1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/blkdev.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/string_helpers.h>
31 #include <linux/swiotlb.h>
32 #include <linux/sysfs.h>
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
34
35 #include "base.h"
36 #include "physical_location.h"
37 #include "power/power.h"
38
39 /* Device links support. */
40 static LIST_HEAD(deferred_sync);
41 static unsigned int defer_sync_state_count = 1;
42 static DEFINE_MUTEX(fwnode_link_lock);
43 static bool fw_devlink_is_permissive(void);
44 static void __fw_devlink_link_to_consumers(struct device *dev);
45 static bool fw_devlink_drv_reg_done;
46 static bool fw_devlink_best_effort;
47 static struct workqueue_struct *device_link_wq;
48
49 /**
50 * __fwnode_link_add - Create a link between two fwnode_handles.
51 * @con: Consumer end of the link.
52 * @sup: Supplier end of the link.
53 *
54 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
55 * represents the detail that the firmware lists @sup fwnode as supplying a
56 * resource to @con.
57 *
58 * The driver core will use the fwnode link to create a device link between the
59 * two device objects corresponding to @con and @sup when they are created. The
60 * driver core will automatically delete the fwnode link between @con and @sup
61 * after doing that.
62 *
63 * Attempts to create duplicate links between the same pair of fwnode handles
64 * are ignored and there is no reference counting.
65 */
__fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)66 static int __fwnode_link_add(struct fwnode_handle *con,
67 struct fwnode_handle *sup, u8 flags)
68 {
69 struct fwnode_link *link;
70
71 list_for_each_entry(link, &sup->consumers, s_hook)
72 if (link->consumer == con) {
73 link->flags |= flags;
74 return 0;
75 }
76
77 link = kzalloc(sizeof(*link), GFP_KERNEL);
78 if (!link)
79 return -ENOMEM;
80
81 link->supplier = sup;
82 INIT_LIST_HEAD(&link->s_hook);
83 link->consumer = con;
84 INIT_LIST_HEAD(&link->c_hook);
85 link->flags = flags;
86
87 list_add(&link->s_hook, &sup->consumers);
88 list_add(&link->c_hook, &con->suppliers);
89 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
90 con, sup);
91
92 return 0;
93 }
94
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup)95 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
96 {
97 int ret;
98
99 mutex_lock(&fwnode_link_lock);
100 ret = __fwnode_link_add(con, sup, 0);
101 mutex_unlock(&fwnode_link_lock);
102 return ret;
103 }
104
105 /**
106 * __fwnode_link_del - Delete a link between two fwnode_handles.
107 * @link: the fwnode_link to be deleted
108 *
109 * The fwnode_link_lock needs to be held when this function is called.
110 */
__fwnode_link_del(struct fwnode_link * link)111 static void __fwnode_link_del(struct fwnode_link *link)
112 {
113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
114 link->consumer, link->supplier);
115 list_del(&link->s_hook);
116 list_del(&link->c_hook);
117 kfree(link);
118 }
119
120 /**
121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
122 * @link: the fwnode_link to be marked
123 *
124 * The fwnode_link_lock needs to be held when this function is called.
125 */
__fwnode_link_cycle(struct fwnode_link * link)126 static void __fwnode_link_cycle(struct fwnode_link *link)
127 {
128 pr_debug("%pfwf: cycle: depends on %pfwf\n",
129 link->consumer, link->supplier);
130 link->flags |= FWLINK_FLAG_CYCLE;
131 }
132
133 /**
134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
135 * @fwnode: fwnode whose supplier links need to be deleted
136 *
137 * Deletes all supplier links connecting directly to @fwnode.
138 */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
140 {
141 struct fwnode_link *link, *tmp;
142
143 mutex_lock(&fwnode_link_lock);
144 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
145 __fwnode_link_del(link);
146 mutex_unlock(&fwnode_link_lock);
147 }
148
149 /**
150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
151 * @fwnode: fwnode whose consumer links need to be deleted
152 *
153 * Deletes all consumer links connecting directly to @fwnode.
154 */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
156 {
157 struct fwnode_link *link, *tmp;
158
159 mutex_lock(&fwnode_link_lock);
160 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
161 __fwnode_link_del(link);
162 mutex_unlock(&fwnode_link_lock);
163 }
164
165 /**
166 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
167 * @fwnode: fwnode whose links needs to be deleted
168 *
169 * Deletes all links connecting directly to a fwnode.
170 */
fwnode_links_purge(struct fwnode_handle * fwnode)171 void fwnode_links_purge(struct fwnode_handle *fwnode)
172 {
173 fwnode_links_purge_suppliers(fwnode);
174 fwnode_links_purge_consumers(fwnode);
175 }
176
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
178 {
179 struct fwnode_handle *child;
180
181 /* Don't purge consumer links of an added child */
182 if (fwnode->dev)
183 return;
184
185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
186 fwnode_links_purge_consumers(fwnode);
187
188 fwnode_for_each_available_child_node(fwnode, child)
189 fw_devlink_purge_absent_suppliers(child);
190 }
191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
192
193 /**
194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
195 * @from: move consumers away from this fwnode
196 * @to: move consumers to this fwnode
197 *
198 * Move all consumer links from @from fwnode to @to fwnode.
199 */
__fwnode_links_move_consumers(struct fwnode_handle * from,struct fwnode_handle * to)200 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
201 struct fwnode_handle *to)
202 {
203 struct fwnode_link *link, *tmp;
204
205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
206 __fwnode_link_add(link->consumer, to, link->flags);
207 __fwnode_link_del(link);
208 }
209 }
210
211 /**
212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
213 * @fwnode: fwnode from which to pick up dangling consumers
214 * @new_sup: fwnode of new supplier
215 *
216 * If the @fwnode has a corresponding struct device and the device supports
217 * probing (that is, added to a bus), then we want to let fw_devlink create
218 * MANAGED device links to this device, so leave @fwnode and its descendant's
219 * fwnode links alone.
220 *
221 * Otherwise, move its consumers to the new supplier @new_sup.
222 */
__fw_devlink_pickup_dangling_consumers(struct fwnode_handle * fwnode,struct fwnode_handle * new_sup)223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
224 struct fwnode_handle *new_sup)
225 {
226 struct fwnode_handle *child;
227
228 if (fwnode->dev && fwnode->dev->bus)
229 return;
230
231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
232 __fwnode_links_move_consumers(fwnode, new_sup);
233
234 fwnode_for_each_available_child_node(fwnode, child)
235 __fw_devlink_pickup_dangling_consumers(child, new_sup);
236 }
237
238 static DEFINE_MUTEX(device_links_lock);
239 DEFINE_STATIC_SRCU(device_links_srcu);
240
device_links_write_lock(void)241 static inline void device_links_write_lock(void)
242 {
243 mutex_lock(&device_links_lock);
244 }
245
device_links_write_unlock(void)246 static inline void device_links_write_unlock(void)
247 {
248 mutex_unlock(&device_links_lock);
249 }
250
device_links_read_lock(void)251 int device_links_read_lock(void) __acquires(&device_links_srcu)
252 {
253 return srcu_read_lock(&device_links_srcu);
254 }
255
device_links_read_unlock(int idx)256 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
257 {
258 srcu_read_unlock(&device_links_srcu, idx);
259 }
260
device_links_read_lock_held(void)261 int device_links_read_lock_held(void)
262 {
263 return srcu_read_lock_held(&device_links_srcu);
264 }
265
device_link_synchronize_removal(void)266 static void device_link_synchronize_removal(void)
267 {
268 synchronize_srcu(&device_links_srcu);
269 }
270
device_link_remove_from_lists(struct device_link * link)271 static void device_link_remove_from_lists(struct device_link *link)
272 {
273 list_del_rcu(&link->s_node);
274 list_del_rcu(&link->c_node);
275 }
276
device_is_ancestor(struct device * dev,struct device * target)277 static bool device_is_ancestor(struct device *dev, struct device *target)
278 {
279 while (target->parent) {
280 target = target->parent;
281 if (dev == target)
282 return true;
283 }
284 return false;
285 }
286
287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \
288 DL_FLAG_CYCLE | \
289 DL_FLAG_MANAGED)
device_link_flag_is_sync_state_only(u32 flags)290 static inline bool device_link_flag_is_sync_state_only(u32 flags)
291 {
292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
293 }
294
295 /**
296 * device_is_dependent - Check if one device depends on another one
297 * @dev: Device to check dependencies for.
298 * @target: Device to check against.
299 *
300 * Check if @target depends on @dev or any device dependent on it (its child or
301 * its consumer etc). Return 1 if that is the case or 0 otherwise.
302 */
device_is_dependent(struct device * dev,void * target)303 int device_is_dependent(struct device *dev, void *target)
304 {
305 struct device_link *link;
306 int ret;
307
308 /*
309 * The "ancestors" check is needed to catch the case when the target
310 * device has not been completely initialized yet and it is still
311 * missing from the list of children of its parent device.
312 */
313 if (dev == target || device_is_ancestor(dev, target))
314 return 1;
315
316 ret = device_for_each_child(dev, target, device_is_dependent);
317 if (ret)
318 return ret;
319
320 list_for_each_entry(link, &dev->links.consumers, s_node) {
321 if (device_link_flag_is_sync_state_only(link->flags))
322 continue;
323
324 if (link->consumer == target)
325 return 1;
326
327 ret = device_is_dependent(link->consumer, target);
328 if (ret)
329 break;
330 }
331 return ret;
332 }
333
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)334 static void device_link_init_status(struct device_link *link,
335 struct device *consumer,
336 struct device *supplier)
337 {
338 switch (supplier->links.status) {
339 case DL_DEV_PROBING:
340 switch (consumer->links.status) {
341 case DL_DEV_PROBING:
342 /*
343 * A consumer driver can create a link to a supplier
344 * that has not completed its probing yet as long as it
345 * knows that the supplier is already functional (for
346 * example, it has just acquired some resources from the
347 * supplier).
348 */
349 link->status = DL_STATE_CONSUMER_PROBE;
350 break;
351 default:
352 link->status = DL_STATE_DORMANT;
353 break;
354 }
355 break;
356 case DL_DEV_DRIVER_BOUND:
357 switch (consumer->links.status) {
358 case DL_DEV_PROBING:
359 link->status = DL_STATE_CONSUMER_PROBE;
360 break;
361 case DL_DEV_DRIVER_BOUND:
362 link->status = DL_STATE_ACTIVE;
363 break;
364 default:
365 link->status = DL_STATE_AVAILABLE;
366 break;
367 }
368 break;
369 case DL_DEV_UNBINDING:
370 link->status = DL_STATE_SUPPLIER_UNBIND;
371 break;
372 default:
373 link->status = DL_STATE_DORMANT;
374 break;
375 }
376 }
377
device_reorder_to_tail(struct device * dev,void * not_used)378 static int device_reorder_to_tail(struct device *dev, void *not_used)
379 {
380 struct device_link *link;
381
382 /*
383 * Devices that have not been registered yet will be put to the ends
384 * of the lists during the registration, so skip them here.
385 */
386 if (device_is_registered(dev))
387 devices_kset_move_last(dev);
388
389 if (device_pm_initialized(dev))
390 device_pm_move_last(dev);
391
392 device_for_each_child(dev, NULL, device_reorder_to_tail);
393 list_for_each_entry(link, &dev->links.consumers, s_node) {
394 if (device_link_flag_is_sync_state_only(link->flags))
395 continue;
396 device_reorder_to_tail(link->consumer, NULL);
397 }
398
399 return 0;
400 }
401
402 /**
403 * device_pm_move_to_tail - Move set of devices to the end of device lists
404 * @dev: Device to move
405 *
406 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
407 *
408 * It moves the @dev along with all of its children and all of its consumers
409 * to the ends of the device_kset and dpm_list, recursively.
410 */
device_pm_move_to_tail(struct device * dev)411 void device_pm_move_to_tail(struct device *dev)
412 {
413 int idx;
414
415 idx = device_links_read_lock();
416 device_pm_lock();
417 device_reorder_to_tail(dev, NULL);
418 device_pm_unlock();
419 device_links_read_unlock(idx);
420 }
421
422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
423
status_show(struct device * dev,struct device_attribute * attr,char * buf)424 static ssize_t status_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426 {
427 const char *output;
428
429 switch (to_devlink(dev)->status) {
430 case DL_STATE_NONE:
431 output = "not tracked";
432 break;
433 case DL_STATE_DORMANT:
434 output = "dormant";
435 break;
436 case DL_STATE_AVAILABLE:
437 output = "available";
438 break;
439 case DL_STATE_CONSUMER_PROBE:
440 output = "consumer probing";
441 break;
442 case DL_STATE_ACTIVE:
443 output = "active";
444 break;
445 case DL_STATE_SUPPLIER_UNBIND:
446 output = "supplier unbinding";
447 break;
448 default:
449 output = "unknown";
450 break;
451 }
452
453 return sysfs_emit(buf, "%s\n", output);
454 }
455 static DEVICE_ATTR_RO(status);
456
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)457 static ssize_t auto_remove_on_show(struct device *dev,
458 struct device_attribute *attr, char *buf)
459 {
460 struct device_link *link = to_devlink(dev);
461 const char *output;
462
463 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
464 output = "supplier unbind";
465 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
466 output = "consumer unbind";
467 else
468 output = "never";
469
470 return sysfs_emit(buf, "%s\n", output);
471 }
472 static DEVICE_ATTR_RO(auto_remove_on);
473
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)474 static ssize_t runtime_pm_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
476 {
477 struct device_link *link = to_devlink(dev);
478
479 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
480 }
481 static DEVICE_ATTR_RO(runtime_pm);
482
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)483 static ssize_t sync_state_only_show(struct device *dev,
484 struct device_attribute *attr, char *buf)
485 {
486 struct device_link *link = to_devlink(dev);
487
488 return sysfs_emit(buf, "%d\n",
489 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
490 }
491 static DEVICE_ATTR_RO(sync_state_only);
492
493 static struct attribute *devlink_attrs[] = {
494 &dev_attr_status.attr,
495 &dev_attr_auto_remove_on.attr,
496 &dev_attr_runtime_pm.attr,
497 &dev_attr_sync_state_only.attr,
498 NULL,
499 };
500 ATTRIBUTE_GROUPS(devlink);
501
device_link_release_fn(struct work_struct * work)502 static void device_link_release_fn(struct work_struct *work)
503 {
504 struct device_link *link = container_of(work, struct device_link, rm_work);
505
506 /* Ensure that all references to the link object have been dropped. */
507 device_link_synchronize_removal();
508
509 pm_runtime_release_supplier(link);
510 /*
511 * If supplier_preactivated is set, the link has been dropped between
512 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
513 * in __driver_probe_device(). In that case, drop the supplier's
514 * PM-runtime usage counter to remove the reference taken by
515 * pm_runtime_get_suppliers().
516 */
517 if (link->supplier_preactivated)
518 pm_runtime_put_noidle(link->supplier);
519
520 pm_request_idle(link->supplier);
521
522 put_device(link->consumer);
523 put_device(link->supplier);
524 kfree(link);
525 }
526
devlink_dev_release(struct device * dev)527 static void devlink_dev_release(struct device *dev)
528 {
529 struct device_link *link = to_devlink(dev);
530
531 INIT_WORK(&link->rm_work, device_link_release_fn);
532 /*
533 * It may take a while to complete this work because of the SRCU
534 * synchronization in device_link_release_fn() and if the consumer or
535 * supplier devices get deleted when it runs, so put it into the
536 * dedicated workqueue.
537 */
538 queue_work(device_link_wq, &link->rm_work);
539 }
540
541 /**
542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
543 */
device_link_wait_removal(void)544 void device_link_wait_removal(void)
545 {
546 /*
547 * devlink removal jobs are queued in the dedicated work queue.
548 * To be sure that all removal jobs are terminated, ensure that any
549 * scheduled work has run to completion.
550 */
551 flush_workqueue(device_link_wq);
552 }
553 EXPORT_SYMBOL_GPL(device_link_wait_removal);
554
555 static struct class devlink_class = {
556 .name = "devlink",
557 .dev_groups = devlink_groups,
558 .dev_release = devlink_dev_release,
559 };
560
devlink_add_symlinks(struct device * dev)561 static int devlink_add_symlinks(struct device *dev)
562 {
563 int ret;
564 size_t len;
565 struct device_link *link = to_devlink(dev);
566 struct device *sup = link->supplier;
567 struct device *con = link->consumer;
568 char *buf;
569
570 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
571 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
572 len += strlen(":");
573 len += strlen("supplier:") + 1;
574 buf = kzalloc(len, GFP_KERNEL);
575 if (!buf)
576 return -ENOMEM;
577
578 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
579 if (ret)
580 goto out;
581
582 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
583 if (ret)
584 goto err_con;
585
586 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
587 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
588 if (ret)
589 goto err_con_dev;
590
591 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
592 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
593 if (ret)
594 goto err_sup_dev;
595
596 goto out;
597
598 err_sup_dev:
599 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
600 sysfs_remove_link(&sup->kobj, buf);
601 err_con_dev:
602 sysfs_remove_link(&link->link_dev.kobj, "consumer");
603 err_con:
604 sysfs_remove_link(&link->link_dev.kobj, "supplier");
605 out:
606 kfree(buf);
607 return ret;
608 }
609
devlink_remove_symlinks(struct device * dev)610 static void devlink_remove_symlinks(struct device *dev)
611 {
612 struct device_link *link = to_devlink(dev);
613 size_t len;
614 struct device *sup = link->supplier;
615 struct device *con = link->consumer;
616 char *buf;
617
618 sysfs_remove_link(&link->link_dev.kobj, "consumer");
619 sysfs_remove_link(&link->link_dev.kobj, "supplier");
620
621 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
622 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
623 len += strlen(":");
624 len += strlen("supplier:") + 1;
625 buf = kzalloc(len, GFP_KERNEL);
626 if (!buf) {
627 WARN(1, "Unable to properly free device link symlinks!\n");
628 return;
629 }
630
631 if (device_is_registered(con)) {
632 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
633 sysfs_remove_link(&con->kobj, buf);
634 }
635 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
636 sysfs_remove_link(&sup->kobj, buf);
637 kfree(buf);
638 }
639
640 static struct class_interface devlink_class_intf = {
641 .class = &devlink_class,
642 .add_dev = devlink_add_symlinks,
643 .remove_dev = devlink_remove_symlinks,
644 };
645
devlink_class_init(void)646 static int __init devlink_class_init(void)
647 {
648 int ret;
649
650 ret = class_register(&devlink_class);
651 if (ret)
652 return ret;
653
654 ret = class_interface_register(&devlink_class_intf);
655 if (ret)
656 class_unregister(&devlink_class);
657
658 return ret;
659 }
660 postcore_initcall(devlink_class_init);
661
662 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
663 DL_FLAG_AUTOREMOVE_SUPPLIER | \
664 DL_FLAG_AUTOPROBE_CONSUMER | \
665 DL_FLAG_SYNC_STATE_ONLY | \
666 DL_FLAG_INFERRED | \
667 DL_FLAG_CYCLE)
668
669 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
670 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
671
672 /**
673 * device_link_add - Create a link between two devices.
674 * @consumer: Consumer end of the link.
675 * @supplier: Supplier end of the link.
676 * @flags: Link flags.
677 *
678 * The caller is responsible for the proper synchronization of the link creation
679 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
680 * runtime PM framework to take the link into account. Second, if the
681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
682 * be forced into the active meta state and reference-counted upon the creation
683 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
684 * ignored.
685 *
686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
687 * expected to release the link returned by it directly with the help of either
688 * device_link_del() or device_link_remove().
689 *
690 * If that flag is not set, however, the caller of this function is handing the
691 * management of the link over to the driver core entirely and its return value
692 * can only be used to check whether or not the link is present. In that case,
693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
694 * flags can be used to indicate to the driver core when the link can be safely
695 * deleted. Namely, setting one of them in @flags indicates to the driver core
696 * that the link is not going to be used (by the given caller of this function)
697 * after unbinding the consumer or supplier driver, respectively, from its
698 * device, so the link can be deleted at that point. If none of them is set,
699 * the link will be maintained until one of the devices pointed to by it (either
700 * the consumer or the supplier) is unregistered.
701 *
702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
705 * be used to request the driver core to automatically probe for a consumer
706 * driver after successfully binding a driver to the supplier device.
707 *
708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
710 * the same time is invalid and will cause NULL to be returned upfront.
