1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/type-helpers.h"
24 #include "hw/core/cpu.h"
25 #include "accel/tcg/cpu-ops.h"
26 #include "trace.h"
27 #include "disas/disas.h"
28 #include "exec/cpu-common.h"
29 #include "exec/page-protection.h"
30 #include "exec/translation-block.h"
31 #include "tcg/tcg.h"
32 #include "qemu/atomic.h"
33 #include "qemu/rcu.h"
34 #include "exec/log.h"
35 #include "qemu/main-loop.h"
36 #include "exec/cpu-all.h"
37 #include "system/cpu-timers.h"
38 #include "exec/replay-core.h"
39 #include "system/tcg.h"
40 #include "exec/helper-proto-common.h"
41 #include "tb-jmp-cache.h"
42 #include "tb-hash.h"
43 #include "tb-context.h"
44 #include "tb-internal.h"
45 #include "internal-common.h"
46 #include "internal-target.h"
47
48 /* -icount align implementation. */
49
50 typedef struct SyncClocks {
51 int64_t diff_clk;
52 int64_t last_cpu_icount;
53 int64_t realtime_clock;
54 } SyncClocks;
55
56 #if !defined(CONFIG_USER_ONLY)
57 /* Allow the guest to have a max 3ms advance.
58 * The difference between the 2 clocks could therefore
59 * oscillate around 0.
60 */
61 #define VM_CLOCK_ADVANCE 3000000
62 #define THRESHOLD_REDUCE 1.5
63 #define MAX_DELAY_PRINT_RATE 2000000000LL
64 #define MAX_NB_PRINTS 100
65
66 int64_t max_delay;
67 int64_t max_advance;
68
align_clocks(SyncClocks * sc,CPUState * cpu)69 static void align_clocks(SyncClocks *sc, CPUState *cpu)
70 {
71 int64_t cpu_icount;
72
73 if (!icount_align_option) {
74 return;
75 }
76
77 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
78 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
79 sc->last_cpu_icount = cpu_icount;
80
81 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
82 #ifndef _WIN32
83 struct timespec sleep_delay, rem_delay;
84 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
85 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
86 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
87 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
88 } else {
89 sc->diff_clk = 0;
90 }
91 #else
92 Sleep(sc->diff_clk / SCALE_MS);
93 sc->diff_clk = 0;
94 #endif
95 }
96 }
97
print_delay(const SyncClocks * sc)98 static void print_delay(const SyncClocks *sc)
99 {
100 static float threshold_delay;
101 static int64_t last_realtime_clock;
102 static int nb_prints;
103
104 if (icount_align_option &&
105 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
106 nb_prints < MAX_NB_PRINTS) {
107 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
108 (-sc->diff_clk / (float)1000000000LL <
109 (threshold_delay - THRESHOLD_REDUCE))) {
110 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
111 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
112 threshold_delay - 1,
113 threshold_delay);
114 nb_prints++;
115 last_realtime_clock = sc->realtime_clock;
116 }
117 }
118 }
119
init_delay_params(SyncClocks * sc,CPUState * cpu)120 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
121 {
122 if (!icount_align_option) {
123 return;
124 }
125 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
126 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
127 sc->last_cpu_icount
128 = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
129 if (sc->diff_clk < max_delay) {
130 max_delay = sc->diff_clk;
131 }
132 if (sc->diff_clk > max_advance) {
133 max_advance = sc->diff_clk;
134 }
135
136 /* Print every 2s max if the guest is late. We limit the number
137 of printed messages to NB_PRINT_MAX(currently 100) */
138 print_delay(sc);
139 }
140 #else
align_clocks(SyncClocks * sc,const CPUState * cpu)141 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
142 {
143 }
144
init_delay_params(SyncClocks * sc,const CPUState * cpu)145 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
146 {
147 }
148 #endif /* CONFIG USER ONLY */
149
150 struct tb_desc {
151 vaddr pc;
152 uint64_t cs_base;
153 CPUArchState *env;
154 tb_page_addr_t page_addr0;
155 uint32_t flags;
156 uint32_t cflags;
157 };
158
tb_lookup_cmp(const void * p,const void * d)159 static bool tb_lookup_cmp(const void *p, const void *d)
160 {
161 const TranslationBlock *tb = p;
162 const struct tb_desc *desc = d;
163
164 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) &&
165 tb_page_addr0(tb) == desc->page_addr0 &&
166 tb->cs_base == desc->cs_base &&
167 tb->flags == desc->flags &&
168 tb_cflags(tb) == desc->cflags) {
169 /* check next page if needed */
170 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
171 if (tb_phys_page1 == -1) {
172 return true;
173 } else {
174 tb_page_addr_t phys_page1;
175 vaddr virt_page1;
176
177 /*
178 * We know that the first page matched, and an otherwise valid TB
179 * encountered an incomplete instruction at the end of that page,
180 * therefore we know that generating a new TB from the current PC
181 * must also require reading from the next page -- even if the
182 * second pages do not match, and therefore the resulting insn
183 * is different for the new TB. Therefore any exception raised
184 * here by the faulting lookup is not premature.
