xref: /openbmc/qemu/target/arm/hvf/hvf.c (revision 16549930bb813c36ddf5b8902239b6920eea7687)
1 /*
2  * QEMU Hypervisor.framework support for Apple Silicon
3 
4  * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5  * Copyright 2020 Google LLC
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
14 
15 #include "sysemu/runstate.h"
16 #include "sysemu/hvf.h"
17 #include "sysemu/hvf_int.h"
18 #include "sysemu/hw_accel.h"
19 #include "hvf_arm.h"
20 #include "cpregs.h"
21 
22 #include <mach/mach_time.h>
23 
24 #include "exec/address-spaces.h"
25 #include "hw/boards.h"
26 #include "hw/irq.h"
27 #include "qemu/main-loop.h"
28 #include "sysemu/cpus.h"
29 #include "arm-powerctl.h"
30 #include "target/arm/cpu.h"
31 #include "target/arm/internals.h"
32 #include "target/arm/multiprocessing.h"
33 #include "target/arm/gtimer.h"
34 #include "trace.h"
35 #include "migration/vmstate.h"
36 
37 #include "gdbstub/enums.h"
38 
39 #define MDSCR_EL1_SS_SHIFT  0
40 #define MDSCR_EL1_MDE_SHIFT 15
41 
42 static const uint16_t dbgbcr_regs[] = {
43     HV_SYS_REG_DBGBCR0_EL1,
44     HV_SYS_REG_DBGBCR1_EL1,
45     HV_SYS_REG_DBGBCR2_EL1,
46     HV_SYS_REG_DBGBCR3_EL1,
47     HV_SYS_REG_DBGBCR4_EL1,
48     HV_SYS_REG_DBGBCR5_EL1,
49     HV_SYS_REG_DBGBCR6_EL1,
50     HV_SYS_REG_DBGBCR7_EL1,
51     HV_SYS_REG_DBGBCR8_EL1,
52     HV_SYS_REG_DBGBCR9_EL1,
53     HV_SYS_REG_DBGBCR10_EL1,
54     HV_SYS_REG_DBGBCR11_EL1,
55     HV_SYS_REG_DBGBCR12_EL1,
56     HV_SYS_REG_DBGBCR13_EL1,
57     HV_SYS_REG_DBGBCR14_EL1,
58     HV_SYS_REG_DBGBCR15_EL1,
59 };
60 
61 static const uint16_t dbgbvr_regs[] = {
62     HV_SYS_REG_DBGBVR0_EL1,
63     HV_SYS_REG_DBGBVR1_EL1,
64     HV_SYS_REG_DBGBVR2_EL1,
65     HV_SYS_REG_DBGBVR3_EL1,
66     HV_SYS_REG_DBGBVR4_EL1,
67     HV_SYS_REG_DBGBVR5_EL1,
68     HV_SYS_REG_DBGBVR6_EL1,
69     HV_SYS_REG_DBGBVR7_EL1,
70     HV_SYS_REG_DBGBVR8_EL1,
71     HV_SYS_REG_DBGBVR9_EL1,
72     HV_SYS_REG_DBGBVR10_EL1,
73     HV_SYS_REG_DBGBVR11_EL1,
74     HV_SYS_REG_DBGBVR12_EL1,
75     HV_SYS_REG_DBGBVR13_EL1,
76     HV_SYS_REG_DBGBVR14_EL1,
77     HV_SYS_REG_DBGBVR15_EL1,
78 };
79 
80 static const uint16_t dbgwcr_regs[] = {
81     HV_SYS_REG_DBGWCR0_EL1,
82     HV_SYS_REG_DBGWCR1_EL1,
83     HV_SYS_REG_DBGWCR2_EL1,
84     HV_SYS_REG_DBGWCR3_EL1,
85     HV_SYS_REG_DBGWCR4_EL1,
86     HV_SYS_REG_DBGWCR5_EL1,
87     HV_SYS_REG_DBGWCR6_EL1,
88     HV_SYS_REG_DBGWCR7_EL1,
89     HV_SYS_REG_DBGWCR8_EL1,
90     HV_SYS_REG_DBGWCR9_EL1,
91     HV_SYS_REG_DBGWCR10_EL1,
92     HV_SYS_REG_DBGWCR11_EL1,
93     HV_SYS_REG_DBGWCR12_EL1,
94     HV_SYS_REG_DBGWCR13_EL1,
95     HV_SYS_REG_DBGWCR14_EL1,
96     HV_SYS_REG_DBGWCR15_EL1,
97 };
98 
99 static const uint16_t dbgwvr_regs[] = {
100     HV_SYS_REG_DBGWVR0_EL1,
101     HV_SYS_REG_DBGWVR1_EL1,
102     HV_SYS_REG_DBGWVR2_EL1,
103     HV_SYS_REG_DBGWVR3_EL1,
104     HV_SYS_REG_DBGWVR4_EL1,
105     HV_SYS_REG_DBGWVR5_EL1,
106     HV_SYS_REG_DBGWVR6_EL1,
107     HV_SYS_REG_DBGWVR7_EL1,
108     HV_SYS_REG_DBGWVR8_EL1,
109     HV_SYS_REG_DBGWVR9_EL1,
110     HV_SYS_REG_DBGWVR10_EL1,
111     HV_SYS_REG_DBGWVR11_EL1,
112     HV_SYS_REG_DBGWVR12_EL1,
113     HV_SYS_REG_DBGWVR13_EL1,
114     HV_SYS_REG_DBGWVR14_EL1,
115     HV_SYS_REG_DBGWVR15_EL1,
116 };
117 
hvf_arm_num_brps(hv_vcpu_config_t config)118 static inline int hvf_arm_num_brps(hv_vcpu_config_t config)
119 {
120     uint64_t val;
121     hv_return_t ret;
122     ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
123                                          &val);
124     assert_hvf_ok(ret);
125     return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1;
126 }
127 
hvf_arm_num_wrps(hv_vcpu_config_t config)128 static inline int hvf_arm_num_wrps(hv_vcpu_config_t config)
129 {
130     uint64_t val;
131     hv_return_t ret;
132     ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
133                                          &val);
134     assert_hvf_ok(ret);
135     return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1;
136 }
137 
hvf_arm_init_debug(void)138 void hvf_arm_init_debug(void)
139 {
140     hv_vcpu_config_t config;
141     config = hv_vcpu_config_create();
142 
143     max_hw_bps = hvf_arm_num_brps(config);
144     hw_breakpoints =
145         g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps);
146 
147     max_hw_wps = hvf_arm_num_wrps(config);
148     hw_watchpoints =
149         g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps);
150 }
151 
152 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
153         ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
154 
155 #define SYSREG_OP0_SHIFT      20
156 #define SYSREG_OP0_MASK       0x3
157 #define SYSREG_OP0(sysreg)    ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
158 #define SYSREG_OP1_SHIFT      14
159 #define SYSREG_OP1_MASK       0x7
160 #define SYSREG_OP1(sysreg)    ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
161 #define SYSREG_CRN_SHIFT      10
162 #define SYSREG_CRN_MASK       0xf
163 #define SYSREG_CRN(sysreg)    ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
164 #define SYSREG_CRM_SHIFT      1
165 #define SYSREG_CRM_MASK       0xf
166 #define SYSREG_CRM(sysreg)    ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
167 #define SYSREG_OP2_SHIFT      17
168 #define SYSREG_OP2_MASK       0x7
169 #define SYSREG_OP2(sysreg)    ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
170 
171 #define SYSREG(op0, op1, crn, crm, op2) \
172     ((op0 << SYSREG_OP0_SHIFT) | \
173      (op1 << SYSREG_OP1_SHIFT) | \
174      (crn << SYSREG_CRN_SHIFT) | \
