and we're holding off schedule (rq->lock)
4419 * - running, and we're holding off de-schedule (rq->lock)
4420 *
4421 * The called function (@func) can use: task_curr(), p->on_rq and
4422 * p->__state to differentiate between these states.
4423 */
4424 ret = func(p, arg);
4425
4426 if (rq)
4427 rq_unlock(rq, &rf);
4428
4429 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4430 return ret;
4431 }
4432
4433 /**
4434 * cpu_curr_snapshot - Return a snapshot of the currently running task
4435 * @cpu: The CPU on which to snapshot the task.
4436 *
4437 * Returns the task_struct pointer of the task "currently" running on
4438 * the specified CPU.
4439 *
4440 * If the specified CPU was offline, the return value is whatever it
4441 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4442 * task, but there is no guarantee. Callers wishing a useful return
4443 * value must take some action to ensure that the specified CPU remains
4444 * online throughout.
4445 *
4446 * This function executes full memory barriers before and after fetching
4447 * the pointer, which permits the caller to confine this function's fetch
4448 * with respect to the caller's accesses to other shared variables.
4449 */
cpu_curr_snapshot(int cpu)4450 struct task_struct *cpu_curr_snapshot(int cpu)
4451 {
4452 struct rq *rq = cpu_rq(cpu);
4453 struct task_struct *t;
4454 struct rq_flags rf;
4455
4456 rq_lock_irqsave(rq, &rf);
4457 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4458 t = rcu_dereference(cpu_curr(cpu));
4459 rq_unlock_irqrestore(rq, &rf);
4460 smp_mb(); /* Pairing determined by caller's synchronization design. */
4461
4462 return t;
4463 }
4464
4465 /**
4466 * wake_up_process - Wake up a specific process
4467 * @p: The process to be woken up.
4468 *
4469 * Attempt to wake up the nominated process and move it to the set of runnable
4470 * processes.
4471 *
4472 * Return: 1 if the process was woken up, 0 if it was already running.
4473 *
4474 * This function executes a full memory barrier before accessing the task state.
4475 */
wake_up_process(struct task_struct * p)4476 int wake_up_process(struct task_struct *p)
4477 {
4478 return try_to_wake_up(p, TASK_NORMAL, 0);
4479 }
4480 EXPORT_SYMBOL(wake_up_process);
4481
wake_up_state(struct task_struct * p,unsigned int state)4482 int wake_up_state(struct task_struct *p, unsigned int state)
4483 {
4484 return try_to_wake_up(p, state, 0);
4485 }
4486
4487 /*
4488 * Perform scheduler related setup for a newly forked process p.
4489 * p is forked by current.
4490 *
4491 * __sched_fork() is basic setup which is also used by sched_init() to
4492 * initialize the boot CPU's idle task.
4493 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4494 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4495 {
4496 p->on_rq = 0;
4497
4498 p->se.on_rq = 0;
4499 p->se.exec_start = 0;
4500 p->se.sum_exec_runtime = 0;
4501 p->se.prev_sum_exec_runtime = 0;
4502 p->se.nr_migrations = 0;
4503 p->se.vruntime = 0;
4504 p->se.vlag = 0;
4505 p->se.slice = sysctl_sched_base_slice;
4506 INIT_LIST_HEAD(&p->se.group_node);
4507
4508 #ifdef CONFIG_FAIR_GROUP_SCHED
4509 p->se.cfs_rq = NULL;
4510 #endif
4511
4512 #ifdef CONFIG_SCHEDSTATS
4513 /* Even if schedstat is disabled, there should not be garbage */
4514 memset(&p->stats, 0, sizeof(p->stats));
4515 #endif
4516
4517 init_dl_entity(&p->dl);
4518
4519 INIT_LIST_HEAD(&p->rt.run_list);
4520 p->rt.timeout = 0;
4521 p->rt.time_slice = sched_rr_timeslice;
4522 p->rt.on_rq = 0;
4523 p->rt.on_list = 0;
4524
4525 #ifdef CONFIG_PREEMPT_NOTIFIERS
4526 INIT_HLIST_HEAD(&p->preempt_notifiers);
4527 #endif
4528
4529 #ifdef CONFIG_COMPACTION
4530 p->capture_control = NULL;
4531 #endif
4532 init_numa_balancing(clone_flags, p);
4533 #ifdef CONFIG_SMP
4534 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4535 p->migration_pending = NULL;
4536 #endif
4537 init_sched_mm_cid(p);
4538 }
4539
4540 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4541
4542 #ifdef CONFIG_NUMA_BALANCING
4543
4544 int sysctl_numa_balancing_mode;
4545
__set_numabalancing_state(bool enabled)4546 static void __set_numabalancing_state(bool enabled)
4547 {
4548 if (enabled)
4549 static_branch_enable(&sched_numa_balancing);
4550 else
4551 static_branch_disable(&sched_numa_balancing);
4552 }
4553
set_numabalancing_state(bool enabled)4554 void set_numabalancing_state(bool enabled)
4555 {
4556 if (enabled)
4557 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4558 else
4559 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4560 __set_numabalancing_state(enabled);
4561 }
4562
4563 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4564 static void reset_memory_tiering(void)
4565 {
4566 struct pglist_data *pgdat;
4567
4568 for_each_online_pgdat(pgdat) {
4569 pgdat->nbp_threshold = 0;
4570 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4571 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4572 }
4573 }
4574
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4575 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4576 void *buffer, size_t *lenp, loff_t *ppos)
4577 {
4578 struct ctl_table t;
4579 int err;
4580 int state = sysctl_numa_balancing_mode;
4581
4582 if (write && !capable(CAP_SYS_ADMIN))
4583 return -EPERM;
4584
4585 t = *table;
4586 t.data = &state;
4587 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4588 if (err < 0)
4589 return err;
4590 if (write) {
4591 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4592 (state & NUMA_BALANCING_MEMORY_TIERING))
4593 reset_memory_tiering();
4594 sysctl_numa_balancing_mode = state;
4595 __set_numabalancing_state(state);
4596 }
4597 return err;
4598 }
4599 #endif
4600 #endif
4601
4602 #ifdef CONFIG_SCHEDSTATS
4603
4604 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4605
set_schedstats(bool enabled)4606 static void set_schedstats(bool enabled)
4607 {
4608 if (enabled)
4609 static_branch_enable(&sched_schedstats);
4610 else
4611 static_branch_disable(&sched_schedstats);
4612 }
4613
force_schedstat_enabled(void)4614 void force_schedstat_enabled(void)
4615 {
4616 if (!schedstat_enabled()) {
4617 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4618 static_branch_enable(&sched_schedstats);
4619 }
4620 }
4621
setup_schedstats(char * str)4622 static int __init setup_schedstats(char *str)
4623 {
4624 int ret = 0;
4625 if (!str)
4626 goto out;
4627
4628 if (!strcmp(str, "enable")) {
4629 set_schedstats(true);
4630 ret = 1;
4631 } else if (!strcmp(str, "disable")) {
4632 set_schedstats(false);
4633 ret = 1;
4634 }
4635 out:
4636 if (!ret)
4637 pr_warn("Unable to parse schedstats=\n");
4638
4639 return ret;
4640 }
4641 __setup("schedstats=", setup_schedstats);
4642
4643 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4644 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4645 size_t *lenp, loff_t *ppos)
4646 {
4647 struct ctl_table t;
4648 int err;
4649 int state = static_branch_likely(&sched_schedstats);
4650
4651 if (write && !capable(CAP_SYS_ADMIN))
4652 return -EPERM;
4653
4654 t = *table;
4655 t.data = &state;
4656 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4657 if (err < 0)
4658 return err;
4659 if (write)
4660 set_schedstats(state);
4661 return err;
4662 }
4663 #endif /* CONFIG_PROC_SYSCTL */
4664 #endif /* CONFIG_SCHEDSTATS */
4665
4666 #ifdef CONFIG_SYSCTL
4667 static struct ctl_table sched_core_sysctls[] = {
4668 #ifdef CONFIG_SCHEDSTATS
4669 {
4670 .procname = "sched_schedstats",
4671 .data = NULL,
4672 .maxlen = sizeof(unsigned int),
4673 .mode = 0644,
4674 .proc_handler = sysctl_schedstats,
4675 .extra1 = SYSCTL_ZERO,
4676 .extra2 = SYSCTL_ONE,
4677 },
4678 #endif /* CONFIG_SCHEDSTATS */
4679 #ifdef CONFIG_UCLAMP_TASK
4680 {
4681 .procname = "sched_util_clamp_min",
4682 .data = &sysctl_sched_uclamp_util_min,
4683 .maxlen = sizeof(unsigned int),
4684 .mode = 0644,
4685 .proc_handler = sysctl_sched_uclamp_handler,
4686 },
4687 {
4688 .procname = "sched_util_clamp_max",
4689 .data = &sysctl_sched_uclamp_util_max,
4690 .maxlen = sizeof(unsigned int),
4691 .mode = 0644,
4692 .proc_handler = sysctl_sched_uclamp_handler,
4693 },
4694 {
4695 .procname = "sched_util_clamp_min_rt_default",
4696 .data = &sysctl_sched_uclamp_util_min_rt_default,
4697 .maxlen = sizeof(unsigned int),
4698 .mode = 0644,
4699 .proc_handler = sysctl_sched_uclamp_handler,
4700 },
4701 #endif /* CONFIG_UCLAMP_TASK */
4702 #ifdef CONFIG_NUMA_BALANCING
4703 {
4704 .procname = "numa_balancing",
4705 .data = NULL, /* filled in by handler */
4706 .maxlen = sizeof(unsigned int),
4707 .mode = 0644,
4708 .proc_handler = sysctl_numa_balancing,
4709 .extra1 = SYSCTL_ZERO,
4710 .extra2 = SYSCTL_FOUR,
4711 },
4712 #endif /* CONFIG_NUMA_BALANCING */
4713 {}
4714 };
sched_core_sysctl_init(void)4715 static int __init sched_core_sysctl_init(void)
4716 {
4717 register_sysctl_init("kernel", sched_core_sysctls);
4718 return 0;
4719 }
4720 late_initcall(sched_core_sysctl_init);
4721 #endif /* CONFIG_SYSCTL */
4722
4723 /*
4724 * fork()/clone()-time setup:
4725 */
sched_fork(unsigned long clone_flags,struct task_struct * p)4726 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4727 {
4728 __sched_fork(clone_flags, p);
4729 /*
4730 * We mark the process as NEW here. This guarantees that
4731 * nobody will actually run it, and a signal or other external
4732 * event cannot wake it up and insert it on the runqueue either.
4733 */
4734 p->__state = TASK_NEW;
4735
4736 /*
4737 * Make sure we do not leak PI boosting priority to the child.
4738 */
4739 p->prio = current->normal_prio;
4740
4741 uclamp_fork(p);
4742
4743 /*
4744 * Revert to default priority/policy on fork if requested.
4745 */
4746 if (unlikely(p->sched_reset_on_fork)) {
4747 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4748 p->policy = SCHED_NORMAL;
4749 p->static_prio = NICE_TO_PRIO(0);
4750 p->rt_priority = 0;
4751 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4752 p->static_prio = NICE_TO_PRIO(0);
4753
4754 p->prio = p->normal_prio = p->static_prio;
4755 set_load_weight(p, false);
4756
4757 /*
4758 * We don't need the reset flag anymore after the fork. It has
4759 * fulfilled its duty:
4760 */
4761 p->sched_reset_on_fork = 0;
4762 }
4763
4764 if (dl_prio(p->prio))
4765 return -EAGAIN;
4766 else if (rt_prio(p->prio))
4767 p->sched_class = &rt_sched_class;
4768 else
4769 p->sched_class = &fair_sched_class;
4770
4771 init_entity_runnable_average(&p->se);
4772
4773
4774 #ifdef CONFIG_SCHED_INFO
4775 if (likely(sched_info_on()))
4776 memset(&p->sched_info, 0, sizeof(p->sched_info));
4777 #endif
4778 #if defined(CONFIG_SMP)
4779 p->on_cpu = 0;
4780 #endif
4781 init_task_preempt_count(p);
4782 #ifdef CONFIG_SMP
4783 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4784 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4785 #endif
4786 return 0;
4787 }
4788
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4789 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4790 {
4791 unsigned long flags;
4792
4793 /*
4794 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4795 * required yet, but lockdep gets upset if rules are violated.
4796 */
4797 raw_spin_lock_irqsave(&p->pi_lock, flags);
4798 #ifdef CONFIG_CGROUP_SCHED
4799 if (1) {
4800 struct task_group *tg;
4801 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4802 struct task_group, css);
4803 tg = autogroup_task_group(p, tg);
4804 p->sched_task_group = tg;
4805 }
4806 #endif
4807 rseq_migrate(p);
4808 /*
4809 * We're setting the CPU for the first time, we don't migrate,
4810 * so use __set_task_cpu().
4811 */
4812 __set_task_cpu(p, smp_processor_id());
4813 if (p->sched_class->task_fork)
4814 p->sched_class->task_fork(p);
4815 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4816 }
4817
sched_post_fork(struct task_struct * p)4818 void sched_post_fork(struct task_struct *p)
4819 {
4820 uclamp_post_fork(p);
4821 }
4822
to_ratio(u64 period,u64 runtime)4823 unsigned long to_ratio(u64 period, u64 runtime)
4824 {
4825 if (runtime == RUNTIME_INF)
4826 return BW_UNIT;
4827
4828 /*
4829 * Doing this here saves a lot of checks in all
4830 * the calling paths, and returning zero seems
4831 * safe for them anyway.
4832 */
4833 if (period == 0)
4834 return 0;
4835
4836 return div64_u64(runtime << BW_SHIFT, period);
4837 }
4838
4839 /*
4840 * wake_up_new_task - wake up a newly created task for the first time.
4841 *
4842 * This function will do some initial scheduler statistics housekeeping
4843 * that must be done for every newly created context, then puts the task
4844 * on the runqueue and wakes it.
4845 */
wake_up_new_task(struct task_struct * p)4846 void wake_up_new_task(struct task_struct *p)
4847 {
4848 struct rq_flags rf;
4849 struct rq *rq;
4850
4851 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4852 WRITE_ONCE(p->__state, TASK_RUNNING);
4853 #ifdef CONFIG_SMP
4854 /*
4855 * Fork balancing, do it here and not earlier because:
4856 * - cpus_ptr can change in the fork path
4857 * - any previously selected CPU might disappear through hotplug
4858 *
4859 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4860 * as we're not fully set-up yet.
4861 */
4862 p->recent_used_cpu = task_cpu(p);
4863 rseq_migrate(p);
4864 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4865 #endif
4866 rq = __task_rq_lock(p, &rf);
4867 update_rq_clock(rq);
4868 post_init_entity_util_avg(p);
4869
4870 activate_task(rq, p, ENQUEUE_NOCLOCK);
4871 trace_sched_wakeup_new(p);
4872 wakeup_preempt(rq, p, WF_FORK);
4873 #ifdef CONFIG_SMP
4874 if (p->sched_class->task_woken) {
4875 /*
4876 * Nothing relies on rq->lock after this, so it's fine to
4877 * drop it.
4878 */
4879 rq_unpin_lock(rq, &rf);
4880 p->sched_class->task_woken(rq, p);
4881 rq_repin_lock(rq, &rf);
4882 }
4883 #endif
4884 task_rq_unlock(rq, p, &rf);
4885 }
4886
4887 #ifdef CONFIG_PREEMPT_NOTIFIERS
4888
4889 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4890
preempt_notifier_inc(void)4891 void preempt_notifier_inc(void)
4892 {
4893 static_branch_inc(&preempt_notifier_key);
4894 }
4895 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4896
preempt_notifier_dec(void)4897 void preempt_notifier_dec(void)
4898 {
4899 static_branch_dec(&preempt_notifier_key);
4900 }
4901 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4902
4903 /**
4904 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4905 * @notifier: notifier struct to register
4906 */
preempt_notifier_register(struct preempt_notifier * notifier)4907 void preempt_notifier_register(struct preempt_notifier *notifier)
4908 {
4909 if (!static_branch_unlikely(&preempt_notifier_key))
4910 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4911
4912 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4913 }
4914 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4915
4916 /**
4917 * preempt_notifier_unregister - no longer interested in preemption notifications
4918 * @notifier: notifier struct to unregister
4919 *
4920 * This is *not* safe to call from within a preemption notifier.
4921 */
preempt_notifier_unregister(struct preempt_notifier * notifier)4922 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4923 {
4924 hlist_del(¬ifier->link);
4925 }
4926 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4927
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4928 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4929 {
4930 struct preempt_notifier *notifier;
4931
4932 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4933 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4934 }
4935
fire_sched_in_preempt_notifiers(struct task_struct * curr)4936 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4937 {
4938 if (static_branch_unlikely(&preempt_notifier_key))
4939 __fire_sched_in_preempt_notifiers(curr);
4940 }
4941
4942 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4943 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4944 struct task_struct *next)
4945 {
4946 struct preempt_notifier *notifier;
4947
4948 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4949 notifier->ops->sched_out(notifier, next);
4950 }
4951
4952 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4953 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4954 struct task_struct *next)
4955 {
4956 if (static_branch_unlikely(&preempt_notifier_key))
4957 __fire_sched_out_preempt_notifiers(curr, next);
4958 }
4959
4960 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4961
fire_sched_in_preempt_notifiers(struct task_struct * curr)4962 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4963 {
4964 }
4965
4966 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4967 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4968 struct task_struct *next)
4969 {
4970 }
4971
4972 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4973
prepare_task(struct task_struct * next)4974 static inline void prepare_task(struct task_struct *next)
4975 {
4976 #ifdef CONFIG_SMP
4977 /*
4978 * Claim the task as running, we do this before switching to it
4979 * such that any running task will have this set.
4980 *
4981 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4982 * its ordering comment.
4983 */
4984 WRITE_ONCE(next->on_cpu, 1);
4985 #endif
4986 }
4987
finish_task(struct task_struct * prev)4988 static inline void finish_task(struct task_struct *prev)
4989 {
4990 #ifdef CONFIG_SMP
4991 /*
4992 * This must be the very last reference to @prev from this CPU. After
4993 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4994 * must ensure this doesn't happen until the switch is completely
4995 * finished.
4996 *
4997 * In particular, the load of prev->state in finish_task_switch() must
4998 * happen before this.
4999 *
5000 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5001 */
5002 smp_store_release(&prev->on_cpu, 0);
5003 #endif
5004 }
5005
5006 #ifdef CONFIG_SMP
5007
do_balance_callbacks(struct rq * rq,struct balance_callback * head)5008 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5009 {
5010 void (*func)(struct rq *rq);
5011 struct balance_callback *next;
5012
5013 lockdep_assert_rq_held(rq);
5014
5015 while (head) {
5016 func = (void (*)(struct rq *))head->func;
5017 next = head->next;
5018 head->next = NULL;
5019 head = next;
5020
5021 func(rq);
5022 }
5023 }
5024
5025 static void balance_push(struct rq *rq);
5026
5027 /*
5028 * balance_push_callback is a right abuse of the callback interface and plays
5029 * by significantly different rules.
5030 *
5031 * Where the normal balance_callback's purpose is to be ran in the same context
5032 * that queued it (only later, when it's safe to drop rq->lock again),
5033 * balance_push_callback is specifically targeted at __schedule().
5034 *
5035 * This abuse is tolerated because it places all the unlikely/odd cases behind
5036 * a single test, namely: rq->balance_callback == NULL.
5037 */
5038 struct balance_callback balance_push_callback = {
5039 .next = NULL,
5040 .func = balance_push,
5041 };
5042
5043 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5044 __splice_balance_callbacks(struct rq *rq, bool split)
5045 {
5046 struct balance_callback *head = rq->balance_callback;
5047
5048 if (likely(!head))
5049 return NULL;
5050
5051 lockdep_assert_rq_held(rq);
5052 /*
5053 * Must not take balance_push_callback off the list when
5054 * splice_balance_callbacks() and balance_callbacks() are not
5055 * in the same rq->lock section.
5056 *
5057 * In that case it would be possible for __schedule() to interleave
5058 * and observe the list empty.
5059 */
5060 if (split && head == &balance_push_callback)
5061 head = NULL;
5062 else
5063 rq->balance_callback = NULL;
5064
5065 return head;
5066 }
5067
splice_balance_callbacks(struct rq * rq)5068 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5069 {
5070 return __splice_balance_callbacks(rq, true);
5071 }
5072
__balance_callbacks(struct rq * rq)5073 static void __balance_callbacks(struct rq *rq)
5074 {
5075 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5076 }
5077
balance_callbacks(struct rq * rq,struct balance_callback * head)5078 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5079 {
5080 unsigned long flags;
5081
5082 if (unlikely(head)) {
5083 raw_spin_rq_lock_irqsave(rq, flags);
5084 do_balance_callbacks(rq, head);
5085 raw_spin_rq_unlock_irqrestore(rq, flags);
5086 }
5087 }
5088
5089 #else
5090
__balance_callbacks(struct rq * rq)5091 static inline void __balance_callbacks(struct rq *rq)
5092 {
5093 }
5094
splice_balance_callbacks(struct rq * rq)5095 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5096 {
5097 return NULL;
5098 }
5099
balance_callbacks(struct rq * rq,struct balance_callback * head)5100 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5101 {
5102 }
5103
5104 #endif
5105
5106 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5107 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5108 {
5109 /*
5110 * Since the runqueue lock will be released by the next
5111 * task (which is an invalid locking op but in the case
5112 * of the scheduler it's an obvious special-case), so we
5113 * do an early lockdep release here:
5114 */
5115 rq_unpin_lock(rq, rf);
5116 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5117 #ifdef CONFIG_DEBUG_SPINLOCK
5118 /* this is a valid case when another task releases the spinlock */
5119 rq_lockp(rq)->owner = next;
5120 #endif
5121 }
5122
finish_lock_switch(struct rq * rq)5123 static inline void finish_lock_switch(struct rq *rq)
5124 {
5125 /*
5126 * If we are tracking spinlock dependencies then we have to
5127 * fix up the runqueue lock - which gets 'carried over' from
5128 * prev into current:
5129 */
5130 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5131 __balance_callbacks(rq);
5132 raw_spin_rq_unlock_irq(rq);
5133 }
5134
5135 /*
5136 * NOP if the arch has not defined these:
5137 */
5138
5139 #ifndef prepare_arch_switch
5140 # define prepare_arch_switch(next) do { } while (0)
5141 #endif
5142
5143 #ifndef finish_arch_post_lock_switch
5144 # define finish_arch_post_lock_switch() do { } while (0)
5145 #endif
5146
kmap_local_sched_out(void)5147 static inline void kmap_local_sched_out(void)
5148 {
5149 #ifdef CONFIG_KMAP_LOCAL
5150 if (unlikely(current->kmap_ctrl.idx))
5151 __kmap_local_sched_out();
5152 #endif
5153 }
5154
kmap_local_sched_in(void)5155 static inline void kmap_local_sched_in(void)
5156 {
5157 #ifdef CONFIG_KMAP_LOCAL
5158 if (unlikely(current->kmap_ctrl.idx))
5159 __kmap_local_sched_in();
5160 #endif
5161 }
5162
5163 /**
5164 * prepare_task_switch - prepare to switch tasks
5165 * @rq: the runqueue preparing to switch
5166 * @prev: the current task that is being switched out
5167 * @next: the task we are going to switch to.
5168 *
5169 * This is called with the rq lock held and interrupts off. It must
5170 * be paired with a subsequent finish_task_switch after the context
5171 * switch.
5172 *
5173 * prepare_task_switch sets up locking and calls architecture specific
5174 * hooks.
5175 */
5176 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5177 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5178 struct task_struct *next)
5179 {
5180 kcov_prepare_switch(prev);
5181 sched_info_switch(rq, prev, next);
5182 perf_event_task_sched_out(prev, next);
5183 rseq_preempt(prev);
5184 fire_sched_out_preempt_notifiers(prev, next);
5185 kmap_local_sched_out();
5186 prepare_task(next);
5187 prepare_arch_switch(next);
5188 }
5189
5190 /**
5191 * finish_task_switch - clean up after a task-switch
5192 * @prev: the thread we just switched away from.
5193 *
5194 * finish_task_switch must be called after the context switch, paired
5195 * with a prepare_task_switch call before the context switch.
5196 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5197 * and do any other architecture-specific cleanup actions.
5198 *
5199 * Note that we may have delayed dropping an mm in context_switch(). If
5200 * so, we finish that here outside of the runqueue lock. (Doing it
5201 * with the lock held can cause deadlocks; see schedule() for
5202 * details.)
5203 *
5204 * The context switch have flipped the stack from under us and restored the
5205 * local variables which were saved when this task called schedule() in the
5206 * past. prev == current is still correct but we need to recalculate this_rq
5207 * because prev may have moved to another CPU.
5208 */
finish_task_switch(struct task_struct * prev)5209 static struct rq *finish_task_switch(struct task_struct *prev)
5210 __releases(rq->lock)
5211 {
5212 struct rq *rq = this_rq();
5213 struct mm_struct *mm = rq->prev_mm;
5214 unsigned int prev_state;
5215
5216 /*
5217 * The previous task will have left us with a preempt_count of 2
5218 * because it left us after:
5219 *
5220 * schedule()
5221 * preempt_disable(); // 1
5222 * __schedule()
5223 * raw_spin_lock_irq(&rq->lock) // 2
5224 *
5225 * Also, see FORK_PREEMPT_COUNT.
5226 */
5227 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5228 "corrupted preempt_count: %s/%d/0x%x\n",
5229 current->comm, current->pid, preempt_count()))
5230 preempt_count_set(FORK_PREEMPT_COUNT);
5231
5232 rq->prev_mm = NULL;
5233
5234 /*
5235 * A task struct has one reference for the use as "current".
5236 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5237 * schedule one last time. The schedule call will never return, and
5238 * the scheduled task must drop that reference.
5239 *
5240 * We must observe prev->state before clearing prev->on_cpu (in
5241 * finish_task), otherwise a concurrent wakeup can get prev
5242 * running on another CPU and we could rave with its RUNNING -> DEAD
5243 * transition, resulting in a double drop.
5244 */
5245 prev_state = READ_ONCE(prev->__state);
5246 vtime_task_switch(prev);
5247 perf_event_task_sched_in(prev, current);
5248 finish_task(prev);
5249 tick_nohz_task_switch();
5250 finish_lock_switch(rq);
5251 finish_arch_post_lock_switch();
5252 kcov_finish_switch(current);
5253 /*
5254 * kmap_local_sched_out() is invoked with rq::lock held and
5255 * interrupts disabled. There is no requirement for that, but the
5256 * sched out code does not have an interrupt enabled section.
5257 * Restoring the maps on sched in does not require interrupts being
5258 * disabled either.
5259 */
5260 kmap_local_sched_in();
5261
5262 fire_sched_in_preempt_notifiers(current);
5263 /*
5264 * When switching through a kernel thread, the loop in
5265 * membarrier_{private,global}_expedited() may have observed that
5266 * kernel thread and not issued an IPI. It is therefore possible to
5267 * schedule between user->kernel->user threads without passing though
5268 * switch_mm(). Membarrier requires a barrier after storing to
5269 * rq->curr, before returning to userspace, so provide them here:
5270 *
5271 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5272 * provided by mmdrop_lazy_tlb(),
5273 * - a sync_core for SYNC_CORE.
5274 */
5275 if (mm) {
5276 membarrier_mm_sync_core_before_usermode(mm);
5277 mmdrop_lazy_tlb_sched(mm);
5278 }
5279
5280 if (unlikely(prev_state == TASK_DEAD)) {
5281 if (prev->sched_class->task_dead)
5282 prev->sched_class->task_dead(prev);
5283
5284 /* Task is done with its stack. */
5285 put_task_stack(prev);
5286
5287 put_task_struct_rcu_user(prev);
5288 }
5289
5290 return rq;
5291 }
5292
5293 /**
5294 * schedule_tail - first thing a freshly forked thread must call.
5295 * @prev: the thread we just switched away from.
5296 */
schedule_tail(struct task_struct * prev)5297 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5298 __releases(rq->lock)
5299 {
5300 /*
5301 * New tasks start with FORK_PREEMPT_COUNT, see there and
5302 * finish_task_switch() for details.
5303 *
5304 * finish_task_switch() will drop rq->lock() and lower preempt_count
5305 * and the preempt_enable() will end up enabling preemption (on
5306 * PREEMPT_COUNT kernels).
5307 */
5308
5309 finish_task_switch(prev);
5310 preempt_enable();
5311
5312 if (current->set_child_tid)
5313 put_user(task_pid_vnr(current), current->set_child_tid);
5314
5315 calculate_sigpending();
5316 }
5317
5318 /*
5319 * context_switch - switch to the new MM and the new thread's register state.
5320 */
5321 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5322 context_switch(struct rq *rq, struct task_struct *prev,
5323 struct task_struct *next, struct rq_flags *rf)
5324 {
5325 prepare_task_switch(rq, prev, next);
5326
5327 /*
5328 * For paravirt, this is coupled with an exit in switch_to to
5329 * combine the page table reload and the switch backend into
5330 * one hypercall.
5331 */
5332 arch_start_context_switch(prev);
5333
5334 /*
5335 * kernel -> kernel lazy + transfer active
5336 * user -> kernel lazy + mmgrab_lazy_tlb() active
5337 *
5338 * kernel -> user switch + mmdrop_lazy_tlb() active
5339 * user -> user switch
5340 *
5341 * switch_mm_cid() needs to be updated if the barriers provided
5342 * by context_switch() are modified.