185 */
186 virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
187 phys_page1 = get_page_addr_code(desc->env, virt_page1);
188 if (tb_phys_page1 == phys_page1) {
189 return true;
190 }
191 }
192 }
193 return false;
194 }
195
tb_htable_lookup(CPUState * cpu,vaddr pc,uint64_t cs_base,uint32_t flags,uint32_t cflags)196 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc,
197 uint64_t cs_base, uint32_t flags,
198 uint32_t cflags)
199 {
200 tb_page_addr_t phys_pc;
201 struct tb_desc desc;
202 uint32_t h;
203
204 desc.env = cpu_env(cpu);
205 desc.cs_base = cs_base;
206 desc.flags = flags;
207 desc.cflags = cflags;
208 desc.pc = pc;
209 phys_pc = get_page_addr_code(desc.env, pc);
210 if (phys_pc == -1) {
211 return NULL;
212 }
213 desc.page_addr0 = phys_pc;
214 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc),
215 flags, cs_base, cflags);
216 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
217 }
218
219 /**
220 * tb_lookup:
221 * @cpu: CPU that will execute the returned translation block
222 * @pc: guest PC
223 * @cs_base: arch-specific value associated with translation block
224 * @flags: arch-specific translation block flags
225 * @cflags: CF_* flags
226 *
227 * Look up a translation block inside the QHT using @pc, @cs_base, @flags and
228 * @cflags. Uses @cpu's tb_jmp_cache. Might cause an exception, so have a
229 * longjmp destination ready.
230 *
231 * Returns: an existing translation block or NULL.
232 */
tb_lookup(CPUState * cpu,vaddr pc,uint64_t cs_base,uint32_t flags,uint32_t cflags)233 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc,
234 uint64_t cs_base, uint32_t flags,
235 uint32_t cflags)
236 {
237 TranslationBlock *tb;
238 CPUJumpCache *jc;
239 uint32_t hash;
240
241 /* we should never be trying to look up an INVALID tb */
242 tcg_debug_assert(!(cflags & CF_INVALID));
243
244 hash = tb_jmp_cache_hash_func(pc);
245 jc = cpu->tb_jmp_cache;
246
247 tb = qatomic_read(&jc->array[hash].tb);
248 if (likely(tb &&
249 jc->array[hash].pc == pc &&
250 tb->cs_base == cs_base &&
251 tb->flags == flags &&
252 tb_cflags(tb) == cflags)) {
253 goto hit;
254 }
255
256 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
257 if (tb == NULL) {
258 return NULL;
259 }
260
261 jc->array[hash].pc = pc;
262 qatomic_set(&jc->array[hash].tb, tb);
263
264 hit:
265 /*
266 * As long as tb is not NULL, the contents are consistent. Therefore,
267 * the virtual PC has to match for non-CF_PCREL translations.
268 */
269 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc);
270 return tb;
271 }
272
log_cpu_exec(vaddr pc,CPUState * cpu,const TranslationBlock * tb)273 static void log_cpu_exec(vaddr pc, CPUState *cpu,
274 const TranslationBlock *tb)
275 {
276 if (qemu_log_in_addr_range(pc)) {
277 qemu_log_mask(CPU_LOG_EXEC,
278 "Trace %d: %p [%08" PRIx64
279 "/%016" VADDR_PRIx "/%08x/%08x] %s\n",
280 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
281 tb->flags, tb->cflags, lookup_symbol(pc));
282
283 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
284 FILE *logfile = qemu_log_trylock();
285 if (logfile) {
286 int flags = 0;
287
288 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
289 flags |= CPU_DUMP_FPU;
290 }
291 #if defined(TARGET_I386)
292 flags |= CPU_DUMP_CCOP;
293 #endif
294 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) {
295 flags |= CPU_DUMP_VPU;
296 }
297 cpu_dump_state(cpu, logfile, flags);
298 qemu_log_unlock(logfile);
299 }
300 }
301 }
302 }
303
check_for_breakpoints_slow(CPUState * cpu,vaddr pc,uint32_t * cflags)304 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc,
305 uint32_t *cflags)
306 {
307 CPUBreakpoint *bp;
308 bool match_page = false;
309
310 /*
311 * Singlestep overrides breakpoints.
