xref: /openbmc/u-boot/arch/arm/mach-tegra/clock.c (revision 83d290c56fab2d38cd1ab4c4cc7099559c1d5046)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010-2015, NVIDIA CORPORATION.  All rights reserved.
4  */
5 
6 /* Tegra SoC common clock control functions */
7 
8 #include <common.h>
9 #include <div64.h>
10 #include <dm.h>
11 #include <errno.h>
12 #include <asm/io.h>
13 #include <asm/arch/clock.h>
14 #include <asm/arch/tegra.h>
15 #include <asm/arch-tegra/ap.h>
16 #include <asm/arch-tegra/clk_rst.h>
17 #include <asm/arch-tegra/pmc.h>
18 #include <asm/arch-tegra/timer.h>
19 
20 /*
21  * This is our record of the current clock rate of each clock. We don't
22  * fill all of these in since we are only really interested in clocks which
23  * we use as parents.
24  */
25 static unsigned pll_rate[CLOCK_ID_COUNT];
26 
27 /*
28  * The oscillator frequency is fixed to one of four set values. Based on this
29  * the other clocks are set up appropriately.
30  */
31 static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
32 	13000000,
33 	19200000,
34 	12000000,
35 	26000000,
36 	38400000,
37 	48000000,
38 };
39 
40 /* return 1 if a peripheral ID is in range */
41 #define clock_type_id_isvalid(id) ((id) >= 0 && \
42 		(id) < CLOCK_TYPE_COUNT)
43 
44 char pllp_valid = 1;	/* PLLP is set up correctly */
45 
46 /* return 1 if a periphc_internal_id is in range */
47 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \
48 		(id) < PERIPHC_COUNT)
49 
50 /* number of clock outputs of a PLL */
51 static const u8 pll_num_clkouts[] = {
52 	1,	/* PLLC */
53 	1,	/* PLLM */
54 	4,	/* PLLP */
55 	1,	/* PLLA */
56 	0,	/* PLLU */
57 	0,	/* PLLD */
58 };
59 
clock_get_osc_bypass(void)60 int clock_get_osc_bypass(void)
61 {
62 	struct clk_rst_ctlr *clkrst =
63 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
64 	u32 reg;
65 
66 	reg = readl(&clkrst->crc_osc_ctrl);
67 	return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
68 }
69 
70 /* Returns a pointer to the registers of the given pll */
get_pll(enum clock_id clkid)71 static struct clk_pll *get_pll(enum clock_id clkid)
72 {
73 	struct clk_rst_ctlr *clkrst =
74 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
75 
76 	assert(clock_id_is_pll(clkid));
77 	if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
78 		debug("%s: Invalid PLL %d\n", __func__, clkid);
79 		return NULL;
80 	}
81 	return &clkrst->crc_pll[clkid];
82 }
83 
clock_get_simple_pll(enum clock_id clkid)84 __weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
85 {
86 	return NULL;
87 }
88 
clock_ll_read_pll(enum clock_id clkid,u32 * divm,u32 * divn,u32 * divp,u32 * cpcon,u32 * lfcon)89 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
90 		u32 *divp, u32 *cpcon, u32 *lfcon)
91 {
92 	struct clk_pll *pll = get_pll(clkid);
93 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
94 	u32 data;
95 
96 	assert(clkid != CLOCK_ID_USB);
97 
98 	/* Safety check, adds to code size but is small */
99 	if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
100 		return -1;
101 	data = readl(&pll->pll_base);
102 	*divm = (data >> pllinfo->m_shift) & pllinfo->m_mask;
103 	*divn = (data >> pllinfo->n_shift) & pllinfo->n_mask;
104 	*divp = (data >> pllinfo->p_shift) & pllinfo->p_mask;
105 	data = readl(&pll->pll_misc);
106 	/* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */
107 	*cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask;
108 	*lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask;
109 
110 	return 0;
111 }
112 
clock_start_pll(enum clock_id clkid,u32 divm,u32 divn,u32 divp,u32 cpcon,u32 lfcon)113 unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
114 		u32 divp, u32 cpcon, u32 lfcon)
115 {
116 	struct clk_pll *pll = NULL;
117 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
118 	struct clk_pll_simple *simple_pll = NULL;
119 	u32 misc_data, data;
120 
121 	if (clkid < (enum clock_id)TEGRA_CLK_PLLS) {
122 		pll = get_pll(clkid);
123 	} else {
124 		simple_pll = clock_get_simple_pll(clkid);
125 		if (!simple_pll) {
126 			debug("%s: Uknown simple PLL %d\n", __func__, clkid);
127 			return 0;
128 		}
129 	}
130 
131 	/*
132 	 * pllinfo has the m/n/p and kcp/kvco mask and shift
133 	 * values for all of the PLLs used in U-Boot, with any
134 	 * SoC differences accounted for.