5343 */
5344 if (!next->mm) { // to kernel
5345 enter_lazy_tlb(prev->active_mm, next);
5346
5347 next->active_mm = prev->active_mm;
5348 if (prev->mm) // from user
5349 mmgrab_lazy_tlb(prev->active_mm);
5350 else
5351 prev->active_mm = NULL;
5352 } else { // to user
5353 membarrier_switch_mm(rq, prev->active_mm, next->mm);
5354 /*
5355 * sys_membarrier() requires an smp_mb() between setting
5356 * rq->curr / membarrier_switch_mm() and returning to userspace.
5357 *
5358 * The below provides this either through switch_mm(), or in
5359 * case 'prev->active_mm == next->mm' through
5360 * finish_task_switch()'s mmdrop().
5361 */
5362 switch_mm_irqs_off(prev->active_mm, next->mm, next);
5363 lru_gen_use_mm(next->mm);
5364
5365 if (!prev->mm) { // from kernel
5366 /* will mmdrop_lazy_tlb() in finish_task_switch(). */
5367 rq->prev_mm = prev->active_mm;
5368 prev->active_mm = NULL;
5369 }
5370 }
5371
5372 /* switch_mm_cid() requires the memory barriers above. */
5373 switch_mm_cid(rq, prev, next);
5374
5375 prepare_lock_switch(rq, next, rf);
5376
5377 /* Here we just switch the register state and the stack. */
5378 switch_to(prev, next, prev);
5379 barrier();
5380
5381 return finish_task_switch(prev);
5382 }
5383
5384 /*
5385 * nr_running and nr_context_switches:
5386 *
5387 * externally visible scheduler statistics: current number of runnable
5388 * threads, total number of context switches performed since bootup.
5389 */
nr_running(void)5390 unsigned int nr_running(void)
5391 {
5392 unsigned int i, sum = 0;
5393
5394 for_each_online_cpu(i)
5395 sum += cpu_rq(i)->nr_running;
5396
5397 return sum;
5398 }
5399
5400 /*
5401 * Check if only the current task is running on the CPU.
5402 *
5403 * Caution: this function does not check that the caller has disabled
5404 * preemption, thus the result might have a time-of-check-to-time-of-use
5405 * race. The caller is responsible to use it correctly, for example:
5406 *
5407 * - from a non-preemptible section (of course)
5408 *
5409 * - from a thread that is bound to a single CPU
5410 *
5411 * - in a loop with very short iterations (e.g. a polling loop)
5412 */
single_task_running(void)5413 bool single_task_running(void)
5414 {
5415 return raw_rq()->nr_running == 1;
5416 }
5417 EXPORT_SYMBOL(single_task_running);
5418
nr_context_switches_cpu(int cpu)5419 unsigned long long nr_context_switches_cpu(int cpu)
5420 {
5421 return cpu_rq(cpu)->nr_switches;
5422 }
5423
nr_context_switches(void)5424 unsigned long long nr_context_switches(void)
5425 {
5426 int i;
5427 unsigned long long sum = 0;
5428
5429 for_each_possible_cpu(i)
5430 sum += cpu_rq(i)->nr_switches;
5431
5432 return sum;
5433 }
5434
5435 /*
5436 * Consumers of these two interfaces, like for example the cpuidle menu
5437 * governor, are using nonsensical data. Preferring shallow idle state selection
5438 * for a CPU that has IO-wait which might not even end up running the task when
5439 * it does become runnable.
5440 */
5441
nr_iowait_cpu(int cpu)5442 unsigned int nr_iowait_cpu(int cpu)
5443 {
5444 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5445 }
5446
5447 /*
5448 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5449 *
5450 * The idea behind IO-wait account is to account the idle time that we could
5451 * have spend running if it were not for IO. That is, if we were to improve the
5452 * storage performance, we'd have a proportional reduction in IO-wait time.
5453 *
5454 * This all works nicely on UP, where, when a task blocks on IO, we account
5455 * idle time as IO-wait, because if the storage were faster, it could've been
5456 * running and we'd not be idle.
5457 *
5458 * This has been extended to SMP, by doing the same for each CPU. This however
5459 * is broken.
5460 *
5461 * Imagine for instance the case where two tasks block on one CPU, only the one
5462 * CPU will have IO-wait accounted, while the other has regular idle. Even
5463 * though, if the storage were faster, both could've ran at the same time,
5464 * utilising both CPUs.
5465 *
5466 * This means, that when looking globally, the current IO-wait accounting on
5467 * SMP is a lower bound, by reason of under accounting.
5468 *
5469 * Worse, since the numbers are provided per CPU, they are sometimes
5470 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5471 * associated with any one particular CPU, it can wake to another CPU than it
5472 * blocked on. This means the per CPU IO-wait number is meaningless.
5473 *
5474 * Task CPU affinities can make all that even more 'interesting'.
5475 */
5476
nr_iowait(void)5477 unsigned int nr_iowait(void)
5478 {
5479 unsigned int i, sum = 0;
5480
5481 for_each_possible_cpu(i)
5482 sum += nr_iowait_cpu(i);
5483
5484 return sum;
5485 }
5486
5487 #ifdef CONFIG_SMP
5488
5489 /*
5490 * sched_exec - execve() is a valuable balancing opportunity, because at
5491 * this point the task has the smallest effective memory and cache footprint.
5492 */
sched_exec(void)5493 void sched_exec(void)
5494 {
5495 struct task_struct *p = current;
5496 struct migration_arg arg;
5497 int dest_cpu;
5498
5499 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5500 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5501 if (dest_cpu == smp_processor_id())
5502 return;
5503
5504 if (unlikely(!cpu_active(dest_cpu)))
5505 return;
5506
5507 arg = (struct migration_arg){ p, dest_cpu };
5508 }
5509 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5510 }
5511
5512 #endif
5513
5514 DEFINE_PER_CPU(struct kernel_stat, kstat);
5515 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5516
5517 EXPORT_PER_CPU_SYMBOL(kstat);
5518 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5519
5520 /*
5521 * The function fair_sched_class.update_curr accesses the struct curr
5522 * and its field curr->exec_start; when called from task_sched_runtime(),
5523 * we observe a high rate of cache misses in practice.
5524 * Prefetching this data results in improved performance.
5525 */
prefetch_curr_exec_start(struct task_struct * p)5526 static inline void prefetch_curr_exec_start(struct task_struct *p)
5527 {
5528 #ifdef CONFIG_FAIR_GROUP_SCHED
5529 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5530 #else
5531 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5532 #endif
5533 prefetch(curr);
5534 prefetch(&curr->exec_start);
5535 }
5536
5537 /*
5538 * Return accounted runtime for the task.
5539 * In case the task is currently running, return the runtime plus current's
5540 * pending runtime that have not been accounted yet.
5541 */
task_sched_runtime(struct task_struct * p)5542 unsigned long long task_sched_runtime(struct task_struct *p)
5543 {
5544 struct rq_flags rf;
5545 struct rq *rq;
5546 u64 ns;
5547
5548 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5549 /*
5550 * 64-bit doesn't need locks to atomically read a 64-bit value.
5551 * So we have a optimization chance when the task's delta_exec is 0.
5552 * Reading ->on_cpu is racy, but this is ok.
5553 *
5554 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5555 * If we race with it entering CPU, unaccounted time is 0. This is
5556 * indistinguishable from the read occurring a few cycles earlier.
5557 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5558 * been accounted, so we're correct here as well.
5559 */
5560 if (!p->on_cpu || !task_on_rq_queued(p))
5561 return p->se.sum_exec_runtime;
5562 #endif
5563
5564 rq = task_rq_lock(p, &rf);
5565 /*
5566 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5567 * project cycles that may never be accounted to this
5568 * thread, breaking clock_gettime().
5569 */
5570 if (task_current(rq, p) && task_on_rq_queued(p)) {
5571 prefetch_curr_exec_start(p);
5572 update_rq_clock(rq);
5573 p->sched_class->update_curr(rq);
5574 }
5575 ns = p->se.sum_exec_runtime;
5576 task_rq_unlock(rq, p, &rf);
5577
5578 return ns;
5579 }
5580
5581 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5582 static u64 cpu_resched_latency(struct rq *rq)
5583 {
5584 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5585 u64 resched_latency, now = rq_clock(rq);
5586 static bool warned_once;
5587
5588 if (sysctl_resched_latency_warn_once && warned_once)
5589 return 0;
5590
5591 if (!need_resched() || !latency_warn_ms)
5592 return 0;
5593
5594 if (system_state == SYSTEM_BOOTING)
5595 return 0;
5596
5597 if (!rq->last_seen_need_resched_ns) {
5598 rq->last_seen_need_resched_ns = now;
5599 rq->ticks_without_resched = 0;
5600 return 0;
5601 }
5602
5603 rq->ticks_without_resched++;
5604 resched_latency = now - rq->last_seen_need_resched_ns;
5605 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5606 return 0;
5607
5608 warned_once = true;
5609
5610 return resched_latency;
5611 }
5612
setup_resched_latency_warn_ms(char * str)5613 static int __init setup_resched_latency_warn_ms(char *str)
5614 {
5615 long val;
5616
5617 if ((kstrtol(str, 0, &val))) {
5618 pr_warn("Unable to set resched_latency_warn_ms\n");
5619 return 1;
5620 }
5621
5622 sysctl_resched_latency_warn_ms = val;
5623 return 1;
5624 }
5625 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5626 #else
cpu_resched_latency(struct rq * rq)5627 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5628 #endif /* CONFIG_SCHED_DEBUG */
5629
5630 /*
5631 * This function gets called by the timer code, with HZ frequency.
5632 * We call it with interrupts disabled.
5633 */
scheduler_tick(void)5634 void scheduler_tick(void)
5635 {
5636 int cpu = smp_processor_id();
5637 struct rq *rq = cpu_rq(cpu);
5638 struct task_struct *curr;
5639 struct rq_flags rf;
5640 unsigned long thermal_pressure;
5641 u64 resched_latency;
5642
5643 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5644 arch_scale_freq_tick();
5645
5646 sched_clock_tick();
5647
5648 rq_lock(rq, &rf);
5649
5650 curr = rq->curr;
5651 psi_account_irqtime(rq, curr, NULL);
5652
5653 update_rq_clock(rq);
5654 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5655 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5656 curr->sched_class->task_tick(rq, curr, 0);
5657 if (sched_feat(LATENCY_WARN))
5658 resched_latency = cpu_resched_latency(rq);
5659 calc_global_load_tick(rq);
5660 sched_core_tick(rq);
5661 task_tick_mm_cid(rq, curr);
5662
5663 rq_unlock(rq, &rf);
5664
5665 if (sched_feat(LATENCY_WARN) && resched_latency)
5666 resched_latency_warn(cpu, resched_latency);
5667
5668 perf_event_task_tick();
5669
5670 if (curr->flags & PF_WQ_WORKER)
5671 wq_worker_tick(curr);
5672
5673 #ifdef CONFIG_SMP
5674 rq->idle_balance = idle_cpu(cpu);
5675 trigger_load_balance(rq);
5676 #endif
5677 }
5678
5679 #ifdef CONFIG_NO_HZ_FULL
5680
5681 struct tick_work {
5682 int cpu;
5683 atomic_t state;
5684 struct delayed_work work;
5685 };
5686 /* Values for ->state, see diagram below. */
5687 #define TICK_SCHED_REMOTE_OFFLINE 0
5688 #define TICK_SCHED_REMOTE_OFFLINING 1
5689 #define TICK_SCHED_REMOTE_RUNNING 2
5690
5691 /*
5692 * State diagram for ->state:
5693 *
5694 *
5695 * TICK_SCHED_REMOTE_OFFLINE
5696 * | ^
5697 * | |
5698 * | | sched_tick_remote()
5699 * | |
5700 * | |
5701 * +--TICK_SCHED_REMOTE_OFFLINING
5702 * | ^
5703 * | |
5704 * sched_tick_start() | | sched_tick_stop()
5705 * | |
5706 * V |
5707 * TICK_SCHED_REMOTE_RUNNING
5708 *
5709 *
5710 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5711 * and sched_tick_start() are happy to leave the state in RUNNING.
5712 */
5713
5714 static struct tick_work __percpu *tick_work_cpu;
5715
sched_tick_remote(struct work_struct * work)5716 static void sched_tick_remote(struct work_struct *work)
5717 {
5718 struct delayed_work *dwork = to_delayed_work(work);
5719 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5720 int cpu = twork->cpu;
5721 struct rq *rq = cpu_rq(cpu);
5722 int os;
5723
5724 /*
5725 * Handle the tick only if it appears the remote CPU is running in full
5726 * dynticks mode. The check is racy by nature, but missing a tick or
5727 * having one too much is no big deal because the scheduler tick updates
5728 * statistics and checks timeslices in a time-independent way, regardless
5729 * of when exactly it is running.
5730 */
5731 if (tick_nohz_tick_stopped_cpu(cpu)) {
5732 guard(rq_lock_irq)(rq);
5733 struct task_struct *curr = rq->curr;
5734
5735 if (cpu_online(cpu)) {
5736 update_rq_clock(rq);
5737
5738 if (!is_idle_task(curr)) {
5739 /*
5740 * Make sure the next tick runs within a
5741 * reasonable amount of time.
5742 */
5743 u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5744 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5745 }
5746 curr->sched_class->task_tick(rq, curr, 0);
5747
5748 calc_load_nohz_remote(rq);
5749 }
5750 }
5751
5752 /*
5753 * Run the remote tick once per second (1Hz). This arbitrary
5754 * frequency is large enough to avoid overload but short enough
5755 * to keep scheduler internal stats reasonably up to date. But
5756 * first update state to reflect hotplug activity if required.
5757 */
5758 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5759 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5760 if (os == TICK_SCHED_REMOTE_RUNNING)
5761 queue_delayed_work(system_unbound_wq, dwork, HZ);
5762 }
5763
sched_tick_start(int cpu)5764 static void sched_tick_start(int cpu)
5765 {
5766 int os;
5767 struct tick_work *twork;
5768
5769 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5770 return;
5771
5772 WARN_ON_ONCE(!tick_work_cpu);
5773
5774 twork = per_cpu_ptr(tick_work_cpu, cpu);
5775 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5776 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5777 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5778 twork->cpu = cpu;
5779 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5780 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5781 }
5782 }
5783
5784 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5785 static void sched_tick_stop(int cpu)
5786 {
5787 struct tick_work *twork;
5788 int os;
5789
5790 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5791 return;
5792
5793 WARN_ON_ONCE(!tick_work_cpu);
5794
5795 twork = per_cpu_ptr(tick_work_cpu, cpu);
5796 /* There cannot be competing actions, but don't rely on stop-machine. */
5797 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5798 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5799 /* Don't cancel, as this would mess up the state machine. */
5800 }
5801 #endif /* CONFIG_HOTPLUG_CPU */
5802
sched_tick_offload_init(void)5803 int __init sched_tick_offload_init(void)
5804 {
5805 tick_work_cpu = alloc_percpu(struct tick_work);
5806 BUG_ON(!tick_work_cpu);
5807 return 0;
5808 }
5809
5810 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5811 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5812 static inline void sched_tick_stop(int cpu) { }
5813 #endif
5814
5815 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5816 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5817 /*
5818 * If the value passed in is equal to the current preempt count
5819 * then we just disabled preemption. Start timing the latency.
5820 */
preempt_latency_start(int val)5821 static inline void preempt_latency_start(int val)
5822 {
5823 if (preempt_count() == val) {
5824 unsigned long ip = get_lock_parent_ip();
5825 #ifdef CONFIG_DEBUG_PREEMPT
5826 current->preempt_disable_ip = ip;
5827 #endif
5828 trace_preempt_off(CALLER_ADDR0, ip);
5829 }
5830 }
5831
preempt_count_add(int val)5832 void preempt_count_add(int val)
5833 {
5834 #ifdef CONFIG_DEBUG_PREEMPT
5835 /*
5836 * Underflow?
5837 */
5838 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5839 return;
5840 #endif
5841 __preempt_count_add(val);
5842 #ifdef CONFIG_DEBUG_PREEMPT
5843 /*
5844 * Spinlock count overflowing soon?
5845 */
5846 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5847 PREEMPT_MASK - 10);
5848 #endif
5849 preempt_latency_start(val);
5850 }
5851 EXPORT_SYMBOL(preempt_count_add);
5852 NOKPROBE_SYMBOL(preempt_count_add);
5853
5854 /*
5855 * If the value passed in equals to the current preempt count
5856 * then we just enabled preemption. Stop timing the latency.
5857 */
preempt_latency_stop(int val)5858 static inline void preempt_latency_stop(int val)
5859 {
5860 if (preempt_count() == val)
5861 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5862 }
5863
preempt_count_sub(int val)5864 void preempt_count_sub(int val)
5865 {
5866 #ifdef CONFIG_DEBUG_PREEMPT
5867 /*
5868 * Underflow?
5869 */
5870 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5871 return;
5872 /*
5873 * Is the spinlock portion underflowing?
5874 */
5875 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5876 !(preempt_count() & PREEMPT_MASK)))
5877 return;
5878 #endif
5879
5880 preempt_latency_stop(val);
5881 __preempt_count_sub(val);
5882 }
5883 EXPORT_SYMBOL(preempt_count_sub);
5884 NOKPROBE_SYMBOL(preempt_count_sub);
5885
5886 #else
preempt_latency_start(int val)5887 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5888 static inline void preempt_latency_stop(int val) { }
5889 #endif
5890
get_preempt_disable_ip(struct task_struct * p)5891 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5892 {
5893 #ifdef CONFIG_DEBUG_PREEMPT
5894 return p->preempt_disable_ip;
5895 #else
5896 return 0;
5897 #endif
5898 }
5899
5900 /*
5901 * Print scheduling while atomic bug:
5902 */
__schedule_bug(struct task_struct * prev)5903 static noinline void __schedule_bug(struct task_struct *prev)
5904 {
5905 /* Save this before calling printk(), since that will clobber it */
5906 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5907
5908 if (oops_in_progress)
5909 return;
5910
5911 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5912 prev->comm, prev->pid, preempt_count());
5913
5914 debug_show_held_locks(prev);
5915 print_modules();
5916 if (irqs_disabled())
5917 print_irqtrace_events(prev);
5918 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5919 && in_atomic_preempt_off()) {
5920 pr_err("Preemption disabled at:");
5921 print_ip_sym(KERN_ERR, preempt_disable_ip);
5922 }
5923 check_panic_on_warn("scheduling while atomic");
5924
5925 dump_stack();
5926 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5927 }
5928
5929 /*
5930 * Various schedule()-time debugging checks and statistics:
5931 */
schedule_debug(struct task_struct * prev,bool preempt)5932 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5933 {
5934 #ifdef CONFIG_SCHED_STACK_END_CHECK
5935 if (task_stack_end_corrupted(prev))
5936 panic("corrupted stack end detected inside scheduler\n");
5937
5938 if (task_scs_end_corrupted(prev))
5939 panic("corrupted shadow stack detected inside scheduler\n");
5940 #endif
5941
5942 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5943 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5944 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5945 prev->comm, prev->pid, prev->non_block_count);
5946 dump_stack();
5947 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5948 }
5949 #endif
5950
5951 if (unlikely(in_atomic_preempt_off())) {
5952 __schedule_bug(prev);
5953 preempt_count_set(PREEMPT_DISABLED);
5954 }
5955 rcu_sleep_check();
5956 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5957
5958 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5959
5960 schedstat_inc(this_rq()->sched_count);
5961 }
5962
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5963 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5964 struct rq_flags *rf)
5965 {
5966 #ifdef CONFIG_SMP
5967 const struct sched_class *class;
5968 /*
5969 * We must do the balancing pass before put_prev_task(), such
5970 * that when we release the rq->lock the task is in the same
5971 * state as before we took rq->lock.
5972 *
5973 * We can terminate the balance pass as soon as we know there is
5974 * a runnable task of @class priority or higher.
5975 */
5976 for_class_range(class, prev->sched_class, &idle_sched_class) {
5977 if (class->balance(rq, prev, rf))
5978 break;
5979 }
5980 #endif
5981
5982 put_prev_task(rq, prev);
5983 }
5984
5985 /*
5986 * Pick up the highest-prio task:
5987 */
5988 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5989 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5990 {
5991 const struct sched_class *class;
5992 struct task_struct *p;
5993
5994 /*
5995 * Optimization: we know that if all tasks are in the fair class we can
5996 * call that function directly, but only if the @prev task wasn't of a
5997 * higher scheduling class, because otherwise those lose the
5998 * opportunity to pull in more work from other CPUs.
5999 */
6000 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6001 rq->nr_running == rq->cfs.h_nr_running)) {
6002
6003 p = pick_next_task_fair(rq, prev, rf);
6004 if (unlikely(p == RETRY_TASK))
6005 goto restart;
6006
6007 /* Assume the next prioritized class is idle_sched_class */
6008 if (!p) {
6009 put_prev_task(rq, prev);
6010 p = pick_next_task_idle(rq);
6011 }
6012
6013 return p;
6014 }
6015
6016 restart:
6017 put_prev_task_balance(rq, prev, rf);
6018
6019 for_each_class(class) {
6020 p = class->pick_next_task(rq);
6021 if (p)
6022 return p;
6023 }
6024
6025 BUG(); /* The idle class should always have a runnable task. */
6026 }
6027
6028 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6029 static inline bool is_task_rq_idle(struct task_struct *t)
6030 {
6031 return (task_rq(t)->idle == t);
6032 }
6033
cookie_equals(struct task_struct * a,unsigned long cookie)6034 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6035 {
6036 return is_task_rq_idle(a) || (a->core_cookie == cookie);
6037 }
6038
cookie_match(struct task_struct * a,struct task_struct * b)6039 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6040 {
6041 if (is_task_rq_idle(a) || is_task_rq_idle(b))
6042 return true;
6043
6044 return a->core_cookie == b->core_cookie;
6045 }
6046
pick_task(struct rq * rq)6047 static inline struct task_struct *pick_task(struct rq *rq)
6048 {
6049 const struct sched_class *class;
6050 struct task_struct *p;
6051
6052 for_each_class(class) {
6053 p = class->pick_task(rq);
6054 if (p)
6055 return p;
6056 }
6057
6058 BUG(); /* The idle class should always have a runnable task. */
6059 }
6060
6061 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6062
6063 static void queue_core_balance(struct rq *rq);
6064
6065 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6066 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6067 {
6068 struct task_struct *next, *p, *max = NULL;
6069 const struct cpumask *smt_mask;
6070 bool fi_before = false;
6071 bool core_clock_updated = (rq == rq->core);
6072 unsigned long cookie;
6073 int i, cpu, occ = 0;
6074 struct rq *rq_i;
6075 bool need_sync;
6076
6077 if (!sched_core_enabled(rq))
6078 return __pick_next_task(rq, prev, rf);
6079
6080 cpu = cpu_of(rq);
6081
6082 /* Stopper task is switching into idle, no need core-wide selection. */
6083 if (cpu_is_offline(cpu)) {
6084 /*
6085 * Reset core_pick so that we don't enter the fastpath when
6086 * coming online. core_pick would already be migrated to
6087 * another cpu during offline.
6088 */
6089 rq->core_pick = NULL;
6090 return __pick_next_task(rq, prev, rf);
6091 }
6092
6093 /*
6094 * If there were no {en,de}queues since we picked (IOW, the task
6095 * pointers are all still valid), and we haven't scheduled the last
6096 * pick yet, do so now.
6097 *
6098 * rq->core_pick can be NULL if no selection was made for a CPU because
6099 * it was either offline or went offline during a sibling's core-wide
6100 * selection. In this case, do a core-wide selection.
6101 */
6102 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6103 rq->core->core_pick_seq != rq->core_sched_seq &&
6104 rq->core_pick) {
6105 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6106
6107 next = rq->core_pick;
6108 if (next != prev) {
6109 put_prev_task(rq, prev);
6110 set_next_task(rq, next);
6111 }
6112
6113 rq->core_pick = NULL;
6114 goto out;
6115 }
6116
6117 put_prev_task_balance(rq, prev, rf);
6118
6119 smt_mask = cpu_smt_mask(cpu);
6120 need_sync = !!rq->core->core_cookie;
6121
6122 /* reset state */
6123 rq->core->core_cookie = 0UL;
6124 if (rq->core->core_forceidle_count) {
6125 if (!core_clock_updated) {
6126 update_rq_clock(rq->core);
6127 core_clock_updated = true;
6128 }
6129 sched_core_account_forceidle(rq);
6130 /* reset after accounting force idle */
6131 rq->core->core_forceidle_start = 0;
6132 rq->core->core_forceidle_count = 0;
6133 rq->core->core_forceidle_occupation = 0;
6134 need_sync = true;
6135 fi_before = true;
6136 }
6137
6138 /*
6139 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6140 *
6141 * @task_seq guards the task state ({en,de}queues)
6142 * @pick_seq is the @task_seq we did a selection on
6143 * @sched_seq is the @pick_seq we scheduled
6144 *
6145 * However, preemptions can cause multiple picks on the same task set.
6146 * 'Fix' this by also increasing @task_seq for every pick.
6147 */
6148 rq->core->core_task_seq++;
6149
6150 /*
6151 * Optimize for common case where this CPU has no cookies
6152 * and there are no cookied tasks running on siblings.
6153 */
6154 if (!need_sync) {
6155 next = pick_task(rq);
6156 if (!next->core_cookie) {
6157 rq->core_pick = NULL;
6158 /*
6159 * For robustness, update the min_vruntime_fi for
6160 * unconstrained picks as well.
6161 */
6162 WARN_ON_ONCE(fi_before);
6163 task_vruntime_update(rq, next, false);
6164 goto out_set_next;
6165 }
6166 }
6167
6168 /*
6169 * For each thread: do the regular task pick and find the max prio task
6170 * amongst them.
6171 *
6172 * Tie-break prio towards the current CPU
6173 */
6174 for_each_cpu_wrap(i, smt_mask, cpu) {
6175 rq_i = cpu_rq(i);
6176
6177 /*
6178 * Current cpu always has its clock updated on entrance to
6179 * pick_next_task(). If the current cpu is not the core,
6180 * the core may also have been updated above.
6181 */
6182 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6183 update_rq_clock(rq_i);
6184
6185 p = rq_i->core_pick = pick_task(rq_i);
6186 if (!max || prio_less(max, p, fi_before))
6187 max = p;
6188 }
6189
6190 cookie = rq->core->core_cookie = max->core_cookie;
6191
6192 /*
6193 * For each thread: try and find a runnable task that matches @max or
6194 * force idle.
6195 */
6196 for_each_cpu(i, smt_mask) {
6197 rq_i = cpu_rq(i);
6198 p = rq_i->core_pick;
6199
6200 if (!cookie_equals(p, cookie)) {
6201 p = NULL;
6202 if (cookie)
6203 p = sched_core_find(rq_i, cookie);
6204 if (!p)
6205 p = idle_sched_class.pick_task(rq_i);
6206 }
6207
6208 rq_i->core_pick = p;
6209
6210 if (p == rq_i->idle) {
6211 if (rq_i->nr_running) {
6212 rq->core->core_forceidle_count++;
6213 if (!fi_before)
6214 rq->core->core_forceidle_seq++;
6215 }
6216 } else {
6217 occ++;
6218 }
6219 }
6220
6221 if (schedstat_enabled() && rq->core->core_forceidle_count) {
6222 rq->core->core_forceidle_start = rq_clock(rq->core);
6223 rq->core->core_forceidle_occupation = occ;
6224 }
6225
6226 rq->core->core_pick_seq = rq->core->core_task_seq;
6227 next = rq->core_pick;
6228 rq->core_sched_seq = rq->core->core_pick_seq;
6229
6230 /* Something should have been selected for current CPU */
6231 WARN_ON_ONCE(!next);
6232
6233 /*
6234 * Reschedule siblings
6235 *
6236 * NOTE: L1TF -- at this point we're no longer running the old task and
6237 * sending an IPI (below) ensures the sibling will no longer be running
6238 * their task. This ensures there is no inter-sibling overlap between
6239 * non-matching user state.
6240 */
6241 for_each_cpu(i, smt_mask) {
6242 rq_i = cpu_rq(i);
6243
6244 /*
6245 * An online sibling might have gone offline before a task
6246 * could be picked for it, or it might be offline but later
6247 * happen to come online, but its too late and nothing was
6248 * picked for it. That's Ok - it will pick tasks for itself,
6249 * so ignore it.
6250 */
6251 if (!rq_i->core_pick)
6252 continue;
6253
6254 /*
6255 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6256 * fi_before fi update?
6257 * 0 0 1
6258 * 0 1 1
6259 * 1 0 1
6260 * 1 1 0
6261 */
6262 if (!(fi_before && rq->core->core_forceidle_count))
6263 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6264
6265 rq_i->core_pick->core_occupation = occ;
6266
6267 if (i == cpu) {
6268 rq_i->core_pick = NULL;
6269 continue;
6270 }
6271
6272 /* Did we break L1TF mitigation requirements? */
6273 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6274
6275 if (rq_i->curr == rq_i->core_pick) {
6276 rq_i->core_pick = NULL;
6277 continue;
6278 }
6279
6280 resched_curr(rq_i);
6281 }
6282
6283 out_set_next:
6284 set_next_task(rq, next);
6285 out:
6286 if (rq->core->core_forceidle_count && next == rq->idle)
6287 queue_core_balance(rq);
6288
6289 return next;
6290 }
6291
try_steal_cookie(int this,int that)6292 static bool try_steal_cookie(int this, int that)
6293 {
6294 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6295 struct task_struct *p;
6296 unsigned long cookie;
6297 bool success = false;
6298
6299 guard(irq)();
6300 guard(double_rq_lock)(dst, src);
6301
6302 cookie = dst->core->core_cookie;
6303 if (!cookie)
6304 return false;
6305
6306 if (dst->curr != dst->idle)
6307 return false;
6308
6309 p = sched_core_find(src, cookie);
6310 if (!p)
6311 return false;
6312
6313 do {
6314 if (p == src->core_pick || p == src->curr)
6315 goto next;
6316
6317 if (!is_cpu_allowed(p, this))
6318 goto next;
6319
6320 if (p->core_occupation > dst->idle->core_occupation)
6321 goto next;
6322 /*
6323 * sched_core_find() and sched_core_next() will ensure
6324 * that task @p is not throttled now, we also need to
6325 * check whether the runqueue of the destination CPU is
6326 * being throttled.
