1 /*
2 * RAM allocation and memory access
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 #include "qemu/lockable.h"
29
30 #ifdef CONFIG_TCG
31 #include "accel/tcg/cpu-ops.h"
32 #endif /* CONFIG_TCG */
33
34 #include "exec/exec-all.h"
35 #include "exec/cputlb.h"
36 #include "exec/page-protection.h"
37 #include "exec/target_page.h"
38 #include "exec/translation-block.h"
39 #include "hw/qdev-core.h"
40 #include "hw/qdev-properties.h"
41 #include "hw/boards.h"
42 #include "system/xen.h"
43 #include "system/kvm.h"
44 #include "system/tcg.h"
45 #include "system/qtest.h"
46 #include "qemu/timer.h"
47 #include "qemu/config-file.h"
48 #include "qemu/error-report.h"
49 #include "qemu/qemu-print.h"
50 #include "qemu/log.h"
51 #include "qemu/memalign.h"
52 #include "qemu/memfd.h"
53 #include "exec/memory.h"
54 #include "exec/ioport.h"
55 #include "system/dma.h"
56 #include "system/hostmem.h"
57 #include "system/hw_accel.h"
58 #include "system/xen-mapcache.h"
59 #include "trace.h"
60
61 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
62 #include <linux/falloc.h>
63 #endif
64
65 #include "qemu/rcu_queue.h"
66 #include "qemu/main-loop.h"
67 #include "system/replay.h"
68
69 #include "exec/memory-internal.h"
70 #include "exec/ram_addr.h"
71
72 #include "qemu/pmem.h"
73
74 #include "qapi/qapi-types-migration.h"
75 #include "migration/blocker.h"
76 #include "migration/cpr.h"
77 #include "migration/options.h"
78 #include "migration/vmstate.h"
79
80 #include "qemu/range.h"
81 #ifndef _WIN32
82 #include "qemu/mmap-alloc.h"
83 #endif
84
85 #include "monitor/monitor.h"
86
87 #ifdef CONFIG_LIBDAXCTL
88 #include <daxctl/libdaxctl.h>
89 #endif
90
91 //#define DEBUG_SUBPAGE
92
93 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
94 * are protected by the ramlist lock.
95 */
96 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
97
98 static MemoryRegion *system_memory;
99 static MemoryRegion *system_io;
100
101 AddressSpace address_space_io;
102 AddressSpace address_space_memory;
103
104 static MemoryRegion io_mem_unassigned;
105
106 typedef struct PhysPageEntry PhysPageEntry;
107
108 struct PhysPageEntry {
109 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
110 uint32_t skip : 6;
111 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
112 uint32_t ptr : 26;
113 };
114
115 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
116
117 /* Size of the L2 (and L3, etc) page tables. */
118 #define ADDR_SPACE_BITS 64
119
120 #define P_L2_BITS 9
121 #define P_L2_SIZE (1 << P_L2_BITS)
122
123 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
124
125 typedef PhysPageEntry Node[P_L2_SIZE];
126
127 typedef struct PhysPageMap {
128 struct rcu_head rcu;
129
130 unsigned sections_nb;
131 unsigned sections_nb_alloc;
132 unsigned nodes_nb;
133 unsigned nodes_nb_alloc;
134 Node *nodes;
135 MemoryRegionSection *sections;
136 } PhysPageMap;
137
138 struct AddressSpaceDispatch {
139 MemoryRegionSection *mru_section;
140 /* This is a multi-level map on the physical address space.
141 * The bottom level has pointers to MemoryRegionSections.
142 */
143 PhysPageEntry phys_map;
144 PhysPageMap map;
145 };
146
147 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
148 typedef struct subpage_t {
149 MemoryRegion iomem;
150 FlatView *fv;
151 hwaddr base;
152 uint16_t sub_section[];
153 } subpage_t;
154
155 #define PHYS_SECTION_UNASSIGNED 0
156
157 static void io_mem_init(void);
158 static void memory_map_init(void);
159 static void tcg_log_global_after_sync(MemoryListener *listener);
160 static void tcg_commit(MemoryListener *listener);
161 static bool ram_is_cpr_compatible(RAMBlock *rb);
162
163 /**
164 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
165 * @cpu: the CPU whose AddressSpace this is
166 * @as: the AddressSpace itself
167 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
168 * @tcg_as_listener: listener for tracking changes to the AddressSpace
169 */
170 typedef struct CPUAddressSpace {
171 CPUState *cpu;
172 AddressSpace *as;
173 struct AddressSpaceDispatch *memory_dispatch;
174 MemoryListener tcg_as_listener;
175 } CPUAddressSpace;
176
177 struct DirtyBitmapSnapshot {
178 ram_addr_t start;
179 ram_addr_t end;
180 unsigned long dirty[];
181 };
182
phys_map_node_reserve(PhysPageMap * map,unsigned nodes)183 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
184 {
185 static unsigned alloc_hint = 16;
186 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
187 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
188 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
189 alloc_hint = map->nodes_nb_alloc;
190 }
191 }
192
phys_map_node_alloc(PhysPageMap * map,bool leaf)193 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
194 {
195 unsigned i;
196 uint32_t ret;
197 PhysPageEntry e;
198 PhysPageEntry *p;
199
200 ret = map->nodes_nb++;
201 p = map->nodes[ret];
202 assert(ret != PHYS_MAP_NODE_NIL);
203 assert(ret != map->nodes_nb_alloc);
204
205 e.skip = leaf ? 0 : 1;
206 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
207 for (i = 0; i < P_L2_SIZE; ++i) {
208 memcpy(&p[i], &e, sizeof(e));
209 }
210 return ret;
211 }
212
phys_page_set_level(PhysPageMap * map,PhysPageEntry * lp,hwaddr * index,uint64_t * nb,uint16_t leaf,int level)213 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
214 hwaddr *index, uint64_t *nb, uint16_t leaf,
215 int level)
216 {
217 PhysPageEntry *p;
218 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
219
220 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
221 lp->ptr = phys_map_node_alloc(map, level == 0);
222 }
223 p = map->nodes[lp->ptr];
224 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
225
226 while (*nb && lp < &p[P_L2_SIZE]) {
227 if ((*index & (step - 1)) == 0 && *nb >= step) {
228 lp->skip = 0;
229 lp->ptr = leaf;
230 *index += step;
231 *nb -= step;
232 } else {
233 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
234 }
235 ++lp;
236 }
237 }
238
phys_page_set(AddressSpaceDispatch * d,hwaddr index,uint64_t nb,uint16_t leaf)239 static void phys_page_set(AddressSpaceDispatch *d,
240 hwaddr index, uint64_t nb,
241 uint16_t leaf)
242 {
243 /* Wildly overreserve - it doesn't matter much. */
244 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
245
246 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
247 }
248
249 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
250 * and update our entry so we can skip it and go directly to the destination.
251 */
phys_page_compact(PhysPageEntry * lp,Node * nodes)252 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
253 {
254 unsigned valid_ptr = P_L2_SIZE;
255 int valid = 0;
256 PhysPageEntry *p;
257 int i;
258
259 if (lp->ptr == PHYS_MAP_NODE_NIL) {
260 return;
261 }
262
263 p = nodes[lp->ptr];
264 for (i = 0; i < P_L2_SIZE; i++) {
265 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
266 continue;
267 }
268
269 valid_ptr = i;
270 valid++;
271 if (p[i].skip) {
272 phys_page_compact(&p[i], nodes);
273 }
274 }
275
276 /* We can only compress if there's only one child. */
277 if (valid != 1) {
278 return;
279 }
280
281 assert(valid_ptr < P_L2_SIZE);
282
283 /* Don't compress if it won't fit in the # of bits we have. */
284 if (P_L2_LEVELS >= (1 << 6) &&
285 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
286 return;
287 }
288
289 lp->ptr = p[valid_ptr].ptr;
290 if (!p[valid_ptr].skip) {
291 /* If our only child is a leaf, make this a leaf. */
292 /* By design, we should have made this node a leaf to begin with so we
293 * should never reach here.
294 * But since it's so simple to handle this, let's do it just in case we
295 * change this rule.
296 */
297 lp->skip = 0;
298 } else {
299 lp->skip += p[valid_ptr].skip;
300 }
301 }
302
address_space_dispatch_compact(AddressSpaceDispatch * d)303 void address_space_dispatch_compact(AddressSpaceDispatch *d)
304 {
305 if (d->phys_map.skip) {
306 phys_page_compact(&d->phys_map, d->map.nodes);
307 }
308 }
309
section_covers_addr(const MemoryRegionSection * section,hwaddr addr)310 static inline bool section_covers_addr(const MemoryRegionSection *section,
311 hwaddr addr)
312 {
313 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
314 * the section must cover the entire address space.
315 */
316 return int128_gethi(section->size) ||
317 range_covers_byte(section->offset_within_address_space,
318 int128_getlo(section->size), addr);
319 }
320
phys_page_find(AddressSpaceDispatch * d,hwaddr addr)321 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
322 {
323 PhysPageEntry lp = d->phys_map, *p;
324 Node *nodes = d->map.nodes;
325 MemoryRegionSection *sections = d->map.sections;
326 hwaddr index = addr >> TARGET_PAGE_BITS;
327 int i;
328
329 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
330 if (lp.ptr == PHYS_MAP_NODE_NIL) {
331 return §ions[PHYS_SECTION_UNASSIGNED];
332 }
333 p = nodes[lp.ptr];
334 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
335 }
336
337 if (section_covers_addr(§ions[lp.ptr], addr)) {
338 return §ions[lp.ptr];
339 } else {
340 return §ions[PHYS_SECTION_UNASSIGNED];
341 }
342 }
343
344 /* Called from RCU critical section */
address_space_lookup_region(AddressSpaceDispatch * d,hwaddr addr,bool resolve_subpage)345 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
346 hwaddr addr,
347 bool resolve_subpage)
348 {
349 MemoryRegionSection *section = qatomic_read(&d->mru_section);
350 subpage_t *subpage;
351
352 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
353 !section_covers_addr(section, addr)) {
354 section = phys_page_find(d, addr);
355 qatomic_set(&d->mru_section, section);
356 }
357 if (resolve_subpage && section->mr->subpage) {
358 subpage = container_of(section->mr, subpage_t, iomem);
359 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
360 }
361 return section;
362 }
363
364 /* Called from RCU critical section */
365 static MemoryRegionSection *
address_space_translate_internal(AddressSpaceDispatch * d,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool resolve_subpage)366 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
367 hwaddr *plen, bool resolve_subpage)
368 {
369 MemoryRegionSection *section;
370 MemoryRegion *mr;
371 Int128 diff;
372
373 section = address_space_lookup_region(d, addr, resolve_subpage);
374 /* Compute offset within MemoryRegionSection */
375 addr -= section->offset_within_address_space;
376
377 /* Compute offset within MemoryRegion */
378 *xlat = addr + section->offset_within_region;
379
380 mr = section->mr;
381
382 /* MMIO registers can be expected to perform full-width accesses based only
383 * on their address, without considering adjacent registers that could
384 * decode to completely different MemoryRegions. When such registers
385 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
386 * regions overlap wildly. For this reason we cannot clamp the accesses
387 * here.
388 *
389 * If the length is small (as is the case for address_space_ldl/stl),
390 * everything works fine. If the incoming length is large, however,
391 * the caller really has to do the clamping through memory_access_size.
392 */
393 if (memory_region_is_ram(mr)) {
394 diff = int128_sub(section->size, int128_make64(addr));
395 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
396 }
397 return section;
398 }
399
400 /**
401 * address_space_translate_iommu - translate an address through an IOMMU
402 * memory region and then through the target address space.
403 *
404 * @iommu_mr: the IOMMU memory region that we start the translation from
405 * @addr: the address to be translated through the MMU
406 * @xlat: the translated address offset within the destination memory region.
407 * It cannot be %NULL.
408 * @plen_out: valid read/write length of the translated address. It
409 * cannot be %NULL.
410 * @page_mask_out: page mask for the translated address. This
411 * should only be meaningful for IOMMU translated
412 * addresses, since there may be huge pages that this bit
413 * would tell. It can be %NULL if we don't care about it.
414 * @is_write: whether the translation operation is for write
415 * @is_mmio: whether this can be MMIO, set true if it can
416 * @target_as: the address space targeted by the IOMMU
417 * @attrs: transaction attributes
418 *
419 * This function is called from RCU critical section. It is the common
420 * part of flatview_do_translate and address_space_translate_cached.
421 */
address_space_translate_iommu(IOMMUMemoryRegion * iommu_mr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)422 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
423 hwaddr *xlat,
424 hwaddr *plen_out,
425 hwaddr *page_mask_out,
426 bool is_write,
427 bool is_mmio,
428 AddressSpace **target_as,
429 MemTxAttrs attrs)
430 {
431 MemoryRegionSection *section;
432 hwaddr page_mask = (hwaddr)-1;
433
434 do {
435 hwaddr addr = *xlat;
436 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
437 int iommu_idx = 0;
438 IOMMUTLBEntry iotlb;
439
440 if (imrc->attrs_to_index) {
441 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
442 }
443
444 iotlb = imrc->translate(iommu_mr, addr, is_write ?
445 IOMMU_WO : IOMMU_RO, iommu_idx);
446
447 if (!(iotlb.perm & (1 << is_write))) {
448 goto unassigned;
449 }
450
451 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
452 | (addr & iotlb.addr_mask));
453 page_mask &= iotlb.addr_mask;
454 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
455 *target_as = iotlb.target_as;
456
457 section = address_space_translate_internal(
458 address_space_to_dispatch(iotlb.target_as), addr, xlat,
459 plen_out, is_mmio);
460
461 iommu_mr = memory_region_get_iommu(section->mr);
462 } while (unlikely(iommu_mr));
463
464 if (page_mask_out) {
465 *page_mask_out = page_mask;
466 }
467 return *section;
468
469 unassigned:
470 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
471 }
472
473 /**
474 * flatview_do_translate - translate an address in FlatView
475 *
476 * @fv: the flat view that we want to translate on
477 * @addr: the address to be translated in above address space
478 * @xlat: the translated address offset within memory region. It
479 * cannot be @NULL.
480 * @plen_out: valid read/write length of the translated address. It
481 * can be @NULL when we don't care about it.
482 * @page_mask_out: page mask for the translated address. This
483 * should only be meaningful for IOMMU translated
484 * addresses, since there may be huge pages that this bit
485 * would tell. It can be @NULL if we don't care about it.
486 * @is_write: whether the translation operation is for write
487 * @is_mmio: whether this can be MMIO, set true if it can
488 * @target_as: the address space targeted by the IOMMU
489 * @attrs: memory transaction attributes
490 *
491 * This function is called from RCU critical section
492 */
flatview_do_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)493 static MemoryRegionSection flatview_do_translate(FlatView *fv,
494 hwaddr addr,
495 hwaddr *xlat,
496 hwaddr *plen_out,
497 hwaddr *page_mask_out,
498 bool is_write,
499 bool is_mmio,
500 AddressSpace **target_as,
501 MemTxAttrs attrs)
502 {
503 MemoryRegionSection *section;
504 IOMMUMemoryRegion *iommu_mr;
505 hwaddr plen = (hwaddr)(-1);
506
507 if (!plen_out) {
508 plen_out = &plen;
509 }
510
511 section = address_space_translate_internal(
512 flatview_to_dispatch(fv), addr, xlat,
513 plen_out, is_mmio);
514
515 iommu_mr = memory_region_get_iommu(section->mr);
516 if (unlikely(iommu_mr)) {
517 return address_space_translate_iommu(iommu_mr, xlat,
518 plen_out, page_mask_out,
519 is_write, is_mmio,
520 target_as, attrs);
521 }
522 if (page_mask_out) {
523 /* Not behind an IOMMU, use default page size. */
524 *page_mask_out = ~TARGET_PAGE_MASK;
525 }
526
527 return *section;
528 }
529
530 /* Called from RCU critical section */
address_space_get_iotlb_entry(AddressSpace * as,hwaddr addr,bool is_write,MemTxAttrs attrs)531 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
532 bool is_write, MemTxAttrs attrs)
533 {
534 MemoryRegionSection section;
535 hwaddr xlat, page_mask;
536
537 /*
538 * This can never be MMIO, and we don't really care about plen,
539 * but page mask.