135 	 *
136 	 * Preserve EN_LOCKDET, etc.
137 	 */
138 	if (pll)
139 		misc_data = readl(&pll->pll_misc);
140 	else
141 		misc_data = readl(&simple_pll->pll_misc);
142 	misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
143 	misc_data |= cpcon << pllinfo->kcp_shift;
144 	misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift);
145 	misc_data |= lfcon << pllinfo->kvco_shift;
146 
147 	data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift);
148 	data |= divp << pllinfo->p_shift;
149 	data |= (1 << PLL_ENABLE_SHIFT);	/* BYPASS s/b 0 already */
150 
151 	if (pll) {
152 		writel(misc_data, &pll->pll_misc);
153 		writel(data, &pll->pll_base);
154 	} else {
155 		writel(misc_data, &simple_pll->pll_misc);
156 		writel(data, &simple_pll->pll_base);
157 	}
158 
159 	/* calculate the stable time */
160 	return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
161 }
162 
clock_ll_set_source_divisor(enum periph_id periph_id,unsigned source,unsigned divisor)163 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
164 			unsigned divisor)
165 {
166 	u32 *reg = get_periph_source_reg(periph_id);
167 	u32 value;
168 
169 	value = readl(reg);
170 
171 	value &= ~OUT_CLK_SOURCE_31_30_MASK;
172 	value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
173 
174 	value &= ~OUT_CLK_DIVISOR_MASK;
175 	value |= divisor << OUT_CLK_DIVISOR_SHIFT;
176 
177 	writel(value, reg);
178 }
179 
clock_ll_set_source_bits(enum periph_id periph_id,int mux_bits,unsigned source)180 int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
181 			     unsigned source)
182 {
183 	u32 *reg = get_periph_source_reg(periph_id);
184 
185 	switch (mux_bits) {
186 	case MASK_BITS_31_30:
187 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
188 				source << OUT_CLK_SOURCE_31_30_SHIFT);
189 		break;
190 
191 	case MASK_BITS_31_29:
192 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
193 				source << OUT_CLK_SOURCE_31_29_SHIFT);
194 		break;
195 
196 	case MASK_BITS_31_28:
197 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
198 				source << OUT_CLK_SOURCE_31_28_SHIFT);
199 		break;
200 
201 	default:
202 		return -1;
203 	}
204 
205 	return 0;
206 }
207 
clock_ll_get_source_bits(enum periph_id periph_id,int mux_bits)208 static int clock_ll_get_source_bits(enum periph_id periph_id, int mux_bits)
209 {
210 	u32 *reg = get_periph_source_reg(periph_id);
211 	u32 val = readl(reg);
212 
213 	switch (mux_bits) {
214 	case MASK_BITS_31_30:
215 		val >>= OUT_CLK_SOURCE_31_30_SHIFT;
216 		val &= OUT_CLK_SOURCE_31_30_MASK;
217 		return val;
218 	case MASK_BITS_31_29:
219 		val >>= OUT_CLK_SOURCE_31_29_SHIFT;
220 		val &= OUT_CLK_SOURCE_31_29_MASK;
221 		return val;
222 	case MASK_BITS_31_28:
223 		val >>= OUT_CLK_SOURCE_31_28_SHIFT;
224 		val &= OUT_CLK_SOURCE_31_28_MASK;
225 		return val;
226 	default:
227 		return -1;
228 	}
229 }
230 
clock_ll_set_source(enum periph_id periph_id,unsigned source)231 void clock_ll_set_source(enum periph_id periph_id, unsigned source)
232 {
233 	clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
234 }
235 
236 /**
237  * Given the parent's rate and the required rate for the children, this works
238  * out the peripheral clock divider to use, in 7.1 binary format.