312 * This requirement is visible in the record-replay tests, where
313 * we would fail to make forward progress in reverse-continue.
314 *
315 * TODO: gdb singlestep should only override gdb breakpoints,
316 * so that one could (gdb) singlestep into the guest kernel's
317 * architectural breakpoint handler.
318 */
319 if (cpu->singlestep_enabled) {
320 return false;
321 }
322
323 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
324 /*
325 * If we have an exact pc match, trigger the breakpoint.
326 * Otherwise, note matches within the page.
327 */
328 if (pc == bp->pc) {
329 bool match_bp = false;
330
331 if (bp->flags & BP_GDB) {
332 match_bp = true;
333 } else if (bp->flags & BP_CPU) {
334 #ifdef CONFIG_USER_ONLY
335 g_assert_not_reached();
336 #else
337 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
338 assert(tcg_ops->debug_check_breakpoint);
339 match_bp = tcg_ops->debug_check_breakpoint(cpu);
340 #endif
341 }
342
343 if (match_bp) {
344 cpu->exception_index = EXCP_DEBUG;
345 return true;
346 }
347 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
348 match_page = true;
349 }
350 }
351
352 /*
353 * Within the same page as a breakpoint, single-step,
354 * returning to helper_lookup_tb_ptr after each insn looking
355 * for the actual breakpoint.
356 *
357 * TODO: Perhaps better to record all of the TBs associated
358 * with a given virtual page that contains a breakpoint, and
359 * then invalidate them when a new overlapping breakpoint is
360 * set on the page. Non-overlapping TBs would not be
361 * invalidated, nor would any TB need to be invalidated as
362 * breakpoints are removed.
363 */
364 if (match_page) {
365 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1;
366 }
367 return false;
368 }
369
check_for_breakpoints(CPUState * cpu,vaddr pc,uint32_t * cflags)370 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc,
371 uint32_t *cflags)
372 {
373 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
374 check_for_breakpoints_slow(cpu, pc, cflags);
375 }
376
377 /**
378 * helper_lookup_tb_ptr: quick check for next tb
379 * @env: current cpu state
380 *
381 * Look for an existing TB matching the current cpu state.
382 * If found, return the code pointer. If not found, return
383 * the tcg epilogue so that we return into cpu_tb_exec.
384 */
HELPER(lookup_tb_ptr)385 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
386 {
387 CPUState *cpu = env_cpu(env);
388 TranslationBlock *tb;
389 vaddr pc;
390 uint64_t cs_base;
391 uint32_t flags, cflags;
392
393 /*
394 * By definition we've just finished a TB, so I/O is OK.
395 * Avoid the possibility of calling cpu_io_recompile() if
396 * a page table walk triggered by tb_lookup() calling
397 * probe_access_internal() happens to touch an MMIO device.
398 * The next TB, if we chain to it, will clear the flag again.
399 */
400 cpu->neg.can_do_io = true;
401 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
402
403 cflags = curr_cflags(cpu);
404 if (check_for_breakpoints(cpu, pc, &cflags)) {
405 cpu_loop_exit(cpu);
406 }
407
408 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
409 if (tb == NULL) {
410 return tcg_code_gen_epilogue;
411 }
412
413 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
414 log_cpu_exec(pc, cpu, tb);
415 }
416
417 return tb->tc.ptr;
418 }
419
420 /* Return the current PC from CPU, which may be cached in TB. */
log_pc(CPUState * cpu,const TranslationBlock * tb)421 static vaddr log_pc(CPUState *cpu, const TranslationBlock *tb)
422 {
423 if (tb_cflags(tb) & CF_PCREL) {
424 return cpu->cc->get_pc(cpu);
425 } else {
426 return tb->pc;
427 }
428 }
429
430 /* Execute a TB, and fix up the CPU state afterwards if necessary */
431 /*
432 * Disable CFI checks.
433 * TCG creates binary blobs at runtime, with the transformed code.