711 * However, if a device link between the given @consumer and @supplier pair
712 * exists already when this function is called for them, the existing link will
713 * be returned regardless of its current type and status (the link's flags may
714 * be modified then). The caller of this function is then expected to treat
715 * the link as though it has just been created, so (in particular) if
716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
717 * explicitly when not needed any more (as stated above).
718 *
719 * A side effect of the link creation is re-ordering of dpm_list and the
720 * devices_kset list by moving the consumer device and all devices depending
721 * on it to the ends of these lists (that does not happen to devices that have
722 * not been registered when this function is called).
723 *
724 * The supplier device is required to be registered when this function is called
725 * and NULL will be returned if that is not the case. The consumer device need
726 * not be registered, however.
727 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)728 struct device_link *device_link_add(struct device *consumer,
729 struct device *supplier, u32 flags)
730 {
731 struct device_link *link;
732
733 if (!consumer || !supplier || consumer == supplier ||
734 flags & ~DL_ADD_VALID_FLAGS ||
735 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
736 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
737 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
738 DL_FLAG_AUTOREMOVE_SUPPLIER)))
739 return NULL;
740
741 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
742 if (pm_runtime_get_sync(supplier) < 0) {
743 pm_runtime_put_noidle(supplier);
744 return NULL;
745 }
746 }
747
748 if (!(flags & DL_FLAG_STATELESS))
749 flags |= DL_FLAG_MANAGED;
750
751 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
752 !device_link_flag_is_sync_state_only(flags))
753 return NULL;
754
755 device_links_write_lock();
756 device_pm_lock();
757
758 /*
759 * If the supplier has not been fully registered yet or there is a
760 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
761 * the supplier already in the graph, return NULL. If the link is a
762 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
763 * because it only affects sync_state() callbacks.
764 */
765 if (!device_pm_initialized(supplier)
766 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
767 device_is_dependent(consumer, supplier))) {
768 link = NULL;
769 goto out;
770 }
771
772 /*
773 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
774 * So, only create it if the consumer hasn't probed yet.
775 */
776 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
777 consumer->links.status != DL_DEV_NO_DRIVER &&
778 consumer->links.status != DL_DEV_PROBING) {
779 link = NULL;
780 goto out;
781 }
782
783 /*
784 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
785 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
786 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
787 */
788 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
789 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
790
791 list_for_each_entry(link, &supplier->links.consumers, s_node) {
792 if (link->consumer != consumer)
793 continue;
794
795 if (link->flags & DL_FLAG_INFERRED &&
796 !(flags & DL_FLAG_INFERRED))
797 link->flags &= ~DL_FLAG_INFERRED;
798
799 if (flags & DL_FLAG_PM_RUNTIME) {
800 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
801 pm_runtime_new_link(consumer);
802 link->flags |= DL_FLAG_PM_RUNTIME;
803 }
804 if (flags & DL_FLAG_RPM_ACTIVE)
805 refcount_inc(&link->rpm_active);
806 }
807
808 if (flags & DL_FLAG_STATELESS) {
809 kref_get(&link->kref);
810 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
811 !(link->flags & DL_FLAG_STATELESS)) {
812 link->flags |= DL_FLAG_STATELESS;
813 goto reorder;
814 } else {
815 link->flags |= DL_FLAG_STATELESS;
816 goto out;
817 }
818 }
819
820 /*
821 * If the life time of the link following from the new flags is
822 * longer than indicated by the flags of the existing link,
823 * update the existing link to stay around longer.
824 */
825 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
826 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
827 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
828 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
829 }
830 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
831 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
832 DL_FLAG_AUTOREMOVE_SUPPLIER);
833 }
834 if (!(link->flags & DL_FLAG_MANAGED)) {
835 kref_get(&link->kref);
836 link->flags |= DL_FLAG_MANAGED;
837 device_link_init_status(link, consumer, supplier);
838 }
839 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
840 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
841 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
842 goto reorder;
843 }
844
845 goto out;
846 }
847
848 link = kzalloc(sizeof(*link), GFP_KERNEL);
849 if (!link)
850 goto out;
851
852 refcount_set(&link->rpm_active, 1);
853
854 get_device(supplier);
855 link->supplier = supplier;
856 INIT_LIST_HEAD(&link->s_node);
857 get_device(consumer);
858 link->consumer = consumer;
859 INIT_LIST_HEAD(&link->c_node);
860 link->flags = flags;
861 kref_init(&link->kref);
862
863 link->link_dev.class = &devlink_class;
864 device_set_pm_not_required(&link->link_dev);
865 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
866 dev_bus_name(supplier), dev_name(supplier),
867 dev_bus_name(consumer), dev_name(consumer));
868 if (device_register(&link->link_dev)) {
869 put_device(&link->link_dev);
870 link = NULL;
871 goto out;
872 }
873
874 if (flags & DL_FLAG_PM_RUNTIME) {
875 if (flags & DL_FLAG_RPM_ACTIVE)
876 refcount_inc(&link->rpm_active);
877
878 pm_runtime_new_link(consumer);
879 }
880
881 /* Determine the initial link state. */
882 if (flags & DL_FLAG_STATELESS)
883 link->status = DL_STATE_NONE;
884 else
885 device_link_init_status(link, consumer, supplier);
886
887 /*
888 * Some callers expect the link creation during consumer driver probe to
889 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
890 */
891 if (link->status == DL_STATE_CONSUMER_PROBE &&
892 flags & DL_FLAG_PM_RUNTIME)
893 pm_runtime_resume(supplier);
894
895 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
896 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
897
898 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
899 dev_dbg(consumer,
900 "Linked as a sync state only consumer to %s\n",
901 dev_name(supplier));
902 goto out;
903 }
904
905 reorder:
906 /*
907 * Move the consumer and all of the devices depending on it to the end
908 * of dpm_list and the devices_kset list.
909 *
910 * It is necessary to hold dpm_list locked throughout all that or else
911 * we may end up suspending with a wrong ordering of it.
912 */
913 device_reorder_to_tail(consumer, NULL);
914
915 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
916
917 out:
918 device_pm_unlock();
919 device_links_write_unlock();
920
921 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
922 pm_runtime_put(supplier);
923
924 return link;
925 }
926 EXPORT_SYMBOL_GPL(device_link_add);
927
__device_link_del(struct kref * kref)928 static void __device_link_del(struct kref *kref)
929 {
930 struct device_link *link = container_of(kref, struct device_link, kref);
931
932 dev_dbg(link->consumer, "Dropping the link to %s\n",
933 dev_name(link->supplier));
934
935 pm_runtime_drop_link(link);
936
937 device_link_remove_from_lists(link);
938 device_unregister(&link->link_dev);
939 }
940
device_link_put_kref(struct device_link * link)941 static void device_link_put_kref(struct device_link *link)
942 {
943 if (link->flags & DL_FLAG_STATELESS)
944 kref_put(&link->kref, __device_link_del);
945 else if (!device_is_registered(link->consumer))
946 __device_link_del(&link->kref);
947 else
948 WARN(1, "Unable to drop a managed device link reference\n");
949 }
950
951 /**
952 * device_link_del - Delete a stateless link between two devices.
953 * @link: Device link to delete.
954 *
955 * The caller must ensure proper synchronization of this function with runtime
956 * PM. If the link was added multiple times, it needs to be deleted as often.
957 * Care is required for hotplugged devices: Their links are purged on removal
958 * and calling device_link_del() is then no longer allowed.
959 */
device_link_del(struct device_link * link)960 void device_link_del(struct device_link *link)
961 {
962 device_links_write_lock();
963 device_link_put_kref(link);
964 device_links_write_unlock();
965 }
966 EXPORT_SYMBOL_GPL(device_link_del);
967
968 /**
969 * device_link_remove - Delete a stateless link between two devices.
970 * @consumer: Consumer end of the link.
971 * @supplier: Supplier end of the link.
972 *
973 * The caller must ensure proper synchronization of this function with runtime
974 * PM.
975 */
device_link_remove(void * consumer,struct device * supplier)976 void device_link_remove(void *consumer, struct device *supplier)
977 {
978 struct device_link *link;
979
980 if (WARN_ON(consumer == supplier))
981 return;
982
983 device_links_write_lock();
984
985 list_for_each_entry(link, &supplier->links.consumers, s_node) {
986 if (link->consumer == consumer) {
987 device_link_put_kref(link);
988 break;
989 }
990 }
991
992 device_links_write_unlock();
993 }
994 EXPORT_SYMBOL_GPL(device_link_remove);
995
device_links_missing_supplier(struct device * dev)996 static void device_links_missing_supplier(struct device *dev)
997 {
998 struct device_link *link;
999
1000 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1001 if (link->status != DL_STATE_CONSUMER_PROBE)
1002 continue;
1003
1004 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1005 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1006 } else {
1007 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1008 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1009 }
1010 }
1011 }
1012
dev_is_best_effort(struct device * dev)1013 static bool dev_is_best_effort(struct device *dev)
1014 {
1015 return (fw_devlink_best_effort && dev->can_match) ||
1016 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1017 }
1018
fwnode_links_check_suppliers(struct fwnode_handle * fwnode)1019 static struct fwnode_handle *fwnode_links_check_suppliers(
1020 struct fwnode_handle *fwnode)
1021 {
1022 struct fwnode_link *link;
1023
1024 if (!fwnode || fw_devlink_is_permissive())
1025 return NULL;
1026
1027 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1028 if (!(link->flags &
1029 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1030 return link->supplier;
1031
1032 return NULL;
1033 }
1034
1035 /**
1036 * device_links_check_suppliers - Check presence of supplier drivers.
1037 * @dev: Consumer device.
1038 *
1039 * Check links from this device to any suppliers. Walk the list of the device's
1040 * links to suppliers and see if all of them are available. If not, simply
1041 * return -EPROBE_DEFER.
1042 *
1043 * We need to guarantee that the supplier will not go away after the check has
1044 * been positive here. It only can go away in __device_release_driver() and
1045 * that function checks the device's links to consumers. This means we need to
1046 * mark the link as "consumer probe in progress" to make the supplier removal
1047 * wait for us to complete (or bad things may happen).
1048 *
1049 * Links without the DL_FLAG_MANAGED flag set are ignored.
1050 */
device_links_check_suppliers(struct device * dev)1051 int device_links_check_suppliers(struct device *dev)
1052 {
1053 struct device_link *link;
1054 int ret = 0, fwnode_ret = 0;
1055 struct fwnode_handle *sup_fw;
1056
1057 /*
1058 * Device waiting for supplier to become available is not allowed to
1059 * probe.
1060 */
1061 mutex_lock(&fwnode_link_lock);
1062 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1063 if (sup_fw) {
1064 if (!dev_is_best_effort(dev)) {
1065 fwnode_ret = -EPROBE_DEFER;
1066 dev_err_probe(dev, -EPROBE_DEFER,
1067 "wait for supplier %pfwf\n", sup_fw);
1068 } else {
1069 fwnode_ret = -EAGAIN;
1070 }
1071 }
1072 mutex_unlock(&fwnode_link_lock);
1073 if (fwnode_ret == -EPROBE_DEFER)
1074 return fwnode_ret;
1075
1076 device_links_write_lock();
1077
1078 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1079 if (!(link->flags & DL_FLAG_MANAGED))
1080 continue;
1081
1082 if (link->status != DL_STATE_AVAILABLE &&
1083 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1084
1085 if (dev_is_best_effort(dev) &&
1086 link->flags & DL_FLAG_INFERRED &&
1087 !link->supplier->can_match) {
1088 ret = -EAGAIN;
1089 continue;
1090 }
1091
1092 device_links_missing_supplier(dev);
1093 dev_err_probe(dev, -EPROBE_DEFER,
1094 "supplier %s not ready\n",
1095 dev_name(link->supplier));
1096 ret = -EPROBE_DEFER;
1097 break;
1098 }
1099 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1100 }
1101 dev->links.status = DL_DEV_PROBING;
1102
1103 device_links_write_unlock();
1104
1105 return ret ? ret : fwnode_ret;
1106 }
1107
1108 /**
1109 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1110 * @dev: Device to call sync_state() on
1111 * @list: List head to queue the @dev on
1112 *
1113 * Queues a device for a sync_state() callback when the device links write lock
1114 * isn't held. This allows the sync_state() execution flow to use device links
1115 * APIs. The caller must ensure this function is called with
1116 * device_links_write_lock() held.
1117 *
1118 * This function does a get_device() to make sure the device is not freed while
1119 * on this list.
1120 *
1121 * So the caller must also ensure that device_links_flush_sync_list() is called
1122 * as soon as the caller releases device_links_write_lock(). This is necessary
1123 * to make sure the sync_state() is called in a timely fashion and the
1124 * put_device() is called on this device.
1125 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1126 static void __device_links_queue_sync_state(struct device *dev,
1127 struct list_head *list)
1128 {
1129 struct device_link *link;
1130
1131 if (!dev_has_sync_state(dev))
1132 return;
1133 if (dev->state_synced)
1134 return;
1135
1136 list_for_each_entry(link, &dev->links.consumers, s_node) {
1137 if (!(link->flags & DL_FLAG_MANAGED))
1138 continue;
1139 if (link->status != DL_STATE_ACTIVE)
1140 return;
1141 }
1142
1143 /*
1144 * Set the flag here to avoid adding the same device to a list more
1145 * than once. This can happen if new consumers get added to the device
1146 * and probed before the list is flushed.
1147 */
1148 dev->state_synced = true;
1149
1150 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1151 return;
1152
1153 get_device(dev);
1154 list_add_tail(&dev->links.defer_sync, list);
1155 }
1156
1157 /**
1158 * device_links_flush_sync_list - Call sync_state() on a list of devices
1159 * @list: List of devices to call sync_state() on
1160 * @dont_lock_dev: Device for which lock is already held by the caller
1161 *
1162 * Calls sync_state() on all the devices that have been queued for it. This
1163 * function is used in conjunction with __device_links_queue_sync_state(). The
1164 * @dont_lock_dev parameter is useful when this function is called from a
1165 * context where a device lock is already held.
1166 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1167 static void device_links_flush_sync_list(struct list_head *list,
1168 struct device *dont_lock_dev)
1169 {
1170 struct device *dev, *tmp;
1171
1172 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1173 list_del_init(&dev->links.defer_sync);
1174
1175 if (dev != dont_lock_dev)
1176 device_lock(dev);
1177
1178 dev_sync_state(dev);
1179
1180 if (dev != dont_lock_dev)
1181 device_unlock(dev);
1182
1183 put_device(dev);
1184 }
1185 }
1186
device_links_supplier_sync_state_pause(void)1187 void device_links_supplier_sync_state_pause(void)
1188 {
1189 device_links_write_lock();
1190 defer_sync_state_count++;
1191 device_links_write_unlock();
1192 }
1193
device_links_supplier_sync_state_resume(void)1194 void device_links_supplier_sync_state_resume(void)
1195 {
1196 struct device *dev, *tmp;
1197 LIST_HEAD(sync_list);
1198
1199 device_links_write_lock();
1200 if (!defer_sync_state_count) {
1201 WARN(true, "Unmatched sync_state pause/resume!");
1202 goto out;
1203 }
1204 defer_sync_state_count--;
1205 if (defer_sync_state_count)
1206 goto out;
1207
1208 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1209 /*
1210 * Delete from deferred_sync list before queuing it to
1211 * sync_list because defer_sync is used for both lists.
1212 */
1213 list_del_init(&dev->links.defer_sync);
1214 __device_links_queue_sync_state(dev, &sync_list);
1215 }
1216 out:
1217 device_links_write_unlock();
1218
1219 device_links_flush_sync_list(&sync_list, NULL);
1220 }
1221
sync_state_resume_initcall(void)1222 static int sync_state_resume_initcall(void)
1223 {
1224 device_links_supplier_sync_state_resume();
1225 return 0;
1226 }
1227 late_initcall(sync_state_resume_initcall);
1228
__device_links_supplier_defer_sync(struct device * sup)1229 static void __device_links_supplier_defer_sync(struct device *sup)
1230 {
1231 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1232 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1233 }
1234
device_link_drop_managed(struct device_link * link)1235 static void device_link_drop_managed(struct device_link *link)
1236 {
1237 link->flags &= ~DL_FLAG_MANAGED;
1238 WRITE_ONCE(link->status, DL_STATE_NONE);
1239 kref_put(&link->kref, __device_link_del);
1240 }
1241
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1242 static ssize_t waiting_for_supplier_show(struct device *dev,
1243 struct device_attribute *attr,
1244 char *buf)
1245 {
1246 bool val;
1247
1248 device_lock(dev);
1249 mutex_lock(&fwnode_link_lock);
1250 val = !!fwnode_links_check_suppliers(dev->fwnode);
1251 mutex_unlock(&fwnode_link_lock);
1252 device_unlock(dev);
1253 return sysfs_emit(buf, "%u\n", val);
1254 }
1255 static DEVICE_ATTR_RO(waiting_for_supplier);
1256
1257 /**
1258 * device_links_force_bind - Prepares device to be force bound
1259 * @dev: Consumer device.
1260 *
1261 * device_bind_driver() force binds a device to a driver without calling any
1262 * driver probe functions. So the consumer really isn't going to wait for any
1263 * supplier before it's bound to the driver. We still want the device link
1264 * states to be sensible when this happens.
1265 *
1266 * In preparation for device_bind_driver(), this function goes through each
1267 * supplier device links and checks if the supplier is bound. If it is, then
1268 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1269 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1270 */
device_links_force_bind(struct device * dev)1271 void device_links_force_bind(struct device *dev)
1272 {
1273 struct device_link *link, *ln;
1274
1275 device_links_write_lock();
1276
1277 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1278 if (!(link->flags & DL_FLAG_MANAGED))
1279 continue;
1280
1281 if (link->status != DL_STATE_AVAILABLE) {
1282 device_link_drop_managed(link);
1283 continue;
1284 }
1285 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1286 }
1287 dev->links.status = DL_DEV_PROBING;
1288
1289 device_links_write_unlock();
1290 }
1291
1292 /**
1293 * device_links_driver_bound - Update device links after probing its driver.
1294 * @dev: Device to update the links for.
1295 *
1296 * The probe has been successful, so update links from this device to any
1297 * consumers by changing their status to "available".
1298 *
1299 * Also change the status of @dev's links to suppliers to "active".
1300 *
1301 * Links without the DL_FLAG_MANAGED flag set are ignored.
1302 */
device_links_driver_bound(struct device * dev)1303 void device_links_driver_bound(struct device *dev)
1304 {
1305 struct device_link *link, *ln;
1306 LIST_HEAD(sync_list);
1307
1308 /*
1309 * If a device binds successfully, it's expected to have created all
1310 * the device links it needs to or make new device links as it needs
1311 * them. So, fw_devlink no longer needs to create device links to any
1312 * of the device's suppliers.
1313 *
1314 * Also, if a child firmware node of this bound device is not added as a
1315 * device by now, assume it is never going to be added. Make this bound
1316 * device the fallback supplier to the dangling consumers of the child
1317 * firmware node because this bound device is probably implementing the
1318 * child firmware node functionality and we don't want the dangling
1319 * consumers to defer probe indefinitely waiting for a device for the
1320 * child firmware node.
1321 */
1322 if (dev->fwnode && dev->fwnode->dev == dev) {
1323 struct fwnode_handle *child;
1324 fwnode_links_purge_suppliers(dev->fwnode);
1325 mutex_lock(&fwnode_link_lock);
1326 fwnode_for_each_available_child_node(dev->fwnode, child)
1327 __fw_devlink_pickup_dangling_consumers(child,
1328 dev->fwnode);
1329 __fw_devlink_link_to_consumers(dev);
1330 mutex_unlock(&fwnode_link_lock);
1331 }
1332 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1333
1334 device_links_write_lock();
1335
1336 list_for_each_entry(link, &dev->links.consumers, s_node) {
1337 if (!(link->flags & DL_FLAG_MANAGED))
1338 continue;
1339
1340 /*
1341 * Links created during consumer probe may be in the "consumer
1342 * probe" state to start with if the supplier is still probing
1343 * when they are created and they may become "active" if the
1344 * consumer probe returns first. Skip them here.
1345 */
1346 if (link->status == DL_STATE_CONSUMER_PROBE ||
1347 link->status == DL_STATE_ACTIVE)
1348 continue;
1349
1350 WARN_ON(link->status != DL_STATE_DORMANT);
1351 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1352
1353 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1354 driver_deferred_probe_add(link->consumer);
1355 }
1356
1357 if (defer_sync_state_count)
1358 __device_links_supplier_defer_sync(dev);
1359 else
1360 __device_links_queue_sync_state(dev, &sync_list);
1361
1362 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1363 struct device *supplier;
1364
1365 if (!(link->flags & DL_FLAG_MANAGED))
1366 continue;
1367
1368 supplier = link->supplier;
1369 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1370 /*
1371 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1372 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1373 * save to drop the managed link completely.