239  *
240  * @param divider_bits	number of divider bits (8 or 16)
241  * @param parent_rate	clock rate of parent clock in Hz
242  * @param rate		required clock rate for this clock
243  * @return divider which should be used
244  */
clk_get_divider(unsigned divider_bits,unsigned long parent_rate,unsigned long rate)245 static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
246 			   unsigned long rate)
247 {
248 	u64 divider = parent_rate * 2;
249 	unsigned max_divider = 1 << divider_bits;
250 
251 	divider += rate - 1;
252 	do_div(divider, rate);
253 
254 	if ((s64)divider - 2 < 0)
255 		return 0;
256 
257 	if ((s64)divider - 2 >= max_divider)
258 		return -1;
259 
260 	return divider - 2;
261 }
262 
clock_set_pllout(enum clock_id clkid,enum pll_out_id pllout,unsigned rate)263 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
264 {
265 	struct clk_pll *pll = get_pll(clkid);
266 	int data = 0, div = 0, offset = 0;
267 
268 	if (!clock_id_is_pll(clkid))
269 		return -1;
270 
271 	if (pllout + 1 > pll_num_clkouts[clkid])
272 		return -1;
273 
274 	div = clk_get_divider(8, pll_rate[clkid], rate);
275 
276 	if (div < 0)
277 		return -1;
278 
279 	/* out2 and out4 are in the high part of the register */
280 	if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
281 		offset = 16;
282 
283 	data = (div << PLL_OUT_RATIO_SHIFT) |
284 			PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
285 	clrsetbits_le32(&pll->pll_out[pllout >> 1],
286 			PLL_OUT_RATIO_MASK << offset, data << offset);
287 
288 	return 0;
289 }
290 
291 /**
292  * Given the parent's rate and the divider in 7.1 format, this works out the
293  * resulting peripheral clock rate.
294  *
295  * @param parent_rate	clock rate of parent clock in Hz
296  * @param divider which should be used in 7.1 format
297  * @return effective clock rate of peripheral
298  */
get_rate_from_divider(unsigned long parent_rate,int divider)299 static unsigned long get_rate_from_divider(unsigned long parent_rate,
300 					   int divider)
301 {
302 	u64 rate;
303 
304 	rate = (u64)parent_rate * 2;
305 	do_div(rate, divider + 2);
306 	return rate;
307 }
308 
clock_get_periph_rate(enum periph_id periph_id,enum clock_id parent)309 unsigned long clock_get_periph_rate(enum periph_id periph_id,
310 		enum clock_id parent)
311 {
312 	u32 *reg = get_periph_source_reg(periph_id);
313 	unsigned parent_rate = pll_rate[parent];
314 	int div = (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT;
315 
316 	switch (periph_id) {
317 	case PERIPH_ID_UART1:
318 	case PERIPH_ID_UART2:
319 	case PERIPH_ID_UART3:
320 	case PERIPH_ID_UART4:
321 	case PERIPH_ID_UART5:
322 #ifdef CONFIG_TEGRA20
323 		/* There's no divider for these clocks in this SoC. */
324 		return parent_rate;
325 #else
326 		/*
327 		 * This undoes the +2 in get_rate_from_divider() which I
328 		 * believe is incorrect. Ideally we would fix
329 		 * get_rate_from_divider(), but... Removing the +2 from
330 		 * get_rate_from_divider() would probably require remove the -2
331 		 * from the tail of clk_get_divider() since I believe that's
332 		 * only there to invert get_rate_from_divider()'s +2. Observe
333 		 * how find_best_divider() uses those two functions together.
334 		 * However, doing so breaks other stuff, such as Seaboard's
335 		 * display, likely due to clock_set_pllout()'s call to
336 		 * clk_get_divider(). Attempting to fix that by making
337 		 * clock_set_pllout() subtract 2 from clk_get_divider()'s
338 		 * return value doesn't help. In summary this clock driver is
339 		 * quite broken but I'm afraid I have no idea how to fix it
340 		 * without completely replacing it.
