1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 static ushort jbd2_journal_enable_debug __read_mostly;
53
54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
56 #endif
57
58 EXPORT_SYMBOL(jbd2_journal_extend);
59 EXPORT_SYMBOL(jbd2_journal_stop);
60 EXPORT_SYMBOL(jbd2_journal_lock_updates);
61 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
62 EXPORT_SYMBOL(jbd2_journal_get_write_access);
63 EXPORT_SYMBOL(jbd2_journal_get_create_access);
64 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
65 EXPORT_SYMBOL(jbd2_journal_set_triggers);
66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
67 EXPORT_SYMBOL(jbd2_journal_forget);
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
96 EXPORT_SYMBOL(jbd2_inode_cache);
97
98 static int jbd2_journal_create_slab(size_t slab_size);
99
100 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)101 void __jbd2_debug(int level, const char *file, const char *func,
102 unsigned int line, const char *fmt, ...)
103 {
104 struct va_format vaf;
105 va_list args;
106
107 if (level > jbd2_journal_enable_debug)
108 return;
109 va_start(args, fmt);
110 vaf.fmt = fmt;
111 vaf.va = &args;
112 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
113 va_end(args);
114 }
115 #endif
116
117 /* Checksumming functions */
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)118 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
119 {
120 __u32 csum;
121 __be32 old_csum;
122
123 old_csum = sb->s_checksum;
124 sb->s_checksum = 0;
125 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
126 sb->s_checksum = old_csum;
127
128 return cpu_to_be32(csum);
129 }
130
131 /*
132 * Helper function used to manage commit timeouts
133 */
134
commit_timeout(struct timer_list * t)135 static void commit_timeout(struct timer_list *t)
136 {
137 journal_t *journal = from_timer(journal, t, j_commit_timer);
138
139 wake_up_process(journal->j_task);
140 }
141
142 /*
143 * kjournald2: The main thread function used to manage a logging device
144 * journal.
145 *
146 * This kernel thread is responsible for two things:
147 *
148 * 1) COMMIT: Every so often we need to commit the current state of the
149 * filesystem to disk. The journal thread is responsible for writing
150 * all of the metadata buffers to disk. If a fast commit is ongoing
151 * journal thread waits until it's done and then continues from
152 * there on.
153 *
154 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
155 * of the data in that part of the log has been rewritten elsewhere on
156 * the disk. Flushing these old buffers to reclaim space in the log is
157 * known as checkpointing, and this thread is responsible for that job.
158 */
159
kjournald2(void * arg)160 static int kjournald2(void *arg)
161 {
162 journal_t *journal = arg;
163 transaction_t *transaction;
164
165 /*
166 * Set up an interval timer which can be used to trigger a commit wakeup
167 * after the commit interval expires
168 */
169 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
170
171 set_freezable();
172
173 /* Record that the journal thread is running */
174 journal->j_task = current;
175 wake_up(&journal->j_wait_done_commit);
176
177 /*
178 * Make sure that no allocations from this kernel thread will ever
179 * recurse to the fs layer because we are responsible for the
180 * transaction commit and any fs involvement might get stuck waiting for
181 * the trasn. commit.
182 */
183 memalloc_nofs_save();
184
185 /*
186 * And now, wait forever for commit wakeup events.
187 */
188 write_lock(&journal->j_state_lock);
189
190 loop:
191 if (journal->j_flags & JBD2_UNMOUNT)
192 goto end_loop;
193
194 jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n",
195 journal->j_commit_sequence, journal->j_commit_request);
196
197 if (journal->j_commit_sequence != journal->j_commit_request) {
198 jbd2_debug(1, "OK, requests differ\n");
199 write_unlock(&journal->j_state_lock);
200 del_timer_sync(&journal->j_commit_timer);
201 jbd2_journal_commit_transaction(journal);
202 write_lock(&journal->j_state_lock);
203 goto loop;
204 }
205
206 wake_up(&journal->j_wait_done_commit);
207 if (freezing(current)) {
208 /*
209 * The simpler the better. Flushing journal isn't a
210 * good idea, because that depends on threads that may
211 * be already stopped.
212 */
213 jbd2_debug(1, "Now suspending kjournald2\n");
214 write_unlock(&journal->j_state_lock);
215 try_to_freeze();
216 write_lock(&journal->j_state_lock);
217 } else {
218 /*
219 * We assume on resume that commits are already there,
220 * so we don't sleep
221 */
222 DEFINE_WAIT(wait);
223 int should_sleep = 1;
224
225 prepare_to_wait(&journal->j_wait_commit, &wait,
226 TASK_INTERRUPTIBLE);
227 if (journal->j_commit_sequence != journal->j_commit_request)
228 should_sleep = 0;
229 transaction = journal->j_running_transaction;
230 if (transaction && time_after_eq(jiffies,
231 transaction->t_expires))
232 should_sleep = 0;
233 if (journal->j_flags & JBD2_UNMOUNT)
234 should_sleep = 0;
235 if (should_sleep) {
236 write_unlock(&journal->j_state_lock);
237 schedule();
238 write_lock(&journal->j_state_lock);
239 }
240 finish_wait(&journal->j_wait_commit, &wait);
241 }
242
243 jbd2_debug(1, "kjournald2 wakes\n");
244
245 /*
246 * Were we woken up by a commit wakeup event?
247 */
248 transaction = journal->j_running_transaction;
249 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
250 journal->j_commit_request = transaction->t_tid;
251 jbd2_debug(1, "woke because of timeout\n");
252 }
253 goto loop;
254
255 end_loop:
256 del_timer_sync(&journal->j_commit_timer);
257 journal->j_task = NULL;
258 wake_up(&journal->j_wait_done_commit);
259 jbd2_debug(1, "Journal thread exiting.\n");
260 write_unlock(&journal->j_state_lock);
261 return 0;
262 }
263
jbd2_journal_start_thread(journal_t * journal)264 static int jbd2_journal_start_thread(journal_t *journal)
265 {
266 struct task_struct *t;
267
268 t = kthread_run(kjournald2, journal, "jbd2/%s",
269 journal->j_devname);
270 if (IS_ERR(t))
271 return PTR_ERR(t);
272
273 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
274 return 0;
275 }
276
journal_kill_thread(journal_t * journal)277 static void journal_kill_thread(journal_t *journal)
278 {
279 write_lock(&journal->j_state_lock);
280 journal->j_flags |= JBD2_UNMOUNT;
281
282 while (journal->j_task) {
283 write_unlock(&journal->j_state_lock);
284 wake_up(&journal->j_wait_commit);
285 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
286 write_lock(&journal->j_state_lock);
287 }
288 write_unlock(&journal->j_state_lock);
289 }
290
291 /*
292 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
293 *
294 * Writes a metadata buffer to a given disk block. The actual IO is not
295 * performed but a new buffer_head is constructed which labels the data
296 * to be written with the correct destination disk block.
297 *
298 * Any magic-number escaping which needs to be done will cause a
299 * copy-out here. If the buffer happens to start with the
300 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
301 * magic number is only written to the log for descripter blocks. In
302 * this case, we copy the data and replace the first word with 0, and we
303 * return a result code which indicates that this buffer needs to be
304 * marked as an escaped buffer in the corresponding log descriptor
305 * block. The missing word can then be restored when the block is read
306 * during recovery.
307 *
308 * If the source buffer has already been modified by a new transaction
309 * since we took the last commit snapshot, we use the frozen copy of
310 * that data for IO. If we end up using the existing buffer_head's data
311 * for the write, then we have to make sure nobody modifies it while the
312 * IO is in progress. do_get_write_access() handles this.
313 *
314 * The function returns a pointer to the buffer_head to be used for IO.
315 *
316 *
317 * Return value:
318 * <0: Error
319 * >=0: Finished OK
320 *
321 * On success:
322 * Bit 0 set == escape performed on the data
323 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
324 */
325
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)326 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
327 struct journal_head *jh_in,
328 struct buffer_head **bh_out,
329 sector_t blocknr)
330 {
331 int need_copy_out = 0;
332 int done_copy_out = 0;
333 int do_escape = 0;
334 char *mapped_data;
335 struct buffer_head *new_bh;
336 struct folio *new_folio;
337 unsigned int new_offset;
338 struct buffer_head *bh_in = jh2bh(jh_in);
339 journal_t *journal = transaction->t_journal;
340
341 /*
342 * The buffer really shouldn't be locked: only the current committing
343 * transaction is allowed to write it, so nobody else is allowed
344 * to do any IO.
345 *
346 * akpm: except if we're journalling data, and write() output is
347 * also part of a shared mapping, and another thread has
348 * decided to launch a writepage() against this buffer.
349 */
350 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
351
352 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
353
354 /* keep subsequent assertions sane */
355 atomic_set(&new_bh->b_count, 1);
356
357 spin_lock(&jh_in->b_state_lock);
358 repeat:
359 /*
360 * If a new transaction has already done a buffer copy-out, then
361 * we use that version of the data for the commit.
362 */
363 if (jh_in->b_frozen_data) {
364 done_copy_out = 1;
365 new_folio = virt_to_folio(jh_in->b_frozen_data);
366 new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
367 } else {
368 new_folio = jh2bh(jh_in)->b_folio;
369 new_offset = offset_in_folio(new_folio, jh2bh(jh_in)->b_data);
370 }
371
372 mapped_data = kmap_local_folio(new_folio, new_offset);
373 /*
374 * Fire data frozen trigger if data already wasn't frozen. Do this
375 * before checking for escaping, as the trigger may modify the magic
376 * offset. If a copy-out happens afterwards, it will have the correct
377 * data in the buffer.
378 */
379 if (!done_copy_out)
380 jbd2_buffer_frozen_trigger(jh_in, mapped_data,
381 jh_in->b_triggers);
382
383 /*
384 * Check for escaping
385 */
386 if (*((__be32 *)mapped_data) == cpu_to_be32(JBD2_MAGIC_NUMBER)) {
387 need_copy_out = 1;
388 do_escape = 1;
389 }
390 kunmap_local(mapped_data);
391
392 /*
393 * Do we need to do a data copy?
394 */
395 if (need_copy_out && !done_copy_out) {
396 char *tmp;
397
398 spin_unlock(&jh_in->b_state_lock);
399 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
400 if (!tmp) {
401 brelse(new_bh);
402 free_buffer_head(new_bh);
403 return -ENOMEM;
404 }
405 spin_lock(&jh_in->b_state_lock);
406 if (jh_in->b_frozen_data) {
407 jbd2_free(tmp, bh_in->b_size);
408 goto repeat;
409 }
410
411 jh_in->b_frozen_data = tmp;
412 memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size);
413
414 new_folio = virt_to_folio(tmp);
415 new_offset = offset_in_folio(new_folio, tmp);
416 done_copy_out = 1;
417
418 /*
419 * This isn't strictly necessary, as we're using frozen
420 * data for the escaping, but it keeps consistency with
421 * b_frozen_data usage.
422 */
423 jh_in->b_frozen_triggers = jh_in->b_triggers;
424 }
425
426 /*
427 * Did we need to do an escaping? Now we've done all the
428 * copying, we can finally do so.
429 */
430 if (do_escape) {
431 mapped_data = kmap_local_folio(new_folio, new_offset);
432 *((unsigned int *)mapped_data) = 0;
433 kunmap_local(mapped_data);
434 }
435
436 folio_set_bh(new_bh, new_folio, new_offset);
437 new_bh->b_size = bh_in->b_size;
438 new_bh->b_bdev = journal->j_dev;
439 new_bh->b_blocknr = blocknr;
440 new_bh->b_private = bh_in;
441 set_buffer_mapped(new_bh);
442 set_buffer_dirty(new_bh);
443
444 *bh_out = new_bh;
445
446 /*
447 * The to-be-written buffer needs to get moved to the io queue,
448 * and the original buffer whose contents we are shadowing or
449 * copying is moved to the transaction's shadow queue.
450 */
451 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
452 spin_lock(&journal->j_list_lock);
453 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
454 spin_unlock(&journal->j_list_lock);
455 set_buffer_shadow(bh_in);
456 spin_unlock(&jh_in->b_state_lock);
457
458 return do_escape | (done_copy_out << 1);
459 }
460
461 /*
462 * Allocation code for the journal file. Manage the space left in the
463 * journal, so that we can begin checkpointing when appropriate.
464 */
465
466 /*
467 * Called with j_state_lock locked for writing.
468 * Returns true if a transaction commit was started.
469 */
__jbd2_log_start_commit(journal_t * journal,tid_t target)470 static int __jbd2_log_start_commit(journal_t *journal, tid_t target)
471 {
472 /* Return if the txn has already requested to be committed */
473 if (journal->j_commit_request == target)
474 return 0;
475
476 /*
477 * The only transaction we can possibly wait upon is the
478 * currently running transaction (if it exists). Otherwise,
479 * the target tid must be an old one.
480 */
481 if (journal->j_running_transaction &&
482 journal->j_running_transaction->t_tid == target) {
483 /*
484 * We want a new commit: OK, mark the request and wakeup the
485 * commit thread. We do _not_ do the commit ourselves.