6327 */
6328 if (sched_task_is_throttled(p, this))
6329 goto next;
6330
6331 deactivate_task(src, p, 0);
6332 set_task_cpu(p, this);
6333 activate_task(dst, p, 0);
6334
6335 resched_curr(dst);
6336
6337 success = true;
6338 break;
6339
6340 next:
6341 p = sched_core_next(p, cookie);
6342 } while (p);
6343
6344 return success;
6345 }
6346
steal_cookie_task(int cpu,struct sched_domain * sd)6347 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6348 {
6349 int i;
6350
6351 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6352 if (i == cpu)
6353 continue;
6354
6355 if (need_resched())
6356 break;
6357
6358 if (try_steal_cookie(cpu, i))
6359 return true;
6360 }
6361
6362 return false;
6363 }
6364
sched_core_balance(struct rq * rq)6365 static void sched_core_balance(struct rq *rq)
6366 {
6367 struct sched_domain *sd;
6368 int cpu = cpu_of(rq);
6369
6370 preempt_disable();
6371 rcu_read_lock();
6372 raw_spin_rq_unlock_irq(rq);
6373 for_each_domain(cpu, sd) {
6374 if (need_resched())
6375 break;
6376
6377 if (steal_cookie_task(cpu, sd))
6378 break;
6379 }
6380 raw_spin_rq_lock_irq(rq);
6381 rcu_read_unlock();
6382 preempt_enable();
6383 }
6384
6385 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6386
queue_core_balance(struct rq * rq)6387 static void queue_core_balance(struct rq *rq)
6388 {
6389 if (!sched_core_enabled(rq))
6390 return;
6391
6392 if (!rq->core->core_cookie)
6393 return;
6394
6395 if (!rq->nr_running) /* not forced idle */
6396 return;
6397
6398 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6399 }
6400
6401 DEFINE_LOCK_GUARD_1(core_lock, int,
6402 sched_core_lock(*_T->lock, &_T->flags),
6403 sched_core_unlock(*_T->lock, &_T->flags),
6404 unsigned long flags)
6405
sched_core_cpu_starting(unsigned int cpu)6406 static void sched_core_cpu_starting(unsigned int cpu)
6407 {
6408 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6409 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6410 int t;
6411
6412 guard(core_lock)(&cpu);
6413
6414 WARN_ON_ONCE(rq->core != rq);
6415
6416 /* if we're the first, we'll be our own leader */
6417 if (cpumask_weight(smt_mask) == 1)
6418 return;
6419
6420 /* find the leader */
6421 for_each_cpu(t, smt_mask) {
6422 if (t == cpu)
6423 continue;
6424 rq = cpu_rq(t);
6425 if (rq->core == rq) {
6426 core_rq = rq;
6427 break;
6428 }
6429 }
6430
6431 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6432 return;
6433
6434 /* install and validate core_rq */
6435 for_each_cpu(t, smt_mask) {
6436 rq = cpu_rq(t);
6437
6438 if (t == cpu)
6439 rq->core = core_rq;
6440
6441 WARN_ON_ONCE(rq->core != core_rq);
6442 }
6443 }
6444
sched_core_cpu_deactivate(unsigned int cpu)6445 static void sched_core_cpu_deactivate(unsigned int cpu)
6446 {
6447 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6448 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6449 int t;
6450
6451 guard(core_lock)(&cpu);
6452
6453 /* if we're the last man standing, nothing to do */
6454 if (cpumask_weight(smt_mask) == 1) {
6455 WARN_ON_ONCE(rq->core != rq);
6456 return;
6457 }
6458
6459 /* if we're not the leader, nothing to do */
6460 if (rq->core != rq)
6461 return;
6462
6463 /* find a new leader */
6464 for_each_cpu(t, smt_mask) {
6465 if (t == cpu)
6466 continue;
6467 core_rq = cpu_rq(t);
6468 break;
6469 }
6470
6471 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6472 return;
6473
6474 /* copy the shared state to the new leader */
6475 core_rq->core_task_seq = rq->core_task_seq;
6476 core_rq->core_pick_seq = rq->core_pick_seq;
6477 core_rq->core_cookie = rq->core_cookie;
6478 core_rq->core_forceidle_count = rq->core_forceidle_count;
6479 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6480 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6481
6482 /*
6483 * Accounting edge for forced idle is handled in pick_next_task().
6484 * Don't need another one here, since the hotplug thread shouldn't
6485 * have a cookie.
6486 */
6487 core_rq->core_forceidle_start = 0;
6488
6489 /* install new leader */
6490 for_each_cpu(t, smt_mask) {
6491 rq = cpu_rq(t);
6492 rq->core = core_rq;
6493 }
6494 }
6495
sched_core_cpu_dying(unsigned int cpu)6496 static inline void sched_core_cpu_dying(unsigned int cpu)
6497 {
6498 struct rq *rq = cpu_rq(cpu);
6499
6500 if (rq->core != rq)
6501 rq->core = rq;
6502 }
6503
6504 #else /* !CONFIG_SCHED_CORE */
6505
sched_core_cpu_starting(unsigned int cpu)6506 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6507 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6508 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6509
6510 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6511 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6512 {
6513 return __pick_next_task(rq, prev, rf);
6514 }
6515
6516 #endif /* CONFIG_SCHED_CORE */
6517
6518 /*
6519 * Constants for the sched_mode argument of __schedule().
6520 *
6521 * The mode argument allows RT enabled kernels to differentiate a
6522 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6523 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6524 * optimize the AND operation out and just check for zero.
6525 */
6526 #define SM_NONE 0x0
6527 #define SM_PREEMPT 0x1
6528 #define SM_RTLOCK_WAIT 0x2
6529
6530 #ifndef CONFIG_PREEMPT_RT
6531 # define SM_MASK_PREEMPT (~0U)
6532 #else
6533 # define SM_MASK_PREEMPT SM_PREEMPT
6534 #endif
6535
6536 /*
6537 * __schedule() is the main scheduler function.
6538 *
6539 * The main means of driving the scheduler and thus entering this function are:
6540 *
6541 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6542 *
6543 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6544 * paths. For example, see arch/x86/entry_64.S.
6545 *
6546 * To drive preemption between tasks, the scheduler sets the flag in timer
6547 * interrupt handler scheduler_tick().
6548 *
6549 * 3. Wakeups don't really cause entry into schedule(). They add a
6550 * task to the run-queue and that's it.
6551 *
6552 * Now, if the new task added to the run-queue preempts the current
6553 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6554 * called on the nearest possible occasion:
6555 *
6556 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6557 *
6558 * - in syscall or exception context, at the next outmost
6559 * preempt_enable(). (this might be as soon as the wake_up()'s
6560 * spin_unlock()!)
6561 *
6562 * - in IRQ context, return from interrupt-handler to
6563 * preemptible context
6564 *
6565 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6566 * then at the next:
6567 *
6568 * - cond_resched() call
6569 * - explicit schedule() call
6570 * - return from syscall or exception to user-space
6571 * - return from interrupt-handler to user-space
6572 *
6573 * WARNING: must be called with preemption disabled!
6574 */
__schedule(unsigned int sched_mode)6575 static void __sched notrace __schedule(unsigned int sched_mode)
6576 {
6577 struct task_struct *prev, *next;
6578 unsigned long *switch_count;
6579 unsigned long prev_state;
6580 struct rq_flags rf;
6581 struct rq *rq;
6582 int cpu;
6583
6584 cpu = smp_processor_id();
6585 rq = cpu_rq(cpu);
6586 prev = rq->curr;
6587
6588 schedule_debug(prev, !!sched_mode);
6589
6590 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6591 hrtick_clear(rq);
6592
6593 local_irq_disable();
6594 rcu_note_context_switch(!!sched_mode);
6595
6596 /*
6597 * Make sure that signal_pending_state()->signal_pending() below
6598 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6599 * done by the caller to avoid the race with signal_wake_up():
6600 *
6601 * __set_current_state(@state) signal_wake_up()
6602 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6603 * wake_up_state(p, state)
6604 * LOCK rq->lock LOCK p->pi_state
6605 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6606 * if (signal_pending_state()) if (p->state & @state)
6607 *
6608 * Also, the membarrier system call requires a full memory barrier
6609 * after coming from user-space, before storing to rq->curr.
6610 */
6611 rq_lock(rq, &rf);
6612 smp_mb__after_spinlock();
6613
6614 /* Promote REQ to ACT */
6615 rq->clock_update_flags <<= 1;
6616 update_rq_clock(rq);
6617 rq->clock_update_flags = RQCF_UPDATED;
6618
6619 switch_count = &prev->nivcsw;
6620
6621 /*
6622 * We must load prev->state once (task_struct::state is volatile), such
6623 * that we form a control dependency vs deactivate_task() below.
6624 */
6625 prev_state = READ_ONCE(prev->__state);
6626 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6627 if (signal_pending_state(prev_state, prev)) {
6628 WRITE_ONCE(prev->__state, TASK_RUNNING);
6629 } else {
6630 prev->sched_contributes_to_load =
6631 (prev_state & TASK_UNINTERRUPTIBLE) &&
6632 !(prev_state & TASK_NOLOAD) &&
6633 !(prev_state & TASK_FROZEN);
6634
6635 if (prev->sched_contributes_to_load)
6636 rq->nr_uninterruptible++;
6637
6638 /*
6639 * __schedule() ttwu()
6640 * prev_state = prev->state; if (p->on_rq && ...)
6641 * if (prev_state) goto out;
6642 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6643 * p->state = TASK_WAKING
6644 *
6645 * Where __schedule() and ttwu() have matching control dependencies.
6646 *
6647 * After this, schedule() must not care about p->state any more.
6648 */
6649 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6650
6651 if (prev->in_iowait) {
6652 atomic_inc(&rq->nr_iowait);
6653 delayacct_blkio_start();
6654 }
6655 }
6656 switch_count = &prev->nvcsw;
6657 }
6658
6659 next = pick_next_task(rq, prev, &rf);
6660 clear_tsk_need_resched(prev);
6661 clear_preempt_need_resched();
6662 #ifdef CONFIG_SCHED_DEBUG
6663 rq->last_seen_need_resched_ns = 0;
6664 #endif
6665
6666 if (likely(prev != next)) {
6667 rq->nr_switches++;
6668 /*
6669 * RCU users of rcu_dereference(rq->curr) may not see
6670 * changes to task_struct made by pick_next_task().
6671 */
6672 RCU_INIT_POINTER(rq->curr, next);
6673 /*
6674 * The membarrier system call requires each architecture
6675 * to have a full memory barrier after updating
6676 * rq->curr, before returning to user-space.
6677 *
6678 * Here are the schemes providing that barrier on the
6679 * various architectures:
6680 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6681 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm()
6682 * on PowerPC and on RISC-V.
6683 * - finish_lock_switch() for weakly-ordered
6684 * architectures where spin_unlock is a full barrier,
6685 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6686 * is a RELEASE barrier),
6687 */
6688 ++*switch_count;
6689
6690 migrate_disable_switch(rq, prev);
6691 psi_account_irqtime(rq, prev, next);
6692 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6693
6694 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6695
6696 /* Also unlocks the rq: */
6697 rq = context_switch(rq, prev, next, &rf);
6698 } else {
6699 rq_unpin_lock(rq, &rf);
6700 __balance_callbacks(rq);
6701 raw_spin_rq_unlock_irq(rq);
6702 }
6703 }
6704
do_task_dead(void)6705 void __noreturn do_task_dead(void)
6706 {
6707 /* Causes final put_task_struct in finish_task_switch(): */
6708 set_special_state(TASK_DEAD);
6709
6710 /* Tell freezer to ignore us: */
6711 current->flags |= PF_NOFREEZE;
6712
6713 __schedule(SM_NONE);
6714 BUG();
6715
6716 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6717 for (;;)
6718 cpu_relax();
6719 }
6720
sched_submit_work(struct task_struct * tsk)6721 static inline void sched_submit_work(struct task_struct *tsk)
6722 {
6723 unsigned int task_flags;
6724
6725 if (task_is_running(tsk))
6726 return;
6727
6728 task_flags = tsk->flags;
6729 /*
6730 * If a worker goes to sleep, notify and ask workqueue whether it
6731 * wants to wake up a task to maintain concurrency.
6732 */
6733 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6734 if (task_flags & PF_WQ_WORKER)
6735 wq_worker_sleeping(tsk);
6736 else
6737 io_wq_worker_sleeping(tsk);
6738 }
6739
6740 /*
6741 * spinlock and rwlock must not flush block requests. This will
6742 * deadlock if the callback attempts to acquire a lock which is
6743 * already acquired.
6744 */
6745 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6746
6747 /*
6748 * If we are going to sleep and we have plugged IO queued,
6749 * make sure to submit it to avoid deadlocks.
6750 */
6751 blk_flush_plug(tsk->plug, true);
6752 }
6753
sched_update_worker(struct task_struct * tsk)6754 static void sched_update_worker(struct task_struct *tsk)
6755 {
6756 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6757 if (tsk->flags & PF_WQ_WORKER)
6758 wq_worker_running(tsk);
6759 else
6760 io_wq_worker_running(tsk);
6761 }
6762 }
6763
schedule(void)6764 asmlinkage __visible void __sched schedule(void)
6765 {
6766 struct task_struct *tsk = current;
6767
6768 sched_submit_work(tsk);
6769 do {
6770 preempt_disable();
6771 __schedule(SM_NONE);
6772 sched_preempt_enable_no_resched();
6773 } while (need_resched());
6774 sched_update_worker(tsk);
6775 }
6776 EXPORT_SYMBOL(schedule);
6777
6778 /*
6779 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6780 * state (have scheduled out non-voluntarily) by making sure that all
6781 * tasks have either left the run queue or have gone into user space.
6782 * As idle tasks do not do either, they must not ever be preempted
6783 * (schedule out non-voluntarily).
6784 *
6785 * schedule_idle() is similar to schedule_preempt_disable() except that it
6786 * never enables preemption because it does not call sched_submit_work().
6787 */
schedule_idle(void)6788 void __sched schedule_idle(void)
6789 {
6790 /*
6791 * As this skips calling sched_submit_work(), which the idle task does
6792 * regardless because that function is a nop when the task is in a
6793 * TASK_RUNNING state, make sure this isn't used someplace that the
6794 * current task can be in any other state. Note, idle is always in the
6795 * TASK_RUNNING state.
6796 */
6797 WARN_ON_ONCE(current->__state);
6798 do {
6799 __schedule(SM_NONE);
6800 } while (need_resched());
6801 }
6802
6803 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)6804 asmlinkage __visible void __sched schedule_user(void)
6805 {
6806 /*
6807 * If we come here after a random call to set_need_resched(),
6808 * or we have been woken up remotely but the IPI has not yet arrived,
6809 * we haven't yet exited the RCU idle mode. Do it here manually until
6810 * we find a better solution.
6811 *
6812 * NB: There are buggy callers of this function. Ideally we
6813 * should warn if prev_state != CONTEXT_USER, but that will trigger
6814 * too frequently to make sense yet.
6815 */
6816 enum ctx_state prev_state = exception_enter();
6817 schedule();
6818 exception_exit(prev_state);
6819 }
6820 #endif
6821
6822 /**
6823 * schedule_preempt_disabled - called with preemption disabled
6824 *
6825 * Returns with preemption disabled. Note: preempt_count must be 1
6826 */
schedule_preempt_disabled(void)6827 void __sched schedule_preempt_disabled(void)
6828 {
6829 sched_preempt_enable_no_resched();
6830 schedule();
6831 preempt_disable();
6832 }
6833
6834 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6835 void __sched notrace schedule_rtlock(void)
6836 {
6837 do {
6838 preempt_disable();
6839 __schedule(SM_RTLOCK_WAIT);
6840 sched_preempt_enable_no_resched();
6841 } while (need_resched());
6842 }
6843 NOKPROBE_SYMBOL(schedule_rtlock);
6844 #endif
6845
preempt_schedule_common(void)6846 static void __sched notrace preempt_schedule_common(void)
6847 {
6848 do {
6849 /*
6850 * Because the function tracer can trace preempt_count_sub()
6851 * and it also uses preempt_enable/disable_notrace(), if
6852 * NEED_RESCHED is set, the preempt_enable_notrace() called
6853 * by the function tracer will call this function again and
6854 * cause infinite recursion.
6855 *
6856 * Preemption must be disabled here before the function
6857 * tracer can trace. Break up preempt_disable() into two
6858 * calls. One to disable preemption without fear of being
6859 * traced. The other to still record the preemption latency,
6860 * which can also be traced by the function tracer.
6861 */
6862 preempt_disable_notrace();
6863 preempt_latency_start(1);
6864 __schedule(SM_PREEMPT);
6865 preempt_latency_stop(1);
6866 preempt_enable_no_resched_notrace();
6867
6868 /*
6869 * Check again in case we missed a preemption opportunity
6870 * between schedule and now.
6871 */
6872 } while (need_resched());
6873 }
6874
6875 #ifdef CONFIG_PREEMPTION
6876 /*
6877 * This is the entry point to schedule() from in-kernel preemption
6878 * off of preempt_enable.
6879 */
preempt_schedule(void)6880 asmlinkage __visible void __sched notrace preempt_schedule(void)
6881 {
6882 /*
6883 * If there is a non-zero preempt_count or interrupts are disabled,
6884 * we do not want to preempt the current task. Just return..
6885 */
6886 if (likely(!preemptible()))
6887 return;
6888 preempt_schedule_common();
6889 }
6890 NOKPROBE_SYMBOL(preempt_schedule);
6891 EXPORT_SYMBOL(preempt_schedule);
6892
6893 #ifdef CONFIG_PREEMPT_DYNAMIC
6894 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6895 #ifndef preempt_schedule_dynamic_enabled
6896 #define preempt_schedule_dynamic_enabled preempt_schedule
6897 #define preempt_schedule_dynamic_disabled NULL
6898 #endif
6899 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6900 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6901 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6902 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)6903 void __sched notrace dynamic_preempt_schedule(void)
6904 {
6905 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6906 return;
6907 preempt_schedule();
6908 }
6909 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6910 EXPORT_SYMBOL(dynamic_preempt_schedule);
6911 #endif
6912 #endif
6913
6914 /**
6915 * preempt_schedule_notrace - preempt_schedule called by tracing
6916 *
6917 * The tracing infrastructure uses preempt_enable_notrace to prevent
6918 * recursion and tracing preempt enabling caused by the tracing
6919 * infrastructure itself. But as tracing can happen in areas coming
6920 * from userspace or just about to enter userspace, a preempt enable
6921 * can occur before user_exit() is called. This will cause the scheduler
6922 * to be called when the system is still in usermode.
6923 *
6924 * To prevent this, the preempt_enable_notrace will use this function
6925 * instead of preempt_schedule() to exit user context if needed before
6926 * calling the scheduler.
6927 */
preempt_schedule_notrace(void)6928 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6929 {
6930 enum ctx_state prev_ctx;
6931
6932 if (likely(!preemptible()))
6933 return;
6934
6935 do {
6936 /*
6937 * Because the function tracer can trace preempt_count_sub()
6938 * and it also uses preempt_enable/disable_notrace(), if
6939 * NEED_RESCHED is set, the preempt_enable_notrace() called
6940 * by the function tracer will call this function again and
6941 * cause infinite recursion.
6942 *
6943 * Preemption must be disabled here before the function
6944 * tracer can trace. Break up preempt_disable() into two
6945 * calls. One to disable preemption without fear of being
6946 * traced. The other to still record the preemption latency,
6947 * which can also be traced by the function tracer.
6948 */
6949 preempt_disable_notrace();
6950 preempt_latency_start(1);
6951 /*
6952 * Needs preempt disabled in case user_exit() is traced
6953 * and the tracer calls preempt_enable_notrace() causing
6954 * an infinite recursion.
6955 */
6956 prev_ctx = exception_enter();
6957 __schedule(SM_PREEMPT);
6958 exception_exit(prev_ctx);
6959
6960 preempt_latency_stop(1);
6961 preempt_enable_no_resched_notrace();
6962 } while (need_resched());
6963 }
6964 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6965
6966 #ifdef CONFIG_PREEMPT_DYNAMIC
6967 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6968 #ifndef preempt_schedule_notrace_dynamic_enabled
6969 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
6970 #define preempt_schedule_notrace_dynamic_disabled NULL
6971 #endif
6972 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6973 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6974 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6975 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)6976 void __sched notrace dynamic_preempt_schedule_notrace(void)
6977 {
6978 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6979 return;
6980 preempt_schedule_notrace();
6981 }
6982 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6983 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6984 #endif
6985 #endif
6986
6987 #endif /* CONFIG_PREEMPTION */
6988
6989 /*
6990 * This is the entry point to schedule() from kernel preemption
6991 * off of irq context.
6992 * Note, that this is called and return with irqs disabled. This will
6993 * protect us against recursive calling from irq.
6994 */
preempt_schedule_irq(void)6995 asmlinkage __visible void __sched preempt_schedule_irq(void)
6996 {
6997 enum ctx_state prev_state;
6998
6999 /* Catch callers which need to be fixed */
7000 BUG_ON(preempt_count() || !irqs_disabled());
7001
7002 prev_state = exception_enter();
7003
7004 do {
7005 preempt_disable();
7006 local_irq_enable();
7007 __schedule(SM_PREEMPT);
7008 local_irq_disable();
7009 sched_preempt_enable_no_resched();
7010 } while (need_resched());
7011
7012 exception_exit(prev_state);
7013 }
7014
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)7015 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7016 void *key)
7017 {
7018 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7019 return try_to_wake_up(curr->private, mode, wake_flags);
7020 }
7021 EXPORT_SYMBOL(default_wake_function);
7022
__setscheduler_prio(struct task_struct * p,int prio)7023 static void __setscheduler_prio(struct task_struct *p, int prio)
7024 {
7025 if (dl_prio(prio))
7026 p->sched_class = &dl_sched_class;
7027 else if (rt_prio(prio))
7028 p->sched_class = &rt_sched_class;
7029 else
7030 p->sched_class = &fair_sched_class;
7031
7032 p->prio = prio;
7033 }
7034
7035 #ifdef CONFIG_RT_MUTEXES
7036
__rt_effective_prio(struct task_struct * pi_task,int prio)7037 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7038 {
7039 if (pi_task)
7040 prio = min(prio, pi_task->prio);
7041
7042 return prio;
7043 }
7044
rt_effective_prio(struct task_struct * p,int prio)7045 static inline int rt_effective_prio(struct task_struct *p, int prio)
7046 {
7047 struct task_struct *pi_task = rt_mutex_get_top_task(p);
7048
7049 return __rt_effective_prio(pi_task, prio);
7050 }
7051
7052 /*
7053 * rt_mutex_setprio - set the current priority of a task
7054 * @p: task to boost
7055 * @pi_task: donor task
7056 *
7057 * This function changes the 'effective' priority of a task. It does
7058 * not touch ->normal_prio like __setscheduler().
7059 *
7060 * Used by the rt_mutex code to implement priority inheritance
7061 * logic. Call site only calls if the priority of the task changed.
7062 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)7063 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7064 {
7065 int prio, oldprio, queued, running, queue_flag =
7066 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7067 const struct sched_class *prev_class;
7068 struct rq_flags rf;
7069 struct rq *rq;
7070
7071 /* XXX used to be waiter->prio, not waiter->task->prio */
7072 prio = __rt_effective_prio(pi_task, p->normal_prio);
7073
7074 /*
7075 * If nothing changed; bail early.
7076 */
7077 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7078 return;
7079
7080 rq = __task_rq_lock(p, &rf);
7081 update_rq_clock(rq);
7082 /*
7083 * Set under pi_lock && rq->lock, such that the value can be used under
7084 * either lock.
7085 *
7086 * Note that there is loads of tricky to make this pointer cache work
7087 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7088 * ensure a task is de-boosted (pi_task is set to NULL) before the
7089 * task is allowed to run again (and can exit). This ensures the pointer
7090 * points to a blocked task -- which guarantees the task is present.
7091 */
7092 p->pi_top_task = pi_task;
7093
7094 /*
7095 * For FIFO/RR we only need to set prio, if that matches we're done.
7096 */
7097 if (prio == p->prio && !dl_prio(prio))
7098 goto out_unlock;
7099
7100 /*
7101 * Idle task boosting is a nono in general. There is one
7102 * exception, when PREEMPT_RT and NOHZ is active:
7103 *
7104 * The idle task calls get_next_timer_interrupt() and holds
7105 * the timer wheel base->lock on the CPU and another CPU wants
7106 * to access the timer (probably to cancel it). We can safely
7107 * ignore the boosting request, as the idle CPU runs this code
7108 * with interrupts disabled and will complete the lock
7109 * protected section without being interrupted. So there is no
7110 * real need to boost.
7111 */
7112 if (unlikely(p == rq->idle)) {
7113 WARN_ON(p != rq->curr);
7114 WARN_ON(p->pi_blocked_on);
7115 goto out_unlock;
7116 }
7117
7118 trace_sched_pi_setprio(p, pi_task);
7119 oldprio = p->prio;
7120
7121 if (oldprio == prio)
7122 queue_flag &= ~DEQUEUE_MOVE;
7123
7124 prev_class = p->sched_class;
7125 queued = task_on_rq_queued(p);
7126 running = task_current(rq, p);
7127 if (queued)
7128 dequeue_task(rq, p, queue_flag);
7129 if (running)
7130 put_prev_task(rq, p);
7131
7132 /*
7133 * Boosting condition are:
7134 * 1. -rt task is running and holds mutex A
7135 * --> -dl task blocks on mutex A
7136 *
7137 * 2. -dl task is running and holds mutex A
7138 * --> -dl task blocks on mutex A and could preempt the
7139 * running task
7140 */
7141 if (dl_prio(prio)) {
7142 if (!dl_prio(p->normal_prio) ||
7143 (pi_task && dl_prio(pi_task->prio) &&
7144 dl_entity_preempt(&pi_task->dl, &p->dl))) {
7145 p->dl.pi_se = pi_task->dl.pi_se;
7146 queue_flag |= ENQUEUE_REPLENISH;
7147 } else {
7148 p->dl.pi_se = &p->dl;
7149 }
7150 } else if (rt_prio(prio)) {
7151 if (dl_prio(oldprio))
7152 p->dl.pi_se = &p->dl;
7153 if (oldprio < prio)
7154 queue_flag |= ENQUEUE_HEAD;
7155 } else {
7156 if (dl_prio(oldprio))
7157 p->dl.pi_se = &p->dl;
7158 if (rt_prio(oldprio))
7159 p->rt.timeout = 0;
7160 }
7161
7162 __setscheduler_prio(p, prio);
7163
7164 if (queued)
7165 enqueue_task(rq, p, queue_flag);
7166 if (running)
7167 set_next_task(rq, p);
7168
7169 check_class_changed(rq, p, prev_class, oldprio);
7170 out_unlock:
7171 /* Avoid rq from going away on us: */
7172 preempt_disable();
7173
7174 rq_unpin_lock(rq, &rf);
7175 __balance_callbacks(rq);
7176 raw_spin_rq_unlock(rq);
7177
7178 preempt_enable();
7179 }
7180 #else
rt_effective_prio(struct task_struct * p,int prio)7181 static inline int rt_effective_prio(struct task_struct *p, int prio)
7182 {
7183 return prio;
7184 }
7185 #endif
7186
set_user_nice(struct task_struct * p,long nice)7187 void set_user_nice(struct task_struct *p, long nice)
7188 {
7189 bool queued, running;
7190 int old_prio;
7191 struct rq_flags rf;
7192 struct rq *rq;
7193
7194 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7195 return;
7196 /*
7197 * We have to be careful, if called from sys_setpriority(),
7198 * the task might be in the middle of scheduling on another CPU.
7199 */
7200 rq = task_rq_lock(p, &rf);
7201 update_rq_clock(rq);
7202
7203 /*
7204 * The RT priorities are set via sched_setscheduler(), but we still
7205 * allow the 'normal' nice value to be set - but as expected
7206 * it won't have any effect on scheduling until the task is
7207 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7208 */
7209 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7210 p->static_prio = NICE_TO_PRIO(nice);
7211 goto out_unlock;
7212 }
7213 queued = task_on_rq_queued(p);
7214 running = task_current(rq, p);
7215 if (queued)
7216 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7217 if (running)
7218 put_prev_task(rq, p);
7219
7220 p->static_prio = NICE_TO_PRIO(nice);
7221 set_load_weight(p, true);
7222 old_prio = p->prio;
7223 p->prio = effective_prio(p);
7224
7225 if (queued)
7226 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7227 if (running)
7228 set_next_task(rq, p);
7229
7230 /*
7231 * If the task increased its priority or is running and
7232 * lowered its priority, then reschedule its CPU:
7233 */
7234 p->sched_class->prio_changed(rq, p, old_prio);
7235
7236 out_unlock:
7237 task_rq_unlock(rq, p, &rf);
7238 }
7239 EXPORT_SYMBOL(set_user_nice);
7240
7241 /*
7242 * is_nice_reduction - check if nice value is an actual reduction
7243 *
7244 * Similar to can_nice() but does not perform a capability check.