540 */
541 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
542 NULL, &page_mask, is_write, false, &as,
543 attrs);
544
545 /* Illegal translation */
546 if (section.mr == &io_mem_unassigned) {
547 goto iotlb_fail;
548 }
549
550 /* Convert memory region offset into address space offset */
551 xlat += section.offset_within_address_space -
552 section.offset_within_region;
553
554 return (IOMMUTLBEntry) {
555 .target_as = as,
556 .iova = addr & ~page_mask,
557 .translated_addr = xlat & ~page_mask,
558 .addr_mask = page_mask,
559 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
560 .perm = IOMMU_RW,
561 };
562
563 iotlb_fail:
564 return (IOMMUTLBEntry) {0};
565 }
566
567 /* Called from RCU critical section */
flatview_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)568 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
569 hwaddr *plen, bool is_write,
570 MemTxAttrs attrs)
571 {
572 MemoryRegion *mr;
573 MemoryRegionSection section;
574 AddressSpace *as = NULL;
575
576 /* This can be MMIO, so setup MMIO bit. */
577 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
578 is_write, true, &as, attrs);
579 mr = section.mr;
580
581 if (xen_enabled() && memory_access_is_direct(mr, is_write, attrs)) {
582 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
583 *plen = MIN(page, *plen);
584 }
585
586 return mr;
587 }
588
589 typedef struct TCGIOMMUNotifier {
590 IOMMUNotifier n;
591 MemoryRegion *mr;
592 CPUState *cpu;
593 int iommu_idx;
594 bool active;
595 } TCGIOMMUNotifier;
596
tcg_iommu_unmap_notify(IOMMUNotifier * n,IOMMUTLBEntry * iotlb)597 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
598 {
599 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
600
601 if (!notifier->active) {
602 return;
603 }
604 tlb_flush(notifier->cpu);
605 notifier->active = false;
606 /* We leave the notifier struct on the list to avoid reallocating it later.
607 * Generally the number of IOMMUs a CPU deals with will be small.
608 * In any case we can't unregister the iommu notifier from a notify
609 * callback.
610 */
611 }
612
tcg_register_iommu_notifier(CPUState * cpu,IOMMUMemoryRegion * iommu_mr,int iommu_idx)613 static void tcg_register_iommu_notifier(CPUState *cpu,
614 IOMMUMemoryRegion *iommu_mr,
615 int iommu_idx)
616 {
617 /* Make sure this CPU has an IOMMU notifier registered for this
618 * IOMMU/IOMMU index combination, so that we can flush its TLB
619 * when the IOMMU tells us the mappings we've cached have changed.
620 */
621 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
622 TCGIOMMUNotifier *notifier = NULL;
623 int i;
624
625 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
626 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
627 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
628 break;
629 }
630 }
631 if (i == cpu->iommu_notifiers->len) {
632 /* Not found, add a new entry at the end of the array */
633 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
634 notifier = g_new0(TCGIOMMUNotifier, 1);
635 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
636
637 notifier->mr = mr;
638 notifier->iommu_idx = iommu_idx;
639 notifier->cpu = cpu;
640 /* Rather than trying to register interest in the specific part
641 * of the iommu's address space that we've accessed and then
642 * expand it later as subsequent accesses touch more of it, we
643 * just register interest in the whole thing, on the assumption
644 * that iommu reconfiguration will be rare.
645 */
646 iommu_notifier_init(¬ifier->n,
647 tcg_iommu_unmap_notify,
648 IOMMU_NOTIFIER_UNMAP,
649 0,
650 HWADDR_MAX,
651 iommu_idx);
652 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n,
653 &error_fatal);
654 }
655
656 if (!notifier->active) {
657 notifier->active = true;
658 }
659 }
660
tcg_iommu_free_notifier_list(CPUState * cpu)661 void tcg_iommu_free_notifier_list(CPUState *cpu)
662 {
663 /* Destroy the CPU's notifier list */
664 int i;
665 TCGIOMMUNotifier *notifier;
666
667 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
668 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
669 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n);
670 g_free(notifier);
671 }
672 g_array_free(cpu->iommu_notifiers, true);
673 }
674
tcg_iommu_init_notifier_list(CPUState * cpu)675 void tcg_iommu_init_notifier_list(CPUState *cpu)
676 {
677 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
678 }
679
680 /* Called from RCU critical section */
681 MemoryRegionSection *
address_space_translate_for_iotlb(CPUState * cpu,int asidx,hwaddr orig_addr,hwaddr * xlat,hwaddr * plen,MemTxAttrs attrs,int * prot)682 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
683 hwaddr *xlat, hwaddr *plen,
684 MemTxAttrs attrs, int *prot)
685 {
686 MemoryRegionSection *section;
687 IOMMUMemoryRegion *iommu_mr;
688 IOMMUMemoryRegionClass *imrc;
689 IOMMUTLBEntry iotlb;
690 int iommu_idx;
691 hwaddr addr = orig_addr;
692 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
693
694 for (;;) {
695 section = address_space_translate_internal(d, addr, &addr, plen, false);
696
697 iommu_mr = memory_region_get_iommu(section->mr);
698 if (!iommu_mr) {
699 break;
700 }
701
702 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
703
704 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
705 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
706 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
707 * doesn't short-cut its translation table walk.
708 */
709 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
710 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
711 | (addr & iotlb.addr_mask));
712 /* Update the caller's prot bits to remove permissions the IOMMU
713 * is giving us a failure response for. If we get down to no
714 * permissions left at all we can give up now.
715 */
716 if (!(iotlb.perm & IOMMU_RO)) {
717 *prot &= ~(PAGE_READ | PAGE_EXEC);
718 }
719 if (!(iotlb.perm & IOMMU_WO)) {
720 *prot &= ~PAGE_WRITE;
721 }
722
723 if (!*prot) {
724 goto translate_fail;
725 }
726
727 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
728 }
729
730 assert(!memory_region_is_iommu(section->mr));
731 *xlat = addr;
732 return section;
733
734 translate_fail:
735 /*
736 * We should be given a page-aligned address -- certainly
737 * tlb_set_page_with_attrs() does so. The page offset of xlat
738 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
739 * The page portion of xlat will be logged by memory_region_access_valid()
740 * when this memory access is rejected, so use the original untranslated
741 * physical address.
742 */
743 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
744 *xlat = orig_addr;
745 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
746 }
747
cpu_address_space_init(CPUState * cpu,int asidx,const char * prefix,MemoryRegion * mr)748 void cpu_address_space_init(CPUState *cpu, int asidx,
749 const char *prefix, MemoryRegion *mr)
750 {
751 CPUAddressSpace *newas;
752 AddressSpace *as = g_new0(AddressSpace, 1);
753 char *as_name;
754
755 assert(mr);
756 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
757 address_space_init(as, mr, as_name);
758 g_free(as_name);
759
760 /* Target code should have set num_ases before calling us */
761 assert(asidx < cpu->num_ases);
762
763 if (asidx == 0) {
764 /* address space 0 gets the convenience alias */
765 cpu->as = as;
766 }
767
768 /* KVM cannot currently support multiple address spaces. */
769 assert(asidx == 0 || !kvm_enabled());
770
771 if (!cpu->cpu_ases) {
772 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
773 cpu->cpu_ases_count = cpu->num_ases;
774 }
775
776 newas = &cpu->cpu_ases[asidx];
777 newas->cpu = cpu;
778 newas->as = as;
779 if (tcg_enabled()) {
780 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
781 newas->tcg_as_listener.commit = tcg_commit;
782 newas->tcg_as_listener.name = "tcg";
783 memory_listener_register(&newas->tcg_as_listener, as);
784 }
785 }
786
cpu_address_space_destroy(CPUState * cpu,int asidx)787 void cpu_address_space_destroy(CPUState *cpu, int asidx)
788 {
789 CPUAddressSpace *cpuas;
790
791 assert(cpu->cpu_ases);
792 assert(asidx >= 0 && asidx < cpu->num_ases);
793 /* KVM cannot currently support multiple address spaces. */
794 assert(asidx == 0 || !kvm_enabled());
795
796 cpuas = &cpu->cpu_ases[asidx];
797 if (tcg_enabled()) {
798 memory_listener_unregister(&cpuas->tcg_as_listener);
799 }
800
801 address_space_destroy(cpuas->as);
802 g_free_rcu(cpuas->as, rcu);
803
804 if (asidx == 0) {
805 /* reset the convenience alias for address space 0 */
806 cpu->as = NULL;
807 }
808
809 if (--cpu->cpu_ases_count == 0) {
810 g_free(cpu->cpu_ases);
811 cpu->cpu_ases = NULL;
812 }
813 }
814
cpu_get_address_space(CPUState * cpu,int asidx)815 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
816 {
817 /* Return the AddressSpace corresponding to the specified index */
818 return cpu->cpu_ases[asidx].as;
819 }
820
821 /* Called from RCU critical section */
qemu_get_ram_block(ram_addr_t addr)822 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
823 {
824 RAMBlock *block;
825
826 block = qatomic_rcu_read(&ram_list.mru_block);
827 if (block && addr - block->offset < block->max_length) {
828 return block;
829 }
830 RAMBLOCK_FOREACH(block) {
831 if (addr - block->offset < block->max_length) {
832 goto found;
833 }
834 }
835
836 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
837 abort();
838
839 found:
840 /* It is safe to write mru_block outside the BQL. This
841 * is what happens:
842 *
843 * mru_block = xxx
844 * rcu_read_unlock()
845 * xxx removed from list
846 * rcu_read_lock()
847 * read mru_block
848 * mru_block = NULL;
849 * call_rcu(reclaim_ramblock, xxx);
850 * rcu_read_unlock()
851 *
852 * qatomic_rcu_set is not needed here. The block was already published
853 * when it was placed into the list. Here we're just making an extra
854 * copy of the pointer.
855 */
856 ram_list.mru_block = block;
857 return block;
858 }
859
tlb_reset_dirty_range_all(ram_addr_t start,ram_addr_t length)860 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
861 {
862 CPUState *cpu;
863 ram_addr_t start1;
864 RAMBlock *block;
865 ram_addr_t end;
866
867 assert(tcg_enabled());
868 end = TARGET_PAGE_ALIGN(start + length);
869 start &= TARGET_PAGE_MASK;
870
871 RCU_READ_LOCK_GUARD();
872 block = qemu_get_ram_block(start);
873 assert(block == qemu_get_ram_block(end - 1));
874 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
875 CPU_FOREACH(cpu) {
876 tlb_reset_dirty(cpu, start1, length);
877 }
878 }
879
880 /* Note: start and end must be within the same ram block. */
cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,ram_addr_t length,unsigned client)881 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
882 ram_addr_t length,
883 unsigned client)
884 {
885 DirtyMemoryBlocks *blocks;
886 unsigned long end, page, start_page;
887 bool dirty = false;
888 RAMBlock *ramblock;
889 uint64_t mr_offset, mr_size;
890
891 if (length == 0) {
892 return false;
893 }
894
895 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
896 start_page = start >> TARGET_PAGE_BITS;
897 page = start_page;
898
899 WITH_RCU_READ_LOCK_GUARD() {
900 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
901 ramblock = qemu_get_ram_block(start);
902 /* Range sanity check on the ramblock */
903 assert(start >= ramblock->offset &&
904 start + length <= ramblock->offset + ramblock->used_length);
905
906 while (page < end) {
907 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
908 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
909 unsigned long num = MIN(end - page,
910 DIRTY_MEMORY_BLOCK_SIZE - offset);
911
912 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
913 offset, num);
914 page += num;
915 }
916
917 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
918 mr_size = (end - start_page) << TARGET_PAGE_BITS;
919 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
920 }
921
922 if (dirty) {
923 cpu_physical_memory_dirty_bits_cleared(start, length);
924 }
925
926 return dirty;
927 }
928
cpu_physical_memory_snapshot_and_clear_dirty(MemoryRegion * mr,hwaddr offset,hwaddr length,unsigned client)929 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
930 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
931 {
932 DirtyMemoryBlocks *blocks;
933 ram_addr_t start, first, last;
934 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
935 DirtyBitmapSnapshot *snap;
936 unsigned long page, end, dest;
937
938 start = memory_region_get_ram_addr(mr);
939 /* We know we're only called for RAM MemoryRegions */
940 assert(start != RAM_ADDR_INVALID);
941 start += offset;
942
943 first = QEMU_ALIGN_DOWN(start, align);
944 last = QEMU_ALIGN_UP(start + length, align);
945
946 snap = g_malloc0(sizeof(*snap) +
947 ((last - first) >> (TARGET_PAGE_BITS + 3)));
948 snap->start = first;
949 snap->end = last;
950
951 page = first >> TARGET_PAGE_BITS;
952 end = last >> TARGET_PAGE_BITS;
953 dest = 0;
954
955 WITH_RCU_READ_LOCK_GUARD() {
956 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
957
958 while (page < end) {
959 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
960 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
961 unsigned long num = MIN(end - page,
962 DIRTY_MEMORY_BLOCK_SIZE - ofs);
963
964 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
965 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
966 ofs >>= BITS_PER_LEVEL;
967
968 bitmap_copy_and_clear_atomic(snap->dirty + dest,
969 blocks->blocks[idx] + ofs,
970 num);
971 page += num;
972 dest += num >> BITS_PER_LEVEL;
973 }
974 }
975
976 cpu_physical_memory_dirty_bits_cleared(start, length);
977
978 memory_region_clear_dirty_bitmap(mr, offset, length);
979
980 return snap;
981 }
982
cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot * snap,ram_addr_t start,ram_addr_t length)983 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
984 ram_addr_t start,
985 ram_addr_t length)
986 {
987 unsigned long page, end;
988
989 assert(start >= snap->start);
990 assert(start + length <= snap->end);
991
992 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
993 page = (start - snap->start) >> TARGET_PAGE_BITS;
994
995 while (page < end) {
996 if (test_bit(page, snap->dirty)) {
997 return true;
998 }
999 page++;
1000 }
1001 return false;
1002 }
1003
1004 /* Called from RCU critical section */
memory_region_section_get_iotlb(CPUState * cpu,MemoryRegionSection * section)1005 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1006 MemoryRegionSection *section)
1007 {
1008 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1009 return section - d->map.sections;
1010 }
1011
1012 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1013 uint16_t section);
1014 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1015
phys_section_add(PhysPageMap * map,MemoryRegionSection * section)1016 static uint16_t phys_section_add(PhysPageMap *map,
1017 MemoryRegionSection *section)
1018 {
1019 /* The physical section number is ORed with a page-aligned
1020 * pointer to produce the iotlb entries. Thus it should
1021 * never overflow into the page-aligned value.
1022 */
1023 assert(map->sections_nb < TARGET_PAGE_SIZE);
1024
1025 if (map->sections_nb == map->sections_nb_alloc) {
1026 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1027 map->sections = g_renew(MemoryRegionSection, map->sections,
1028 map->sections_nb_alloc);
1029 }
1030 map->sections[map->sections_nb] = *section;
1031 memory_region_ref(section->mr);
1032 return map->sections_nb++;
1033 }
1034
phys_section_destroy(MemoryRegion * mr)1035 static void phys_section_destroy(MemoryRegion *mr)
1036 {
1037 bool have_sub_page = mr->subpage;
1038
1039 memory_region_unref(mr);
1040
1041 if (have_sub_page) {
1042 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1043 object_unref(OBJECT(&subpage->iomem));
1044 g_free(subpage);
1045 }
1046 }
1047
phys_sections_free(PhysPageMap * map)1048 static void phys_sections_free(PhysPageMap *map)
1049 {
1050 while (map->sections_nb > 0) {
1051 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1052 phys_section_destroy(section->mr);
1053 }
1054 g_free(map->sections);
1055 g_free(map->nodes);
1056 }
1057
register_subpage(FlatView * fv,MemoryRegionSection * section)1058 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1059 {
1060 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1061 subpage_t *subpage;
1062 hwaddr base = section->offset_within_address_space
1063 & TARGET_PAGE_MASK;
1064 MemoryRegionSection *existing = phys_page_find(d, base);
1065 MemoryRegionSection subsection = {
1066 .offset_within_address_space = base,
1067 .size = int128_make64(TARGET_PAGE_SIZE),
1068 };
1069 hwaddr start, end;
1070
1071 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1072
1073 if (!(existing->mr->subpage)) {
1074 subpage = subpage_init(fv, base);
1075 subsection.fv = fv;
1076 subsection.mr = &subpage->iomem;
1077 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1078 phys_section_add(&d->map, &subsection));
1079 } else {
1080 subpage = container_of(existing->mr, subpage_t, iomem);
1081 }
1082 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1083 end = start + int128_get64(section->size) - 1;
1084 subpage_register(subpage, start, end,
1085 phys_section_add(&d->map, section));
1086 }
1087
1088
register_multipage(FlatView * fv,MemoryRegionSection * section)1089 static void register_multipage(FlatView *fv,
1090 MemoryRegionSection *section)
1091 {
1092 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1093 hwaddr start_addr = section->offset_within_address_space;
1094 uint16_t section_index = phys_section_add(&d->map, section);
1095 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1096 TARGET_PAGE_BITS));
1097
1098 assert(num_pages);
1099 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1100 }
1101
1102 /*
1103 * The range in *section* may look like this:
1104 *
1105 * |s|PPPPPPP|s|
1106 *
1107 * where s stands for subpage and P for page.
