1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * CPPC (Collaborative Processor Performance Control) driver for
4 * interfacing with the CPUfreq layer and governors. See
5 * cppc_acpi.c for CPPC specific methods.
6 *
7 * (C) Copyright 2014, 2015 Linaro Ltd.
8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9 */
10
11 #define pr_fmt(fmt) "CPPC Cpufreq:" fmt
12
13 #include <linux/arch_topology.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/delay.h>
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/irq_work.h>
20 #include <linux/kthread.h>
21 #include <linux/time.h>
22 #include <linux/vmalloc.h>
23 #include <uapi/linux/sched/types.h>
24
25 #include <asm/unaligned.h>
26
27 #include <acpi/cppc_acpi.h>
28
29 /*
30 * This list contains information parsed from per CPU ACPI _CPC and _PSD
31 * structures: e.g. the highest and lowest supported performance, capabilities,
32 * desired performance, level requested etc. Depending on the share_type, not
33 * all CPUs will have an entry in the list.
34 */
35 static LIST_HEAD(cpu_data_list);
36
37 static bool boost_supported;
38
39 struct cppc_workaround_oem_info {
40 char oem_id[ACPI_OEM_ID_SIZE + 1];
41 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
42 u32 oem_revision;
43 };
44
45 static struct cppc_workaround_oem_info wa_info[] = {
46 {
47 .oem_id = "HISI ",
48 .oem_table_id = "HIP07 ",
49 .oem_revision = 0,
50 }, {
51 .oem_id = "HISI ",
52 .oem_table_id = "HIP08 ",
53 .oem_revision = 0,
54 }
55 };
56
57 static struct cpufreq_driver cppc_cpufreq_driver;
58
59 static enum {
60 FIE_UNSET = -1,
61 FIE_ENABLED,
62 FIE_DISABLED
63 } fie_disabled = FIE_UNSET;
64
65 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
66 module_param(fie_disabled, int, 0444);
67 MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)");
68
69 /* Frequency invariance support */
70 struct cppc_freq_invariance {
71 int cpu;
72 struct irq_work irq_work;
73 struct kthread_work work;
74 struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
75 struct cppc_cpudata *cpu_data;
76 };
77
78 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
79 static struct kthread_worker *kworker_fie;
80
81 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu);
82 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
83 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
84 struct cppc_perf_fb_ctrs *fb_ctrs_t1);
85
86 /**
87 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
88 * @work: The work item.
89 *
90 * The CPPC driver register itself with the topology core to provide its own
91 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
92 * gets called by the scheduler on every tick.
93 *
94 * Note that the arch specific counters have higher priority than CPPC counters,
95 * if available, though the CPPC driver doesn't need to have any special
96 * handling for that.
97 *
98 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
99 * reach here from hard-irq context), which then schedules a normal work item
100 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
101 * based on the counter updates since the last tick.
102 */
cppc_scale_freq_workfn(struct kthread_work * work)103 static void cppc_scale_freq_workfn(struct kthread_work *work)
104 {
105 struct cppc_freq_invariance *cppc_fi;
106 struct cppc_perf_fb_ctrs fb_ctrs = {0};
107 struct cppc_cpudata *cpu_data;
108 unsigned long local_freq_scale;
109 u64 perf;
110
111 cppc_fi = container_of(work, struct cppc_freq_invariance, work);
112 cpu_data = cppc_fi->cpu_data;
113
114 if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
115 pr_warn("%s: failed to read perf counters\n", __func__);
116 return;
117 }
118
119 perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs,
120 &fb_ctrs);
121 if (!perf)
122 return;
123
124 cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
125
126 perf <<= SCHED_CAPACITY_SHIFT;
127 local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
128
129 /* This can happen due to counter's overflow */
130 if (unlikely(local_freq_scale > 1024))
131 local_freq_scale = 1024;
132
133 per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
134 }
135
cppc_irq_work(struct irq_work * irq_work)136 static void cppc_irq_work(struct irq_work *irq_work)
137 {
138 struct cppc_freq_invariance *cppc_fi;
139
140 cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
141 kthread_queue_work(kworker_fie, &cppc_fi->work);
142 }
143
cppc_scale_freq_tick(void)144 static void cppc_scale_freq_tick(void)
145 {
146 struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
147
148 /*
149 * cppc_get_perf_ctrs() can potentially sleep, call that from the right
150 * context.