7245 *
7246 * @p: task
7247 * @nice: nice value
7248 */
is_nice_reduction(const struct task_struct * p,const int nice)7249 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7250 {
7251 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7252 int nice_rlim = nice_to_rlimit(nice);
7253
7254 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7255 }
7256
7257 /*
7258 * can_nice - check if a task can reduce its nice value
7259 * @p: task
7260 * @nice: nice value
7261 */
can_nice(const struct task_struct * p,const int nice)7262 int can_nice(const struct task_struct *p, const int nice)
7263 {
7264 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7265 }
7266
7267 #ifdef __ARCH_WANT_SYS_NICE
7268
7269 /*
7270 * sys_nice - change the priority of the current process.
7271 * @increment: priority increment
7272 *
7273 * sys_setpriority is a more generic, but much slower function that
7274 * does similar things.
7275 */
SYSCALL_DEFINE1(nice,int,increment)7276 SYSCALL_DEFINE1(nice, int, increment)
7277 {
7278 long nice, retval;
7279
7280 /*
7281 * Setpriority might change our priority at the same moment.
7282 * We don't have to worry. Conceptually one call occurs first
7283 * and we have a single winner.
7284 */
7285 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7286 nice = task_nice(current) + increment;
7287
7288 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7289 if (increment < 0 && !can_nice(current, nice))
7290 return -EPERM;
7291
7292 retval = security_task_setnice(current, nice);
7293 if (retval)
7294 return retval;
7295
7296 set_user_nice(current, nice);
7297 return 0;
7298 }
7299
7300 #endif
7301
7302 /**
7303 * task_prio - return the priority value of a given task.
7304 * @p: the task in question.
7305 *
7306 * Return: The priority value as seen by users in /proc.
7307 *
7308 * sched policy return value kernel prio user prio/nice
7309 *
7310 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7311 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7312 * deadline -101 -1 0
7313 */
task_prio(const struct task_struct * p)7314 int task_prio(const struct task_struct *p)
7315 {
7316 return p->prio - MAX_RT_PRIO;
7317 }
7318
7319 /**
7320 * idle_cpu - is a given CPU idle currently?
7321 * @cpu: the processor in question.
7322 *
7323 * Return: 1 if the CPU is currently idle. 0 otherwise.
7324 */
idle_cpu(int cpu)7325 int idle_cpu(int cpu)
7326 {
7327 struct rq *rq = cpu_rq(cpu);
7328
7329 if (rq->curr != rq->idle)
7330 return 0;
7331
7332 if (rq->nr_running)
7333 return 0;
7334
7335 #ifdef CONFIG_SMP
7336 if (rq->ttwu_pending)
7337 return 0;
7338 #endif
7339
7340 return 1;
7341 }
7342
7343 /**
7344 * available_idle_cpu - is a given CPU idle for enqueuing work.
7345 * @cpu: the CPU in question.
7346 *
7347 * Return: 1 if the CPU is currently idle. 0 otherwise.
7348 */
available_idle_cpu(int cpu)7349 int available_idle_cpu(int cpu)
7350 {
7351 if (!idle_cpu(cpu))
7352 return 0;
7353
7354 if (vcpu_is_preempted(cpu))
7355 return 0;
7356
7357 return 1;
7358 }
7359
7360 /**
7361 * idle_task - return the idle task for a given CPU.
7362 * @cpu: the processor in question.
7363 *
7364 * Return: The idle task for the CPU @cpu.
7365 */
idle_task(int cpu)7366 struct task_struct *idle_task(int cpu)
7367 {
7368 return cpu_rq(cpu)->idle;
7369 }
7370
7371 #ifdef CONFIG_SCHED_CORE
sched_core_idle_cpu(int cpu)7372 int sched_core_idle_cpu(int cpu)
7373 {
7374 struct rq *rq = cpu_rq(cpu);
7375
7376 if (sched_core_enabled(rq) && rq->curr == rq->idle)
7377 return 1;
7378
7379 return idle_cpu(cpu);
7380 }
7381
7382 #endif
7383
7384 #ifdef CONFIG_SMP
7385 /*
7386 * This function computes an effective utilization for the given CPU, to be
7387 * used for frequency selection given the linear relation: f = u * f_max.
7388 *
7389 * The scheduler tracks the following metrics:
7390 *
7391 * cpu_util_{cfs,rt,dl,irq}()
7392 * cpu_bw_dl()
7393 *
7394 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7395 * synchronized windows and are thus directly comparable.
7396 *
7397 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7398 * which excludes things like IRQ and steal-time. These latter are then accrued
7399 * in the irq utilization.
7400 *
7401 * The DL bandwidth number otoh is not a measured metric but a value computed
7402 * based on the task model parameters and gives the minimal utilization
7403 * required to meet deadlines.
7404 */
effective_cpu_util(int cpu,unsigned long util_cfs,enum cpu_util_type type,struct task_struct * p)7405 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7406 enum cpu_util_type type,
7407 struct task_struct *p)
7408 {
7409 unsigned long dl_util, util, irq, max;
7410 struct rq *rq = cpu_rq(cpu);
7411
7412 max = arch_scale_cpu_capacity(cpu);
7413
7414 if (!uclamp_is_used() &&
7415 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7416 return max;
7417 }
7418
7419 /*
7420 * Early check to see if IRQ/steal time saturates the CPU, can be
7421 * because of inaccuracies in how we track these -- see
7422 * update_irq_load_avg().
7423 */
7424 irq = cpu_util_irq(rq);
7425 if (unlikely(irq >= max))
7426 return max;
7427
7428 /*
7429 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7430 * CFS tasks and we use the same metric to track the effective
7431 * utilization (PELT windows are synchronized) we can directly add them
7432 * to obtain the CPU's actual utilization.
7433 *
7434 * CFS and RT utilization can be boosted or capped, depending on
7435 * utilization clamp constraints requested by currently RUNNABLE
7436 * tasks.
7437 * When there are no CFS RUNNABLE tasks, clamps are released and
7438 * frequency will be gracefully reduced with the utilization decay.
7439 */
7440 util = util_cfs + cpu_util_rt(rq);
7441 if (type == FREQUENCY_UTIL)
7442 util = uclamp_rq_util_with(rq, util, p);
7443
7444 dl_util = cpu_util_dl(rq);
7445
7446 /*
7447 * For frequency selection we do not make cpu_util_dl() a permanent part
7448 * of this sum because we want to use cpu_bw_dl() later on, but we need
7449 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7450 * that we select f_max when there is no idle time.
7451 *
7452 * NOTE: numerical errors or stop class might cause us to not quite hit
7453 * saturation when we should -- something for later.
7454 */
7455 if (util + dl_util >= max)
7456 return max;
7457
7458 /*
7459 * OTOH, for energy computation we need the estimated running time, so
7460 * include util_dl and ignore dl_bw.
7461 */
7462 if (type == ENERGY_UTIL)
7463 util += dl_util;
7464
7465 /*
7466 * There is still idle time; further improve the number by using the
7467 * irq metric. Because IRQ/steal time is hidden from the task clock we
7468 * need to scale the task numbers:
7469 *
7470 * max - irq
7471 * U' = irq + --------- * U
7472 * max
7473 */
7474 util = scale_irq_capacity(util, irq, max);
7475 util += irq;
7476
7477 /*
7478 * Bandwidth required by DEADLINE must always be granted while, for
7479 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7480 * to gracefully reduce the frequency when no tasks show up for longer
7481 * periods of time.
7482 *
7483 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7484 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7485 * an interface. So, we only do the latter for now.
7486 */
7487 if (type == FREQUENCY_UTIL)
7488 util += cpu_bw_dl(rq);
7489
7490 return min(max, util);
7491 }
7492
sched_cpu_util(int cpu)7493 unsigned long sched_cpu_util(int cpu)
7494 {
7495 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7496 }
7497 #endif /* CONFIG_SMP */
7498
7499 /**
7500 * find_process_by_pid - find a process with a matching PID value.
7501 * @pid: the pid in question.
7502 *
7503 * The task of @pid, if found. %NULL otherwise.
7504 */
find_process_by_pid(pid_t pid)7505 static struct task_struct *find_process_by_pid(pid_t pid)
7506 {
7507 return pid ? find_task_by_vpid(pid) : current;
7508 }
7509
7510 /*
7511 * sched_setparam() passes in -1 for its policy, to let the functions
7512 * it calls know not to change it.
7513 */
7514 #define SETPARAM_POLICY -1
7515
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)7516 static void __setscheduler_params(struct task_struct *p,
7517 const struct sched_attr *attr)
7518 {
7519 int policy = attr->sched_policy;
7520
7521 if (policy == SETPARAM_POLICY)
7522 policy = p->policy;
7523
7524 p->policy = policy;
7525
7526 if (dl_policy(policy))
7527 __setparam_dl(p, attr);
7528 else if (fair_policy(policy))
7529 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7530
7531 /*
7532 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7533 * !rt_policy. Always setting this ensures that things like
7534 * getparam()/getattr() don't report silly values for !rt tasks.
7535 */
7536 p->rt_priority = attr->sched_priority;
7537 p->normal_prio = normal_prio(p);
7538 set_load_weight(p, true);
7539 }
7540
7541 /*
7542 * Check the target process has a UID that matches the current process's:
7543 */
check_same_owner(struct task_struct * p)7544 static bool check_same_owner(struct task_struct *p)
7545 {
7546 const struct cred *cred = current_cred(), *pcred;
7547 bool match;
7548
7549 rcu_read_lock();
7550 pcred = __task_cred(p);
7551 match = (uid_eq(cred->euid, pcred->euid) ||
7552 uid_eq(cred->euid, pcred->uid));
7553 rcu_read_unlock();
7554 return match;
7555 }
7556
7557 /*
7558 * Allow unprivileged RT tasks to decrease priority.
7559 * Only issue a capable test if needed and only once to avoid an audit
7560 * event on permitted non-privileged operations:
7561 */
user_check_sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,int policy,int reset_on_fork)7562 static int user_check_sched_setscheduler(struct task_struct *p,
7563 const struct sched_attr *attr,
7564 int policy, int reset_on_fork)
7565 {
7566 if (fair_policy(policy)) {
7567 if (attr->sched_nice < task_nice(p) &&
7568 !is_nice_reduction(p, attr->sched_nice))
7569 goto req_priv;
7570 }
7571
7572 if (rt_policy(policy)) {
7573 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7574
7575 /* Can't set/change the rt policy: */
7576 if (policy != p->policy && !rlim_rtprio)
7577 goto req_priv;
7578
7579 /* Can't increase priority: */
7580 if (attr->sched_priority > p->rt_priority &&
7581 attr->sched_priority > rlim_rtprio)
7582 goto req_priv;
7583 }
7584
7585 /*
7586 * Can't set/change SCHED_DEADLINE policy at all for now
7587 * (safest behavior); in the future we would like to allow
7588 * unprivileged DL tasks to increase their relative deadline
7589 * or reduce their runtime (both ways reducing utilization)
7590 */
7591 if (dl_policy(policy))
7592 goto req_priv;
7593
7594 /*
7595 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7596 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7597 */
7598 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7599 if (!is_nice_reduction(p, task_nice(p)))
7600 goto req_priv;
7601 }
7602
7603 /* Can't change other user's priorities: */
7604 if (!check_same_owner(p))
7605 goto req_priv;
7606
7607 /* Normal users shall not reset the sched_reset_on_fork flag: */
7608 if (p->sched_reset_on_fork && !reset_on_fork)
7609 goto req_priv;
7610
7611 return 0;
7612
7613 req_priv:
7614 if (!capable(CAP_SYS_NICE))
7615 return -EPERM;
7616
7617 return 0;
7618 }
7619
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)7620 static int __sched_setscheduler(struct task_struct *p,
7621 const struct sched_attr *attr,
7622 bool user, bool pi)
7623 {
7624 int oldpolicy = -1, policy = attr->sched_policy;
7625 int retval, oldprio, newprio, queued, running;
7626 const struct sched_class *prev_class;
7627 struct balance_callback *head;
7628 struct rq_flags rf;
7629 int reset_on_fork;
7630 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7631 struct rq *rq;
7632 bool cpuset_locked = false;
7633
7634 /* The pi code expects interrupts enabled */
7635 BUG_ON(pi && in_interrupt());
7636 recheck:
7637 /* Double check policy once rq lock held: */
7638 if (policy < 0) {
7639 reset_on_fork = p->sched_reset_on_fork;
7640 policy = oldpolicy = p->policy;
7641 } else {
7642 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7643
7644 if (!valid_policy(policy))
7645 return -EINVAL;
7646 }
7647
7648 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7649 return -EINVAL;
7650
7651 /*
7652 * Valid priorities for SCHED_FIFO and SCHED_RR are
7653 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7654 * SCHED_BATCH and SCHED_IDLE is 0.
7655 */
7656 if (attr->sched_priority > MAX_RT_PRIO-1)
7657 return -EINVAL;
7658 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7659 (rt_policy(policy) != (attr->sched_priority != 0)))
7660 return -EINVAL;
7661
7662 if (user) {
7663 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7664 if (retval)
7665 return retval;
7666
7667 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7668 return -EINVAL;
7669
7670 retval = security_task_setscheduler(p);
7671 if (retval)
7672 return retval;
7673 }
7674
7675 /* Update task specific "requested" clamps */
7676 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7677 retval = uclamp_validate(p, attr);
7678 if (retval)
7679 return retval;
7680 }
7681
7682 /*
7683 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7684 * information.
7685 */
7686 if (dl_policy(policy) || dl_policy(p->policy)) {
7687 cpuset_locked = true;
7688 cpuset_lock();
7689 }
7690
7691 /*
7692 * Make sure no PI-waiters arrive (or leave) while we are
7693 * changing the priority of the task:
7694 *
7695 * To be able to change p->policy safely, the appropriate
7696 * runqueue lock must be held.
7697 */
7698 rq = task_rq_lock(p, &rf);
7699 update_rq_clock(rq);
7700
7701 /*
7702 * Changing the policy of the stop threads its a very bad idea:
7703 */
7704 if (p == rq->stop) {
7705 retval = -EINVAL;
7706 goto unlock;
7707 }
7708
7709 /*
7710 * If not changing anything there's no need to proceed further,
7711 * but store a possible modification of reset_on_fork.
7712 */
7713 if (unlikely(policy == p->policy)) {
7714 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7715 goto change;
7716 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7717 goto change;
7718 if (dl_policy(policy) && dl_param_changed(p, attr))
7719 goto change;
7720 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7721 goto change;
7722
7723 p->sched_reset_on_fork = reset_on_fork;
7724 retval = 0;
7725 goto unlock;
7726 }
7727 change:
7728
7729 if (user) {
7730 #ifdef CONFIG_RT_GROUP_SCHED
7731 /*
7732 * Do not allow realtime tasks into groups that have no runtime
7733 * assigned.
7734 */
7735 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7736 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7737 !task_group_is_autogroup(task_group(p))) {
7738 retval = -EPERM;
7739 goto unlock;
7740 }
7741 #endif
7742 #ifdef CONFIG_SMP
7743 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7744 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7745 cpumask_t *span = rq->rd->span;
7746
7747 /*
7748 * Don't allow tasks with an affinity mask smaller than
7749 * the entire root_domain to become SCHED_DEADLINE. We
7750 * will also fail if there's no bandwidth available.
7751 */
7752 if (!cpumask_subset(span, p->cpus_ptr) ||
7753 rq->rd->dl_bw.bw == 0) {
7754 retval = -EPERM;
7755 goto unlock;
7756 }
7757 }
7758 #endif
7759 }
7760
7761 /* Re-check policy now with rq lock held: */
7762 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7763 policy = oldpolicy = -1;
7764 task_rq_unlock(rq, p, &rf);
7765 if (cpuset_locked)
7766 cpuset_unlock();
7767 goto recheck;
7768 }
7769
7770 /*
7771 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7772 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7773 * is available.
7774 */
7775 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7776 retval = -EBUSY;
7777 goto unlock;
7778 }
7779
7780 p->sched_reset_on_fork = reset_on_fork;
7781 oldprio = p->prio;
7782
7783 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7784 if (pi) {
7785 /*
7786 * Take priority boosted tasks into account. If the new
7787 * effective priority is unchanged, we just store the new
7788 * normal parameters and do not touch the scheduler class and
7789 * the runqueue. This will be done when the task deboost
7790 * itself.
7791 */
7792 newprio = rt_effective_prio(p, newprio);
7793 if (newprio == oldprio)
7794 queue_flags &= ~DEQUEUE_MOVE;
7795 }
7796
7797 queued = task_on_rq_queued(p);
7798 running = task_current(rq, p);
7799 if (queued)
7800 dequeue_task(rq, p, queue_flags);
7801 if (running)
7802 put_prev_task(rq, p);
7803
7804 prev_class = p->sched_class;
7805
7806 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7807 __setscheduler_params(p, attr);
7808 __setscheduler_prio(p, newprio);
7809 }
7810 __setscheduler_uclamp(p, attr);
7811
7812 if (queued) {
7813 /*
7814 * We enqueue to tail when the priority of a task is
7815 * increased (user space view).
7816 */
7817 if (oldprio < p->prio)
7818 queue_flags |= ENQUEUE_HEAD;
7819
7820 enqueue_task(rq, p, queue_flags);
7821 }
7822 if (running)
7823 set_next_task(rq, p);
7824
7825 check_class_changed(rq, p, prev_class, oldprio);
7826
7827 /* Avoid rq from going away on us: */
7828 preempt_disable();
7829 head = splice_balance_callbacks(rq);
7830 task_rq_unlock(rq, p, &rf);
7831
7832 if (pi) {
7833 if (cpuset_locked)
7834 cpuset_unlock();
7835 rt_mutex_adjust_pi(p);
7836 }
7837
7838 /* Run balance callbacks after we've adjusted the PI chain: */
7839 balance_callbacks(rq, head);
7840 preempt_enable();
7841
7842 return 0;
7843
7844 unlock:
7845 task_rq_unlock(rq, p, &rf);
7846 if (cpuset_locked)
7847 cpuset_unlock();
7848 return retval;
7849 }
7850
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)7851 static int _sched_setscheduler(struct task_struct *p, int policy,
7852 const struct sched_param *param, bool check)
7853 {
7854 struct sched_attr attr = {
7855 .sched_policy = policy,
7856 .sched_priority = param->sched_priority,
7857 .sched_nice = PRIO_TO_NICE(p->static_prio),
7858 };
7859
7860 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7861 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7862 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7863 policy &= ~SCHED_RESET_ON_FORK;
7864 attr.sched_policy = policy;
7865 }
7866
7867 return __sched_setscheduler(p, &attr, check, true);
7868 }
7869 /**
7870 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7871 * @p: the task in question.
7872 * @policy: new policy.
7873 * @param: structure containing the new RT priority.
7874 *
7875 * Use sched_set_fifo(), read its comment.
7876 *
7877 * Return: 0 on success. An error code otherwise.
7878 *
7879 * NOTE that the task may be already dead.
7880 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)7881 int sched_setscheduler(struct task_struct *p, int policy,
7882 const struct sched_param *param)
7883 {
7884 return _sched_setscheduler(p, policy, param, true);
7885 }
7886
sched_setattr(struct task_struct * p,const struct sched_attr * attr)7887 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7888 {
7889 return __sched_setscheduler(p, attr, true, true);
7890 }
7891
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)7892 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7893 {
7894 return __sched_setscheduler(p, attr, false, true);
7895 }
7896 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7897
7898 /**
7899 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7900 * @p: the task in question.
7901 * @policy: new policy.
7902 * @param: structure containing the new RT priority.
7903 *
7904 * Just like sched_setscheduler, only don't bother checking if the
7905 * current context has permission. For example, this is needed in
7906 * stop_machine(): we create temporary high priority worker threads,
7907 * but our caller might not have that capability.
7908 *
7909 * Return: 0 on success. An error code otherwise.
7910 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)7911 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7912 const struct sched_param *param)
7913 {
7914 return _sched_setscheduler(p, policy, param, false);
7915 }
7916
7917 /*
7918 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7919 * incapable of resource management, which is the one thing an OS really should
7920 * be doing.
7921 *
7922 * This is of course the reason it is limited to privileged users only.
7923 *
7924 * Worse still; it is fundamentally impossible to compose static priority
7925 * workloads. You cannot take two correctly working static prio workloads
7926 * and smash them together and still expect them to work.
7927 *
7928 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7929 *
7930 * MAX_RT_PRIO / 2
7931 *
7932 * The administrator _MUST_ configure the system, the kernel simply doesn't
7933 * know enough information to make a sensible choice.
7934 */
sched_set_fifo(struct task_struct * p)7935 void sched_set_fifo(struct task_struct *p)
7936 {
7937 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7938 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7939 }
7940 EXPORT_SYMBOL_GPL(sched_set_fifo);
7941
7942 /*
7943 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7944 */
sched_set_fifo_low(struct task_struct * p)7945 void sched_set_fifo_low(struct task_struct *p)
7946 {
7947 struct sched_param sp = { .sched_priority = 1 };
7948 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7949 }
7950 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7951
sched_set_normal(struct task_struct * p,int nice)7952 void sched_set_normal(struct task_struct *p, int nice)
7953 {
7954 struct sched_attr attr = {
7955 .sched_policy = SCHED_NORMAL,
7956 .sched_nice = nice,
7957 };
7958 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7959 }
7960 EXPORT_SYMBOL_GPL(sched_set_normal);
7961
7962 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)7963 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7964 {
7965 struct sched_param lparam;
7966 struct task_struct *p;
7967 int retval;
7968
7969 if (!param || pid < 0)
7970 return -EINVAL;
7971 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7972 return -EFAULT;
7973
7974 rcu_read_lock();
7975 retval = -ESRCH;
7976 p = find_process_by_pid(pid);
7977 if (likely(p))
7978 get_task_struct(p);
7979 rcu_read_unlock();
7980
7981 if (likely(p)) {
7982 retval = sched_setscheduler(p, policy, &lparam);
7983 put_task_struct(p);
7984 }
7985
7986 return retval;
7987 }
7988
7989 /*
7990 * Mimics kernel/events/core.c perf_copy_attr().
7991 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)7992 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7993 {
7994 u32 size;
7995 int ret;
7996
7997 /* Zero the full structure, so that a short copy will be nice: */
7998 memset(attr, 0, sizeof(*attr));
7999
8000 ret = get_user(size, &uattr->size);
8001 if (ret)
8002 return ret;
8003
8004 /* ABI compatibility quirk: */
8005 if (!size)
8006 size = SCHED_ATTR_SIZE_VER0;
8007 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8008 goto err_size;
8009
8010 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8011 if (ret) {
8012 if (ret == -E2BIG)
8013 goto err_size;
8014 return ret;
8015 }
8016
8017 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8018 size < SCHED_ATTR_SIZE_VER1)
8019 return -EINVAL;
8020
8021 /*
8022 * XXX: Do we want to be lenient like existing syscalls; or do we want
8023 * to be strict and return an error on out-of-bounds values?
8024 */
8025 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8026
8027 return 0;
8028
8029 err_size:
8030 put_user(sizeof(*attr), &uattr->size);
8031 return -E2BIG;
8032 }
8033
get_params(struct task_struct * p,struct sched_attr * attr)8034 static void get_params(struct task_struct *p, struct sched_attr *attr)
8035 {
8036 if (task_has_dl_policy(p))
8037 __getparam_dl(p, attr);
8038 else if (task_has_rt_policy(p))
8039 attr->sched_priority = p->rt_priority;
8040 else
8041 attr->sched_nice = task_nice(p);
8042 }
8043
8044 /**
8045 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8046 * @pid: the pid in question.
8047 * @policy: new policy.
8048 * @param: structure containing the new RT priority.
8049 *
8050 * Return: 0 on success. An error code otherwise.
8051 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)8052 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8053 {
8054 if (policy < 0)
8055 return -EINVAL;
8056
8057 return do_sched_setscheduler(pid, policy, param);
8058 }
8059
8060 /**
8061 * sys_sched_setparam - set/change the RT priority of a thread
8062 * @pid: the pid in question.
8063 * @param: structure containing the new RT priority.
8064 *
8065 * Return: 0 on success. An error code otherwise.
8066 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)8067 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8068 {
8069 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8070 }
8071
8072 /**
8073 * sys_sched_setattr - same as above, but with extended sched_attr
8074 * @pid: the pid in question.
8075 * @uattr: structure containing the extended parameters.
8076 * @flags: for future extension.
8077 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)8078 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8079 unsigned int, flags)
8080 {
8081 struct sched_attr attr;
8082 struct task_struct *p;
8083 int retval;
8084
8085 if (!uattr || pid < 0 || flags)
8086 return -EINVAL;
8087
8088 retval = sched_copy_attr(uattr, &attr);
8089 if (retval)
8090 return retval;
8091
8092 if ((int)attr.sched_policy < 0)
8093 return -EINVAL;
8094 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8095 attr.sched_policy = SETPARAM_POLICY;
8096
8097 rcu_read_lock();
8098 retval = -ESRCH;
8099 p = find_process_by_pid(pid);
8100 if (likely(p))
8101 get_task_struct(p);
8102 rcu_read_unlock();
8103
8104 if (likely(p)) {
8105 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8106 get_params(p, &attr);
8107 retval = sched_setattr(p, &attr);
8108 put_task_struct(p);
8109 }
8110
8111 return retval;
8112 }
8113
8114 /**
8115 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8116 * @pid: the pid in question.
8117 *
8118 * Return: On success, the policy of the thread. Otherwise, a negative error
8119 * code.
8120 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)8121 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8122 {
8123 struct task_struct *p;
8124 int retval;
8125
8126 if (pid < 0)
8127 return -EINVAL;
8128
8129 retval = -ESRCH;
8130 rcu_read_lock();
8131 p = find_process_by_pid(pid);
8132 if (p) {
8133 retval = security_task_getscheduler(p);
8134 if (!retval)
8135 retval = p->policy
8136 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8137 }
8138 rcu_read_unlock();
8139 return retval;
8140 }
8141
8142 /**
8143 * sys_sched_getparam - get the RT priority of a thread
8144 * @pid: the pid in question.
8145 * @param: structure containing the RT priority.
8146 *
8147 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8148 * code.
8149 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)8150 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8151 {
8152 struct sched_param lp = { .sched_priority = 0 };
8153 struct task_struct *p;
8154 int retval;
8155
8156 if (!param || pid < 0)
8157 return -EINVAL;
8158
8159 rcu_read_lock();
8160 p = find_process_by_pid(pid);
8161 retval = -ESRCH;
8162 if (!p)
8163 goto out_unlock;
8164
8165 retval = security_task_getscheduler(p);
8166 if (retval)
8167 goto out_unlock;
8168
8169 if (task_has_rt_policy(p))
8170 lp.sched_priority = p->rt_priority;
8171 rcu_read_unlock();
8172
8173 /*
8174 * This one might sleep, we cannot do it with a spinlock held ...
8175 */
8176 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8177
8178 return retval;
8179
8180 out_unlock:
8181 rcu_read_unlock();
8182 return retval;
8183 }
8184
8185 /*
8186 * Copy the kernel size attribute structure (which might be larger
8187 * than what user-space knows about) to user-space.
8188 *
8189 * Note that all cases are valid: user-space buffer can be larger or
8190 * smaller than the kernel-space buffer. The usual case is that both
8191 * have the same size.
8192 */
8193 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)8194 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8195 struct sched_attr *kattr,
8196 unsigned int usize)
8197 {
8198 unsigned int ksize = sizeof(*kattr);
8199
8200 if (!access_ok(uattr, usize))
8201 return -EFAULT;
8202
8203 /*
8204 * sched_getattr() ABI forwards and backwards compatibility:
8205 *
8206 * If usize == ksize then we just copy everything to user-space and all is good.
8207 *
8208 * If usize < ksize then we only copy as much as user-space has space for,
8209 * this keeps ABI compatibility as well. We skip the rest.
8210 *
8211 * If usize > ksize then user-space is using a newer version of the ABI,
8212 * which part the kernel doesn't know about. Just ignore it - tooling can
8213 * detect the kernel's knowledge of attributes from the attr->size value
8214 * which is set to ksize in this case.
8215 */
8216 kattr->size = min(usize, ksize);
8217
8218 if (copy_to_user(uattr, kattr, kattr->size))
8219 return -EFAULT;
8220
8221 return 0;
8222 }
8223
8224 /**
8225 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8226 * @pid: the pid in question.
8227 * @uattr: structure containing the extended parameters.
8228 * @usize: sizeof(attr) for fwd/bwd comp.
8229 * @flags: for future extension.
8230 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)8231 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8232 unsigned int, usize, unsigned int, flags)
8233 {
8234 struct sched_attr kattr = { };
8235 struct task_struct *p;
8236 int retval;
8237
8238 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8239 usize < SCHED_ATTR_SIZE_VER0 || flags)
8240 return -EINVAL;
8241
8242 rcu_read_lock();
8243 p = find_process_by_pid(pid);
8244 retval = -ESRCH;
8245 if (!p)
8246 goto out_unlock;
8247
8248 retval = security_task_getscheduler(p);
8249 if (retval)
8250 goto out_unlock;
8251
8252 kattr.sched_policy = p->policy;
8253 if (p->sched_reset_on_fork)
8254 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8255 get_params(p, &kattr);
8256 kattr.sched_flags &= SCHED_FLAG_ALL;
8257
8258 #ifdef CONFIG_UCLAMP_TASK
8259 /*
8260 * This could race with another potential updater, but this is fine
8261 * because it'll correctly read the old or the new value. We don't need
8262 * to guarantee who wins the race as long as it doesn't return garbage.
8263 */
8264 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8265 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8266 #endif
8267
8268 rcu_read_unlock();
8269
8270 return sched_attr_copy_to_user(uattr, &kattr, usize);
8271
8272 out_unlock:
8273 rcu_read_unlock();
8274 return retval;
8275 }
8276
8277 #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)8278 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8279 {
8280 int ret = 0;
8281
8282 /*
8283 * If the task isn't a deadline task or admission control is
8284 * disabled then we don't care about affinity changes.