175      (crm << SYSREG_CRM_SHIFT) | \
176      (op2 << SYSREG_OP2_SHIFT))
177 #define SYSREG_MASK \
178     SYSREG(SYSREG_OP0_MASK, \
179            SYSREG_OP1_MASK, \
180            SYSREG_CRN_MASK, \
181            SYSREG_CRM_MASK, \
182            SYSREG_OP2_MASK)
183 #define SYSREG_OSLAR_EL1      SYSREG(2, 0, 1, 0, 4)
184 #define SYSREG_OSLSR_EL1      SYSREG(2, 0, 1, 1, 4)
185 #define SYSREG_OSDLR_EL1      SYSREG(2, 0, 1, 3, 4)
186 #define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
187 #define SYSREG_PMCR_EL0       SYSREG(3, 3, 9, 12, 0)
188 #define SYSREG_PMUSERENR_EL0  SYSREG(3, 3, 9, 14, 0)
189 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
190 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
191 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
192 #define SYSREG_PMOVSCLR_EL0   SYSREG(3, 3, 9, 12, 3)
193 #define SYSREG_PMSWINC_EL0    SYSREG(3, 3, 9, 12, 4)
194 #define SYSREG_PMSELR_EL0     SYSREG(3, 3, 9, 12, 5)
195 #define SYSREG_PMCEID0_EL0    SYSREG(3, 3, 9, 12, 6)
196 #define SYSREG_PMCEID1_EL0    SYSREG(3, 3, 9, 12, 7)
197 #define SYSREG_PMCCNTR_EL0    SYSREG(3, 3, 9, 13, 0)
198 #define SYSREG_PMCCFILTR_EL0  SYSREG(3, 3, 14, 15, 7)
199 
200 #define SYSREG_ICC_AP0R0_EL1     SYSREG(3, 0, 12, 8, 4)
201 #define SYSREG_ICC_AP0R1_EL1     SYSREG(3, 0, 12, 8, 5)
202 #define SYSREG_ICC_AP0R2_EL1     SYSREG(3, 0, 12, 8, 6)
203 #define SYSREG_ICC_AP0R3_EL1     SYSREG(3, 0, 12, 8, 7)
204 #define SYSREG_ICC_AP1R0_EL1     SYSREG(3, 0, 12, 9, 0)
205 #define SYSREG_ICC_AP1R1_EL1     SYSREG(3, 0, 12, 9, 1)
206 #define SYSREG_ICC_AP1R2_EL1     SYSREG(3, 0, 12, 9, 2)
207 #define SYSREG_ICC_AP1R3_EL1     SYSREG(3, 0, 12, 9, 3)
208 #define SYSREG_ICC_ASGI1R_EL1    SYSREG(3, 0, 12, 11, 6)
209 #define SYSREG_ICC_BPR0_EL1      SYSREG(3, 0, 12, 8, 3)
210 #define SYSREG_ICC_BPR1_EL1      SYSREG(3, 0, 12, 12, 3)
211 #define SYSREG_ICC_CTLR_EL1      SYSREG(3, 0, 12, 12, 4)
212 #define SYSREG_ICC_DIR_EL1       SYSREG(3, 0, 12, 11, 1)
213 #define SYSREG_ICC_EOIR0_EL1     SYSREG(3, 0, 12, 8, 1)
214 #define SYSREG_ICC_EOIR1_EL1     SYSREG(3, 0, 12, 12, 1)
215 #define SYSREG_ICC_HPPIR0_EL1    SYSREG(3, 0, 12, 8, 2)
216 #define SYSREG_ICC_HPPIR1_EL1    SYSREG(3, 0, 12, 12, 2)
217 #define SYSREG_ICC_IAR0_EL1      SYSREG(3, 0, 12, 8, 0)
218 #define SYSREG_ICC_IAR1_EL1      SYSREG(3, 0, 12, 12, 0)
219 #define SYSREG_ICC_IGRPEN0_EL1   SYSREG(3, 0, 12, 12, 6)
220 #define SYSREG_ICC_IGRPEN1_EL1   SYSREG(3, 0, 12, 12, 7)
221 #define SYSREG_ICC_PMR_EL1       SYSREG(3, 0, 4, 6, 0)
222 #define SYSREG_ICC_RPR_EL1       SYSREG(3, 0, 12, 11, 3)
223 #define SYSREG_ICC_SGI0R_EL1     SYSREG(3, 0, 12, 11, 7)
224 #define SYSREG_ICC_SGI1R_EL1     SYSREG(3, 0, 12, 11, 5)
225 #define SYSREG_ICC_SRE_EL1       SYSREG(3, 0, 12, 12, 5)
226 
227 #define SYSREG_MDSCR_EL1      SYSREG(2, 0, 0, 2, 2)
228 #define SYSREG_DBGBVR0_EL1    SYSREG(2, 0, 0, 0, 4)
229 #define SYSREG_DBGBCR0_EL1    SYSREG(2, 0, 0, 0, 5)
230 #define SYSREG_DBGWVR0_EL1    SYSREG(2, 0, 0, 0, 6)
231 #define SYSREG_DBGWCR0_EL1    SYSREG(2, 0, 0, 0, 7)
232 #define SYSREG_DBGBVR1_EL1    SYSREG(2, 0, 0, 1, 4)
233 #define SYSREG_DBGBCR1_EL1    SYSREG(2, 0, 0, 1, 5)
234 #define SYSREG_DBGWVR1_EL1    SYSREG(2, 0, 0, 1, 6)
235 #define SYSREG_DBGWCR1_EL1    SYSREG(2, 0, 0, 1, 7)
236 #define SYSREG_DBGBVR2_EL1    SYSREG(2, 0, 0, 2, 4)
237 #define SYSREG_DBGBCR2_EL1    SYSREG(2, 0, 0, 2, 5)
238 #define SYSREG_DBGWVR2_EL1    SYSREG(2, 0, 0, 2, 6)
239 #define SYSREG_DBGWCR2_EL1    SYSREG(2, 0, 0, 2, 7)
240 #define SYSREG_DBGBVR3_EL1    SYSREG(2, 0, 0, 3, 4)
241 #define SYSREG_DBGBCR3_EL1    SYSREG(2, 0, 0, 3, 5)
242 #define SYSREG_DBGWVR3_EL1    SYSREG(2, 0, 0, 3, 6)
243 #define SYSREG_DBGWCR3_EL1    SYSREG(2, 0, 0, 3, 7)
244 #define SYSREG_DBGBVR4_EL1    SYSREG(2, 0, 0, 4, 4)
245 #define SYSREG_DBGBCR4_EL1    SYSREG(2, 0, 0, 4, 5)
246 #define SYSREG_DBGWVR4_EL1    SYSREG(2, 0, 0, 4, 6)
247 #define SYSREG_DBGWCR4_EL1    SYSREG(2, 0, 0, 4, 7)
248 #define SYSREG_DBGBVR5_EL1    SYSREG(2, 0, 0, 5, 4)
249 #define SYSREG_DBGBCR5_EL1    SYSREG(2, 0, 0, 5, 5)
250 #define SYSREG_DBGWVR5_EL1    SYSREG(2, 0, 0, 5, 6)
251 #define SYSREG_DBGWCR5_EL1    SYSREG(2, 0, 0, 5, 7)
252 #define SYSREG_DBGBVR6_EL1    SYSREG(2, 0, 0, 6, 4)
253 #define SYSREG_DBGBCR6_EL1    SYSREG(2, 0, 0, 6, 5)
254 #define SYSREG_DBGWVR6_EL1    SYSREG(2, 0, 0, 6, 6)
255 #define SYSREG_DBGWCR6_EL1    SYSREG(2, 0, 0, 6, 7)
256 #define SYSREG_DBGBVR7_EL1    SYSREG(2, 0, 0, 7, 4)
257 #define SYSREG_DBGBCR7_EL1    SYSREG(2, 0, 0, 7, 5)
258 #define SYSREG_DBGWVR7_EL1    SYSREG(2, 0, 0, 7, 6)
259 #define SYSREG_DBGWCR7_EL1    SYSREG(2, 0, 0, 7, 7)
260 #define SYSREG_DBGBVR8_EL1    SYSREG(2, 0, 0, 8, 4)
261 #define SYSREG_DBGBCR8_EL1    SYSREG(2, 0, 0, 8, 5)
262 #define SYSREG_DBGWVR8_EL1    SYSREG(2, 0, 0, 8, 6)
263 #define SYSREG_DBGWCR8_EL1    SYSREG(2, 0, 0, 8, 7)
264 #define SYSREG_DBGBVR9_EL1    SYSREG(2, 0, 0, 9, 4)
265 #define SYSREG_DBGBCR9_EL1    SYSREG(2, 0, 0, 9, 5)
266 #define SYSREG_DBGWVR9_EL1    SYSREG(2, 0, 0, 9, 6)
267 #define SYSREG_DBGWCR9_EL1    SYSREG(2, 0, 0, 9, 7)
268 #define SYSREG_DBGBVR10_EL1   SYSREG(2, 0, 0, 10, 4)
269 #define SYSREG_DBGBCR10_EL1   SYSREG(2, 0, 0, 10, 5)
270 #define SYSREG_DBGWVR10_EL1   SYSREG(2, 0, 0, 10, 6)
271 #define SYSREG_DBGWCR10_EL1   SYSREG(2, 0, 0, 10, 7)
272 #define SYSREG_DBGBVR11_EL1   SYSREG(2, 0, 0, 11, 4)
273 #define SYSREG_DBGBCR11_EL1   SYSREG(2, 0, 0, 11, 5)
274 #define SYSREG_DBGWVR11_EL1   SYSREG(2, 0, 0, 11, 6)
275 #define SYSREG_DBGWCR11_EL1   SYSREG(2, 0, 0, 11, 7)
276 #define SYSREG_DBGBVR12_EL1   SYSREG(2, 0, 0, 12, 4)