151 */
152 irq_work_queue(&cppc_fi->irq_work);
153 }
154
155 static struct scale_freq_data cppc_sftd = {
156 .source = SCALE_FREQ_SOURCE_CPPC,
157 .set_freq_scale = cppc_scale_freq_tick,
158 };
159
cppc_cpufreq_cpu_fie_init(struct cpufreq_policy * policy)160 static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
161 {
162 struct cppc_freq_invariance *cppc_fi;
163 int cpu, ret;
164
165 if (fie_disabled)
166 return;
167
168 for_each_cpu(cpu, policy->cpus) {
169 cppc_fi = &per_cpu(cppc_freq_inv, cpu);
170 cppc_fi->cpu = cpu;
171 cppc_fi->cpu_data = policy->driver_data;
172 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
173 init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
174
175 ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
176 if (ret) {
177 pr_warn("%s: failed to read perf counters for cpu:%d: %d\n",
178 __func__, cpu, ret);
179
180 /*
181 * Don't abort if the CPU was offline while the driver
182 * was getting registered.
183 */
184 if (cpu_online(cpu))
185 return;
186 }
187 }
188
189 /* Register for freq-invariance */
190 topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
191 }
192
193 /*
194 * We free all the resources on policy's removal and not on CPU removal as the
195 * irq-work are per-cpu and the hotplug core takes care of flushing the pending
196 * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
197 * fires on another CPU after the concerned CPU is removed, it won't harm.
198 *
199 * We just need to make sure to remove them all on policy->exit().
200 */
cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy * policy)201 static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
202 {
203 struct cppc_freq_invariance *cppc_fi;
204 int cpu;
205
206 if (fie_disabled)
207 return;
208
209 /* policy->cpus will be empty here, use related_cpus instead */
210 topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
211
212 for_each_cpu(cpu, policy->related_cpus) {
213 cppc_fi = &per_cpu(cppc_freq_inv, cpu);
214 irq_work_sync(&cppc_fi->irq_work);
215 kthread_cancel_work_sync(&cppc_fi->work);
216 }
217 }
218
cppc_freq_invariance_init(void)219 static void __init cppc_freq_invariance_init(void)
220 {
221 struct sched_attr attr = {
222 .size = sizeof(struct sched_attr),
223 .sched_policy = SCHED_DEADLINE,
224 .sched_nice = 0,
225 .sched_priority = 0,
226 /*
227 * Fake (unused) bandwidth; workaround to "fix"
228 * priority inheritance.
229 */
230 .sched_runtime = 1000000,
231 .sched_deadline = 10000000,
232 .sched_period = 10000000,
233 };
234 int ret;
235
236 if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) {
237 fie_disabled = FIE_ENABLED;
238 if (cppc_perf_ctrs_in_pcc()) {
239 pr_info("FIE not enabled on systems with registers in PCC\n");
240 fie_disabled = FIE_DISABLED;
241 }
242 }
243
244 if (fie_disabled)
245 return;
246
247 kworker_fie = kthread_create_worker(0, "cppc_fie");
248 if (IS_ERR(kworker_fie)) {
249 pr_warn("%s: failed to create kworker_fie: %ld\n", __func__,
250 PTR_ERR(kworker_fie));
251 fie_disabled = FIE_DISABLED;
252 return;
253 }
254
255 ret = sched_setattr_nocheck(kworker_fie->task, &attr);
256 if (ret) {
257 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
258 ret);
259 kthread_destroy_worker(kworker_fie);
260 fie_disabled = FIE_DISABLED;
261 }
262 }
263
cppc_freq_invariance_exit(void)264 static void cppc_freq_invariance_exit(void)
265 {
266 if (fie_disabled)
267 return;
268
269 kthread_destroy_worker(kworker_fie);
270 }
271
272 #else
cppc_cpufreq_cpu_fie_init(struct cpufreq_policy * policy)273 static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
274 {
275 }
276
cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy * policy)277 static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
278 {
279 }
280
cppc_freq_invariance_init(void)281 static inline void cppc_freq_invariance_init(void)
282 {
283 }
284
cppc_freq_invariance_exit(void)285 static inline void cppc_freq_invariance_exit(void)
286 {
287 }
288 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