434 * A TB is a blob of binary code, created at runtime and called with an
435 * indirect function call. Since such function did not exist at compile time,
436 * the CFI runtime has no way to verify its signature and would fail.
437 * TCG is not considered a security-sensitive part of QEMU so this does not
438 * affect the impact of CFI in environment with high security requirements
439 */
440 static inline TranslationBlock * QEMU_DISABLE_CFI
cpu_tb_exec(CPUState * cpu,TranslationBlock * itb,int * tb_exit)441 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
442 {
443 uintptr_t ret;
444 TranslationBlock *last_tb;
445 const void *tb_ptr = itb->tc.ptr;
446
447 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
448 log_cpu_exec(log_pc(cpu, itb), cpu, itb);
449 }
450
451 qemu_thread_jit_execute();
452 ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr);
453 cpu->neg.can_do_io = true;
454 qemu_plugin_disable_mem_helpers(cpu);
455 /*
456 * TODO: Delay swapping back to the read-write region of the TB
457 * until we actually need to modify the TB. The read-only copy,
458 * coming from the rx region, shares the same host TLB entry as
459 * the code that executed the exit_tb opcode that arrived here.
460 * If we insist on touching both the RX and the RW pages, we
461 * double the host TLB pressure.
462 */
463 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
464 *tb_exit = ret & TB_EXIT_MASK;
465
466 trace_exec_tb_exit(last_tb, *tb_exit);
467
468 if (*tb_exit > TB_EXIT_IDX1) {
469 /* We didn't start executing this TB (eg because the instruction
470 * counter hit zero); we must restore the guest PC to the address
471 * of the start of the TB.
472 */
473 CPUClass *cc = cpu->cc;
474 const TCGCPUOps *tcg_ops = cc->tcg_ops;
475
476 if (tcg_ops->synchronize_from_tb) {
477 tcg_ops->synchronize_from_tb(cpu, last_tb);
478 } else {
479 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
480 assert(cc->set_pc);
481 cc->set_pc(cpu, last_tb->pc);
482 }
483 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
484 vaddr pc = log_pc(cpu, last_tb);
485 if (qemu_log_in_addr_range(pc)) {
486 qemu_log("Stopped execution of TB chain before %p [%016"
487 VADDR_PRIx "] %s\n",
488 last_tb->tc.ptr, pc, lookup_symbol(pc));
489 }
490 }
491 }
492
493 /*
494 * If gdb single-step, and we haven't raised another exception,
495 * raise a debug exception. Single-step with another exception
496 * is handled in cpu_handle_exception.
497 */
498 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
499 cpu->exception_index = EXCP_DEBUG;
500 cpu_loop_exit(cpu);
501 }
502
503 return last_tb;
504 }
505
506
cpu_exec_enter(CPUState * cpu)507 static void cpu_exec_enter(CPUState *cpu)
508 {
509 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
510
511 if (tcg_ops->cpu_exec_enter) {
512 tcg_ops->cpu_exec_enter(cpu);
513 }
514 }
515
cpu_exec_exit(CPUState * cpu)516 static void cpu_exec_exit(CPUState *cpu)
517 {
518 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
519
520 if (tcg_ops->cpu_exec_exit) {
521 tcg_ops->cpu_exec_exit(cpu);
522 }
523 }
524
cpu_exec_longjmp_cleanup(CPUState * cpu)525 static void cpu_exec_longjmp_cleanup(CPUState *cpu)
526 {
527 /* Non-buggy compilers preserve this; assert the correct value. */
528 g_assert(cpu == current_cpu);
529
530 #ifdef CONFIG_USER_ONLY
531 clear_helper_retaddr();
532 if (have_mmap_lock()) {
533 mmap_unlock();
534 }
535 #else
536 /*
537 * For softmmu, a tlb_fill fault during translation will land here,
538 * and we need to release any page locks held. In system mode we
539 * have one tcg_ctx per thread, so we know it was this cpu doing
540 * the translation.
541 *
542 * Alternative 1: Install a cleanup to be called via an exception
543 * handling safe longjmp. It seems plausible that all our hosts
544 * support such a thing. We'd have to properly register unwind info
545 * for the JIT for EH, rather that just for GDB.
546 *
547 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to
548 * capture the cpu_loop_exit longjmp, perform the cleanup, and
549 * jump again to arrive here.