486 */
487
488 journal->j_commit_request = target;
489 jbd2_debug(1, "JBD2: requesting commit %u/%u\n",
490 journal->j_commit_request,
491 journal->j_commit_sequence);
492 journal->j_running_transaction->t_requested = jiffies;
493 wake_up(&journal->j_wait_commit);
494 return 1;
495 } else if (!tid_geq(journal->j_commit_request, target))
496 /* This should never happen, but if it does, preserve
497 the evidence before kjournald goes into a loop and
498 increments j_commit_sequence beyond all recognition. */
499 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
500 journal->j_commit_request,
501 journal->j_commit_sequence,
502 target, journal->j_running_transaction ?
503 journal->j_running_transaction->t_tid : 0);
504 return 0;
505 }
506
jbd2_log_start_commit(journal_t * journal,tid_t tid)507 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
508 {
509 int ret;
510
511 write_lock(&journal->j_state_lock);
512 ret = __jbd2_log_start_commit(journal, tid);
513 write_unlock(&journal->j_state_lock);
514 return ret;
515 }
516
517 /*
518 * Force and wait any uncommitted transactions. We can only force the running
519 * transaction if we don't have an active handle, otherwise, we will deadlock.
520 * Returns: <0 in case of error,
521 * 0 if nothing to commit,
522 * 1 if transaction was successfully committed.
523 */
__jbd2_journal_force_commit(journal_t * journal)524 static int __jbd2_journal_force_commit(journal_t *journal)
525 {
526 transaction_t *transaction = NULL;
527 tid_t tid;
528 int need_to_start = 0, ret = 0;
529
530 read_lock(&journal->j_state_lock);
531 if (journal->j_running_transaction && !current->journal_info) {
532 transaction = journal->j_running_transaction;
533 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
534 need_to_start = 1;
535 } else if (journal->j_committing_transaction)
536 transaction = journal->j_committing_transaction;
537
538 if (!transaction) {
539 /* Nothing to commit */
540 read_unlock(&journal->j_state_lock);
541 return 0;
542 }
543 tid = transaction->t_tid;
544 read_unlock(&journal->j_state_lock);
545 if (need_to_start)
546 jbd2_log_start_commit(journal, tid);
547 ret = jbd2_log_wait_commit(journal, tid);
548 if (!ret)
549 ret = 1;
550
551 return ret;
552 }
553
554 /**
555 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
556 * calling process is not within transaction.
557 *
558 * @journal: journal to force
559 * Returns true if progress was made.
560 *
561 * This is used for forcing out undo-protected data which contains
562 * bitmaps, when the fs is running out of space.
563 */
jbd2_journal_force_commit_nested(journal_t * journal)564 int jbd2_journal_force_commit_nested(journal_t *journal)
565 {
566 int ret;
567
568 ret = __jbd2_journal_force_commit(journal);
569 return ret > 0;
570 }
571
572 /**
573 * jbd2_journal_force_commit() - force any uncommitted transactions
574 * @journal: journal to force
575 *
576 * Caller want unconditional commit. We can only force the running transaction
577 * if we don't have an active handle, otherwise, we will deadlock.
578 */
jbd2_journal_force_commit(journal_t * journal)579 int jbd2_journal_force_commit(journal_t *journal)
580 {
581 int ret;
582
583 J_ASSERT(!current->journal_info);
584 ret = __jbd2_journal_force_commit(journal);
585 if (ret > 0)
586 ret = 0;
587 return ret;
588 }
589
590 /*
591 * Start a commit of the current running transaction (if any). Returns true
592 * if a transaction is going to be committed (or is currently already
593 * committing), and fills its tid in at *ptid
594 */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)595 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
596 {
597 int ret = 0;
598
599 write_lock(&journal->j_state_lock);
600 if (journal->j_running_transaction) {
601 tid_t tid = journal->j_running_transaction->t_tid;
602
603 __jbd2_log_start_commit(journal, tid);
604 /* There's a running transaction and we've just made sure
605 * it's commit has been scheduled. */
606 if (ptid)
607 *ptid = tid;
608 ret = 1;
609 } else if (journal->j_committing_transaction) {
610 /*
611 * If commit has been started, then we have to wait for
612 * completion of that transaction.
613 */
614 if (ptid)
615 *ptid = journal->j_committing_transaction->t_tid;
616 ret = 1;
617 }
618 write_unlock(&journal->j_state_lock);
619 return ret;
620 }
621
622 /*
623 * Return 1 if a given transaction has not yet sent barrier request
624 * connected with a transaction commit. If 0 is returned, transaction
625 * may or may not have sent the barrier. Used to avoid sending barrier
626 * twice in common cases.
627 */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)628 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
629 {
630 int ret = 0;
631 transaction_t *commit_trans;
632
633 if (!(journal->j_flags & JBD2_BARRIER))
634 return 0;
635 read_lock(&journal->j_state_lock);
636 /* Transaction already committed? */
637 if (tid_geq(journal->j_commit_sequence, tid))
638 goto out;
639 commit_trans = journal->j_committing_transaction;
640 if (!commit_trans || commit_trans->t_tid != tid) {
641 ret = 1;
642 goto out;
643 }
644 /*
645 * Transaction is being committed and we already proceeded to
646 * submitting a flush to fs partition?
647 */
648 if (journal->j_fs_dev != journal->j_dev) {
649 if (!commit_trans->t_need_data_flush ||
650 commit_trans->t_state >= T_COMMIT_DFLUSH)
651 goto out;
652 } else {
653 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
654 goto out;
655 }
656 ret = 1;
657 out:
658 read_unlock(&journal->j_state_lock);
659 return ret;
660 }
661 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
662
663 /*
664 * Wait for a specified commit to complete.
665 * The caller may not hold the journal lock.
666 */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)667 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
668 {
669 int err = 0;
670
671 read_lock(&journal->j_state_lock);
672 #ifdef CONFIG_PROVE_LOCKING
673 /*
674 * Some callers make sure transaction is already committing and in that
675 * case we cannot block on open handles anymore. So don't warn in that
676 * case.
677 */
678 if (tid_gt(tid, journal->j_commit_sequence) &&
679 (!journal->j_committing_transaction ||
680 journal->j_committing_transaction->t_tid != tid)) {
681 read_unlock(&journal->j_state_lock);
682 jbd2_might_wait_for_commit(journal);
683 read_lock(&journal->j_state_lock);
684 }
685 #endif
686 #ifdef CONFIG_JBD2_DEBUG
687 if (!tid_geq(journal->j_commit_request, tid)) {
688 printk(KERN_ERR
689 "%s: error: j_commit_request=%u, tid=%u\n",
690 __func__, journal->j_commit_request, tid);
691 }
692 #endif
693 while (tid_gt(tid, journal->j_commit_sequence)) {
694 jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
695 tid, journal->j_commit_sequence);
696 read_unlock(&journal->j_state_lock);
697 wake_up(&journal->j_wait_commit);
698 wait_event(journal->j_wait_done_commit,
699 !tid_gt(tid, journal->j_commit_sequence));
700 read_lock(&journal->j_state_lock);
701 }
702 read_unlock(&journal->j_state_lock);
703
704 if (unlikely(is_journal_aborted(journal)))
705 err = -EIO;
706 return err;
707 }
708
709 /*
710 * Start a fast commit. If there's an ongoing fast or full commit wait for
711 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
712 * if a fast commit is not needed, either because there's an already a commit
713 * going on or this tid has already been committed. Returns -EINVAL if no jbd2
714 * commit has yet been performed.
715 */
jbd2_fc_begin_commit(journal_t * journal,tid_t tid)716 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
717 {
718 if (unlikely(is_journal_aborted(journal)))
719 return -EIO;
720 /*
721 * Fast commits only allowed if at least one full commit has
722 * been processed.
723 */
724 if (!journal->j_stats.ts_tid)
725 return -EINVAL;
726
727 write_lock(&journal->j_state_lock);
728 if (tid_geq(journal->j_commit_sequence, tid)) {
729 write_unlock(&journal->j_state_lock);
730 return -EALREADY;
731 }
732
733 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
734 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
735 DEFINE_WAIT(wait);
736
737 prepare_to_wait(&journal->j_fc_wait, &wait,
738 TASK_UNINTERRUPTIBLE);
739 write_unlock(&journal->j_state_lock);
740 schedule();
741 finish_wait(&journal->j_fc_wait, &wait);
742 return -EALREADY;
743 }
744 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
745 write_unlock(&journal->j_state_lock);
746 jbd2_journal_lock_updates(journal);
747
748 return 0;
749 }
750 EXPORT_SYMBOL(jbd2_fc_begin_commit);
751
752 /*
753 * Stop a fast commit. If fallback is set, this function starts commit of
754 * TID tid before any other fast commit can start.
755 */
__jbd2_fc_end_commit(journal_t * journal,tid_t tid,bool fallback)756 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
757 {
758 if (journal->j_fc_cleanup_callback)
759 journal->j_fc_cleanup_callback(journal, 0, tid);
760 jbd2_journal_unlock_updates(journal);
761 write_lock(&journal->j_state_lock);
762 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
763 if (fallback)
764 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
765 write_unlock(&journal->j_state_lock);
766 wake_up(&journal->j_fc_wait);
767 if (fallback)
768 return jbd2_complete_transaction(journal, tid);
769 return 0;
770 }
771
jbd2_fc_end_commit(journal_t * journal)772 int jbd2_fc_end_commit(journal_t *journal)
773 {
774 return __jbd2_fc_end_commit(journal, 0, false);
775 }
776 EXPORT_SYMBOL(jbd2_fc_end_commit);
777
jbd2_fc_end_commit_fallback(journal_t * journal)778 int jbd2_fc_end_commit_fallback(journal_t *journal)
779 {
780 tid_t tid;
781
782 read_lock(&journal->j_state_lock);
783 tid = journal->j_running_transaction ?
784 journal->j_running_transaction->t_tid : 0;
785 read_unlock(&journal->j_state_lock);
786 return __jbd2_fc_end_commit(journal, tid, true);
787 }
788 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
789
790 /* Return 1 when transaction with given tid has already committed. */
jbd2_transaction_committed(journal_t * journal,tid_t tid)791 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
792 {
793 int ret = 1;
794
795 read_lock(&journal->j_state_lock);
796 if (journal->j_running_transaction &&
797 journal->j_running_transaction->t_tid == tid)
798 ret = 0;
799 if (journal->j_committing_transaction &&
800 journal->j_committing_transaction->t_tid == tid)
801 ret = 0;
802 read_unlock(&journal->j_state_lock);
803 return ret;
804 }
805 EXPORT_SYMBOL(jbd2_transaction_committed);
806
807 /*
808 * When this function returns the transaction corresponding to tid
809 * will be completed. If the transaction has currently running, start
810 * committing that transaction before waiting for it to complete. If
811 * the transaction id is stale, it is by definition already completed,
812 * so just return SUCCESS.
813 */
jbd2_complete_transaction(journal_t * journal,tid_t tid)814 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
815 {
816 int need_to_wait = 1;
817
818 read_lock(&journal->j_state_lock);
819 if (journal->j_running_transaction &&
820 journal->j_running_transaction->t_tid == tid) {
821 if (journal->j_commit_request != tid) {
822 /* transaction not yet started, so request it */
823 read_unlock(&journal->j_state_lock);
824 jbd2_log_start_commit(journal, tid);
825 goto wait_commit;
826 }
827 } else if (!(journal->j_committing_transaction &&
828 journal->j_committing_transaction->t_tid == tid))
829 need_to_wait = 0;
830 read_unlock(&journal->j_state_lock);
831 if (!need_to_wait)
832 return 0;
833 wait_commit:
834 return jbd2_log_wait_commit(journal, tid);
835 }
836 EXPORT_SYMBOL(jbd2_complete_transaction);
837
838 /*
839 * Log buffer allocation routines:
840 */
841
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)842 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
843 {
844 unsigned long blocknr;
845
846 write_lock(&journal->j_state_lock);
847 J_ASSERT(journal->j_free > 1);
848
849 blocknr = journal->j_head;
850 journal->j_head++;
851 journal->j_free--;
852 if (journal->j_head == journal->j_last)
853 journal->j_head = journal->j_first;
854 write_unlock(&journal->j_state_lock);
855 return jbd2_journal_bmap(journal, blocknr, retp);
856 }
857
858 /* Map one fast commit buffer for use by the file system */
jbd2_fc_get_buf(journal_t * journal,struct buffer_head ** bh_out)859 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
860 {
861 unsigned long long pblock;
862 unsigned long blocknr;
863 int ret = 0;
864 struct buffer_head *bh;
865 int fc_off;
866
867 *bh_out = NULL;
868
869 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
870 fc_off = journal->j_fc_off;
871 blocknr = journal->j_fc_first + fc_off;
872 journal->j_fc_off++;
873 } else {
874 ret = -EINVAL;
875 }
876
877 if (ret)
878 return ret;
879
880 ret = jbd2_journal_bmap(journal, blocknr, &pblock);
881 if (ret)
882 return ret;
883
884 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
885 if (!bh)
886 return -ENOMEM;
887
888
889 journal->j_fc_wbuf[fc_off] = bh;
890
891 *bh_out = bh;
892
893 return 0;
894 }
895 EXPORT_SYMBOL(jbd2_fc_get_buf);
896
897 /*
898 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
899 * for completion.