289
cppc_cpufreq_set_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)290 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
291 unsigned int target_freq,
292 unsigned int relation)
293 {
294 struct cppc_cpudata *cpu_data = policy->driver_data;
295 unsigned int cpu = policy->cpu;
296 struct cpufreq_freqs freqs;
297 u32 desired_perf;
298 int ret = 0;
299
300 desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
301 /* Return if it is exactly the same perf */
302 if (desired_perf == cpu_data->perf_ctrls.desired_perf)
303 return ret;
304
305 cpu_data->perf_ctrls.desired_perf = desired_perf;
306 freqs.old = policy->cur;
307 freqs.new = target_freq;
308
309 cpufreq_freq_transition_begin(policy, &freqs);
310 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
311 cpufreq_freq_transition_end(policy, &freqs, ret != 0);
312
313 if (ret)
314 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
315 cpu, ret);
316
317 return ret;
318 }
319
cppc_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)320 static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
321 unsigned int target_freq)
322 {
323 struct cppc_cpudata *cpu_data = policy->driver_data;
324 unsigned int cpu = policy->cpu;
325 u32 desired_perf;
326 int ret;
327
328 desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
329 cpu_data->perf_ctrls.desired_perf = desired_perf;
330 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
331
332 if (ret) {
333 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
334 cpu, ret);
335 return 0;
336 }
337
338 return target_freq;
339 }
340
cppc_verify_policy(struct cpufreq_policy_data * policy)341 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
342 {
343 cpufreq_verify_within_cpu_limits(policy);
344 return 0;
345 }
346
347 /*
348 * The PCC subspace describes the rate at which platform can accept commands
349 * on the shared PCC channel (including READs which do not count towards freq
350 * transition requests), so ideally we need to use the PCC values as a fallback
351 * if we don't have a platform specific transition_delay_us
352 */
353 #ifdef CONFIG_ARM64
354 #include <asm/cputype.h>
355
cppc_cpufreq_get_transition_delay_us(unsigned int cpu)356 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
357 {
358 unsigned long implementor = read_cpuid_implementor();
359 unsigned long part_num = read_cpuid_part_number();
360
361 switch (implementor) {
362 case ARM_CPU_IMP_QCOM:
363 switch (part_num) {
364 case QCOM_CPU_PART_FALKOR_V1:
365 case QCOM_CPU_PART_FALKOR:
366 return 10000;
367 }
368 }
369 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
370 }
371 #else
cppc_cpufreq_get_transition_delay_us(unsigned int cpu)372 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
373 {
374 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
375 }
376 #endif
377
378 #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
379
380 static DEFINE_PER_CPU(unsigned int, efficiency_class);
381 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy);
382
383 /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
384 #define CPPC_EM_CAP_STEP (20)
385 /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
386 #define CPPC_EM_COST_STEP (1)
387 /* Add a cost gap correspnding to the energy of 4 CPUs. */
388 #define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
389 / CPPC_EM_CAP_STEP)
390
get_perf_level_count(struct cpufreq_policy * policy)391 static unsigned int get_perf_level_count(struct cpufreq_policy *policy)
392 {
393 struct cppc_perf_caps *perf_caps;
394 unsigned int min_cap, max_cap;
395 struct cppc_cpudata *cpu_data;
396 int cpu = policy->cpu;
397
398 cpu_data = policy->driver_data;
399 perf_caps = &cpu_data->perf_caps;
400 max_cap = arch_scale_cpu_capacity(cpu);
401 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
402 perf_caps->highest_perf);
403 if ((min_cap == 0) || (max_cap < min_cap))
404 return 0;
405 return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
406 }
407
408 /*