550 */
551 if (tcg_ctx->gen_tb) {
552 tb_unlock_pages(tcg_ctx->gen_tb);
553 tcg_ctx->gen_tb = NULL;
554 }
555 #endif
556 if (bql_locked()) {
557 bql_unlock();
558 }
559 assert_no_pages_locked();
560 }
561
cpu_exec_step_atomic(CPUState * cpu)562 void cpu_exec_step_atomic(CPUState *cpu)
563 {
564 CPUArchState *env = cpu_env(cpu);
565 TranslationBlock *tb;
566 vaddr pc;
567 uint64_t cs_base;
568 uint32_t flags, cflags;
569 int tb_exit;
570
571 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
572 start_exclusive();
573 g_assert(cpu == current_cpu);
574 g_assert(!cpu->running);
575 cpu->running = true;
576
577 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
578
579 cflags = curr_cflags(cpu);
580 /* Execute in a serial context. */
581 cflags &= ~CF_PARALLEL;
582 /* After 1 insn, return and release the exclusive lock. */
583 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
584 /*
585 * No need to check_for_breakpoints here.
586 * We only arrive in cpu_exec_step_atomic after beginning execution
587 * of an insn that includes an atomic operation we can't handle.
588 * Any breakpoint for this insn will have been recognized earlier.
589 */
590
591 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
592 if (tb == NULL) {
593 mmap_lock();
594 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
595 mmap_unlock();
596 }
597
598 cpu_exec_enter(cpu);
599 /* execute the generated code */
600 trace_exec_tb(tb, pc);
601 cpu_tb_exec(cpu, tb, &tb_exit);
602 cpu_exec_exit(cpu);
603 } else {
604 cpu_exec_longjmp_cleanup(cpu);
605 }
606
607 /*
608 * As we start the exclusive region before codegen we must still
609 * be in the region if we longjump out of either the codegen or
610 * the execution.
611 */
612 g_assert(cpu_in_exclusive_context(cpu));
613 cpu->running = false;
614 end_exclusive();
615 }
616
tb_set_jmp_target(TranslationBlock * tb,int n,uintptr_t addr)617 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
618 {
619 /*
620 * Get the rx view of the structure, from which we find the
621 * executable code address, and tb_target_set_jmp_target can
622 * produce a pc-relative displacement to jmp_target_addr[n].
623 */
624 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
625 uintptr_t offset = tb->jmp_insn_offset[n];
626 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
627 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
628
629 tb->jmp_target_addr[n] = addr;
630 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
631 }
632
tb_add_jump(TranslationBlock * tb,int n,TranslationBlock * tb_next)633 static inline void tb_add_jump(TranslationBlock *tb, int n,
634 TranslationBlock *tb_next)
635 {
636 uintptr_t old;
637
638 qemu_thread_jit_write();
639 assert(n < ARRAY_SIZE(tb->jmp_list_next));
640 qemu_spin_lock(&tb_next->jmp_lock);
641
642 /* make sure the destination TB is valid */
643 if (tb_next->cflags & CF_INVALID) {
644 goto out_unlock_next;
645 }
646 /* Atomically claim the jump destination slot only if it was NULL */
647 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
648 (uintptr_t)tb_next);
649 if (old) {
650 goto out_unlock_next;
651 }
652
653 /* patch the native jump address */
654 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
655
656 /* add in TB jmp list */
657 tb->jmp_list_next[n] = tb_next->jmp_list_head;
658 tb_next->jmp_list_head = (uintptr_t)tb | n;
659
660 qemu_spin_unlock(&tb_next->jmp_lock);
661
662 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
663 tb->tc.ptr, n, tb_next->tc.ptr);
664 return;
665
666 out_unlock_next:
667 qemu_spin_unlock(&tb_next->jmp_lock);
668 return;
669 }
670
cpu_handle_halt(CPUState * cpu)671 static inline bool cpu_handle_halt(CPUState *cpu)
672 {
673 #ifndef CONFIG_USER_ONLY
674 if (cpu->halted) {
675 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
676 bool leave_halt = tcg_ops->cpu_exec_halt(cpu);
677
678 if (!leave_halt) {
679 return true;
680 }
681
682 cpu->halted = 0;
683 }
684 #endif /* !CONFIG_USER_ONLY */
685
686 return false;
687 }
688
cpu_handle_debug_exception(CPUState * cpu)689 static inline void cpu_handle_debug_exception(CPUState *cpu)
690 {
691 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
692 CPUWatchpoint *wp;
693
694 if (!cpu->watchpoint_hit) {
695 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
696 wp->flags &= ~BP_WATCHPOINT_HIT;
697 }
698 }
699
700 if (tcg_ops->debug_excp_handler) {
701 tcg_ops->debug_excp_handler(cpu);
702 }
703 }
704
cpu_handle_exception(CPUState * cpu,int * ret)705 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
706 {
707 if (cpu->exception_index < 0) {
708 #ifndef CONFIG_USER_ONLY
709 if (replay_has_exception()
710 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) {
711 /* Execute just one insn to trigger exception pending in the log */
712 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
713 | CF_NOIRQ | 1;
714 }
715 #endif
716 return false;
717 }
718
719 if (cpu->exception_index >= EXCP_INTERRUPT) {
720 /* exit request from the cpu execution loop */
721 *ret = cpu->exception_index;
722 if (*ret == EXCP_DEBUG) {
723 cpu_handle_debug_exception(cpu);
724 }
725 cpu->exception_index = -1;
726 return true;
727 }
728
729 #if defined(CONFIG_USER_ONLY)
730 /*
731 * If user mode only, we simulate a fake exception which will be
732 * handled outside the cpu execution loop.