900 */
jbd2_fc_wait_bufs(journal_t * journal,int num_blks)901 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
902 {
903 struct buffer_head *bh;
904 int i, j_fc_off;
905
906 j_fc_off = journal->j_fc_off;
907
908 /*
909 * Wait in reverse order to minimize chances of us being woken up before
910 * all IOs have completed
911 */
912 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
913 bh = journal->j_fc_wbuf[i];
914 wait_on_buffer(bh);
915 /*
916 * Update j_fc_off so jbd2_fc_release_bufs can release remain
917 * buffer head.
918 */
919 if (unlikely(!buffer_uptodate(bh))) {
920 journal->j_fc_off = i + 1;
921 return -EIO;
922 }
923 put_bh(bh);
924 journal->j_fc_wbuf[i] = NULL;
925 }
926
927 return 0;
928 }
929 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
930
jbd2_fc_release_bufs(journal_t * journal)931 int jbd2_fc_release_bufs(journal_t *journal)
932 {
933 struct buffer_head *bh;
934 int i, j_fc_off;
935
936 j_fc_off = journal->j_fc_off;
937
938 for (i = j_fc_off - 1; i >= 0; i--) {
939 bh = journal->j_fc_wbuf[i];
940 if (!bh)
941 break;
942 put_bh(bh);
943 journal->j_fc_wbuf[i] = NULL;
944 }
945
946 return 0;
947 }
948 EXPORT_SYMBOL(jbd2_fc_release_bufs);
949
950 /*
951 * Conversion of logical to physical block numbers for the journal
952 *
953 * On external journals the journal blocks are identity-mapped, so
954 * this is a no-op. If needed, we can use j_blk_offset - everything is
955 * ready.
956 */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)957 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
958 unsigned long long *retp)
959 {
960 int err = 0;
961 unsigned long long ret;
962 sector_t block = blocknr;
963
964 if (journal->j_bmap) {
965 err = journal->j_bmap(journal, &block);
966 if (err == 0)
967 *retp = block;
968 } else if (journal->j_inode) {
969 ret = bmap(journal->j_inode, &block);
970
971 if (ret || !block) {
972 printk(KERN_ALERT "%s: journal block not found "
973 "at offset %lu on %s\n",
974 __func__, blocknr, journal->j_devname);
975 err = -EIO;
976 jbd2_journal_abort(journal, err);
977 } else {
978 *retp = block;
979 }
980
981 } else {
982 *retp = blocknr; /* +journal->j_blk_offset */
983 }
984 return err;
985 }
986
987 /*
988 * We play buffer_head aliasing tricks to write data/metadata blocks to
989 * the journal without copying their contents, but for journal
990 * descriptor blocks we do need to generate bona fide buffers.
991 *
992 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
993 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
994 * But we don't bother doing that, so there will be coherency problems with
995 * mmaps of blockdevs which hold live JBD-controlled filesystems.
996 */
997 struct buffer_head *
jbd2_journal_get_descriptor_buffer(transaction_t * transaction,int type)998 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
999 {
1000 journal_t *journal = transaction->t_journal;
1001 struct buffer_head *bh;
1002 unsigned long long blocknr;
1003 journal_header_t *header;
1004 int err;
1005
1006 err = jbd2_journal_next_log_block(journal, &blocknr);
1007
1008 if (err)
1009 return NULL;
1010
1011 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1012 if (!bh)
1013 return NULL;
1014 atomic_dec(&transaction->t_outstanding_credits);
1015 lock_buffer(bh);
1016 memset(bh->b_data, 0, journal->j_blocksize);
1017 header = (journal_header_t *)bh->b_data;
1018 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1019 header->h_blocktype = cpu_to_be32(type);
1020 header->h_sequence = cpu_to_be32(transaction->t_tid);
1021 set_buffer_uptodate(bh);
1022 unlock_buffer(bh);
1023 BUFFER_TRACE(bh, "return this buffer");
1024 return bh;
1025 }
1026
jbd2_descriptor_block_csum_set(journal_t * j,struct buffer_head * bh)1027 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1028 {
1029 struct jbd2_journal_block_tail *tail;
1030 __u32 csum;
1031
1032 if (!jbd2_journal_has_csum_v2or3(j))
1033 return;
1034
1035 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1036 sizeof(struct jbd2_journal_block_tail));
1037 tail->t_checksum = 0;
1038 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1039 tail->t_checksum = cpu_to_be32(csum);
1040 }
1041
1042 /*
1043 * Return tid of the oldest transaction in the journal and block in the journal
1044 * where the transaction starts.
1045 *
1046 * If the journal is now empty, return which will be the next transaction ID
1047 * we will write and where will that transaction start.
1048 *
1049 * The return value is 0 if journal tail cannot be pushed any further, 1 if
1050 * it can.
1051 */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)1052 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1053 unsigned long *block)
1054 {
1055 transaction_t *transaction;
1056 int ret;
1057
1058 read_lock(&journal->j_state_lock);
1059 spin_lock(&journal->j_list_lock);
1060 transaction = journal->j_checkpoint_transactions;
1061 if (transaction) {
1062 *tid = transaction->t_tid;
1063 *block = transaction->t_log_start;
1064 } else if ((transaction = journal->j_committing_transaction) != NULL) {
1065 *tid = transaction->t_tid;
1066 *block = transaction->t_log_start;
1067 } else if ((transaction = journal->j_running_transaction) != NULL) {
1068 *tid = transaction->t_tid;
1069 *block = journal->j_head;
1070 } else {
1071 *tid = journal->j_transaction_sequence;
1072 *block = journal->j_head;
1073 }
1074 ret = tid_gt(*tid, journal->j_tail_sequence);
1075 spin_unlock(&journal->j_list_lock);
1076 read_unlock(&journal->j_state_lock);
1077
1078 return ret;
1079 }
1080
1081 /*
1082 * Update information in journal structure and in on disk journal superblock
1083 * about log tail. This function does not check whether information passed in
1084 * really pushes log tail further. It's responsibility of the caller to make
1085 * sure provided log tail information is valid (e.g. by holding
1086 * j_checkpoint_mutex all the time between computing log tail and calling this
1087 * function as is the case with jbd2_cleanup_journal_tail()).
1088 *
1089 * Requires j_checkpoint_mutex
1090 */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1091 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1092 {
1093 unsigned long freed;
1094 int ret;
1095
1096 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1097
1098 /*
1099 * We cannot afford for write to remain in drive's caches since as
1100 * soon as we update j_tail, next transaction can start reusing journal
1101 * space and if we lose sb update during power failure we'd replay
1102 * old transaction with possibly newly overwritten data.
1103 */
1104 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA);
1105 if (ret)
1106 goto out;
1107
1108 write_lock(&journal->j_state_lock);
1109 freed = block - journal->j_tail;
1110 if (block < journal->j_tail)
1111 freed += journal->j_last - journal->j_first;
1112
1113 trace_jbd2_update_log_tail(journal, tid, block, freed);
1114 jbd2_debug(1,
1115 "Cleaning journal tail from %u to %u (offset %lu), "
1116 "freeing %lu\n",
1117 journal->j_tail_sequence, tid, block, freed);
1118
1119 journal->j_free += freed;
1120 journal->j_tail_sequence = tid;
1121 journal->j_tail = block;
1122 write_unlock(&journal->j_state_lock);
1123
1124 out:
1125 return ret;
1126 }
1127
1128 /*
1129 * This is a variation of __jbd2_update_log_tail which checks for validity of
1130 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1131 * with other threads updating log tail.
1132 */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1133 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1134 {
1135 mutex_lock_io(&journal->j_checkpoint_mutex);
1136 if (tid_gt(tid, journal->j_tail_sequence))
1137 __jbd2_update_log_tail(journal, tid, block);
1138 mutex_unlock(&journal->j_checkpoint_mutex);
1139 }
1140
1141 struct jbd2_stats_proc_session {
1142 journal_t *journal;
1143 struct transaction_stats_s *stats;
1144 int start;
1145 int max;
1146 };
1147
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)1148 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1149 {
1150 return *pos ? NULL : SEQ_START_TOKEN;
1151 }
1152
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)1153 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1154 {
1155 (*pos)++;
1156 return NULL;
1157 }
1158
jbd2_seq_info_show(struct seq_file * seq,void * v)1159 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1160 {
1161 struct jbd2_stats_proc_session *s = seq->private;
1162
1163 if (v != SEQ_START_TOKEN)
1164 return 0;
1165 seq_printf(seq, "%lu transactions (%lu requested), "
1166 "each up to %u blocks\n",
1167 s->stats->ts_tid, s->stats->ts_requested,
1168 s->journal->j_max_transaction_buffers);
1169 if (s->stats->ts_tid == 0)
1170 return 0;
1171 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1172 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1173 seq_printf(seq, " %ums request delay\n",
1174 (s->stats->ts_requested == 0) ? 0 :
1175 jiffies_to_msecs(s->stats->run.rs_request_delay /
1176 s->stats->ts_requested));
1177 seq_printf(seq, " %ums running transaction\n",
1178 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1179 seq_printf(seq, " %ums transaction was being locked\n",
1180 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1181 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1182 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1183 seq_printf(seq, " %ums logging transaction\n",
1184 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1185 seq_printf(seq, " %lluus average transaction commit time\n",
1186 div_u64(s->journal->j_average_commit_time, 1000));
1187 seq_printf(seq, " %lu handles per transaction\n",
1188 s->stats->run.rs_handle_count / s->stats->ts_tid);
1189 seq_printf(seq, " %lu blocks per transaction\n",
1190 s->stats->run.rs_blocks / s->stats->ts_tid);
1191 seq_printf(seq, " %lu logged blocks per transaction\n",
1192 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1193 return 0;
1194 }
1195
jbd2_seq_info_stop(struct seq_file * seq,void * v)1196 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1197 {
1198 }
1199
1200 static const struct seq_operations jbd2_seq_info_ops = {
1201 .start = jbd2_seq_info_start,
1202 .next = jbd2_seq_info_next,
1203 .stop = jbd2_seq_info_stop,
1204 .show = jbd2_seq_info_show,
1205 };
1206
jbd2_seq_info_open(struct inode * inode,struct file * file)1207 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1208 {
1209 journal_t *journal = pde_data(inode);
1210 struct jbd2_stats_proc_session *s;
1211 int rc, size;
1212
1213 s = kmalloc(sizeof(*s), GFP_KERNEL);
1214 if (s == NULL)
1215 return -ENOMEM;
1216 size = sizeof(struct transaction_stats_s);
1217 s->stats = kmalloc(size, GFP_KERNEL);
1218 if (s->stats == NULL) {
1219 kfree(s);
1220 return -ENOMEM;
1221 }
1222 spin_lock(&journal->j_history_lock);
1223 memcpy(s->stats, &journal->j_stats, size);
1224 s->journal = journal;
1225 spin_unlock(&journal->j_history_lock);
1226
1227 rc = seq_open(file, &jbd2_seq_info_ops);
1228 if (rc == 0) {
1229 struct seq_file *m = file->private_data;
1230 m->private = s;
1231 } else {
1232 kfree(s->stats);
1233 kfree(s);
1234 }
1235 return rc;
1236
1237 }
1238
jbd2_seq_info_release(struct inode * inode,struct file * file)1239 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1240 {
1241 struct seq_file *seq = file->private_data;
1242 struct jbd2_stats_proc_session *s = seq->private;
1243 kfree(s->stats);
1244 kfree(s);
1245 return seq_release(inode, file);
1246 }
1247
1248 static const struct proc_ops jbd2_info_proc_ops = {
1249 .proc_open = jbd2_seq_info_open,
1250 .proc_read = seq_read,
1251 .proc_lseek = seq_lseek,
1252 .proc_release = jbd2_seq_info_release,
1253 };
1254
1255 static struct proc_dir_entry *proc_jbd2_stats;
1256
jbd2_stats_proc_init(journal_t * journal)1257 static void jbd2_stats_proc_init(journal_t *journal)
1258 {
1259 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1260 if (journal->j_proc_entry) {
1261 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1262 &jbd2_info_proc_ops, journal);
1263 }
1264 }
1265
jbd2_stats_proc_exit(journal_t * journal)1266 static void jbd2_stats_proc_exit(journal_t *journal)
1267 {
1268 remove_proc_entry("info", journal->j_proc_entry);
1269 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1270 }
1271
1272 /* Minimum size of descriptor tag */
jbd2_min_tag_size(void)1273 static int jbd2_min_tag_size(void)
1274 {
1275 /*
1276 * Tag with 32-bit block numbers does not use last four bytes of the
1277 * structure
1278 */
1279 return sizeof(journal_block_tag_t) - 4;
1280 }
1281
1282 /**
1283 * jbd2_journal_shrink_scan()
1284 * @shrink: shrinker to work on
1285 * @sc: reclaim request to process
1286 *
1287 * Scan the checkpointed buffer on the checkpoint list and release the
1288 * journal_head.