8285 */
8286 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8287 return 0;
8288
8289 /*
8290 * Since bandwidth control happens on root_domain basis,
8291 * if admission test is enabled, we only admit -deadline
8292 * tasks allowed to run on all the CPUs in the task's
8293 * root_domain.
8294 */
8295 rcu_read_lock();
8296 if (!cpumask_subset(task_rq(p)->rd->span, mask))
8297 ret = -EBUSY;
8298 rcu_read_unlock();
8299 return ret;
8300 }
8301 #endif
8302
8303 static int
__sched_setaffinity(struct task_struct * p,struct affinity_context * ctx)8304 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8305 {
8306 int retval;
8307 cpumask_var_t cpus_allowed, new_mask;
8308
8309 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8310 return -ENOMEM;
8311
8312 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8313 retval = -ENOMEM;
8314 goto out_free_cpus_allowed;
8315 }
8316
8317 cpuset_cpus_allowed(p, cpus_allowed);
8318 cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8319
8320 ctx->new_mask = new_mask;
8321 ctx->flags |= SCA_CHECK;
8322
8323 retval = dl_task_check_affinity(p, new_mask);
8324 if (retval)
8325 goto out_free_new_mask;
8326
8327 retval = __set_cpus_allowed_ptr(p, ctx);
8328 if (retval)
8329 goto out_free_new_mask;
8330
8331 cpuset_cpus_allowed(p, cpus_allowed);
8332 if (!cpumask_subset(new_mask, cpus_allowed)) {
8333 /*
8334 * We must have raced with a concurrent cpuset update.
8335 * Just reset the cpumask to the cpuset's cpus_allowed.
8336 */
8337 cpumask_copy(new_mask, cpus_allowed);
8338
8339 /*
8340 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8341 * will restore the previous user_cpus_ptr value.
8342 *
8343 * In the unlikely event a previous user_cpus_ptr exists,
8344 * we need to further restrict the mask to what is allowed
8345 * by that old user_cpus_ptr.
8346 */
8347 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8348 bool empty = !cpumask_and(new_mask, new_mask,
8349 ctx->user_mask);
8350
8351 if (WARN_ON_ONCE(empty))
8352 cpumask_copy(new_mask, cpus_allowed);
8353 }
8354 __set_cpus_allowed_ptr(p, ctx);
8355 retval = -EINVAL;
8356 }
8357
8358 out_free_new_mask:
8359 free_cpumask_var(new_mask);
8360 out_free_cpus_allowed:
8361 free_cpumask_var(cpus_allowed);
8362 return retval;
8363 }
8364
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)8365 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8366 {
8367 struct affinity_context ac;
8368 struct cpumask *user_mask;
8369 struct task_struct *p;
8370 int retval;
8371
8372 rcu_read_lock();
8373
8374 p = find_process_by_pid(pid);
8375 if (!p) {
8376 rcu_read_unlock();
8377 return -ESRCH;
8378 }
8379
8380 /* Prevent p going away */
8381 get_task_struct(p);
8382 rcu_read_unlock();
8383
8384 if (p->flags & PF_NO_SETAFFINITY) {
8385 retval = -EINVAL;
8386 goto out_put_task;
8387 }
8388
8389 if (!check_same_owner(p)) {
8390 rcu_read_lock();
8391 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8392 rcu_read_unlock();
8393 retval = -EPERM;
8394 goto out_put_task;
8395 }
8396 rcu_read_unlock();
8397 }
8398
8399 retval = security_task_setscheduler(p);
8400 if (retval)
8401 goto out_put_task;
8402
8403 /*
8404 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8405 * alloc_user_cpus_ptr() returns NULL.
8406 */
8407 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8408 if (user_mask) {
8409 cpumask_copy(user_mask, in_mask);
8410 } else if (IS_ENABLED(CONFIG_SMP)) {
8411 retval = -ENOMEM;
8412 goto out_put_task;
8413 }
8414
8415 ac = (struct affinity_context){
8416 .new_mask = in_mask,
8417 .user_mask = user_mask,
8418 .flags = SCA_USER,
8419 };
8420
8421 retval = __sched_setaffinity(p, &ac);
8422 kfree(ac.user_mask);
8423
8424 out_put_task:
8425 put_task_struct(p);
8426 return retval;
8427 }
8428
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)8429 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8430 struct cpumask *new_mask)
8431 {
8432 if (len < cpumask_size())
8433 cpumask_clear(new_mask);
8434 else if (len > cpumask_size())
8435 len = cpumask_size();
8436
8437 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8438 }
8439
8440 /**
8441 * sys_sched_setaffinity - set the CPU affinity of a process
8442 * @pid: pid of the process
8443 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8444 * @user_mask_ptr: user-space pointer to the new CPU mask
8445 *
8446 * Return: 0 on success. An error code otherwise.
8447 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8448 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8449 unsigned long __user *, user_mask_ptr)
8450 {
8451 cpumask_var_t new_mask;
8452 int retval;
8453
8454 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8455 return -ENOMEM;
8456
8457 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8458 if (retval == 0)
8459 retval = sched_setaffinity(pid, new_mask);
8460 free_cpumask_var(new_mask);
8461 return retval;
8462 }
8463
sched_getaffinity(pid_t pid,struct cpumask * mask)8464 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8465 {
8466 struct task_struct *p;
8467 unsigned long flags;
8468 int retval;
8469
8470 rcu_read_lock();
8471
8472 retval = -ESRCH;
8473 p = find_process_by_pid(pid);
8474 if (!p)
8475 goto out_unlock;
8476
8477 retval = security_task_getscheduler(p);
8478 if (retval)
8479 goto out_unlock;
8480
8481 raw_spin_lock_irqsave(&p->pi_lock, flags);
8482 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8483 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8484
8485 out_unlock:
8486 rcu_read_unlock();
8487
8488 return retval;
8489 }
8490
8491 /**
8492 * sys_sched_getaffinity - get the CPU affinity of a process
8493 * @pid: pid of the process
8494 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8495 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8496 *
8497 * Return: size of CPU mask copied to user_mask_ptr on success. An
8498 * error code otherwise.
8499 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8500 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8501 unsigned long __user *, user_mask_ptr)
8502 {
8503 int ret;
8504 cpumask_var_t mask;
8505
8506 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8507 return -EINVAL;
8508 if (len & (sizeof(unsigned long)-1))
8509 return -EINVAL;
8510
8511 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8512 return -ENOMEM;
8513
8514 ret = sched_getaffinity(pid, mask);
8515 if (ret == 0) {
8516 unsigned int retlen = min(len, cpumask_size());
8517
8518 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8519 ret = -EFAULT;
8520 else
8521 ret = retlen;
8522 }
8523 free_cpumask_var(mask);
8524
8525 return ret;
8526 }
8527
do_sched_yield(void)8528 static void do_sched_yield(void)
8529 {
8530 struct rq_flags rf;
8531 struct rq *rq;
8532
8533 rq = this_rq_lock_irq(&rf);
8534
8535 schedstat_inc(rq->yld_count);
8536 current->sched_class->yield_task(rq);
8537
8538 preempt_disable();
8539 rq_unlock_irq(rq, &rf);
8540 sched_preempt_enable_no_resched();
8541
8542 schedule();
8543 }
8544
8545 /**
8546 * sys_sched_yield - yield the current processor to other threads.
8547 *
8548 * This function yields the current CPU to other tasks. If there are no
8549 * other threads running on this CPU then this function will return.
8550 *
8551 * Return: 0.
8552 */
SYSCALL_DEFINE0(sched_yield)8553 SYSCALL_DEFINE0(sched_yield)
8554 {
8555 do_sched_yield();
8556 return 0;
8557 }
8558
8559 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8560 int __sched __cond_resched(void)
8561 {
8562 if (should_resched(0)) {
8563 preempt_schedule_common();
8564 return 1;
8565 }
8566 /*
8567 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8568 * whether the current CPU is in an RCU read-side critical section,
8569 * so the tick can report quiescent states even for CPUs looping
8570 * in kernel context. In contrast, in non-preemptible kernels,
8571 * RCU readers leave no in-memory hints, which means that CPU-bound
8572 * processes executing in kernel context might never report an
8573 * RCU quiescent state. Therefore, the following code causes
8574 * cond_resched() to report a quiescent state, but only when RCU
8575 * is in urgent need of one.
8576 */
8577 #ifndef CONFIG_PREEMPT_RCU
8578 rcu_all_qs();
8579 #endif
8580 return 0;
8581 }
8582 EXPORT_SYMBOL(__cond_resched);
8583 #endif
8584
8585 #ifdef CONFIG_PREEMPT_DYNAMIC
8586 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8587 #define cond_resched_dynamic_enabled __cond_resched
8588 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
8589 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8590 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8591
8592 #define might_resched_dynamic_enabled __cond_resched
8593 #define might_resched_dynamic_disabled ((void *)&__static_call_return0)
8594 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8595 EXPORT_STATIC_CALL_TRAMP(might_resched);
8596 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8597 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)8598 int __sched dynamic_cond_resched(void)
8599 {
8600 klp_sched_try_switch();
8601 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8602 return 0;
8603 return __cond_resched();
8604 }
8605 EXPORT_SYMBOL(dynamic_cond_resched);
8606
8607 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)8608 int __sched dynamic_might_resched(void)
8609 {
8610 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8611 return 0;
8612 return __cond_resched();
8613 }
8614 EXPORT_SYMBOL(dynamic_might_resched);
8615 #endif
8616 #endif
8617
8618 /*
8619 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8620 * call schedule, and on return reacquire the lock.
8621 *
8622 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8623 * operations here to prevent schedule() from being called twice (once via
8624 * spin_unlock(), once by hand).
8625 */
__cond_resched_lock(spinlock_t * lock)8626 int __cond_resched_lock(spinlock_t *lock)
8627 {
8628 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8629 int ret = 0;
8630
8631 lockdep_assert_held(lock);
8632
8633 if (spin_needbreak(lock) || resched) {
8634 spin_unlock(lock);
8635 if (!_cond_resched())
8636 cpu_relax();
8637 ret = 1;
8638 spin_lock(lock);
8639 }
8640 return ret;
8641 }
8642 EXPORT_SYMBOL(__cond_resched_lock);
8643
__cond_resched_rwlock_read(rwlock_t * lock)8644 int __cond_resched_rwlock_read(rwlock_t *lock)
8645 {
8646 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8647 int ret = 0;
8648
8649 lockdep_assert_held_read(lock);
8650
8651 if (rwlock_needbreak(lock) || resched) {
8652 read_unlock(lock);
8653 if (!_cond_resched())
8654 cpu_relax();
8655 ret = 1;
8656 read_lock(lock);
8657 }
8658 return ret;
8659 }
8660 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8661
__cond_resched_rwlock_write(rwlock_t * lock)8662 int __cond_resched_rwlock_write(rwlock_t *lock)
8663 {
8664 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8665 int ret = 0;
8666
8667 lockdep_assert_held_write(lock);
8668
8669 if (rwlock_needbreak(lock) || resched) {
8670 write_unlock(lock);
8671 if (!_cond_resched())
8672 cpu_relax();
8673 ret = 1;
8674 write_lock(lock);
8675 }
8676 return ret;
8677 }
8678 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8679
8680 #ifdef CONFIG_PREEMPT_DYNAMIC
8681
8682 #ifdef CONFIG_GENERIC_ENTRY
8683 #include <linux/entry-common.h>
8684 #endif
8685
8686 /*
8687 * SC:cond_resched
8688 * SC:might_resched
8689 * SC:preempt_schedule
8690 * SC:preempt_schedule_notrace
8691 * SC:irqentry_exit_cond_resched
8692 *
8693 *
8694 * NONE:
8695 * cond_resched <- __cond_resched
8696 * might_resched <- RET0
8697 * preempt_schedule <- NOP
8698 * preempt_schedule_notrace <- NOP
8699 * irqentry_exit_cond_resched <- NOP
8700 *
8701 * VOLUNTARY:
8702 * cond_resched <- __cond_resched
8703 * might_resched <- __cond_resched
8704 * preempt_schedule <- NOP
8705 * preempt_schedule_notrace <- NOP
8706 * irqentry_exit_cond_resched <- NOP
8707 *
8708 * FULL:
8709 * cond_resched <- RET0
8710 * might_resched <- RET0
8711 * preempt_schedule <- preempt_schedule
8712 * preempt_schedule_notrace <- preempt_schedule_notrace
8713 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8714 */
8715
8716 enum {
8717 preempt_dynamic_undefined = -1,
8718 preempt_dynamic_none,
8719 preempt_dynamic_voluntary,
8720 preempt_dynamic_full,
8721 };
8722
8723 int preempt_dynamic_mode = preempt_dynamic_undefined;
8724
sched_dynamic_mode(const char * str)8725 int sched_dynamic_mode(const char *str)
8726 {
8727 if (!strcmp(str, "none"))
8728 return preempt_dynamic_none;
8729
8730 if (!strcmp(str, "voluntary"))
8731 return preempt_dynamic_voluntary;
8732
8733 if (!strcmp(str, "full"))
8734 return preempt_dynamic_full;
8735
8736 return -EINVAL;
8737 }
8738
8739 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8740 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8741 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
8742 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8743 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8744 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8745 #else
8746 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8747 #endif
8748
8749 static DEFINE_MUTEX(sched_dynamic_mutex);
8750 static bool klp_override;
8751
__sched_dynamic_update(int mode)8752 static void __sched_dynamic_update(int mode)
8753 {
8754 /*
8755 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8756 * the ZERO state, which is invalid.
8757 */
8758 if (!klp_override)
8759 preempt_dynamic_enable(cond_resched);
8760 preempt_dynamic_enable(might_resched);
8761 preempt_dynamic_enable(preempt_schedule);
8762 preempt_dynamic_enable(preempt_schedule_notrace);
8763 preempt_dynamic_enable(irqentry_exit_cond_resched);
8764
8765 switch (mode) {
8766 case preempt_dynamic_none:
8767 if (!klp_override)
8768 preempt_dynamic_enable(cond_resched);
8769 preempt_dynamic_disable(might_resched);
8770 preempt_dynamic_disable(preempt_schedule);
8771 preempt_dynamic_disable(preempt_schedule_notrace);
8772 preempt_dynamic_disable(irqentry_exit_cond_resched);
8773 if (mode != preempt_dynamic_mode)
8774 pr_info("Dynamic Preempt: none\n");
8775 break;
8776
8777 case preempt_dynamic_voluntary:
8778 if (!klp_override)
8779 preempt_dynamic_enable(cond_resched);
8780 preempt_dynamic_enable(might_resched);
8781 preempt_dynamic_disable(preempt_schedule);
8782 preempt_dynamic_disable(preempt_schedule_notrace);
8783 preempt_dynamic_disable(irqentry_exit_cond_resched);
8784 if (mode != preempt_dynamic_mode)
8785 pr_info("Dynamic Preempt: voluntary\n");
8786 break;
8787
8788 case preempt_dynamic_full:
8789 if (!klp_override)
8790 preempt_dynamic_disable(cond_resched);
8791 preempt_dynamic_disable(might_resched);
8792 preempt_dynamic_enable(preempt_schedule);
8793 preempt_dynamic_enable(preempt_schedule_notrace);
8794 preempt_dynamic_enable(irqentry_exit_cond_resched);
8795 if (mode != preempt_dynamic_mode)
8796 pr_info("Dynamic Preempt: full\n");
8797 break;
8798 }
8799
8800 preempt_dynamic_mode = mode;
8801 }
8802
sched_dynamic_update(int mode)8803 void sched_dynamic_update(int mode)
8804 {
8805 mutex_lock(&sched_dynamic_mutex);
8806 __sched_dynamic_update(mode);
8807 mutex_unlock(&sched_dynamic_mutex);
8808 }
8809
8810 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8811
klp_cond_resched(void)8812 static int klp_cond_resched(void)
8813 {
8814 __klp_sched_try_switch();
8815 return __cond_resched();
8816 }
8817
sched_dynamic_klp_enable(void)8818 void sched_dynamic_klp_enable(void)
8819 {
8820 mutex_lock(&sched_dynamic_mutex);
8821
8822 klp_override = true;
8823 static_call_update(cond_resched, klp_cond_resched);
8824
8825 mutex_unlock(&sched_dynamic_mutex);
8826 }
8827
sched_dynamic_klp_disable(void)8828 void sched_dynamic_klp_disable(void)
8829 {
8830 mutex_lock(&sched_dynamic_mutex);
8831
8832 klp_override = false;
8833 __sched_dynamic_update(preempt_dynamic_mode);
8834
8835 mutex_unlock(&sched_dynamic_mutex);
8836 }
8837
8838 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8839
setup_preempt_mode(char * str)8840 static int __init setup_preempt_mode(char *str)
8841 {
8842 int mode = sched_dynamic_mode(str);
8843 if (mode < 0) {
8844 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8845 return 0;
8846 }
8847
8848 sched_dynamic_update(mode);
8849 return 1;
8850 }
8851 __setup("preempt=", setup_preempt_mode);
8852
preempt_dynamic_init(void)8853 static void __init preempt_dynamic_init(void)
8854 {
8855 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8856 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8857 sched_dynamic_update(preempt_dynamic_none);
8858 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8859 sched_dynamic_update(preempt_dynamic_voluntary);
8860 } else {
8861 /* Default static call setting, nothing to do */
8862 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8863 preempt_dynamic_mode = preempt_dynamic_full;
8864 pr_info("Dynamic Preempt: full\n");
8865 }
8866 }
8867 }
8868
8869 #define PREEMPT_MODEL_ACCESSOR(mode) \
8870 bool preempt_model_##mode(void) \
8871 { \
8872 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8873 return preempt_dynamic_mode == preempt_dynamic_##mode; \
8874 } \
8875 EXPORT_SYMBOL_GPL(preempt_model_##mode)
8876
8877 PREEMPT_MODEL_ACCESSOR(none);
8878 PREEMPT_MODEL_ACCESSOR(voluntary);
8879 PREEMPT_MODEL_ACCESSOR(full);
8880
8881 #else /* !CONFIG_PREEMPT_DYNAMIC */
8882
preempt_dynamic_init(void)8883 static inline void preempt_dynamic_init(void) { }
8884
8885 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8886
8887 /**
8888 * yield - yield the current processor to other threads.
8889 *
8890 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8891 *
8892 * The scheduler is at all times free to pick the calling task as the most
8893 * eligible task to run, if removing the yield() call from your code breaks
8894 * it, it's already broken.
8895 *
8896 * Typical broken usage is:
8897 *
8898 * while (!event)
8899 * yield();
8900 *
8901 * where one assumes that yield() will let 'the other' process run that will
8902 * make event true. If the current task is a SCHED_FIFO task that will never
8903 * happen. Never use yield() as a progress guarantee!!
8904 *
8905 * If you want to use yield() to wait for something, use wait_event().
8906 * If you want to use yield() to be 'nice' for others, use cond_resched().
8907 * If you still want to use yield(), do not!
8908 */
yield(void)8909 void __sched yield(void)
8910 {
8911 set_current_state(TASK_RUNNING);
8912 do_sched_yield();
8913 }
8914 EXPORT_SYMBOL(yield);
8915
8916 /**
8917 * yield_to - yield the current processor to another thread in
8918 * your thread group, or accelerate that thread toward the
8919 * processor it's on.
8920 * @p: target task
8921 * @preempt: whether task preemption is allowed or not
8922 *
8923 * It's the caller's job to ensure that the target task struct
8924 * can't go away on us before we can do any checks.
8925 *
8926 * Return:
8927 * true (>0) if we indeed boosted the target task.
8928 * false (0) if we failed to boost the target.
8929 * -ESRCH if there's no task to yield to.
8930 */
yield_to(struct task_struct * p,bool preempt)8931 int __sched yield_to(struct task_struct *p, bool preempt)
8932 {
8933 struct task_struct *curr = current;
8934 struct rq *rq, *p_rq;
8935 unsigned long flags;
8936 int yielded = 0;
8937
8938 local_irq_save(flags);
8939 rq = this_rq();
8940
8941 again:
8942 p_rq = task_rq(p);
8943 /*
8944 * If we're the only runnable task on the rq and target rq also
8945 * has only one task, there's absolutely no point in yielding.
8946 */
8947 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8948 yielded = -ESRCH;
8949 goto out_irq;
8950 }
8951
8952 double_rq_lock(rq, p_rq);
8953 if (task_rq(p) != p_rq) {
8954 double_rq_unlock(rq, p_rq);
8955 goto again;
8956 }
8957
8958 if (!curr->sched_class->yield_to_task)
8959 goto out_unlock;
8960
8961 if (curr->sched_class != p->sched_class)
8962 goto out_unlock;
8963
8964 if (task_on_cpu(p_rq, p) || !task_is_running(p))
8965 goto out_unlock;
8966
8967 yielded = curr->sched_class->yield_to_task(rq, p);
8968 if (yielded) {
8969 schedstat_inc(rq->yld_count);
8970 /*
8971 * Make p's CPU reschedule; pick_next_entity takes care of
8972 * fairness.
8973 */
8974 if (preempt && rq != p_rq)
8975 resched_curr(p_rq);
8976 }
8977
8978 out_unlock:
8979 double_rq_unlock(rq, p_rq);
8980 out_irq:
8981 local_irq_restore(flags);
8982
8983 if (yielded > 0)
8984 schedule();
8985
8986 return yielded;
8987 }
8988 EXPORT_SYMBOL_GPL(yield_to);
8989
io_schedule_prepare(void)8990 int io_schedule_prepare(void)
8991 {
8992 int old_iowait = current->in_iowait;
8993
8994 current->in_iowait = 1;
8995 blk_flush_plug(current->plug, true);
8996 return old_iowait;
8997 }
8998
io_schedule_finish(int token)8999 void io_schedule_finish(int token)
9000 {
9001 current->in_iowait = token;
9002 }
9003
9004 /*
9005 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9006 * that process accounting knows that this is a task in IO wait state.
9007 */
io_schedule_timeout(long timeout)9008 long __sched io_schedule_timeout(long timeout)
9009 {
9010 int token;
9011 long ret;
9012
9013 token = io_schedule_prepare();
9014 ret = schedule_timeout(timeout);
9015 io_schedule_finish(token);
9016
9017 return ret;
9018 }
9019 EXPORT_SYMBOL(io_schedule_timeout);
9020
io_schedule(void)9021 void __sched io_schedule(void)
9022 {
9023 int token;
9024
9025 token = io_schedule_prepare();
9026 schedule();
9027 io_schedule_finish(token);
9028 }
9029 EXPORT_SYMBOL(io_schedule);
9030
9031 /**
9032 * sys_sched_get_priority_max - return maximum RT priority.
9033 * @policy: scheduling class.
9034 *
9035 * Return: On success, this syscall returns the maximum
9036 * rt_priority that can be used by a given scheduling class.
9037 * On failure, a negative error code is returned.
9038 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)9039 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9040 {
9041 int ret = -EINVAL;
9042
9043 switch (policy) {
9044 case SCHED_FIFO:
9045 case SCHED_RR:
9046 ret = MAX_RT_PRIO-1;
9047 break;
9048 case SCHED_DEADLINE:
9049 case SCHED_NORMAL:
9050 case SCHED_BATCH:
9051 case SCHED_IDLE:
9052 ret = 0;
9053 break;
9054 }
9055 return ret;
9056 }
9057
9058 /**
9059 * sys_sched_get_priority_min - return minimum RT priority.
9060 * @policy: scheduling class.
9061 *
9062 * Return: On success, this syscall returns the minimum
9063 * rt_priority that can be used by a given scheduling class.
9064 * On failure, a negative error code is returned.
9065 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)9066 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9067 {
9068 int ret = -EINVAL;
9069
9070 switch (policy) {
9071 case SCHED_FIFO:
9072 case SCHED_RR:
9073 ret = 1;
9074 break;
9075 case SCHED_DEADLINE:
9076 case SCHED_NORMAL:
9077 case SCHED_BATCH:
9078 case SCHED_IDLE:
9079 ret = 0;
9080 }
9081 return ret;
9082 }
9083
sched_rr_get_interval(pid_t pid,struct timespec64 * t)9084 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9085 {
9086 struct task_struct *p;
9087 unsigned int time_slice;
9088 struct rq_flags rf;
9089 struct rq *rq;
9090 int retval;
9091
9092 if (pid < 0)
9093 return -EINVAL;
9094
9095 retval = -ESRCH;
9096 rcu_read_lock();
9097 p = find_process_by_pid(pid);
9098 if (!p)
9099 goto out_unlock;
9100
9101 retval = security_task_getscheduler(p);
9102 if (retval)
9103 goto out_unlock;
9104
9105 rq = task_rq_lock(p, &rf);
9106 time_slice = 0;
9107 if (p->sched_class->get_rr_interval)
9108 time_slice = p->sched_class->get_rr_interval(rq, p);
9109 task_rq_unlock(rq, p, &rf);
9110
9111 rcu_read_unlock();
9112 jiffies_to_timespec64(time_slice, t);
9113 return 0;
9114
9115 out_unlock:
9116 rcu_read_unlock();
9117 return retval;
9118 }
9119
9120 /**
9121 * sys_sched_rr_get_interval - return the default timeslice of a process.
9122 * @pid: pid of the process.
9123 * @interval: userspace pointer to the timeslice value.
9124 *
9125 * this syscall writes the default timeslice value of a given process
9126 * into the user-space timespec buffer. A value of '0' means infinity.
9127 *
9128 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9129 * an error code.
9130 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)9131 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9132 struct __kernel_timespec __user *, interval)
9133 {
9134 struct timespec64 t;
9135 int retval = sched_rr_get_interval(pid, &t);
9136
9137 if (retval == 0)
9138 retval = put_timespec64(&t, interval);
9139
9140 return retval;
9141 }
9142
9143 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)9144 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9145 struct old_timespec32 __user *, interval)
9146 {
9147 struct timespec64 t;
9148 int retval = sched_rr_get_interval(pid, &t);
9149
9150 if (retval == 0)
9151 retval = put_old_timespec32(&t, interval);
9152 return retval;
9153 }
9154 #endif
9155
sched_show_task(struct task_struct * p)9156 void sched_show_task(struct task_struct *p)
9157 {
9158 unsigned long free = 0;
9159 int ppid;
9160
9161 if (!try_get_task_stack(p))
9162 return;
9163
9164 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9165
9166 if (task_is_running(p))
9167 pr_cont(" running task ");
9168 #ifdef CONFIG_DEBUG_STACK_USAGE
9169 free = stack_not_used(p);
9170 #endif
9171 ppid = 0;
9172 rcu_read_lock();
9173 if (pid_alive(p))
9174 ppid = task_pid_nr(rcu_dereference(p->real_parent));
9175 rcu_read_unlock();
9176 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9177 free, task_pid_nr(p), ppid,
9178 read_task_thread_flags(p));
9179
9180 print_worker_info(KERN_INFO, p);
9181 print_stop_info(KERN_INFO, p);
9182 show_stack(p, NULL, KERN_INFO);
9183 put_task_stack(p);
9184 }
9185 EXPORT_SYMBOL_GPL(sched_show_task);
9186
9187 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)9188 state_filter_match(unsigned long state_filter, struct task_struct *p)
9189 {
9190 unsigned int state = READ_ONCE(p->__state);
9191
9192 /* no filter, everything matches */
9193 if (!state_filter)
9194 return true;
9195
9196 /* filter, but doesn't match */
9197 if (!(state & state_filter))
9198 return false;
9199
9200 /*
9201 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9202 * TASK_KILLABLE).
9203 */
9204 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9205 return false;
9206
9207 return true;
9208 }
9209
9210
show_state_filter(unsigned int state_filter)9211 void show_state_filter(unsigned int state_filter)
9212 {
9213 struct task_struct *g, *p;
9214
9215 rcu_read_lock();
9216 for_each_process_thread(g, p) {
9217 /*
9218 * reset the NMI-timeout, listing all files on a slow
9219 * console might take a lot of time:
9220 * Also, reset softlockup watchdogs on all CPUs, because
9221 * another CPU might be blocked waiting for us to process
9222 * an IPI.
9223 */
9224 touch_nmi_watchdog();
9225 touch_all_softlockup_watchdogs();
9226 if (state_filter_match(state_filter, p))
9227 sched_show_task(p);
9228 }
9229
9230 #ifdef CONFIG_SCHED_DEBUG
9231 if (!state_filter)
9232 sysrq_sched_debug_show();
9233 #endif
9234 rcu_read_unlock();
9235 /*
9236 * Only show locks if all tasks are dumped:
9237 */
9238 if (!state_filter)
9239 debug_show_all_locks();
9240 }
9241
9242 /**
9243 * init_idle - set up an idle thread for a given CPU
9244 * @idle: task in question
9245 * @cpu: CPU the idle task belongs to
9246 *
9247 * NOTE: this function does not set the idle thread's NEED_RESCHED
9248 * flag, to make booting more robust.
9249 */
init_idle(struct task_struct * idle,int cpu)9250 void __init init_idle(struct task_struct *idle, int cpu)
9251 {
9252 #ifdef CONFIG_SMP
9253 struct affinity_context ac = (struct affinity_context) {
9254 .new_mask = cpumask_of(cpu),
9255 .flags = 0,
9256 };
9257 #endif
9258 struct rq *rq = cpu_rq(cpu);
9259 unsigned long flags;
9260
9261 raw_spin_lock_irqsave(&idle->pi_lock, flags);
9262 raw_spin_rq_lock(rq);
9263
9264 idle->__state = TASK_RUNNING;
9265 idle->se.exec_start = sched_clock();
9266 /*
9267 * PF_KTHREAD should already be set at this point; regardless, make it
9268 * look like a proper per-CPU kthread.
9269 */
9270 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9271 kthread_set_per_cpu(idle, cpu);
9272
9273 #ifdef CONFIG_SMP
9274 /*
9275 * No validation and serialization required at boot time and for
9276 * setting up the idle tasks of not yet online CPUs.