1374 */
1375 device_link_drop_managed(link);
1376 } else if (dev_is_best_effort(dev) &&
1377 link->flags & DL_FLAG_INFERRED &&
1378 link->status != DL_STATE_CONSUMER_PROBE &&
1379 !link->supplier->can_match) {
1380 /*
1381 * When dev_is_best_effort() is true, we ignore device
1382 * links to suppliers that don't have a driver. If the
1383 * consumer device still managed to probe, there's no
1384 * point in maintaining a device link in a weird state
1385 * (consumer probed before supplier). So delete it.
1386 */
1387 device_link_drop_managed(link);
1388 } else {
1389 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1390 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1391 }
1392
1393 /*
1394 * This needs to be done even for the deleted
1395 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1396 * device link that was preventing the supplier from getting a
1397 * sync_state() call.
1398 */
1399 if (defer_sync_state_count)
1400 __device_links_supplier_defer_sync(supplier);
1401 else
1402 __device_links_queue_sync_state(supplier, &sync_list);
1403 }
1404
1405 dev->links.status = DL_DEV_DRIVER_BOUND;
1406
1407 device_links_write_unlock();
1408
1409 device_links_flush_sync_list(&sync_list, dev);
1410 }
1411
1412 /**
1413 * __device_links_no_driver - Update links of a device without a driver.
1414 * @dev: Device without a drvier.
1415 *
1416 * Delete all non-persistent links from this device to any suppliers.
1417 *
1418 * Persistent links stay around, but their status is changed to "available",
1419 * unless they already are in the "supplier unbind in progress" state in which
1420 * case they need not be updated.
1421 *
1422 * Links without the DL_FLAG_MANAGED flag set are ignored.
1423 */
__device_links_no_driver(struct device * dev)1424 static void __device_links_no_driver(struct device *dev)
1425 {
1426 struct device_link *link, *ln;
1427
1428 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1429 if (!(link->flags & DL_FLAG_MANAGED))
1430 continue;
1431
1432 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1433 device_link_drop_managed(link);
1434 continue;
1435 }
1436
1437 if (link->status != DL_STATE_CONSUMER_PROBE &&
1438 link->status != DL_STATE_ACTIVE)
1439 continue;
1440
1441 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1442 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1443 } else {
1444 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1445 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1446 }
1447 }
1448
1449 dev->links.status = DL_DEV_NO_DRIVER;
1450 }
1451
1452 /**
1453 * device_links_no_driver - Update links after failing driver probe.
1454 * @dev: Device whose driver has just failed to probe.
1455 *
1456 * Clean up leftover links to consumers for @dev and invoke
1457 * %__device_links_no_driver() to update links to suppliers for it as
1458 * appropriate.
1459 *
1460 * Links without the DL_FLAG_MANAGED flag set are ignored.
1461 */
device_links_no_driver(struct device * dev)1462 void device_links_no_driver(struct device *dev)
1463 {
1464 struct device_link *link;
1465
1466 device_links_write_lock();
1467
1468 list_for_each_entry(link, &dev->links.consumers, s_node) {
1469 if (!(link->flags & DL_FLAG_MANAGED))
1470 continue;
1471
1472 /*
1473 * The probe has failed, so if the status of the link is
1474 * "consumer probe" or "active", it must have been added by
1475 * a probing consumer while this device was still probing.
1476 * Change its state to "dormant", as it represents a valid
1477 * relationship, but it is not functionally meaningful.
1478 */
1479 if (link->status == DL_STATE_CONSUMER_PROBE ||
1480 link->status == DL_STATE_ACTIVE)
1481 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1482 }
1483
1484 __device_links_no_driver(dev);
1485
1486 device_links_write_unlock();
1487 }
1488
1489 /**
1490 * device_links_driver_cleanup - Update links after driver removal.
1491 * @dev: Device whose driver has just gone away.
1492 *
1493 * Update links to consumers for @dev by changing their status to "dormant" and
1494 * invoke %__device_links_no_driver() to update links to suppliers for it as
1495 * appropriate.
1496 *
1497 * Links without the DL_FLAG_MANAGED flag set are ignored.
1498 */
device_links_driver_cleanup(struct device * dev)1499 void device_links_driver_cleanup(struct device *dev)
1500 {
1501 struct device_link *link, *ln;
1502
1503 device_links_write_lock();
1504
1505 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1506 if (!(link->flags & DL_FLAG_MANAGED))
1507 continue;
1508
1509 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1510 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1511
1512 /*
1513 * autoremove the links between this @dev and its consumer
1514 * devices that are not active, i.e. where the link state
1515 * has moved to DL_STATE_SUPPLIER_UNBIND.
1516 */
1517 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1518 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1519 device_link_drop_managed(link);
1520
1521 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1522 }
1523
1524 list_del_init(&dev->links.defer_sync);
1525 __device_links_no_driver(dev);
1526
1527 device_links_write_unlock();
1528 }
1529
1530 /**
1531 * device_links_busy - Check if there are any busy links to consumers.
1532 * @dev: Device to check.
1533 *
1534 * Check each consumer of the device and return 'true' if its link's status
1535 * is one of "consumer probe" or "active" (meaning that the given consumer is
1536 * probing right now or its driver is present). Otherwise, change the link
1537 * state to "supplier unbind" to prevent the consumer from being probed
1538 * successfully going forward.
1539 *
1540 * Return 'false' if there are no probing or active consumers.
1541 *
1542 * Links without the DL_FLAG_MANAGED flag set are ignored.
1543 */
device_links_busy(struct device * dev)1544 bool device_links_busy(struct device *dev)
1545 {
1546 struct device_link *link;
1547 bool ret = false;
1548
1549 device_links_write_lock();
1550
1551 list_for_each_entry(link, &dev->links.consumers, s_node) {
1552 if (!(link->flags & DL_FLAG_MANAGED))
1553 continue;
1554
1555 if (link->status == DL_STATE_CONSUMER_PROBE
1556 || link->status == DL_STATE_ACTIVE) {
1557 ret = true;
1558 break;
1559 }
1560 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1561 }
1562
1563 dev->links.status = DL_DEV_UNBINDING;
1564
1565 device_links_write_unlock();
1566 return ret;
1567 }
1568
1569 /**
1570 * device_links_unbind_consumers - Force unbind consumers of the given device.
1571 * @dev: Device to unbind the consumers of.
1572 *
1573 * Walk the list of links to consumers for @dev and if any of them is in the
1574 * "consumer probe" state, wait for all device probes in progress to complete
1575 * and start over.
1576 *
1577 * If that's not the case, change the status of the link to "supplier unbind"
1578 * and check if the link was in the "active" state. If so, force the consumer
1579 * driver to unbind and start over (the consumer will not re-probe as we have
1580 * changed the state of the link already).
1581 *
1582 * Links without the DL_FLAG_MANAGED flag set are ignored.
1583 */
device_links_unbind_consumers(struct device * dev)1584 void device_links_unbind_consumers(struct device *dev)
1585 {
1586 struct device_link *link;
1587
1588 start:
1589 device_links_write_lock();
1590
1591 list_for_each_entry(link, &dev->links.consumers, s_node) {
1592 enum device_link_state status;
1593
1594 if (!(link->flags & DL_FLAG_MANAGED) ||
1595 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1596 continue;
1597
1598 status = link->status;
1599 if (status == DL_STATE_CONSUMER_PROBE) {
1600 device_links_write_unlock();
1601
1602 wait_for_device_probe();
1603 goto start;
1604 }
1605 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1606 if (status == DL_STATE_ACTIVE) {
1607 struct device *consumer = link->consumer;
1608
1609 get_device(consumer);
1610
1611 device_links_write_unlock();
1612
1613 device_release_driver_internal(consumer, NULL,
1614 consumer->parent);
1615 put_device(consumer);
1616 goto start;
1617 }
1618 }
1619
1620 device_links_write_unlock();
1621 }
1622
1623 /**
1624 * device_links_purge - Delete existing links to other devices.
1625 * @dev: Target device.
1626 */
device_links_purge(struct device * dev)1627 static void device_links_purge(struct device *dev)
1628 {
1629 struct device_link *link, *ln;
1630
1631 if (dev->class == &devlink_class)
1632 return;
1633
1634 /*
1635 * Delete all of the remaining links from this device to any other
1636 * devices (either consumers or suppliers).
1637 */
1638 device_links_write_lock();
1639
1640 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1641 WARN_ON(link->status == DL_STATE_ACTIVE);
1642 __device_link_del(&link->kref);
1643 }
1644
1645 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1646 WARN_ON(link->status != DL_STATE_DORMANT &&
1647 link->status != DL_STATE_NONE);
1648 __device_link_del(&link->kref);
1649 }
1650
1651 device_links_write_unlock();
1652 }
1653
1654 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1655 DL_FLAG_SYNC_STATE_ONLY)
1656 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1657 DL_FLAG_AUTOPROBE_CONSUMER)
1658 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1659 DL_FLAG_PM_RUNTIME)
1660
1661 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
fw_devlink_setup(char * arg)1662 static int __init fw_devlink_setup(char *arg)
1663 {
1664 if (!arg)
1665 return -EINVAL;
1666
1667 if (strcmp(arg, "off") == 0) {
1668 fw_devlink_flags = 0;
1669 } else if (strcmp(arg, "permissive") == 0) {
1670 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1671 } else if (strcmp(arg, "on") == 0) {
1672 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1673 } else if (strcmp(arg, "rpm") == 0) {
1674 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1675 }
1676 return 0;
1677 }
1678 early_param("fw_devlink", fw_devlink_setup);
1679
1680 static bool fw_devlink_strict;
fw_devlink_strict_setup(char * arg)1681 static int __init fw_devlink_strict_setup(char *arg)
1682 {
1683 return kstrtobool(arg, &fw_devlink_strict);
1684 }
1685 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1686
1687 #define FW_DEVLINK_SYNC_STATE_STRICT 0
1688 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1
1689
1690 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1691 static int fw_devlink_sync_state;
1692 #else
1693 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1694 #endif
1695
fw_devlink_sync_state_setup(char * arg)1696 static int __init fw_devlink_sync_state_setup(char *arg)
1697 {
1698 if (!arg)
1699 return -EINVAL;
1700
1701 if (strcmp(arg, "strict") == 0) {
1702 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1703 return 0;
1704 } else if (strcmp(arg, "timeout") == 0) {
1705 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1706 return 0;
1707 }
1708 return -EINVAL;
1709 }
1710 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1711
fw_devlink_get_flags(u8 fwlink_flags)1712 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1713 {
1714 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1715 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1716
1717 return fw_devlink_flags;
1718 }
1719
fw_devlink_is_permissive(void)1720 static bool fw_devlink_is_permissive(void)
1721 {
1722 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1723 }
1724
fw_devlink_is_strict(void)1725 bool fw_devlink_is_strict(void)
1726 {
1727 return fw_devlink_strict && !fw_devlink_is_permissive();
1728 }
1729
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1730 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1731 {
1732 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1733 return;
1734
1735 fwnode_call_int_op(fwnode, add_links);
1736 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1737 }
1738
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1739 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1740 {
1741 struct fwnode_handle *child = NULL;
1742
1743 fw_devlink_parse_fwnode(fwnode);
1744
1745 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1746 fw_devlink_parse_fwtree(child);
1747 }
1748
fw_devlink_relax_link(struct device_link * link)1749 static void fw_devlink_relax_link(struct device_link *link)
1750 {
1751 if (!(link->flags & DL_FLAG_INFERRED))
1752 return;
1753
1754 if (device_link_flag_is_sync_state_only(link->flags))
1755 return;
1756
1757 pm_runtime_drop_link(link);
1758 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1759 dev_dbg(link->consumer, "Relaxing link with %s\n",
1760 dev_name(link->supplier));
1761 }
1762
fw_devlink_no_driver(struct device * dev,void * data)1763 static int fw_devlink_no_driver(struct device *dev, void *data)
1764 {
1765 struct device_link *link = to_devlink(dev);
1766
1767 if (!link->supplier->can_match)
1768 fw_devlink_relax_link(link);
1769
1770 return 0;
1771 }
1772
fw_devlink_drivers_done(void)1773 void fw_devlink_drivers_done(void)
1774 {
1775 fw_devlink_drv_reg_done = true;
1776 device_links_write_lock();
1777 class_for_each_device(&devlink_class, NULL, NULL,
1778 fw_devlink_no_driver);
1779 device_links_write_unlock();
1780 }
1781
fw_devlink_dev_sync_state(struct device * dev,void * data)1782 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1783 {
1784 struct device_link *link = to_devlink(dev);
1785 struct device *sup = link->supplier;
1786
1787 if (!(link->flags & DL_FLAG_MANAGED) ||
1788 link->status == DL_STATE_ACTIVE || sup->state_synced ||
1789 !dev_has_sync_state(sup))
1790 return 0;
1791
1792 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1793 dev_warn(sup, "sync_state() pending due to %s\n",
1794 dev_name(link->consumer));
1795 return 0;
1796 }
1797
1798 if (!list_empty(&sup->links.defer_sync))
1799 return 0;
1800
1801 dev_warn(sup, "Timed out. Forcing sync_state()\n");
1802 sup->state_synced = true;
1803 get_device(sup);
1804 list_add_tail(&sup->links.defer_sync, data);
1805
1806 return 0;
1807 }
1808
fw_devlink_probing_done(void)1809 void fw_devlink_probing_done(void)
1810 {
1811 LIST_HEAD(sync_list);
1812
1813 device_links_write_lock();
1814 class_for_each_device(&devlink_class, NULL, &sync_list,
1815 fw_devlink_dev_sync_state);
1816 device_links_write_unlock();
1817 device_links_flush_sync_list(&sync_list, NULL);
1818 }
1819
1820 /**
1821 * wait_for_init_devices_probe - Try to probe any device needed for init
1822 *
1823 * Some devices might need to be probed and bound successfully before the kernel
1824 * boot sequence can finish and move on to init/userspace. For example, a
1825 * network interface might need to be bound to be able to mount a NFS rootfs.
1826 *
1827 * With fw_devlink=on by default, some of these devices might be blocked from
1828 * probing because they are waiting on a optional supplier that doesn't have a
1829 * driver. While fw_devlink will eventually identify such devices and unblock
1830 * the probing automatically, it might be too late by the time it unblocks the
1831 * probing of devices. For example, the IP4 autoconfig might timeout before
1832 * fw_devlink unblocks probing of the network interface.
1833 *
1834 * This function is available to temporarily try and probe all devices that have
1835 * a driver even if some of their suppliers haven't been added or don't have
1836 * drivers.
1837 *
1838 * The drivers can then decide which of the suppliers are optional vs mandatory
1839 * and probe the device if possible. By the time this function returns, all such
1840 * "best effort" probes are guaranteed to be completed. If a device successfully
1841 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1842 * device where the supplier hasn't yet probed successfully because they have to
1843 * be optional dependencies.
1844 *
1845 * Any devices that didn't successfully probe go back to being treated as if
1846 * this function was never called.
1847 *
1848 * This also means that some devices that aren't needed for init and could have
1849 * waited for their optional supplier to probe (when the supplier's module is
1850 * loaded later on) would end up probing prematurely with limited functionality.
1851 * So call this function only when boot would fail without it.
1852 */
wait_for_init_devices_probe(void)1853 void __init wait_for_init_devices_probe(void)
1854 {
1855 if (!fw_devlink_flags || fw_devlink_is_permissive())
1856 return;
1857
1858 /*
1859 * Wait for all ongoing probes to finish so that the "best effort" is
1860 * only applied to devices that can't probe otherwise.
1861 */
1862 wait_for_device_probe();
1863
1864 pr_info("Trying to probe devices needed for running init ...\n");
1865 fw_devlink_best_effort = true;
1866 driver_deferred_probe_trigger();
1867
1868 /*
1869 * Wait for all "best effort" probes to finish before going back to
1870 * normal enforcement.
1871 */
1872 wait_for_device_probe();
1873 fw_devlink_best_effort = false;
1874 }
1875
fw_devlink_unblock_consumers(struct device * dev)1876 static void fw_devlink_unblock_consumers(struct device *dev)
1877 {
1878 struct device_link *link;
1879
1880 if (!fw_devlink_flags || fw_devlink_is_permissive())
1881 return;
1882
1883 device_links_write_lock();
1884 list_for_each_entry(link, &dev->links.consumers, s_node)
1885 fw_devlink_relax_link(link);
1886 device_links_write_unlock();
1887 }
1888
1889
fwnode_init_without_drv(struct fwnode_handle * fwnode)1890 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1891 {
1892 struct device *dev;
1893 bool ret;
1894
1895 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1896 return false;
1897
1898 dev = get_dev_from_fwnode(fwnode);
1899 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1900 put_device(dev);
1901
1902 return ret;
1903 }
1904
fwnode_ancestor_init_without_drv(struct fwnode_handle * fwnode)1905 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1906 {
1907 struct fwnode_handle *parent;
1908
1909 fwnode_for_each_parent_node(fwnode, parent) {
1910 if (fwnode_init_without_drv(parent)) {
1911 fwnode_handle_put(parent);
1912 return true;
1913 }
1914 }
1915
1916 return false;
1917 }
1918
1919 /**
1920 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1921 * @con: Potential consumer device.
1922 * @sup_handle: Potential supplier's fwnode.
1923 *
1924 * Needs to be called with fwnode_lock and device link lock held.
1925 *
1926 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1927 * depend on @con. This function can detect multiple cyles between @sup_handle
1928 * and @con. When such dependency cycles are found, convert all device links
1929 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1930 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1931 * converted into a device link in the future, they are created as
1932 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1933 * fw_devlink=permissive just between the devices in the cycle. We need to do
1934 * this because, at this point, fw_devlink can't tell which of these
1935 * dependencies is not a real dependency.
1936 *
1937 * Return true if one or more cycles were found. Otherwise, return false.
1938 */
__fw_devlink_relax_cycles(struct fwnode_handle * con_handle,struct fwnode_handle * sup_handle)1939 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle,
1940 struct fwnode_handle *sup_handle)
1941 {
1942 struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL;
1943 struct fwnode_link *link;
1944 struct device_link *dev_link;
1945 bool ret = false;
1946
1947 if (!sup_handle)
1948 return false;
1949
1950 /*
1951 * We aren't trying to find all cycles. Just a cycle between con and
1952 * sup_handle.
1953 */
1954 if (sup_handle->flags & FWNODE_FLAG_VISITED)
1955 return false;
1956
1957 sup_handle->flags |= FWNODE_FLAG_VISITED;
1958
1959 /* Termination condition. */
1960 if (sup_handle == con_handle) {
1961 pr_debug("----- cycle: start -----\n");
1962 ret = true;
1963 goto out;
1964 }
1965
1966 sup_dev = get_dev_from_fwnode(sup_handle);
1967 con_dev = get_dev_from_fwnode(con_handle);
1968 /*
1969 * If sup_dev is bound to a driver and @con hasn't started binding to a
1970 * driver, sup_dev can't be a consumer of @con. So, no need to check
1971 * further.
1972 */
1973 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
1974 con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) {
1975 ret = false;
1976 goto out;
1977 }
1978
1979 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
1980 if (link->flags & FWLINK_FLAG_IGNORE)
1981 continue;
1982
1983 if (__fw_devlink_relax_cycles(con_handle, link->supplier)) {
1984 __fwnode_link_cycle(link);
1985 ret = true;
1986 }
1987 }
1988
1989 /*
1990 * Give priority to device parent over fwnode parent to account for any
1991 * quirks in how fwnodes are converted to devices.
1992 */
1993 if (sup_dev)
1994 par_dev = get_device(sup_dev->parent);
1995 else
1996 par_dev = fwnode_get_next_parent_dev(sup_handle);
1997
1998 if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) {
1999 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2000 par_dev->fwnode);
2001 ret = true;
2002 }
2003
2004 if (!sup_dev)
2005 goto out;
2006
2007 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2008 /*
2009 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2010 * such due to a cycle.