1108 */
flatview_add_to_dispatch(FlatView * fv,MemoryRegionSection * section)1109 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1110 {
1111 MemoryRegionSection remain = *section;
1112 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1113
1114 /* register first subpage */
1115 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1116 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1117 - remain.offset_within_address_space;
1118
1119 MemoryRegionSection now = remain;
1120 now.size = int128_min(int128_make64(left), now.size);
1121 register_subpage(fv, &now);
1122 if (int128_eq(remain.size, now.size)) {
1123 return;
1124 }
1125 remain.size = int128_sub(remain.size, now.size);
1126 remain.offset_within_address_space += int128_get64(now.size);
1127 remain.offset_within_region += int128_get64(now.size);
1128 }
1129
1130 /* register whole pages */
1131 if (int128_ge(remain.size, page_size)) {
1132 MemoryRegionSection now = remain;
1133 now.size = int128_and(now.size, int128_neg(page_size));
1134 register_multipage(fv, &now);
1135 if (int128_eq(remain.size, now.size)) {
1136 return;
1137 }
1138 remain.size = int128_sub(remain.size, now.size);
1139 remain.offset_within_address_space += int128_get64(now.size);
1140 remain.offset_within_region += int128_get64(now.size);
1141 }
1142
1143 /* register last subpage */
1144 register_subpage(fv, &remain);
1145 }
1146
qemu_flush_coalesced_mmio_buffer(void)1147 void qemu_flush_coalesced_mmio_buffer(void)
1148 {
1149 if (kvm_enabled())
1150 kvm_flush_coalesced_mmio_buffer();
1151 }
1152
qemu_mutex_lock_ramlist(void)1153 void qemu_mutex_lock_ramlist(void)
1154 {
1155 qemu_mutex_lock(&ram_list.mutex);
1156 }
1157
qemu_mutex_unlock_ramlist(void)1158 void qemu_mutex_unlock_ramlist(void)
1159 {
1160 qemu_mutex_unlock(&ram_list.mutex);
1161 }
1162
ram_block_format(void)1163 GString *ram_block_format(void)
1164 {
1165 RAMBlock *block;
1166 char *psize;
1167 GString *buf = g_string_new("");
1168
1169 RCU_READ_LOCK_GUARD();
1170 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n",
1171 "Block Name", "PSize", "Offset", "Used", "Total",
1172 "HVA", "RO");
1173
1174 RAMBLOCK_FOREACH(block) {
1175 psize = size_to_str(block->page_size);
1176 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1177 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1178 block->idstr, psize,
1179 (uint64_t)block->offset,
1180 (uint64_t)block->used_length,
1181 (uint64_t)block->max_length,
1182 (uint64_t)(uintptr_t)block->host,
1183 block->mr->readonly ? "ro" : "rw");
1184
1185 g_free(psize);
1186 }
1187
1188 return buf;
1189 }
1190
find_min_backend_pagesize(Object * obj,void * opaque)1191 static int find_min_backend_pagesize(Object *obj, void *opaque)
1192 {
1193 long *hpsize_min = opaque;
1194
1195 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1196 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1197 long hpsize = host_memory_backend_pagesize(backend);
1198
1199 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1200 *hpsize_min = hpsize;
1201 }
1202 }
1203
1204 return 0;
1205 }
1206
find_max_backend_pagesize(Object * obj,void * opaque)1207 static int find_max_backend_pagesize(Object *obj, void *opaque)
1208 {
1209 long *hpsize_max = opaque;
1210
1211 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1212 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1213 long hpsize = host_memory_backend_pagesize(backend);
1214
1215 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1216 *hpsize_max = hpsize;
1217 }
1218 }
1219
1220 return 0;
1221 }
1222
1223 /*
1224 * TODO: We assume right now that all mapped host memory backends are
1225 * used as RAM, however some might be used for different purposes.
1226 */
qemu_minrampagesize(void)1227 long qemu_minrampagesize(void)
1228 {
1229 long hpsize = LONG_MAX;
1230 Object *memdev_root = object_resolve_path("/objects", NULL);
1231
1232 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1233 return hpsize;
1234 }
1235
qemu_maxrampagesize(void)1236 long qemu_maxrampagesize(void)
1237 {
1238 long pagesize = 0;
1239 Object *memdev_root = object_resolve_path("/objects", NULL);
1240
1241 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1242 return pagesize;
1243 }
1244
1245 #ifdef CONFIG_POSIX
get_file_size(int fd)1246 static int64_t get_file_size(int fd)
1247 {
1248 int64_t size;
1249 #if defined(__linux__)
1250 struct stat st;
1251
1252 if (fstat(fd, &st) < 0) {
1253 return -errno;
1254 }
1255
1256 /* Special handling for devdax character devices */
1257 if (S_ISCHR(st.st_mode)) {
1258 g_autofree char *subsystem_path = NULL;
1259 g_autofree char *subsystem = NULL;
1260
1261 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1262 major(st.st_rdev), minor(st.st_rdev));
1263 subsystem = g_file_read_link(subsystem_path, NULL);
1264
1265 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1266 g_autofree char *size_path = NULL;
1267 g_autofree char *size_str = NULL;
1268
1269 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1270 major(st.st_rdev), minor(st.st_rdev));
1271
1272 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1273 return g_ascii_strtoll(size_str, NULL, 0);
1274 }
1275 }
1276 }
1277 #endif /* defined(__linux__) */
1278
1279 /* st.st_size may be zero for special files yet lseek(2) works */
1280 size = lseek(fd, 0, SEEK_END);
1281 if (size < 0) {
1282 return -errno;
1283 }
1284 return size;
1285 }
1286
get_file_align(int fd)1287 static int64_t get_file_align(int fd)
1288 {
1289 int64_t align = -1;
1290 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1291 struct stat st;
1292
1293 if (fstat(fd, &st) < 0) {
1294 return -errno;
1295 }
1296
1297 /* Special handling for devdax character devices */
1298 if (S_ISCHR(st.st_mode)) {
1299 g_autofree char *path = NULL;
1300 g_autofree char *rpath = NULL;
1301 struct daxctl_ctx *ctx;
1302 struct daxctl_region *region;
1303 int rc = 0;
1304
1305 path = g_strdup_printf("/sys/dev/char/%d:%d",
1306 major(st.st_rdev), minor(st.st_rdev));
1307 rpath = realpath(path, NULL);
1308 if (!rpath) {
1309 return -errno;
1310 }
1311
1312 rc = daxctl_new(&ctx);
1313 if (rc) {
1314 return -1;
1315 }
1316
1317 daxctl_region_foreach(ctx, region) {
1318 if (strstr(rpath, daxctl_region_get_path(region))) {
1319 align = daxctl_region_get_align(region);
1320 break;
1321 }
1322 }
1323 daxctl_unref(ctx);
1324 }
1325 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1326
1327 return align;
1328 }
1329
file_ram_open(const char * path,const char * region_name,bool readonly,bool * created)1330 static int file_ram_open(const char *path,
1331 const char *region_name,
1332 bool readonly,
1333 bool *created)
1334 {
1335 char *filename;
1336 char *sanitized_name;
1337 char *c;
1338 int fd = -1;
1339
1340 *created = false;
1341 for (;;) {
1342 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1343 if (fd >= 0) {
1344 /*
1345 * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1346 * opened a directory and fail similarly to how we fail ENOENT
1347 * in readonly mode. Note that mkstemp() would imply O_RDWR.
1348 */
1349 if (readonly) {
1350 struct stat file_stat;
1351
1352 if (fstat(fd, &file_stat)) {
1353 close(fd);
1354 if (errno == EINTR) {
1355 continue;
1356 }
1357 return -errno;
1358 } else if (S_ISDIR(file_stat.st_mode)) {
1359 close(fd);
1360 return -EISDIR;
1361 }
1362 }
1363 /* @path names an existing file, use it */
1364 break;
1365 }
1366 if (errno == ENOENT) {
1367 if (readonly) {
1368 /* Refuse to create new, readonly files. */
1369 return -ENOENT;
1370 }
1371 /* @path names a file that doesn't exist, create it */
1372 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1373 if (fd >= 0) {
1374 *created = true;
1375 break;
1376 }
1377 } else if (errno == EISDIR) {
1378 /* @path names a directory, create a file there */
1379 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1380 sanitized_name = g_strdup(region_name);
1381 for (c = sanitized_name; *c != '\0'; c++) {
1382 if (*c == '/') {
1383 *c = '_';
1384 }
1385 }
1386
1387 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1388 sanitized_name);
1389 g_free(sanitized_name);
1390
1391 fd = mkstemp(filename);
1392 if (fd >= 0) {
1393 unlink(filename);
1394 g_free(filename);
1395 break;
1396 }
1397 g_free(filename);
1398 }
1399 if (errno != EEXIST && errno != EINTR) {
1400 return -errno;
1401 }
1402 /*
1403 * Try again on EINTR and EEXIST. The latter happens when
1404 * something else creates the file between our two open().
1405 */
1406 }
1407
1408 return fd;
1409 }
1410
file_ram_alloc(RAMBlock * block,ram_addr_t memory,int fd,bool truncate,off_t offset,Error ** errp)1411 static void *file_ram_alloc(RAMBlock *block,
1412 ram_addr_t memory,
1413 int fd,
1414 bool truncate,
1415 off_t offset,
1416 Error **errp)
1417 {
1418 uint32_t qemu_map_flags;
1419 void *area;
1420
1421 block->page_size = qemu_fd_getpagesize(fd);
1422 if (block->mr->align % block->page_size) {
1423 error_setg(errp, "alignment 0x%" PRIx64
1424 " must be multiples of page size 0x%zx",
1425 block->mr->align, block->page_size);
1426 return NULL;
1427 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1428 error_setg(errp, "alignment 0x%" PRIx64
1429 " must be a power of two", block->mr->align);
1430 return NULL;
1431 } else if (offset % block->page_size) {
1432 error_setg(errp, "offset 0x%" PRIx64
1433 " must be multiples of page size 0x%zx",
1434 offset, block->page_size);
1435 return NULL;
1436 }
1437 block->mr->align = MAX(block->page_size, block->mr->align);
1438 #if defined(__s390x__)
1439 if (kvm_enabled()) {
1440 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1441 }
1442 #endif
1443
1444 if (memory < block->page_size) {
1445 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1446 "or larger than page size 0x%zx",
1447 memory, block->page_size);
1448 return NULL;
1449 }
1450
1451 memory = ROUND_UP(memory, block->page_size);
1452
1453 /*
1454 * ftruncate is not supported by hugetlbfs in older
1455 * hosts, so don't bother bailing out on errors.
1456 * If anything goes wrong with it under other filesystems,
1457 * mmap will fail.
1458 *
1459 * Do not truncate the non-empty backend file to avoid corrupting
1460 * the existing data in the file. Disabling shrinking is not
1461 * enough. For example, the current vNVDIMM implementation stores
1462 * the guest NVDIMM labels at the end of the backend file. If the
1463 * backend file is later extended, QEMU will not be able to find
1464 * those labels. Therefore, extending the non-empty backend file
1465 * is disabled as well.
1466 */
1467 if (truncate && ftruncate(fd, offset + memory)) {
1468 perror("ftruncate");
1469 }
1470
1471 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1472 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1473 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1474 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1475 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1476 if (area == MAP_FAILED) {
1477 error_setg_errno(errp, errno,
1478 "unable to map backing store for guest RAM");
1479 return NULL;
1480 }
1481
1482 block->fd = fd;
1483 block->fd_offset = offset;
1484 return area;
1485 }
1486 #endif
1487
1488 /* Allocate space within the ram_addr_t space that governs the
1489 * dirty bitmaps.
1490 * Called with the ramlist lock held.
1491 */
find_ram_offset(ram_addr_t size)1492 static ram_addr_t find_ram_offset(ram_addr_t size)
1493 {
1494 RAMBlock *block, *next_block;
1495 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1496
1497 assert(size != 0); /* it would hand out same offset multiple times */
1498
1499 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1500 return 0;
1501 }
1502
1503 RAMBLOCK_FOREACH(block) {
1504 ram_addr_t candidate, next = RAM_ADDR_MAX;
1505
1506 /* Align blocks to start on a 'long' in the bitmap
1507 * which makes the bitmap sync'ing take the fast path.
1508 */
1509 candidate = block->offset + block->max_length;
1510 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1511
1512 /* Search for the closest following block
1513 * and find the gap.
1514 */
1515 RAMBLOCK_FOREACH(next_block) {
1516 if (next_block->offset >= candidate) {
1517 next = MIN(next, next_block->offset);
1518 }
1519 }
1520
1521 /* If it fits remember our place and remember the size
1522 * of gap, but keep going so that we might find a smaller
1523 * gap to fill so avoiding fragmentation.
1524 */
1525 if (next - candidate >= size && next - candidate < mingap) {
1526 offset = candidate;
1527 mingap = next - candidate;
1528 }
1529
1530 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1531 }
1532
1533 if (offset == RAM_ADDR_MAX) {
1534 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1535 (uint64_t)size);
1536 abort();
1537 }
1538
1539 trace_find_ram_offset(size, offset);
1540
1541 return offset;
1542 }
1543
qemu_ram_setup_dump(void * addr,ram_addr_t size)1544 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1545 {
1546 int ret;
1547
1548 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1549 if (!machine_dump_guest_core(current_machine)) {
1550 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1551 if (ret) {
1552 perror("qemu_madvise");
1553 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1554 "but dump-guest-core=off specified\n");
1555 }
1556 }
1557 }
1558
qemu_ram_get_idstr(RAMBlock * rb)1559 const char *qemu_ram_get_idstr(RAMBlock *rb)
1560 {
1561 return rb->idstr;
1562 }
1563
qemu_ram_get_host_addr(RAMBlock * rb)1564 void *qemu_ram_get_host_addr(RAMBlock *rb)
1565 {
1566 return rb->host;
1567 }
1568
qemu_ram_get_offset(RAMBlock * rb)1569 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1570 {
1571 return rb->offset;
1572 }
1573
qemu_ram_get_used_length(RAMBlock * rb)1574 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1575 {
1576 return rb->used_length;
1577 }
1578
qemu_ram_get_max_length(RAMBlock * rb)1579 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1580 {
1581 return rb->max_length;
1582 }
1583
qemu_ram_is_shared(RAMBlock * rb)1584 bool qemu_ram_is_shared(RAMBlock *rb)
1585 {
1586 return rb->flags & RAM_SHARED;
1587 }
1588
qemu_ram_is_noreserve(RAMBlock * rb)1589 bool qemu_ram_is_noreserve(RAMBlock *rb)
1590 {
1591 return rb->flags & RAM_NORESERVE;
1592 }
1593
1594 /* Note: Only set at the start of postcopy */
qemu_ram_is_uf_zeroable(RAMBlock * rb)1595 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1596 {
1597 return rb->flags & RAM_UF_ZEROPAGE;
1598 }
1599
qemu_ram_set_uf_zeroable(RAMBlock * rb)1600 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1601 {
1602 rb->flags |= RAM_UF_ZEROPAGE;
1603 }
1604
qemu_ram_is_migratable(RAMBlock * rb)1605 bool qemu_ram_is_migratable(RAMBlock *rb)
1606 {
1607 return rb->flags & RAM_MIGRATABLE;
1608 }
1609
qemu_ram_set_migratable(RAMBlock * rb)1610 void qemu_ram_set_migratable(RAMBlock *rb)
1611 {
1612 rb->flags |= RAM_MIGRATABLE;
1613 }
1614
qemu_ram_unset_migratable(RAMBlock * rb)1615 void qemu_ram_unset_migratable(RAMBlock *rb)
1616 {
1617 rb->flags &= ~RAM_MIGRATABLE;
1618 }
1619
qemu_ram_is_named_file(RAMBlock * rb)1620 bool qemu_ram_is_named_file(RAMBlock *rb)
1621 {
1622 return rb->flags & RAM_NAMED_FILE;
1623 }
1624
qemu_ram_get_fd(RAMBlock * rb)1625 int qemu_ram_get_fd(RAMBlock *rb)
1626 {
1627 return rb->fd;
1628 }
1629
1630 /* Called with the BQL held. */
qemu_ram_set_idstr(RAMBlock * new_block,const char * name,DeviceState * dev)1631 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1632 {
1633 RAMBlock *block;
1634
1635 assert(new_block);
1636 assert(!new_block->idstr[0]);
1637
1638 if (dev) {
1639 char *id = qdev_get_dev_path(dev);
1640 if (id) {
1641 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1642 g_free(id);
1643 }
1644 }
1645 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1646
1647 RCU_READ_LOCK_GUARD();
1648 RAMBLOCK_FOREACH(block) {
1649 if (block != new_block &&
1650 !strcmp(block->idstr, new_block->idstr)) {
1651 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1652 new_block->idstr);
1653 abort();
1654 }
1655 }
1656 }
1657
1658 /* Called with the BQL held. */
qemu_ram_unset_idstr(RAMBlock * block)1659 void qemu_ram_unset_idstr(RAMBlock *block)
1660 {
1661 /* FIXME: arch_init.c assumes that this is not called throughout
1662 * migration. Ignore the problem since hot-unplug during migration
1663 * does not work anyway.