1289 */
jbd2_journal_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1290 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1291 struct shrink_control *sc)
1292 {
1293 journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1294 unsigned long nr_to_scan = sc->nr_to_scan;
1295 unsigned long nr_shrunk;
1296 unsigned long count;
1297
1298 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1299 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1300
1301 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1302
1303 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1304 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1305
1306 return nr_shrunk;
1307 }
1308
1309 /**
1310 * jbd2_journal_shrink_count()
1311 * @shrink: shrinker to work on
1312 * @sc: reclaim request to process
1313 *
1314 * Count the number of checkpoint buffers on the checkpoint list.
1315 */
jbd2_journal_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1316 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1317 struct shrink_control *sc)
1318 {
1319 journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1320 unsigned long count;
1321
1322 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1323 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1324
1325 return count;
1326 }
1327
1328 /*
1329 * If the journal init or create aborts, we need to mark the journal
1330 * superblock as being NULL to prevent the journal destroy from writing
1331 * back a bogus superblock.
1332 */
journal_fail_superblock(journal_t * journal)1333 static void journal_fail_superblock(journal_t *journal)
1334 {
1335 struct buffer_head *bh = journal->j_sb_buffer;
1336 brelse(bh);
1337 journal->j_sb_buffer = NULL;
1338 }
1339
1340 /*
1341 * Check the superblock for a given journal, performing initial
1342 * validation of the format.
1343 */
journal_check_superblock(journal_t * journal)1344 static int journal_check_superblock(journal_t *journal)
1345 {
1346 journal_superblock_t *sb = journal->j_superblock;
1347 int num_fc_blks;
1348 int err = -EINVAL;
1349
1350 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1351 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1352 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1353 return err;
1354 }
1355
1356 if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 &&
1357 be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) {
1358 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1359 return err;
1360 }
1361
1362 if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1363 printk(KERN_WARNING "JBD2: journal file too short\n");
1364 return err;
1365 }
1366
1367 if (be32_to_cpu(sb->s_first) == 0 ||
1368 be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1369 printk(KERN_WARNING
1370 "JBD2: Invalid start block of journal: %u\n",
1371 be32_to_cpu(sb->s_first));
1372 return err;
1373 }
1374
1375 /*
1376 * If this is a V2 superblock, then we have to check the
1377 * features flags on it.
1378 */
1379 if (!jbd2_format_support_feature(journal))
1380 return 0;
1381
1382 if ((sb->s_feature_ro_compat &
1383 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1384 (sb->s_feature_incompat &
1385 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1386 printk(KERN_WARNING "JBD2: Unrecognised features on journal\n");
1387 return err;
1388 }
1389
1390 num_fc_blks = jbd2_has_feature_fast_commit(journal) ?
1391 jbd2_journal_get_num_fc_blks(sb) : 0;
1392 if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS ||
1393 be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) {
1394 printk(KERN_ERR "JBD2: journal file too short %u,%d\n",
1395 be32_to_cpu(sb->s_maxlen), num_fc_blks);
1396 return err;
1397 }
1398
1399 if (jbd2_has_feature_csum2(journal) &&
1400 jbd2_has_feature_csum3(journal)) {
1401 /* Can't have checksum v2 and v3 at the same time! */
1402 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1403 "at the same time!\n");
1404 return err;
1405 }
1406
1407 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1408 jbd2_has_feature_checksum(journal)) {
1409 /* Can't have checksum v1 and v2 on at the same time! */
1410 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1411 "at the same time!\n");
1412 return err;
1413 }
1414
1415 /* Load the checksum driver */
1416 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1417 if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) {
1418 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1419 return err;
1420 }
1421
1422 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1423 if (IS_ERR(journal->j_chksum_driver)) {
1424 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1425 err = PTR_ERR(journal->j_chksum_driver);
1426 journal->j_chksum_driver = NULL;
1427 return err;
1428 }
1429 /* Check superblock checksum */
1430 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1431 printk(KERN_ERR "JBD2: journal checksum error\n");
1432 err = -EFSBADCRC;
1433 return err;
1434 }
1435 }
1436
1437 return 0;
1438 }
1439
journal_revoke_records_per_block(journal_t * journal)1440 static int journal_revoke_records_per_block(journal_t *journal)
1441 {
1442 int record_size;
1443 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1444
1445 if (jbd2_has_feature_64bit(journal))
1446 record_size = 8;
1447 else
1448 record_size = 4;
1449
1450 if (jbd2_journal_has_csum_v2or3(journal))
1451 space -= sizeof(struct jbd2_journal_block_tail);
1452 return space / record_size;
1453 }
1454
jbd2_journal_get_max_txn_bufs(journal_t * journal)1455 static int jbd2_journal_get_max_txn_bufs(journal_t *journal)
1456 {
1457 return (journal->j_total_len - journal->j_fc_wbufsize) / 4;
1458 }
1459
1460 /*
1461 * Base amount of descriptor blocks we reserve for each transaction.
1462 */
jbd2_descriptor_blocks_per_trans(journal_t * journal)1463 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
1464 {
1465 int tag_space = journal->j_blocksize - sizeof(journal_header_t);
1466 int tags_per_block;
1467
1468 /* Subtract UUID */
1469 tag_space -= 16;
1470 if (jbd2_journal_has_csum_v2or3(journal))
1471 tag_space -= sizeof(struct jbd2_journal_block_tail);
1472 /* Commit code leaves a slack space of 16 bytes at the end of block */
1473 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
1474 /*
1475 * Revoke descriptors are accounted separately so we need to reserve
1476 * space for commit block and normal transaction descriptor blocks.
1477 */
1478 return 1 + DIV_ROUND_UP(jbd2_journal_get_max_txn_bufs(journal),
1479 tags_per_block);
1480 }
1481
1482 /*
1483 * Initialize number of blocks each transaction reserves for its bookkeeping
1484 * and maximum number of blocks a transaction can use. This needs to be called
1485 * after the journal size and the fastcommit area size are initialized.
1486 */
jbd2_journal_init_transaction_limits(journal_t * journal)1487 static void jbd2_journal_init_transaction_limits(journal_t *journal)
1488 {
1489 journal->j_revoke_records_per_block =
1490 journal_revoke_records_per_block(journal);
1491 journal->j_transaction_overhead_buffers =
1492 jbd2_descriptor_blocks_per_trans(journal);
1493 journal->j_max_transaction_buffers =
1494 jbd2_journal_get_max_txn_bufs(journal);
1495 }
1496
1497 /*
1498 * Load the on-disk journal superblock and read the key fields into the
1499 * journal_t.
1500 */
journal_load_superblock(journal_t * journal)1501 static int journal_load_superblock(journal_t *journal)
1502 {
1503 int err;
1504 struct buffer_head *bh;
1505 journal_superblock_t *sb;
1506
1507 bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset,
1508 journal->j_blocksize);
1509 if (bh)
1510 err = bh_read(bh, 0);
1511 if (!bh || err < 0) {
1512 pr_err("%s: Cannot read journal superblock\n", __func__);
1513 brelse(bh);
1514 return -EIO;
1515 }
1516
1517 journal->j_sb_buffer = bh;
1518 sb = (journal_superblock_t *)bh->b_data;
1519 journal->j_superblock = sb;
1520 err = journal_check_superblock(journal);
1521 if (err) {
1522 journal_fail_superblock(journal);
1523 return err;
1524 }
1525
1526 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1527 journal->j_tail = be32_to_cpu(sb->s_start);
1528 journal->j_first = be32_to_cpu(sb->s_first);
1529 journal->j_errno = be32_to_cpu(sb->s_errno);
1530 journal->j_last = be32_to_cpu(sb->s_maxlen);
1531
1532 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1533 journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1534 /* Precompute checksum seed for all metadata */
1535 if (jbd2_journal_has_csum_v2or3(journal))
1536 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1537 sizeof(sb->s_uuid));
1538 /* After journal features are set, we can compute transaction limits */
1539 jbd2_journal_init_transaction_limits(journal);
1540
1541 if (jbd2_has_feature_fast_commit(journal)) {
1542 journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1543 journal->j_last = journal->j_fc_last -
1544 jbd2_journal_get_num_fc_blks(sb);
1545 journal->j_fc_first = journal->j_last + 1;
1546 journal->j_fc_off = 0;
1547 }
1548
1549 return 0;
1550 }
1551
1552
1553 /*
1554 * Management for journal control blocks: functions to create and
1555 * destroy journal_t structures, and to initialise and read existing
1556 * journal blocks from disk. */
1557
1558 /* First: create and setup a journal_t object in memory. We initialise
1559 * very few fields yet: that has to wait until we have created the
1560 * journal structures from from scratch, or loaded them from disk. */
1561
journal_init_common(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1562 static journal_t *journal_init_common(struct block_device *bdev,
1563 struct block_device *fs_dev,
1564 unsigned long long start, int len, int blocksize)
1565 {
1566 static struct lock_class_key jbd2_trans_commit_key;
1567 journal_t *journal;
1568 int err;
1569 int n;
1570
1571 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1572 if (!journal)
1573 return ERR_PTR(-ENOMEM);
1574
1575 journal->j_blocksize = blocksize;
1576 journal->j_dev = bdev;
1577 journal->j_fs_dev = fs_dev;
1578 journal->j_blk_offset = start;
1579 journal->j_total_len = len;
1580
1581 err = journal_load_superblock(journal);
1582 if (err)
1583 goto err_cleanup;
1584
1585 init_waitqueue_head(&journal->j_wait_transaction_locked);
1586 init_waitqueue_head(&journal->j_wait_done_commit);
1587 init_waitqueue_head(&journal->j_wait_commit);
1588 init_waitqueue_head(&journal->j_wait_updates);
1589 init_waitqueue_head(&journal->j_wait_reserved);
1590 init_waitqueue_head(&journal->j_fc_wait);
1591 mutex_init(&journal->j_abort_mutex);
1592 mutex_init(&journal->j_barrier);
1593 mutex_init(&journal->j_checkpoint_mutex);
1594 spin_lock_init(&journal->j_revoke_lock);
1595 spin_lock_init(&journal->j_list_lock);
1596 spin_lock_init(&journal->j_history_lock);
1597 rwlock_init(&journal->j_state_lock);
1598
1599 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1600 journal->j_min_batch_time = 0;
1601 journal->j_max_batch_time = 15000; /* 15ms */
1602 atomic_set(&journal->j_reserved_credits, 0);
1603 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1604 &jbd2_trans_commit_key, 0);
1605
1606 /* The journal is marked for error until we succeed with recovery! */
1607 journal->j_flags = JBD2_ABORT;
1608
1609 /* Set up a default-sized revoke table for the new mount. */
1610 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1611 if (err)
1612 goto err_cleanup;
1613
1614 /*
1615 * journal descriptor can store up to n blocks, we need enough
1616 * buffers to write out full descriptor block.
1617 */
1618 err = -ENOMEM;
1619 n = journal->j_blocksize / jbd2_min_tag_size();
1620 journal->j_wbufsize = n;
1621 journal->j_fc_wbuf = NULL;
1622 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1623 GFP_KERNEL);
1624 if (!journal->j_wbuf)
1625 goto err_cleanup;
1626
1627 err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0,
1628 GFP_KERNEL);
1629 if (err)
1630 goto err_cleanup;
1631
1632 journal->j_shrink_transaction = NULL;
1633 journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
1634 journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
1635 journal->j_shrinker.seeks = DEFAULT_SEEKS;
1636 journal->j_shrinker.batch = journal->j_max_transaction_buffers;
1637 err = register_shrinker(&journal->j_shrinker, "jbd2-journal:(%u:%u)",
1638 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
1639 if (err)
1640 goto err_cleanup;
1641
1642 return journal;
1643
1644 err_cleanup:
1645 percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1646 if (journal->j_chksum_driver)
1647 crypto_free_shash(journal->j_chksum_driver);
1648 kfree(journal->j_wbuf);
1649 jbd2_journal_destroy_revoke(journal);
1650 journal_fail_superblock(journal);
1651 kfree(journal);
1652 return ERR_PTR(err);
1653 }
1654
1655 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1656 *
1657 * Create a journal structure assigned some fixed set of disk blocks to
1658 * the journal. We don't actually touch those disk blocks yet, but we
1659 * need to set up all of the mapping information to tell the journaling
1660 * system where the journal blocks are.
1661 *
1662 */
1663
1664 /**
1665 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1666 * @bdev: Block device on which to create the journal
1667 * @fs_dev: Device which hold journalled filesystem for this journal.
1668 * @start: Block nr Start of journal.
1669 * @len: Length of the journal in blocks.