2011 */
2012 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2013 !(dev_link->flags & DL_FLAG_CYCLE))
2014 continue;
2015
2016 if (__fw_devlink_relax_cycles(con_handle,
2017 dev_link->supplier->fwnode)) {
2018 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2019 dev_link->supplier->fwnode);
2020 fw_devlink_relax_link(dev_link);
2021 dev_link->flags |= DL_FLAG_CYCLE;
2022 ret = true;
2023 }
2024 }
2025
2026 out:
2027 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2028 put_device(sup_dev);
2029 put_device(con_dev);
2030 put_device(par_dev);
2031 return ret;
2032 }
2033
2034 /**
2035 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2036 * @con: consumer device for the device link
2037 * @sup_handle: fwnode handle of supplier
2038 * @link: fwnode link that's being converted to a device link
2039 *
2040 * This function will try to create a device link between the consumer device
2041 * @con and the supplier device represented by @sup_handle.
2042 *
2043 * The supplier has to be provided as a fwnode because incorrect cycles in
2044 * fwnode links can sometimes cause the supplier device to never be created.
2045 * This function detects such cases and returns an error if it cannot create a
2046 * device link from the consumer to a missing supplier.
2047 *
2048 * Returns,
2049 * 0 on successfully creating a device link
2050 * -EINVAL if the device link cannot be created as expected
2051 * -EAGAIN if the device link cannot be created right now, but it may be
2052 * possible to do that in the future
2053 */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,struct fwnode_link * link)2054 static int fw_devlink_create_devlink(struct device *con,
2055 struct fwnode_handle *sup_handle,
2056 struct fwnode_link *link)
2057 {
2058 struct device *sup_dev;
2059 int ret = 0;
2060 u32 flags;
2061
2062 if (link->flags & FWLINK_FLAG_IGNORE)
2063 return 0;
2064
2065 /*
2066 * In some cases, a device P might also be a supplier to its child node
2067 * C. However, this would defer the probe of C until the probe of P
2068 * completes successfully. This is perfectly fine in the device driver
2069 * model. device_add() doesn't guarantee probe completion of the device
2070 * by the time it returns.
2071 *
2072 * However, there are a few drivers that assume C will finish probing
2073 * as soon as it's added and before P finishes probing. So, we provide
2074 * a flag to let fw_devlink know not to delay the probe of C until the
2075 * probe of P completes successfully.
2076 *
2077 * When such a flag is set, we can't create device links where P is the
2078 * supplier of C as that would delay the probe of C.
2079 */
2080 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2081 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2082 return -EINVAL;
2083
2084 /*
2085 * Don't try to optimize by not calling the cycle detection logic under
2086 * certain conditions. There's always some corner case that won't get
2087 * detected.
2088 */
2089 device_links_write_lock();
2090 if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) {
2091 __fwnode_link_cycle(link);
2092 pr_debug("----- cycle: end -----\n");
2093 pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n",
2094 link->consumer, sup_handle);
2095 }
2096 device_links_write_unlock();
2097
2098 if (con->fwnode == link->consumer)
2099 flags = fw_devlink_get_flags(link->flags);
2100 else
2101 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2102
2103 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2104 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2105 else
2106 sup_dev = get_dev_from_fwnode(sup_handle);
2107
2108 if (sup_dev) {
2109 /*
2110 * If it's one of those drivers that don't actually bind to
2111 * their device using driver core, then don't wait on this
2112 * supplier device indefinitely.
2113 */
2114 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2115 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2116 dev_dbg(con,
2117 "Not linking %pfwf - dev might never probe\n",
2118 sup_handle);
2119 ret = -EINVAL;
2120 goto out;
2121 }
2122
2123 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2124 dev_err(con, "Failed to create device link (0x%x) with %s\n",
2125 flags, dev_name(sup_dev));
2126 ret = -EINVAL;
2127 }
2128
2129 goto out;
2130 }
2131
2132 /*
2133 * Supplier or supplier's ancestor already initialized without a struct
2134 * device or being probed by a driver.
2135 */
2136 if (fwnode_init_without_drv(sup_handle) ||
2137 fwnode_ancestor_init_without_drv(sup_handle)) {
2138 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2139 sup_handle);
2140 return -EINVAL;
2141 }
2142
2143 ret = -EAGAIN;
2144 out:
2145 put_device(sup_dev);
2146 return ret;
2147 }
2148
2149 /**
2150 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2151 * @dev: Device that needs to be linked to its consumers
2152 *
2153 * This function looks at all the consumer fwnodes of @dev and creates device
2154 * links between the consumer device and @dev (supplier).
2155 *
2156 * If the consumer device has not been added yet, then this function creates a
2157 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2158 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2159 * sync_state() callback before the real consumer device gets to be added and
2160 * then probed.
2161 *
2162 * Once device links are created from the real consumer to @dev (supplier), the
2163 * fwnode links are deleted.
2164 */
__fw_devlink_link_to_consumers(struct device * dev)2165 static void __fw_devlink_link_to_consumers(struct device *dev)
2166 {
2167 struct fwnode_handle *fwnode = dev->fwnode;
2168 struct fwnode_link *link, *tmp;
2169
2170 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2171 struct device *con_dev;
2172 bool own_link = true;
2173 int ret;
2174
2175 con_dev = get_dev_from_fwnode(link->consumer);
2176 /*
2177 * If consumer device is not available yet, make a "proxy"
2178 * SYNC_STATE_ONLY link from the consumer's parent device to
2179 * the supplier device. This is necessary to make sure the
2180 * supplier doesn't get a sync_state() callback before the real
2181 * consumer can create a device link to the supplier.
2182 *
2183 * This proxy link step is needed to handle the case where the
2184 * consumer's parent device is added before the supplier.
2185 */
2186 if (!con_dev) {
2187 con_dev = fwnode_get_next_parent_dev(link->consumer);
2188 /*
2189 * However, if the consumer's parent device is also the
2190 * parent of the supplier, don't create a
2191 * consumer-supplier link from the parent to its child
2192 * device. Such a dependency is impossible.
2193 */
2194 if (con_dev &&
2195 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2196 put_device(con_dev);
2197 con_dev = NULL;
2198 } else {
2199 own_link = false;
2200 }
2201 }
2202
2203 if (!con_dev)
2204 continue;
2205
2206 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2207 put_device(con_dev);
2208 if (!own_link || ret == -EAGAIN)
2209 continue;
2210
2211 __fwnode_link_del(link);
2212 }
2213 }
2214
2215 /**
2216 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2217 * @dev: The consumer device that needs to be linked to its suppliers
2218 * @fwnode: Root of the fwnode tree that is used to create device links
2219 *
2220 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2221 * @fwnode and creates device links between @dev (consumer) and all the
2222 * supplier devices of the entire fwnode tree at @fwnode.
2223 *
2224 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2225 * and the real suppliers of @dev. Once these device links are created, the
2226 * fwnode links are deleted.
2227 *
2228 * In addition, it also looks at all the suppliers of the entire fwnode tree
2229 * because some of the child devices of @dev that have not been added yet
2230 * (because @dev hasn't probed) might already have their suppliers added to
2231 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2232 * @dev (consumer) and these suppliers to make sure they don't execute their
2233 * sync_state() callbacks before these child devices have a chance to create
2234 * their device links. The fwnode links that correspond to the child devices
2235 * aren't delete because they are needed later to create the device links
2236 * between the real consumer and supplier devices.
2237 */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)2238 static void __fw_devlink_link_to_suppliers(struct device *dev,
2239 struct fwnode_handle *fwnode)
2240 {
2241 bool own_link = (dev->fwnode == fwnode);
2242 struct fwnode_link *link, *tmp;
2243 struct fwnode_handle *child = NULL;
2244
2245 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2246 int ret;
2247 struct fwnode_handle *sup = link->supplier;
2248
2249 ret = fw_devlink_create_devlink(dev, sup, link);
2250 if (!own_link || ret == -EAGAIN)
2251 continue;
2252
2253 __fwnode_link_del(link);
2254 }
2255
2256 /*
2257 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2258 * all the descendants. This proxy link step is needed to handle the
2259 * case where the supplier is added before the consumer's parent device
2260 * (@dev).
2261 */
2262 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2263 __fw_devlink_link_to_suppliers(dev, child);
2264 }
2265
fw_devlink_link_device(struct device * dev)2266 static void fw_devlink_link_device(struct device *dev)
2267 {
2268 struct fwnode_handle *fwnode = dev->fwnode;
2269
2270 if (!fw_devlink_flags)
2271 return;
2272
2273 fw_devlink_parse_fwtree(fwnode);
2274
2275 mutex_lock(&fwnode_link_lock);
2276 __fw_devlink_link_to_consumers(dev);
2277 __fw_devlink_link_to_suppliers(dev, fwnode);
2278 mutex_unlock(&fwnode_link_lock);
2279 }
2280
2281 /* Device links support end. */
2282
2283 int (*platform_notify)(struct device *dev) = NULL;
2284 int (*platform_notify_remove)(struct device *dev) = NULL;
2285 static struct kobject *dev_kobj;
2286
2287 /* /sys/dev/char */
2288 static struct kobject *sysfs_dev_char_kobj;
2289
2290 /* /sys/dev/block */
2291 static struct kobject *sysfs_dev_block_kobj;
2292
2293 static DEFINE_MUTEX(device_hotplug_lock);
2294
lock_device_hotplug(void)2295 void lock_device_hotplug(void)
2296 {
2297 mutex_lock(&device_hotplug_lock);
2298 }
2299
unlock_device_hotplug(void)2300 void unlock_device_hotplug(void)
2301 {
2302 mutex_unlock(&device_hotplug_lock);
2303 }
2304
lock_device_hotplug_sysfs(void)2305 int lock_device_hotplug_sysfs(void)
2306 {
2307 if (mutex_trylock(&device_hotplug_lock))
2308 return 0;
2309
2310 /* Avoid busy looping (5 ms of sleep should do). */
2311 msleep(5);
2312 return restart_syscall();
2313 }
2314
2315 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2316 static inline int device_is_not_partition(struct device *dev)
2317 {
2318 return !(dev->type == &part_type);
2319 }
2320 #else
device_is_not_partition(struct device * dev)2321 static inline int device_is_not_partition(struct device *dev)
2322 {
2323 return 1;
2324 }
2325 #endif
2326
device_platform_notify(struct device * dev)2327 static void device_platform_notify(struct device *dev)
2328 {
2329 acpi_device_notify(dev);
2330
2331 software_node_notify(dev);
2332
2333 if (platform_notify)
2334 platform_notify(dev);
2335 }
2336
device_platform_notify_remove(struct device * dev)2337 static void device_platform_notify_remove(struct device *dev)
2338 {
2339 if (platform_notify_remove)
2340 platform_notify_remove(dev);
2341
2342 software_node_notify_remove(dev);
2343
2344 acpi_device_notify_remove(dev);
2345 }
2346
2347 /**
2348 * dev_driver_string - Return a device's driver name, if at all possible
2349 * @dev: struct device to get the name of
2350 *
2351 * Will return the device's driver's name if it is bound to a device. If
2352 * the device is not bound to a driver, it will return the name of the bus
2353 * it is attached to. If it is not attached to a bus either, an empty
2354 * string will be returned.
2355 */
dev_driver_string(const struct device * dev)2356 const char *dev_driver_string(const struct device *dev)
2357 {
2358 struct device_driver *drv;
2359
2360 /* dev->driver can change to NULL underneath us because of unbinding,
2361 * so be careful about accessing it. dev->bus and dev->class should
2362 * never change once they are set, so they don't need special care.
2363 */
2364 drv = READ_ONCE(dev->driver);
2365 return drv ? drv->name : dev_bus_name(dev);
2366 }
2367 EXPORT_SYMBOL(dev_driver_string);
2368
2369 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2370
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2371 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2372 char *buf)
2373 {
2374 struct device_attribute *dev_attr = to_dev_attr(attr);
2375 struct device *dev = kobj_to_dev(kobj);
2376 ssize_t ret = -EIO;
2377
2378 if (dev_attr->show)
2379 ret = dev_attr->show(dev, dev_attr, buf);
2380 if (ret >= (ssize_t)PAGE_SIZE) {
2381 printk("dev_attr_show: %pS returned bad count\n",
2382 dev_attr->show);
2383 }
2384 return ret;
2385 }
2386
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2387 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2388 const char *buf, size_t count)
2389 {
2390 struct device_attribute *dev_attr = to_dev_attr(attr);
2391 struct device *dev = kobj_to_dev(kobj);
2392 ssize_t ret = -EIO;
2393
2394 if (dev_attr->store)
2395 ret = dev_attr->store(dev, dev_attr, buf, count);
2396 return ret;
2397 }
2398
2399 static const struct sysfs_ops dev_sysfs_ops = {
2400 .show = dev_attr_show,
2401 .store = dev_attr_store,
2402 };
2403
2404 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2405
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2406 ssize_t device_store_ulong(struct device *dev,
2407 struct device_attribute *attr,
2408 const char *buf, size_t size)
2409 {
2410 struct dev_ext_attribute *ea = to_ext_attr(attr);
2411 int ret;
2412 unsigned long new;
2413
2414 ret = kstrtoul(buf, 0, &new);
2415 if (ret)
2416 return ret;
2417 *(unsigned long *)(ea->var) = new;
2418 /* Always return full write size even if we didn't consume all */
2419 return size;
2420 }
2421 EXPORT_SYMBOL_GPL(device_store_ulong);
2422
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2423 ssize_t device_show_ulong(struct device *dev,
2424 struct device_attribute *attr,
2425 char *buf)
2426 {
2427 struct dev_ext_attribute *ea = to_ext_attr(attr);
2428 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2429 }
2430 EXPORT_SYMBOL_GPL(device_show_ulong);
2431
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2432 ssize_t device_store_int(struct device *dev,
2433 struct device_attribute *attr,
2434 const char *buf, size_t size)
2435 {
2436 struct dev_ext_attribute *ea = to_ext_attr(attr);
2437 int ret;
2438 long new;
2439
2440 ret = kstrtol(buf, 0, &new);
2441 if (ret)
2442 return ret;
2443
2444 if (new > INT_MAX || new < INT_MIN)
2445 return -EINVAL;
2446 *(int *)(ea->var) = new;
2447 /* Always return full write size even if we didn't consume all */
2448 return size;
2449 }
2450 EXPORT_SYMBOL_GPL(device_store_int);
2451
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2452 ssize_t device_show_int(struct device *dev,
2453 struct device_attribute *attr,
2454 char *buf)
2455 {
2456 struct dev_ext_attribute *ea = to_ext_attr(attr);
2457
2458 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2459 }
2460 EXPORT_SYMBOL_GPL(device_show_int);
2461
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2462 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2463 const char *buf, size_t size)
2464 {
2465 struct dev_ext_attribute *ea = to_ext_attr(attr);
2466
2467 if (kstrtobool(buf, ea->var) < 0)
2468 return -EINVAL;
2469
2470 return size;
2471 }
2472 EXPORT_SYMBOL_GPL(device_store_bool);
2473
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2474 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2475 char *buf)
2476 {
2477 struct dev_ext_attribute *ea = to_ext_attr(attr);
2478
2479 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2480 }
2481 EXPORT_SYMBOL_GPL(device_show_bool);
2482
2483 /**
2484 * device_release - free device structure.
2485 * @kobj: device's kobject.
2486 *
2487 * This is called once the reference count for the object
2488 * reaches 0. We forward the call to the device's release
2489 * method, which should handle actually freeing the structure.
2490 */
device_release(struct kobject * kobj)2491 static void device_release(struct kobject *kobj)
2492 {
2493 struct device *dev = kobj_to_dev(kobj);
2494 struct device_private *p = dev->p;
2495
2496 /*
2497 * Some platform devices are driven without driver attached
2498 * and managed resources may have been acquired. Make sure
2499 * all resources are released.
2500 *
2501 * Drivers still can add resources into device after device
2502 * is deleted but alive, so release devres here to avoid
2503 * possible memory leak.
2504 */
2505 devres_release_all(dev);
2506
2507 kfree(dev->dma_range_map);
2508
2509 if (dev->release)
2510 dev->release(dev);
2511 else if (dev->type && dev->type->release)
2512 dev->type->release(dev);
2513 else if (dev->class && dev->class->dev_release)
2514 dev->class->dev_release(dev);
2515 else
2516 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2517 dev_name(dev));
2518 kfree(p);
2519 }
2520
device_namespace(const struct kobject * kobj)2521 static const void *device_namespace(const struct kobject *kobj)
2522 {
2523 const struct device *dev = kobj_to_dev(kobj);
2524 const void *ns = NULL;
2525
2526 if (dev->class && dev->class->ns_type)
2527 ns = dev->class->namespace(dev);
2528
2529 return ns;
2530 }
2531
device_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)2532 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2533 {
2534 const struct device *dev = kobj_to_dev(kobj);
2535
2536 if (dev->class && dev->class->get_ownership)
2537 dev->class->get_ownership(dev, uid, gid);
2538 }
2539
2540 static const struct kobj_type device_ktype = {
2541 .release = device_release,
2542 .sysfs_ops = &dev_sysfs_ops,
2543 .namespace = device_namespace,
2544 .get_ownership = device_get_ownership,
2545 };
2546
2547
dev_uevent_filter(const struct kobject * kobj)2548 static int dev_uevent_filter(const struct kobject *kobj)
2549 {
2550 const struct kobj_type *ktype = get_ktype(kobj);
2551
2552 if (ktype == &device_ktype) {
2553 const struct device *dev = kobj_to_dev(kobj);
2554 if (dev->bus)
2555 return 1;
2556 if (dev->class)
2557 return 1;
2558 }
2559 return 0;
2560 }
2561
dev_uevent_name(const struct kobject * kobj)2562 static const char *dev_uevent_name(const struct kobject *kobj)
2563 {
2564 const struct device *dev = kobj_to_dev(kobj);
2565
2566 if (dev->bus)
2567 return dev->bus->name;
2568 if (dev->class)
2569 return dev->class->name;
2570 return NULL;
2571 }
2572
2573 /*
2574 * Try filling "DRIVER=<name>" uevent variable for a device. Because this
2575 * function may race with binding and unbinding the device from a driver,
2576 * we need to be careful. Binding is generally safe, at worst we miss the
2577 * fact that the device is already bound to a driver (but the driver
2578 * information that is delivered through uevents is best-effort, it may
2579 * become obsolete as soon as it is generated anyways). Unbinding is more
2580 * risky as driver pointer is transitioning to NULL, so READ_ONCE() should
2581 * be used to make sure we are dealing with the same pointer, and to
2582 * ensure that driver structure is not going to disappear from under us
2583 * we take bus' drivers klist lock. The assumption that only registered
2584 * driver can be bound to a device, and to unregister a driver bus code
2585 * will take the same lock.