1664 */
1665 if (block) {
1666 memset(block->idstr, 0, sizeof(block->idstr));
1667 }
1668 }
1669
cpr_name(MemoryRegion * mr)1670 static char *cpr_name(MemoryRegion *mr)
1671 {
1672 const char *mr_name = memory_region_name(mr);
1673 g_autofree char *id = mr->dev ? qdev_get_dev_path(mr->dev) : NULL;
1674
1675 if (id) {
1676 return g_strdup_printf("%s/%s", id, mr_name);
1677 } else {
1678 return g_strdup(mr_name);
1679 }
1680 }
1681
qemu_ram_pagesize(RAMBlock * rb)1682 size_t qemu_ram_pagesize(RAMBlock *rb)
1683 {
1684 return rb->page_size;
1685 }
1686
1687 /* Returns the largest size of page in use */
qemu_ram_pagesize_largest(void)1688 size_t qemu_ram_pagesize_largest(void)
1689 {
1690 RAMBlock *block;
1691 size_t largest = 0;
1692
1693 RAMBLOCK_FOREACH(block) {
1694 largest = MAX(largest, qemu_ram_pagesize(block));
1695 }
1696
1697 return largest;
1698 }
1699
memory_try_enable_merging(void * addr,size_t len)1700 static int memory_try_enable_merging(void *addr, size_t len)
1701 {
1702 if (!machine_mem_merge(current_machine)) {
1703 /* disabled by the user */
1704 return 0;
1705 }
1706
1707 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1708 }
1709
1710 /*
1711 * Resizing RAM while migrating can result in the migration being canceled.
1712 * Care has to be taken if the guest might have already detected the memory.
1713 *
1714 * As memory core doesn't know how is memory accessed, it is up to
1715 * resize callback to update device state and/or add assertions to detect
1716 * misuse, if necessary.
1717 */
qemu_ram_resize(RAMBlock * block,ram_addr_t newsize,Error ** errp)1718 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1719 {
1720 const ram_addr_t oldsize = block->used_length;
1721 const ram_addr_t unaligned_size = newsize;
1722
1723 assert(block);
1724
1725 newsize = TARGET_PAGE_ALIGN(newsize);
1726 newsize = REAL_HOST_PAGE_ALIGN(newsize);
1727
1728 if (block->used_length == newsize) {
1729 /*
1730 * We don't have to resize the ram block (which only knows aligned
1731 * sizes), however, we have to notify if the unaligned size changed.
1732 */
1733 if (unaligned_size != memory_region_size(block->mr)) {
1734 memory_region_set_size(block->mr, unaligned_size);
1735 if (block->resized) {
1736 block->resized(block->idstr, unaligned_size, block->host);
1737 }
1738 }
1739 return 0;
1740 }
1741
1742 if (!(block->flags & RAM_RESIZEABLE)) {
1743 error_setg_errno(errp, EINVAL,
1744 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1745 " != 0x" RAM_ADDR_FMT, block->idstr,
1746 newsize, block->used_length);
1747 return -EINVAL;
1748 }
1749
1750 if (block->max_length < newsize) {
1751 error_setg_errno(errp, EINVAL,
1752 "Size too large: %s: 0x" RAM_ADDR_FMT
1753 " > 0x" RAM_ADDR_FMT, block->idstr,
1754 newsize, block->max_length);
1755 return -EINVAL;
1756 }
1757
1758 /* Notify before modifying the ram block and touching the bitmaps. */
1759 if (block->host) {
1760 ram_block_notify_resize(block->host, oldsize, newsize);
1761 }
1762
1763 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1764 block->used_length = newsize;
1765 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1766 DIRTY_CLIENTS_ALL);
1767 memory_region_set_size(block->mr, unaligned_size);
1768 if (block->resized) {
1769 block->resized(block->idstr, unaligned_size, block->host);
1770 }
1771 return 0;
1772 }
1773
1774 /*
1775 * Trigger sync on the given ram block for range [start, start + length]
1776 * with the backing store if one is available.
1777 * Otherwise no-op.
1778 * @Note: this is supposed to be a synchronous op.
1779 */
qemu_ram_msync(RAMBlock * block,ram_addr_t start,ram_addr_t length)1780 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1781 {
1782 /* The requested range should fit in within the block range */
1783 g_assert((start + length) <= block->used_length);
1784
1785 #ifdef CONFIG_LIBPMEM
1786 /* The lack of support for pmem should not block the sync */
1787 if (ramblock_is_pmem(block)) {
1788 void *addr = ramblock_ptr(block, start);
1789 pmem_persist(addr, length);
1790 return;
1791 }
1792 #endif
1793 if (block->fd >= 0) {
1794 /**
1795 * Case there is no support for PMEM or the memory has not been
1796 * specified as persistent (or is not one) - use the msync.
1797 * Less optimal but still achieves the same goal
1798 */
1799 void *addr = ramblock_ptr(block, start);
1800 if (qemu_msync(addr, length, block->fd)) {
1801 warn_report("%s: failed to sync memory range: start: "
1802 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1803 __func__, start, length);
1804 }
1805 }
1806 }
1807
1808 /* Called with ram_list.mutex held */
dirty_memory_extend(ram_addr_t new_ram_size)1809 static void dirty_memory_extend(ram_addr_t new_ram_size)
1810 {
1811 unsigned int old_num_blocks = ram_list.num_dirty_blocks;
1812 unsigned int new_num_blocks = DIV_ROUND_UP(new_ram_size,
1813 DIRTY_MEMORY_BLOCK_SIZE);
1814 int i;
1815
1816 /* Only need to extend if block count increased */
1817 if (new_num_blocks <= old_num_blocks) {
1818 return;
1819 }
1820
1821 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1822 DirtyMemoryBlocks *old_blocks;
1823 DirtyMemoryBlocks *new_blocks;
1824 int j;
1825
1826 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1827 new_blocks = g_malloc(sizeof(*new_blocks) +
1828 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1829
1830 if (old_num_blocks) {
1831 memcpy(new_blocks->blocks, old_blocks->blocks,
1832 old_num_blocks * sizeof(old_blocks->blocks[0]));
1833 }
1834
1835 for (j = old_num_blocks; j < new_num_blocks; j++) {
1836 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1837 }
1838
1839 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1840
1841 if (old_blocks) {
1842 g_free_rcu(old_blocks, rcu);
1843 }
1844 }
1845
1846 ram_list.num_dirty_blocks = new_num_blocks;
1847 }
1848
ram_block_add(RAMBlock * new_block,Error ** errp)1849 static void ram_block_add(RAMBlock *new_block, Error **errp)
1850 {
1851 const bool noreserve = qemu_ram_is_noreserve(new_block);
1852 const bool shared = qemu_ram_is_shared(new_block);
1853 RAMBlock *block;
1854 RAMBlock *last_block = NULL;
1855 bool free_on_error = false;
1856 ram_addr_t ram_size;
1857 Error *err = NULL;
1858
1859 qemu_mutex_lock_ramlist();
1860 new_block->offset = find_ram_offset(new_block->max_length);
1861
1862 if (!new_block->host) {
1863 if (xen_enabled()) {
1864 xen_ram_alloc(new_block->offset, new_block->max_length,
1865 new_block->mr, &err);
1866 if (err) {
1867 error_propagate(errp, err);
1868 qemu_mutex_unlock_ramlist();
1869 return;
1870 }
1871 } else {
1872 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1873 &new_block->mr->align,
1874 shared, noreserve);
1875 if (!new_block->host) {
1876 error_setg_errno(errp, errno,
1877 "cannot set up guest memory '%s'",
1878 memory_region_name(new_block->mr));
1879 qemu_mutex_unlock_ramlist();
1880 return;
1881 }
1882 memory_try_enable_merging(new_block->host, new_block->max_length);
1883 free_on_error = true;
1884 }
1885 }
1886
1887 if (new_block->flags & RAM_GUEST_MEMFD) {
1888 int ret;
1889
1890 if (!kvm_enabled()) {
1891 error_setg(errp, "cannot set up private guest memory for %s: KVM required",
1892 object_get_typename(OBJECT(current_machine->cgs)));
1893 goto out_free;
1894 }
1895 assert(new_block->guest_memfd < 0);
1896
1897 ret = ram_block_discard_require(true);
1898 if (ret < 0) {
1899 error_setg_errno(errp, -ret,
1900 "cannot set up private guest memory: discard currently blocked");
1901 error_append_hint(errp, "Are you using assigned devices?\n");
1902 goto out_free;
1903 }
1904
1905 new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length,
1906 0, errp);
1907 if (new_block->guest_memfd < 0) {
1908 qemu_mutex_unlock_ramlist();
1909 goto out_free;
1910 }
1911
1912 /*
1913 * Add a specific guest_memfd blocker if a generic one would not be
1914 * added by ram_block_add_cpr_blocker.
1915 */
1916 if (ram_is_cpr_compatible(new_block)) {
1917 error_setg(&new_block->cpr_blocker,
1918 "Memory region %s uses guest_memfd, "
1919 "which is not supported with CPR.",
1920 memory_region_name(new_block->mr));
1921 migrate_add_blocker_modes(&new_block->cpr_blocker, errp,
1922 MIG_MODE_CPR_TRANSFER, -1);
1923 }
1924 }
1925
1926 ram_size = (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS;
1927 dirty_memory_extend(ram_size);
1928 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1929 * QLIST (which has an RCU-friendly variant) does not have insertion at
1930 * tail, so save the last element in last_block.
1931 */
1932 RAMBLOCK_FOREACH(block) {
1933 last_block = block;
1934 if (block->max_length < new_block->max_length) {
1935 break;
1936 }
1937 }
1938 if (block) {
1939 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1940 } else if (last_block) {
1941 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1942 } else { /* list is empty */
1943 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1944 }
1945 ram_list.mru_block = NULL;
1946
1947 /* Write list before version */
1948 smp_wmb();
1949 ram_list.version++;
1950 qemu_mutex_unlock_ramlist();
1951
1952 cpu_physical_memory_set_dirty_range(new_block->offset,
1953 new_block->used_length,
1954 DIRTY_CLIENTS_ALL);
1955
1956 if (new_block->host) {
1957 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1958 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1959 /*
1960 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1961 * Configure it unless the machine is a qtest server, in which case
1962 * KVM is not used and it may be forked (eg for fuzzing purposes).
1963 */
1964 if (!qtest_enabled()) {
1965 qemu_madvise(new_block->host, new_block->max_length,
1966 QEMU_MADV_DONTFORK);
1967 }
1968 ram_block_notify_add(new_block->host, new_block->used_length,
1969 new_block->max_length);
1970 }
1971 return;
1972
1973 out_free:
1974 if (free_on_error) {
1975 qemu_anon_ram_free(new_block->host, new_block->max_length);
1976 new_block->host = NULL;
1977 }
1978 }
1979
1980 #ifdef CONFIG_POSIX
qemu_ram_alloc_from_fd(ram_addr_t size,ram_addr_t max_size,qemu_ram_resize_cb resized,MemoryRegion * mr,uint32_t ram_flags,int fd,off_t offset,bool grow,Error ** errp)1981 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, ram_addr_t max_size,
1982 qemu_ram_resize_cb resized, MemoryRegion *mr,
1983 uint32_t ram_flags, int fd, off_t offset,
1984 bool grow,
1985 Error **errp)
1986 {
1987 ERRP_GUARD();
1988 RAMBlock *new_block;
1989 Error *local_err = NULL;
1990 int64_t file_size, file_align, share_flags;
1991
1992 share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED);
1993 assert(share_flags != (RAM_SHARED | RAM_PRIVATE));
1994 ram_flags &= ~RAM_PRIVATE;
1995
1996 /* Just support these ram flags by now. */
1997 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1998 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
1999 RAM_READONLY_FD | RAM_GUEST_MEMFD |
2000 RAM_RESIZEABLE)) == 0);
2001 assert(max_size >= size);
2002
2003 if (xen_enabled()) {
2004 error_setg(errp, "-mem-path not supported with Xen");
2005 return NULL;
2006 }
2007
2008 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2009 error_setg(errp,
2010 "host lacks kvm mmu notifiers, -mem-path unsupported");
2011 return NULL;
2012 }
2013
2014 size = TARGET_PAGE_ALIGN(size);
2015 size = REAL_HOST_PAGE_ALIGN(size);
2016 max_size = TARGET_PAGE_ALIGN(max_size);
2017 max_size = REAL_HOST_PAGE_ALIGN(max_size);
2018
2019 file_size = get_file_size(fd);
2020 if (file_size && file_size < offset + max_size && !grow) {
2021 error_setg(errp, "%s backing store size 0x%" PRIx64
2022 " is too small for 'size' option 0x" RAM_ADDR_FMT
2023 " plus 'offset' option 0x%" PRIx64,
2024 memory_region_name(mr), file_size, max_size,
2025 (uint64_t)offset);
2026 return NULL;
2027 }
2028
2029 file_align = get_file_align(fd);
2030 if (file_align > 0 && file_align > mr->align) {
2031 error_setg(errp, "backing store align 0x%" PRIx64
2032 " is larger than 'align' option 0x%" PRIx64,
2033 file_align, mr->align);
2034 return NULL;
2035 }
2036
2037 new_block = g_malloc0(sizeof(*new_block));
2038 new_block->mr = mr;
2039 new_block->used_length = size;
2040 new_block->max_length = max_size;
2041 new_block->resized = resized;
2042 new_block->flags = ram_flags;
2043 new_block->guest_memfd = -1;
2044 new_block->host = file_ram_alloc(new_block, max_size, fd,
2045 file_size < offset + max_size,
2046 offset, errp);
2047 if (!new_block->host) {
2048 g_free(new_block);
2049 return NULL;
2050 }
2051
2052 ram_block_add(new_block, &local_err);
2053 if (local_err) {
2054 g_free(new_block);
2055 error_propagate(errp, local_err);
2056 return NULL;
2057 }
2058 return new_block;
2059
2060 }
2061
2062
qemu_ram_alloc_from_file(ram_addr_t size,MemoryRegion * mr,uint32_t ram_flags,const char * mem_path,off_t offset,Error ** errp)2063 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2064 uint32_t ram_flags, const char *mem_path,
2065 off_t offset, Error **errp)
2066 {
2067 int fd;
2068 bool created;
2069 RAMBlock *block;
2070
2071 fd = file_ram_open(mem_path, memory_region_name(mr),
2072 !!(ram_flags & RAM_READONLY_FD), &created);
2073 if (fd < 0) {
2074 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
2075 mem_path);
2076 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
2077 fd == -EACCES) {
2078 /*
2079 * If we can open the file R/O (note: will never create a new file)
2080 * and we are dealing with a private mapping, there are still ways
2081 * to consume such files and get RAM instead of ROM.
2082 */
2083 fd = file_ram_open(mem_path, memory_region_name(mr), true,
2084 &created);
2085 if (fd < 0) {
2086 return NULL;
2087 }
2088 assert(!created);
2089 close(fd);
2090 error_append_hint(errp, "Consider opening the backing store"
2091 " read-only but still creating writable RAM using"
2092 " '-object memory-backend-file,readonly=on,rom=off...'"
2093 " (see \"VM templating\" documentation)\n");
2094 }
2095 return NULL;
2096 }
2097
2098 block = qemu_ram_alloc_from_fd(size, size, NULL, mr, ram_flags, fd, offset,
2099 false, errp);
2100 if (!block) {
2101 if (created) {
2102 unlink(mem_path);
2103 }
2104 close(fd);
2105 return NULL;
2106 }
2107
2108 return block;
2109 }
2110 #endif
2111
2112 #ifdef CONFIG_POSIX
2113 /*
2114 * Create MAP_SHARED RAMBlocks by mmap'ing a file descriptor, so it can be
2115 * shared with another process if CPR is being used. Use memfd if available
2116 * because it has no size limits, else use POSIX shm.