1670 * @blocksize: blocksize of journalling device
1671 *
1672 * Returns: a newly created journal_t *
1673 *
1674 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1675 * range of blocks on an arbitrary block device.
1676 *
1677 */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1678 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1679 struct block_device *fs_dev,
1680 unsigned long long start, int len, int blocksize)
1681 {
1682 journal_t *journal;
1683
1684 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1685 if (IS_ERR(journal))
1686 return ERR_CAST(journal);
1687
1688 snprintf(journal->j_devname, sizeof(journal->j_devname),
1689 "%pg", journal->j_dev);
1690 strreplace(journal->j_devname, '/', '!');
1691 jbd2_stats_proc_init(journal);
1692
1693 return journal;
1694 }
1695
1696 /**
1697 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1698 * @inode: An inode to create the journal in
1699 *
1700 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1701 * the journal. The inode must exist already, must support bmap() and
1702 * must have all data blocks preallocated.
1703 */
jbd2_journal_init_inode(struct inode * inode)1704 journal_t *jbd2_journal_init_inode(struct inode *inode)
1705 {
1706 journal_t *journal;
1707 sector_t blocknr;
1708 int err = 0;
1709
1710 blocknr = 0;
1711 err = bmap(inode, &blocknr);
1712 if (err || !blocknr) {
1713 pr_err("%s: Cannot locate journal superblock\n", __func__);
1714 return err ? ERR_PTR(err) : ERR_PTR(-EINVAL);
1715 }
1716
1717 jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1718 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1719 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1720
1721 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1722 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1723 inode->i_sb->s_blocksize);
1724 if (IS_ERR(journal))
1725 return ERR_CAST(journal);
1726
1727 journal->j_inode = inode;
1728 snprintf(journal->j_devname, sizeof(journal->j_devname),
1729 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino);
1730 strreplace(journal->j_devname, '/', '!');
1731 jbd2_stats_proc_init(journal);
1732
1733 return journal;
1734 }
1735
1736 /*
1737 * Given a journal_t structure, initialise the various fields for
1738 * startup of a new journaling session. We use this both when creating
1739 * a journal, and after recovering an old journal to reset it for
1740 * subsequent use.
1741 */
1742
journal_reset(journal_t * journal)1743 static int journal_reset(journal_t *journal)
1744 {
1745 journal_superblock_t *sb = journal->j_superblock;
1746 unsigned long long first, last;
1747
1748 first = be32_to_cpu(sb->s_first);
1749 last = be32_to_cpu(sb->s_maxlen);
1750 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1751 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1752 first, last);
1753 journal_fail_superblock(journal);
1754 return -EINVAL;
1755 }
1756
1757 journal->j_first = first;
1758 journal->j_last = last;
1759
1760 if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) {
1761 /*
1762 * Disable the cycled recording mode if the journal head block
1763 * number is not correct.
1764 */
1765 if (journal->j_head < first || journal->j_head >= last) {
1766 printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, "
1767 "disable journal_cycle_record\n",
1768 journal->j_head);
1769 journal->j_head = journal->j_first;
1770 }
1771 } else {
1772 journal->j_head = journal->j_first;
1773 }
1774 journal->j_tail = journal->j_head;
1775 journal->j_free = journal->j_last - journal->j_first;
1776
1777 journal->j_tail_sequence = journal->j_transaction_sequence;
1778 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1779 journal->j_commit_request = journal->j_commit_sequence;
1780
1781 /*
1782 * Now that journal recovery is done, turn fast commits off here. This
1783 * way, if fast commit was enabled before the crash but if now FS has
1784 * disabled it, we don't enable fast commits.
1785 */
1786 jbd2_clear_feature_fast_commit(journal);
1787
1788 /*
1789 * As a special case, if the on-disk copy is already marked as needing
1790 * no recovery (s_start == 0), then we can safely defer the superblock
1791 * update until the next commit by setting JBD2_FLUSHED. This avoids
1792 * attempting a write to a potential-readonly device.
1793 */
1794 if (sb->s_start == 0) {
1795 jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb "
1796 "(start %ld, seq %u, errno %d)\n",
1797 journal->j_tail, journal->j_tail_sequence,
1798 journal->j_errno);
1799 journal->j_flags |= JBD2_FLUSHED;
1800 } else {
1801 /* Lock here to make assertions happy... */
1802 mutex_lock_io(&journal->j_checkpoint_mutex);
1803 /*
1804 * Update log tail information. We use REQ_FUA since new
1805 * transaction will start reusing journal space and so we
1806 * must make sure information about current log tail is on
1807 * disk before that.
1808 */
1809 jbd2_journal_update_sb_log_tail(journal,
1810 journal->j_tail_sequence,
1811 journal->j_tail, REQ_FUA);
1812 mutex_unlock(&journal->j_checkpoint_mutex);
1813 }
1814 return jbd2_journal_start_thread(journal);
1815 }
1816
1817 /*
1818 * This function expects that the caller will have locked the journal
1819 * buffer head, and will return with it unlocked
1820 */
jbd2_write_superblock(journal_t * journal,blk_opf_t write_flags)1821 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags)
1822 {
1823 struct buffer_head *bh = journal->j_sb_buffer;
1824 journal_superblock_t *sb = journal->j_superblock;
1825 int ret = 0;
1826
1827 /* Buffer got discarded which means block device got invalidated */
1828 if (!buffer_mapped(bh)) {
1829 unlock_buffer(bh);
1830 return -EIO;
1831 }
1832
1833 /*
1834 * Always set high priority flags to exempt from block layer's
1835 * QOS policies, e.g. writeback throttle.
1836 */
1837 write_flags |= JBD2_JOURNAL_REQ_FLAGS;
1838 if (!(journal->j_flags & JBD2_BARRIER))
1839 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1840
1841 trace_jbd2_write_superblock(journal, write_flags);
1842
1843 if (buffer_write_io_error(bh)) {
1844 /*
1845 * Oh, dear. A previous attempt to write the journal
1846 * superblock failed. This could happen because the
1847 * USB device was yanked out. Or it could happen to
1848 * be a transient write error and maybe the block will
1849 * be remapped. Nothing we can do but to retry the
1850 * write and hope for the best.
1851 */
1852 printk(KERN_ERR "JBD2: previous I/O error detected "
1853 "for journal superblock update for %s.\n",
1854 journal->j_devname);
1855 clear_buffer_write_io_error(bh);
1856 set_buffer_uptodate(bh);
1857 }
1858 if (jbd2_journal_has_csum_v2or3(journal))
1859 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1860 get_bh(bh);
1861 bh->b_end_io = end_buffer_write_sync;
1862 submit_bh(REQ_OP_WRITE | write_flags, bh);
1863 wait_on_buffer(bh);
1864 if (buffer_write_io_error(bh)) {
1865 clear_buffer_write_io_error(bh);
1866 set_buffer_uptodate(bh);
1867 ret = -EIO;
1868 }
1869 if (ret) {
1870 printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n",
1871 journal->j_devname);
1872 if (!is_journal_aborted(journal))
1873 jbd2_journal_abort(journal, ret);
1874 }
1875
1876 return ret;
1877 }
1878
1879 /**
1880 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1881 * @journal: The journal to update.
1882 * @tail_tid: TID of the new transaction at the tail of the log
1883 * @tail_block: The first block of the transaction at the tail of the log
1884 * @write_flags: Flags for the journal sb write operation
1885 *
1886 * Update a journal's superblock information about log tail and write it to
1887 * disk, waiting for the IO to complete.
1888 */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,blk_opf_t write_flags)1889 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1890 unsigned long tail_block,
1891 blk_opf_t write_flags)
1892 {
1893 journal_superblock_t *sb = journal->j_superblock;
1894 int ret;
1895
1896 if (is_journal_aborted(journal))
1897 return -EIO;
1898 if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1899 jbd2_journal_abort(journal, -EIO);
1900 return -EIO;
1901 }
1902
1903 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1904 jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1905 tail_block, tail_tid);
1906
1907 lock_buffer(journal->j_sb_buffer);
1908 sb->s_sequence = cpu_to_be32(tail_tid);
1909 sb->s_start = cpu_to_be32(tail_block);
1910
1911 ret = jbd2_write_superblock(journal, write_flags);
1912 if (ret)
1913 goto out;
1914
1915 /* Log is no longer empty */
1916 write_lock(&journal->j_state_lock);
1917 journal->j_flags &= ~JBD2_FLUSHED;
1918 write_unlock(&journal->j_state_lock);
1919
1920 out:
1921 return ret;
1922 }
1923
1924 /**
1925 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1926 * @journal: The journal to update.
1927 * @write_flags: Flags for the journal sb write operation
1928 *
1929 * Update a journal's dynamic superblock fields to show that journal is empty.
1930 * Write updated superblock to disk waiting for IO to complete.
1931 */
jbd2_mark_journal_empty(journal_t * journal,blk_opf_t write_flags)1932 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags)
1933 {
1934 journal_superblock_t *sb = journal->j_superblock;
1935 bool had_fast_commit = false;
1936
1937 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1938 lock_buffer(journal->j_sb_buffer);
1939 if (sb->s_start == 0) { /* Is it already empty? */
1940 unlock_buffer(journal->j_sb_buffer);
1941 return;
1942 }
1943
1944 jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1945 journal->j_tail_sequence);
1946
1947 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1948 sb->s_start = cpu_to_be32(0);
1949 sb->s_head = cpu_to_be32(journal->j_head);
1950 if (jbd2_has_feature_fast_commit(journal)) {
1951 /*
1952 * When journal is clean, no need to commit fast commit flag and
1953 * make file system incompatible with older kernels.
1954 */
1955 jbd2_clear_feature_fast_commit(journal);
1956 had_fast_commit = true;
1957 }
1958
1959 jbd2_write_superblock(journal, write_flags);
1960
1961 if (had_fast_commit)
1962 jbd2_set_feature_fast_commit(journal);
1963
1964 /* Log is no longer empty */
1965 write_lock(&journal->j_state_lock);
1966 journal->j_flags |= JBD2_FLUSHED;
1967 write_unlock(&journal->j_state_lock);
1968 }
1969
1970 /**
1971 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1972 * @journal: The journal to erase.
1973 * @flags: A discard/zeroout request is sent for each physically contigous
1974 * region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1975 * JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1976 * to perform.
1977 *
1978 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1979 * will be explicitly written if no hardware offload is available, see
1980 * blkdev_issue_zeroout for more details.
1981 */
__jbd2_journal_erase(journal_t * journal,unsigned int flags)1982 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1983 {
1984 int err = 0;
1985 unsigned long block, log_offset; /* logical */
1986 unsigned long long phys_block, block_start, block_stop; /* physical */
1987 loff_t byte_start, byte_stop, byte_count;
1988
1989 /* flags must be set to either discard or zeroout */
1990 if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1991 ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1992 (flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1993 return -EINVAL;
1994
1995 if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1996 !bdev_max_discard_sectors(journal->j_dev))
1997 return -EOPNOTSUPP;
1998
1999 /*
2000 * lookup block mapping and issue discard/zeroout for each
2001 * contiguous region
2002 */
2003 log_offset = be32_to_cpu(journal->j_superblock->s_first);
2004 block_start = ~0ULL;
2005 for (block = log_offset; block < journal->j_total_len; block++) {
2006 err = jbd2_journal_bmap(journal, block, &phys_block);
2007 if (err) {
2008 pr_err("JBD2: bad block at offset %lu", block);
2009 return err;
2010 }
2011
2012 if (block_start == ~0ULL) {
2013 block_start = phys_block;
2014 block_stop = block_start - 1;
2015 }
2016
2017 /*
2018 * last block not contiguous with current block,
2019 * process last contiguous region and return to this block on
2020 * next loop
2021 */
2022 if (phys_block != block_stop + 1) {
2023 block--;
2024 } else {
2025 block_stop++;
2026 /*
2027 * if this isn't the last block of journal,
2028 * no need to process now because next block may also
2029 * be part of this contiguous region
2030 */
2031 if (block != journal->j_total_len - 1)
2032 continue;
2033 }
2034
2035 /*
2036 * end of contiguous region or this is last block of journal,
2037 * take care of the region
2038 */
2039 byte_start = block_start * journal->j_blocksize;
2040 byte_stop = block_stop * journal->j_blocksize;
2041 byte_count = (block_stop - block_start + 1) *
2042 journal->j_blocksize;
2043
2044 truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping,
2045 byte_start, byte_stop);
2046
2047 if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
2048 err = blkdev_issue_discard(journal->j_dev,
2049 byte_start >> SECTOR_SHIFT,
2050 byte_count >> SECTOR_SHIFT,
2051 GFP_NOFS);
2052 } else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
2053 err = blkdev_issue_zeroout(journal->j_dev,
2054 byte_start >> SECTOR_SHIFT,
2055 byte_count >> SECTOR_SHIFT,
2056 GFP_NOFS, 0);
2057 }
2058
2059 if (unlikely(err != 0)) {
2060 pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
2061 err, block_start, block_stop);
2062 return err;
2063 }
2064
2065 /* reset start and stop after processing a region */
2066 block_start = ~0ULL;
2067 }
2068
2069 return blkdev_issue_flush(journal->j_dev);
2070 }
2071
2072 /**
2073 * jbd2_journal_update_sb_errno() - Update error in the journal.