2586 */
dev_driver_uevent(const struct device * dev,struct kobj_uevent_env * env)2587 static void dev_driver_uevent(const struct device *dev, struct kobj_uevent_env *env)
2588 {
2589 struct subsys_private *sp = bus_to_subsys(dev->bus);
2590
2591 if (sp) {
2592 scoped_guard(spinlock, &sp->klist_drivers.k_lock) {
2593 struct device_driver *drv = READ_ONCE(dev->driver);
2594 if (drv)
2595 add_uevent_var(env, "DRIVER=%s", drv->name);
2596 }
2597
2598 subsys_put(sp);
2599 }
2600 }
2601
dev_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)2602 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2603 {
2604 const struct device *dev = kobj_to_dev(kobj);
2605 int retval = 0;
2606
2607 /* add device node properties if present */
2608 if (MAJOR(dev->devt)) {
2609 const char *tmp;
2610 const char *name;
2611 umode_t mode = 0;
2612 kuid_t uid = GLOBAL_ROOT_UID;
2613 kgid_t gid = GLOBAL_ROOT_GID;
2614
2615 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2616 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2617 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2618 if (name) {
2619 add_uevent_var(env, "DEVNAME=%s", name);
2620 if (mode)
2621 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2622 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2623 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2624 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2625 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2626 kfree(tmp);
2627 }
2628 }
2629
2630 if (dev->type && dev->type->name)
2631 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2632
2633 /* Add "DRIVER=%s" variable if the device is bound to a driver */
2634 dev_driver_uevent(dev, env);
2635
2636 /* Add common DT information about the device */
2637 of_device_uevent(dev, env);
2638
2639 /* have the bus specific function add its stuff */
2640 if (dev->bus && dev->bus->uevent) {
2641 retval = dev->bus->uevent(dev, env);
2642 if (retval)
2643 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2644 dev_name(dev), __func__, retval);
2645 }
2646
2647 /* have the class specific function add its stuff */
2648 if (dev->class && dev->class->dev_uevent) {
2649 retval = dev->class->dev_uevent(dev, env);
2650 if (retval)
2651 pr_debug("device: '%s': %s: class uevent() "
2652 "returned %d\n", dev_name(dev),
2653 __func__, retval);
2654 }
2655
2656 /* have the device type specific function add its stuff */
2657 if (dev->type && dev->type->uevent) {
2658 retval = dev->type->uevent(dev, env);
2659 if (retval)
2660 pr_debug("device: '%s': %s: dev_type uevent() "
2661 "returned %d\n", dev_name(dev),
2662 __func__, retval);
2663 }
2664
2665 return retval;
2666 }
2667
2668 static const struct kset_uevent_ops device_uevent_ops = {
2669 .filter = dev_uevent_filter,
2670 .name = dev_uevent_name,
2671 .uevent = dev_uevent,
2672 };
2673
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2674 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2675 char *buf)
2676 {
2677 struct kobject *top_kobj;
2678 struct kset *kset;
2679 struct kobj_uevent_env *env = NULL;
2680 int i;
2681 int len = 0;
2682 int retval;
2683
2684 /* search the kset, the device belongs to */
2685 top_kobj = &dev->kobj;
2686 while (!top_kobj->kset && top_kobj->parent)
2687 top_kobj = top_kobj->parent;
2688 if (!top_kobj->kset)
2689 goto out;
2690
2691 kset = top_kobj->kset;
2692 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2693 goto out;
2694
2695 /* respect filter */
2696 if (kset->uevent_ops && kset->uevent_ops->filter)
2697 if (!kset->uevent_ops->filter(&dev->kobj))
2698 goto out;
2699
2700 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2701 if (!env)
2702 return -ENOMEM;
2703
2704 /* let the kset specific function add its keys */
2705 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2706 if (retval)
2707 goto out;
2708
2709 /* copy keys to file */
2710 for (i = 0; i < env->envp_idx; i++)
2711 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2712 out:
2713 kfree(env);
2714 return len;
2715 }
2716
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2717 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2718 const char *buf, size_t count)
2719 {
2720 int rc;
2721
2722 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2723
2724 if (rc) {
2725 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2726 return rc;
2727 }
2728
2729 return count;
2730 }
2731 static DEVICE_ATTR_RW(uevent);
2732
online_show(struct device * dev,struct device_attribute * attr,char * buf)2733 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2734 char *buf)
2735 {
2736 bool val;
2737
2738 device_lock(dev);
2739 val = !dev->offline;
2740 device_unlock(dev);
2741 return sysfs_emit(buf, "%u\n", val);
2742 }
2743
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2744 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2745 const char *buf, size_t count)
2746 {
2747 bool val;
2748 int ret;
2749
2750 ret = kstrtobool(buf, &val);
2751 if (ret < 0)
2752 return ret;
2753
2754 ret = lock_device_hotplug_sysfs();
2755 if (ret)
2756 return ret;
2757
2758 ret = val ? device_online(dev) : device_offline(dev);
2759 unlock_device_hotplug();
2760 return ret < 0 ? ret : count;
2761 }
2762 static DEVICE_ATTR_RW(online);
2763
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2764 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2765 char *buf)
2766 {
2767 const char *loc;
2768
2769 switch (dev->removable) {
2770 case DEVICE_REMOVABLE:
2771 loc = "removable";
2772 break;
2773 case DEVICE_FIXED:
2774 loc = "fixed";
2775 break;
2776 default:
2777 loc = "unknown";
2778 }
2779 return sysfs_emit(buf, "%s\n", loc);
2780 }
2781 static DEVICE_ATTR_RO(removable);
2782
device_add_groups(struct device * dev,const struct attribute_group ** groups)2783 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2784 {
2785 return sysfs_create_groups(&dev->kobj, groups);
2786 }
2787 EXPORT_SYMBOL_GPL(device_add_groups);
2788
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2789 void device_remove_groups(struct device *dev,
2790 const struct attribute_group **groups)
2791 {
2792 sysfs_remove_groups(&dev->kobj, groups);
2793 }
2794 EXPORT_SYMBOL_GPL(device_remove_groups);
2795
2796 union device_attr_group_devres {
2797 const struct attribute_group *group;
2798 const struct attribute_group **groups;
2799 };
2800
devm_attr_group_remove(struct device * dev,void * res)2801 static void devm_attr_group_remove(struct device *dev, void *res)
2802 {
2803 union device_attr_group_devres *devres = res;
2804 const struct attribute_group *group = devres->group;
2805
2806 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2807 sysfs_remove_group(&dev->kobj, group);
2808 }
2809
devm_attr_groups_remove(struct device * dev,void * res)2810 static void devm_attr_groups_remove(struct device *dev, void *res)
2811 {
2812 union device_attr_group_devres *devres = res;
2813 const struct attribute_group **groups = devres->groups;
2814
2815 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2816 sysfs_remove_groups(&dev->kobj, groups);
2817 }
2818
2819 /**
2820 * devm_device_add_group - given a device, create a managed attribute group
2821 * @dev: The device to create the group for
2822 * @grp: The attribute group to create
2823 *
2824 * This function creates a group for the first time. It will explicitly
2825 * warn and error if any of the attribute files being created already exist.
2826 *
2827 * Returns 0 on success or error code on failure.
2828 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2829 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2830 {
2831 union device_attr_group_devres *devres;
2832 int error;
2833
2834 devres = devres_alloc(devm_attr_group_remove,
2835 sizeof(*devres), GFP_KERNEL);
2836 if (!devres)
2837 return -ENOMEM;
2838
2839 error = sysfs_create_group(&dev->kobj, grp);
2840 if (error) {
2841 devres_free(devres);
2842 return error;
2843 }
2844
2845 devres->group = grp;
2846 devres_add(dev, devres);
2847 return 0;
2848 }
2849 EXPORT_SYMBOL_GPL(devm_device_add_group);
2850
2851 /**
2852 * devm_device_add_groups - create a bunch of managed attribute groups
2853 * @dev: The device to create the group for
2854 * @groups: The attribute groups to create, NULL terminated
2855 *
2856 * This function creates a bunch of managed attribute groups. If an error
2857 * occurs when creating a group, all previously created groups will be
2858 * removed, unwinding everything back to the original state when this
2859 * function was called. It will explicitly warn and error if any of the
2860 * attribute files being created already exist.
2861 *
2862 * Returns 0 on success or error code from sysfs_create_group on failure.
2863 */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)2864 int devm_device_add_groups(struct device *dev,
2865 const struct attribute_group **groups)
2866 {
2867 union device_attr_group_devres *devres;
2868 int error;
2869
2870 devres = devres_alloc(devm_attr_groups_remove,
2871 sizeof(*devres), GFP_KERNEL);
2872 if (!devres)
2873 return -ENOMEM;
2874
2875 error = sysfs_create_groups(&dev->kobj, groups);
2876 if (error) {
2877 devres_free(devres);
2878 return error;
2879 }
2880
2881 devres->groups = groups;
2882 devres_add(dev, devres);
2883 return 0;
2884 }
2885 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2886
device_add_attrs(struct device * dev)2887 static int device_add_attrs(struct device *dev)
2888 {
2889 const struct class *class = dev->class;
2890 const struct device_type *type = dev->type;
2891 int error;
2892
2893 if (class) {
2894 error = device_add_groups(dev, class->dev_groups);
2895 if (error)
2896 return error;
2897 }
2898
2899 if (type) {
2900 error = device_add_groups(dev, type->groups);
2901 if (error)
2902 goto err_remove_class_groups;
2903 }
2904
2905 error = device_add_groups(dev, dev->groups);
2906 if (error)
2907 goto err_remove_type_groups;
2908
2909 if (device_supports_offline(dev) && !dev->offline_disabled) {
2910 error = device_create_file(dev, &dev_attr_online);
2911 if (error)
2912 goto err_remove_dev_groups;
2913 }
2914
2915 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2916 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2917 if (error)
2918 goto err_remove_dev_online;
2919 }
2920
2921 if (dev_removable_is_valid(dev)) {
2922 error = device_create_file(dev, &dev_attr_removable);
2923 if (error)
2924 goto err_remove_dev_waiting_for_supplier;
2925 }
2926
2927 if (dev_add_physical_location(dev)) {
2928 error = device_add_group(dev,
2929 &dev_attr_physical_location_group);
2930 if (error)
2931 goto err_remove_dev_removable;
2932 }
2933
2934 return 0;
2935
2936 err_remove_dev_removable:
2937 device_remove_file(dev, &dev_attr_removable);
2938 err_remove_dev_waiting_for_supplier:
2939 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2940 err_remove_dev_online:
2941 device_remove_file(dev, &dev_attr_online);
2942 err_remove_dev_groups:
2943 device_remove_groups(dev, dev->groups);
2944 err_remove_type_groups:
2945 if (type)
2946 device_remove_groups(dev, type->groups);
2947 err_remove_class_groups:
2948 if (class)
2949 device_remove_groups(dev, class->dev_groups);
2950
2951 return error;
2952 }
2953
device_remove_attrs(struct device * dev)2954 static void device_remove_attrs(struct device *dev)
2955 {
2956 const struct class *class = dev->class;
2957 const struct device_type *type = dev->type;
2958
2959 if (dev->physical_location) {
2960 device_remove_group(dev, &dev_attr_physical_location_group);
2961 kfree(dev->physical_location);
2962 }
2963
2964 device_remove_file(dev, &dev_attr_removable);
2965 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2966 device_remove_file(dev, &dev_attr_online);
2967 device_remove_groups(dev, dev->groups);
2968
2969 if (type)
2970 device_remove_groups(dev, type->groups);
2971
2972 if (class)
2973 device_remove_groups(dev, class->dev_groups);
2974 }
2975
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2976 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2977 char *buf)
2978 {
2979 return print_dev_t(buf, dev->devt);
2980 }
2981 static DEVICE_ATTR_RO(dev);
2982
2983 /* /sys/devices/ */
2984 struct kset *devices_kset;
2985
2986 /**
2987 * devices_kset_move_before - Move device in the devices_kset's list.
2988 * @deva: Device to move.
2989 * @devb: Device @deva should come before.
2990 */
devices_kset_move_before(struct device * deva,struct device * devb)2991 static void devices_kset_move_before(struct device *deva, struct device *devb)
2992 {
2993 if (!devices_kset)
2994 return;
2995 pr_debug("devices_kset: Moving %s before %s\n",
2996 dev_name(deva), dev_name(devb));
2997 spin_lock(&devices_kset->list_lock);
2998 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2999 spin_unlock(&devices_kset->list_lock);
3000 }
3001
3002 /**
3003 * devices_kset_move_after - Move device in the devices_kset's list.
3004 * @deva: Device to move
3005 * @devb: Device @deva should come after.
3006 */
devices_kset_move_after(struct device * deva,struct device * devb)3007 static void devices_kset_move_after(struct device *deva, struct device *devb)
3008 {
3009 if (!devices_kset)
3010 return;
3011 pr_debug("devices_kset: Moving %s after %s\n",
3012 dev_name(deva), dev_name(devb));
3013 spin_lock(&devices_kset->list_lock);
3014 list_move(&deva->kobj.entry, &devb->kobj.entry);
3015 spin_unlock(&devices_kset->list_lock);
3016 }
3017
3018 /**
3019 * devices_kset_move_last - move the device to the end of devices_kset's list.
3020 * @dev: device to move
3021 */
devices_kset_move_last(struct device * dev)3022 void devices_kset_move_last(struct device *dev)
3023 {
3024 if (!devices_kset)
3025 return;
3026 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3027 spin_lock(&devices_kset->list_lock);
3028 list_move_tail(&dev->kobj.entry, &devices_kset->list);
3029 spin_unlock(&devices_kset->list_lock);
3030 }
3031
3032 /**
3033 * device_create_file - create sysfs attribute file for device.
3034 * @dev: device.
3035 * @attr: device attribute descriptor.
3036 */
device_create_file(struct device * dev,const struct device_attribute * attr)3037 int device_create_file(struct device *dev,
3038 const struct device_attribute *attr)
3039 {
3040 int error = 0;
3041
3042 if (dev) {
3043 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3044 "Attribute %s: write permission without 'store'\n",
3045 attr->attr.name);
3046 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3047 "Attribute %s: read permission without 'show'\n",
3048 attr->attr.name);
3049 error = sysfs_create_file(&dev->kobj, &attr->attr);
3050 }
3051
3052 return error;
3053 }
3054 EXPORT_SYMBOL_GPL(device_create_file);
3055
3056 /**
3057 * device_remove_file - remove sysfs attribute file.
3058 * @dev: device.
3059 * @attr: device attribute descriptor.
3060 */
device_remove_file(struct device * dev,const struct device_attribute * attr)3061 void device_remove_file(struct device *dev,
3062 const struct device_attribute *attr)
3063 {
3064 if (dev)
3065 sysfs_remove_file(&dev->kobj, &attr->attr);
3066 }
3067 EXPORT_SYMBOL_GPL(device_remove_file);
3068
3069 /**
3070 * device_remove_file_self - remove sysfs attribute file from its own method.
3071 * @dev: device.
3072 * @attr: device attribute descriptor.
3073 *
3074 * See kernfs_remove_self() for details.
3075 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)3076 bool device_remove_file_self(struct device *dev,
3077 const struct device_attribute *attr)
3078 {
3079 if (dev)
3080 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3081 else
3082 return false;
3083 }
3084 EXPORT_SYMBOL_GPL(device_remove_file_self);
3085
3086 /**
3087 * device_create_bin_file - create sysfs binary attribute file for device.
3088 * @dev: device.
3089 * @attr: device binary attribute descriptor.
3090 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)3091 int device_create_bin_file(struct device *dev,
3092 const struct bin_attribute *attr)
3093 {
3094 int error = -EINVAL;
3095 if (dev)
3096 error = sysfs_create_bin_file(&dev->kobj, attr);
3097 return error;
3098 }
3099 EXPORT_SYMBOL_GPL(device_create_bin_file);
3100
3101 /**
3102 * device_remove_bin_file - remove sysfs binary attribute file
3103 * @dev: device.
3104 * @attr: device binary attribute descriptor.
3105 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)3106 void device_remove_bin_file(struct device *dev,
3107 const struct bin_attribute *attr)
3108 {
3109 if (dev)
3110 sysfs_remove_bin_file(&dev->kobj, attr);
3111 }
3112 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3113
klist_children_get(struct klist_node * n)3114 static void klist_children_get(struct klist_node *n)
3115 {
3116 struct device_private *p = to_device_private_parent(n);
3117 struct device *dev = p->device;
3118
3119 get_device(dev);
3120 }
3121
klist_children_put(struct klist_node * n)3122 static void klist_children_put(struct klist_node *n)
3123 {
3124 struct device_private *p = to_device_private_parent(n);
3125 struct device *dev = p->device;
3126
3127 put_device(dev);
3128 }
3129
3130 /**
3131 * device_initialize - init device structure.
3132 * @dev: device.
3133 *
3134 * This prepares the device for use by other layers by initializing
3135 * its fields.
3136 * It is the first half of device_register(), if called by
3137 * that function, though it can also be called separately, so one
3138 * may use @dev's fields. In particular, get_device()/put_device()
3139 * may be used for reference counting of @dev after calling this
3140 * function.
3141 *
3142 * All fields in @dev must be initialized by the caller to 0, except
3143 * for those explicitly set to some other value. The simplest
3144 * approach is to use kzalloc() to allocate the structure containing
3145 * @dev.
3146 *
3147 * NOTE: Use put_device() to give up your reference instead of freeing
3148 * @dev directly once you have called this function.
3149 */
device_initialize(struct device * dev)3150 void device_initialize(struct device *dev)
3151 {
3152 dev->kobj.kset = devices_kset;
3153 kobject_init(&dev->kobj, &device_ktype);
3154 INIT_LIST_HEAD(&dev->dma_pools);
3155 mutex_init(&dev->mutex);
3156 lockdep_set_novalidate_class(&dev->mutex);
3157 spin_lock_init(&dev->devres_lock);
3158 INIT_LIST_HEAD(&dev->devres_head);
3159 device_pm_init(dev);
3160 set_dev_node(dev, NUMA_NO_NODE);
3161 INIT_LIST_HEAD(&dev->links.consumers);
3162 INIT_LIST_HEAD(&dev->links.suppliers);
3163 INIT_LIST_HEAD(&dev->links.defer_sync);
3164 dev->links.status = DL_DEV_NO_DRIVER;
3165 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3166 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3167 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3168 dev->dma_coherent = dma_default_coherent;
3169 #endif
3170 swiotlb_dev_init(dev);
3171 }
3172 EXPORT_SYMBOL_GPL(device_initialize);
3173
virtual_device_parent(struct device * dev)3174 struct kobject *virtual_device_parent(struct device *dev)
3175 {
3176 static struct kobject *virtual_dir = NULL;
3177
3178 if (!virtual_dir)
3179 virtual_dir = kobject_create_and_add("virtual",
3180 &devices_kset->kobj);
3181
3182 return virtual_dir;
3183 }
3184
3185 struct class_dir {
3186 struct kobject kobj;
3187 const struct class *class;
3188 };
3189
3190 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3191
class_dir_release(struct kobject * kobj)3192 static void class_dir_release(struct kobject *kobj)
3193 {
3194 struct class_dir *dir = to_class_dir(kobj);
3195 kfree(dir);
3196 }
3197
3198 static const
class_dir_child_ns_type(const struct kobject * kobj)3199 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3200 {
3201 const struct class_dir *dir = to_class_dir(kobj);
3202 return dir->class->ns_type;
3203 }
3204
3205 static const struct kobj_type class_dir_ktype = {
3206 .release = class_dir_release,
3207 .sysfs_ops = &kobj_sysfs_ops,
3208 .child_ns_type = class_dir_child_ns_type
3209 };
3210
class_dir_create_and_add(struct subsys_private * sp,struct kobject * parent_kobj)3211 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3212 struct kobject *parent_kobj)
3213 {
3214 struct class_dir *dir;
3215 int retval;
3216
3217 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3218 if (!dir)
3219 return ERR_PTR(-ENOMEM);
3220
3221 dir->class = sp->class;
3222 kobject_init(&dir->kobj, &class_dir_ktype);
3223
3224 dir->kobj.kset = &sp->glue_dirs;
3225
3226 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3227 if (retval < 0) {
3228 kobject_put(&dir->kobj);
3229 return ERR_PTR(retval);
3230 }
3231 return &dir->kobj;
3232 }
3233
3234 static DEFINE_MUTEX(gdp_mutex);
3235
get_device_parent(struct device * dev,struct device * parent)3236 static struct kobject *get_device_parent(struct device *dev,
3237 struct device *parent)
3238 {
3239 struct subsys_private *sp = class_to_subsys(dev->class);
3240 struct kobject *kobj = NULL;
3241
3242 if (sp) {
3243 struct kobject *parent_kobj;
3244 struct kobject *k;
3245
3246 /*
3247 * If we have no parent, we live in "virtual".
3248 * Class-devices with a non class-device as parent, live
3249 * in a "glue" directory to prevent namespace collisions.
3250 */
3251 if (parent == NULL)
3252 parent_kobj = virtual_device_parent(dev);
3253 else if (parent->class && !dev->class->ns_type) {
3254 subsys_put(sp);
3255 return &parent->kobj;
3256 } else {
3257 parent_kobj = &parent->kobj;
3258 }
3259
3260 mutex_lock(&gdp_mutex);
3261
3262 /* find our class-directory at the parent and reference it */
3263 spin_lock(&sp->glue_dirs.list_lock);
3264 list_for_each_entry(k, &sp->glue_dirs.list, entry)
3265 if (k->parent == parent_kobj) {
3266 kobj = kobject_get(k);
3267 break;
3268 }
3269 spin_unlock(&sp->glue_dirs.list_lock);
3270 if (kobj) {
3271 mutex_unlock(&gdp_mutex);
3272 subsys_put(sp);
3273 return kobj;
3274 }
3275
3276 /* or create a new class-directory at the parent device */
3277 k = class_dir_create_and_add(sp, parent_kobj);
3278 /* do not emit an uevent for this simple "glue" directory */
3279 mutex_unlock(&gdp_mutex);
3280 subsys_put(sp);
3281 return k;
3282 }
3283
3284 /* subsystems can specify a default root directory for their devices */
3285 if (!parent && dev->bus) {
3286 struct device *dev_root = bus_get_dev_root(dev->bus);
3287
3288 if (dev_root) {
3289 kobj = &dev_root->kobj;
3290 put_device(dev_root);
3291 return kobj;
3292 }
3293 }
3294
3295 if (parent)
3296 return &parent->kobj;
3297 return NULL;
3298 }
3299
live_in_glue_dir(struct kobject * kobj,struct device * dev)3300 static inline bool live_in_glue_dir(struct kobject *kobj,
3301 struct device *dev)
3302 {
3303 struct subsys_private *sp;
3304 bool retval;
3305
3306 if (!kobj || !dev->class)
3307 return false;
3308
3309 sp = class_to_subsys(dev->class);
3310 if (!sp)
3311 return false;
3312
3313 if (kobj->kset == &sp->glue_dirs)
3314 retval = true;
3315 else
3316 retval = false;
3317
3318 subsys_put(sp);
3319 return retval;
3320 }
3321
get_glue_dir(struct device * dev)3322 static inline struct kobject *get_glue_dir(struct device *dev)
3323 {
3324 return dev->kobj.parent;
3325 }
3326
3327 /**
3328 * kobject_has_children - Returns whether a kobject has children.