2117 */
qemu_ram_get_shared_fd(const char * name,bool * reused,Error ** errp)2118 static int qemu_ram_get_shared_fd(const char *name, bool *reused, Error **errp)
2119 {
2120 int fd = cpr_find_fd(name, 0);
2121
2122 if (fd >= 0) {
2123 *reused = true;
2124 return fd;
2125 }
2126
2127 if (qemu_memfd_check(0)) {
2128 fd = qemu_memfd_create(name, 0, 0, 0, 0, errp);
2129 } else {
2130 fd = qemu_shm_alloc(0, errp);
2131 }
2132
2133 if (fd >= 0) {
2134 cpr_save_fd(name, 0, fd);
2135 }
2136 *reused = false;
2137 return fd;
2138 }
2139 #endif
2140
2141 static
qemu_ram_alloc_internal(ram_addr_t size,ram_addr_t max_size,qemu_ram_resize_cb resized,void * host,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2142 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2143 qemu_ram_resize_cb resized,
2144 void *host, uint32_t ram_flags,
2145 MemoryRegion *mr, Error **errp)
2146 {
2147 RAMBlock *new_block;
2148 Error *local_err = NULL;
2149 int align, share_flags;
2150
2151 share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED);
2152 assert(share_flags != (RAM_SHARED | RAM_PRIVATE));
2153 ram_flags &= ~RAM_PRIVATE;
2154
2155 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2156 RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2157 assert(!host ^ (ram_flags & RAM_PREALLOC));
2158 assert(max_size >= size);
2159
2160 #ifdef CONFIG_POSIX /* ignore RAM_SHARED for Windows */
2161 if (!host) {
2162 if (!share_flags && current_machine->aux_ram_share) {
2163 ram_flags |= RAM_SHARED;
2164 }
2165 if (ram_flags & RAM_SHARED) {
2166 bool reused;
2167 g_autofree char *name = cpr_name(mr);
2168 int fd = qemu_ram_get_shared_fd(name, &reused, errp);
2169
2170 if (fd < 0) {
2171 return NULL;
2172 }
2173
2174 /* Use same alignment as qemu_anon_ram_alloc */
2175 mr->align = QEMU_VMALLOC_ALIGN;
2176
2177 /*
2178 * This can fail if the shm mount size is too small, or alloc from
2179 * fd is not supported, but previous QEMU versions that called
2180 * qemu_anon_ram_alloc for anonymous shared memory could have
2181 * succeeded. Quietly fail and fall back.
2182 *
2183 * After cpr-transfer, new QEMU could create a memory region
2184 * with a larger max size than old, so pass reused to grow the
2185 * region if necessary. The extra space will be usable after a
2186 * guest reset.
2187 */
2188 new_block = qemu_ram_alloc_from_fd(size, max_size, resized, mr,
2189 ram_flags, fd, 0, reused, NULL);
2190 if (new_block) {
2191 trace_qemu_ram_alloc_shared(name, new_block->used_length,
2192 new_block->max_length, fd,
2193 new_block->host);
2194 return new_block;
2195 }
2196
2197 cpr_delete_fd(name, 0);
2198 close(fd);
2199 /* fall back to anon allocation */
2200 }
2201 }
2202 #endif
2203
2204 align = qemu_real_host_page_size();
2205 align = MAX(align, TARGET_PAGE_SIZE);
2206 size = ROUND_UP(size, align);
2207 max_size = ROUND_UP(max_size, align);
2208
2209 new_block = g_malloc0(sizeof(*new_block));
2210 new_block->mr = mr;
2211 new_block->resized = resized;
2212 new_block->used_length = size;
2213 new_block->max_length = max_size;
2214 new_block->fd = -1;
2215 new_block->guest_memfd = -1;
2216 new_block->page_size = qemu_real_host_page_size();
2217 new_block->host = host;
2218 new_block->flags = ram_flags;
2219 ram_block_add(new_block, &local_err);
2220 if (local_err) {
2221 g_free(new_block);
2222 error_propagate(errp, local_err);
2223 return NULL;
2224 }
2225 return new_block;
2226 }
2227
qemu_ram_alloc_from_ptr(ram_addr_t size,void * host,MemoryRegion * mr,Error ** errp)2228 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2229 MemoryRegion *mr, Error **errp)
2230 {
2231 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2232 errp);
2233 }
2234
qemu_ram_alloc(ram_addr_t size,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2235 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2236 MemoryRegion *mr, Error **errp)
2237 {
2238 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD |
2239 RAM_PRIVATE)) == 0);
2240 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2241 }
2242
qemu_ram_alloc_resizeable(ram_addr_t size,ram_addr_t maxsz,qemu_ram_resize_cb resized,MemoryRegion * mr,Error ** errp)2243 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2244 qemu_ram_resize_cb resized,
2245 MemoryRegion *mr, Error **errp)
2246 {
2247 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2248 RAM_RESIZEABLE, mr, errp);
2249 }
2250
reclaim_ramblock(RAMBlock * block)2251 static void reclaim_ramblock(RAMBlock *block)
2252 {
2253 if (block->flags & RAM_PREALLOC) {
2254 ;
2255 } else if (xen_enabled()) {
2256 xen_invalidate_map_cache_entry(block->host);
2257 #ifndef _WIN32
2258 } else if (block->fd >= 0) {
2259 qemu_ram_munmap(block->fd, block->host, block->max_length);
2260 close(block->fd);
2261 #endif
2262 } else {
2263 qemu_anon_ram_free(block->host, block->max_length);
2264 }
2265
2266 if (block->guest_memfd >= 0) {
2267 close(block->guest_memfd);
2268 ram_block_discard_require(false);
2269 }
2270
2271 g_free(block);
2272 }
2273
qemu_ram_free(RAMBlock * block)2274 void qemu_ram_free(RAMBlock *block)
2275 {
2276 g_autofree char *name = NULL;
2277
2278 if (!block) {
2279 return;
2280 }
2281
2282 if (block->host) {
2283 ram_block_notify_remove(block->host, block->used_length,
2284 block->max_length);
2285 }
2286
2287 qemu_mutex_lock_ramlist();
2288 name = cpr_name(block->mr);
2289 cpr_delete_fd(name, 0);
2290 QLIST_REMOVE_RCU(block, next);
2291 ram_list.mru_block = NULL;
2292 /* Write list before version */
2293 smp_wmb();
2294 ram_list.version++;
2295 call_rcu(block, reclaim_ramblock, rcu);
2296 qemu_mutex_unlock_ramlist();
2297 }
2298
2299 #ifndef _WIN32
2300 /* Simply remap the given VM memory location from start to start+length */
qemu_ram_remap_mmap(RAMBlock * block,uint64_t start,size_t length)2301 static int qemu_ram_remap_mmap(RAMBlock *block, uint64_t start, size_t length)
2302 {
2303 int flags, prot;
2304 void *area;
2305 void *host_startaddr = block->host + start;
2306
2307 assert(block->fd < 0);
2308 flags = MAP_FIXED | MAP_ANONYMOUS;
2309 flags |= block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE;
2310 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2311 prot = PROT_READ;
2312 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2313 area = mmap(host_startaddr, length, prot, flags, -1, 0);
2314 return area != host_startaddr ? -errno : 0;
2315 }
2316
2317 /*
2318 * qemu_ram_remap - remap a single RAM page
2319 *
2320 * @addr: address in ram_addr_t address space.
2321 *
2322 * This function will try remapping a single page of guest RAM identified by
2323 * @addr, essentially discarding memory to recover from previously poisoned
2324 * memory (MCE). The page size depends on the RAMBlock (i.e., hugetlb). @addr
2325 * does not have to point at the start of the page.
2326 *
2327 * This function is only to be used during system resets; it will kill the
2328 * VM if remapping failed.
2329 */
qemu_ram_remap(ram_addr_t addr)2330 void qemu_ram_remap(ram_addr_t addr)
2331 {
2332 RAMBlock *block;
2333 uint64_t offset;
2334 void *vaddr;
2335 size_t page_size;
2336
2337 RAMBLOCK_FOREACH(block) {
2338 offset = addr - block->offset;
2339 if (offset < block->max_length) {
2340 /* Respect the pagesize of our RAMBlock */
2341 page_size = qemu_ram_pagesize(block);
2342 offset = QEMU_ALIGN_DOWN(offset, page_size);
2343
2344 vaddr = ramblock_ptr(block, offset);
2345 if (block->flags & RAM_PREALLOC) {
2346 ;
2347 } else if (xen_enabled()) {
2348 abort();
2349 } else {
2350 if (ram_block_discard_range(block, offset, page_size) != 0) {
2351 /*
2352 * Fall back to using mmap() only for anonymous mapping,
2353 * as if a backing file is associated we may not be able
2354 * to recover the memory in all cases.
2355 * So don't take the risk of using only mmap and fail now.
2356 */
2357 if (block->fd >= 0) {
2358 error_report("Could not remap RAM %s:%" PRIx64 "+%"
2359 PRIx64 " +%zx", block->idstr, offset,
2360 block->fd_offset, page_size);
2361 exit(1);
2362 }
2363 if (qemu_ram_remap_mmap(block, offset, page_size) != 0) {
2364 error_report("Could not remap RAM %s:%" PRIx64 " +%zx",
2365 block->idstr, offset, page_size);
2366 exit(1);
2367 }
2368 }
2369 memory_try_enable_merging(vaddr, page_size);
2370 qemu_ram_setup_dump(vaddr, page_size);
2371 }
2372
2373 break;
2374 }
2375 }
2376 }
2377 #endif /* !_WIN32 */
2378
2379 /*
2380 * Return a host pointer to guest's ram.
2381 * For Xen, foreign mappings get created if they don't already exist.
2382 *
2383 * @block: block for the RAM to lookup (optional and may be NULL).
2384 * @addr: address within the memory region.
2385 * @size: pointer to requested size (optional and may be NULL).
2386 * size may get modified and return a value smaller than
2387 * what was requested.
2388 * @lock: wether to lock the mapping in xen-mapcache until invalidated.
2389 * @is_write: hint wether to map RW or RO in the xen-mapcache.
2390 * (optional and may always be set to true).
2391 *
2392 * Called within RCU critical section.
2393 */
qemu_ram_ptr_length(RAMBlock * block,ram_addr_t addr,hwaddr * size,bool lock,bool is_write)2394 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr,
2395 hwaddr *size, bool lock,
2396 bool is_write)
2397 {
2398 hwaddr len = 0;
2399
2400 if (size && *size == 0) {
2401 return NULL;
2402 }
2403
2404 if (block == NULL) {
2405 block = qemu_get_ram_block(addr);
2406 addr -= block->offset;
2407 }
2408 if (size) {
2409 *size = MIN(*size, block->max_length - addr);
2410 len = *size;
2411 }
2412
2413 if (xen_enabled() && block->host == NULL) {
2414 /* We need to check if the requested address is in the RAM
2415 * because we don't want to map the entire memory in QEMU.
2416 * In that case just map the requested area.
2417 */
2418 if (xen_mr_is_memory(block->mr)) {
2419 return xen_map_cache(block->mr, block->offset + addr,
2420 len, block->offset,
2421 lock, lock, is_write);
2422 }
2423
2424 block->host = xen_map_cache(block->mr, block->offset,
2425 block->max_length,
2426 block->offset,
2427 1, lock, is_write);
2428 }
2429
2430 return ramblock_ptr(block, addr);
2431 }
2432
2433 /*
2434 * Return a host pointer to ram allocated with qemu_ram_alloc.
2435 * This should not be used for general purpose DMA. Use address_space_map
2436 * or address_space_rw instead. For local memory (e.g. video ram) that the
2437 * device owns, use memory_region_get_ram_ptr.
2438 *
2439 * Called within RCU critical section.
2440 */
qemu_map_ram_ptr(RAMBlock * ram_block,ram_addr_t addr)2441 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2442 {
2443 return qemu_ram_ptr_length(ram_block, addr, NULL, false, true);
2444 }
2445
2446 /* Return the offset of a hostpointer within a ramblock */
qemu_ram_block_host_offset(RAMBlock * rb,void * host)2447 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2448 {
2449 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2450 assert((uintptr_t)host >= (uintptr_t)rb->host);
2451 assert(res < rb->max_length);
2452
2453 return res;
2454 }
2455
qemu_ram_block_from_host(void * ptr,bool round_offset,ram_addr_t * offset)2456 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2457 ram_addr_t *offset)
2458 {
2459 RAMBlock *block;
2460 uint8_t *host = ptr;
2461
2462 if (xen_enabled()) {
2463 ram_addr_t ram_addr;
2464 RCU_READ_LOCK_GUARD();
2465 ram_addr = xen_ram_addr_from_mapcache(ptr);
2466 if (ram_addr == RAM_ADDR_INVALID) {
2467 return NULL;
2468 }
2469
2470 block = qemu_get_ram_block(ram_addr);
2471 if (block) {
2472 *offset = ram_addr - block->offset;
2473 }
2474 return block;
2475 }
2476
2477 RCU_READ_LOCK_GUARD();
2478 block = qatomic_rcu_read(&ram_list.mru_block);
2479 if (block && block->host && host - block->host < block->max_length) {
2480 goto found;
2481 }
2482
2483 RAMBLOCK_FOREACH(block) {
2484 /* This case append when the block is not mapped. */
2485 if (block->host == NULL) {
2486 continue;
2487 }
2488 if (host - block->host < block->max_length) {
2489 goto found;
2490 }
2491 }
2492
2493 return NULL;
2494
2495 found:
2496 *offset = (host - block->host);
2497 if (round_offset) {
2498 *offset &= TARGET_PAGE_MASK;
2499 }
2500 return block;
2501 }
2502
2503 /*
2504 * Finds the named RAMBlock
2505 *
2506 * name: The name of RAMBlock to find
2507 *
2508 * Returns: RAMBlock (or NULL if not found)
2509 */
qemu_ram_block_by_name(const char * name)2510 RAMBlock *qemu_ram_block_by_name(const char *name)
2511 {
2512 RAMBlock *block;
2513
2514 RAMBLOCK_FOREACH(block) {
2515 if (!strcmp(name, block->idstr)) {
2516 return block;
2517 }
2518 }
2519
2520 return NULL;
2521 }
2522
2523 /*
2524 * Some of the system routines need to translate from a host pointer
2525 * (typically a TLB entry) back to a ram offset.