9277 */
9278 set_cpus_allowed_common(idle, &ac);
9279 #endif
9280 /*
9281 * We're having a chicken and egg problem, even though we are
9282 * holding rq->lock, the CPU isn't yet set to this CPU so the
9283 * lockdep check in task_group() will fail.
9284 *
9285 * Similar case to sched_fork(). / Alternatively we could
9286 * use task_rq_lock() here and obtain the other rq->lock.
9287 *
9288 * Silence PROVE_RCU
9289 */
9290 rcu_read_lock();
9291 __set_task_cpu(idle, cpu);
9292 rcu_read_unlock();
9293
9294 rq->idle = idle;
9295 rcu_assign_pointer(rq->curr, idle);
9296 idle->on_rq = TASK_ON_RQ_QUEUED;
9297 #ifdef CONFIG_SMP
9298 idle->on_cpu = 1;
9299 #endif
9300 raw_spin_rq_unlock(rq);
9301 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9302
9303 /* Set the preempt count _outside_ the spinlocks! */
9304 init_idle_preempt_count(idle, cpu);
9305
9306 /*
9307 * The idle tasks have their own, simple scheduling class:
9308 */
9309 idle->sched_class = &idle_sched_class;
9310 ftrace_graph_init_idle_task(idle, cpu);
9311 vtime_init_idle(idle, cpu);
9312 #ifdef CONFIG_SMP
9313 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9314 #endif
9315 }
9316
9317 #ifdef CONFIG_SMP
9318
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)9319 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9320 const struct cpumask *trial)
9321 {
9322 int ret = 1;
9323
9324 if (cpumask_empty(cur))
9325 return ret;
9326
9327 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9328
9329 return ret;
9330 }
9331
task_can_attach(struct task_struct * p)9332 int task_can_attach(struct task_struct *p)
9333 {
9334 int ret = 0;
9335
9336 /*
9337 * Kthreads which disallow setaffinity shouldn't be moved
9338 * to a new cpuset; we don't want to change their CPU
9339 * affinity and isolating such threads by their set of
9340 * allowed nodes is unnecessary. Thus, cpusets are not
9341 * applicable for such threads. This prevents checking for
9342 * success of set_cpus_allowed_ptr() on all attached tasks
9343 * before cpus_mask may be changed.
9344 */
9345 if (p->flags & PF_NO_SETAFFINITY)
9346 ret = -EINVAL;
9347
9348 return ret;
9349 }
9350
9351 bool sched_smp_initialized __read_mostly;
9352
9353 #ifdef CONFIG_NUMA_BALANCING
9354 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)9355 int migrate_task_to(struct task_struct *p, int target_cpu)
9356 {
9357 struct migration_arg arg = { p, target_cpu };
9358 int curr_cpu = task_cpu(p);
9359
9360 if (curr_cpu == target_cpu)
9361 return 0;
9362
9363 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9364 return -EINVAL;
9365
9366 /* TODO: This is not properly updating schedstats */
9367
9368 trace_sched_move_numa(p, curr_cpu, target_cpu);
9369 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9370 }
9371
9372 /*
9373 * Requeue a task on a given node and accurately track the number of NUMA
9374 * tasks on the runqueues
9375 */
sched_setnuma(struct task_struct * p,int nid)9376 void sched_setnuma(struct task_struct *p, int nid)
9377 {
9378 bool queued, running;
9379 struct rq_flags rf;
9380 struct rq *rq;
9381
9382 rq = task_rq_lock(p, &rf);
9383 queued = task_on_rq_queued(p);
9384 running = task_current(rq, p);
9385
9386 if (queued)
9387 dequeue_task(rq, p, DEQUEUE_SAVE);
9388 if (running)
9389 put_prev_task(rq, p);
9390
9391 p->numa_preferred_nid = nid;
9392
9393 if (queued)
9394 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9395 if (running)
9396 set_next_task(rq, p);
9397 task_rq_unlock(rq, p, &rf);
9398 }
9399 #endif /* CONFIG_NUMA_BALANCING */
9400
9401 #ifdef CONFIG_HOTPLUG_CPU
9402 /*
9403 * Ensure that the idle task is using init_mm right before its CPU goes
9404 * offline.
9405 */
idle_task_exit(void)9406 void idle_task_exit(void)
9407 {
9408 struct mm_struct *mm = current->active_mm;
9409
9410 BUG_ON(cpu_online(smp_processor_id()));
9411 BUG_ON(current != this_rq()->idle);
9412
9413 if (mm != &init_mm) {
9414 switch_mm(mm, &init_mm, current);
9415 finish_arch_post_lock_switch();
9416 }
9417
9418 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9419 }
9420
__balance_push_cpu_stop(void * arg)9421 static int __balance_push_cpu_stop(void *arg)
9422 {
9423 struct task_struct *p = arg;
9424 struct rq *rq = this_rq();
9425 struct rq_flags rf;
9426 int cpu;
9427
9428 raw_spin_lock_irq(&p->pi_lock);
9429 rq_lock(rq, &rf);
9430
9431 update_rq_clock(rq);
9432
9433 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9434 cpu = select_fallback_rq(rq->cpu, p);
9435 rq = __migrate_task(rq, &rf, p, cpu);
9436 }
9437
9438 rq_unlock(rq, &rf);
9439 raw_spin_unlock_irq(&p->pi_lock);
9440
9441 put_task_struct(p);
9442
9443 return 0;
9444 }
9445
9446 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9447
9448 /*
9449 * Ensure we only run per-cpu kthreads once the CPU goes !active.
9450 *
9451 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9452 * effective when the hotplug motion is down.
9453 */
balance_push(struct rq * rq)9454 static void balance_push(struct rq *rq)
9455 {
9456 struct task_struct *push_task = rq->curr;
9457
9458 lockdep_assert_rq_held(rq);
9459
9460 /*
9461 * Ensure the thing is persistent until balance_push_set(.on = false);
9462 */
9463 rq->balance_callback = &balance_push_callback;
9464
9465 /*
9466 * Only active while going offline and when invoked on the outgoing
9467 * CPU.
9468 */
9469 if (!cpu_dying(rq->cpu) || rq != this_rq())
9470 return;
9471
9472 /*
9473 * Both the cpu-hotplug and stop task are in this case and are
9474 * required to complete the hotplug process.
9475 */
9476 if (kthread_is_per_cpu(push_task) ||
9477 is_migration_disabled(push_task)) {
9478
9479 /*
9480 * If this is the idle task on the outgoing CPU try to wake
9481 * up the hotplug control thread which might wait for the
9482 * last task to vanish. The rcuwait_active() check is
9483 * accurate here because the waiter is pinned on this CPU
9484 * and can't obviously be running in parallel.
9485 *
9486 * On RT kernels this also has to check whether there are
9487 * pinned and scheduled out tasks on the runqueue. They
9488 * need to leave the migrate disabled section first.
9489 */
9490 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9491 rcuwait_active(&rq->hotplug_wait)) {
9492 raw_spin_rq_unlock(rq);
9493 rcuwait_wake_up(&rq->hotplug_wait);
9494 raw_spin_rq_lock(rq);
9495 }
9496 return;
9497 }
9498
9499 get_task_struct(push_task);
9500 /*
9501 * Temporarily drop rq->lock such that we can wake-up the stop task.
9502 * Both preemption and IRQs are still disabled.
9503 */
9504 preempt_disable();
9505 raw_spin_rq_unlock(rq);
9506 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9507 this_cpu_ptr(&push_work));
9508 preempt_enable();
9509 /*
9510 * At this point need_resched() is true and we'll take the loop in
9511 * schedule(). The next pick is obviously going to be the stop task
9512 * which kthread_is_per_cpu() and will push this task away.
9513 */
9514 raw_spin_rq_lock(rq);
9515 }
9516
balance_push_set(int cpu,bool on)9517 static void balance_push_set(int cpu, bool on)
9518 {
9519 struct rq *rq = cpu_rq(cpu);
9520 struct rq_flags rf;
9521
9522 rq_lock_irqsave(rq, &rf);
9523 if (on) {
9524 WARN_ON_ONCE(rq->balance_callback);
9525 rq->balance_callback = &balance_push_callback;
9526 } else if (rq->balance_callback == &balance_push_callback) {
9527 rq->balance_callback = NULL;
9528 }
9529 rq_unlock_irqrestore(rq, &rf);
9530 }
9531
9532 /*
9533 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9534 * inactive. All tasks which are not per CPU kernel threads are either
9535 * pushed off this CPU now via balance_push() or placed on a different CPU
9536 * during wakeup. Wait until the CPU is quiescent.
9537 */
balance_hotplug_wait(void)9538 static void balance_hotplug_wait(void)
9539 {
9540 struct rq *rq = this_rq();
9541
9542 rcuwait_wait_event(&rq->hotplug_wait,
9543 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9544 TASK_UNINTERRUPTIBLE);
9545 }
9546
9547 #else
9548
balance_push(struct rq * rq)9549 static inline void balance_push(struct rq *rq)
9550 {
9551 }
9552
balance_push_set(int cpu,bool on)9553 static inline void balance_push_set(int cpu, bool on)
9554 {
9555 }
9556
balance_hotplug_wait(void)9557 static inline void balance_hotplug_wait(void)
9558 {
9559 }
9560
9561 #endif /* CONFIG_HOTPLUG_CPU */
9562
set_rq_online(struct rq * rq)9563 void set_rq_online(struct rq *rq)
9564 {
9565 if (!rq->online) {
9566 const struct sched_class *class;
9567
9568 cpumask_set_cpu(rq->cpu, rq->rd->online);
9569 rq->online = 1;
9570
9571 for_each_class(class) {
9572 if (class->rq_online)
9573 class->rq_online(rq);
9574 }
9575 }
9576 }
9577
set_rq_offline(struct rq * rq)9578 void set_rq_offline(struct rq *rq)
9579 {
9580 if (rq->online) {
9581 const struct sched_class *class;
9582
9583 update_rq_clock(rq);
9584 for_each_class(class) {
9585 if (class->rq_offline)
9586 class->rq_offline(rq);
9587 }
9588
9589 cpumask_clear_cpu(rq->cpu, rq->rd->online);
9590 rq->online = 0;
9591 }
9592 }
9593
sched_set_rq_online(struct rq * rq,int cpu)9594 static inline void sched_set_rq_online(struct rq *rq, int cpu)
9595 {
9596 struct rq_flags rf;
9597
9598 rq_lock_irqsave(rq, &rf);
9599 if (rq->rd) {
9600 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9601 set_rq_online(rq);
9602 }
9603 rq_unlock_irqrestore(rq, &rf);
9604 }
9605
sched_set_rq_offline(struct rq * rq,int cpu)9606 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
9607 {
9608 struct rq_flags rf;
9609
9610 rq_lock_irqsave(rq, &rf);
9611 if (rq->rd) {
9612 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9613 set_rq_offline(rq);
9614 }
9615 rq_unlock_irqrestore(rq, &rf);
9616 }
9617
9618 /*
9619 * used to mark begin/end of suspend/resume:
9620 */
9621 static int num_cpus_frozen;
9622
9623 /*
9624 * Update cpusets according to cpu_active mask. If cpusets are
9625 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9626 * around partition_sched_domains().
9627 *
9628 * If we come here as part of a suspend/resume, don't touch cpusets because we
9629 * want to restore it back to its original state upon resume anyway.
9630 */
cpuset_cpu_active(void)9631 static void cpuset_cpu_active(void)
9632 {
9633 if (cpuhp_tasks_frozen) {
9634 /*
9635 * num_cpus_frozen tracks how many CPUs are involved in suspend
9636 * resume sequence. As long as this is not the last online
9637 * operation in the resume sequence, just build a single sched
9638 * domain, ignoring cpusets.
9639 */
9640 partition_sched_domains(1, NULL, NULL);
9641 if (--num_cpus_frozen)
9642 return;
9643 /*
9644 * This is the last CPU online operation. So fall through and
9645 * restore the original sched domains by considering the
9646 * cpuset configurations.
9647 */
9648 cpuset_force_rebuild();
9649 }
9650 cpuset_update_active_cpus();
9651 }
9652
cpuset_cpu_inactive(unsigned int cpu)9653 static int cpuset_cpu_inactive(unsigned int cpu)
9654 {
9655 if (!cpuhp_tasks_frozen) {
9656 int ret = dl_bw_check_overflow(cpu);
9657
9658 if (ret)
9659 return ret;
9660 cpuset_update_active_cpus();
9661 } else {
9662 num_cpus_frozen++;
9663 partition_sched_domains(1, NULL, NULL);
9664 }
9665 return 0;
9666 }
9667
sched_smt_present_inc(int cpu)9668 static inline void sched_smt_present_inc(int cpu)
9669 {
9670 #ifdef CONFIG_SCHED_SMT
9671 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9672 static_branch_inc_cpuslocked(&sched_smt_present);
9673 #endif
9674 }
9675
sched_smt_present_dec(int cpu)9676 static inline void sched_smt_present_dec(int cpu)
9677 {
9678 #ifdef CONFIG_SCHED_SMT
9679 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9680 static_branch_dec_cpuslocked(&sched_smt_present);
9681 #endif
9682 }
9683
sched_cpu_activate(unsigned int cpu)9684 int sched_cpu_activate(unsigned int cpu)
9685 {
9686 struct rq *rq = cpu_rq(cpu);
9687
9688 /*
9689 * Clear the balance_push callback and prepare to schedule
9690 * regular tasks.
9691 */
9692 balance_push_set(cpu, false);
9693
9694 /*
9695 * When going up, increment the number of cores with SMT present.
9696 */
9697 sched_smt_present_inc(cpu);
9698 set_cpu_active(cpu, true);
9699
9700 if (sched_smp_initialized) {
9701 sched_update_numa(cpu, true);
9702 sched_domains_numa_masks_set(cpu);
9703 cpuset_cpu_active();
9704 }
9705
9706 /*
9707 * Put the rq online, if not already. This happens:
9708 *
9709 * 1) In the early boot process, because we build the real domains
9710 * after all CPUs have been brought up.
9711 *
9712 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9713 * domains.
9714 */
9715 sched_set_rq_online(rq, cpu);
9716
9717 return 0;
9718 }
9719
sched_cpu_deactivate(unsigned int cpu)9720 int sched_cpu_deactivate(unsigned int cpu)
9721 {
9722 struct rq *rq = cpu_rq(cpu);
9723 int ret;
9724
9725 /*
9726 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9727 * load balancing when not active
9728 */
9729 nohz_balance_exit_idle(rq);
9730
9731 set_cpu_active(cpu, false);
9732
9733 /*
9734 * From this point forward, this CPU will refuse to run any task that
9735 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9736 * push those tasks away until this gets cleared, see
9737 * sched_cpu_dying().
9738 */
9739 balance_push_set(cpu, true);
9740
9741 /*
9742 * We've cleared cpu_active_mask / set balance_push, wait for all
9743 * preempt-disabled and RCU users of this state to go away such that
9744 * all new such users will observe it.
9745 *
9746 * Specifically, we rely on ttwu to no longer target this CPU, see
9747 * ttwu_queue_cond() and is_cpu_allowed().
9748 *
9749 * Do sync before park smpboot threads to take care the rcu boost case.
9750 */
9751 synchronize_rcu();
9752
9753 sched_set_rq_offline(rq, cpu);
9754
9755 /*
9756 * When going down, decrement the number of cores with SMT present.
9757 */
9758 sched_smt_present_dec(cpu);
9759
9760 #ifdef CONFIG_SCHED_SMT
9761 sched_core_cpu_deactivate(cpu);
9762 #endif
9763
9764 if (!sched_smp_initialized)
9765 return 0;
9766
9767 sched_update_numa(cpu, false);
9768 ret = cpuset_cpu_inactive(cpu);
9769 if (ret) {
9770 sched_smt_present_inc(cpu);
9771 sched_set_rq_online(rq, cpu);
9772 balance_push_set(cpu, false);
9773 set_cpu_active(cpu, true);
9774 sched_update_numa(cpu, true);
9775 return ret;
9776 }
9777 sched_domains_numa_masks_clear(cpu);
9778 return 0;
9779 }
9780
sched_rq_cpu_starting(unsigned int cpu)9781 static void sched_rq_cpu_starting(unsigned int cpu)
9782 {
9783 struct rq *rq = cpu_rq(cpu);
9784
9785 rq->calc_load_update = calc_load_update;
9786 update_max_interval();
9787 }
9788
sched_cpu_starting(unsigned int cpu)9789 int sched_cpu_starting(unsigned int cpu)
9790 {
9791 sched_core_cpu_starting(cpu);
9792 sched_rq_cpu_starting(cpu);
9793 sched_tick_start(cpu);
9794 return 0;
9795 }
9796
9797 #ifdef CONFIG_HOTPLUG_CPU
9798
9799 /*
9800 * Invoked immediately before the stopper thread is invoked to bring the
9801 * CPU down completely. At this point all per CPU kthreads except the
9802 * hotplug thread (current) and the stopper thread (inactive) have been
9803 * either parked or have been unbound from the outgoing CPU. Ensure that
9804 * any of those which might be on the way out are gone.
9805 *
9806 * If after this point a bound task is being woken on this CPU then the
9807 * responsible hotplug callback has failed to do it's job.
9808 * sched_cpu_dying() will catch it with the appropriate fireworks.
9809 */
sched_cpu_wait_empty(unsigned int cpu)9810 int sched_cpu_wait_empty(unsigned int cpu)
9811 {
9812 balance_hotplug_wait();
9813 return 0;
9814 }
9815
9816 /*
9817 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9818 * might have. Called from the CPU stopper task after ensuring that the
9819 * stopper is the last running task on the CPU, so nr_active count is
9820 * stable. We need to take the teardown thread which is calling this into
9821 * account, so we hand in adjust = 1 to the load calculation.
9822 *
9823 * Also see the comment "Global load-average calculations".
9824 */
calc_load_migrate(struct rq * rq)9825 static void calc_load_migrate(struct rq *rq)
9826 {
9827 long delta = calc_load_fold_active(rq, 1);
9828
9829 if (delta)
9830 atomic_long_add(delta, &calc_load_tasks);
9831 }
9832
dump_rq_tasks(struct rq * rq,const char * loglvl)9833 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9834 {
9835 struct task_struct *g, *p;
9836 int cpu = cpu_of(rq);
9837
9838 lockdep_assert_rq_held(rq);
9839
9840 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9841 for_each_process_thread(g, p) {
9842 if (task_cpu(p) != cpu)
9843 continue;
9844
9845 if (!task_on_rq_queued(p))
9846 continue;
9847
9848 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9849 }
9850 }
9851
sched_cpu_dying(unsigned int cpu)9852 int sched_cpu_dying(unsigned int cpu)
9853 {
9854 struct rq *rq = cpu_rq(cpu);
9855 struct rq_flags rf;
9856
9857 /* Handle pending wakeups and then migrate everything off */
9858 sched_tick_stop(cpu);
9859
9860 rq_lock_irqsave(rq, &rf);
9861 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9862 WARN(true, "Dying CPU not properly vacated!");
9863 dump_rq_tasks(rq, KERN_WARNING);
9864 }
9865 rq_unlock_irqrestore(rq, &rf);
9866
9867 calc_load_migrate(rq);
9868 update_max_interval();
9869 hrtick_clear(rq);
9870 sched_core_cpu_dying(cpu);
9871 return 0;
9872 }
9873 #endif
9874
sched_init_smp(void)9875 void __init sched_init_smp(void)
9876 {
9877 sched_init_numa(NUMA_NO_NODE);
9878
9879 /*
9880 * There's no userspace yet to cause hotplug operations; hence all the
9881 * CPU masks are stable and all blatant races in the below code cannot
9882 * happen.
9883 */
9884 mutex_lock(&sched_domains_mutex);
9885 sched_init_domains(cpu_active_mask);
9886 mutex_unlock(&sched_domains_mutex);
9887
9888 /* Move init over to a non-isolated CPU */
9889 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9890 BUG();
9891 current->flags &= ~PF_NO_SETAFFINITY;
9892 sched_init_granularity();
9893
9894 init_sched_rt_class();
9895 init_sched_dl_class();
9896
9897 sched_smp_initialized = true;
9898 }
9899
migration_init(void)9900 static int __init migration_init(void)
9901 {
9902 sched_cpu_starting(smp_processor_id());
9903 return 0;
9904 }
9905 early_initcall(migration_init);
9906
9907 #else
sched_init_smp(void)9908 void __init sched_init_smp(void)
9909 {
9910 sched_init_granularity();
9911 }
9912 #endif /* CONFIG_SMP */
9913
in_sched_functions(unsigned long addr)9914 int in_sched_functions(unsigned long addr)
9915 {
9916 return in_lock_functions(addr) ||
9917 (addr >= (unsigned long)__sched_text_start
9918 && addr < (unsigned long)__sched_text_end);
9919 }
9920
9921 #ifdef CONFIG_CGROUP_SCHED
9922 /*
9923 * Default task group.
9924 * Every task in system belongs to this group at bootup.
9925 */
9926 struct task_group root_task_group;
9927 LIST_HEAD(task_groups);
9928
9929 /* Cacheline aligned slab cache for task_group */
9930 static struct kmem_cache *task_group_cache __read_mostly;
9931 #endif
9932
sched_init(void)9933 void __init sched_init(void)
9934 {
9935 unsigned long ptr = 0;
9936 int i;
9937
9938 /* Make sure the linker didn't screw up */
9939 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9940 &fair_sched_class != &rt_sched_class + 1 ||
9941 &rt_sched_class != &dl_sched_class + 1);
9942 #ifdef CONFIG_SMP
9943 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9944 #endif
9945
9946 wait_bit_init();
9947
9948 #ifdef CONFIG_FAIR_GROUP_SCHED
9949 ptr += 2 * nr_cpu_ids * sizeof(void **);
9950 #endif
9951 #ifdef CONFIG_RT_GROUP_SCHED
9952 ptr += 2 * nr_cpu_ids * sizeof(void **);
9953 #endif
9954 if (ptr) {
9955 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9956
9957 #ifdef CONFIG_FAIR_GROUP_SCHED
9958 root_task_group.se = (struct sched_entity **)ptr;
9959 ptr += nr_cpu_ids * sizeof(void **);
9960
9961 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9962 ptr += nr_cpu_ids * sizeof(void **);
9963
9964 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9965 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
9966 #endif /* CONFIG_FAIR_GROUP_SCHED */
9967 #ifdef CONFIG_RT_GROUP_SCHED
9968 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9969 ptr += nr_cpu_ids * sizeof(void **);
9970
9971 root_task_group.rt_rq = (struct rt_rq **)ptr;
9972 ptr += nr_cpu_ids * sizeof(void **);
9973
9974 #endif /* CONFIG_RT_GROUP_SCHED */
9975 }
9976
9977 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9978
9979 #ifdef CONFIG_SMP
9980 init_defrootdomain();
9981 #endif
9982
9983 #ifdef CONFIG_RT_GROUP_SCHED
9984 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9985 global_rt_period(), global_rt_runtime());
9986 #endif /* CONFIG_RT_GROUP_SCHED */
9987
9988 #ifdef CONFIG_CGROUP_SCHED
9989 task_group_cache = KMEM_CACHE(task_group, 0);
9990
9991 list_add(&root_task_group.list, &task_groups);
9992 INIT_LIST_HEAD(&root_task_group.children);
9993 INIT_LIST_HEAD(&root_task_group.siblings);
9994 autogroup_init(&init_task);
9995 #endif /* CONFIG_CGROUP_SCHED */
9996
9997 for_each_possible_cpu(i) {
9998 struct rq *rq;
9999
10000 rq = cpu_rq(i);
10001 raw_spin_lock_init(&rq->__lock);
10002 rq->nr_running = 0;
10003 rq->calc_load_active = 0;
10004 rq->calc_load_update = jiffies + LOAD_FREQ;
10005 init_cfs_rq(&rq->cfs);
10006 init_rt_rq(&rq->rt);
10007 init_dl_rq(&rq->dl);
10008 #ifdef CONFIG_FAIR_GROUP_SCHED
10009 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
10010 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
10011 /*
10012 * How much CPU bandwidth does root_task_group get?
10013 *
10014 * In case of task-groups formed thr' the cgroup filesystem, it
10015 * gets 100% of the CPU resources in the system. This overall
10016 * system CPU resource is divided among the tasks of
10017 * root_task_group and its child task-groups in a fair manner,
10018 * based on each entity's (task or task-group's) weight
10019 * (se->load.weight).
10020 *
10021 * In other words, if root_task_group has 10 tasks of weight
10022 * 1024) and two child groups A0 and A1 (of weight 1024 each),
10023 * then A0's share of the CPU resource is:
10024 *
10025 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10026 *
10027 * We achieve this by letting root_task_group's tasks sit
10028 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10029 */
10030 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10031 #endif /* CONFIG_FAIR_GROUP_SCHED */
10032
10033 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10034 #ifdef CONFIG_RT_GROUP_SCHED
10035 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10036 #endif
10037 #ifdef CONFIG_SMP
10038 rq->sd = NULL;
10039 rq->rd = NULL;
10040 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
10041 rq->balance_callback = &balance_push_callback;
10042 rq->active_balance = 0;
10043 rq->next_balance = jiffies;
10044 rq->push_cpu = 0;
10045 rq->cpu = i;
10046 rq->online = 0;
10047 rq->idle_stamp = 0;
10048 rq->avg_idle = 2*sysctl_sched_migration_cost;
10049 rq->wake_stamp = jiffies;
10050 rq->wake_avg_idle = rq->avg_idle;
10051 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10052
10053 INIT_LIST_HEAD(&rq->cfs_tasks);
10054
10055 rq_attach_root(rq, &def_root_domain);
10056 #ifdef CONFIG_NO_HZ_COMMON
10057 rq->last_blocked_load_update_tick = jiffies;
10058 atomic_set(&rq->nohz_flags, 0);
10059
10060 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10061 #endif
10062 #ifdef CONFIG_HOTPLUG_CPU
10063 rcuwait_init(&rq->hotplug_wait);
10064 #endif
10065 #endif /* CONFIG_SMP */
10066 hrtick_rq_init(rq);
10067 atomic_set(&rq->nr_iowait, 0);
10068
10069 #ifdef CONFIG_SCHED_CORE
10070 rq->core = rq;
10071 rq->core_pick = NULL;
10072 rq->core_enabled = 0;
10073 rq->core_tree = RB_ROOT;
10074 rq->core_forceidle_count = 0;
10075 rq->core_forceidle_occupation = 0;
10076 rq->core_forceidle_start = 0;
10077
10078 rq->core_cookie = 0UL;
10079 #endif
10080 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10081 }
10082
10083 set_load_weight(&init_task, false);
10084
10085 /*
10086 * The boot idle thread does lazy MMU switching as well:
10087 */
10088 mmgrab_lazy_tlb(&init_mm);
10089 enter_lazy_tlb(&init_mm, current);
10090
10091 /*
10092 * The idle task doesn't need the kthread struct to function, but it
10093 * is dressed up as a per-CPU kthread and thus needs to play the part
10094 * if we want to avoid special-casing it in code that deals with per-CPU
10095 * kthreads.
10096 */
10097 WARN_ON(!set_kthread_struct(current));
10098
10099 /*
10100 * Make us the idle thread. Technically, schedule() should not be
10101 * called from this thread, however somewhere below it might be,
10102 * but because we are the idle thread, we just pick up running again
10103 * when this runqueue becomes "idle".
10104 */
10105 __sched_fork(0, current);
10106 init_idle(current, smp_processor_id());
10107
10108 calc_load_update = jiffies + LOAD_FREQ;
10109
10110 #ifdef CONFIG_SMP
10111 idle_thread_set_boot_cpu();
10112 balance_push_set(smp_processor_id(), false);
10113 #endif
10114 init_sched_fair_class();
10115
10116 psi_init();
10117
10118 init_uclamp();
10119
10120 preempt_dynamic_init();
10121
10122 scheduler_running = 1;
10123 }
10124
10125 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10126
__might_sleep(const char * file,int line)10127 void __might_sleep(const char *file, int line)
10128 {
10129 unsigned int state = get_current_state();
10130 /*
10131 * Blocking primitives will set (and therefore destroy) current->state,
10132 * since we will exit with TASK_RUNNING make sure we enter with it,
10133 * otherwise we will destroy state.