3329 * @kobj: the object to test
3330 *
3331 * This will return whether a kobject has other kobjects as children.
3332 *
3333 * It does NOT account for the presence of attribute files, only sub
3334 * directories. It also assumes there is no concurrent addition or
3335 * removal of such children, and thus relies on external locking.
3336 */
kobject_has_children(struct kobject * kobj)3337 static inline bool kobject_has_children(struct kobject *kobj)
3338 {
3339 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3340
3341 return kobj->sd && kobj->sd->dir.subdirs;
3342 }
3343
3344 /*
3345 * make sure cleaning up dir as the last step, we need to make
3346 * sure .release handler of kobject is run with holding the
3347 * global lock
3348 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3349 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3350 {
3351 unsigned int ref;
3352
3353 /* see if we live in a "glue" directory */
3354 if (!live_in_glue_dir(glue_dir, dev))
3355 return;
3356
3357 mutex_lock(&gdp_mutex);
3358 /**
3359 * There is a race condition between removing glue directory
3360 * and adding a new device under the glue directory.
3361 *
3362 * CPU1: CPU2:
3363 *
3364 * device_add()
3365 * get_device_parent()
3366 * class_dir_create_and_add()
3367 * kobject_add_internal()
3368 * create_dir() // create glue_dir
3369 *
3370 * device_add()
3371 * get_device_parent()
3372 * kobject_get() // get glue_dir
3373 *
3374 * device_del()
3375 * cleanup_glue_dir()
3376 * kobject_del(glue_dir)
3377 *
3378 * kobject_add()
3379 * kobject_add_internal()
3380 * create_dir() // in glue_dir
3381 * sysfs_create_dir_ns()
3382 * kernfs_create_dir_ns(sd)
3383 *
3384 * sysfs_remove_dir() // glue_dir->sd=NULL
3385 * sysfs_put() // free glue_dir->sd
3386 *
3387 * // sd is freed
3388 * kernfs_new_node(sd)
3389 * kernfs_get(glue_dir)
3390 * kernfs_add_one()
3391 * kernfs_put()
3392 *
3393 * Before CPU1 remove last child device under glue dir, if CPU2 add
3394 * a new device under glue dir, the glue_dir kobject reference count
3395 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3396 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3397 * and sysfs_put(). This result in glue_dir->sd is freed.
3398 *
3399 * Then the CPU2 will see a stale "empty" but still potentially used
3400 * glue dir around in kernfs_new_node().
3401 *
3402 * In order to avoid this happening, we also should make sure that
3403 * kernfs_node for glue_dir is released in CPU1 only when refcount
3404 * for glue_dir kobj is 1.
3405 */
3406 ref = kref_read(&glue_dir->kref);
3407 if (!kobject_has_children(glue_dir) && !--ref)
3408 kobject_del(glue_dir);
3409 kobject_put(glue_dir);
3410 mutex_unlock(&gdp_mutex);
3411 }
3412
device_add_class_symlinks(struct device * dev)3413 static int device_add_class_symlinks(struct device *dev)
3414 {
3415 struct device_node *of_node = dev_of_node(dev);
3416 struct subsys_private *sp;
3417 int error;
3418
3419 if (of_node) {
3420 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3421 if (error)
3422 dev_warn(dev, "Error %d creating of_node link\n",error);
3423 /* An error here doesn't warrant bringing down the device */
3424 }
3425
3426 sp = class_to_subsys(dev->class);
3427 if (!sp)
3428 return 0;
3429
3430 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3431 if (error)
3432 goto out_devnode;
3433
3434 if (dev->parent && device_is_not_partition(dev)) {
3435 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3436 "device");
3437 if (error)
3438 goto out_subsys;
3439 }
3440
3441 /* link in the class directory pointing to the device */
3442 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3443 if (error)
3444 goto out_device;
3445 goto exit;
3446
3447 out_device:
3448 sysfs_remove_link(&dev->kobj, "device");
3449 out_subsys:
3450 sysfs_remove_link(&dev->kobj, "subsystem");
3451 out_devnode:
3452 sysfs_remove_link(&dev->kobj, "of_node");
3453 exit:
3454 subsys_put(sp);
3455 return error;
3456 }
3457
device_remove_class_symlinks(struct device * dev)3458 static void device_remove_class_symlinks(struct device *dev)
3459 {
3460 struct subsys_private *sp = class_to_subsys(dev->class);
3461
3462 if (dev_of_node(dev))
3463 sysfs_remove_link(&dev->kobj, "of_node");
3464
3465 if (!sp)
3466 return;
3467
3468 if (dev->parent && device_is_not_partition(dev))
3469 sysfs_remove_link(&dev->kobj, "device");
3470 sysfs_remove_link(&dev->kobj, "subsystem");
3471 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3472 subsys_put(sp);
3473 }
3474
3475 /**
3476 * dev_set_name - set a device name
3477 * @dev: device
3478 * @fmt: format string for the device's name
3479 */
dev_set_name(struct device * dev,const char * fmt,...)3480 int dev_set_name(struct device *dev, const char *fmt, ...)
3481 {
3482 va_list vargs;
3483 int err;
3484
3485 va_start(vargs, fmt);
3486 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3487 va_end(vargs);
3488 return err;
3489 }
3490 EXPORT_SYMBOL_GPL(dev_set_name);
3491
3492 /* select a /sys/dev/ directory for the device */
device_to_dev_kobj(struct device * dev)3493 static struct kobject *device_to_dev_kobj(struct device *dev)
3494 {
3495 if (is_blockdev(dev))
3496 return sysfs_dev_block_kobj;
3497 else
3498 return sysfs_dev_char_kobj;
3499 }
3500
device_create_sys_dev_entry(struct device * dev)3501 static int device_create_sys_dev_entry(struct device *dev)
3502 {
3503 struct kobject *kobj = device_to_dev_kobj(dev);
3504 int error = 0;
3505 char devt_str[15];
3506
3507 if (kobj) {
3508 format_dev_t(devt_str, dev->devt);
3509 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3510 }
3511
3512 return error;
3513 }
3514
device_remove_sys_dev_entry(struct device * dev)3515 static void device_remove_sys_dev_entry(struct device *dev)
3516 {
3517 struct kobject *kobj = device_to_dev_kobj(dev);
3518 char devt_str[15];
3519
3520 if (kobj) {
3521 format_dev_t(devt_str, dev->devt);
3522 sysfs_remove_link(kobj, devt_str);
3523 }
3524 }
3525
device_private_init(struct device * dev)3526 static int device_private_init(struct device *dev)
3527 {
3528 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3529 if (!dev->p)
3530 return -ENOMEM;
3531 dev->p->device = dev;
3532 klist_init(&dev->p->klist_children, klist_children_get,
3533 klist_children_put);
3534 INIT_LIST_HEAD(&dev->p->deferred_probe);
3535 return 0;
3536 }
3537
3538 /**
3539 * device_add - add device to device hierarchy.
3540 * @dev: device.
3541 *
3542 * This is part 2 of device_register(), though may be called
3543 * separately _iff_ device_initialize() has been called separately.
3544 *
3545 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3546 * to the global and sibling lists for the device, then
3547 * adds it to the other relevant subsystems of the driver model.
3548 *
3549 * Do not call this routine or device_register() more than once for
3550 * any device structure. The driver model core is not designed to work
3551 * with devices that get unregistered and then spring back to life.
3552 * (Among other things, it's very hard to guarantee that all references
3553 * to the previous incarnation of @dev have been dropped.) Allocate
3554 * and register a fresh new struct device instead.
3555 *
3556 * NOTE: _Never_ directly free @dev after calling this function, even
3557 * if it returned an error! Always use put_device() to give up your
3558 * reference instead.
3559 *
3560 * Rule of thumb is: if device_add() succeeds, you should call
3561 * device_del() when you want to get rid of it. If device_add() has
3562 * *not* succeeded, use *only* put_device() to drop the reference
3563 * count.
3564 */
device_add(struct device * dev)3565 int device_add(struct device *dev)
3566 {
3567 struct subsys_private *sp;
3568 struct device *parent;
3569 struct kobject *kobj;
3570 struct class_interface *class_intf;
3571 int error = -EINVAL;
3572 struct kobject *glue_dir = NULL;
3573
3574 dev = get_device(dev);
3575 if (!dev)
3576 goto done;
3577
3578 if (!dev->p) {
3579 error = device_private_init(dev);
3580 if (error)
3581 goto done;
3582 }
3583
3584 /*
3585 * for statically allocated devices, which should all be converted
3586 * some day, we need to initialize the name. We prevent reading back
3587 * the name, and force the use of dev_name()
3588 */
3589 if (dev->init_name) {
3590 error = dev_set_name(dev, "%s", dev->init_name);
3591 dev->init_name = NULL;
3592 }
3593
3594 if (dev_name(dev))
3595 error = 0;
3596 /* subsystems can specify simple device enumeration */
3597 else if (dev->bus && dev->bus->dev_name)
3598 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3599 else
3600 error = -EINVAL;
3601 if (error)
3602 goto name_error;
3603
3604 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3605
3606 parent = get_device(dev->parent);
3607 kobj = get_device_parent(dev, parent);
3608 if (IS_ERR(kobj)) {
3609 error = PTR_ERR(kobj);
3610 goto parent_error;
3611 }
3612 if (kobj)
3613 dev->kobj.parent = kobj;
3614
3615 /* use parent numa_node */
3616 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3617 set_dev_node(dev, dev_to_node(parent));
3618
3619 /* first, register with generic layer. */
3620 /* we require the name to be set before, and pass NULL */
3621 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3622 if (error) {
3623 glue_dir = kobj;
3624 goto Error;
3625 }
3626
3627 /* notify platform of device entry */
3628 device_platform_notify(dev);
3629
3630 error = device_create_file(dev, &dev_attr_uevent);
3631 if (error)
3632 goto attrError;
3633
3634 error = device_add_class_symlinks(dev);
3635 if (error)
3636 goto SymlinkError;
3637 error = device_add_attrs(dev);
3638 if (error)
3639 goto AttrsError;
3640 error = bus_add_device(dev);
3641 if (error)
3642 goto BusError;
3643 error = dpm_sysfs_add(dev);
3644 if (error)
3645 goto DPMError;
3646 device_pm_add(dev);
3647
3648 if (MAJOR(dev->devt)) {
3649 error = device_create_file(dev, &dev_attr_dev);
3650 if (error)
3651 goto DevAttrError;
3652
3653 error = device_create_sys_dev_entry(dev);
3654 if (error)
3655 goto SysEntryError;
3656
3657 devtmpfs_create_node(dev);
3658 }
3659
3660 /* Notify clients of device addition. This call must come
3661 * after dpm_sysfs_add() and before kobject_uevent().
3662 */
3663 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3664 kobject_uevent(&dev->kobj, KOBJ_ADD);
3665
3666 /*
3667 * Check if any of the other devices (consumers) have been waiting for
3668 * this device (supplier) to be added so that they can create a device
3669 * link to it.
3670 *
3671 * This needs to happen after device_pm_add() because device_link_add()
3672 * requires the supplier be registered before it's called.
3673 *
3674 * But this also needs to happen before bus_probe_device() to make sure
3675 * waiting consumers can link to it before the driver is bound to the
3676 * device and the driver sync_state callback is called for this device.
3677 */
3678 if (dev->fwnode && !dev->fwnode->dev) {
3679 dev->fwnode->dev = dev;
3680 fw_devlink_link_device(dev);
3681 }
3682
3683 bus_probe_device(dev);
3684
3685 /*
3686 * If all driver registration is done and a newly added device doesn't
3687 * match with any driver, don't block its consumers from probing in
3688 * case the consumer device is able to operate without this supplier.
3689 */
3690 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3691 fw_devlink_unblock_consumers(dev);
3692
3693 if (parent)
3694 klist_add_tail(&dev->p->knode_parent,
3695 &parent->p->klist_children);
3696
3697 sp = class_to_subsys(dev->class);
3698 if (sp) {
3699 mutex_lock(&sp->mutex);
3700 /* tie the class to the device */
3701 klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3702
3703 /* notify any interfaces that the device is here */
3704 list_for_each_entry(class_intf, &sp->interfaces, node)
3705 if (class_intf->add_dev)
3706 class_intf->add_dev(dev);
3707 mutex_unlock(&sp->mutex);
3708 subsys_put(sp);
3709 }
3710 done:
3711 put_device(dev);
3712 return error;
3713 SysEntryError:
3714 if (MAJOR(dev->devt))
3715 device_remove_file(dev, &dev_attr_dev);
3716 DevAttrError:
3717 device_pm_remove(dev);
3718 dpm_sysfs_remove(dev);
3719 DPMError:
3720 device_set_driver(dev, NULL);
3721 bus_remove_device(dev);
3722 BusError:
3723 device_remove_attrs(dev);
3724 AttrsError:
3725 device_remove_class_symlinks(dev);
3726 SymlinkError:
3727 device_remove_file(dev, &dev_attr_uevent);
3728 attrError:
3729 device_platform_notify_remove(dev);
3730 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3731 glue_dir = get_glue_dir(dev);
3732 kobject_del(&dev->kobj);
3733 Error:
3734 cleanup_glue_dir(dev, glue_dir);
3735 parent_error:
3736 put_device(parent);
3737 name_error:
3738 kfree(dev->p);
3739 dev->p = NULL;
3740 goto done;
3741 }
3742 EXPORT_SYMBOL_GPL(device_add);
3743
3744 /**
3745 * device_register - register a device with the system.
3746 * @dev: pointer to the device structure
3747 *
3748 * This happens in two clean steps - initialize the device
3749 * and add it to the system. The two steps can be called
3750 * separately, but this is the easiest and most common.
3751 * I.e. you should only call the two helpers separately if
3752 * have a clearly defined need to use and refcount the device
3753 * before it is added to the hierarchy.
3754 *
3755 * For more information, see the kerneldoc for device_initialize()
3756 * and device_add().
3757 *
3758 * NOTE: _Never_ directly free @dev after calling this function, even
3759 * if it returned an error! Always use put_device() to give up the
3760 * reference initialized in this function instead.
3761 */
device_register(struct device * dev)3762 int device_register(struct device *dev)
3763 {
3764 device_initialize(dev);
3765 return device_add(dev);
3766 }
3767 EXPORT_SYMBOL_GPL(device_register);
3768
3769 /**
3770 * get_device - increment reference count for device.
3771 * @dev: device.
3772 *
3773 * This simply forwards the call to kobject_get(), though
3774 * we do take care to provide for the case that we get a NULL
3775 * pointer passed in.
3776 */
get_device(struct device * dev)3777 struct device *get_device(struct device *dev)
3778 {
3779 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3780 }
3781 EXPORT_SYMBOL_GPL(get_device);
3782
3783 /**
3784 * put_device - decrement reference count.
3785 * @dev: device in question.
3786 */
put_device(struct device * dev)3787 void put_device(struct device *dev)
3788 {
3789 /* might_sleep(); */
3790 if (dev)
3791 kobject_put(&dev->kobj);
3792 }
3793 EXPORT_SYMBOL_GPL(put_device);
3794
kill_device(struct device * dev)3795 bool kill_device(struct device *dev)
3796 {
3797 /*
3798 * Require the device lock and set the "dead" flag to guarantee that
3799 * the update behavior is consistent with the other bitfields near
3800 * it and that we cannot have an asynchronous probe routine trying
3801 * to run while we are tearing out the bus/class/sysfs from
3802 * underneath the device.
3803 */
3804 device_lock_assert(dev);
3805
3806 if (dev->p->dead)
3807 return false;
3808 dev->p->dead = true;
3809 return true;
3810 }
3811 EXPORT_SYMBOL_GPL(kill_device);
3812
3813 /**
3814 * device_del - delete device from system.
3815 * @dev: device.
3816 *
3817 * This is the first part of the device unregistration
3818 * sequence. This removes the device from the lists we control
3819 * from here, has it removed from the other driver model
3820 * subsystems it was added to in device_add(), and removes it
3821 * from the kobject hierarchy.
3822 *
3823 * NOTE: this should be called manually _iff_ device_add() was
3824 * also called manually.
3825 */
device_del(struct device * dev)3826 void device_del(struct device *dev)
3827 {
3828 struct subsys_private *sp;
3829 struct device *parent = dev->parent;
3830 struct kobject *glue_dir = NULL;
3831 struct class_interface *class_intf;
3832 unsigned int noio_flag;
3833
3834 device_lock(dev);
3835 kill_device(dev);
3836 device_unlock(dev);
3837
3838 if (dev->fwnode && dev->fwnode->dev == dev)
3839 dev->fwnode->dev = NULL;
3840
3841 /* Notify clients of device removal. This call must come
3842 * before dpm_sysfs_remove().
3843 */
3844 noio_flag = memalloc_noio_save();
3845 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3846
3847 dpm_sysfs_remove(dev);
3848 if (parent)
3849 klist_del(&dev->p->knode_parent);
3850 if (MAJOR(dev->devt)) {
3851 devtmpfs_delete_node(dev);
3852 device_remove_sys_dev_entry(dev);
3853 device_remove_file(dev, &dev_attr_dev);
3854 }
3855
3856 sp = class_to_subsys(dev->class);
3857 if (sp) {
3858 device_remove_class_symlinks(dev);
3859
3860 mutex_lock(&sp->mutex);
3861 /* notify any interfaces that the device is now gone */
3862 list_for_each_entry(class_intf, &sp->interfaces, node)
3863 if (class_intf->remove_dev)
3864 class_intf->remove_dev(dev);
3865 /* remove the device from the class list */
3866 klist_del(&dev->p->knode_class);
3867 mutex_unlock(&sp->mutex);
3868 subsys_put(sp);
3869 }
3870 device_remove_file(dev, &dev_attr_uevent);
3871 device_remove_attrs(dev);
3872 bus_remove_device(dev);
3873 device_pm_remove(dev);
3874 driver_deferred_probe_del(dev);
3875 device_platform_notify_remove(dev);
3876 device_links_purge(dev);
3877
3878 /*
3879 * If a device does not have a driver attached, we need to clean
3880 * up any managed resources. We do this in device_release(), but
3881 * it's never called (and we leak the device) if a managed
3882 * resource holds a reference to the device. So release all
3883 * managed resources here, like we do in driver_detach(). We
3884 * still need to do so again in device_release() in case someone
3885 * adds a new resource after this point, though.
3886 */
3887 devres_release_all(dev);
3888
3889 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3890 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3891 glue_dir = get_glue_dir(dev);
3892 kobject_del(&dev->kobj);
3893 cleanup_glue_dir(dev, glue_dir);
3894 memalloc_noio_restore(noio_flag);
3895 put_device(parent);
3896 }
3897 EXPORT_SYMBOL_GPL(device_del);
3898
3899 /**
3900 * device_unregister - unregister device from system.
3901 * @dev: device going away.
3902 *
3903 * We do this in two parts, like we do device_register(). First,
3904 * we remove it from all the subsystems with device_del(), then
3905 * we decrement the reference count via put_device(). If that
3906 * is the final reference count, the device will be cleaned up
3907 * via device_release() above. Otherwise, the structure will
3908 * stick around until the final reference to the device is dropped.