2526 */
qemu_ram_addr_from_host(void * ptr)2527 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2528 {
2529 RAMBlock *block;
2530 ram_addr_t offset;
2531
2532 block = qemu_ram_block_from_host(ptr, false, &offset);
2533 if (!block) {
2534 return RAM_ADDR_INVALID;
2535 }
2536
2537 return block->offset + offset;
2538 }
2539
qemu_ram_addr_from_host_nofail(void * ptr)2540 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2541 {
2542 ram_addr_t ram_addr;
2543
2544 ram_addr = qemu_ram_addr_from_host(ptr);
2545 if (ram_addr == RAM_ADDR_INVALID) {
2546 error_report("Bad ram pointer %p", ptr);
2547 abort();
2548 }
2549 return ram_addr;
2550 }
2551
2552 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2553 MemTxAttrs attrs, void *buf, hwaddr len);
2554 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2555 const void *buf, hwaddr len);
2556 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2557 bool is_write, MemTxAttrs attrs);
2558
subpage_read(void * opaque,hwaddr addr,uint64_t * data,unsigned len,MemTxAttrs attrs)2559 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2560 unsigned len, MemTxAttrs attrs)
2561 {
2562 subpage_t *subpage = opaque;
2563 uint8_t buf[8];
2564 MemTxResult res;
2565
2566 #if defined(DEBUG_SUBPAGE)
2567 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2568 subpage, len, addr);
2569 #endif
2570 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2571 if (res) {
2572 return res;
2573 }
2574 *data = ldn_p(buf, len);
2575 return MEMTX_OK;
2576 }
2577
subpage_write(void * opaque,hwaddr addr,uint64_t value,unsigned len,MemTxAttrs attrs)2578 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2579 uint64_t value, unsigned len, MemTxAttrs attrs)
2580 {
2581 subpage_t *subpage = opaque;
2582 uint8_t buf[8];
2583
2584 #if defined(DEBUG_SUBPAGE)
2585 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2586 " value %"PRIx64"\n",
2587 __func__, subpage, len, addr, value);
2588 #endif
2589 stn_p(buf, len, value);
2590 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2591 }
2592
subpage_accepts(void * opaque,hwaddr addr,unsigned len,bool is_write,MemTxAttrs attrs)2593 static bool subpage_accepts(void *opaque, hwaddr addr,
2594 unsigned len, bool is_write,
2595 MemTxAttrs attrs)
2596 {
2597 subpage_t *subpage = opaque;
2598 #if defined(DEBUG_SUBPAGE)
2599 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2600 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2601 #endif
2602
2603 return flatview_access_valid(subpage->fv, addr + subpage->base,
2604 len, is_write, attrs);
2605 }
2606
2607 static const MemoryRegionOps subpage_ops = {
2608 .read_with_attrs = subpage_read,
2609 .write_with_attrs = subpage_write,
2610 .impl.min_access_size = 1,
2611 .impl.max_access_size = 8,
2612 .valid.min_access_size = 1,
2613 .valid.max_access_size = 8,
2614 .valid.accepts = subpage_accepts,
2615 .endianness = DEVICE_NATIVE_ENDIAN,
2616 };
2617
subpage_register(subpage_t * mmio,uint32_t start,uint32_t end,uint16_t section)2618 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2619 uint16_t section)
2620 {
2621 int idx, eidx;
2622
2623 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2624 return -1;
2625 idx = SUBPAGE_IDX(start);
2626 eidx = SUBPAGE_IDX(end);
2627 #if defined(DEBUG_SUBPAGE)
2628 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2629 __func__, mmio, start, end, idx, eidx, section);
2630 #endif
2631 for (; idx <= eidx; idx++) {
2632 mmio->sub_section[idx] = section;
2633 }
2634
2635 return 0;
2636 }
2637
subpage_init(FlatView * fv,hwaddr base)2638 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2639 {
2640 subpage_t *mmio;
2641
2642 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2643 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2644 mmio->fv = fv;
2645 mmio->base = base;
2646 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2647 NULL, TARGET_PAGE_SIZE);
2648 mmio->iomem.subpage = true;
2649 #if defined(DEBUG_SUBPAGE)
2650 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2651 mmio, base, TARGET_PAGE_SIZE);
2652 #endif
2653
2654 return mmio;
2655 }
2656
dummy_section(PhysPageMap * map,FlatView * fv,MemoryRegion * mr)2657 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2658 {
2659 assert(fv);
2660 MemoryRegionSection section = {
2661 .fv = fv,
2662 .mr = mr,
2663 .offset_within_address_space = 0,
2664 .offset_within_region = 0,
2665 .size = int128_2_64(),
2666 };
2667
2668 return phys_section_add(map, §ion);
2669 }
2670
iotlb_to_section(CPUState * cpu,hwaddr index,MemTxAttrs attrs)2671 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2672 hwaddr index, MemTxAttrs attrs)
2673 {
2674 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2675 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2676 AddressSpaceDispatch *d = cpuas->memory_dispatch;
2677 int section_index = index & ~TARGET_PAGE_MASK;
2678 MemoryRegionSection *ret;
2679
2680 assert(section_index < d->map.sections_nb);
2681 ret = d->map.sections + section_index;
2682 assert(ret->mr);
2683 assert(ret->mr->ops);
2684
2685 return ret;
2686 }
2687
io_mem_init(void)2688 static void io_mem_init(void)
2689 {
2690 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2691 NULL, UINT64_MAX);
2692 }
2693
address_space_dispatch_new(FlatView * fv)2694 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2695 {
2696 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2697 uint16_t n;
2698
2699 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2700 assert(n == PHYS_SECTION_UNASSIGNED);
2701
2702 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2703
2704 return d;
2705 }
2706
address_space_dispatch_free(AddressSpaceDispatch * d)2707 void address_space_dispatch_free(AddressSpaceDispatch *d)
2708 {
2709 phys_sections_free(&d->map);
2710 g_free(d);
2711 }
2712
do_nothing(CPUState * cpu,run_on_cpu_data d)2713 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2714 {
2715 }
2716
tcg_log_global_after_sync(MemoryListener * listener)2717 static void tcg_log_global_after_sync(MemoryListener *listener)
2718 {
2719 CPUAddressSpace *cpuas;
2720
2721 /* Wait for the CPU to end the current TB. This avoids the following
2722 * incorrect race:
2723 *
2724 * vCPU migration
2725 * ---------------------- -------------------------
2726 * TLB check -> slow path
2727 * notdirty_mem_write
2728 * write to RAM
2729 * mark dirty
2730 * clear dirty flag
2731 * TLB check -> fast path
2732 * read memory
2733 * write to RAM
2734 *
2735 * by pushing the migration thread's memory read after the vCPU thread has
2736 * written the memory.
2737 */
2738 if (replay_mode == REPLAY_MODE_NONE) {
2739 /*
2740 * VGA can make calls to this function while updating the screen.
2741 * In record/replay mode this causes a deadlock, because
2742 * run_on_cpu waits for rr mutex. Therefore no races are possible
2743 * in this case and no need for making run_on_cpu when
2744 * record/replay is enabled.
2745 */
2746 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2747 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2748 }
2749 }
2750
tcg_commit_cpu(CPUState * cpu,run_on_cpu_data data)2751 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2752 {
2753 CPUAddressSpace *cpuas = data.host_ptr;
2754
2755 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2756 tlb_flush(cpu);
2757 }
2758
tcg_commit(MemoryListener * listener)2759 static void tcg_commit(MemoryListener *listener)
2760 {
2761 CPUAddressSpace *cpuas;
2762 CPUState *cpu;
2763
2764 assert(tcg_enabled());
2765 /* since each CPU stores ram addresses in its TLB cache, we must
2766 reset the modified entries */
2767 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2768 cpu = cpuas->cpu;
2769
2770 /*
2771 * Defer changes to as->memory_dispatch until the cpu is quiescent.
2772 * Otherwise we race between (1) other cpu threads and (2) ongoing
2773 * i/o for the current cpu thread, with data cached by mmu_lookup().
2774 *
2775 * In addition, queueing the work function will kick the cpu back to
2776 * the main loop, which will end the RCU critical section and reclaim
2777 * the memory data structures.
2778 *
2779 * That said, the listener is also called during realize, before
2780 * all of the tcg machinery for run-on is initialized: thus halt_cond.
2781 */
2782 if (cpu->halt_cond) {
2783 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2784 } else {
2785 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2786 }
2787 }
2788
memory_map_init(void)2789 static void memory_map_init(void)
2790 {
2791 system_memory = g_malloc(sizeof(*system_memory));
2792
2793 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2794 address_space_init(&address_space_memory, system_memory, "memory");
2795
2796 system_io = g_malloc(sizeof(*system_io));
2797 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2798 65536);
2799 address_space_init(&address_space_io, system_io, "I/O");
2800 }
2801
get_system_memory(void)2802 MemoryRegion *get_system_memory(void)
2803 {
2804 return system_memory;
2805 }
2806
get_system_io(void)2807 MemoryRegion *get_system_io(void)
2808 {
2809 return system_io;
2810 }
2811
invalidate_and_set_dirty(MemoryRegion * mr,hwaddr addr,hwaddr length)2812 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2813 hwaddr length)
2814 {
2815 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2816 ram_addr_t ramaddr = memory_region_get_ram_addr(mr);
2817
2818 /* We know we're only called for RAM MemoryRegions */
2819 assert(ramaddr != RAM_ADDR_INVALID);
2820 addr += ramaddr;
2821
2822 /* No early return if dirty_log_mask is or becomes 0, because
2823 * cpu_physical_memory_set_dirty_range will still call
2824 * xen_modified_memory.
2825 */
2826 if (dirty_log_mask) {
2827 dirty_log_mask =
2828 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2829 }
2830 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2831 assert(tcg_enabled());
2832 tb_invalidate_phys_range(addr, addr + length - 1);
2833 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2834 }
2835 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2836 }
2837
memory_region_flush_rom_device(MemoryRegion * mr,hwaddr addr,hwaddr size)2838 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2839 {
2840 /*
2841 * In principle this function would work on other memory region types too,
2842 * but the ROM device use case is the only one where this operation is
2843 * necessary. Other memory regions should use the
2844 * address_space_read/write() APIs.
2845 */
2846 assert(memory_region_is_romd(mr));
2847
2848 invalidate_and_set_dirty(mr, addr, size);
2849 }
2850
memory_access_size(MemoryRegion * mr,unsigned l,hwaddr addr)2851 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2852 {
2853 unsigned access_size_max = mr->ops->valid.max_access_size;
2854
2855 /* Regions are assumed to support 1-4 byte accesses unless
2856 otherwise specified. */
2857 if (access_size_max == 0) {
2858 access_size_max = 4;
2859 }
2860
2861 /* Bound the maximum access by the alignment of the address. */
2862 if (!mr->ops->impl.unaligned) {
2863 unsigned align_size_max = addr & -addr;
2864 if (align_size_max != 0 && align_size_max < access_size_max) {
2865 access_size_max = align_size_max;
2866 }
2867 }
2868
2869 /* Don't attempt accesses larger than the maximum. */
2870 if (l > access_size_max) {
2871 l = access_size_max;
2872 }
2873 l = pow2floor(l);
2874
2875 return l;
2876 }
2877
prepare_mmio_access(MemoryRegion * mr)2878 bool prepare_mmio_access(MemoryRegion *mr)
2879 {
2880 bool release_lock = false;
2881
2882 if (!bql_locked()) {
2883 bql_lock();
2884 release_lock = true;
2885 }
2886 if (mr->flush_coalesced_mmio) {
2887 qemu_flush_coalesced_mmio_buffer();
2888 }
2889
2890 return release_lock;
2891 }
2892
2893 /**
2894 * flatview_access_allowed
2895 * @mr: #MemoryRegion to be accessed
2896 * @attrs: memory transaction attributes
2897 * @addr: address within that memory region
2898 * @len: the number of bytes to access
2899 *
2900 * Check if a memory transaction is allowed.
2901 *
2902 * Returns: true if transaction is allowed, false if denied.
2903 */
flatview_access_allowed(MemoryRegion * mr,MemTxAttrs attrs,hwaddr addr,hwaddr len)2904 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2905 hwaddr addr, hwaddr len)
2906 {
2907 if (likely(!attrs.memory)) {
2908 return true;
2909 }
2910 if (memory_region_is_ram(mr)) {
2911 return true;
2912 }
2913 qemu_log_mask(LOG_INVALID_MEM,
2914 "Invalid access to non-RAM device at "
2915 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2916 "region '%s'\n", addr, len, memory_region_name(mr));
2917 return false;
2918 }
2919
flatview_write_continue_step(MemTxAttrs attrs,const uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)2920 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs,
2921 const uint8_t *buf,
2922 hwaddr len, hwaddr mr_addr,
2923 hwaddr *l, MemoryRegion *mr)
2924 {
2925 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2926 return MEMTX_ACCESS_ERROR;
2927 }
2928
2929 if (!memory_access_is_direct(mr, true, attrs)) {
2930 uint64_t val;
2931 MemTxResult result;
2932 bool release_lock = prepare_mmio_access(mr);
2933
2934 *l = memory_access_size(mr, *l, mr_addr);
2935 /*
2936 * XXX: could force current_cpu to NULL to avoid
2937 * potential bugs
2938 */
2939
2940 /*
2941 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2942 * the buffer by following ldn_he_p().
2943 */
2944 #ifdef QEMU_STATIC_ANALYSIS
2945 assert((*l == 1 && len >= 1) ||
2946 (*l == 2 && len >= 2) ||
2947 (*l == 4 && len >= 4) ||
2948 (*l == 8 && len >= 8));
2949 #endif
2950 val = ldn_he_p(buf, *l);
2951 result = memory_region_dispatch_write(mr, mr_addr, val,
2952 size_memop(*l), attrs);
2953 if (release_lock) {
2954 bql_unlock();
2955 }
2956
2957 return result;
2958 } else {
2959 /* RAM case */
2960 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2961 false, true);
2962
2963 memmove(ram_ptr, buf, *l);
2964 invalidate_and_set_dirty(mr, mr_addr, *l);
2965
2966 return MEMTX_OK;
2967 }
2968 }
2969
2970 /* Called within RCU critical section. */
flatview_write_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)2971 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2972 MemTxAttrs attrs,
2973 const void *ptr,
2974 hwaddr len, hwaddr mr_addr,
2975 hwaddr l, MemoryRegion *mr)
2976 {
2977 MemTxResult result = MEMTX_OK;
2978 const uint8_t *buf = ptr;
2979
2980 for (;;) {
2981 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
2982 mr);
2983
2984 len -= l;
2985 buf += l;
2986 addr += l;
2987
2988 if (!len) {
2989 break;
2990 }
2991
2992 l = len;
2993 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2994 }
2995
2996 return result;
2997 }
2998
2999 /* Called from RCU critical section. */
flatview_write(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3000 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3001 const void *buf, hwaddr len)
3002 {
3003 hwaddr l;
3004 hwaddr mr_addr;
3005 MemoryRegion *mr;
3006
3007 l = len;
3008 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
3009 if (!flatview_access_allowed(mr, attrs, addr, len)) {
3010 return MEMTX_ACCESS_ERROR;
3011 }
3012 return flatview_write_continue(fv, addr, attrs, buf, len,
3013 mr_addr, l, mr);
3014 }
3015
flatview_read_continue_step(MemTxAttrs attrs,uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)3016 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf,
3017 hwaddr len, hwaddr mr_addr,
3018 hwaddr *l,
3019 MemoryRegion *mr)
3020 {
3021 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
3022 return MEMTX_ACCESS_ERROR;
3023 }
3024
3025 if (!memory_access_is_direct(mr, false, attrs)) {
3026 /* I/O case */
3027 uint64_t val;
3028 MemTxResult result;
3029 bool release_lock = prepare_mmio_access(mr);
3030
3031 *l = memory_access_size(mr, *l, mr_addr);
3032 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l),
3033 attrs);
3034
3035 /*
3036 * Assure Coverity (and ourselves) that we are not going to OVERRUN
3037 * the buffer by following stn_he_p().
3038 */
3039 #ifdef QEMU_STATIC_ANALYSIS
3040 assert((*l == 1 && len >= 1) ||
3041 (*l == 2 && len >= 2) ||
3042 (*l == 4 && len >= 4) ||
3043 (*l == 8 && len >= 8));
3044 #endif
3045 stn_he_p(buf, *l, val);
3046
3047 if (release_lock) {
3048 bql_unlock();
3049 }
3050 return result;
3051 } else {
3052 /* RAM case */
3053 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
3054 false, false);
3055
3056 memcpy(buf, ram_ptr, *l);
3057
3058 return MEMTX_OK;
3059 }
3060 }
3061
3062 /* Called within RCU critical section. */
flatview_read_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3063 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3064 MemTxAttrs attrs, void *ptr,
3065 hwaddr len, hwaddr mr_addr, hwaddr l,
3066 MemoryRegion *mr)
3067 {
3068 MemTxResult result = MEMTX_OK;
3069 uint8_t *buf = ptr;
3070
3071 fuzz_dma_read_cb(addr, len, mr);
3072 for (;;) {
3073 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3074
3075 len -= l;
3076 buf += l;
3077 addr += l;
3078
3079 if (!len) {
3080 break;
3081 }
3082
3083 l = len;
3084 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
3085 }
3086
3087 return result;
3088 }
3089
3090 /* Called from RCU critical section. */
flatview_read(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)3091 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3092 MemTxAttrs attrs, void *buf, hwaddr len)
3093 {
3094 hwaddr l;
3095 hwaddr mr_addr;
3096 MemoryRegion *mr;
3097
3098 l = len;
3099 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
3100 if (!flatview_access_allowed(mr, attrs, addr, len)) {
3101 return MEMTX_ACCESS_ERROR;
3102 }
3103 return flatview_read_continue(fv, addr, attrs, buf, len,
3104 mr_addr, l, mr);
3105 }
3106
address_space_read_full(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)3107 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3108 MemTxAttrs attrs, void *buf, hwaddr len)
3109 {
3110 MemTxResult result = MEMTX_OK;
3111 FlatView *fv;
3112
3113 if (len > 0) {
3114 RCU_READ_LOCK_GUARD();
3115 fv = address_space_to_flatview(as);
3116 result = flatview_read(fv, addr, attrs, buf, len);
3117 }
3118
3119 return result;
3120 }
3121
address_space_write(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3122 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3123 MemTxAttrs attrs,
3124 const void *buf, hwaddr len)
3125 {
3126 MemTxResult result = MEMTX_OK;
3127 FlatView *fv;
3128
3129 if (len > 0) {
3130 RCU_READ_LOCK_GUARD();
3131 fv = address_space_to_flatview(as);
3132 result = flatview_write(fv, addr, attrs, buf, len);
3133 }
3134
3135 return result;
3136 }
3137
address_space_rw(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len,bool is_write)3138 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3139 void *buf, hwaddr len, bool is_write)
3140 {
3141 if (is_write) {
3142 return address_space_write(as, addr, attrs, buf, len);
3143 } else {
3144 return address_space_read_full(as, addr, attrs, buf, len);
3145 }
3146 }
3147
address_space_set(AddressSpace * as,hwaddr addr,uint8_t c,hwaddr len,MemTxAttrs attrs)3148 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3149 uint8_t c, hwaddr len, MemTxAttrs attrs)
3150 {
3151 #define FILLBUF_SIZE 512
3152 uint8_t fillbuf[FILLBUF_SIZE];
3153 int l;
3154 MemTxResult error = MEMTX_OK;
3155
3156 memset(fillbuf, c, FILLBUF_SIZE);
3157 while (len > 0) {
3158 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
3159 error |= address_space_write(as, addr, attrs, fillbuf, l);
3160 len -= l;
3161 addr += l;
3162 }
3163
3164 return error;
3165 }
3166
cpu_physical_memory_rw(hwaddr addr,void * buf,hwaddr len,bool is_write)3167 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3168 hwaddr len, bool is_write)
3169 {
3170 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3171 buf, len, is_write);
3172 }
3173
3174 enum write_rom_type {
3175 WRITE_DATA,
3176 FLUSH_CACHE,
3177 };
3178
address_space_write_rom_internal(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,enum write_rom_type type)3179 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3180 hwaddr addr,
3181 MemTxAttrs attrs,
3182 const void *ptr,
3183 hwaddr len,
3184 enum write_rom_type type)
3185 {
3186 hwaddr l;
3187 uint8_t *ram_ptr;
3188 hwaddr addr1;
3189 MemoryRegion *mr;
3190 const uint8_t *buf = ptr;
3191
3192 RCU_READ_LOCK_GUARD();
3193 while (len > 0) {
3194 l = len;
3195 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3196
3197 if (!memory_region_supports_direct_access(mr)) {
3198 l = memory_access_size(mr, l, addr1);
3199 } else {
3200 /* ROM/RAM case */
3201 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3202 switch (type) {
3203 case WRITE_DATA:
3204 memcpy(ram_ptr, buf, l);
3205 invalidate_and_set_dirty(mr, addr1, l);
3206 break;
3207 case FLUSH_CACHE:
3208 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3209 break;
3210 }
3211 }
3212 len -= l;
3213 buf += l;
3214 addr += l;
3215 }
3216 return MEMTX_OK;
3217 }
3218
3219 /* used for ROM loading : can write in RAM and ROM */
address_space_write_rom(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3220 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3221 MemTxAttrs attrs,
3222 const void *buf, hwaddr len)
3223 {
3224 return address_space_write_rom_internal(as, addr, attrs,
3225 buf, len, WRITE_DATA);
3226 }
3227
cpu_flush_icache_range(hwaddr start,hwaddr len)3228 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3229 {
3230 /*
3231 * This function should do the same thing as an icache flush that was
3232 * triggered from within the guest. For TCG we are always cache coherent,
3233 * so there is no need to flush anything. For KVM / Xen we need to flush
3234 * the host's instruction cache at least.