409 * The cost is defined as:
410 * cost = power * max_frequency / frequency
411 */
compute_cost(int cpu,int step)412 static inline unsigned long compute_cost(int cpu, int step)
413 {
414 return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
415 step * CPPC_EM_COST_STEP;
416 }
417
cppc_get_cpu_power(struct device * cpu_dev,unsigned long * power,unsigned long * KHz)418 static int cppc_get_cpu_power(struct device *cpu_dev,
419 unsigned long *power, unsigned long *KHz)
420 {
421 unsigned long perf_step, perf_prev, perf, perf_check;
422 unsigned int min_step, max_step, step, step_check;
423 unsigned long prev_freq = *KHz;
424 unsigned int min_cap, max_cap;
425 struct cpufreq_policy *policy;
426
427 struct cppc_perf_caps *perf_caps;
428 struct cppc_cpudata *cpu_data;
429
430 policy = cpufreq_cpu_get_raw(cpu_dev->id);
431 if (!policy)
432 return -EINVAL;
433
434 cpu_data = policy->driver_data;
435 perf_caps = &cpu_data->perf_caps;
436 max_cap = arch_scale_cpu_capacity(cpu_dev->id);
437 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
438 perf_caps->highest_perf);
439 perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf,
440 max_cap);
441 min_step = min_cap / CPPC_EM_CAP_STEP;
442 max_step = max_cap / CPPC_EM_CAP_STEP;
443
444 perf_prev = cppc_khz_to_perf(perf_caps, *KHz);
445 step = perf_prev / perf_step;
446
447 if (step > max_step)
448 return -EINVAL;
449
450 if (min_step == max_step) {
451 step = max_step;
452 perf = perf_caps->highest_perf;
453 } else if (step < min_step) {
454 step = min_step;
455 perf = perf_caps->lowest_perf;
456 } else {
457 step++;
458 if (step == max_step)
459 perf = perf_caps->highest_perf;
460 else
461 perf = step * perf_step;
462 }
463
464 *KHz = cppc_perf_to_khz(perf_caps, perf);
465 perf_check = cppc_khz_to_perf(perf_caps, *KHz);
466 step_check = perf_check / perf_step;
467
468 /*
469 * To avoid bad integer approximation, check that new frequency value
470 * increased and that the new frequency will be converted to the
471 * desired step value.
472 */
473 while ((*KHz == prev_freq) || (step_check != step)) {
474 perf++;
475 *KHz = cppc_perf_to_khz(perf_caps, perf);
476 perf_check = cppc_khz_to_perf(perf_caps, *KHz);
477 step_check = perf_check / perf_step;
478 }
479
480 /*
481 * With an artificial EM, only the cost value is used. Still the power
482 * is populated such as 0 < power < EM_MAX_POWER. This allows to add
483 * more sense to the artificial performance states.
484 */
485 *power = compute_cost(cpu_dev->id, step);
486
487 return 0;
488 }
489
cppc_get_cpu_cost(struct device * cpu_dev,unsigned long KHz,unsigned long * cost)490 static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
491 unsigned long *cost)
492 {
493 unsigned long perf_step, perf_prev;
494 struct cppc_perf_caps *perf_caps;
495 struct cpufreq_policy *policy;
496 struct cppc_cpudata *cpu_data;
497 unsigned int max_cap;
498 int step;
499
500 policy = cpufreq_cpu_get_raw(cpu_dev->id);
501 if (!policy)
502 return -EINVAL;
503
504 cpu_data = policy->driver_data;
505 perf_caps = &cpu_data->perf_caps;
506 max_cap = arch_scale_cpu_capacity(cpu_dev->id);
507
508 perf_prev = cppc_khz_to_perf(perf_caps, KHz);
509 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
510 step = perf_prev / perf_step;
511
512 *cost = compute_cost(cpu_dev->id, step);
513
514 return 0;
515 }
516
populate_efficiency_class(void)517 static int populate_efficiency_class(void)
518 {
519 struct acpi_madt_generic_interrupt *gicc;
520 DECLARE_BITMAP(used_classes, 256) = {};
521 int class, cpu, index;
522
523 for_each_possible_cpu(cpu) {
524 gicc = acpi_cpu_get_madt_gicc(cpu);
525 class = gicc->efficiency_class;
526 bitmap_set(used_classes, class, 1);
527 }
528
529 if (bitmap_weight(used_classes, 256) <= 1) {
530 pr_debug("Efficiency classes are all equal (=%d). "
531 "No EM registered", class);
532 return -EINVAL;
533 }
534
535 /*
536 * Squeeze efficiency class values on [0:#efficiency_class-1].
537 * Values are per spec in [0:255].