341 		 *
342 		 * Be careful to avoid a divide by zero error.
343 		 */
344 		if (div >= 1)
345 			div -= 2;
346 		break;
347 #endif
348 	default:
349 		break;
350 	}
351 
352 	return get_rate_from_divider(parent_rate, div);
353 }
354 
355 /**
356  * Find the best available 7.1 format divisor given a parent clock rate and
357  * required child clock rate. This function assumes that a second-stage
358  * divisor is available which can divide by powers of 2 from 1 to 256.
359  *
360  * @param divider_bits	number of divider bits (8 or 16)
361  * @param parent_rate	clock rate of parent clock in Hz
362  * @param rate		required clock rate for this clock
363  * @param extra_div	value for the second-stage divisor (not set if this
364  *			function returns -1.
365  * @return divider which should be used, or -1 if nothing is valid
366  *
367  */
find_best_divider(unsigned divider_bits,unsigned long parent_rate,unsigned long rate,int * extra_div)368 static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
369 				unsigned long rate, int *extra_div)
370 {
371 	int shift;
372 	int best_divider = -1;
373 	int best_error = rate;
374 
375 	/* try dividers from 1 to 256 and find closest match */
376 	for (shift = 0; shift <= 8 && best_error > 0; shift++) {
377 		unsigned divided_parent = parent_rate >> shift;
378 		int divider = clk_get_divider(divider_bits, divided_parent,
379 						rate);
380 		unsigned effective_rate = get_rate_from_divider(divided_parent,
381 						divider);
382 		int error = rate - effective_rate;
383 
384 		/* Given a valid divider, look for the lowest error */
385 		if (divider != -1 && error < best_error) {
386 			best_error = error;
387 			*extra_div = 1 << shift;
388 			best_divider = divider;
389 		}
390 	}
391 
392 	/* return what we found - *extra_div will already be set */
393 	return best_divider;
394 }
395 
396 /**
397  * Adjust peripheral PLL to use the given divider and source.
398  *
399  * @param periph_id	peripheral to adjust
400  * @param source	Source number (0-3 or 0-7)
401  * @param mux_bits	Number of mux bits (2 or 4)
402  * @param divider	Required divider in 7.1 or 15.1 format
403  * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
404  *		for this peripheral)
405  */
adjust_periph_pll(enum periph_id periph_id,int source,int mux_bits,unsigned divider)406 static int adjust_periph_pll(enum periph_id periph_id, int source,
407 				int mux_bits, unsigned divider)
408 {
409 	u32 *reg = get_periph_source_reg(periph_id);
410 
411 	clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
412 			divider << OUT_CLK_DIVISOR_SHIFT);
413 	udelay(1);
414 
415 	/* work out the source clock and set it */
416 	if (source < 0)
417 		return -1;
418 
419 	clock_ll_set_source_bits(periph_id, mux_bits, source);
420 
421 	udelay(2);
422 	return 0;
423 }
424 
clock_get_periph_parent(enum periph_id periph_id)425 enum clock_id clock_get_periph_parent(enum periph_id periph_id)
426 {
427 	int err, mux_bits, divider_bits, type;
428 	int source;
429 
430 	err = get_periph_clock_info(periph_id, &mux_bits, &divider_bits, &type);
431 	if (err)
432 		return CLOCK_ID_NONE;
433 
434 	source = clock_ll_get_source_bits(periph_id, mux_bits);
435 
436 	return get_periph_clock_id(periph_id, source);
437 }
438 
clock_adjust_periph_pll_div(enum periph_id periph_id,enum clock_id parent,unsigned rate,int * extra_div)439 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
440 		enum clock_id parent, unsigned rate, int *extra_div)
441 {
442 	unsigned effective_rate;