3235 */
3236 if (tcg_enabled()) {
3237 return;
3238 }
3239
3240 address_space_write_rom_internal(&address_space_memory,
3241 start, MEMTXATTRS_UNSPECIFIED,
3242 NULL, len, FLUSH_CACHE);
3243 }
3244
3245 /*
3246 * A magic value stored in the first 8 bytes of the bounce buffer struct. Used
3247 * to detect illegal pointers passed to address_space_unmap.
3248 */
3249 #define BOUNCE_BUFFER_MAGIC 0xb4017ceb4ffe12ed
3250
3251 typedef struct {
3252 uint64_t magic;
3253 MemoryRegion *mr;
3254 hwaddr addr;
3255 size_t len;
3256 uint8_t buffer[];
3257 } BounceBuffer;
3258
3259 static void
address_space_unregister_map_client_do(AddressSpaceMapClient * client)3260 address_space_unregister_map_client_do(AddressSpaceMapClient *client)
3261 {
3262 QLIST_REMOVE(client, link);
3263 g_free(client);
3264 }
3265
address_space_notify_map_clients_locked(AddressSpace * as)3266 static void address_space_notify_map_clients_locked(AddressSpace *as)
3267 {
3268 AddressSpaceMapClient *client;
3269
3270 while (!QLIST_EMPTY(&as->map_client_list)) {
3271 client = QLIST_FIRST(&as->map_client_list);
3272 qemu_bh_schedule(client->bh);
3273 address_space_unregister_map_client_do(client);
3274 }
3275 }
3276
address_space_register_map_client(AddressSpace * as,QEMUBH * bh)3277 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh)
3278 {
3279 AddressSpaceMapClient *client = g_malloc(sizeof(*client));
3280
3281 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3282 client->bh = bh;
3283 QLIST_INSERT_HEAD(&as->map_client_list, client, link);
3284 /* Write map_client_list before reading bounce_buffer_size. */
3285 smp_mb();
3286 if (qatomic_read(&as->bounce_buffer_size) < as->max_bounce_buffer_size) {
3287 address_space_notify_map_clients_locked(as);
3288 }
3289 }
3290
cpu_exec_init_all(void)3291 void cpu_exec_init_all(void)
3292 {
3293 qemu_mutex_init(&ram_list.mutex);
3294 /* The data structures we set up here depend on knowing the page size,
3295 * so no more changes can be made after this point.
3296 * In an ideal world, nothing we did before we had finished the
3297 * machine setup would care about the target page size, and we could
3298 * do this much later, rather than requiring board models to state
3299 * up front what their requirements are.
3300 */
3301 finalize_target_page_bits();
3302 io_mem_init();
3303 memory_map_init();
3304 }
3305
address_space_unregister_map_client(AddressSpace * as,QEMUBH * bh)3306 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh)
3307 {
3308 AddressSpaceMapClient *client;
3309
3310 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3311 QLIST_FOREACH(client, &as->map_client_list, link) {
3312 if (client->bh == bh) {
3313 address_space_unregister_map_client_do(client);
3314 break;
3315 }
3316 }
3317 }
3318
address_space_notify_map_clients(AddressSpace * as)3319 static void address_space_notify_map_clients(AddressSpace *as)
3320 {
3321 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3322 address_space_notify_map_clients_locked(as);
3323 }
3324
flatview_access_valid(FlatView * fv,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3325 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3326 bool is_write, MemTxAttrs attrs)
3327 {
3328 MemoryRegion *mr;
3329 hwaddr l, xlat;
3330
3331 while (len > 0) {
3332 l = len;
3333 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3334 if (!memory_access_is_direct(mr, is_write, attrs)) {
3335 l = memory_access_size(mr, l, addr);
3336 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3337 return false;
3338 }
3339 }
3340
3341 len -= l;
3342 addr += l;
3343 }
3344 return true;
3345 }
3346
address_space_access_valid(AddressSpace * as,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3347 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3348 hwaddr len, bool is_write,
3349 MemTxAttrs attrs)
3350 {
3351 FlatView *fv;
3352
3353 RCU_READ_LOCK_GUARD();
3354 fv = address_space_to_flatview(as);
3355 return flatview_access_valid(fv, addr, len, is_write, attrs);
3356 }
3357
3358 static hwaddr
flatview_extend_translation(FlatView * fv,hwaddr addr,hwaddr target_len,MemoryRegion * mr,hwaddr base,hwaddr len,bool is_write,MemTxAttrs attrs)3359 flatview_extend_translation(FlatView *fv, hwaddr addr,
3360 hwaddr target_len,
3361 MemoryRegion *mr, hwaddr base, hwaddr len,
3362 bool is_write, MemTxAttrs attrs)
3363 {
3364 hwaddr done = 0;
3365 hwaddr xlat;
3366 MemoryRegion *this_mr;
3367
3368 for (;;) {
3369 target_len -= len;
3370 addr += len;
3371 done += len;
3372 if (target_len == 0) {
3373 return done;
3374 }
3375
3376 len = target_len;
3377 this_mr = flatview_translate(fv, addr, &xlat,
3378 &len, is_write, attrs);
3379 if (this_mr != mr || xlat != base + done) {
3380 return done;
3381 }
3382 }
3383 }
3384
3385 /* Map a physical memory region into a host virtual address.
3386 * May map a subset of the requested range, given by and returned in *plen.
3387 * May return NULL if resources needed to perform the mapping are exhausted.
3388 * Use only for reads OR writes - not for read-modify-write operations.
3389 * Use address_space_register_map_client() to know when retrying the map
3390 * operation is likely to succeed.
3391 */
address_space_map(AddressSpace * as,hwaddr addr,hwaddr * plen,bool is_write,MemTxAttrs attrs)3392 void *address_space_map(AddressSpace *as,
3393 hwaddr addr,
3394 hwaddr *plen,
3395 bool is_write,
3396 MemTxAttrs attrs)
3397 {
3398 hwaddr len = *plen;
3399 hwaddr l, xlat;
3400 MemoryRegion *mr;
3401 FlatView *fv;
3402
3403 trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs);
3404
3405 if (len == 0) {
3406 return NULL;
3407 }
3408
3409 l = len;
3410 RCU_READ_LOCK_GUARD();
3411 fv = address_space_to_flatview(as);
3412 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3413
3414 if (!memory_access_is_direct(mr, is_write, attrs)) {
3415 size_t used = qatomic_read(&as->bounce_buffer_size);
3416 for (;;) {
3417 hwaddr alloc = MIN(as->max_bounce_buffer_size - used, l);
3418 size_t new_size = used + alloc;
3419 size_t actual =
3420 qatomic_cmpxchg(&as->bounce_buffer_size, used, new_size);
3421 if (actual == used) {
3422 l = alloc;
3423 break;
3424 }
3425 used = actual;
3426 }
3427
3428 if (l == 0) {
3429 *plen = 0;
3430 return NULL;
3431 }
3432
3433 BounceBuffer *bounce = g_malloc0(l + sizeof(BounceBuffer));
3434 bounce->magic = BOUNCE_BUFFER_MAGIC;
3435 memory_region_ref(mr);
3436 bounce->mr = mr;
3437 bounce->addr = addr;
3438 bounce->len = l;
3439
3440 if (!is_write) {
3441 flatview_read(fv, addr, attrs,
3442 bounce->buffer, l);
3443 }
3444
3445 *plen = l;
3446 return bounce->buffer;
3447 }
3448
3449 memory_region_ref(mr);
3450 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3451 l, is_write, attrs);
3452 fuzz_dma_read_cb(addr, *plen, mr);
3453 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write);
3454 }
3455
3456 /* Unmaps a memory region previously mapped by address_space_map().
3457 * Will also mark the memory as dirty if is_write is true. access_len gives
3458 * the amount of memory that was actually read or written by the caller.
3459 */
address_space_unmap(AddressSpace * as,void * buffer,hwaddr len,bool is_write,hwaddr access_len)3460 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3461 bool is_write, hwaddr access_len)
3462 {
3463 MemoryRegion *mr;
3464 ram_addr_t addr1;
3465
3466 mr = memory_region_from_host(buffer, &addr1);
3467 if (mr != NULL) {
3468 if (is_write) {
3469 invalidate_and_set_dirty(mr, addr1, access_len);
3470 }
3471 if (xen_enabled()) {
3472 xen_invalidate_map_cache_entry(buffer);
3473 }
3474 memory_region_unref(mr);
3475 return;
3476 }
3477
3478
3479 BounceBuffer *bounce = container_of(buffer, BounceBuffer, buffer);
3480 assert(bounce->magic == BOUNCE_BUFFER_MAGIC);
3481
3482 if (is_write) {
3483 address_space_write(as, bounce->addr, MEMTXATTRS_UNSPECIFIED,
3484 bounce->buffer, access_len);
3485 }
3486
3487 qatomic_sub(&as->bounce_buffer_size, bounce->len);
3488 bounce->magic = ~BOUNCE_BUFFER_MAGIC;
3489 memory_region_unref(bounce->mr);
3490 g_free(bounce);
3491 /* Write bounce_buffer_size before reading map_client_list. */
3492 smp_mb();
3493 address_space_notify_map_clients(as);
3494 }
3495
cpu_physical_memory_map(hwaddr addr,hwaddr * plen,bool is_write)3496 void *cpu_physical_memory_map(hwaddr addr,
3497 hwaddr *plen,
3498 bool is_write)
3499 {
3500 return address_space_map(&address_space_memory, addr, plen, is_write,
3501 MEMTXATTRS_UNSPECIFIED);
3502 }
3503
cpu_physical_memory_unmap(void * buffer,hwaddr len,bool is_write,hwaddr access_len)3504 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3505 bool is_write, hwaddr access_len)
3506 {
3507 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3508 }
3509
3510 #define ARG1_DECL AddressSpace *as
3511 #define ARG1 as
3512 #define SUFFIX
3513 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3514 #define RCU_READ_LOCK(...) rcu_read_lock()
3515 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3516 #include "memory_ldst.c.inc"
3517
address_space_cache_init(MemoryRegionCache * cache,AddressSpace * as,hwaddr addr,hwaddr len,bool is_write)3518 int64_t address_space_cache_init(MemoryRegionCache *cache,
3519 AddressSpace *as,
3520 hwaddr addr,
3521 hwaddr len,
3522 bool is_write)
3523 {
3524 AddressSpaceDispatch *d;
3525 hwaddr l;
3526 MemoryRegion *mr;
3527 Int128 diff;
3528
3529 assert(len > 0);
3530
3531 l = len;
3532 cache->fv = address_space_get_flatview(as);
3533 d = flatview_to_dispatch(cache->fv);
3534 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3535
3536 /*
3537 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3538 * Take that into account to compute how many bytes are there between
3539 * cache->xlat and the end of the section.
3540 */
3541 diff = int128_sub(cache->mrs.size,
3542 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3543 l = int128_get64(int128_min(diff, int128_make64(l)));
3544
3545 mr = cache->mrs.mr;
3546 memory_region_ref(mr);
3547 if (memory_access_is_direct(mr, is_write, MEMTXATTRS_UNSPECIFIED)) {
3548 /* We don't care about the memory attributes here as we're only
3549 * doing this if we found actual RAM, which behaves the same
3550 * regardless of attributes; so UNSPECIFIED is fine.
3551 */
3552 l = flatview_extend_translation(cache->fv, addr, len, mr,
3553 cache->xlat, l, is_write,
3554 MEMTXATTRS_UNSPECIFIED);
3555 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true,
3556 is_write);
3557 } else {
3558 cache->ptr = NULL;
3559 }
3560
3561 cache->len = l;
3562 cache->is_write = is_write;
3563 return l;
3564 }
3565
address_space_cache_invalidate(MemoryRegionCache * cache,hwaddr addr,hwaddr access_len)3566 void address_space_cache_invalidate(MemoryRegionCache *cache,
3567 hwaddr addr,
3568 hwaddr access_len)
3569 {
3570 assert(cache->is_write);
3571 if (likely(cache->ptr)) {
3572 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3573 }
3574 }
3575
address_space_cache_destroy(MemoryRegionCache * cache)3576 void address_space_cache_destroy(MemoryRegionCache *cache)
3577 {
3578 if (!cache->mrs.mr) {
3579 return;
3580 }
3581
3582 if (xen_enabled()) {
3583 xen_invalidate_map_cache_entry(cache->ptr);
3584 }
3585 memory_region_unref(cache->mrs.mr);
3586 flatview_unref(cache->fv);
3587 cache->mrs.mr = NULL;
3588 cache->fv = NULL;
3589 }
3590
3591 /* Called from RCU critical section. This function has the same
3592 * semantics as address_space_translate, but it only works on a
3593 * predefined range of a MemoryRegion that was mapped with
3594 * address_space_cache_init.
3595 */
address_space_translate_cached(MemoryRegionCache * cache,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)3596 static inline MemoryRegion *address_space_translate_cached(
3597 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3598 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3599 {
3600 MemoryRegionSection section;
3601 MemoryRegion *mr;
3602 IOMMUMemoryRegion *iommu_mr;
3603 AddressSpace *target_as;
3604
3605 assert(!cache->ptr);
3606 *xlat = addr + cache->xlat;
3607
3608 mr = cache->mrs.mr;
3609 iommu_mr = memory_region_get_iommu(mr);
3610 if (!iommu_mr) {
3611 /* MMIO region. */
3612 return mr;
3613 }
3614
3615 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3616 NULL, is_write, true,
3617 &target_as, attrs);
3618 return section.mr;
3619 }
3620
3621 /* Called within RCU critical section. */
address_space_write_continue_cached(MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3622 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs,
3623 const void *ptr,
3624 hwaddr len,
3625 hwaddr mr_addr,
3626 hwaddr l,
3627 MemoryRegion *mr)
3628 {
3629 MemTxResult result = MEMTX_OK;
3630 const uint8_t *buf = ptr;
3631
3632 for (;;) {
3633 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
3634 mr);
3635
3636 len -= l;
3637 buf += l;
3638 mr_addr += l;
3639
3640 if (!len) {
3641 break;
3642 }
3643
3644 l = len;
3645 }
3646
3647 return result;
3648 }
3649
3650 /* Called within RCU critical section. */
address_space_read_continue_cached(MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3651 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs,
3652 void *ptr, hwaddr len,
3653 hwaddr mr_addr, hwaddr l,
3654 MemoryRegion *mr)
3655 {
3656 MemTxResult result = MEMTX_OK;
3657 uint8_t *buf = ptr;
3658
3659 for (;;) {
3660 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3661 len -= l;
3662 buf += l;
3663 mr_addr += l;
3664
3665 if (!len) {
3666 break;
3667 }
3668 l = len;
3669 }
3670
3671 return result;
3672 }
3673
3674 /* Called from RCU critical section. address_space_read_cached uses this
3675 * out of line function when the target is an MMIO or IOMMU region.