538 */
539 index = 0;
540 for_each_set_bit(class, used_classes, 256) {
541 for_each_possible_cpu(cpu) {
542 gicc = acpi_cpu_get_madt_gicc(cpu);
543 if (gicc->efficiency_class == class)
544 per_cpu(efficiency_class, cpu) = index;
545 }
546 index++;
547 }
548 cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
549
550 return 0;
551 }
552
cppc_cpufreq_register_em(struct cpufreq_policy * policy)553 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
554 {
555 struct cppc_cpudata *cpu_data;
556 struct em_data_callback em_cb =
557 EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
558
559 cpu_data = policy->driver_data;
560 em_dev_register_perf_domain(get_cpu_device(policy->cpu),
561 get_perf_level_count(policy), &em_cb,
562 cpu_data->shared_cpu_map, 0);
563 }
564
565 #else
populate_efficiency_class(void)566 static int populate_efficiency_class(void)
567 {
568 return 0;
569 }
570 #endif
571
cppc_cpufreq_get_cpu_data(unsigned int cpu)572 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
573 {
574 struct cppc_cpudata *cpu_data;
575 int ret;
576
577 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
578 if (!cpu_data)
579 goto out;
580
581 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
582 goto free_cpu;
583
584 ret = acpi_get_psd_map(cpu, cpu_data);
585 if (ret) {
586 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
587 goto free_mask;
588 }
589
590 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
591 if (ret) {
592 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
593 goto free_mask;
594 }
595
596 list_add(&cpu_data->node, &cpu_data_list);
597
598 return cpu_data;
599
600 free_mask:
601 free_cpumask_var(cpu_data->shared_cpu_map);
602 free_cpu:
603 kfree(cpu_data);
604 out:
605 return NULL;
606 }
607
cppc_cpufreq_put_cpu_data(struct cpufreq_policy * policy)608 static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
609 {
610 struct cppc_cpudata *cpu_data = policy->driver_data;
611
612 list_del(&cpu_data->node);
613 free_cpumask_var(cpu_data->shared_cpu_map);
614 kfree(cpu_data);
615 policy->driver_data = NULL;
616 }
617
cppc_cpufreq_cpu_init(struct cpufreq_policy * policy)618 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
619 {
620 unsigned int cpu = policy->cpu;
621 struct cppc_cpudata *cpu_data;
622 struct cppc_perf_caps *caps;
623 int ret;
624
625 cpu_data = cppc_cpufreq_get_cpu_data(cpu);
626 if (!cpu_data) {
627 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
628 return -ENODEV;
629 }
630 caps = &cpu_data->perf_caps;
631 policy->driver_data = cpu_data;
632
633 /*
634 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
635 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
636 */
637 policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf);
638 policy->max = cppc_perf_to_khz(caps, caps->nominal_perf);
639
640 /*
641 * Set cpuinfo.min_freq to Lowest to make the full range of performance
642 * available if userspace wants to use any perf between lowest & lowest
643 * nonlinear perf
644 */
645 policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf);
646 policy->cpuinfo.max_freq = cppc_perf_to_khz(caps, caps->nominal_perf);
647
648 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
649 policy->shared_type = cpu_data->shared_type;
650
651 switch (policy->shared_type) {
652 case CPUFREQ_SHARED_TYPE_HW:
653 case CPUFREQ_SHARED_TYPE_NONE:
654 /* Nothing to be done - we'll have a policy for each CPU */
655 break;
656 case CPUFREQ_SHARED_TYPE_ANY:
657 /*
658 * All CPUs in the domain will share a policy and all cpufreq
659 * operations will use a single cppc_cpudata structure stored
660 * in policy->driver_data.
661 */
662 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
663 break;
664 default:
665 pr_debug("Unsupported CPU co-ord type: %d\n",
666 policy->shared_type);
667 ret = -EFAULT;
668 goto out;
669 }
670
671 policy->fast_switch_possible = cppc_allow_fast_switch();
672 policy->dvfs_possible_from_any_cpu = true;
673
674 /*
675 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
676 * is supported.