2074 * @journal: The journal to update.
2075 *
2076 * Update a journal's errno. Write updated superblock to disk waiting for IO
2077 * to complete.
2078 */
jbd2_journal_update_sb_errno(journal_t * journal)2079 void jbd2_journal_update_sb_errno(journal_t *journal)
2080 {
2081 journal_superblock_t *sb = journal->j_superblock;
2082 int errcode;
2083
2084 lock_buffer(journal->j_sb_buffer);
2085 errcode = journal->j_errno;
2086 if (errcode == -ESHUTDOWN)
2087 errcode = 0;
2088 jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
2089 sb->s_errno = cpu_to_be32(errcode);
2090
2091 jbd2_write_superblock(journal, REQ_FUA);
2092 }
2093 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
2094
2095 /**
2096 * jbd2_journal_load() - Read journal from disk.
2097 * @journal: Journal to act on.
2098 *
2099 * Given a journal_t structure which tells us which disk blocks contain
2100 * a journal, read the journal from disk to initialise the in-memory
2101 * structures.
2102 */
jbd2_journal_load(journal_t * journal)2103 int jbd2_journal_load(journal_t *journal)
2104 {
2105 int err;
2106 journal_superblock_t *sb = journal->j_superblock;
2107
2108 /*
2109 * Create a slab for this blocksize
2110 */
2111 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2112 if (err)
2113 return err;
2114
2115 /* Let the recovery code check whether it needs to recover any
2116 * data from the journal. */
2117 err = jbd2_journal_recover(journal);
2118 if (err) {
2119 pr_warn("JBD2: journal recovery failed\n");
2120 return err;
2121 }
2122
2123 if (journal->j_failed_commit) {
2124 printk(KERN_ERR "JBD2: journal transaction %u on %s "
2125 "is corrupt.\n", journal->j_failed_commit,
2126 journal->j_devname);
2127 return -EFSCORRUPTED;
2128 }
2129 /*
2130 * clear JBD2_ABORT flag initialized in journal_init_common
2131 * here to update log tail information with the newest seq.
2132 */
2133 journal->j_flags &= ~JBD2_ABORT;
2134
2135 /* OK, we've finished with the dynamic journal bits:
2136 * reinitialise the dynamic contents of the superblock in memory
2137 * and reset them on disk. */
2138 err = journal_reset(journal);
2139 if (err) {
2140 pr_warn("JBD2: journal reset failed\n");
2141 return err;
2142 }
2143
2144 journal->j_flags |= JBD2_LOADED;
2145 return 0;
2146 }
2147
2148 /**
2149 * jbd2_journal_destroy() - Release a journal_t structure.
2150 * @journal: Journal to act on.
2151 *
2152 * Release a journal_t structure once it is no longer in use by the
2153 * journaled object.
2154 * Return <0 if we couldn't clean up the journal.
2155 */
jbd2_journal_destroy(journal_t * journal)2156 int jbd2_journal_destroy(journal_t *journal)
2157 {
2158 int err = 0;
2159
2160 /* Wait for the commit thread to wake up and die. */
2161 journal_kill_thread(journal);
2162
2163 /* Force a final log commit */
2164 if (journal->j_running_transaction)
2165 jbd2_journal_commit_transaction(journal);
2166
2167 /* Force any old transactions to disk */
2168
2169 /* Totally anal locking here... */
2170 spin_lock(&journal->j_list_lock);
2171 while (journal->j_checkpoint_transactions != NULL) {
2172 spin_unlock(&journal->j_list_lock);
2173 mutex_lock_io(&journal->j_checkpoint_mutex);
2174 err = jbd2_log_do_checkpoint(journal);
2175 mutex_unlock(&journal->j_checkpoint_mutex);
2176 /*
2177 * If checkpointing failed, just free the buffers to avoid
2178 * looping forever
2179 */
2180 if (err) {
2181 jbd2_journal_destroy_checkpoint(journal);
2182 spin_lock(&journal->j_list_lock);
2183 break;
2184 }
2185 spin_lock(&journal->j_list_lock);
2186 }
2187
2188 J_ASSERT(journal->j_running_transaction == NULL);
2189 J_ASSERT(journal->j_committing_transaction == NULL);
2190 J_ASSERT(journal->j_checkpoint_transactions == NULL);
2191 spin_unlock(&journal->j_list_lock);
2192
2193 /*
2194 * OK, all checkpoint transactions have been checked, now check the
2195 * write out io error flag and abort the journal if some buffer failed
2196 * to write back to the original location, otherwise the filesystem
2197 * may become inconsistent.
2198 */
2199 if (!is_journal_aborted(journal) &&
2200 test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2201 jbd2_journal_abort(journal, -EIO);
2202
2203 if (journal->j_sb_buffer) {
2204 if (!is_journal_aborted(journal)) {
2205 mutex_lock_io(&journal->j_checkpoint_mutex);
2206
2207 write_lock(&journal->j_state_lock);
2208 journal->j_tail_sequence =
2209 ++journal->j_transaction_sequence;
2210 write_unlock(&journal->j_state_lock);
2211
2212 jbd2_mark_journal_empty(journal, REQ_PREFLUSH | REQ_FUA);
2213 mutex_unlock(&journal->j_checkpoint_mutex);
2214 } else
2215 err = -EIO;
2216 brelse(journal->j_sb_buffer);
2217 }
2218
2219 if (journal->j_shrinker.flags & SHRINKER_REGISTERED) {
2220 percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2221 unregister_shrinker(&journal->j_shrinker);
2222 }
2223 if (journal->j_proc_entry)
2224 jbd2_stats_proc_exit(journal);
2225 iput(journal->j_inode);
2226 if (journal->j_revoke)
2227 jbd2_journal_destroy_revoke(journal);
2228 if (journal->j_chksum_driver)
2229 crypto_free_shash(journal->j_chksum_driver);
2230 kfree(journal->j_fc_wbuf);
2231 kfree(journal->j_wbuf);
2232 kfree(journal);
2233
2234 return err;
2235 }
2236
2237
2238 /**
2239 * jbd2_journal_check_used_features() - Check if features specified are used.
2240 * @journal: Journal to check.
2241 * @compat: bitmask of compatible features
2242 * @ro: bitmask of features that force read-only mount
2243 * @incompat: bitmask of incompatible features
2244 *
2245 * Check whether the journal uses all of a given set of
2246 * features. Return true (non-zero) if it does.
2247 **/
2248
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2249 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2250 unsigned long ro, unsigned long incompat)
2251 {
2252 journal_superblock_t *sb;
2253
2254 if (!compat && !ro && !incompat)
2255 return 1;
2256 if (!jbd2_format_support_feature(journal))
2257 return 0;
2258
2259 sb = journal->j_superblock;
2260
2261 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2262 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2263 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2264 return 1;
2265
2266 return 0;
2267 }
2268
2269 /**
2270 * jbd2_journal_check_available_features() - Check feature set in journalling layer
2271 * @journal: Journal to check.
2272 * @compat: bitmask of compatible features
2273 * @ro: bitmask of features that force read-only mount
2274 * @incompat: bitmask of incompatible features
2275 *
2276 * Check whether the journaling code supports the use of
2277 * all of a given set of features on this journal. Return true
2278 * (non-zero) if it can. */
2279
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2280 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2281 unsigned long ro, unsigned long incompat)
2282 {
2283 if (!compat && !ro && !incompat)
2284 return 1;
2285
2286 if (!jbd2_format_support_feature(journal))
2287 return 0;
2288
2289 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2290 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2291 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2292 return 1;
2293
2294 return 0;
2295 }
2296
2297 static int
jbd2_journal_initialize_fast_commit(journal_t * journal)2298 jbd2_journal_initialize_fast_commit(journal_t *journal)
2299 {
2300 journal_superblock_t *sb = journal->j_superblock;
2301 unsigned long long num_fc_blks;
2302
2303 num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2304 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2305 return -ENOSPC;
2306
2307 /* Are we called twice? */
2308 WARN_ON(journal->j_fc_wbuf != NULL);
2309 journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2310 sizeof(struct buffer_head *), GFP_KERNEL);
2311 if (!journal->j_fc_wbuf)
2312 return -ENOMEM;
2313
2314 journal->j_fc_wbufsize = num_fc_blks;
2315 journal->j_fc_last = journal->j_last;
2316 journal->j_last = journal->j_fc_last - num_fc_blks;
2317 journal->j_fc_first = journal->j_last + 1;
2318 journal->j_fc_off = 0;
2319 journal->j_free = journal->j_last - journal->j_first;
2320
2321 return 0;
2322 }
2323
2324 /**
2325 * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2326 * @journal: Journal to act on.
2327 * @compat: bitmask of compatible features
2328 * @ro: bitmask of features that force read-only mount
2329 * @incompat: bitmask of incompatible features
2330 *
2331 * Mark a given journal feature as present on the
2332 * superblock. Returns true if the requested features could be set.
2333 *
2334 */
2335
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2336 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2337 unsigned long ro, unsigned long incompat)
2338 {
2339 #define INCOMPAT_FEATURE_ON(f) \
2340 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2341 #define COMPAT_FEATURE_ON(f) \
2342 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2343 journal_superblock_t *sb;
2344
2345 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2346 return 1;
2347
2348 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2349 return 0;
2350
2351 /* If enabling v2 checksums, turn on v3 instead */
2352 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2353 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2354 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2355 }
2356
2357 /* Asking for checksumming v3 and v1? Only give them v3. */
2358 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2359 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2360 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2361
2362 jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2363 compat, ro, incompat);
2364
2365 sb = journal->j_superblock;
2366
2367 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2368 if (jbd2_journal_initialize_fast_commit(journal)) {
2369 pr_err("JBD2: Cannot enable fast commits.\n");
2370 return 0;
2371 }
2372 }
2373
2374 /* Load the checksum driver if necessary */
2375 if ((journal->j_chksum_driver == NULL) &&
2376 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2377 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2378 if (IS_ERR(journal->j_chksum_driver)) {
2379 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2380 journal->j_chksum_driver = NULL;
2381 return 0;
2382 }
2383 /* Precompute checksum seed for all metadata */
2384 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2385 sizeof(sb->s_uuid));
2386 }
2387
2388 lock_buffer(journal->j_sb_buffer);
2389
2390 /* If enabling v3 checksums, update superblock */
2391 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2392 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2393 sb->s_feature_compat &=
2394 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2395 }
2396
2397 /* If enabling v1 checksums, downgrade superblock */
2398 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2399 sb->s_feature_incompat &=
2400 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2401 JBD2_FEATURE_INCOMPAT_CSUM_V3);
2402
2403 sb->s_feature_compat |= cpu_to_be32(compat);
2404 sb->s_feature_ro_compat |= cpu_to_be32(ro);
2405 sb->s_feature_incompat |= cpu_to_be32(incompat);
2406 unlock_buffer(journal->j_sb_buffer);
2407 jbd2_journal_init_transaction_limits(journal);
2408
2409 return 1;
2410 #undef COMPAT_FEATURE_ON
2411 #undef INCOMPAT_FEATURE_ON
2412 }
2413
2414 /*
2415 * jbd2_journal_clear_features() - Clear a given journal feature in the
2416 * superblock
2417 * @journal: Journal to act on.
2418 * @compat: bitmask of compatible features
2419 * @ro: bitmask of features that force read-only mount
2420 * @incompat: bitmask of incompatible features
2421 *
2422 * Clear a given journal feature as present on the
2423 * superblock.
2424 */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2425 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2426 unsigned long ro, unsigned long incompat)
2427 {
2428 journal_superblock_t *sb;
2429
2430 jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2431 compat, ro, incompat);
2432
2433 sb = journal->j_superblock;
2434
2435 sb->s_feature_compat &= ~cpu_to_be32(compat);
2436 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2437 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
2438 jbd2_journal_init_transaction_limits(journal);
2439 }
2440 EXPORT_SYMBOL(jbd2_journal_clear_features);
2441
2442 /**
2443 * jbd2_journal_flush() - Flush journal
2444 * @journal: Journal to act on.
2445 * @flags: optional operation on the journal blocks after the flush (see below)
2446 *
2447 * Flush all data for a given journal to disk and empty the journal.
2448 * Filesystems can use this when remounting readonly to ensure that
2449 * recovery does not need to happen on remount. Optionally, a discard or zeroout
2450 * can be issued on the journal blocks after flushing.