443 	int mux_bits, divider_bits, source;
444 	int divider;
445 	int xdiv = 0;
446 
447 	/* work out the source clock and set it */
448 	source = get_periph_clock_source(periph_id, parent, &mux_bits,
449 					 &divider_bits);
450 
451 	divider = find_best_divider(divider_bits, pll_rate[parent],
452 				    rate, &xdiv);
453 	if (extra_div)
454 		*extra_div = xdiv;
455 
456 	assert(divider >= 0);
457 	if (adjust_periph_pll(periph_id, source, mux_bits, divider))
458 		return -1U;
459 	debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
460 		get_periph_source_reg(periph_id),
461 		readl(get_periph_source_reg(periph_id)));
462 
463 	/* Check what we ended up with. This shouldn't matter though */
464 	effective_rate = clock_get_periph_rate(periph_id, parent);
465 	if (extra_div)
466 		effective_rate /= *extra_div;
467 	if (rate != effective_rate)
468 		debug("Requested clock rate %u not honored (got %u)\n",
469 			rate, effective_rate);
470 	return effective_rate;
471 }
472 
clock_start_periph_pll(enum periph_id periph_id,enum clock_id parent,unsigned rate)473 unsigned clock_start_periph_pll(enum periph_id periph_id,
474 		enum clock_id parent, unsigned rate)
475 {
476 	unsigned effective_rate;
477 
478 	reset_set_enable(periph_id, 1);
479 	clock_enable(periph_id);
480 
481 	effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
482 						 NULL);
483 
484 	reset_set_enable(periph_id, 0);
485 	return effective_rate;
486 }
487 
clock_enable(enum periph_id clkid)488 void clock_enable(enum periph_id clkid)
489 {
490 	clock_set_enable(clkid, 1);
491 }
492 
clock_disable(enum periph_id clkid)493 void clock_disable(enum periph_id clkid)
494 {
495 	clock_set_enable(clkid, 0);
496 }
497 
reset_periph(enum periph_id periph_id,int us_delay)498 void reset_periph(enum periph_id periph_id, int us_delay)
499 {
500 	/* Put peripheral into reset */
501 	reset_set_enable(periph_id, 1);
502 	udelay(us_delay);
503 
504 	/* Remove reset */
505 	reset_set_enable(periph_id, 0);
506 
507 	udelay(us_delay);
508 }
509 
reset_cmplx_set_enable(int cpu,int which,int reset)510 void reset_cmplx_set_enable(int cpu, int which, int reset)
511 {
512 	struct clk_rst_ctlr *clkrst =
513 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
514 	u32 mask;
515 
516 	/* Form the mask, which depends on the cpu chosen (2 or 4) */
517 	assert(cpu >= 0 && cpu < MAX_NUM_CPU);
518 	mask = which << cpu;
519 
520 	/* either enable or disable those reset for that CPU */
521 	if (reset)
522 		writel(mask, &clkrst->crc_cpu_cmplx_set);
523 	else
524 		writel(mask, &clkrst->crc_cpu_cmplx_clr);
525 }
526 
clk_m_get_rate(unsigned int parent_rate)527 unsigned int __weak clk_m_get_rate(unsigned int parent_rate)
528 {
529 	return parent_rate;
530 }
531 
clock_get_rate(enum clock_id clkid)532 unsigned clock_get_rate(enum clock_id clkid)
533 {
534 	struct clk_pll *pll;
535 	u32 base, divm;
536 	u64 parent_rate, rate;
537 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
538 
539 	parent_rate = osc_freq[clock_get_osc_freq()];
540 	if (clkid == CLOCK_ID_OSC)
541 		return parent_rate;
542 
543 	if (clkid == CLOCK_ID_CLK_M)
544 		return clk_m_get_rate(parent_rate);
545 
546 	pll = get_pll(clkid);
547 	if (!pll)
548 		return 0;
549 	base = readl(&pll->pll_base);
550 
551 	rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask);
552 	divm = (base >> pllinfo->m_shift) & pllinfo->m_mask;
553 	/*
554 	 * PLLU uses p_mask/p_shift for VCO on all but T210,
555 	 * T210 uses normal DIVP. Handled in pllinfo table.