3909 */
device_unregister(struct device * dev)3910 void device_unregister(struct device *dev)
3911 {
3912 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3913 device_del(dev);
3914 put_device(dev);
3915 }
3916 EXPORT_SYMBOL_GPL(device_unregister);
3917
prev_device(struct klist_iter * i)3918 static struct device *prev_device(struct klist_iter *i)
3919 {
3920 struct klist_node *n = klist_prev(i);
3921 struct device *dev = NULL;
3922 struct device_private *p;
3923
3924 if (n) {
3925 p = to_device_private_parent(n);
3926 dev = p->device;
3927 }
3928 return dev;
3929 }
3930
next_device(struct klist_iter * i)3931 static struct device *next_device(struct klist_iter *i)
3932 {
3933 struct klist_node *n = klist_next(i);
3934 struct device *dev = NULL;
3935 struct device_private *p;
3936
3937 if (n) {
3938 p = to_device_private_parent(n);
3939 dev = p->device;
3940 }
3941 return dev;
3942 }
3943
3944 /**
3945 * device_get_devnode - path of device node file
3946 * @dev: device
3947 * @mode: returned file access mode
3948 * @uid: returned file owner
3949 * @gid: returned file group
3950 * @tmp: possibly allocated string
3951 *
3952 * Return the relative path of a possible device node.
3953 * Non-default names may need to allocate a memory to compose
3954 * a name. This memory is returned in tmp and needs to be
3955 * freed by the caller.
3956 */
device_get_devnode(const struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3957 const char *device_get_devnode(const struct device *dev,
3958 umode_t *mode, kuid_t *uid, kgid_t *gid,
3959 const char **tmp)
3960 {
3961 char *s;
3962
3963 *tmp = NULL;
3964
3965 /* the device type may provide a specific name */
3966 if (dev->type && dev->type->devnode)
3967 *tmp = dev->type->devnode(dev, mode, uid, gid);
3968 if (*tmp)
3969 return *tmp;
3970
3971 /* the class may provide a specific name */
3972 if (dev->class && dev->class->devnode)
3973 *tmp = dev->class->devnode(dev, mode);
3974 if (*tmp)
3975 return *tmp;
3976
3977 /* return name without allocation, tmp == NULL */
3978 if (strchr(dev_name(dev), '!') == NULL)
3979 return dev_name(dev);
3980
3981 /* replace '!' in the name with '/' */
3982 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3983 if (!s)
3984 return NULL;
3985 return *tmp = s;
3986 }
3987
3988 /**
3989 * device_for_each_child - device child iterator.
3990 * @parent: parent struct device.
3991 * @fn: function to be called for each device.
3992 * @data: data for the callback.
3993 *
3994 * Iterate over @parent's child devices, and call @fn for each,
3995 * passing it @data.
3996 *
3997 * We check the return of @fn each time. If it returns anything
3998 * other than 0, we break out and return that value.
3999 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))4000 int device_for_each_child(struct device *parent, void *data,
4001 int (*fn)(struct device *dev, void *data))
4002 {
4003 struct klist_iter i;
4004 struct device *child;
4005 int error = 0;
4006
4007 if (!parent->p)
4008 return 0;
4009
4010 klist_iter_init(&parent->p->klist_children, &i);
4011 while (!error && (child = next_device(&i)))
4012 error = fn(child, data);
4013 klist_iter_exit(&i);
4014 return error;
4015 }
4016 EXPORT_SYMBOL_GPL(device_for_each_child);
4017
4018 /**
4019 * device_for_each_child_reverse - device child iterator in reversed order.
4020 * @parent: parent struct device.
4021 * @fn: function to be called for each device.
4022 * @data: data for the callback.
4023 *
4024 * Iterate over @parent's child devices, and call @fn for each,
4025 * passing it @data.
4026 *
4027 * We check the return of @fn each time. If it returns anything
4028 * other than 0, we break out and return that value.
4029 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))4030 int device_for_each_child_reverse(struct device *parent, void *data,
4031 int (*fn)(struct device *dev, void *data))
4032 {
4033 struct klist_iter i;
4034 struct device *child;
4035 int error = 0;
4036
4037 if (!parent->p)
4038 return 0;
4039
4040 klist_iter_init(&parent->p->klist_children, &i);
4041 while ((child = prev_device(&i)) && !error)
4042 error = fn(child, data);
4043 klist_iter_exit(&i);
4044 return error;
4045 }
4046 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4047
4048 /**
4049 * device_for_each_child_reverse_from - device child iterator in reversed order.
4050 * @parent: parent struct device.
4051 * @from: optional starting point in child list
4052 * @fn: function to be called for each device.
4053 * @data: data for the callback.
4054 *
4055 * Iterate over @parent's child devices, starting at @from, and call @fn
4056 * for each, passing it @data. This helper is identical to
4057 * device_for_each_child_reverse() when @from is NULL.
4058 *
4059 * @fn is checked each iteration. If it returns anything other than 0,
4060 * iteration stop and that value is returned to the caller of
4061 * device_for_each_child_reverse_from();
4062 */
device_for_each_child_reverse_from(struct device * parent,struct device * from,const void * data,int (* fn)(struct device *,const void *))4063 int device_for_each_child_reverse_from(struct device *parent,
4064 struct device *from, const void *data,
4065 int (*fn)(struct device *, const void *))
4066 {
4067 struct klist_iter i;
4068 struct device *child;
4069 int error = 0;
4070
4071 if (!parent->p)
4072 return 0;
4073
4074 klist_iter_init_node(&parent->p->klist_children, &i,
4075 (from ? &from->p->knode_parent : NULL));
4076 while ((child = prev_device(&i)) && !error)
4077 error = fn(child, data);
4078 klist_iter_exit(&i);
4079 return error;
4080 }
4081 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4082
4083 /**
4084 * device_find_child - device iterator for locating a particular device.
4085 * @parent: parent struct device
4086 * @match: Callback function to check device
4087 * @data: Data to pass to match function
4088 *
4089 * This is similar to the device_for_each_child() function above, but it
4090 * returns a reference to a device that is 'found' for later use, as
4091 * determined by the @match callback.
4092 *
4093 * The callback should return 0 if the device doesn't match and non-zero
4094 * if it does. If the callback returns non-zero and a reference to the
4095 * current device can be obtained, this function will return to the caller
4096 * and not iterate over any more devices.
4097 *
4098 * NOTE: you will need to drop the reference with put_device() after use.
4099 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))4100 struct device *device_find_child(struct device *parent, void *data,
4101 int (*match)(struct device *dev, void *data))
4102 {
4103 struct klist_iter i;
4104 struct device *child;
4105
4106 if (!parent)
4107 return NULL;
4108
4109 klist_iter_init(&parent->p->klist_children, &i);
4110 while ((child = next_device(&i)))
4111 if (match(child, data) && get_device(child))
4112 break;
4113 klist_iter_exit(&i);
4114 return child;
4115 }
4116 EXPORT_SYMBOL_GPL(device_find_child);
4117
4118 /**
4119 * device_find_child_by_name - device iterator for locating a child device.
4120 * @parent: parent struct device
4121 * @name: name of the child device
4122 *
4123 * This is similar to the device_find_child() function above, but it
4124 * returns a reference to a device that has the name @name.
4125 *
4126 * NOTE: you will need to drop the reference with put_device() after use.
4127 */
device_find_child_by_name(struct device * parent,const char * name)4128 struct device *device_find_child_by_name(struct device *parent,
4129 const char *name)
4130 {
4131 struct klist_iter i;
4132 struct device *child;
4133
4134 if (!parent)
4135 return NULL;
4136
4137 klist_iter_init(&parent->p->klist_children, &i);
4138 while ((child = next_device(&i)))
4139 if (sysfs_streq(dev_name(child), name) && get_device(child))
4140 break;
4141 klist_iter_exit(&i);
4142 return child;
4143 }
4144 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4145
match_any(struct device * dev,void * unused)4146 static int match_any(struct device *dev, void *unused)
4147 {
4148 return 1;
4149 }
4150
4151 /**
4152 * device_find_any_child - device iterator for locating a child device, if any.
4153 * @parent: parent struct device
4154 *
4155 * This is similar to the device_find_child() function above, but it
4156 * returns a reference to a child device, if any.
4157 *
4158 * NOTE: you will need to drop the reference with put_device() after use.
4159 */
device_find_any_child(struct device * parent)4160 struct device *device_find_any_child(struct device *parent)
4161 {
4162 return device_find_child(parent, NULL, match_any);
4163 }
4164 EXPORT_SYMBOL_GPL(device_find_any_child);
4165
devices_init(void)4166 int __init devices_init(void)
4167 {
4168 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4169 if (!devices_kset)
4170 return -ENOMEM;
4171 dev_kobj = kobject_create_and_add("dev", NULL);
4172 if (!dev_kobj)
4173 goto dev_kobj_err;
4174 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4175 if (!sysfs_dev_block_kobj)
4176 goto block_kobj_err;
4177 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4178 if (!sysfs_dev_char_kobj)
4179 goto char_kobj_err;
4180 device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4181 if (!device_link_wq)
4182 goto wq_err;
4183
4184 return 0;
4185
4186 wq_err:
4187 kobject_put(sysfs_dev_char_kobj);
4188 char_kobj_err:
4189 kobject_put(sysfs_dev_block_kobj);
4190 block_kobj_err:
4191 kobject_put(dev_kobj);
4192 dev_kobj_err:
4193 kset_unregister(devices_kset);
4194 return -ENOMEM;
4195 }
4196
device_check_offline(struct device * dev,void * not_used)4197 static int device_check_offline(struct device *dev, void *not_used)
4198 {
4199 int ret;
4200
4201 ret = device_for_each_child(dev, NULL, device_check_offline);
4202 if (ret)
4203 return ret;
4204
4205 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4206 }
4207
4208 /**
4209 * device_offline - Prepare the device for hot-removal.
4210 * @dev: Device to be put offline.
4211 *
4212 * Execute the device bus type's .offline() callback, if present, to prepare
4213 * the device for a subsequent hot-removal. If that succeeds, the device must
4214 * not be used until either it is removed or its bus type's .online() callback
4215 * is executed.
4216 *
4217 * Call under device_hotplug_lock.
4218 */
device_offline(struct device * dev)4219 int device_offline(struct device *dev)
4220 {
4221 int ret;
4222
4223 if (dev->offline_disabled)
4224 return -EPERM;
4225
4226 ret = device_for_each_child(dev, NULL, device_check_offline);
4227 if (ret)
4228 return ret;
4229
4230 device_lock(dev);
4231 if (device_supports_offline(dev)) {
4232 if (dev->offline) {
4233 ret = 1;
4234 } else {
4235 ret = dev->bus->offline(dev);
4236 if (!ret) {
4237 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4238 dev->offline = true;
4239 }
4240 }
4241 }
4242 device_unlock(dev);
4243
4244 return ret;
4245 }
4246
4247 /**
4248 * device_online - Put the device back online after successful device_offline().
4249 * @dev: Device to be put back online.
4250 *
4251 * If device_offline() has been successfully executed for @dev, but the device
4252 * has not been removed subsequently, execute its bus type's .online() callback
4253 * to indicate that the device can be used again.
4254 *
4255 * Call under device_hotplug_lock.
4256 */
device_online(struct device * dev)4257 int device_online(struct device *dev)
4258 {
4259 int ret = 0;
4260
4261 device_lock(dev);
4262 if (device_supports_offline(dev)) {
4263 if (dev->offline) {
4264 ret = dev->bus->online(dev);
4265 if (!ret) {
4266 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4267 dev->offline = false;
4268 }
4269 } else {
4270 ret = 1;
4271 }
4272 }
4273 device_unlock(dev);
4274
4275 return ret;
4276 }
4277
4278 struct root_device {
4279 struct device dev;
4280 struct module *owner;
4281 };
4282
to_root_device(struct device * d)4283 static inline struct root_device *to_root_device(struct device *d)
4284 {
4285 return container_of(d, struct root_device, dev);
4286 }
4287
root_device_release(struct device * dev)4288 static void root_device_release(struct device *dev)
4289 {
4290 kfree(to_root_device(dev));
4291 }
4292
4293 /**
4294 * __root_device_register - allocate and register a root device
4295 * @name: root device name
4296 * @owner: owner module of the root device, usually THIS_MODULE
4297 *
4298 * This function allocates a root device and registers it
4299 * using device_register(). In order to free the returned
4300 * device, use root_device_unregister().
4301 *
4302 * Root devices are dummy devices which allow other devices
4303 * to be grouped under /sys/devices. Use this function to
4304 * allocate a root device and then use it as the parent of
4305 * any device which should appear under /sys/devices/{name}
4306 *
4307 * The /sys/devices/{name} directory will also contain a
4308 * 'module' symlink which points to the @owner directory
4309 * in sysfs.
4310 *
4311 * Returns &struct device pointer on success, or ERR_PTR() on error.
4312 *
4313 * Note: You probably want to use root_device_register().
4314 */
__root_device_register(const char * name,struct module * owner)4315 struct device *__root_device_register(const char *name, struct module *owner)
4316 {
4317 struct root_device *root;
4318 int err = -ENOMEM;
4319
4320 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4321 if (!root)
4322 return ERR_PTR(err);
4323
4324 err = dev_set_name(&root->dev, "%s", name);
4325 if (err) {
4326 kfree(root);
4327 return ERR_PTR(err);
4328 }
4329
4330 root->dev.release = root_device_release;
4331
4332 err = device_register(&root->dev);
4333 if (err) {
4334 put_device(&root->dev);
4335 return ERR_PTR(err);
4336 }
4337
4338 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4339 if (owner) {
4340 struct module_kobject *mk = &owner->mkobj;
4341
4342 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4343 if (err) {
4344 device_unregister(&root->dev);
4345 return ERR_PTR(err);
4346 }
4347 root->owner = owner;
4348 }
4349 #endif
4350
4351 return &root->dev;
4352 }
4353 EXPORT_SYMBOL_GPL(__root_device_register);
4354
4355 /**
4356 * root_device_unregister - unregister and free a root device
4357 * @dev: device going away
4358 *
4359 * This function unregisters and cleans up a device that was created by
4360 * root_device_register().
4361 */
root_device_unregister(struct device * dev)4362 void root_device_unregister(struct device *dev)
4363 {
4364 struct root_device *root = to_root_device(dev);
4365
4366 if (root->owner)
4367 sysfs_remove_link(&root->dev.kobj, "module");
4368
4369 device_unregister(dev);
4370 }
4371 EXPORT_SYMBOL_GPL(root_device_unregister);
4372
4373
device_create_release(struct device * dev)4374 static void device_create_release(struct device *dev)
4375 {
4376 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4377 kfree(dev);
4378 }
4379
4380 static __printf(6, 0) struct device *
device_create_groups_vargs(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4381 device_create_groups_vargs(const struct class *class, struct device *parent,
4382 dev_t devt, void *drvdata,
4383 const struct attribute_group **groups,
4384 const char *fmt, va_list args)
4385 {
4386 struct device *dev = NULL;
4387 int retval = -ENODEV;
4388
4389 if (IS_ERR_OR_NULL(class))
4390 goto error;
4391
4392 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4393 if (!dev) {
4394 retval = -ENOMEM;
4395 goto error;
4396 }
4397
4398 device_initialize(dev);
4399 dev->devt = devt;
4400 dev->class = class;
4401 dev->parent = parent;
4402 dev->groups = groups;
4403 dev->release = device_create_release;
4404 dev_set_drvdata(dev, drvdata);
4405
4406 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4407 if (retval)
4408 goto error;
4409
4410 retval = device_add(dev);
4411 if (retval)
4412 goto error;
4413
4414 return dev;
4415
4416 error:
4417 put_device(dev);
4418 return ERR_PTR(retval);
4419 }
4420
4421 /**
4422 * device_create - creates a device and registers it with sysfs
4423 * @class: pointer to the struct class that this device should be registered to
4424 * @parent: pointer to the parent struct device of this new device, if any
4425 * @devt: the dev_t for the char device to be added
4426 * @drvdata: the data to be added to the device for callbacks
4427 * @fmt: string for the device's name
4428 *
4429 * This function can be used by char device classes. A struct device
4430 * will be created in sysfs, registered to the specified class.
4431 *
4432 * A "dev" file will be created, showing the dev_t for the device, if
4433 * the dev_t is not 0,0.
4434 * If a pointer to a parent struct device is passed in, the newly created
4435 * struct device will be a child of that device in sysfs.
4436 * The pointer to the struct device will be returned from the call.
4437 * Any further sysfs files that might be required can be created using this
4438 * pointer.
4439 *
4440 * Returns &struct device pointer on success, or ERR_PTR() on error.
4441 */
device_create(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4442 struct device *device_create(const struct class *class, struct device *parent,
4443 dev_t devt, void *drvdata, const char *fmt, ...)
4444 {
4445 va_list vargs;
4446 struct device *dev;
4447
4448 va_start(vargs, fmt);
4449 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4450 fmt, vargs);
4451 va_end(vargs);
4452 return dev;
4453 }
4454 EXPORT_SYMBOL_GPL(device_create);
4455
4456 /**
4457 * device_create_with_groups - creates a device and registers it with sysfs
4458 * @class: pointer to the struct class that this device should be registered to
4459 * @parent: pointer to the parent struct device of this new device, if any
4460 * @devt: the dev_t for the char device to be added
4461 * @drvdata: the data to be added to the device for callbacks
4462 * @groups: NULL-terminated list of attribute groups to be created
4463 * @fmt: string for the device's name
4464 *
4465 * This function can be used by char device classes. A struct device
4466 * will be created in sysfs, registered to the specified class.
4467 * Additional attributes specified in the groups parameter will also
4468 * be created automatically.
4469 *
4470 * A "dev" file will be created, showing the dev_t for the device, if
4471 * the dev_t is not 0,0.
4472 * If a pointer to a parent struct device is passed in, the newly created
4473 * struct device will be a child of that device in sysfs.
4474 * The pointer to the struct device will be returned from the call.
4475 * Any further sysfs files that might be required can be created using this
4476 * pointer.
4477 *
4478 * Returns &struct device pointer on success, or ERR_PTR() on error.
4479 */
device_create_with_groups(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4480 struct device *device_create_with_groups(const struct class *class,
4481 struct device *parent, dev_t devt,
4482 void *drvdata,
4483 const struct attribute_group **groups,
4484 const char *fmt, ...)
4485 {
4486 va_list vargs;
4487 struct device *dev;
4488
4489 va_start(vargs, fmt);
4490 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4491 fmt, vargs);
4492 va_end(vargs);
4493 return dev;
4494 }
4495 EXPORT_SYMBOL_GPL(device_create_with_groups);
4496
4497 /**
4498 * device_destroy - removes a device that was created with device_create()
4499 * @class: pointer to the struct class that this device was registered with
4500 * @devt: the dev_t of the device that was previously registered
4501 *
4502 * This call unregisters and cleans up a device that was created with a
4503 * call to device_create().
4504 */
device_destroy(const struct class * class,dev_t devt)4505 void device_destroy(const struct class *class, dev_t devt)
4506 {
4507 struct device *dev;
4508
4509 dev = class_find_device_by_devt(class, devt);
4510 if (dev) {
4511 put_device(dev);
4512 device_unregister(dev);
4513 }
4514 }
4515 EXPORT_SYMBOL_GPL(device_destroy);
4516
4517 /**
4518 * device_rename - renames a device
4519 * @dev: the pointer to the struct device to be renamed
4520 * @new_name: the new name of the device
4521 *
4522 * It is the responsibility of the caller to provide mutual
4523 * exclusion between two different calls of device_rename
4524 * on the same device to ensure that new_name is valid and
4525 * won't conflict with other devices.
4526 *
4527 * Note: given that some subsystems (networking and infiniband) use this
4528 * function, with no immediate plans for this to change, we cannot assume or
4529 * require that this function not be called at all.
4530 *
4531 * However, if you're writing new code, do not call this function. The following
4532 * text from Kay Sievers offers some insight:
4533 *
4534 * Renaming devices is racy at many levels, symlinks and other stuff are not
4535 * replaced atomically, and you get a "move" uevent, but it's not easy to
4536 * connect the event to the old and new device. Device nodes are not renamed at
4537 * all, there isn't even support for that in the kernel now.
4538 *
4539 * In the meantime, during renaming, your target name might be taken by another
4540 * driver, creating conflicts. Or the old name is taken directly after you
4541 * renamed it -- then you get events for the same DEVPATH, before you even see
4542 * the "move" event. It's just a mess, and nothing new should ever rely on
4543 * kernel device renaming. Besides that, it's not even implemented now for
4544 * other things than (driver-core wise very simple) network devices.