733 */
734 #if defined(TARGET_I386)
735 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
736 tcg_ops->fake_user_interrupt(cpu);
737 #endif /* TARGET_I386 */
738 *ret = cpu->exception_index;
739 cpu->exception_index = -1;
740 return true;
741 #else
742 if (replay_exception()) {
743 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
744
745 bql_lock();
746 tcg_ops->do_interrupt(cpu);
747 bql_unlock();
748 cpu->exception_index = -1;
749
750 if (unlikely(cpu->singlestep_enabled)) {
751 /*
752 * After processing the exception, ensure an EXCP_DEBUG is
753 * raised when single-stepping so that GDB doesn't miss the
754 * next instruction.
755 */
756 *ret = EXCP_DEBUG;
757 cpu_handle_debug_exception(cpu);
758 return true;
759 }
760 } else if (!replay_has_interrupt()) {
761 /* give a chance to iothread in replay mode */
762 *ret = EXCP_INTERRUPT;
763 return true;
764 }
765 #endif
766
767 return false;
768 }
769
icount_exit_request(CPUState * cpu)770 static inline bool icount_exit_request(CPUState *cpu)
771 {
772 if (!icount_enabled()) {
773 return false;
774 }
775 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) {
776 return false;
777 }
778 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0;
779 }
780
cpu_handle_interrupt(CPUState * cpu,TranslationBlock ** last_tb)781 static inline bool cpu_handle_interrupt(CPUState *cpu,
782 TranslationBlock **last_tb)
783 {
784 /*
785 * If we have requested custom cflags with CF_NOIRQ we should
786 * skip checking here. Any pending interrupts will get picked up
787 * by the next TB we execute under normal cflags.
788 */
789 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
790 return false;
791 }
792
793 /* Clear the interrupt flag now since we're processing
794 * cpu->interrupt_request and cpu->exit_request.
795 * Ensure zeroing happens before reading cpu->exit_request or
796 * cpu->interrupt_request (see also smp_wmb in cpu_exit())
797 */
798 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0);
799
800 if (unlikely(qatomic_read(&cpu->interrupt_request))) {
801 int interrupt_request;
802 bql_lock();
803 interrupt_request = cpu->interrupt_request;
804 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
805 /* Mask out external interrupts for this step. */
806 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
807 }
808 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
809 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
810 cpu->exception_index = EXCP_DEBUG;
811 bql_unlock();
812 return true;
813 }
814 #if !defined(CONFIG_USER_ONLY)
815 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
816 /* Do nothing */
817 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
818 replay_interrupt();
819 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
820 cpu->halted = 1;
821 cpu->exception_index = EXCP_HLT;
822 bql_unlock();
823 return true;
824 }
825 #if defined(TARGET_I386)
826 else if (interrupt_request & CPU_INTERRUPT_INIT) {
827 X86CPU *x86_cpu = X86_CPU(cpu);
828 CPUArchState *env = &x86_cpu->env;
829 replay_interrupt();
830 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
831 do_cpu_init(x86_cpu);
832 cpu->exception_index = EXCP_HALTED;
833 bql_unlock();
834 return true;
835 }
836 #else
837 else if (interrupt_request & CPU_INTERRUPT_RESET) {
838 replay_interrupt();
839 cpu_reset(cpu);
840 bql_unlock();
841 return true;
842 }
843 #endif /* !TARGET_I386 */
844 /* The target hook has 3 exit conditions:
845 False when the interrupt isn't processed,
846 True when it is, and we should restart on a new TB,
847 and via longjmp via cpu_loop_exit. */
848 else {
849 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
850
851 if (tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
852 if (!tcg_ops->need_replay_interrupt ||
853 tcg_ops->need_replay_interrupt(interrupt_request)) {
854 replay_interrupt();
855 }
856 /*
857 * After processing the interrupt, ensure an EXCP_DEBUG is
858 * raised when single-stepping so that GDB doesn't miss the
859 * next instruction.