677 */
678 if (caps->highest_perf > caps->nominal_perf)
679 boost_supported = true;
680
681 /* Set policy->cur to max now. The governors will adjust later. */
682 policy->cur = cppc_perf_to_khz(caps, caps->highest_perf);
683 cpu_data->perf_ctrls.desired_perf = caps->highest_perf;
684
685 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
686 if (ret) {
687 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
688 caps->highest_perf, cpu, ret);
689 goto out;
690 }
691
692 cppc_cpufreq_cpu_fie_init(policy);
693 return 0;
694
695 out:
696 cppc_cpufreq_put_cpu_data(policy);
697 return ret;
698 }
699
cppc_cpufreq_cpu_exit(struct cpufreq_policy * policy)700 static int cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
701 {
702 struct cppc_cpudata *cpu_data = policy->driver_data;
703 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
704 unsigned int cpu = policy->cpu;
705 int ret;
706
707 cppc_cpufreq_cpu_fie_exit(policy);
708
709 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
710
711 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
712 if (ret)
713 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
714 caps->lowest_perf, cpu, ret);
715
716 cppc_cpufreq_put_cpu_data(policy);
717 return 0;
718 }
719
get_delta(u64 t1,u64 t0)720 static inline u64 get_delta(u64 t1, u64 t0)
721 {
722 if (t1 > t0 || t0 > ~(u32)0)
723 return t1 - t0;
724
725 return (u32)t1 - (u32)t0;
726 }
727
cppc_perf_from_fbctrs(struct cppc_cpudata * cpu_data,struct cppc_perf_fb_ctrs * fb_ctrs_t0,struct cppc_perf_fb_ctrs * fb_ctrs_t1)728 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
729 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
730 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
731 {
732 u64 delta_reference, delta_delivered;
733 u64 reference_perf;
734
735 reference_perf = fb_ctrs_t0->reference_perf;
736
737 delta_reference = get_delta(fb_ctrs_t1->reference,
738 fb_ctrs_t0->reference);
739 delta_delivered = get_delta(fb_ctrs_t1->delivered,
740 fb_ctrs_t0->delivered);
741
742 /*
743 * Avoid divide-by zero and unchanged feedback counters.
744 * Leave it for callers to handle.
745 */
746 if (!delta_reference || !delta_delivered)
747 return 0;
748
749 return (reference_perf * delta_delivered) / delta_reference;
750 }
751
cppc_get_perf_ctrs_sample(int cpu,struct cppc_perf_fb_ctrs * fb_ctrs_t0,struct cppc_perf_fb_ctrs * fb_ctrs_t1)752 static int cppc_get_perf_ctrs_sample(int cpu,
753 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
754 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
755 {
756 int ret;
757
758 ret = cppc_get_perf_ctrs(cpu, fb_ctrs_t0);
759 if (ret)
760 return ret;
761
762 udelay(2); /* 2usec delay between sampling */
763
764 return cppc_get_perf_ctrs(cpu, fb_ctrs_t1);
765 }
766
cppc_cpufreq_get_rate(unsigned int cpu)767 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
768 {
769 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
770 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
771 struct cppc_cpudata *cpu_data;
772 u64 delivered_perf;
773 int ret;
774
775 if (!policy)
776 return -ENODEV;
777
778 cpu_data = policy->driver_data;
779
780 cpufreq_cpu_put(policy);
781
782 ret = cppc_get_perf_ctrs_sample(cpu, &fb_ctrs_t0, &fb_ctrs_t1);
783 if (ret) {
784 if (ret == -EFAULT)
785 /* Any of the associated CPPC regs is 0. */
786 goto out_invalid_counters;
787 else
788 return 0;
789 }
790
791 delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0,
792 &fb_ctrs_t1);
793 if (!delivered_perf)
794 goto out_invalid_counters;
795
796 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
797
798 out_invalid_counters:
799 /*
800 * Feedback counters could be unchanged or 0 when a cpu enters a
801 * low-power idle state, e.g. clock-gated or power-gated.
802 * Use desired perf for reflecting frequency. Get the latest register
803 * value first as some platforms may update the actual delivered perf
804 * there; if failed, resort to the cached desired perf.