277 #define SYSREG_DBGBCR12_EL1   SYSREG(2, 0, 0, 12, 5)
278 #define SYSREG_DBGWVR12_EL1   SYSREG(2, 0, 0, 12, 6)
279 #define SYSREG_DBGWCR12_EL1   SYSREG(2, 0, 0, 12, 7)
280 #define SYSREG_DBGBVR13_EL1   SYSREG(2, 0, 0, 13, 4)
281 #define SYSREG_DBGBCR13_EL1   SYSREG(2, 0, 0, 13, 5)
282 #define SYSREG_DBGWVR13_EL1   SYSREG(2, 0, 0, 13, 6)
283 #define SYSREG_DBGWCR13_EL1   SYSREG(2, 0, 0, 13, 7)
284 #define SYSREG_DBGBVR14_EL1   SYSREG(2, 0, 0, 14, 4)
285 #define SYSREG_DBGBCR14_EL1   SYSREG(2, 0, 0, 14, 5)
286 #define SYSREG_DBGWVR14_EL1   SYSREG(2, 0, 0, 14, 6)
287 #define SYSREG_DBGWCR14_EL1   SYSREG(2, 0, 0, 14, 7)
288 #define SYSREG_DBGBVR15_EL1   SYSREG(2, 0, 0, 15, 4)
289 #define SYSREG_DBGBCR15_EL1   SYSREG(2, 0, 0, 15, 5)
290 #define SYSREG_DBGWVR15_EL1   SYSREG(2, 0, 0, 15, 6)
291 #define SYSREG_DBGWCR15_EL1   SYSREG(2, 0, 0, 15, 7)
292 
293 #define WFX_IS_WFE (1 << 0)
294 
295 #define TMR_CTL_ENABLE  (1 << 0)
296 #define TMR_CTL_IMASK   (1 << 1)
297 #define TMR_CTL_ISTATUS (1 << 2)
298 
299 static void hvf_wfi(CPUState *cpu);
300 
301 static uint32_t chosen_ipa_bit_size;
302 
303 typedef struct HVFVTimer {
304     /* Vtimer value during migration and paused state */
305     uint64_t vtimer_val;
306 } HVFVTimer;
307 
308 static HVFVTimer vtimer;
309 
310 typedef struct ARMHostCPUFeatures {
311     ARMISARegisters isar;
312     uint64_t features;
313     uint64_t midr;
314     uint32_t reset_sctlr;
315     const char *dtb_compatible;
316 } ARMHostCPUFeatures;
317 
318 static ARMHostCPUFeatures arm_host_cpu_features;
319 
320 struct hvf_reg_match {
321     int reg;
322     uint64_t offset;
323 };
324 
325 static const struct hvf_reg_match hvf_reg_match[] = {
326     { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
327     { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
328     { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
329     { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
330     { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
331     { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
332     { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
333     { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
334     { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
335     { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
336     { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
337     { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
338     { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
339     { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
340     { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
341     { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
342     { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
343     { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
344     { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
345     { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
346     { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
347     { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
348     { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
349     { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
350     { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
351     { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
352     { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
353     { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
354     { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
355     { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
356     { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
357     { HV_REG_PC,   offsetof(CPUARMState, pc) },
358 };
359 
360 static const struct hvf_reg_match hvf_fpreg_match[] = {
361     { HV_SIMD_FP_REG_Q0,  offsetof(CPUARMState, vfp.zregs[0]) },
362     { HV_SIMD_FP_REG_Q1,  offsetof(CPUARMState, vfp.zregs[1]) },
363     { HV_SIMD_FP_REG_Q2,  offsetof(CPUARMState, vfp.zregs[2]) },
364     { HV_SIMD_FP_REG_Q3,  offsetof(CPUARMState, vfp.zregs[3]) },
365     { HV_SIMD_FP_REG_Q4,  offsetof(CPUARMState, vfp.zregs[4]) },
366     { HV_SIMD_FP_REG_Q5,  offsetof(CPUARMState, vfp.zregs[5]) },
367     { HV_SIMD_FP_REG_Q6,  offsetof(CPUARMState, vfp.zregs[6]) },
368     { HV_SIMD_FP_REG_Q7,  offsetof(CPUARMState, vfp.zregs[7]) },
369     { HV_SIMD_FP_REG_Q8,  offsetof(CPUARMState, vfp.zregs[8]) },
370     { HV_SIMD_FP_REG_Q9,  offsetof(CPUARMState, vfp.zregs[9]) },
371     { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
372     { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
373     { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
374     { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
375     { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
376     { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
377     { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
378     { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
379     { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
380     { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
381     { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
382     { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
383     { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
384     { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
385     { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
386     { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
387     { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