2451 *
2452 * flags:
2453 * JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2454 * JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2455 */
jbd2_journal_flush(journal_t * journal,unsigned int flags)2456 int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2457 {
2458 int err = 0;
2459 transaction_t *transaction = NULL;
2460
2461 write_lock(&journal->j_state_lock);
2462
2463 /* Force everything buffered to the log... */
2464 if (journal->j_running_transaction) {
2465 transaction = journal->j_running_transaction;
2466 __jbd2_log_start_commit(journal, transaction->t_tid);
2467 } else if (journal->j_committing_transaction)
2468 transaction = journal->j_committing_transaction;
2469
2470 /* Wait for the log commit to complete... */
2471 if (transaction) {
2472 tid_t tid = transaction->t_tid;
2473
2474 write_unlock(&journal->j_state_lock);
2475 jbd2_log_wait_commit(journal, tid);
2476 } else {
2477 write_unlock(&journal->j_state_lock);
2478 }
2479
2480 /* ...and flush everything in the log out to disk. */
2481 spin_lock(&journal->j_list_lock);
2482 while (!err && journal->j_checkpoint_transactions != NULL) {
2483 spin_unlock(&journal->j_list_lock);
2484 mutex_lock_io(&journal->j_checkpoint_mutex);
2485 err = jbd2_log_do_checkpoint(journal);
2486 mutex_unlock(&journal->j_checkpoint_mutex);
2487 spin_lock(&journal->j_list_lock);
2488 }
2489 spin_unlock(&journal->j_list_lock);
2490
2491 if (is_journal_aborted(journal))
2492 return -EIO;
2493
2494 mutex_lock_io(&journal->j_checkpoint_mutex);
2495 if (!err) {
2496 err = jbd2_cleanup_journal_tail(journal);
2497 if (err < 0) {
2498 mutex_unlock(&journal->j_checkpoint_mutex);
2499 goto out;
2500 }
2501 err = 0;
2502 }
2503
2504 /* Finally, mark the journal as really needing no recovery.
2505 * This sets s_start==0 in the underlying superblock, which is
2506 * the magic code for a fully-recovered superblock. Any future
2507 * commits of data to the journal will restore the current
2508 * s_start value. */
2509 jbd2_mark_journal_empty(journal, REQ_FUA);
2510
2511 if (flags)
2512 err = __jbd2_journal_erase(journal, flags);
2513
2514 mutex_unlock(&journal->j_checkpoint_mutex);
2515 write_lock(&journal->j_state_lock);
2516 J_ASSERT(!journal->j_running_transaction);
2517 J_ASSERT(!journal->j_committing_transaction);
2518 J_ASSERT(!journal->j_checkpoint_transactions);
2519 J_ASSERT(journal->j_head == journal->j_tail);
2520 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2521 write_unlock(&journal->j_state_lock);
2522 out:
2523 return err;
2524 }
2525
2526 /**
2527 * jbd2_journal_wipe() - Wipe journal contents
2528 * @journal: Journal to act on.
2529 * @write: flag (see below)
2530 *
2531 * Wipe out all of the contents of a journal, safely. This will produce
2532 * a warning if the journal contains any valid recovery information.
2533 * Must be called between journal_init_*() and jbd2_journal_load().
2534 *
2535 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2536 * we merely suppress recovery.
2537 */
2538
jbd2_journal_wipe(journal_t * journal,int write)2539 int jbd2_journal_wipe(journal_t *journal, int write)
2540 {
2541 int err;
2542
2543 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2544
2545 if (!journal->j_tail)
2546 return 0;
2547
2548 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2549 write ? "Clearing" : "Ignoring");
2550
2551 err = jbd2_journal_skip_recovery(journal);
2552 if (write) {
2553 /* Lock to make assertions happy... */
2554 mutex_lock_io(&journal->j_checkpoint_mutex);
2555 jbd2_mark_journal_empty(journal, REQ_FUA);
2556 mutex_unlock(&journal->j_checkpoint_mutex);
2557 }
2558
2559 return err;
2560 }
2561
2562 /**
2563 * jbd2_journal_abort () - Shutdown the journal immediately.
2564 * @journal: the journal to shutdown.
2565 * @errno: an error number to record in the journal indicating
2566 * the reason for the shutdown.
2567 *
2568 * Perform a complete, immediate shutdown of the ENTIRE
2569 * journal (not of a single transaction). This operation cannot be
2570 * undone without closing and reopening the journal.
2571 *
2572 * The jbd2_journal_abort function is intended to support higher level error
2573 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2574 * mode.
2575 *
2576 * Journal abort has very specific semantics. Any existing dirty,
2577 * unjournaled buffers in the main filesystem will still be written to
2578 * disk by bdflush, but the journaling mechanism will be suspended
2579 * immediately and no further transaction commits will be honoured.
2580 *
2581 * Any dirty, journaled buffers will be written back to disk without
2582 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2583 * filesystem, but we _do_ attempt to leave as much data as possible
2584 * behind for fsck to use for cleanup.
2585 *
2586 * Any attempt to get a new transaction handle on a journal which is in
2587 * ABORT state will just result in an -EROFS error return. A
2588 * jbd2_journal_stop on an existing handle will return -EIO if we have
2589 * entered abort state during the update.
2590 *
2591 * Recursive transactions are not disturbed by journal abort until the
2592 * final jbd2_journal_stop, which will receive the -EIO error.
2593 *
2594 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2595 * which will be recorded (if possible) in the journal superblock. This
2596 * allows a client to record failure conditions in the middle of a
2597 * transaction without having to complete the transaction to record the
2598 * failure to disk. ext3_error, for example, now uses this
2599 * functionality.
2600 *
2601 */
2602
jbd2_journal_abort(journal_t * journal,int errno)2603 void jbd2_journal_abort(journal_t *journal, int errno)
2604 {
2605 transaction_t *transaction;
2606
2607 /*
2608 * Lock the aborting procedure until everything is done, this avoid
2609 * races between filesystem's error handling flow (e.g. ext4_abort()),
2610 * ensure panic after the error info is written into journal's
2611 * superblock.
2612 */
2613 mutex_lock(&journal->j_abort_mutex);
2614 /*
2615 * ESHUTDOWN always takes precedence because a file system check
2616 * caused by any other journal abort error is not required after
2617 * a shutdown triggered.
2618 */
2619 write_lock(&journal->j_state_lock);
2620 if (journal->j_flags & JBD2_ABORT) {
2621 int old_errno = journal->j_errno;
2622
2623 write_unlock(&journal->j_state_lock);
2624 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2625 journal->j_errno = errno;
2626 jbd2_journal_update_sb_errno(journal);
2627 }
2628 mutex_unlock(&journal->j_abort_mutex);
2629 return;
2630 }
2631
2632 /*
2633 * Mark the abort as occurred and start current running transaction
2634 * to release all journaled buffer.
2635 */
2636 pr_err("Aborting journal on device %s.\n", journal->j_devname);
2637
2638 journal->j_flags |= JBD2_ABORT;
2639 journal->j_errno = errno;
2640 transaction = journal->j_running_transaction;
2641 if (transaction)
2642 __jbd2_log_start_commit(journal, transaction->t_tid);
2643 write_unlock(&journal->j_state_lock);
2644
2645 /*
2646 * Record errno to the journal super block, so that fsck and jbd2
2647 * layer could realise that a filesystem check is needed.
2648 */
2649 jbd2_journal_update_sb_errno(journal);
2650 mutex_unlock(&journal->j_abort_mutex);
2651 }
2652
2653 /**
2654 * jbd2_journal_errno() - returns the journal's error state.
2655 * @journal: journal to examine.
2656 *
2657 * This is the errno number set with jbd2_journal_abort(), the last
2658 * time the journal was mounted - if the journal was stopped
2659 * without calling abort this will be 0.
2660 *
2661 * If the journal has been aborted on this mount time -EROFS will
2662 * be returned.
2663 */
jbd2_journal_errno(journal_t * journal)2664 int jbd2_journal_errno(journal_t *journal)
2665 {
2666 int err;
2667
2668 read_lock(&journal->j_state_lock);
2669 if (journal->j_flags & JBD2_ABORT)
2670 err = -EROFS;
2671 else
2672 err = journal->j_errno;
2673 read_unlock(&journal->j_state_lock);
2674 return err;
2675 }
2676
2677 /**
2678 * jbd2_journal_clear_err() - clears the journal's error state
2679 * @journal: journal to act on.
2680 *
2681 * An error must be cleared or acked to take a FS out of readonly
2682 * mode.
2683 */
jbd2_journal_clear_err(journal_t * journal)2684 int jbd2_journal_clear_err(journal_t *journal)
2685 {
2686 int err = 0;
2687
2688 write_lock(&journal->j_state_lock);
2689 if (journal->j_flags & JBD2_ABORT)
2690 err = -EROFS;
2691 else
2692 journal->j_errno = 0;
2693 write_unlock(&journal->j_state_lock);
2694 return err;
2695 }
2696
2697 /**
2698 * jbd2_journal_ack_err() - Ack journal err.
2699 * @journal: journal to act on.
2700 *
2701 * An error must be cleared or acked to take a FS out of readonly
2702 * mode.
2703 */
jbd2_journal_ack_err(journal_t * journal)2704 void jbd2_journal_ack_err(journal_t *journal)
2705 {
2706 write_lock(&journal->j_state_lock);
2707 if (journal->j_errno)
2708 journal->j_flags |= JBD2_ACK_ERR;
2709 write_unlock(&journal->j_state_lock);
2710 }
2711
jbd2_journal_blocks_per_page(struct inode * inode)2712 int jbd2_journal_blocks_per_page(struct inode *inode)
2713 {
2714 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2715 }
2716
2717 /*
2718 * helper functions to deal with 32 or 64bit block numbers.
2719 */
journal_tag_bytes(journal_t * journal)2720 size_t journal_tag_bytes(journal_t *journal)
2721 {
2722 size_t sz;
2723
2724 if (jbd2_has_feature_csum3(journal))
2725 return sizeof(journal_block_tag3_t);
2726
2727 sz = sizeof(journal_block_tag_t);
2728
2729 if (jbd2_has_feature_csum2(journal))
2730 sz += sizeof(__u16);
2731
2732 if (jbd2_has_feature_64bit(journal))
2733 return sz;
2734 else
2735 return sz - sizeof(__u32);
2736 }
2737
2738 /*
2739 * JBD memory management
2740 *
2741 * These functions are used to allocate block-sized chunks of memory
2742 * used for making copies of buffer_head data. Very often it will be
2743 * page-sized chunks of data, but sometimes it will be in
2744 * sub-page-size chunks. (For example, 16k pages on Power systems
2745 * with a 4k block file system.) For blocks smaller than a page, we
2746 * use a SLAB allocator. There are slab caches for each block size,
2747 * which are allocated at mount time, if necessary, and we only free
2748 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2749 * this reason we don't need to a mutex to protect access to
2750 * jbd2_slab[] allocating or releasing memory; only in
2751 * jbd2_journal_create_slab().