805 */
806 if (cppc_get_desired_perf(cpu, &delivered_perf))
807 delivered_perf = cpu_data->perf_ctrls.desired_perf;
808
809 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
810 }
811
cppc_cpufreq_set_boost(struct cpufreq_policy * policy,int state)812 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
813 {
814 struct cppc_cpudata *cpu_data = policy->driver_data;
815 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
816 int ret;
817
818 if (!boost_supported) {
819 pr_err("BOOST not supported by CPU or firmware\n");
820 return -EINVAL;
821 }
822
823 if (state)
824 policy->max = cppc_perf_to_khz(caps, caps->highest_perf);
825 else
826 policy->max = cppc_perf_to_khz(caps, caps->nominal_perf);
827 policy->cpuinfo.max_freq = policy->max;
828
829 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
830 if (ret < 0)
831 return ret;
832
833 return 0;
834 }
835
show_freqdomain_cpus(struct cpufreq_policy * policy,char * buf)836 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
837 {
838 struct cppc_cpudata *cpu_data = policy->driver_data;
839
840 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
841 }
842 cpufreq_freq_attr_ro(freqdomain_cpus);
843
844 static struct freq_attr *cppc_cpufreq_attr[] = {
845 &freqdomain_cpus,
846 NULL,
847 };
848
849 static struct cpufreq_driver cppc_cpufreq_driver = {
850 .flags = CPUFREQ_CONST_LOOPS,
851 .verify = cppc_verify_policy,
852 .target = cppc_cpufreq_set_target,
853 .get = cppc_cpufreq_get_rate,
854 .fast_switch = cppc_cpufreq_fast_switch,
855 .init = cppc_cpufreq_cpu_init,
856 .exit = cppc_cpufreq_cpu_exit,
857 .set_boost = cppc_cpufreq_set_boost,
858 .attr = cppc_cpufreq_attr,
859 .name = "cppc_cpufreq",
860 };
861
862 /*
863 * HISI platform does not support delivered performance counter and
864 * reference performance counter. It can calculate the performance using the
865 * platform specific mechanism. We reuse the desired performance register to
866 * store the real performance calculated by the platform.
867 */
hisi_cppc_cpufreq_get_rate(unsigned int cpu)868 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu)
869 {
870 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
871 struct cppc_cpudata *cpu_data;
872 u64 desired_perf;
873 int ret;
874
875 if (!policy)
876 return -ENODEV;
877
878 cpu_data = policy->driver_data;
879
880 cpufreq_cpu_put(policy);
881
882 ret = cppc_get_desired_perf(cpu, &desired_perf);
883 if (ret < 0)
884 return -EIO;
885
886 return cppc_perf_to_khz(&cpu_data->perf_caps, desired_perf);
887 }
888
cppc_check_hisi_workaround(void)889 static void cppc_check_hisi_workaround(void)
890 {
891 struct acpi_table_header *tbl;
892 acpi_status status = AE_OK;
893 int i;
894
895 status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
896 if (ACPI_FAILURE(status) || !tbl)
897 return;
898
899 for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
900 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
901 !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
902 wa_info[i].oem_revision == tbl->oem_revision) {
903 /* Overwrite the get() callback */
904 cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
905 fie_disabled = FIE_DISABLED;
906 break;
907 }
908 }
909
910 acpi_put_table(tbl);
911 }
912
cppc_cpufreq_init(void)913 static int __init cppc_cpufreq_init(void)
914 {
915 int ret;
916
917 if (!acpi_cpc_valid())
918 return -ENODEV;
919
920 cppc_check_hisi_workaround();
921 cppc_freq_invariance_init();
922 populate_efficiency_class();
923
924 ret = cpufreq_register_driver(&cppc_cpufreq_driver);
925 if (ret)
926 cppc_freq_invariance_exit();
927
928 return ret;
929 }
930
free_cpu_data(void)931 static inline void free_cpu_data(void)
932 {
933 struct cppc_cpudata *iter, *tmp;
934
935 list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
936 free_cpumask_var(iter->shared_cpu_map);
937 list_del(&iter->node);
938 kfree(iter);
939 }
940
941 }
942
cppc_cpufreq_exit(void)943 static void __exit cppc_cpufreq_exit(void)
944 {
945 cpufreq_unregister_driver(&cppc_cpufreq_driver);
946 cppc_freq_invariance_exit();
947
948 free_cpu_data();
949 }
950
951 module_exit(cppc_cpufreq_exit);
952 MODULE_AUTHOR("Ashwin Chaugule");
953 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
954 MODULE_LICENSE("GPL");
955
956 late_initcall(cppc_cpufreq_init);
957
958 static const struct acpi_device_id cppc_acpi_ids[] __used = {
959 {ACPI_PROCESSOR_DEVICE_HID, },
960 {}
961 };
962
963 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
964