388     { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
389     { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
390     { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
391     { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
392     { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
393 };
394 
395 struct hvf_sreg_match {
396     int reg;
397     uint32_t key;
398     uint32_t cp_idx;
399 };
400 
401 static struct hvf_sreg_match hvf_sreg_match[] = {
402     { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 2, 0, 4) },
403     { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 2, 0, 5) },
404     { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 2, 0, 6) },
405     { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 2, 0, 7) },
406 
407     { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 2, 0, 4) },
408     { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 2, 0, 5) },
409     { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 2, 0, 6) },
410     { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 2, 0, 7) },
411 
412     { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 2, 0, 4) },
413     { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 2, 0, 5) },
414     { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 2, 0, 6) },
415     { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 2, 0, 7) },
416 
417     { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 2, 0, 4) },
418     { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 2, 0, 5) },
419     { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 2, 0, 6) },
420     { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 2, 0, 7) },
421 
422     { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 2, 0, 4) },
423     { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 2, 0, 5) },
424     { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 2, 0, 6) },
425     { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 2, 0, 7) },
426 
427     { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 2, 0, 4) },
428     { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 2, 0, 5) },
429     { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 2, 0, 6) },
430     { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 2, 0, 7) },
431 
432     { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 2, 0, 4) },
433     { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 2, 0, 5) },
434     { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 2, 0, 6) },
435     { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 2, 0, 7) },
436 
437     { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 2, 0, 4) },
438     { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 2, 0, 5) },
439     { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 2, 0, 6) },
440     { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 2, 0, 7) },
441 
442     { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 2, 0, 4) },
443     { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 2, 0, 5) },
444     { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 2, 0, 6) },
445     { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 2, 0, 7) },
446 
447     { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 2, 0, 4) },
448     { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 2, 0, 5) },
449     { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 2, 0, 6) },
450     { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 2, 0, 7) },
451 
452     { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 2, 0, 4) },
453     { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 2, 0, 5) },
454     { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 2, 0, 6) },
455     { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 2, 0, 7) },
456 
457     { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 2, 0, 4) },
458     { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 2, 0, 5) },
459     { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 2, 0, 6) },
460     { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 2, 0, 7) },
461 
462     { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 2, 0, 4) },
463     { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 2, 0, 5) },
464     { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 2, 0, 6) },
465     { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 2, 0, 7) },
466 
467     { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 2, 0, 4) },
468     { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 2, 0, 5) },
469     { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 2, 0, 6) },
470     { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 2, 0, 7) },
471 
472     { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 2, 0, 4) },
473     { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 2, 0, 5) },
474     { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 2, 0, 6) },
475     { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 2, 0, 7) },
476 
477     { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 2, 0, 4) },
478     { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 2, 0, 5) },
479     { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 2, 0, 6) },
480     { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 2, 0, 7) },
481 
482 #ifdef SYNC_NO_RAW_REGS
483     /*
484      * The registers below are manually synced on init because they are
485      * marked as NO_RAW. We still list them to make number space sync easier.