556 	 */
557 #ifdef CONFIG_TEGRA210
558 	/*
559 	 * PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is
560 	 * not applied. pllP_out2 does have divp applied. All other pllP_outN
561 	 * are divided down from pllP_out0. We only support pllP_out0 in
562 	 * U-Boot at the time of writing this comment.
563 	 */
564 	if (clkid != CLOCK_ID_PERIPH)
565 #endif
566 		divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask;
567 	do_div(rate, divm);
568 	return rate;
569 }
570 
571 /**
572  * Set the output frequency you want for each PLL clock.
573  * PLL output frequencies are programmed by setting their N, M and P values.
574  * The governing equations are:
575  *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
576  *     where Fo is the output frequency from the PLL.
577  * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
578  *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
579  * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
580  *
581  * @param n PLL feedback divider(DIVN)
582  * @param m PLL input divider(DIVN)
583  * @param p post divider(DIVP)
584  * @param cpcon base PLL charge pump(CPCON)
585  * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
586  *		be overridden), 1 if PLL is already correct
587  */
clock_set_rate(enum clock_id clkid,u32 n,u32 m,u32 p,u32 cpcon)588 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
589 {
590 	u32 base_reg, misc_reg;
591 	struct clk_pll *pll;
592 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
593 
594 	pll = get_pll(clkid);
595 
596 	base_reg = readl(&pll->pll_base);
597 
598 	/* Set BYPASS, m, n and p to PLL_BASE */
599 	base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift);
600 	base_reg |= m << pllinfo->m_shift;
601 
602 	base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift);
603 	base_reg |= n << pllinfo->n_shift;
604 
605 	base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift);
606 	base_reg |= p << pllinfo->p_shift;
607 
608 	if (clkid == CLOCK_ID_PERIPH) {
609 		/*
610 		 * If the PLL is already set up, check that it is correct
611 		 * and record this info for clock_verify() to check.
612 		 */
613 		if (base_reg & PLL_BASE_OVRRIDE_MASK) {
614 			base_reg |= PLL_ENABLE_MASK;
615 			if (base_reg != readl(&pll->pll_base))
616 				pllp_valid = 0;
617 			return pllp_valid ? 1 : -1;
618 		}
619 		base_reg |= PLL_BASE_OVRRIDE_MASK;
620 	}
621 
622 	base_reg |= PLL_BYPASS_MASK;
623 	writel(base_reg, &pll->pll_base);
624 
625 	/* Set cpcon (KCP) to PLL_MISC */
626 	misc_reg = readl(&pll->pll_misc);
627 	misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
628 	misc_reg |= cpcon << pllinfo->kcp_shift;
629 	writel(misc_reg, &pll->pll_misc);
630 
631 	/* Enable PLL */
632 	base_reg |= PLL_ENABLE_MASK;
633 	writel(base_reg, &pll->pll_base);
634 
635 	/* Disable BYPASS */
636 	base_reg &= ~PLL_BYPASS_MASK;
637 	writel(base_reg, &pll->pll_base);
638 
639 	return 0;
640 }
641 
clock_ll_start_uart(enum periph_id periph_id)642 void clock_ll_start_uart(enum periph_id periph_id)
643 {
644 	/* Assert UART reset and enable clock */
645 	reset_set_enable(periph_id, 1);
646 	clock_enable(periph_id);
647 	clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
648 
649 	/* wait for 2us */
650 	udelay(2);
651 
652 	/* De-assert reset to UART */
653 	reset_set_enable(periph_id, 0);
654 }
655 
656 #if CONFIG_IS_ENABLED(OF_CONTROL)
clock_decode_periph_id(struct udevice * dev)657 int clock_decode_periph_id(struct udevice *dev)
658 {
659 	enum periph_id id;
660 	u32 cell[2];
661 	int err;
662 
663 	err = dev_read_u32_array(dev, "clocks", cell, ARRAY_SIZE(cell));
664 	if (err)
665 		return -1;
666 	id = clk_id_to_periph_id(cell[1]);
667 	assert(clock_periph_id_isvalid(id));
668 	return id;
669 }
670 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
671 
clock_verify(void)672 int clock_verify(void)
673 {
674 	struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
675 	u32 reg = readl(&pll->pll_base);
676 
677 	if (!pllp_valid) {
678 		printf("Warning: PLLP %x is not correct\n", reg);
679 		return -1;
680 	}
681 	debug("PLLP %x is correct\n", reg);
682 	return 0;
683 }
684 
clock_init(void)685 void clock_init(void)
686 {
687 	int i;
688 
689 	pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
690 	pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
691 	pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
692 	pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB);
693 	pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
694 	pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
695 	pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
696 	pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
697 	pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M);
698 
699 	debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
700 	debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]);
701 	debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