2752 */
2753 #define JBD2_MAX_SLABS 8
2754 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2755
2756 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2757 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2758 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2759 };
2760
2761
jbd2_journal_destroy_slabs(void)2762 static void jbd2_journal_destroy_slabs(void)
2763 {
2764 int i;
2765
2766 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2767 kmem_cache_destroy(jbd2_slab[i]);
2768 jbd2_slab[i] = NULL;
2769 }
2770 }
2771
jbd2_journal_create_slab(size_t size)2772 static int jbd2_journal_create_slab(size_t size)
2773 {
2774 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2775 int i = order_base_2(size) - 10;
2776 size_t slab_size;
2777
2778 if (size == PAGE_SIZE)
2779 return 0;
2780
2781 if (i >= JBD2_MAX_SLABS)
2782 return -EINVAL;
2783
2784 if (unlikely(i < 0))
2785 i = 0;
2786 mutex_lock(&jbd2_slab_create_mutex);
2787 if (jbd2_slab[i]) {
2788 mutex_unlock(&jbd2_slab_create_mutex);
2789 return 0; /* Already created */
2790 }
2791
2792 slab_size = 1 << (i+10);
2793 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2794 slab_size, 0, NULL);
2795 mutex_unlock(&jbd2_slab_create_mutex);
2796 if (!jbd2_slab[i]) {
2797 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2798 return -ENOMEM;
2799 }
2800 return 0;
2801 }
2802
get_slab(size_t size)2803 static struct kmem_cache *get_slab(size_t size)
2804 {
2805 int i = order_base_2(size) - 10;
2806
2807 BUG_ON(i >= JBD2_MAX_SLABS);
2808 if (unlikely(i < 0))
2809 i = 0;
2810 BUG_ON(jbd2_slab[i] == NULL);
2811 return jbd2_slab[i];
2812 }
2813
jbd2_alloc(size_t size,gfp_t flags)2814 void *jbd2_alloc(size_t size, gfp_t flags)
2815 {
2816 void *ptr;
2817
2818 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2819
2820 if (size < PAGE_SIZE)
2821 ptr = kmem_cache_alloc(get_slab(size), flags);
2822 else
2823 ptr = (void *)__get_free_pages(flags, get_order(size));
2824
2825 /* Check alignment; SLUB has gotten this wrong in the past,
2826 * and this can lead to user data corruption! */
2827 BUG_ON(((unsigned long) ptr) & (size-1));
2828
2829 return ptr;
2830 }
2831
jbd2_free(void * ptr,size_t size)2832 void jbd2_free(void *ptr, size_t size)
2833 {
2834 if (size < PAGE_SIZE)
2835 kmem_cache_free(get_slab(size), ptr);
2836 else
2837 free_pages((unsigned long)ptr, get_order(size));
2838 };
2839
2840 /*
2841 * Journal_head storage management
2842 */
2843 static struct kmem_cache *jbd2_journal_head_cache;
2844 #ifdef CONFIG_JBD2_DEBUG
2845 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2846 #endif
2847
jbd2_journal_init_journal_head_cache(void)2848 static int __init jbd2_journal_init_journal_head_cache(void)
2849 {
2850 J_ASSERT(!jbd2_journal_head_cache);
2851 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2852 sizeof(struct journal_head),
2853 0, /* offset */
2854 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2855 NULL); /* ctor */
2856 if (!jbd2_journal_head_cache) {
2857 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2858 return -ENOMEM;
2859 }
2860 return 0;
2861 }
2862
jbd2_journal_destroy_journal_head_cache(void)2863 static void jbd2_journal_destroy_journal_head_cache(void)
2864 {
2865 kmem_cache_destroy(jbd2_journal_head_cache);
2866 jbd2_journal_head_cache = NULL;
2867 }
2868
2869 /*
2870 * journal_head splicing and dicing
2871 */
journal_alloc_journal_head(void)2872 static struct journal_head *journal_alloc_journal_head(void)
2873 {
2874 struct journal_head *ret;
2875
2876 #ifdef CONFIG_JBD2_DEBUG
2877 atomic_inc(&nr_journal_heads);
2878 #endif
2879 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2880 if (!ret) {
2881 jbd2_debug(1, "out of memory for journal_head\n");
2882 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2883 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2884 GFP_NOFS | __GFP_NOFAIL);
2885 }
2886 if (ret)
2887 spin_lock_init(&ret->b_state_lock);
2888 return ret;
2889 }
2890
journal_free_journal_head(struct journal_head * jh)2891 static void journal_free_journal_head(struct journal_head *jh)
2892 {
2893 #ifdef CONFIG_JBD2_DEBUG
2894 atomic_dec(&nr_journal_heads);
2895 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2896 #endif
2897 kmem_cache_free(jbd2_journal_head_cache, jh);
2898 }
2899
2900 /*
2901 * A journal_head is attached to a buffer_head whenever JBD has an
2902 * interest in the buffer.
2903 *
2904 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2905 * is set. This bit is tested in core kernel code where we need to take
2906 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2907 * there.
2908 *
2909 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2910 *
2911 * When a buffer has its BH_JBD bit set it is immune from being released by
2912 * core kernel code, mainly via ->b_count.
2913 *
2914 * A journal_head is detached from its buffer_head when the journal_head's
2915 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2916 * transaction (b_cp_transaction) hold their references to b_jcount.
2917 *
2918 * Various places in the kernel want to attach a journal_head to a buffer_head
2919 * _before_ attaching the journal_head to a transaction. To protect the
2920 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2921 * journal_head's b_jcount refcount by one. The caller must call
2922 * jbd2_journal_put_journal_head() to undo this.
2923 *
2924 * So the typical usage would be:
2925 *
2926 * (Attach a journal_head if needed. Increments b_jcount)
2927 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2928 * ...
2929 * (Get another reference for transaction)
2930 * jbd2_journal_grab_journal_head(bh);
2931 * jh->b_transaction = xxx;
2932 * (Put original reference)
2933 * jbd2_journal_put_journal_head(jh);
2934 */
2935
2936 /*
2937 * Give a buffer_head a journal_head.
2938 *
2939 * May sleep.
2940 */
jbd2_journal_add_journal_head(struct buffer_head * bh)2941 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2942 {
2943 struct journal_head *jh;
2944 struct journal_head *new_jh = NULL;
2945
2946 repeat:
2947 if (!buffer_jbd(bh))
2948 new_jh = journal_alloc_journal_head();
2949
2950 jbd_lock_bh_journal_head(bh);
2951 if (buffer_jbd(bh)) {
2952 jh = bh2jh(bh);
2953 } else {
2954 J_ASSERT_BH(bh,
2955 (atomic_read(&bh->b_count) > 0) ||
2956 (bh->b_folio && bh->b_folio->mapping));
2957
2958 if (!new_jh) {
2959 jbd_unlock_bh_journal_head(bh);
2960 goto repeat;
2961 }
2962
2963 jh = new_jh;
2964 new_jh = NULL; /* We consumed it */
2965 set_buffer_jbd(bh);
2966 bh->b_private = jh;
2967 jh->b_bh = bh;
2968 get_bh(bh);
2969 BUFFER_TRACE(bh, "added journal_head");
2970 }
2971 jh->b_jcount++;
2972 jbd_unlock_bh_journal_head(bh);
2973 if (new_jh)
2974 journal_free_journal_head(new_jh);
2975 return bh->b_private;
2976 }
2977
2978 /*
2979 * Grab a ref against this buffer_head's journal_head. If it ended up not
2980 * having a journal_head, return NULL
2981 */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2982 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2983 {
2984 struct journal_head *jh = NULL;
2985
2986 jbd_lock_bh_journal_head(bh);
2987 if (buffer_jbd(bh)) {
2988 jh = bh2jh(bh);
2989 jh->b_jcount++;
2990 }
2991 jbd_unlock_bh_journal_head(bh);
2992 return jh;
2993 }
2994 EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2995
__journal_remove_journal_head(struct buffer_head * bh)2996 static void __journal_remove_journal_head(struct buffer_head *bh)
2997 {
2998 struct journal_head *jh = bh2jh(bh);
2999
3000 J_ASSERT_JH(jh, jh->b_transaction == NULL);
3001 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
3002 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
3003 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
3004 J_ASSERT_BH(bh, buffer_jbd(bh));
3005 J_ASSERT_BH(bh, jh2bh(jh) == bh);
3006 BUFFER_TRACE(bh, "remove journal_head");
3007
3008 /* Unlink before dropping the lock */
3009 bh->b_private = NULL;
3010 jh->b_bh = NULL; /* debug, really */
3011 clear_buffer_jbd(bh);
3012 }
3013
journal_release_journal_head(struct journal_head * jh,size_t b_size)3014 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
3015 {
3016 if (jh->b_frozen_data) {
3017 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
3018 jbd2_free(jh->b_frozen_data, b_size);
3019 }
3020 if (jh->b_committed_data) {
3021 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
3022 jbd2_free(jh->b_committed_data, b_size);
3023 }
3024 journal_free_journal_head(jh);
3025 }
3026
3027 /*
3028 * Drop a reference on the passed journal_head. If it fell to zero then
3029 * release the journal_head from the buffer_head.
3030 */
jbd2_journal_put_journal_head(struct journal_head * jh)3031 void jbd2_journal_put_journal_head(struct journal_head *jh)
3032 {
3033 struct buffer_head *bh = jh2bh(jh);
3034
3035 jbd_lock_bh_journal_head(bh);
3036 J_ASSERT_JH(jh, jh->b_jcount > 0);
3037 --jh->b_jcount;
3038 if (!jh->b_jcount) {
3039 __journal_remove_journal_head(bh);
3040 jbd_unlock_bh_journal_head(bh);
3041 journal_release_journal_head(jh, bh->b_size);
3042 __brelse(bh);
3043 } else {
3044 jbd_unlock_bh_journal_head(bh);
3045 }
3046 }
3047 EXPORT_SYMBOL(jbd2_journal_put_journal_head);
3048
3049 /*
3050 * Initialize jbd inode head
3051 */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)3052 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3053 {
3054 jinode->i_transaction = NULL;
3055 jinode->i_next_transaction = NULL;
3056 jinode->i_vfs_inode = inode;
3057 jinode->i_flags = 0;
3058 jinode->i_dirty_start = 0;
3059 jinode->i_dirty_end = 0;
3060 INIT_LIST_HEAD(&jinode->i_list);
3061 }
3062
3063 /*
3064 * Function to be called before we start removing inode from memory (i.e.,
3065 * clear_inode() is a fine place to be called from). It removes inode from
3066 * transaction's lists.
3067 */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)3068 void jbd2_journal_release_jbd_inode(journal_t *journal,
3069 struct jbd2_inode *jinode)
3070 {
3071 if (!journal)
3072 return;
3073 restart:
3074 spin_lock(&journal->j_list_lock);
3075 /* Is commit writing out inode - we have to wait */
3076 if (jinode->i_flags & JI_COMMIT_RUNNING) {
3077 wait_queue_head_t *wq;
3078 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3079 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3080 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3081 spin_unlock(&journal->j_list_lock);
3082 schedule();
3083 finish_wait(wq, &wait.wq_entry);
3084 goto restart;
3085 }
3086
3087 if (jinode->i_transaction) {
3088 list_del(&jinode->i_list);
3089 jinode->i_transaction = NULL;
3090 }
3091 spin_unlock(&journal->j_list_lock);
3092 }
3093
3094
3095 #ifdef CONFIG_PROC_FS
3096
3097 #define JBD2_STATS_PROC_NAME "fs/jbd2"
3098
jbd2_create_jbd_stats_proc_entry(void)3099 static void __init jbd2_create_jbd_stats_proc_entry(void)
3100 {
3101 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3102 }
3103
jbd2_remove_jbd_stats_proc_entry(void)3104 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3105 {
3106 if (proc_jbd2_stats)
3107 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3108 }
3109
3110 #else
3111
3112 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3113 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3114
3115 #endif
3116
3117 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3118
jbd2_journal_init_inode_cache(void)3119 static int __init jbd2_journal_init_inode_cache(void)
3120 {
3121 J_ASSERT(!jbd2_inode_cache);
3122 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3123 if (!jbd2_inode_cache) {
3124 pr_emerg("JBD2: failed to create inode cache\n");
3125 return -ENOMEM;
3126 }
3127 return 0;
3128 }
3129
jbd2_journal_init_handle_cache(void)3130 static int __init jbd2_journal_init_handle_cache(void)
3131 {
3132 J_ASSERT(!jbd2_handle_cache);
3133 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3134 if (!jbd2_handle_cache) {
3135 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3136 return -ENOMEM;
3137 }
3138 return 0;
3139 }
3140
jbd2_journal_destroy_inode_cache(void)3141 static void jbd2_journal_destroy_inode_cache(void)
3142 {
3143 kmem_cache_destroy(jbd2_inode_cache);
3144 jbd2_inode_cache = NULL;
3145 }
3146
jbd2_journal_destroy_handle_cache(void)3147 static void jbd2_journal_destroy_handle_cache(void)
3148 {
3149 kmem_cache_destroy(jbd2_handle_cache);
3150 jbd2_handle_cache = NULL;
3151 }
3152
3153 /*
3154 * Module startup and shutdown
3155 */
3156
journal_init_caches(void)3157 static int __init journal_init_caches(void)
3158 {
3159 int ret;
3160
3161 ret = jbd2_journal_init_revoke_record_cache();
3162 if (ret == 0)
3163 ret = jbd2_journal_init_revoke_table_cache();
3164 if (ret == 0)
3165 ret = jbd2_journal_init_journal_head_cache();
3166 if (ret == 0)
3167 ret = jbd2_journal_init_handle_cache();
3168 if (ret == 0)
3169 ret = jbd2_journal_init_inode_cache();
3170 if (ret == 0)
3171 ret = jbd2_journal_init_transaction_cache();
3172 return ret;
3173 }
3174
jbd2_journal_destroy_caches(void)3175 static void jbd2_journal_destroy_caches(void)
3176 {
3177 jbd2_journal_destroy_revoke_record_cache();
3178 jbd2_journal_destroy_revoke_table_cache();
3179 jbd2_journal_destroy_journal_head_cache();
3180 jbd2_journal_destroy_handle_cache();
3181 jbd2_journal_destroy_inode_cache();
3182 jbd2_journal_destroy_transaction_cache();
3183 jbd2_journal_destroy_slabs();
3184 }
3185
journal_init(void)3186 static int __init journal_init(void)
3187 {
3188 int ret;
3189
3190 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3191
3192 ret = journal_init_caches();
3193 if (ret == 0) {
3194 jbd2_create_jbd_stats_proc_entry();
3195 } else {
3196 jbd2_journal_destroy_caches();
3197 }
3198 return ret;
3199 }
3200
journal_exit(void)3201 static void __exit journal_exit(void)
3202 {
3203 #ifdef CONFIG_JBD2_DEBUG
3204 int n = atomic_read(&nr_journal_heads);
3205 if (n)
3206 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3207 #endif
3208 jbd2_remove_jbd_stats_proc_entry();
3209 jbd2_journal_destroy_caches();
3210 }
3211
3212 MODULE_LICENSE("GPL");
3213 module_init(journal_init);
3214 module_exit(journal_exit);
3215
3216