860 */
861 if (unlikely(cpu->singlestep_enabled)) {
862 cpu->exception_index = EXCP_DEBUG;
863 bql_unlock();
864 return true;
865 }
866 cpu->exception_index = -1;
867 *last_tb = NULL;
868 }
869 /* The target hook may have updated the 'cpu->interrupt_request';
870 * reload the 'interrupt_request' value */
871 interrupt_request = cpu->interrupt_request;
872 }
873 #endif /* !CONFIG_USER_ONLY */
874 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
875 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
876 /* ensure that no TB jump will be modified as
877 the program flow was changed */
878 *last_tb = NULL;
879 }
880
881 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
882 bql_unlock();
883 }
884
885 /* Finally, check if we need to exit to the main loop. */
886 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) {
887 qatomic_set(&cpu->exit_request, 0);
888 if (cpu->exception_index == -1) {
889 cpu->exception_index = EXCP_INTERRUPT;
890 }
891 return true;
892 }
893
894 return false;
895 }
896
cpu_loop_exec_tb(CPUState * cpu,TranslationBlock * tb,vaddr pc,TranslationBlock ** last_tb,int * tb_exit)897 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
898 vaddr pc, TranslationBlock **last_tb,
899 int *tb_exit)
900 {
901 trace_exec_tb(tb, pc);
902 tb = cpu_tb_exec(cpu, tb, tb_exit);
903 if (*tb_exit != TB_EXIT_REQUESTED) {
904 *last_tb = tb;
905 return;
906 }
907
908 *last_tb = NULL;
909 if (cpu_loop_exit_requested(cpu)) {
910 /* Something asked us to stop executing chained TBs; just
911 * continue round the main loop. Whatever requested the exit
912 * will also have set something else (eg exit_request or
913 * interrupt_request) which will be handled by
914 * cpu_handle_interrupt. cpu_handle_interrupt will also
915 * clear cpu->icount_decr.u16.high.
916 */
917 return;
918 }
919
920 /* Instruction counter expired. */
921 assert(icount_enabled());
922 #ifndef CONFIG_USER_ONLY
923 /* Ensure global icount has gone forward */
924 icount_update(cpu);
925 /* Refill decrementer and continue execution. */
926 int32_t insns_left = MIN(0xffff, cpu->icount_budget);
927 cpu->neg.icount_decr.u16.low = insns_left;
928 cpu->icount_extra = cpu->icount_budget - insns_left;
929
930 /*
931 * If the next tb has more instructions than we have left to
932 * execute we need to ensure we find/generate a TB with exactly
933 * insns_left instructions in it.
934 */
935 if (insns_left > 0 && insns_left < tb->icount) {
936 assert(insns_left <= CF_COUNT_MASK);
937 assert(cpu->icount_extra == 0);
938 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
939 }
940 #endif
941 }
942
943 /* main execution loop */
944
945 static int __attribute__((noinline))
cpu_exec_loop(CPUState * cpu,SyncClocks * sc)946 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
947 {
948 int ret;
949
950 /* if an exception is pending, we execute it here */
951 while (!cpu_handle_exception(cpu, &ret)) {
952 TranslationBlock *last_tb = NULL;
953 int tb_exit = 0;
954
955 while (!cpu_handle_interrupt(cpu, &last_tb)) {
956 TranslationBlock *tb;
957 vaddr pc;
958 uint64_t cs_base;
959 uint32_t flags, cflags;
960
961 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags);
962
963 /*
964 * When requested, use an exact setting for cflags for the next
965 * execution. This is used for icount, precise smc, and stop-
966 * after-access watchpoints. Since this request should never
967 * have CF_INVALID set, -1 is a convenient invalid value that
968 * does not require tcg headers for cpu_common_reset.