702 	debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
703 	debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
704 	debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]);
705 	debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
706 	debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
707 
708 	for (i = 0; periph_clk_init_table[i].periph_id != -1; i++) {
709 		enum periph_id periph_id;
710 		enum clock_id parent;
711 		int source, mux_bits, divider_bits;
712 
713 		periph_id = periph_clk_init_table[i].periph_id;
714 		parent = periph_clk_init_table[i].parent_clock_id;
715 
716 		source = get_periph_clock_source(periph_id, parent, &mux_bits,
717 						 &divider_bits);
718 		clock_ll_set_source_bits(periph_id, mux_bits, source);
719 	}
720 }
721 
set_avp_clock_source(u32 src)722 static void set_avp_clock_source(u32 src)
723 {
724 	struct clk_rst_ctlr *clkrst =
725 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
726 	u32 val;
727 
728 	val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
729 		(src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
730 		(src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
731 		(src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
732 		(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
733 	writel(val, &clkrst->crc_sclk_brst_pol);
734 	udelay(3);
735 }
736 
737 /*
738  * This function is useful on Tegra30, and any later SoCs that have compatible
739  * PLLP configuration registers.
740  * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c
741  */
tegra30_set_up_pllp(void)742 void tegra30_set_up_pllp(void)
743 {
744 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
745 	u32 reg;
746 
747 	/*
748 	 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
749 	 * run up to 275MHz. On power on, the default sytem clock source is set
750 	 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
751 	 * 408MHz which is beyond system clock's upper limit.
752 	 *
753 	 * The fix is to set the system clock to CLK_M before initializing PLLP,
754 	 * and then switch back to PLLP_OUT4, which has an appropriate divider
755 	 * configured, after PLLP has been configured
756 	 */
757 	set_avp_clock_source(SCLK_SOURCE_CLKM);
758 
759 	/*
760 	 * PLLP output frequency set to 408Mhz
761 	 * PLLC output frequency set to 228Mhz
762 	 */
763 	switch (clock_get_osc_freq()) {
764 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
765 		clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
766 		clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
767 		break;
768 
769 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
770 		clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
771 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
772 		break;
773 
774 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
775 		clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
776 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
777 		break;
778 	case CLOCK_OSC_FREQ_19_2:
779 	default:
780 		/*
781 		 * These are not supported. It is too early to print a
782 		 * message and the UART likely won't work anyway due to the
783 		 * oscillator being wrong.
784 		 */
785 		break;
786 	}
787 
788 	/* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
789 
790 	/* OUT1, 2 */
791 	/* Assert RSTN before enable */
792 	reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
793 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
794 	/* Set divisor and reenable */
795 	reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
796 		| PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
797 		| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
798 		| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
799 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
800 
801 	/* OUT3, 4 */
802 	/* Assert RSTN before enable */
803 	reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
804 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
805 	/* Set divisor and reenable */
806 	reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
807 		| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
808 		| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
809 		| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
810 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
811 
812 	set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
813 }
814 
clock_external_output(int clk_id)815 int clock_external_output(int clk_id)
816 {
817 	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
818 
819 	if (clk_id >= 1 && clk_id <= 3) {
820 		setbits_le32(&pmc->pmc_clk_out_cntrl,
821 			     1 << (2 + (clk_id - 1) * 8));
822 	} else {
823 		printf("%s: Unknown output clock id %d\n", __func__, clk_id);
824 		return -EINVAL;
825 	}
826 
827 	return 0;
828 }
829 
clock_early_init_done(void)830 __weak bool clock_early_init_done(void)
831 {
832 	return true;
833 }
834