3676 */
3677 MemTxResult
address_space_read_cached_slow(MemoryRegionCache * cache,hwaddr addr,void * buf,hwaddr len)3678 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3679 void *buf, hwaddr len)
3680 {
3681 hwaddr mr_addr, l;
3682 MemoryRegion *mr;
3683
3684 l = len;
3685 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false,
3686 MEMTXATTRS_UNSPECIFIED);
3687 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED,
3688 buf, len, mr_addr, l, mr);
3689 }
3690
3691 /* Called from RCU critical section. address_space_write_cached uses this
3692 * out of line function when the target is an MMIO or IOMMU region.
3693 */
3694 MemTxResult
address_space_write_cached_slow(MemoryRegionCache * cache,hwaddr addr,const void * buf,hwaddr len)3695 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3696 const void *buf, hwaddr len)
3697 {
3698 hwaddr mr_addr, l;
3699 MemoryRegion *mr;
3700
3701 l = len;
3702 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true,
3703 MEMTXATTRS_UNSPECIFIED);
3704 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED,
3705 buf, len, mr_addr, l, mr);
3706 }
3707
3708 #define ARG1_DECL MemoryRegionCache *cache
3709 #define ARG1 cache
3710 #define SUFFIX _cached_slow
3711 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3712 #define RCU_READ_LOCK() ((void)0)
3713 #define RCU_READ_UNLOCK() ((void)0)
3714 #include "memory_ldst.c.inc"
3715
3716 /* virtual memory access for debug (includes writing to ROM) */
cpu_memory_rw_debug(CPUState * cpu,vaddr addr,void * ptr,size_t len,bool is_write)3717 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3718 void *ptr, size_t len, bool is_write)
3719 {
3720 hwaddr phys_addr;
3721 vaddr l, page;
3722 uint8_t *buf = ptr;
3723
3724 cpu_synchronize_state(cpu);
3725 while (len > 0) {
3726 int asidx;
3727 MemTxAttrs attrs;
3728 MemTxResult res;
3729
3730 page = addr & TARGET_PAGE_MASK;
3731 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3732 asidx = cpu_asidx_from_attrs(cpu, attrs);
3733 /* if no physical page mapped, return an error */
3734 if (phys_addr == -1)
3735 return -1;
3736 l = (page + TARGET_PAGE_SIZE) - addr;
3737 if (l > len)
3738 l = len;
3739 phys_addr += (addr & ~TARGET_PAGE_MASK);
3740 res = address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf,
3741 l, is_write);
3742 if (res != MEMTX_OK) {
3743 return -1;
3744 }
3745 len -= l;
3746 buf += l;
3747 addr += l;
3748 }
3749 return 0;
3750 }
3751
cpu_physical_memory_is_io(hwaddr phys_addr)3752 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3753 {
3754 MemoryRegion*mr;
3755 hwaddr l = 1;
3756
3757 RCU_READ_LOCK_GUARD();
3758 mr = address_space_translate(&address_space_memory,
3759 phys_addr, &phys_addr, &l, false,
3760 MEMTXATTRS_UNSPECIFIED);
3761
3762 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3763 }
3764
qemu_ram_foreach_block(RAMBlockIterFunc func,void * opaque)3765 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3766 {
3767 RAMBlock *block;
3768 int ret = 0;
3769
3770 RCU_READ_LOCK_GUARD();
3771 RAMBLOCK_FOREACH(block) {
3772 ret = func(block, opaque);
3773 if (ret) {
3774 break;
3775 }
3776 }
3777 return ret;
3778 }
3779
3780 /*
3781 * Unmap pages of memory from start to start+length such that
3782 * they a) read as 0, b) Trigger whatever fault mechanism
3783 * the OS provides for postcopy.
3784 * The pages must be unmapped by the end of the function.
3785 * Returns: 0 on success, none-0 on failure
3786 *
3787 */
ram_block_discard_range(RAMBlock * rb,uint64_t start,size_t length)3788 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3789 {
3790 int ret = -1;
3791
3792 uint8_t *host_startaddr = rb->host + start;
3793
3794 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3795 error_report("%s: Unaligned start address: %p",
3796 __func__, host_startaddr);
3797 goto err;
3798 }
3799
3800 if ((start + length) <= rb->max_length) {
3801 bool need_madvise, need_fallocate;
3802 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3803 error_report("%s: Unaligned length: %zx", __func__, length);
3804 goto err;
3805 }
3806
3807 errno = ENOTSUP; /* If we are missing MADVISE etc */
3808
3809 /* The logic here is messy;
3810 * madvise DONTNEED fails for hugepages
3811 * fallocate works on hugepages and shmem
3812 * shared anonymous memory requires madvise REMOVE
3813 */
3814 need_madvise = (rb->page_size == qemu_real_host_page_size());
3815 need_fallocate = rb->fd != -1;
3816 if (need_fallocate) {
3817 /* For a file, this causes the area of the file to be zero'd
3818 * if read, and for hugetlbfs also causes it to be unmapped
3819 * so a userfault will trigger.
3820 */
3821 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3822 /*
3823 * fallocate() will fail with readonly files. Let's print a
3824 * proper error message.
3825 */
3826 if (rb->flags & RAM_READONLY_FD) {
3827 error_report("%s: Discarding RAM with readonly files is not"
3828 " supported", __func__);
3829 goto err;
3830
3831 }
3832 /*
3833 * We'll discard data from the actual file, even though we only
3834 * have a MAP_PRIVATE mapping, possibly messing with other
3835 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3836 * change that behavior whithout violating the promised
3837 * semantics of ram_block_discard_range().
3838 *
3839 * Only warn, because it works as long as nobody else uses that
3840 * file.
3841 */
3842 if (!qemu_ram_is_shared(rb)) {
3843 warn_report_once("%s: Discarding RAM"
3844 " in private file mappings is possibly"
3845 " dangerous, because it will modify the"
3846 " underlying file and will affect other"
3847 " users of the file", __func__);
3848 }
3849
3850 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3851 start + rb->fd_offset, length);
3852 if (ret) {
3853 ret = -errno;
3854 error_report("%s: Failed to fallocate %s:%" PRIx64 "+%" PRIx64
3855 " +%zx (%d)", __func__, rb->idstr, start,
3856 rb->fd_offset, length, ret);
3857 goto err;
3858 }
3859 #else
3860 ret = -ENOSYS;
3861 error_report("%s: fallocate not available/file"
3862 "%s:%" PRIx64 "+%" PRIx64 " +%zx (%d)", __func__,
3863 rb->idstr, start, rb->fd_offset, length, ret);
3864 goto err;
3865 #endif
3866 }
3867 if (need_madvise) {
3868 /* For normal RAM this causes it to be unmapped,
3869 * for shared memory it causes the local mapping to disappear
3870 * and to fall back on the file contents (which we just
3871 * fallocate'd away).
3872 */
3873 #if defined(CONFIG_MADVISE)
3874 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3875 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3876 } else {
3877 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3878 }
3879 if (ret) {
3880 ret = -errno;
3881 error_report("%s: Failed to discard range "
3882 "%s:%" PRIx64 " +%zx (%d)",
3883 __func__, rb->idstr, start, length, ret);
3884 goto err;
3885 }
3886 #else
3887 ret = -ENOSYS;
3888 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)",
3889 __func__, rb->idstr, start, length, ret);
3890 goto err;
3891 #endif
3892 }
3893 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3894 need_madvise, need_fallocate, ret);
3895 } else {
3896 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")",
3897 __func__, rb->idstr, start, length, rb->max_length);
3898 }
3899
3900 err:
3901 return ret;
3902 }
3903
ram_block_discard_guest_memfd_range(RAMBlock * rb,uint64_t start,size_t length)3904 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
3905 size_t length)
3906 {
3907 int ret = -1;
3908
3909 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3910 /* ignore fd_offset with guest_memfd */
3911 ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3912 start, length);
3913
3914 if (ret) {
3915 ret = -errno;
3916 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3917 __func__, rb->idstr, start, length, ret);
3918 }
3919 #else
3920 ret = -ENOSYS;
3921 error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)",
3922 __func__, rb->idstr, start, length, ret);
3923 #endif
3924
3925 return ret;
3926 }
3927
ramblock_is_pmem(RAMBlock * rb)3928 bool ramblock_is_pmem(RAMBlock *rb)
3929 {
3930 return rb->flags & RAM_PMEM;
3931 }
3932
mtree_print_phys_entries(int start,int end,int skip,int ptr)3933 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3934 {
3935 if (start == end - 1) {
3936 qemu_printf("\t%3d ", start);
3937 } else {
3938 qemu_printf("\t%3d..%-3d ", start, end - 1);
3939 }
3940 qemu_printf(" skip=%d ", skip);
3941 if (ptr == PHYS_MAP_NODE_NIL) {
3942 qemu_printf(" ptr=NIL");
3943 } else if (!skip) {
3944 qemu_printf(" ptr=#%d", ptr);
3945 } else {
3946 qemu_printf(" ptr=[%d]", ptr);
3947 }
3948 qemu_printf("\n");
3949 }
3950
3951 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3952 int128_sub((size), int128_one())) : 0)
3953
mtree_print_dispatch(AddressSpaceDispatch * d,MemoryRegion * root)3954 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3955 {
3956 int i;
3957
3958 qemu_printf(" Dispatch\n");
3959 qemu_printf(" Physical sections\n");
3960
3961 for (i = 0; i < d->map.sections_nb; ++i) {
3962 MemoryRegionSection *s = d->map.sections + i;
3963 const char *names[] = { " [unassigned]", " [not dirty]",
3964 " [ROM]", " [watch]" };
3965
3966 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3967 " %s%s%s%s%s",
3968 i,
3969 s->offset_within_address_space,
3970 s->offset_within_address_space + MR_SIZE(s->size),
3971 s->mr->name ? s->mr->name : "(noname)",
3972 i < ARRAY_SIZE(names) ? names[i] : "",
3973 s->mr == root ? " [ROOT]" : "",
3974 s == d->mru_section ? " [MRU]" : "",
3975 s->mr->is_iommu ? " [iommu]" : "");
3976
3977 if (s->mr->alias) {
3978 qemu_printf(" alias=%s", s->mr->alias->name ?
3979 s->mr->alias->name : "noname");
3980 }
3981 qemu_printf("\n");
3982 }
3983
3984 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3985 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3986 for (i = 0; i < d->map.nodes_nb; ++i) {
3987 int j, jprev;
3988 PhysPageEntry prev;
3989 Node *n = d->map.nodes + i;
3990
3991 qemu_printf(" [%d]\n", i);
3992
3993 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3994 PhysPageEntry *pe = *n + j;
3995
3996 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3997 continue;
3998 }
3999
4000 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4001
4002 jprev = j;
4003 prev = *pe;
4004 }
4005
4006 if (jprev != ARRAY_SIZE(*n)) {
4007 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4008 }
4009 }
4010 }
4011
4012 /* Require any discards to work. */
4013 static unsigned int ram_block_discard_required_cnt;
4014 /* Require only coordinated discards to work. */
4015 static unsigned int ram_block_coordinated_discard_required_cnt;
4016 /* Disable any discards. */
4017 static unsigned int ram_block_discard_disabled_cnt;
4018 /* Disable only uncoordinated discards. */
4019 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
4020 static QemuMutex ram_block_discard_disable_mutex;
4021
ram_block_discard_disable_mutex_lock(void)4022 static void ram_block_discard_disable_mutex_lock(void)
4023 {
4024 static gsize initialized;
4025
4026 if (g_once_init_enter(&initialized)) {
4027 qemu_mutex_init(&ram_block_discard_disable_mutex);
4028 g_once_init_leave(&initialized, 1);
4029 }
4030 qemu_mutex_lock(&ram_block_discard_disable_mutex);
4031 }
4032
ram_block_discard_disable_mutex_unlock(void)4033 static void ram_block_discard_disable_mutex_unlock(void)
4034 {
4035 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
4036 }
4037
ram_block_discard_disable(bool state)4038 int ram_block_discard_disable(bool state)
4039 {
4040 int ret = 0;
4041
4042 ram_block_discard_disable_mutex_lock();
4043 if (!state) {
4044 ram_block_discard_disabled_cnt--;
4045 } else if (ram_block_discard_required_cnt ||
4046 ram_block_coordinated_discard_required_cnt) {
4047 ret = -EBUSY;
4048 } else {
4049 ram_block_discard_disabled_cnt++;
4050 }
4051 ram_block_discard_disable_mutex_unlock();
4052 return ret;
4053 }
4054
ram_block_uncoordinated_discard_disable(bool state)4055 int ram_block_uncoordinated_discard_disable(bool state)
4056 {
4057 int ret = 0;
4058
4059 ram_block_discard_disable_mutex_lock();
4060 if (!state) {
4061 ram_block_uncoordinated_discard_disabled_cnt--;
4062 } else if (ram_block_discard_required_cnt) {
4063 ret = -EBUSY;
4064 } else {
4065 ram_block_uncoordinated_discard_disabled_cnt++;
4066 }
4067 ram_block_discard_disable_mutex_unlock();
4068 return ret;
4069 }
4070
ram_block_discard_require(bool state)4071 int ram_block_discard_require(bool state)
4072 {
4073 int ret = 0;
4074
4075 ram_block_discard_disable_mutex_lock();
4076 if (!state) {
4077 ram_block_discard_required_cnt--;
4078 } else if (ram_block_discard_disabled_cnt ||
4079 ram_block_uncoordinated_discard_disabled_cnt) {
4080 ret = -EBUSY;
4081 } else {
4082 ram_block_discard_required_cnt++;
4083 }
4084 ram_block_discard_disable_mutex_unlock();
4085 return ret;
4086 }
4087
ram_block_coordinated_discard_require(bool state)4088 int ram_block_coordinated_discard_require(bool state)
4089 {
4090 int ret = 0;
4091
4092 ram_block_discard_disable_mutex_lock();
4093 if (!state) {
4094 ram_block_coordinated_discard_required_cnt--;
4095 } else if (ram_block_discard_disabled_cnt) {
4096 ret = -EBUSY;
4097 } else {
4098 ram_block_coordinated_discard_required_cnt++;
4099 }
4100 ram_block_discard_disable_mutex_unlock();
4101 return ret;
4102 }
4103
ram_block_discard_is_disabled(void)4104 bool ram_block_discard_is_disabled(void)
4105 {
4106 return qatomic_read(&ram_block_discard_disabled_cnt) ||
4107 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
4108 }
4109
ram_block_discard_is_required(void)4110 bool ram_block_discard_is_required(void)
4111 {
4112 return qatomic_read(&ram_block_discard_required_cnt) ||
4113 qatomic_read(&ram_block_coordinated_discard_required_cnt);
4114 }
4115
4116 /*
4117 * Return true if ram is compatible with CPR. Do not exclude rom,
4118 * because the rom file could change in new QEMU.
4119 */
ram_is_cpr_compatible(RAMBlock * rb)4120 static bool ram_is_cpr_compatible(RAMBlock *rb)
4121 {
4122 MemoryRegion *mr = rb->mr;
4123
4124 if (!mr || !memory_region_is_ram(mr)) {
4125 return true;
4126 }
4127
4128 /* Ram device is remapped in new QEMU */
4129 if (memory_region_is_ram_device(mr)) {
4130 return true;
4131 }
4132
4133 /*
4134 * A file descriptor is passed to new QEMU and remapped, or its backing
4135 * file is reopened and mapped. It must be shared to avoid COW.
4136 */
4137 if (rb->fd >= 0 && qemu_ram_is_shared(rb)) {
4138 return true;
4139 }
4140
4141 return false;
4142 }
4143
4144 /*
4145 * Add a blocker for each volatile ram block. This function should only be
4146 * called after we know that the block is migratable. Non-migratable blocks
4147 * are either re-created in new QEMU, or are handled specially, or are covered
4148 * by a device-level CPR blocker.
4149 */
ram_block_add_cpr_blocker(RAMBlock * rb,Error ** errp)4150 void ram_block_add_cpr_blocker(RAMBlock *rb, Error **errp)
4151 {
4152 assert(qemu_ram_is_migratable(rb));
4153
4154 if (ram_is_cpr_compatible(rb)) {
4155 return;
4156 }
4157
4158 error_setg(&rb->cpr_blocker,
4159 "Memory region %s is not compatible with CPR. share=on is "
4160 "required for memory-backend objects, and aux-ram-share=on is "
4161 "required.", memory_region_name(rb->mr));
4162 migrate_add_blocker_modes(&rb->cpr_blocker, errp, MIG_MODE_CPR_TRANSFER,
4163 -1);
4164 }
4165
ram_block_del_cpr_blocker(RAMBlock * rb)4166 void ram_block_del_cpr_blocker(RAMBlock *rb)
4167 {
4168 migrate_del_blocker(&rb->cpr_blocker);
4169 }
4170