10134 */
10135 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10136 "do not call blocking ops when !TASK_RUNNING; "
10137 "state=%x set at [<%p>] %pS\n", state,
10138 (void *)current->task_state_change,
10139 (void *)current->task_state_change);
10140
10141 __might_resched(file, line, 0);
10142 }
10143 EXPORT_SYMBOL(__might_sleep);
10144
print_preempt_disable_ip(int preempt_offset,unsigned long ip)10145 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10146 {
10147 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10148 return;
10149
10150 if (preempt_count() == preempt_offset)
10151 return;
10152
10153 pr_err("Preemption disabled at:");
10154 print_ip_sym(KERN_ERR, ip);
10155 }
10156
resched_offsets_ok(unsigned int offsets)10157 static inline bool resched_offsets_ok(unsigned int offsets)
10158 {
10159 unsigned int nested = preempt_count();
10160
10161 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10162
10163 return nested == offsets;
10164 }
10165
__might_resched(const char * file,int line,unsigned int offsets)10166 void __might_resched(const char *file, int line, unsigned int offsets)
10167 {
10168 /* Ratelimiting timestamp: */
10169 static unsigned long prev_jiffy;
10170
10171 unsigned long preempt_disable_ip;
10172
10173 /* WARN_ON_ONCE() by default, no rate limit required: */
10174 rcu_sleep_check();
10175
10176 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10177 !is_idle_task(current) && !current->non_block_count) ||
10178 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10179 oops_in_progress)
10180 return;
10181
10182 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10183 return;
10184 prev_jiffy = jiffies;
10185
10186 /* Save this before calling printk(), since that will clobber it: */
10187 preempt_disable_ip = get_preempt_disable_ip(current);
10188
10189 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10190 file, line);
10191 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10192 in_atomic(), irqs_disabled(), current->non_block_count,
10193 current->pid, current->comm);
10194 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10195 offsets & MIGHT_RESCHED_PREEMPT_MASK);
10196
10197 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10198 pr_err("RCU nest depth: %d, expected: %u\n",
10199 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10200 }
10201
10202 if (task_stack_end_corrupted(current))
10203 pr_emerg("Thread overran stack, or stack corrupted\n");
10204
10205 debug_show_held_locks(current);
10206 if (irqs_disabled())
10207 print_irqtrace_events(current);
10208
10209 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10210 preempt_disable_ip);
10211
10212 dump_stack();
10213 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10214 }
10215 EXPORT_SYMBOL(__might_resched);
10216
__cant_sleep(const char * file,int line,int preempt_offset)10217 void __cant_sleep(const char *file, int line, int preempt_offset)
10218 {
10219 static unsigned long prev_jiffy;
10220
10221 if (irqs_disabled())
10222 return;
10223
10224 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10225 return;
10226
10227 if (preempt_count() > preempt_offset)
10228 return;
10229
10230 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10231 return;
10232 prev_jiffy = jiffies;
10233
10234 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10235 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10236 in_atomic(), irqs_disabled(),
10237 current->pid, current->comm);
10238
10239 debug_show_held_locks(current);
10240 dump_stack();
10241 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10242 }
10243 EXPORT_SYMBOL_GPL(__cant_sleep);
10244
10245 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)10246 void __cant_migrate(const char *file, int line)
10247 {
10248 static unsigned long prev_jiffy;
10249
10250 if (irqs_disabled())
10251 return;
10252
10253 if (is_migration_disabled(current))
10254 return;
10255
10256 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10257 return;
10258
10259 if (preempt_count() > 0)
10260 return;
10261
10262 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10263 return;
10264 prev_jiffy = jiffies;
10265
10266 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10267 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10268 in_atomic(), irqs_disabled(), is_migration_disabled(current),
10269 current->pid, current->comm);
10270
10271 debug_show_held_locks(current);
10272 dump_stack();
10273 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10274 }
10275 EXPORT_SYMBOL_GPL(__cant_migrate);
10276 #endif
10277 #endif
10278
10279 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)10280 void normalize_rt_tasks(void)
10281 {
10282 struct task_struct *g, *p;
10283 struct sched_attr attr = {
10284 .sched_policy = SCHED_NORMAL,
10285 };
10286
10287 read_lock(&tasklist_lock);
10288 for_each_process_thread(g, p) {
10289 /*
10290 * Only normalize user tasks:
10291 */
10292 if (p->flags & PF_KTHREAD)
10293 continue;
10294
10295 p->se.exec_start = 0;
10296 schedstat_set(p->stats.wait_start, 0);
10297 schedstat_set(p->stats.sleep_start, 0);
10298 schedstat_set(p->stats.block_start, 0);
10299
10300 if (!dl_task(p) && !rt_task(p)) {
10301 /*
10302 * Renice negative nice level userspace
10303 * tasks back to 0:
10304 */
10305 if (task_nice(p) < 0)
10306 set_user_nice(p, 0);
10307 continue;
10308 }
10309
10310 __sched_setscheduler(p, &attr, false, false);
10311 }
10312 read_unlock(&tasklist_lock);
10313 }
10314
10315 #endif /* CONFIG_MAGIC_SYSRQ */
10316
10317 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10318 /*
10319 * These functions are only useful for the IA64 MCA handling, or kdb.
10320 *
10321 * They can only be called when the whole system has been
10322 * stopped - every CPU needs to be quiescent, and no scheduling
10323 * activity can take place. Using them for anything else would
10324 * be a serious bug, and as a result, they aren't even visible
10325 * under any other configuration.
10326 */
10327
10328 /**
10329 * curr_task - return the current task for a given CPU.
10330 * @cpu: the processor in question.
10331 *
10332 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10333 *
10334 * Return: The current task for @cpu.
10335 */
curr_task(int cpu)10336 struct task_struct *curr_task(int cpu)
10337 {
10338 return cpu_curr(cpu);
10339 }
10340
10341 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10342
10343 #ifdef CONFIG_IA64
10344 /**
10345 * ia64_set_curr_task - set the current task for a given CPU.
10346 * @cpu: the processor in question.
10347 * @p: the task pointer to set.
10348 *
10349 * Description: This function must only be used when non-maskable interrupts
10350 * are serviced on a separate stack. It allows the architecture to switch the
10351 * notion of the current task on a CPU in a non-blocking manner. This function
10352 * must be called with all CPU's synchronized, and interrupts disabled, the
10353 * and caller must save the original value of the current task (see
10354 * curr_task() above) and restore that value before reenabling interrupts and
10355 * re-starting the system.
10356 *
10357 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10358 */
ia64_set_curr_task(int cpu,struct task_struct * p)10359 void ia64_set_curr_task(int cpu, struct task_struct *p)
10360 {
10361 cpu_curr(cpu) = p;
10362 }
10363
10364 #endif
10365
10366 #ifdef CONFIG_CGROUP_SCHED
10367 /* task_group_lock serializes the addition/removal of task groups */
10368 static DEFINE_SPINLOCK(task_group_lock);
10369
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)10370 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10371 struct task_group *parent)
10372 {
10373 #ifdef CONFIG_UCLAMP_TASK_GROUP
10374 enum uclamp_id clamp_id;
10375
10376 for_each_clamp_id(clamp_id) {
10377 uclamp_se_set(&tg->uclamp_req[clamp_id],
10378 uclamp_none(clamp_id), false);
10379 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10380 }
10381 #endif
10382 }
10383
sched_free_group(struct task_group * tg)10384 static void sched_free_group(struct task_group *tg)
10385 {
10386 free_fair_sched_group(tg);
10387 free_rt_sched_group(tg);
10388 autogroup_free(tg);
10389 kmem_cache_free(task_group_cache, tg);
10390 }
10391
sched_free_group_rcu(struct rcu_head * rcu)10392 static void sched_free_group_rcu(struct rcu_head *rcu)
10393 {
10394 sched_free_group(container_of(rcu, struct task_group, rcu));
10395 }
10396
sched_unregister_group(struct task_group * tg)10397 static void sched_unregister_group(struct task_group *tg)
10398 {
10399 unregister_fair_sched_group(tg);
10400 unregister_rt_sched_group(tg);
10401 /*
10402 * We have to wait for yet another RCU grace period to expire, as
10403 * print_cfs_stats() might run concurrently.
10404 */
10405 call_rcu(&tg->rcu, sched_free_group_rcu);
10406 }
10407
10408 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)10409 struct task_group *sched_create_group(struct task_group *parent)
10410 {
10411 struct task_group *tg;
10412
10413 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10414 if (!tg)
10415 return ERR_PTR(-ENOMEM);
10416
10417 if (!alloc_fair_sched_group(tg, parent))
10418 goto err;
10419
10420 if (!alloc_rt_sched_group(tg, parent))
10421 goto err;
10422
10423 alloc_uclamp_sched_group(tg, parent);
10424
10425 return tg;
10426
10427 err:
10428 sched_free_group(tg);
10429 return ERR_PTR(-ENOMEM);
10430 }
10431
sched_online_group(struct task_group * tg,struct task_group * parent)10432 void sched_online_group(struct task_group *tg, struct task_group *parent)
10433 {
10434 unsigned long flags;
10435
10436 spin_lock_irqsave(&task_group_lock, flags);
10437 list_add_rcu(&tg->list, &task_groups);
10438
10439 /* Root should already exist: */
10440 WARN_ON(!parent);
10441
10442 tg->parent = parent;
10443 INIT_LIST_HEAD(&tg->children);
10444 list_add_rcu(&tg->siblings, &parent->children);
10445 spin_unlock_irqrestore(&task_group_lock, flags);
10446
10447 online_fair_sched_group(tg);
10448 }
10449
10450 /* rcu callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)10451 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10452 {
10453 /* Now it should be safe to free those cfs_rqs: */
10454 sched_unregister_group(container_of(rhp, struct task_group, rcu));
10455 }
10456
sched_destroy_group(struct task_group * tg)10457 void sched_destroy_group(struct task_group *tg)
10458 {
10459 /* Wait for possible concurrent references to cfs_rqs complete: */
10460 call_rcu(&tg->rcu, sched_unregister_group_rcu);
10461 }
10462
sched_release_group(struct task_group * tg)10463 void sched_release_group(struct task_group *tg)
10464 {
10465 unsigned long flags;
10466
10467 /*
10468 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10469 * sched_cfs_period_timer()).
10470 *
10471 * For this to be effective, we have to wait for all pending users of
10472 * this task group to leave their RCU critical section to ensure no new
10473 * user will see our dying task group any more. Specifically ensure
10474 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10475 *
10476 * We therefore defer calling unregister_fair_sched_group() to
10477 * sched_unregister_group() which is guarantied to get called only after the
10478 * current RCU grace period has expired.
10479 */
10480 spin_lock_irqsave(&task_group_lock, flags);
10481 list_del_rcu(&tg->list);
10482 list_del_rcu(&tg->siblings);
10483 spin_unlock_irqrestore(&task_group_lock, flags);
10484 }
10485
sched_get_task_group(struct task_struct * tsk)10486 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10487 {
10488 struct task_group *tg;
10489
10490 /*
10491 * All callers are synchronized by task_rq_lock(); we do not use RCU
10492 * which is pointless here. Thus, we pass "true" to task_css_check()
10493 * to prevent lockdep warnings.
10494 */
10495 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10496 struct task_group, css);
10497 tg = autogroup_task_group(tsk, tg);
10498
10499 return tg;
10500 }
10501
sched_change_group(struct task_struct * tsk,struct task_group * group)10502 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10503 {
10504 tsk->sched_task_group = group;
10505
10506 #ifdef CONFIG_FAIR_GROUP_SCHED
10507 if (tsk->sched_class->task_change_group)
10508 tsk->sched_class->task_change_group(tsk);
10509 else
10510 #endif
10511 set_task_rq(tsk, task_cpu(tsk));
10512 }
10513
10514 /*
10515 * Change task's runqueue when it moves between groups.
10516 *
10517 * The caller of this function should have put the task in its new group by
10518 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10519 * its new group.
10520 */
sched_move_task(struct task_struct * tsk)10521 void sched_move_task(struct task_struct *tsk)
10522 {
10523 int queued, running, queue_flags =
10524 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10525 struct task_group *group;
10526 struct rq_flags rf;
10527 struct rq *rq;
10528
10529 rq = task_rq_lock(tsk, &rf);
10530 /*
10531 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10532 * group changes.
10533 */
10534 group = sched_get_task_group(tsk);
10535 if (group == tsk->sched_task_group)
10536 goto unlock;
10537
10538 update_rq_clock(rq);
10539
10540 running = task_current(rq, tsk);
10541 queued = task_on_rq_queued(tsk);
10542
10543 if (queued)
10544 dequeue_task(rq, tsk, queue_flags);
10545 if (running)
10546 put_prev_task(rq, tsk);
10547
10548 sched_change_group(tsk, group);
10549
10550 if (queued)
10551 enqueue_task(rq, tsk, queue_flags);
10552 if (running) {
10553 set_next_task(rq, tsk);
10554 /*
10555 * After changing group, the running task may have joined a
10556 * throttled one but it's still the running task. Trigger a
10557 * resched to make sure that task can still run.
10558 */
10559 resched_curr(rq);
10560 }
10561
10562 unlock:
10563 task_rq_unlock(rq, tsk, &rf);
10564 }
10565
css_tg(struct cgroup_subsys_state * css)10566 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10567 {
10568 return css ? container_of(css, struct task_group, css) : NULL;
10569 }
10570
10571 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)10572 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10573 {
10574 struct task_group *parent = css_tg(parent_css);
10575 struct task_group *tg;
10576
10577 if (!parent) {
10578 /* This is early initialization for the top cgroup */
10579 return &root_task_group.css;
10580 }
10581
10582 tg = sched_create_group(parent);
10583 if (IS_ERR(tg))
10584 return ERR_PTR(-ENOMEM);
10585
10586 return &tg->css;
10587 }
10588
10589 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)10590 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10591 {
10592 struct task_group *tg = css_tg(css);
10593 struct task_group *parent = css_tg(css->parent);
10594
10595 if (parent)
10596 sched_online_group(tg, parent);
10597
10598 #ifdef CONFIG_UCLAMP_TASK_GROUP
10599 /* Propagate the effective uclamp value for the new group */
10600 mutex_lock(&uclamp_mutex);
10601 rcu_read_lock();
10602 cpu_util_update_eff(css);
10603 rcu_read_unlock();
10604 mutex_unlock(&uclamp_mutex);
10605 #endif
10606
10607 return 0;
10608 }
10609
cpu_cgroup_css_released(struct cgroup_subsys_state * css)10610 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10611 {
10612 struct task_group *tg = css_tg(css);
10613
10614 sched_release_group(tg);
10615 }
10616
cpu_cgroup_css_free(struct cgroup_subsys_state * css)10617 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10618 {
10619 struct task_group *tg = css_tg(css);
10620
10621 /*
10622 * Relies on the RCU grace period between css_released() and this.
10623 */
10624 sched_unregister_group(tg);
10625 }
10626
10627 #ifdef CONFIG_RT_GROUP_SCHED
cpu_cgroup_can_attach(struct cgroup_taskset * tset)10628 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10629 {
10630 struct task_struct *task;
10631 struct cgroup_subsys_state *css;
10632
10633 cgroup_taskset_for_each(task, css, tset) {
10634 if (!sched_rt_can_attach(css_tg(css), task))
10635 return -EINVAL;
10636 }
10637 return 0;
10638 }
10639 #endif
10640
cpu_cgroup_attach(struct cgroup_taskset * tset)10641 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10642 {
10643 struct task_struct *task;
10644 struct cgroup_subsys_state *css;
10645
10646 cgroup_taskset_for_each(task, css, tset)
10647 sched_move_task(task);
10648 }
10649
10650 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)10651 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10652 {
10653 struct cgroup_subsys_state *top_css = css;
10654 struct uclamp_se *uc_parent = NULL;
10655 struct uclamp_se *uc_se = NULL;
10656 unsigned int eff[UCLAMP_CNT];
10657 enum uclamp_id clamp_id;
10658 unsigned int clamps;
10659
10660 lockdep_assert_held(&uclamp_mutex);
10661 SCHED_WARN_ON(!rcu_read_lock_held());
10662
10663 css_for_each_descendant_pre(css, top_css) {
10664 uc_parent = css_tg(css)->parent
10665 ? css_tg(css)->parent->uclamp : NULL;
10666
10667 for_each_clamp_id(clamp_id) {
10668 /* Assume effective clamps matches requested clamps */
10669 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10670 /* Cap effective clamps with parent's effective clamps */
10671 if (uc_parent &&
10672 eff[clamp_id] > uc_parent[clamp_id].value) {
10673 eff[clamp_id] = uc_parent[clamp_id].value;
10674 }
10675 }
10676 /* Ensure protection is always capped by limit */
10677 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10678
10679 /* Propagate most restrictive effective clamps */
10680 clamps = 0x0;
10681 uc_se = css_tg(css)->uclamp;
10682 for_each_clamp_id(clamp_id) {
10683 if (eff[clamp_id] == uc_se[clamp_id].value)
10684 continue;
10685 uc_se[clamp_id].value = eff[clamp_id];
10686 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10687 clamps |= (0x1 << clamp_id);
10688 }
10689 if (!clamps) {
10690 css = css_rightmost_descendant(css);
10691 continue;
10692 }
10693
10694 /* Immediately update descendants RUNNABLE tasks */
10695 uclamp_update_active_tasks(css);
10696 }
10697 }
10698
10699 /*
10700 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10701 * C expression. Since there is no way to convert a macro argument (N) into a
10702 * character constant, use two levels of macros.
10703 */
10704 #define _POW10(exp) ((unsigned int)1e##exp)
10705 #define POW10(exp) _POW10(exp)
10706
10707 struct uclamp_request {
10708 #define UCLAMP_PERCENT_SHIFT 2
10709 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10710 s64 percent;
10711 u64 util;
10712 int ret;
10713 };
10714
10715 static inline struct uclamp_request
capacity_from_percent(char * buf)10716 capacity_from_percent(char *buf)
10717 {
10718 struct uclamp_request req = {
10719 .percent = UCLAMP_PERCENT_SCALE,
10720 .util = SCHED_CAPACITY_SCALE,
10721 .ret = 0,
10722 };
10723
10724 buf = strim(buf);
10725 if (strcmp(buf, "max")) {
10726 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10727 &req.percent);
10728 if (req.ret)
10729 return req;
10730 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10731 req.ret = -ERANGE;
10732 return req;
10733 }
10734
10735 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10736 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10737 }
10738
10739 return req;
10740 }
10741
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)10742 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10743 size_t nbytes, loff_t off,
10744 enum uclamp_id clamp_id)
10745 {
10746 struct uclamp_request req;
10747 struct task_group *tg;
10748
10749 req = capacity_from_percent(buf);
10750 if (req.ret)
10751 return req.ret;
10752
10753 static_branch_enable(&sched_uclamp_used);
10754
10755 mutex_lock(&uclamp_mutex);
10756 rcu_read_lock();
10757
10758 tg = css_tg(of_css(of));
10759 if (tg->uclamp_req[clamp_id].value != req.util)
10760 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10761
10762 /*
10763 * Because of not recoverable conversion rounding we keep track of the
10764 * exact requested value
10765 */
10766 tg->uclamp_pct[clamp_id] = req.percent;
10767
10768 /* Update effective clamps to track the most restrictive value */
10769 cpu_util_update_eff(of_css(of));
10770
10771 rcu_read_unlock();
10772 mutex_unlock(&uclamp_mutex);
10773
10774 return nbytes;
10775 }
10776
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10777 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10778 char *buf, size_t nbytes,
10779 loff_t off)
10780 {
10781 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10782 }
10783
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10784 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10785 char *buf, size_t nbytes,
10786 loff_t off)
10787 {
10788 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10789 }
10790
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)10791 static inline void cpu_uclamp_print(struct seq_file *sf,
10792 enum uclamp_id clamp_id)
10793 {
10794 struct task_group *tg;
10795 u64 util_clamp;
10796 u64 percent;
10797 u32 rem;
10798
10799 rcu_read_lock();
10800 tg = css_tg(seq_css(sf));
10801 util_clamp = tg->uclamp_req[clamp_id].value;
10802 rcu_read_unlock();
10803
10804 if (util_clamp == SCHED_CAPACITY_SCALE) {
10805 seq_puts(sf, "max\n");
10806 return;
10807 }
10808
10809 percent = tg->uclamp_pct[clamp_id];
10810 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10811 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10812 }
10813
cpu_uclamp_min_show(struct seq_file * sf,void * v)10814 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10815 {
10816 cpu_uclamp_print(sf, UCLAMP_MIN);
10817 return 0;
10818 }
10819
cpu_uclamp_max_show(struct seq_file * sf,void * v)10820 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10821 {
10822 cpu_uclamp_print(sf, UCLAMP_MAX);
10823 return 0;
10824 }
10825 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10826
10827 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)10828 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10829 struct cftype *cftype, u64 shareval)
10830 {
10831 if (shareval > scale_load_down(ULONG_MAX))
10832 shareval = MAX_SHARES;
10833 return sched_group_set_shares(css_tg(css), scale_load(shareval));
10834 }
10835
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10836 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10837 struct cftype *cft)
10838 {
10839 struct task_group *tg = css_tg(css);
10840
10841 return (u64) scale_load_down(tg->shares);
10842 }
10843
10844 #ifdef CONFIG_CFS_BANDWIDTH
10845 static DEFINE_MUTEX(cfs_constraints_mutex);
10846
10847 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10848 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10849 /* More than 203 days if BW_SHIFT equals 20. */
10850 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10851
10852 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10853
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)10854 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10855 u64 burst)
10856 {
10857 int i, ret = 0, runtime_enabled, runtime_was_enabled;
10858 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10859
10860 if (tg == &root_task_group)
10861 return -EINVAL;
10862
10863 /*
10864 * Ensure we have at some amount of bandwidth every period. This is
10865 * to prevent reaching a state of large arrears when throttled via
10866 * entity_tick() resulting in prolonged exit starvation.
10867 */
10868 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10869 return -EINVAL;
10870
10871 /*
10872 * Likewise, bound things on the other side by preventing insane quota
10873 * periods. This also allows us to normalize in computing quota
10874 * feasibility.
10875 */
10876 if (period > max_cfs_quota_period)
10877 return -EINVAL;
10878
10879 /*
10880 * Bound quota to defend quota against overflow during bandwidth shift.
10881 */
10882 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10883 return -EINVAL;
10884
10885 if (quota != RUNTIME_INF && (burst > quota ||
10886 burst + quota > max_cfs_runtime))
10887 return -EINVAL;
10888
10889 /*
10890 * Prevent race between setting of cfs_rq->runtime_enabled and
10891 * unthrottle_offline_cfs_rqs().
10892 */
10893 guard(cpus_read_lock)();
10894 guard(mutex)(&cfs_constraints_mutex);
10895
10896 ret = __cfs_schedulable(tg, period, quota);
10897 if (ret)
10898 return ret;
10899
10900 runtime_enabled = quota != RUNTIME_INF;
10901 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10902 /*
10903 * If we need to toggle cfs_bandwidth_used, off->on must occur
10904 * before making related changes, and on->off must occur afterwards
10905 */
10906 if (runtime_enabled && !runtime_was_enabled)
10907 cfs_bandwidth_usage_inc();
10908
10909 scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
10910 cfs_b->period = ns_to_ktime(period);
10911 cfs_b->quota = quota;
10912 cfs_b->burst = burst;
10913
10914 __refill_cfs_bandwidth_runtime(cfs_b);
10915
10916 /*
10917 * Restart the period timer (if active) to handle new
10918 * period expiry:
10919 */
10920 if (runtime_enabled)
10921 start_cfs_bandwidth(cfs_b);
10922 }
10923
10924 for_each_online_cpu(i) {
10925 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10926 struct rq *rq = cfs_rq->rq;
10927
10928 guard(rq_lock_irq)(rq);
10929 cfs_rq->runtime_enabled = runtime_enabled;
10930 cfs_rq->runtime_remaining = 0;
10931
10932 if (cfs_rq->throttled)
10933 unthrottle_cfs_rq(cfs_rq);
10934 }
10935
10936 if (runtime_was_enabled && !runtime_enabled)
10937 cfs_bandwidth_usage_dec();
10938
10939 return 0;
10940 }
10941
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)10942 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10943 {
10944 u64 quota, period, burst;
10945
10946 period = ktime_to_ns(tg->cfs_bandwidth.period);
10947 burst = tg->cfs_bandwidth.burst;
10948 if (cfs_quota_us < 0)
10949 quota = RUNTIME_INF;
10950 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10951 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10952 else
10953 return -EINVAL;
10954
10955 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10956 }
10957
tg_get_cfs_quota(struct task_group * tg)10958 static long tg_get_cfs_quota(struct task_group *tg)
10959 {
10960 u64 quota_us;
10961
10962 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10963 return -1;
10964
10965 quota_us = tg->cfs_bandwidth.quota;
10966 do_div(quota_us, NSEC_PER_USEC);
10967
10968 return quota_us;
10969 }
10970
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)10971 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10972 {
10973 u64 quota, period, burst;
10974
10975 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10976 return -EINVAL;
10977
10978 period = (u64)cfs_period_us * NSEC_PER_USEC;
10979 quota = tg->cfs_bandwidth.quota;
10980 burst = tg->cfs_bandwidth.burst;
10981
10982 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10983 }
10984
tg_get_cfs_period(struct task_group * tg)10985 static long tg_get_cfs_period(struct task_group *tg)
10986 {
10987 u64 cfs_period_us;
10988
10989 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10990 do_div(cfs_period_us, NSEC_PER_USEC);
10991
10992 return cfs_period_us;
10993 }
10994
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)10995 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10996 {
10997 u64 quota, period, burst;
10998
10999 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
11000 return -EINVAL;
11001
11002 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
11003 period = ktime_to_ns(tg->cfs_bandwidth.period);
11004 quota = tg->cfs_bandwidth.quota;
11005
11006 return tg_set_cfs_bandwidth(tg, period, quota, burst);
11007 }
11008
tg_get_cfs_burst(struct task_group * tg)11009 static long tg_get_cfs_burst(struct task_group *tg)
11010 {
11011 u64 burst_us;
11012
11013 burst_us = tg->cfs_bandwidth.burst;
11014 do_div(burst_us, NSEC_PER_USEC);
11015
11016 return burst_us;
11017 }
11018
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11019 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
11020 struct cftype *cft)
11021 {
11022 return tg_get_cfs_quota(css_tg(css));
11023 }
11024
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)11025 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
11026 struct cftype *cftype, s64 cfs_quota_us)
11027 {
11028 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
11029 }
11030
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11031 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
11032 struct cftype *cft)
11033 {
11034 return tg_get_cfs_period(css_tg(css));
11035 }
11036
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)11037 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
11038 struct cftype *cftype, u64 cfs_period_us)
11039 {
11040 return tg_set_cfs_period(css_tg(css), cfs_period_us);
11041 }
11042
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11043 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
11044 struct cftype *cft)
11045 {
11046 return tg_get_cfs_burst(css_tg(css));
11047 }
11048
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)11049 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11050 struct cftype *cftype, u64 cfs_burst_us)
11051 {
11052 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11053 }
11054
11055 struct cfs_schedulable_data {
11056 struct task_group *tg;
11057 u64 period, quota;
11058 };
11059
11060 /*
11061 * normalize group quota/period to be quota/max_period
11062 * note: units are usecs
11063 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)11064 static u64 normalize_cfs_quota(struct task_group *tg,
11065 struct cfs_schedulable_data *d)
11066 {
11067 u64 quota, period;
11068
11069 if (tg == d->tg) {
11070 period = d->period;
11071 quota = d->quota;
11072 } else {
11073 period = tg_get_cfs_period(tg);
11074 quota = tg_get_cfs_quota(tg);
11075 }
11076
11077 /* note: these should typically be equivalent */
11078 if (quota == RUNTIME_INF || quota == -1)
11079 return RUNTIME_INF;
11080
11081 return to_ratio(period, quota);
11082 }
11083
tg_cfs_schedulable_down(struct task_group * tg,void * data)11084 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11085 {
11086 struct cfs_schedulable_data *d = data;
11087 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11088 s64 quota = 0, parent_quota = -1;
11089
11090 if (!tg->parent) {
11091 quota = RUNTIME_INF;
11092 } else {
11093 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11094
11095 quota = normalize_cfs_quota(tg, d);
11096 parent_quota = parent_b->hierarchical_quota;
11097
11098 /*
11099 * Ensure max(child_quota) <= parent_quota. On cgroup2,
11100 * always take the non-RUNTIME_INF min. On cgroup1, only
11101 * inherit when no limit is set. In both cases this is used
11102 * by the scheduler to determine if a given CFS task has a
11103 * bandwidth constraint at some higher level.