486      */
487     { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
488     { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
489     { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
490     { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
491 #endif
492     { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 1) },
493     { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
494     { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
495     { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
496     { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
497 #ifdef SYNC_NO_MMFR0
498     /* We keep the hardware MMFR0 around. HW limits are there anyway */
499     { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
500 #endif
501     { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
502     { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
503     /* Add ID_AA64MMFR3_EL1 here when HVF supports it */
504 
505     { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
506     { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
507     { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
508     { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
509     { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
510     { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
511 
512     { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
513     { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
514     { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
515     { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
516     { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
517     { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
518     { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
519     { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
520     { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
521     { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
522 
523     { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
524     { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
525     { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
526     { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
527     { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
528     { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
529     { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
530     { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
531     { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
532     { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
533     { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
534     { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
535     { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
536     { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
537     { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
538     { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
539     { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
540     { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
541     { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
542     { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
543 };
544 
hvf_get_registers(CPUState * cpu)545 int hvf_get_registers(CPUState *cpu)
546 {
547     ARMCPU *arm_cpu = ARM_CPU(cpu);
548     CPUARMState *env = &arm_cpu->env;
549     hv_return_t ret;
550     uint64_t val;
551     hv_simd_fp_uchar16_t fpval;
552     int i;
553 
554     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
555         ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val);
556         *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
557         assert_hvf_ok(ret);
558     }
559 
560     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
561         ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
562                                       &fpval);
563         memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
564         assert_hvf_ok(ret);
565     }
566 
567     val = 0;
568     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val);
569     assert_hvf_ok(ret);
570     vfp_set_fpcr(env, val);
571 
572     val = 0;
573     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val);
574     assert_hvf_ok(ret);
575     vfp_set_fpsr(env, val);
576 
577     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val);
578     assert_hvf_ok(ret);
579     pstate_write(env, val);
580 
581     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
582         if (hvf_sreg_match[i].cp_idx == -1) {
583             continue;
584         }
585 
586         if (cpu->accel->guest_debug_enabled) {
587             /* Handle debug registers */
588             switch (hvf_sreg_match[i].reg) {
589             case HV_SYS_REG_DBGBVR0_EL1:
590             case HV_SYS_REG_DBGBCR0_EL1:
591             case HV_SYS_REG_DBGWVR0_EL1:
592             case HV_SYS_REG_DBGWCR0_EL1:
593             case HV_SYS_REG_DBGBVR1_EL1:
594             case HV_SYS_REG_DBGBCR1_EL1:
595             case HV_SYS_REG_DBGWVR1_EL1:
596             case HV_SYS_REG_DBGWCR1_EL1:
597             case HV_SYS_REG_DBGBVR2_EL1:
598             case HV_SYS_REG_DBGBCR2_EL1:
599             case HV_SYS_REG_DBGWVR2_EL1:
600             case HV_SYS_REG_DBGWCR2_EL1:
601             case HV_SYS_REG_DBGBVR3_EL1:
602             case HV_SYS_REG_DBGBCR3_EL1:
603             case HV_SYS_REG_DBGWVR3_EL1:
604             case HV_SYS_REG_DBGWCR3_EL1:
605             case HV_SYS_REG_DBGBVR4_EL1:
606             case HV_SYS_REG_DBGBCR4_EL1:
607             case HV_SYS_REG_DBGWVR4_EL1:
608             case HV_SYS_REG_DBGWCR4_EL1:
609             case HV_SYS_REG_DBGBVR5_EL1:
610             case HV_SYS_REG_DBGBCR5_EL1:
611             case HV_SYS_REG_DBGWVR5_EL1:
612             case HV_SYS_REG_DBGWCR5_EL1:
613             case HV_SYS_REG_DBGBVR6_EL1:
614             case HV_SYS_REG_DBGBCR6_EL1:
615             case HV_SYS_REG_DBGWVR6_EL1:
616             case HV_SYS_REG_DBGWCR6_EL1:
617             case HV_SYS_REG_DBGBVR7_EL1:
618             case HV_SYS_REG_DBGBCR7_EL1:
619             case HV_SYS_REG_DBGWVR7_EL1:
620             case HV_SYS_REG_DBGWCR7_EL1:
621             case HV_SYS_REG_DBGBVR8_EL1:
622             case HV_SYS_REG_DBGBCR8_EL1:
623             case HV_SYS_REG_DBGWVR8_EL1:
624             case HV_SYS_REG_DBGWCR8_EL1:
625             case HV_SYS_REG_DBGBVR9_EL1:
626             case HV_SYS_REG_DBGBCR9_EL1:
627             case HV_SYS_REG_DBGWVR9_EL1:
628             case HV_SYS_REG_DBGWCR9_EL1:
629             case HV_SYS_REG_DBGBVR10_EL1:
630             case HV_SYS_REG_DBGBCR10_EL1:
631             case HV_SYS_REG_DBGWVR10_EL1:
632             case HV_SYS_REG_DBGWCR10_EL1:
633             case HV_SYS_REG_DBGBVR11_EL1:
634             case HV_SYS_REG_DBGBCR11_EL1:
635             case HV_SYS_REG_DBGWVR11_EL1:
636             case HV_SYS_REG_DBGWCR11_EL1:
637             case HV_SYS_REG_DBGBVR12_EL1:
638             case HV_SYS_REG_DBGBCR12_EL1:
639             case HV_SYS_REG_DBGWVR12_EL1:
640             case HV_SYS_REG_DBGWCR12_EL1:
641             case HV_SYS_REG_DBGBVR13_EL1:
642             case HV_SYS_REG_DBGBCR13_EL1:
643             case HV_SYS_REG_DBGWVR13_EL1:
644             case HV_SYS_REG_DBGWCR13_EL1:
645             case HV_SYS_REG_DBGBVR14_EL1:
646             case HV_SYS_REG_DBGBCR14_EL1:
647             case HV_SYS_REG_DBGWVR14_EL1:
648             case HV_SYS_REG_DBGWCR14_EL1:
649             case HV_SYS_REG_DBGBVR15_EL1:
650             case HV_SYS_REG_DBGBCR15_EL1:
651             case HV_SYS_REG_DBGWVR15_EL1:
652             case HV_SYS_REG_DBGWCR15_EL1: {
653                 /*
654                  * If the guest is being debugged, the vCPU's debug registers
655                  * are holding the gdbstub's view of the registers (set in
656                  * hvf_arch_update_guest_debug()).
657                  * Since the environment is used to store only the guest's view
658                  * of the registers, don't update it with the values from the
659                  * vCPU but simply keep the values from the previous
660                  * environment.
661                  */
662                 const ARMCPRegInfo *ri;
663                 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key);
664                 val = read_raw_cp_reg(env, ri);
665 
666                 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
667                 continue;
668             }
669             }
670         }
671 
672         ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val);
673         assert_hvf_ok(ret);
674 
675         arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
676     }
677     assert(write_list_to_cpustate(arm_cpu));
678 
679     aarch64_restore_sp(env, arm_current_el(env));
680 
681     return 0;
682 }
683 
hvf_put_registers(CPUState * cpu)684 int hvf_put_registers(CPUState *cpu)
685 {
686     ARMCPU *arm_cpu = ARM_CPU(cpu);
687     CPUARMState *env = &arm_cpu->env;
688     hv_return_t ret;
689     uint64_t val;
690     hv_simd_fp_uchar16_t fpval;
691     int i;
692 
693     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
694         val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
695         ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val);
696         assert_hvf_ok(ret);
697     }
698 
699     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
700         memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
701         ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
702                                       fpval);
703         assert_hvf_ok(ret);
704     }
705 
706     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env));
707     assert_hvf_ok(ret);
708 
709     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env));
710     assert_hvf_ok(ret);
711 
712     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env));
713     assert_hvf_ok(ret);
714 
715     aarch64_save_sp(env, arm_current_el(env));
716 
717     assert(write_cpustate_to_list(arm_cpu, false));
718     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
719         if (hvf_sreg_match[i].cp_idx == -1) {
720             continue;
721         }
722 
723         if (cpu->accel->guest_debug_enabled) {
724             /* Handle debug registers */
725             switch (hvf_sreg_match[i].reg) {
726             case HV_SYS_REG_DBGBVR0_EL1:
727             case HV_SYS_REG_DBGBCR0_EL1:
728             case HV_SYS_REG_DBGWVR0_EL1:
729             case HV_SYS_REG_DBGWCR0_EL1:
730             case HV_SYS_REG_DBGBVR1_EL1:
731             case HV_SYS_REG_DBGBCR1_EL1:
732             case HV_SYS_REG_DBGWVR1_EL1:
733             case HV_SYS_REG_DBGWCR1_EL1:
734             case HV_SYS_REG_DBGBVR2_EL1:
735             case HV_SYS_REG_DBGBCR2_EL1:
736             case HV_SYS_REG_DBGWVR2_EL1:
737             case HV_SYS_REG_DBGWCR2_EL1:
738             case HV_SYS_REG_DBGBVR3_EL1:
739             case HV_SYS_REG_DBGBCR3_EL1:
740             case HV_SYS_REG_DBGWVR3_EL1:
741             case HV_SYS_REG_DBGWCR3_EL1:
742             case HV_SYS_REG_DBGBVR4_EL1:
743             case HV_SYS_REG_DBGBCR4_EL1:
744             case HV_SYS_REG_DBGWVR4_EL1:
745             case HV_SYS_REG_DBGWCR4_EL1:
746             case HV_SYS_REG_DBGBVR5_EL1:
747             case HV_SYS_REG_DBGBCR5_EL1:
748             case HV_SYS_REG_DBGWVR5_EL1:
749             case HV_SYS_REG_DBGWCR5_EL1:
750             case HV_SYS_REG_DBGBVR6_EL1:
751             case HV_SYS_REG_DBGBCR6_EL1:
752             case HV_SYS_REG_DBGWVR6_EL1:
753             case HV_SYS_REG_DBGWCR6_EL1:
754             case HV_SYS_REG_DBGBVR7_EL1:
755             case HV_SYS_REG_DBGBCR7_EL1:
756             case HV_SYS_REG_DBGWVR7_EL1:
757             case HV_SYS_REG_DBGWCR7_EL1:
758             case HV_SYS_REG_DBGBVR8_EL1:
759             case HV_SYS_REG_DBGBCR8_EL1:
760             case HV_SYS_REG_DBGWVR8_EL1:
761             case HV_SYS_REG_DBGWCR8_EL1:
762             case HV_SYS_REG_DBGBVR9_EL1:
763             case HV_SYS_REG_DBGBCR9_EL1:
764             case HV_SYS_REG_DBGWVR9_EL1:
765             case HV_SYS_REG_DBGWCR9_EL1:
766             case HV_SYS_REG_DBGBVR10_EL1:
767             case HV_SYS_REG_DBGBCR10_EL1:
768             case HV_SYS_REG_DBGWVR10_EL1:
769             case HV_SYS_REG_DBGWCR10_EL1:
770             case HV_SYS_REG_DBGBVR11_EL1:
771             case HV_SYS_REG_DBGBCR11_EL1:
772             case HV_SYS_REG_DBGWVR11_EL1:
773             case HV_SYS_REG_DBGWCR11_EL1:
774             case HV_SYS_REG_DBGBVR12_EL1:
775             case HV_SYS_REG_DBGBCR12_EL1:
776             case HV_SYS_REG_DBGWVR12_EL1:
777             case HV_SYS_REG_DBGWCR12_EL1:
778             case HV_SYS_REG_DBGBVR13_EL1:
779             case HV_SYS_REG_DBGBCR13_EL1:
780             case HV_SYS_REG_DBGWVR13_EL1:
781             case HV_SYS_REG_DBGWCR13_EL1:
782             case HV_SYS_REG_DBGBVR14_EL1:
783             case HV_SYS_REG_DBGBCR14_EL1:
784             case HV_SYS_REG_DBGWVR14_EL1:
785             case HV_SYS_REG_DBGWCR14_EL1:
786             case HV_SYS_REG_DBGBVR15_EL1:
787             case HV_SYS_REG_DBGBCR15_EL1:
788             case HV_SYS_REG_DBGWVR15_EL1:
789             case HV_SYS_REG_DBGWCR15_EL1:
790                 /*
791                  * If the guest is being debugged, the vCPU's debug registers
792                  * are already holding the gdbstub's view of the registers (set
793                  * in hvf_arch_update_guest_debug()).
794                  */
795                 continue;
796             }
797         }
798 
799         val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
800         ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val);
801         assert_hvf_ok(ret);
802     }
803 
804     ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset);
805     assert_hvf_ok(ret);
806 
807     return 0;
808 }
809 
flush_cpu_state(CPUState * cpu)810 static void flush_cpu_state(CPUState *cpu)
811 {
812     if (cpu->accel->dirty) {
813         hvf_put_registers(cpu);
814         cpu->accel->dirty = false;
815     }
816 }
817 
hvf_set_reg(CPUState * cpu,int rt,uint64_t val)818 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
819 {
820     hv_return_t r;
821 
822     flush_cpu_state(cpu);
823 
824     if (rt < 31) {
825         r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val);
826         assert_hvf_ok(r);
827     }
828 }
829 
hvf_get_reg(CPUState * cpu,int rt)830 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
831 {
832     uint64_t val = 0;
833     hv_return_t r;
834 
835     flush_cpu_state(cpu);
836 
837     if (rt < 31) {
838         r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val);
839         assert_hvf_ok(r);
840     }
841 
842     return val;
843 }
844 
clamp_id_aa64mmfr0_parange_to_ipa_size(uint64_t * id_aa64mmfr0)845 static void clamp_id_aa64mmfr0_parange_to_ipa_size(uint64_t *id_aa64mmfr0)
846 {
847     uint32_t ipa_size = chosen_ipa_bit_size ?
848             chosen_ipa_bit_size : hvf_arm_get_max_ipa_bit_size();
849 
850     /* Clamp down the PARange to the IPA size the kernel supports. */
851     uint8_t index = round_down_to_parange_index(ipa_size);
852     *id_aa64mmfr0 = (*id_aa64mmfr0 & ~R_ID_AA64MMFR0_PARANGE_MASK) | index;
853 }
854 
hvf_arm_get_host_cpu_features(ARMHostCPUFeatures * ahcf)855 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
856 {
857     ARMISARegisters host_isar = {};
858     const struct isar_regs {
859         int reg;
860         uint64_t *val;
861     } regs[] = {
862         { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
863         { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
864         { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
865         { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
866         { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
867         { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
868         /* Add ID_AA64ISAR2_EL1 here when HVF supports it */
869         { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
870         { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
871         { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
872         /* Add ID_AA64MMFR3_EL1 here when HVF supports it */
873     };
874     hv_vcpu_t fd;
875     hv_return_t r = HV_SUCCESS;
876     hv_vcpu_exit_t *exit;
877     int i;
878 
879     ahcf->dtb_compatible = "arm,arm-v8";
880     ahcf->features = (1ULL << ARM_FEATURE_V8) |
881                      (1ULL << ARM_FEATURE_NEON) |
882                      (1ULL << ARM_FEATURE_AARCH64) |
883                      (1ULL << ARM_FEATURE_PMU) |
884                      (1ULL << ARM_FEATURE_GENERIC_TIMER);
885 
886     /* We set up a small vcpu to extract host registers */
887 
888     if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
889         return false;
890     }
891 
892     for (i = 0; i < ARRAY_SIZE(regs); i++) {
893         r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
894     }
895     r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
896     r |= hv_vcpu_destroy(fd);
897 
898     clamp_id_aa64mmfr0_parange_to_ipa_size(&host_isar.id_aa64mmfr0);
899 
900     /*
901      * Disable SME, which is not properly handled by QEMU hvf yet.
902      * To allow this through we would need to:
903      * - make sure that the SME state is correctly handled in the
904      *   get_registers/put_registers functions
905      * - get the SME-specific CPU properties to work with accelerators
906      *   other than TCG
907      * - fix any assumptions we made that SME implies SVE (since
908      *   on the M4 there is SME but not SVE)
909      */
910     host_isar.id_aa64pfr1 &= ~R_ID_AA64PFR1_SME_MASK;
911 
912     ahcf->isar = host_isar;
913 
914     /*
915      * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
916      * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
917      */
918     ahcf->reset_sctlr = 0x30100180;
919     /*
920      * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
921      * let's disable it on boot and then allow guest software to turn it on by
922      * setting it to 0.