969 */
970 cflags = cpu->cflags_next_tb;
971 if (cflags == -1) {
972 cflags = curr_cflags(cpu);
973 } else {
974 cpu->cflags_next_tb = -1;
975 }
976
977 if (check_for_breakpoints(cpu, pc, &cflags)) {
978 break;
979 }
980
981 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
982 if (tb == NULL) {
983 CPUJumpCache *jc;
984 uint32_t h;
985
986 mmap_lock();
987 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
988 mmap_unlock();
989
990 /*
991 * We add the TB in the virtual pc hash table
992 * for the fast lookup
993 */
994 h = tb_jmp_cache_hash_func(pc);
995 jc = cpu->tb_jmp_cache;
996 jc->array[h].pc = pc;
997 qatomic_set(&jc->array[h].tb, tb);
998 }
999
1000 #ifndef CONFIG_USER_ONLY
1001 /*
1002 * We don't take care of direct jumps when address mapping
1003 * changes in system emulation. So it's not safe to make a
1004 * direct jump to a TB spanning two pages because the mapping
1005 * for the second page can change.
1006 */
1007 if (tb_page_addr1(tb) != -1) {
1008 last_tb = NULL;
1009 }
1010 #endif
1011 /* See if we can patch the calling TB. */
1012 if (last_tb) {
1013 tb_add_jump(last_tb, tb_exit, tb);
1014 }
1015
1016 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
1017
1018 /* Try to align the host and virtual clocks
1019 if the guest is in advance */
1020 align_clocks(sc, cpu);
1021 }
1022 }
1023 return ret;
1024 }
1025
cpu_exec_setjmp(CPUState * cpu,SyncClocks * sc)1026 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
1027 {
1028 /* Prepare setjmp context for exception handling. */
1029 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
1030 cpu_exec_longjmp_cleanup(cpu);
1031 }
1032
1033 return cpu_exec_loop(cpu, sc);
1034 }
1035
cpu_exec(CPUState * cpu)1036 int cpu_exec(CPUState *cpu)
1037 {
1038 int ret;
1039 SyncClocks sc = { 0 };
1040
1041 /* replay_interrupt may need current_cpu */
1042 current_cpu = cpu;
1043
1044 if (cpu_handle_halt(cpu)) {
1045 return EXCP_HALTED;
1046 }
1047
1048 RCU_READ_LOCK_GUARD();
1049 cpu_exec_enter(cpu);
1050
1051 /*
1052 * Calculate difference between guest clock and host clock.
1053 * This delay includes the delay of the last cycle, so
1054 * what we have to do is sleep until it is 0. As for the
1055 * advance/delay we gain here, we try to fix it next time.
1056 */
1057 init_delay_params(&sc, cpu);
1058
1059 ret = cpu_exec_setjmp(cpu, &sc);
1060
1061 cpu_exec_exit(cpu);
1062 return ret;
1063 }
1064
tcg_exec_realizefn(CPUState * cpu,Error ** errp)1065 bool tcg_exec_realizefn(CPUState *cpu, Error **errp)
1066 {
1067 static bool tcg_target_initialized;
1068
1069 if (!tcg_target_initialized) {
1070 /* Check mandatory TCGCPUOps handlers */
1071 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
1072 #ifndef CONFIG_USER_ONLY
1073 assert(tcg_ops->cpu_exec_halt);
1074 assert(tcg_ops->cpu_exec_interrupt);
1075 #endif /* !CONFIG_USER_ONLY */
1076 assert(tcg_ops->translate_code);
1077 tcg_ops->initialize();
1078 tcg_target_initialized = true;
1079 }
1080
1081 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1082 tlb_init(cpu);
1083 #ifndef CONFIG_USER_ONLY
1084 tcg_iommu_init_notifier_list(cpu);
1085 #endif /* !CONFIG_USER_ONLY */
1086 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1087
1088 return true;
1089 }
1090
1091 /* undo the initializations in reverse order */
tcg_exec_unrealizefn(CPUState * cpu)1092 void tcg_exec_unrealizefn(CPUState *cpu)
1093 {
1094 #ifndef CONFIG_USER_ONLY
1095 tcg_iommu_free_notifier_list(cpu);
1096 #endif /* !CONFIG_USER_ONLY */
1097
1098 tlb_destroy(cpu);
1099 g_free_rcu(cpu->tb_jmp_cache, rcu);
1100 }
1101