11104 */
11105 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11106 if (quota == RUNTIME_INF)
11107 quota = parent_quota;
11108 else if (parent_quota != RUNTIME_INF)
11109 quota = min(quota, parent_quota);
11110 } else {
11111 if (quota == RUNTIME_INF)
11112 quota = parent_quota;
11113 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11114 return -EINVAL;
11115 }
11116 }
11117 cfs_b->hierarchical_quota = quota;
11118
11119 return 0;
11120 }
11121
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)11122 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11123 {
11124 int ret;
11125 struct cfs_schedulable_data data = {
11126 .tg = tg,
11127 .period = period,
11128 .quota = quota,
11129 };
11130
11131 if (quota != RUNTIME_INF) {
11132 do_div(data.period, NSEC_PER_USEC);
11133 do_div(data.quota, NSEC_PER_USEC);
11134 }
11135
11136 rcu_read_lock();
11137 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11138 rcu_read_unlock();
11139
11140 return ret;
11141 }
11142
cpu_cfs_stat_show(struct seq_file * sf,void * v)11143 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11144 {
11145 struct task_group *tg = css_tg(seq_css(sf));
11146 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11147
11148 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11149 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11150 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11151
11152 if (schedstat_enabled() && tg != &root_task_group) {
11153 struct sched_statistics *stats;
11154 u64 ws = 0;
11155 int i;
11156
11157 for_each_possible_cpu(i) {
11158 stats = __schedstats_from_se(tg->se[i]);
11159 ws += schedstat_val(stats->wait_sum);
11160 }
11161
11162 seq_printf(sf, "wait_sum %llu\n", ws);
11163 }
11164
11165 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11166 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11167
11168 return 0;
11169 }
11170
throttled_time_self(struct task_group * tg)11171 static u64 throttled_time_self(struct task_group *tg)
11172 {
11173 int i;
11174 u64 total = 0;
11175
11176 for_each_possible_cpu(i) {
11177 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11178 }
11179
11180 return total;
11181 }
11182
cpu_cfs_local_stat_show(struct seq_file * sf,void * v)11183 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11184 {
11185 struct task_group *tg = css_tg(seq_css(sf));
11186
11187 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11188
11189 return 0;
11190 }
11191 #endif /* CONFIG_CFS_BANDWIDTH */
11192 #endif /* CONFIG_FAIR_GROUP_SCHED */
11193
11194 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)11195 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11196 struct cftype *cft, s64 val)
11197 {
11198 return sched_group_set_rt_runtime(css_tg(css), val);
11199 }
11200
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)11201 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11202 struct cftype *cft)
11203 {
11204 return sched_group_rt_runtime(css_tg(css));
11205 }
11206
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)11207 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11208 struct cftype *cftype, u64 rt_period_us)
11209 {
11210 return sched_group_set_rt_period(css_tg(css), rt_period_us);
11211 }
11212
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)11213 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11214 struct cftype *cft)
11215 {
11216 return sched_group_rt_period(css_tg(css));
11217 }
11218 #endif /* CONFIG_RT_GROUP_SCHED */
11219
11220 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11221 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11222 struct cftype *cft)
11223 {
11224 return css_tg(css)->idle;
11225 }
11226
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)11227 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11228 struct cftype *cft, s64 idle)
11229 {
11230 return sched_group_set_idle(css_tg(css), idle);
11231 }
11232 #endif
11233
11234 static struct cftype cpu_legacy_files[] = {
11235 #ifdef CONFIG_FAIR_GROUP_SCHED
11236 {
11237 .name = "shares",
11238 .read_u64 = cpu_shares_read_u64,
11239 .write_u64 = cpu_shares_write_u64,
11240 },
11241 {
11242 .name = "idle",
11243 .read_s64 = cpu_idle_read_s64,
11244 .write_s64 = cpu_idle_write_s64,
11245 },
11246 #endif
11247 #ifdef CONFIG_CFS_BANDWIDTH
11248 {
11249 .name = "cfs_quota_us",
11250 .read_s64 = cpu_cfs_quota_read_s64,
11251 .write_s64 = cpu_cfs_quota_write_s64,
11252 },
11253 {
11254 .name = "cfs_period_us",
11255 .read_u64 = cpu_cfs_period_read_u64,
11256 .write_u64 = cpu_cfs_period_write_u64,
11257 },
11258 {
11259 .name = "cfs_burst_us",
11260 .read_u64 = cpu_cfs_burst_read_u64,
11261 .write_u64 = cpu_cfs_burst_write_u64,
11262 },
11263 {
11264 .name = "stat",
11265 .seq_show = cpu_cfs_stat_show,
11266 },
11267 {
11268 .name = "stat.local",
11269 .seq_show = cpu_cfs_local_stat_show,
11270 },
11271 #endif
11272 #ifdef CONFIG_RT_GROUP_SCHED
11273 {
11274 .name = "rt_runtime_us",
11275 .read_s64 = cpu_rt_runtime_read,
11276 .write_s64 = cpu_rt_runtime_write,
11277 },
11278 {
11279 .name = "rt_period_us",
11280 .read_u64 = cpu_rt_period_read_uint,
11281 .write_u64 = cpu_rt_period_write_uint,
11282 },
11283 #endif
11284 #ifdef CONFIG_UCLAMP_TASK_GROUP
11285 {
11286 .name = "uclamp.min",
11287 .flags = CFTYPE_NOT_ON_ROOT,
11288 .seq_show = cpu_uclamp_min_show,
11289 .write = cpu_uclamp_min_write,
11290 },
11291 {
11292 .name = "uclamp.max",
11293 .flags = CFTYPE_NOT_ON_ROOT,
11294 .seq_show = cpu_uclamp_max_show,
11295 .write = cpu_uclamp_max_write,
11296 },
11297 #endif
11298 { } /* Terminate */
11299 };
11300
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11301 static int cpu_extra_stat_show(struct seq_file *sf,
11302 struct cgroup_subsys_state *css)
11303 {
11304 #ifdef CONFIG_CFS_BANDWIDTH
11305 {
11306 struct task_group *tg = css_tg(css);
11307 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11308 u64 throttled_usec, burst_usec;
11309
11310 throttled_usec = cfs_b->throttled_time;
11311 do_div(throttled_usec, NSEC_PER_USEC);
11312 burst_usec = cfs_b->burst_time;
11313 do_div(burst_usec, NSEC_PER_USEC);
11314
11315 seq_printf(sf, "nr_periods %d\n"
11316 "nr_throttled %d\n"
11317 "throttled_usec %llu\n"
11318 "nr_bursts %d\n"
11319 "burst_usec %llu\n",
11320 cfs_b->nr_periods, cfs_b->nr_throttled,
11321 throttled_usec, cfs_b->nr_burst, burst_usec);
11322 }
11323 #endif
11324 return 0;
11325 }
11326
cpu_local_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11327 static int cpu_local_stat_show(struct seq_file *sf,
11328 struct cgroup_subsys_state *css)
11329 {
11330 #ifdef CONFIG_CFS_BANDWIDTH
11331 {
11332 struct task_group *tg = css_tg(css);
11333 u64 throttled_self_usec;
11334
11335 throttled_self_usec = throttled_time_self(tg);
11336 do_div(throttled_self_usec, NSEC_PER_USEC);
11337
11338 seq_printf(sf, "throttled_usec %llu\n",
11339 throttled_self_usec);
11340 }
11341 #endif
11342 return 0;
11343 }
11344
11345 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11346 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11347 struct cftype *cft)
11348 {
11349 struct task_group *tg = css_tg(css);
11350 u64 weight = scale_load_down(tg->shares);
11351
11352 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11353 }
11354
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)11355 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11356 struct cftype *cft, u64 weight)
11357 {
11358 /*
11359 * cgroup weight knobs should use the common MIN, DFL and MAX
11360 * values which are 1, 100 and 10000 respectively. While it loses
11361 * a bit of range on both ends, it maps pretty well onto the shares
11362 * value used by scheduler and the round-trip conversions preserve
11363 * the original value over the entire range.
11364 */
11365 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11366 return -ERANGE;
11367
11368 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11369
11370 return sched_group_set_shares(css_tg(css), scale_load(weight));
11371 }
11372
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11373 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11374 struct cftype *cft)
11375 {
11376 unsigned long weight = scale_load_down(css_tg(css)->shares);
11377 int last_delta = INT_MAX;
11378 int prio, delta;
11379
11380 /* find the closest nice value to the current weight */
11381 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11382 delta = abs(sched_prio_to_weight[prio] - weight);
11383 if (delta >= last_delta)
11384 break;
11385 last_delta = delta;
11386 }
11387
11388 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11389 }
11390
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)11391 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11392 struct cftype *cft, s64 nice)
11393 {
11394 unsigned long weight;
11395 int idx;
11396
11397 if (nice < MIN_NICE || nice > MAX_NICE)
11398 return -ERANGE;
11399
11400 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11401 idx = array_index_nospec(idx, 40);
11402 weight = sched_prio_to_weight[idx];
11403
11404 return sched_group_set_shares(css_tg(css), scale_load(weight));
11405 }
11406 #endif
11407
cpu_period_quota_print(struct seq_file * sf,long period,long quota)11408 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11409 long period, long quota)
11410 {
11411 if (quota < 0)
11412 seq_puts(sf, "max");
11413 else
11414 seq_printf(sf, "%ld", quota);
11415
11416 seq_printf(sf, " %ld\n", period);
11417 }
11418
11419 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)11420 static int __maybe_unused cpu_period_quota_parse(char *buf,
11421 u64 *periodp, u64 *quotap)
11422 {
11423 char tok[21]; /* U64_MAX */
11424
11425 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11426 return -EINVAL;
11427
11428 *periodp *= NSEC_PER_USEC;
11429
11430 if (sscanf(tok, "%llu", quotap))
11431 *quotap *= NSEC_PER_USEC;
11432 else if (!strcmp(tok, "max"))
11433 *quotap = RUNTIME_INF;
11434 else
11435 return -EINVAL;
11436
11437 return 0;
11438 }
11439
11440 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)11441 static int cpu_max_show(struct seq_file *sf, void *v)
11442 {
11443 struct task_group *tg = css_tg(seq_css(sf));
11444
11445 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11446 return 0;
11447 }
11448
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11449 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11450 char *buf, size_t nbytes, loff_t off)
11451 {
11452 struct task_group *tg = css_tg(of_css(of));
11453 u64 period = tg_get_cfs_period(tg);
11454 u64 burst = tg->cfs_bandwidth.burst;
11455 u64 quota;
11456 int ret;
11457
11458 ret = cpu_period_quota_parse(buf, &period, "a);
11459 if (!ret)
11460 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11461 return ret ?: nbytes;
11462 }
11463 #endif
11464
11465 static struct cftype cpu_files[] = {
11466 #ifdef CONFIG_FAIR_GROUP_SCHED
11467 {
11468 .name = "weight",
11469 .flags = CFTYPE_NOT_ON_ROOT,
11470 .read_u64 = cpu_weight_read_u64,
11471 .write_u64 = cpu_weight_write_u64,
11472 },
11473 {
11474 .name = "weight.nice",
11475 .flags = CFTYPE_NOT_ON_ROOT,
11476 .read_s64 = cpu_weight_nice_read_s64,
11477 .write_s64 = cpu_weight_nice_write_s64,
11478 },
11479 {
11480 .name = "idle",
11481 .flags = CFTYPE_NOT_ON_ROOT,
11482 .read_s64 = cpu_idle_read_s64,
11483 .write_s64 = cpu_idle_write_s64,
11484 },
11485 #endif
11486 #ifdef CONFIG_CFS_BANDWIDTH
11487 {
11488 .name = "max",
11489 .flags = CFTYPE_NOT_ON_ROOT,
11490 .seq_show = cpu_max_show,
11491 .write = cpu_max_write,
11492 },
11493 {
11494 .name = "max.burst",
11495 .flags = CFTYPE_NOT_ON_ROOT,
11496 .read_u64 = cpu_cfs_burst_read_u64,
11497 .write_u64 = cpu_cfs_burst_write_u64,
11498 },
11499 #endif
11500 #ifdef CONFIG_UCLAMP_TASK_GROUP
11501 {
11502 .name = "uclamp.min",
11503 .flags = CFTYPE_NOT_ON_ROOT,
11504 .seq_show = cpu_uclamp_min_show,
11505 .write = cpu_uclamp_min_write,
11506 },
11507 {
11508 .name = "uclamp.max",
11509 .flags = CFTYPE_NOT_ON_ROOT,
11510 .seq_show = cpu_uclamp_max_show,
11511 .write = cpu_uclamp_max_write,
11512 },
11513 #endif
11514 { } /* terminate */
11515 };
11516
11517 struct cgroup_subsys cpu_cgrp_subsys = {
11518 .css_alloc = cpu_cgroup_css_alloc,
11519 .css_online = cpu_cgroup_css_online,
11520 .css_released = cpu_cgroup_css_released,
11521 .css_free = cpu_cgroup_css_free,
11522 .css_extra_stat_show = cpu_extra_stat_show,
11523 .css_local_stat_show = cpu_local_stat_show,
11524 #ifdef CONFIG_RT_GROUP_SCHED
11525 .can_attach = cpu_cgroup_can_attach,
11526 #endif
11527 .attach = cpu_cgroup_attach,
11528 .legacy_cftypes = cpu_legacy_files,
11529 .dfl_cftypes = cpu_files,
11530 .early_init = true,
11531 .threaded = true,
11532 };
11533
11534 #endif /* CONFIG_CGROUP_SCHED */
11535
dump_cpu_task(int cpu)11536 void dump_cpu_task(int cpu)
11537 {
11538 if (cpu == smp_processor_id() && in_hardirq()) {
11539 struct pt_regs *regs;
11540
11541 regs = get_irq_regs();
11542 if (regs) {
11543 show_regs(regs);
11544 return;
11545 }
11546 }
11547
11548 if (trigger_single_cpu_backtrace(cpu))
11549 return;
11550
11551 pr_info("Task dump for CPU %d:\n", cpu);
11552 sched_show_task(cpu_curr(cpu));
11553 }
11554
11555 /*
11556 * Nice levels are multiplicative, with a gentle 10% change for every
11557 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11558 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11559 * that remained on nice 0.
11560 *
11561 * The "10% effect" is relative and cumulative: from _any_ nice level,
11562 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11563 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11564 * If a task goes up by ~10% and another task goes down by ~10% then
11565 * the relative distance between them is ~25%.)
11566 */
11567 const int sched_prio_to_weight[40] = {
11568 /* -20 */ 88761, 71755, 56483, 46273, 36291,
11569 /* -15 */ 29154, 23254, 18705, 14949, 11916,
11570 /* -10 */ 9548, 7620, 6100, 4904, 3906,
11571 /* -5 */ 3121, 2501, 1991, 1586, 1277,
11572 /* 0 */ 1024, 820, 655, 526, 423,
11573 /* 5 */ 335, 272, 215, 172, 137,
11574 /* 10 */ 110, 87, 70, 56, 45,
11575 /* 15 */ 36, 29, 23, 18, 15,
11576 };
11577
11578 /*
11579 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11580 *
11581 * In cases where the weight does not change often, we can use the
11582 * precalculated inverse to speed up arithmetics by turning divisions
11583 * into multiplications:
11584 */
11585 const u32 sched_prio_to_wmult[40] = {
11586 /* -20 */ 48388, 59856, 76040, 92818, 118348,
11587 /* -15 */ 147320, 184698, 229616, 287308, 360437,
11588 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
11589 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
11590 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
11591 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
11592 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
11593 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11594 };
11595
call_trace_sched_update_nr_running(struct rq * rq,int count)11596 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11597 {
11598 trace_sched_update_nr_running_tp(rq, count);
11599 }
11600
11601 #ifdef CONFIG_SCHED_MM_CID
11602
11603 /*
11604 * @cid_lock: Guarantee forward-progress of cid allocation.
11605 *
11606 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11607 * is only used when contention is detected by the lock-free allocation so
11608 * forward progress can be guaranteed.
11609 */
11610 DEFINE_RAW_SPINLOCK(cid_lock);
11611
11612 /*
11613 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11614 *
11615 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11616 * detected, it is set to 1 to ensure that all newly coming allocations are
11617 * serialized by @cid_lock until the allocation which detected contention
11618 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11619 * of a cid allocation.
11620 */
11621 int use_cid_lock;
11622
11623 /*
11624 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11625 * concurrently with respect to the execution of the source runqueue context
11626 * switch.
11627 *
11628 * There is one basic properties we want to guarantee here:
11629 *
11630 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11631 * used by a task. That would lead to concurrent allocation of the cid and
11632 * userspace corruption.
11633 *
11634 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11635 * that a pair of loads observe at least one of a pair of stores, which can be
11636 * shown as:
11637 *
11638 * X = Y = 0
11639 *
11640 * w[X]=1 w[Y]=1
11641 * MB MB
11642 * r[Y]=y r[X]=x
11643 *
11644 * Which guarantees that x==0 && y==0 is impossible. But rather than using
11645 * values 0 and 1, this algorithm cares about specific state transitions of the
11646 * runqueue current task (as updated by the scheduler context switch), and the
11647 * per-mm/cpu cid value.
11648 *
11649 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11650 * task->mm != mm for the rest of the discussion. There are two scheduler state
11651 * transitions on context switch we care about:
11652 *
11653 * (TSA) Store to rq->curr with transition from (N) to (Y)
11654 *
11655 * (TSB) Store to rq->curr with transition from (Y) to (N)
11656 *
11657 * On the remote-clear side, there is one transition we care about:
11658 *
11659 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11660 *
11661 * There is also a transition to UNSET state which can be performed from all
11662 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11663 * guarantees that only a single thread will succeed:
11664 *
11665 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11666 *
11667 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11668 * when a thread is actively using the cid (property (1)).
11669 *
11670 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11671 *
11672 * Scenario A) (TSA)+(TMA) (from next task perspective)
11673 *
11674 * CPU0 CPU1
11675 *
11676 * Context switch CS-1 Remote-clear
11677 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
11678 * (implied barrier after cmpxchg)
11679 * - switch_mm_cid()
11680 * - memory barrier (see switch_mm_cid()
11681 * comment explaining how this barrier
11682 * is combined with other scheduler
11683 * barriers)
11684 * - mm_cid_get (next)
11685 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
11686 *
11687 * This Dekker ensures that either task (Y) is observed by the
11688 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11689 * observed.
11690 *
11691 * If task (Y) store is observed by rcu_dereference(), it means that there is
11692 * still an active task on the cpu. Remote-clear will therefore not transition
11693 * to UNSET, which fulfills property (1).
11694 *
11695 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11696 * it will move its state to UNSET, which clears the percpu cid perhaps
11697 * uselessly (which is not an issue for correctness). Because task (Y) is not
11698 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11699 * state to UNSET is done with a cmpxchg expecting that the old state has the
11700 * LAZY flag set, only one thread will successfully UNSET.
11701 *
11702 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11703 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11704 * CPU1 will observe task (Y) and do nothing more, which is fine.
11705 *
11706 * What we are effectively preventing with this Dekker is a scenario where
11707 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11708 * because this would UNSET a cid which is actively used.
11709 */
11710
sched_mm_cid_migrate_from(struct task_struct * t)11711 void sched_mm_cid_migrate_from(struct task_struct *t)
11712 {
11713 t->migrate_from_cpu = task_cpu(t);
11714 }
11715
11716 static
__sched_mm_cid_migrate_from_fetch_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid)11717 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11718 struct task_struct *t,
11719 struct mm_cid *src_pcpu_cid)
11720 {
11721 struct mm_struct *mm = t->mm;
11722 struct task_struct *src_task;
11723 int src_cid, last_mm_cid;
11724
11725 if (!mm)
11726 return -1;
11727
11728 last_mm_cid = t->last_mm_cid;
11729 /*
11730 * If the migrated task has no last cid, or if the current
11731 * task on src rq uses the cid, it means the source cid does not need
11732 * to be moved to the destination cpu.
11733 */
11734 if (last_mm_cid == -1)
11735 return -1;
11736 src_cid = READ_ONCE(src_pcpu_cid->cid);
11737 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11738 return -1;
11739
11740 /*
11741 * If we observe an active task using the mm on this rq, it means we
11742 * are not the last task to be migrated from this cpu for this mm, so
11743 * there is no need to move src_cid to the destination cpu.
11744 */
11745 rcu_read_lock();
11746 src_task = rcu_dereference(src_rq->curr);
11747 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11748 rcu_read_unlock();
11749 t->last_mm_cid = -1;
11750 return -1;
11751 }
11752 rcu_read_unlock();
11753
11754 return src_cid;
11755 }
11756
11757 static
__sched_mm_cid_migrate_from_try_steal_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid,int src_cid)11758 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11759 struct task_struct *t,
11760 struct mm_cid *src_pcpu_cid,
11761 int src_cid)
11762 {
11763 struct task_struct *src_task;
11764 struct mm_struct *mm = t->mm;
11765 int lazy_cid;
11766
11767 if (src_cid == -1)
11768 return -1;
11769
11770 /*
11771 * Attempt to clear the source cpu cid to move it to the destination
11772 * cpu.
11773 */
11774 lazy_cid = mm_cid_set_lazy_put(src_cid);
11775 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11776 return -1;
11777
11778 /*
11779 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11780 * rq->curr->mm matches the scheduler barrier in context_switch()
11781 * between store to rq->curr and load of prev and next task's
11782 * per-mm/cpu cid.
11783 *
11784 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11785 * rq->curr->mm_cid_active matches the barrier in
11786 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11787 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11788 * load of per-mm/cpu cid.
11789 */
11790
11791 /*
11792 * If we observe an active task using the mm on this rq after setting
11793 * the lazy-put flag, this task will be responsible for transitioning
11794 * from lazy-put flag set to MM_CID_UNSET.
11795 */
11796 rcu_read_lock();
11797 src_task = rcu_dereference(src_rq->curr);
11798 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11799 rcu_read_unlock();
11800 /*
11801 * We observed an active task for this mm, there is therefore
11802 * no point in moving this cid to the destination cpu.
11803 */
11804 t->last_mm_cid = -1;
11805 return -1;
11806 }
11807 rcu_read_unlock();
11808
11809 /*
11810 * The src_cid is unused, so it can be unset.
11811 */
11812 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11813 return -1;
11814 return src_cid;
11815 }
11816
11817 /*
11818 * Migration to dst cpu. Called with dst_rq lock held.
11819 * Interrupts are disabled, which keeps the window of cid ownership without the
11820 * source rq lock held small.
11821 */
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)11822 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11823 {
11824 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11825 struct mm_struct *mm = t->mm;
11826 int src_cid, dst_cid, src_cpu;
11827 struct rq *src_rq;
11828
11829 lockdep_assert_rq_held(dst_rq);
11830
11831 if (!mm)
11832 return;
11833 src_cpu = t->migrate_from_cpu;
11834 if (src_cpu == -1) {
11835 t->last_mm_cid = -1;
11836 return;
11837 }
11838 /*
11839 * Move the src cid if the dst cid is unset. This keeps id
11840 * allocation closest to 0 in cases where few threads migrate around
11841 * many cpus.
11842 *
11843 * If destination cid is already set, we may have to just clear
11844 * the src cid to ensure compactness in frequent migrations
11845 * scenarios.
11846 *
11847 * It is not useful to clear the src cid when the number of threads is
11848 * greater or equal to the number of allowed cpus, because user-space
11849 * can expect that the number of allowed cids can reach the number of
11850 * allowed cpus.
11851 */
11852 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11853 dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11854 if (!mm_cid_is_unset(dst_cid) &&
11855 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11856 return;
11857 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11858 src_rq = cpu_rq(src_cpu);
11859 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11860 if (src_cid == -1)
11861 return;
11862 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11863 src_cid);
11864 if (src_cid == -1)
11865 return;
11866 if (!mm_cid_is_unset(dst_cid)) {
11867 __mm_cid_put(mm, src_cid);
11868 return;
11869 }
11870 /* Move src_cid to dst cpu. */
11871 mm_cid_snapshot_time(dst_rq, mm);
11872 WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11873 }
11874
sched_mm_cid_remote_clear(struct mm_struct * mm,struct mm_cid * pcpu_cid,int cpu)11875 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11876 int cpu)
11877 {
11878 struct rq *rq = cpu_rq(cpu);
11879 struct task_struct *t;
11880 unsigned long flags;
11881 int cid, lazy_cid;
11882
11883 cid = READ_ONCE(pcpu_cid->cid);
11884 if (!mm_cid_is_valid(cid))
11885 return;
11886
11887 /*
11888 * Clear the cpu cid if it is set to keep cid allocation compact. If
11889 * there happens to be other tasks left on the source cpu using this
11890 * mm, the next task using this mm will reallocate its cid on context
11891 * switch.
11892 */
11893 lazy_cid = mm_cid_set_lazy_put(cid);
11894 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11895 return;
11896
11897 /*
11898 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11899 * rq->curr->mm matches the scheduler barrier in context_switch()
11900 * between store to rq->curr and load of prev and next task's
11901 * per-mm/cpu cid.
11902 *
11903 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11904 * rq->curr->mm_cid_active matches the barrier in
11905 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11906 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11907 * load of per-mm/cpu cid.
11908 */
11909
11910 /*
11911 * If we observe an active task using the mm on this rq after setting
11912 * the lazy-put flag, that task will be responsible for transitioning
11913 * from lazy-put flag set to MM_CID_UNSET.
11914 */
11915 rcu_read_lock();
11916 t = rcu_dereference(rq->curr);
11917 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
11918 rcu_read_unlock();
11919 return;
11920 }
11921 rcu_read_unlock();
11922
11923 /*
11924 * The cid is unused, so it can be unset.
11925 * Disable interrupts to keep the window of cid ownership without rq
11926 * lock small.
11927 */
11928 local_irq_save(flags);
11929 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11930 __mm_cid_put(mm, cid);
11931 local_irq_restore(flags);
11932 }
11933
sched_mm_cid_remote_clear_old(struct mm_struct * mm,int cpu)11934 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11935 {
11936 struct rq *rq = cpu_rq(cpu);
11937 struct mm_cid *pcpu_cid;
11938 struct task_struct *curr;
11939 u64 rq_clock;
11940
11941 /*
11942 * rq->clock load is racy on 32-bit but one spurious clear once in a
11943 * while is irrelevant.
11944 */
11945 rq_clock = READ_ONCE(rq->clock);
11946 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11947
11948 /*
11949 * In order to take care of infrequently scheduled tasks, bump the time
11950 * snapshot associated with this cid if an active task using the mm is
11951 * observed on this rq.
11952 */
11953 rcu_read_lock();
11954 curr = rcu_dereference(rq->curr);
11955 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11956 WRITE_ONCE(pcpu_cid->time, rq_clock);
11957 rcu_read_unlock();
11958 return;
11959 }
11960 rcu_read_unlock();
11961
11962 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11963 return;
11964 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11965 }
11966
sched_mm_cid_remote_clear_weight(struct mm_struct * mm,int cpu,int weight)11967 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11968 int weight)
11969 {
11970 struct mm_cid *pcpu_cid;
11971 int cid;
11972
11973 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11974 cid = READ_ONCE(pcpu_cid->cid);
11975 if (!mm_cid_is_valid(cid) || cid < weight)
11976 return;
11977 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11978 }
11979
task_mm_cid_work(struct callback_head * work)11980 static void task_mm_cid_work(struct callback_head *work)
11981 {
11982 unsigned long now = jiffies, old_scan, next_scan;
11983 struct task_struct *t = current;
11984 struct cpumask *cidmask;
11985 struct mm_struct *mm;
11986 int weight, cpu;
11987
11988 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11989
11990 work->next = work; /* Prevent double-add */
11991 if (t->flags & PF_EXITING)
11992 return;
11993 mm = t->mm;
11994 if (!mm)
11995 return;
11996 old_scan = READ_ONCE(mm->mm_cid_next_scan);
11997 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11998 if (!old_scan) {
11999 unsigned long res;
12000
12001 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
12002 if (res != old_scan)
12003 old_scan = res;
12004 else
12005 old_scan = next_scan;
12006 }
12007 if (time_before(now, old_scan))
12008 return;
12009 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
12010 return;
12011 cidmask = mm_cidmask(mm);
12012 /* Clear cids that were not recently used. */
12013 for_each_possible_cpu(cpu)
12014 sched_mm_cid_remote_clear_old(mm, cpu);
12015 weight = cpumask_weight(cidmask);
12016 /*
12017 * Clear cids that are greater or equal to the cidmask weight to
12018 * recompact it.
12019 */
12020 for_each_possible_cpu(cpu)
12021 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
12022 }
12023
init_sched_mm_cid(struct task_struct * t)12024 void init_sched_mm_cid(struct task_struct *t)
12025 {
12026 struct mm_struct *mm = t->mm;
12027 int mm_users = 0;
12028
12029 if (mm) {
12030 mm_users = atomic_read(&mm->mm_users);
12031 if (mm_users == 1)
12032 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12033 }
12034 t->cid_work.next = &t->cid_work; /* Protect against double add */
12035 init_task_work(&t->cid_work, task_mm_cid_work);
12036 }
12037
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)12038 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
12039 {
12040 struct callback_head *work = &curr->cid_work;
12041 unsigned long now = jiffies;
12042
12043 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
12044 work->next != work)
12045 return;
12046 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
12047 return;
12048
12049 /* No page allocation under rq lock */
12050 task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
12051 }
12052
sched_mm_cid_exit_signals(struct task_struct * t)12053 void sched_mm_cid_exit_signals(struct task_struct *t)
12054 {
12055 struct mm_struct *mm = t->mm;
12056 struct rq_flags rf;
12057 struct rq *rq;
12058
12059 if (!mm)
12060 return;
12061
12062 preempt_disable();
12063 rq = this_rq();
12064 rq_lock_irqsave(rq, &rf);
12065 preempt_enable_no_resched(); /* holding spinlock */
12066 WRITE_ONCE(t->mm_cid_active, 0);
12067 /*
12068 * Store t->mm_cid_active before loading per-mm/cpu cid.
12069 * Matches barrier in sched_mm_cid_remote_clear_old().
12070 */
12071 smp_mb();
12072 mm_cid_put(mm);
12073 t->last_mm_cid = t->mm_cid = -1;
12074 rq_unlock_irqrestore(rq, &rf);
12075 }
12076
sched_mm_cid_before_execve(struct task_struct * t)12077 void sched_mm_cid_before_execve(struct task_struct *t)
12078 {
12079 struct mm_struct *mm = t->mm;
12080 struct rq_flags rf;
12081 struct rq *rq;
12082
12083 if (!mm)
12084 return;
12085
12086 preempt_disable();
12087 rq = this_rq();
12088 rq_lock_irqsave(rq, &rf);
12089 preempt_enable_no_resched(); /* holding spinlock */
12090 WRITE_ONCE(t->mm_cid_active, 0);
12091 /*
12092 * Store t->mm_cid_active before loading per-mm/cpu cid.
12093 * Matches barrier in sched_mm_cid_remote_clear_old().
12094 */
12095 smp_mb();
12096 mm_cid_put(mm);
12097 t->last_mm_cid = t->mm_cid = -1;
12098 rq_unlock_irqrestore(rq, &rf);
12099 }
12100
sched_mm_cid_after_execve(struct task_struct * t)12101 void sched_mm_cid_after_execve(struct task_struct *t)
12102 {
12103 struct mm_struct *mm = t->mm;
12104 struct rq_flags rf;
12105 struct rq *rq;
12106
12107 if (!mm)
12108 return;
12109
12110 preempt_disable();
12111 rq = this_rq();
12112 rq_lock_irqsave(rq, &rf);
12113 preempt_enable_no_resched(); /* holding spinlock */
12114 WRITE_ONCE(t->mm_cid_active, 1);
12115 /*
12116 * Store t->mm_cid_active before loading per-mm/cpu cid.
12117 * Matches barrier in sched_mm_cid_remote_clear_old().
12118 */
12119 smp_mb();
12120 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12121 rq_unlock_irqrestore(rq, &rf);
12122 rseq_set_notify_resume(t);
12123 }
12124
sched_mm_cid_fork(struct task_struct * t)12125 void sched_mm_cid_fork(struct task_struct *t)
12126 {
12127 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12128 t->mm_cid_active = 1;
12129 }
12130 #endif
12131