4545 *
4546 * Make up a "real" name in the driver before you register anything, or add
4547 * some other attributes for userspace to find the device, or use udev to add
4548 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4549 * don't even want to get into that and try to implement the missing pieces in
4550 * the core. We really have other pieces to fix in the driver core mess. :)
4551 */
device_rename(struct device * dev,const char * new_name)4552 int device_rename(struct device *dev, const char *new_name)
4553 {
4554 struct subsys_private *sp = NULL;
4555 struct kobject *kobj = &dev->kobj;
4556 char *old_device_name = NULL;
4557 int error;
4558 bool is_link_renamed = false;
4559
4560 dev = get_device(dev);
4561 if (!dev)
4562 return -EINVAL;
4563
4564 dev_dbg(dev, "renaming to %s\n", new_name);
4565
4566 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4567 if (!old_device_name) {
4568 error = -ENOMEM;
4569 goto out;
4570 }
4571
4572 if (dev->class) {
4573 sp = class_to_subsys(dev->class);
4574
4575 if (!sp) {
4576 error = -EINVAL;
4577 goto out;
4578 }
4579
4580 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4581 new_name, kobject_namespace(kobj));
4582 if (error)
4583 goto out;
4584
4585 is_link_renamed = true;
4586 }
4587
4588 error = kobject_rename(kobj, new_name);
4589 out:
4590 if (error && is_link_renamed)
4591 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4592 old_device_name, kobject_namespace(kobj));
4593 subsys_put(sp);
4594
4595 put_device(dev);
4596
4597 kfree(old_device_name);
4598
4599 return error;
4600 }
4601 EXPORT_SYMBOL_GPL(device_rename);
4602
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4603 static int device_move_class_links(struct device *dev,
4604 struct device *old_parent,
4605 struct device *new_parent)
4606 {
4607 int error = 0;
4608
4609 if (old_parent)
4610 sysfs_remove_link(&dev->kobj, "device");
4611 if (new_parent)
4612 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4613 "device");
4614 return error;
4615 }
4616
4617 /**
4618 * device_move - moves a device to a new parent
4619 * @dev: the pointer to the struct device to be moved
4620 * @new_parent: the new parent of the device (can be NULL)
4621 * @dpm_order: how to reorder the dpm_list
4622 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4623 int device_move(struct device *dev, struct device *new_parent,
4624 enum dpm_order dpm_order)
4625 {
4626 int error;
4627 struct device *old_parent;
4628 struct kobject *new_parent_kobj;
4629
4630 dev = get_device(dev);
4631 if (!dev)
4632 return -EINVAL;
4633
4634 device_pm_lock();
4635 new_parent = get_device(new_parent);
4636 new_parent_kobj = get_device_parent(dev, new_parent);
4637 if (IS_ERR(new_parent_kobj)) {
4638 error = PTR_ERR(new_parent_kobj);
4639 put_device(new_parent);
4640 goto out;
4641 }
4642
4643 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4644 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4645 error = kobject_move(&dev->kobj, new_parent_kobj);
4646 if (error) {
4647 cleanup_glue_dir(dev, new_parent_kobj);
4648 put_device(new_parent);
4649 goto out;
4650 }
4651 old_parent = dev->parent;
4652 dev->parent = new_parent;
4653 if (old_parent)
4654 klist_remove(&dev->p->knode_parent);
4655 if (new_parent) {
4656 klist_add_tail(&dev->p->knode_parent,
4657 &new_parent->p->klist_children);
4658 set_dev_node(dev, dev_to_node(new_parent));
4659 }
4660
4661 if (dev->class) {
4662 error = device_move_class_links(dev, old_parent, new_parent);
4663 if (error) {
4664 /* We ignore errors on cleanup since we're hosed anyway... */
4665 device_move_class_links(dev, new_parent, old_parent);
4666 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4667 if (new_parent)
4668 klist_remove(&dev->p->knode_parent);
4669 dev->parent = old_parent;
4670 if (old_parent) {
4671 klist_add_tail(&dev->p->knode_parent,
4672 &old_parent->p->klist_children);
4673 set_dev_node(dev, dev_to_node(old_parent));
4674 }
4675 }
4676 cleanup_glue_dir(dev, new_parent_kobj);
4677 put_device(new_parent);
4678 goto out;
4679 }
4680 }
4681 switch (dpm_order) {
4682 case DPM_ORDER_NONE:
4683 break;
4684 case DPM_ORDER_DEV_AFTER_PARENT:
4685 device_pm_move_after(dev, new_parent);
4686 devices_kset_move_after(dev, new_parent);
4687 break;
4688 case DPM_ORDER_PARENT_BEFORE_DEV:
4689 device_pm_move_before(new_parent, dev);
4690 devices_kset_move_before(new_parent, dev);
4691 break;
4692 case DPM_ORDER_DEV_LAST:
4693 device_pm_move_last(dev);
4694 devices_kset_move_last(dev);
4695 break;
4696 }
4697
4698 put_device(old_parent);
4699 out:
4700 device_pm_unlock();
4701 put_device(dev);
4702 return error;
4703 }
4704 EXPORT_SYMBOL_GPL(device_move);
4705
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4706 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4707 kgid_t kgid)
4708 {
4709 struct kobject *kobj = &dev->kobj;
4710 const struct class *class = dev->class;
4711 const struct device_type *type = dev->type;
4712 int error;
4713
4714 if (class) {
4715 /*
4716 * Change the device groups of the device class for @dev to
4717 * @kuid/@kgid.
4718 */
4719 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4720 kgid);
4721 if (error)
4722 return error;
4723 }
4724
4725 if (type) {
4726 /*
4727 * Change the device groups of the device type for @dev to
4728 * @kuid/@kgid.
4729 */
4730 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4731 kgid);
4732 if (error)
4733 return error;
4734 }
4735
4736 /* Change the device groups of @dev to @kuid/@kgid. */
4737 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4738 if (error)
4739 return error;
4740
4741 if (device_supports_offline(dev) && !dev->offline_disabled) {
4742 /* Change online device attributes of @dev to @kuid/@kgid. */
4743 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4744 kuid, kgid);
4745 if (error)
4746 return error;
4747 }
4748
4749 return 0;
4750 }
4751
4752 /**
4753 * device_change_owner - change the owner of an existing device.
4754 * @dev: device.
4755 * @kuid: new owner's kuid
4756 * @kgid: new owner's kgid
4757 *
4758 * This changes the owner of @dev and its corresponding sysfs entries to
4759 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4760 * core.
4761 *
4762 * Returns 0 on success or error code on failure.
4763 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4764 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4765 {
4766 int error;
4767 struct kobject *kobj = &dev->kobj;
4768 struct subsys_private *sp;
4769
4770 dev = get_device(dev);
4771 if (!dev)
4772 return -EINVAL;
4773
4774 /*
4775 * Change the kobject and the default attributes and groups of the
4776 * ktype associated with it to @kuid/@kgid.
4777 */
4778 error = sysfs_change_owner(kobj, kuid, kgid);
4779 if (error)
4780 goto out;
4781
4782 /*
4783 * Change the uevent file for @dev to the new owner. The uevent file
4784 * was created in a separate step when @dev got added and we mirror
4785 * that step here.
4786 */
4787 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4788 kgid);
4789 if (error)
4790 goto out;
4791
4792 /*
4793 * Change the device groups, the device groups associated with the
4794 * device class, and the groups associated with the device type of @dev
4795 * to @kuid/@kgid.
4796 */
4797 error = device_attrs_change_owner(dev, kuid, kgid);
4798 if (error)
4799 goto out;
4800
4801 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4802 if (error)
4803 goto out;
4804
4805 /*
4806 * Change the owner of the symlink located in the class directory of
4807 * the device class associated with @dev which points to the actual
4808 * directory entry for @dev to @kuid/@kgid. This ensures that the
4809 * symlink shows the same permissions as its target.
4810 */
4811 sp = class_to_subsys(dev->class);
4812 if (!sp) {
4813 error = -EINVAL;
4814 goto out;
4815 }
4816 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4817 subsys_put(sp);
4818
4819 out:
4820 put_device(dev);
4821 return error;
4822 }
4823 EXPORT_SYMBOL_GPL(device_change_owner);
4824
4825 /**
4826 * device_shutdown - call ->shutdown() on each device to shutdown.
4827 */
device_shutdown(void)4828 void device_shutdown(void)
4829 {
4830 struct device *dev, *parent;
4831
4832 wait_for_device_probe();
4833 device_block_probing();
4834
4835 cpufreq_suspend();
4836
4837 spin_lock(&devices_kset->list_lock);
4838 /*
4839 * Walk the devices list backward, shutting down each in turn.
4840 * Beware that device unplug events may also start pulling
4841 * devices offline, even as the system is shutting down.
4842 */
4843 while (!list_empty(&devices_kset->list)) {
4844 dev = list_entry(devices_kset->list.prev, struct device,
4845 kobj.entry);
4846
4847 /*
4848 * hold reference count of device's parent to
4849 * prevent it from being freed because parent's
4850 * lock is to be held
4851 */
4852 parent = get_device(dev->parent);
4853 get_device(dev);
4854 /*
4855 * Make sure the device is off the kset list, in the
4856 * event that dev->*->shutdown() doesn't remove it.
4857 */
4858 list_del_init(&dev->kobj.entry);
4859 spin_unlock(&devices_kset->list_lock);
4860
4861 /* hold lock to avoid race with probe/release */
4862 if (parent)
4863 device_lock(parent);
4864 device_lock(dev);
4865
4866 /* Don't allow any more runtime suspends */
4867 pm_runtime_get_noresume(dev);
4868 pm_runtime_barrier(dev);
4869
4870 if (dev->class && dev->class->shutdown_pre) {
4871 if (initcall_debug)
4872 dev_info(dev, "shutdown_pre\n");
4873 dev->class->shutdown_pre(dev);
4874 }
4875 if (dev->bus && dev->bus->shutdown) {
4876 if (initcall_debug)
4877 dev_info(dev, "shutdown\n");
4878 dev->bus->shutdown(dev);
4879 } else if (dev->driver && dev->driver->shutdown) {
4880 if (initcall_debug)
4881 dev_info(dev, "shutdown\n");
4882 dev->driver->shutdown(dev);
4883 }
4884
4885 device_unlock(dev);
4886 if (parent)
4887 device_unlock(parent);
4888
4889 put_device(dev);
4890 put_device(parent);
4891
4892 spin_lock(&devices_kset->list_lock);
4893 }
4894 spin_unlock(&devices_kset->list_lock);
4895 }
4896
4897 /*
4898 * Device logging functions
4899 */
4900
4901 #ifdef CONFIG_PRINTK
4902 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4903 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4904 {
4905 const char *subsys;
4906
4907 memset(dev_info, 0, sizeof(*dev_info));
4908
4909 if (dev->class)
4910 subsys = dev->class->name;
4911 else if (dev->bus)
4912 subsys = dev->bus->name;
4913 else
4914 return;
4915
4916 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4917
4918 /*
4919 * Add device identifier DEVICE=:
4920 * b12:8 block dev_t
4921 * c127:3 char dev_t
4922 * n8 netdev ifindex
4923 * +sound:card0 subsystem:devname
4924 */
4925 if (MAJOR(dev->devt)) {
4926 char c;
4927
4928 if (strcmp(subsys, "block") == 0)
4929 c = 'b';
4930 else
4931 c = 'c';
4932
4933 snprintf(dev_info->device, sizeof(dev_info->device),
4934 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4935 } else if (strcmp(subsys, "net") == 0) {
4936 struct net_device *net = to_net_dev(dev);
4937
4938 snprintf(dev_info->device, sizeof(dev_info->device),
4939 "n%u", net->ifindex);
4940 } else {
4941 snprintf(dev_info->device, sizeof(dev_info->device),
4942 "+%s:%s", subsys, dev_name(dev));
4943 }
4944 }
4945
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4946 int dev_vprintk_emit(int level, const struct device *dev,
4947 const char *fmt, va_list args)
4948 {
4949 struct dev_printk_info dev_info;
4950
4951 set_dev_info(dev, &dev_info);
4952
4953 return vprintk_emit(0, level, &dev_info, fmt, args);
4954 }
4955 EXPORT_SYMBOL(dev_vprintk_emit);
4956
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4957 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4958 {
4959 va_list args;
4960 int r;
4961
4962 va_start(args, fmt);
4963
4964 r = dev_vprintk_emit(level, dev, fmt, args);
4965
4966 va_end(args);
4967
4968 return r;
4969 }
4970 EXPORT_SYMBOL(dev_printk_emit);
4971
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4972 static void __dev_printk(const char *level, const struct device *dev,
4973 struct va_format *vaf)
4974 {
4975 if (dev)
4976 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4977 dev_driver_string(dev), dev_name(dev), vaf);
4978 else
4979 printk("%s(NULL device *): %pV", level, vaf);
4980 }
4981
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4982 void _dev_printk(const char *level, const struct device *dev,
4983 const char *fmt, ...)
4984 {
4985 struct va_format vaf;
4986 va_list args;
4987
4988 va_start(args, fmt);
4989
4990 vaf.fmt = fmt;
4991 vaf.va = &args;
4992
4993 __dev_printk(level, dev, &vaf);
4994
4995 va_end(args);
4996 }
4997 EXPORT_SYMBOL(_dev_printk);
4998
4999 #define define_dev_printk_level(func, kern_level) \
5000 void func(const struct device *dev, const char *fmt, ...) \
5001 { \
5002 struct va_format vaf; \
5003 va_list args; \
5004 \
5005 va_start(args, fmt); \
5006 \
5007 vaf.fmt = fmt; \
5008 vaf.va = &args; \
5009 \
5010 __dev_printk(kern_level, dev, &vaf); \
5011 \
5012 va_end(args); \
5013 } \
5014 EXPORT_SYMBOL(func);
5015
5016 define_dev_printk_level(_dev_emerg, KERN_EMERG);
5017 define_dev_printk_level(_dev_alert, KERN_ALERT);
5018 define_dev_printk_level(_dev_crit, KERN_CRIT);
5019 define_dev_printk_level(_dev_err, KERN_ERR);
5020 define_dev_printk_level(_dev_warn, KERN_WARNING);
5021 define_dev_printk_level(_dev_notice, KERN_NOTICE);
5022 define_dev_printk_level(_dev_info, KERN_INFO);
5023
5024 #endif
5025
5026 /**
5027 * dev_err_probe - probe error check and log helper
5028 * @dev: the pointer to the struct device
5029 * @err: error value to test
5030 * @fmt: printf-style format string
5031 * @...: arguments as specified in the format string
5032 *
5033 * This helper implements common pattern present in probe functions for error
5034 * checking: print debug or error message depending if the error value is
5035 * -EPROBE_DEFER and propagate error upwards.
5036 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5037 * checked later by reading devices_deferred debugfs attribute.
5038 * It replaces code sequence::
5039 *
5040 * if (err != -EPROBE_DEFER)
5041 * dev_err(dev, ...);
5042 * else
5043 * dev_dbg(dev, ...);
5044 * return err;
5045 *
5046 * with::
5047 *
5048 * return dev_err_probe(dev, err, ...);
5049 *
5050 * Note that it is deemed acceptable to use this function for error
5051 * prints during probe even if the @err is known to never be -EPROBE_DEFER.
5052 * The benefit compared to a normal dev_err() is the standardized format
5053 * of the error code and the fact that the error code is returned.
5054 *
5055 * Returns @err.
5056 *
5057 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)5058 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5059 {
5060 struct va_format vaf;
5061 va_list args;
5062
5063 va_start(args, fmt);
5064 vaf.fmt = fmt;
5065 vaf.va = &args;
5066
5067 if (err != -EPROBE_DEFER) {
5068 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5069 } else {
5070 device_set_deferred_probe_reason(dev, &vaf);
5071 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5072 }
5073
5074 va_end(args);
5075
5076 return err;
5077 }
5078 EXPORT_SYMBOL_GPL(dev_err_probe);
5079
fwnode_is_primary(struct fwnode_handle * fwnode)5080 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5081 {
5082 return fwnode && !IS_ERR(fwnode->secondary);
5083 }
5084
5085 /**
5086 * set_primary_fwnode - Change the primary firmware node of a given device.
5087 * @dev: Device to handle.
5088 * @fwnode: New primary firmware node of the device.
5089 *
5090 * Set the device's firmware node pointer to @fwnode, but if a secondary
5091 * firmware node of the device is present, preserve it.
5092 *
5093 * Valid fwnode cases are:
5094 * - primary --> secondary --> -ENODEV
5095 * - primary --> NULL
5096 * - secondary --> -ENODEV
5097 * - NULL
5098 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5099 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5100 {
5101 struct device *parent = dev->parent;
5102 struct fwnode_handle *fn = dev->fwnode;
5103
5104 if (fwnode) {
5105 if (fwnode_is_primary(fn))
5106 fn = fn->secondary;
5107
5108 if (fn) {
5109 WARN_ON(fwnode->secondary);
5110 fwnode->secondary = fn;
5111 }
5112 dev->fwnode = fwnode;
5113 } else {
5114 if (fwnode_is_primary(fn)) {
5115 dev->fwnode = fn->secondary;
5116
5117 /* Skip nullifying fn->secondary if the primary is shared */
5118 if (parent && fn == parent->fwnode)
5119 return;
5120
5121 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5122 fn->secondary = NULL;
5123 } else {
5124 dev->fwnode = NULL;
5125 }
5126 }
5127 }
5128 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5129
5130 /**
5131 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5132 * @dev: Device to handle.
5133 * @fwnode: New secondary firmware node of the device.
5134 *
5135 * If a primary firmware node of the device is present, set its secondary
5136 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5137 * @fwnode.
5138 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5139 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5140 {
5141 if (fwnode)
5142 fwnode->secondary = ERR_PTR(-ENODEV);
5143
5144 if (fwnode_is_primary(dev->fwnode))
5145 dev->fwnode->secondary = fwnode;
5146 else
5147 dev->fwnode = fwnode;
5148 }
5149 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5150
5151 /**
5152 * device_set_of_node_from_dev - reuse device-tree node of another device
5153 * @dev: device whose device-tree node is being set
5154 * @dev2: device whose device-tree node is being reused
5155 *
5156 * Takes another reference to the new device-tree node after first dropping
5157 * any reference held to the old node.
5158 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)5159 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5160 {
5161 of_node_put(dev->of_node);
5162 dev->of_node = of_node_get(dev2->of_node);
5163 dev->of_node_reused = true;
5164 }
5165 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5166
device_set_node(struct device * dev,struct fwnode_handle * fwnode)5167 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5168 {
5169 dev->fwnode = fwnode;
5170 dev->of_node = to_of_node(fwnode);
5171 }
5172 EXPORT_SYMBOL_GPL(device_set_node);
5173
device_match_name(struct device * dev,const void * name)5174 int device_match_name(struct device *dev, const void *name)
5175 {
5176 return sysfs_streq(dev_name(dev), name);
5177 }
5178 EXPORT_SYMBOL_GPL(device_match_name);
5179
device_match_of_node(struct device * dev,const void * np)5180 int device_match_of_node(struct device *dev, const void *np)
5181 {
5182 return dev->of_node == np;
5183 }
5184 EXPORT_SYMBOL_GPL(device_match_of_node);
5185
device_match_fwnode(struct device * dev,const void * fwnode)5186 int device_match_fwnode(struct device *dev, const void *fwnode)
5187 {
5188 return dev_fwnode(dev) == fwnode;
5189 }
5190 EXPORT_SYMBOL_GPL(device_match_fwnode);
5191
device_match_devt(struct device * dev,const void * pdevt)5192 int device_match_devt(struct device *dev, const void *pdevt)
5193 {
5194 return dev->devt == *(dev_t *)pdevt;
5195 }
5196 EXPORT_SYMBOL_GPL(device_match_devt);
5197
device_match_acpi_dev(struct device * dev,const void * adev)5198 int device_match_acpi_dev(struct device *dev, const void *adev)
5199 {
5200 return ACPI_COMPANION(dev) == adev;
5201 }
5202 EXPORT_SYMBOL(device_match_acpi_dev);
5203
device_match_acpi_handle(struct device * dev,const void * handle)5204 int device_match_acpi_handle(struct device *dev, const void *handle)
5205 {
5206 return ACPI_HANDLE(dev) == handle;
5207 }
5208 EXPORT_SYMBOL(device_match_acpi_handle);
5209
device_match_any(struct device * dev,const void * unused)5210 int device_match_any(struct device *dev, const void *unused)
5211 {
5212 return 1;
5213 }
5214 EXPORT_SYMBOL_GPL(device_match_any);
5215