923      */
924     ahcf->reset_sctlr |= 0x00800000;
925 
926     /* Make sure we don't advertise AArch32 support for EL0/EL1 */
927     if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
928         return false;
929     }
930 
931     return r == HV_SUCCESS;
932 }
933 
hvf_arm_get_default_ipa_bit_size(void)934 uint32_t hvf_arm_get_default_ipa_bit_size(void)
935 {
936     uint32_t default_ipa_size;
937     hv_return_t ret = hv_vm_config_get_default_ipa_size(&default_ipa_size);
938     assert_hvf_ok(ret);
939 
940     return default_ipa_size;
941 }
942 
hvf_arm_get_max_ipa_bit_size(void)943 uint32_t hvf_arm_get_max_ipa_bit_size(void)
944 {
945     uint32_t max_ipa_size;
946     hv_return_t ret = hv_vm_config_get_max_ipa_size(&max_ipa_size);
947     assert_hvf_ok(ret);
948 
949     /*
950      * We clamp any IPA size we want to back the VM with to a valid PARange
951      * value so the guest doesn't try and map memory outside of the valid range.
952      * This logic just clamps the passed in IPA bit size to the first valid
953      * PARange value <= to it.
954      */
955     return round_down_to_parange_bit_size(max_ipa_size);
956 }
957 
hvf_arm_set_cpu_features_from_host(ARMCPU * cpu)958 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
959 {
960     if (!arm_host_cpu_features.dtb_compatible) {
961         if (!hvf_enabled() ||
962             !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
963             /*
964              * We can't report this error yet, so flag that we need to
965              * in arm_cpu_realizefn().
966              */
967             cpu->host_cpu_probe_failed = true;
968             return;
969         }
970     }
971 
972     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
973     cpu->isar = arm_host_cpu_features.isar;
974     cpu->env.features = arm_host_cpu_features.features;
975     cpu->midr = arm_host_cpu_features.midr;
976     cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
977 }
978 
hvf_arch_vcpu_destroy(CPUState * cpu)979 void hvf_arch_vcpu_destroy(CPUState *cpu)
980 {
981 }
982 
hvf_arch_vm_create(MachineState * ms,uint32_t pa_range)983 hv_return_t hvf_arch_vm_create(MachineState *ms, uint32_t pa_range)
984 {
985     hv_return_t ret;
986     hv_vm_config_t config = hv_vm_config_create();
987 
988     ret = hv_vm_config_set_ipa_size(config, pa_range);
989     if (ret != HV_SUCCESS) {
990         goto cleanup;
991     }
992     chosen_ipa_bit_size = pa_range;
993 
994     ret = hv_vm_create(config);
995 
996 cleanup:
997     os_release(config);
998 
999     return ret;
1000 }
1001 
hvf_arch_init_vcpu(CPUState * cpu)1002 int hvf_arch_init_vcpu(CPUState *cpu)
1003 {
1004     ARMCPU *arm_cpu = ARM_CPU(cpu);
1005     CPUARMState *env = &arm_cpu->env;
1006     uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
1007     uint32_t sregs_cnt = 0;
1008     uint64_t pfr;
1009     hv_return_t ret;
1010     int i;
1011 
1012     env->aarch64 = true;
1013     asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
1014 
1015     /* Allocate enough space for our sysreg sync */
1016     arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
1017                                      sregs_match_len);
1018     arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
1019                                     sregs_match_len);
1020     arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
1021                                              arm_cpu->cpreg_vmstate_indexes,
1022                                              sregs_match_len);
1023     arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
1024                                             arm_cpu->cpreg_vmstate_values,
1025                                             sregs_match_len);
1026 
1027     memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
1028 
1029     /* Populate cp list for all known sysregs */
1030     for (i = 0; i < sregs_match_len; i++) {
1031         const ARMCPRegInfo *ri;
1032         uint32_t key = hvf_sreg_match[i].key;
1033 
1034         ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
1035         if (ri) {
1036             assert(!(ri->type & ARM_CP_NO_RAW));
1037             hvf_sreg_match[i].cp_idx = sregs_cnt;
1038             arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
1039         } else {
1040             hvf_sreg_match[i].cp_idx = -1;
1041         }
1042     }
1043     arm_cpu->cpreg_array_len = sregs_cnt;
1044     arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
1045 
1046     assert(write_cpustate_to_list(arm_cpu, false));
1047 
1048     /* Set CP_NO_RAW system registers on init */
1049     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1,
1050                               arm_cpu->midr);
1051     assert_hvf_ok(ret);
1052 
1053     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1,
1054                               arm_cpu->mp_affinity);
1055     assert_hvf_ok(ret);
1056 
1057     ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
1058     assert_hvf_ok(ret);
1059     pfr |= env->gicv3state ? (1 << 24) : 0;
1060     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
1061     assert_hvf_ok(ret);
1062 
1063     /* We're limited to underlying hardware caps, override internal versions */
1064     ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
1065                               &arm_cpu->isar.id_aa64mmfr0);
1066     assert_hvf_ok(ret);
1067 
1068     clamp_id_aa64mmfr0_parange_to_ipa_size(&arm_cpu->isar.id_aa64mmfr0);
1069     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
1070                               arm_cpu->isar.id_aa64mmfr0);
1071     assert_hvf_ok(ret);
1072 
1073     return 0;
1074 }
1075 
hvf_kick_vcpu_thread(CPUState * cpu)1076 void hvf_kick_vcpu_thread(CPUState *cpu)
1077 {
1078     cpus_kick_thread(cpu);
1079     hv_vcpus_exit(&cpu->accel->fd, 1);
1080 }
1081 
hvf_raise_exception(CPUState * cpu,uint32_t excp,uint32_t syndrome)1082 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
1083                                 uint32_t syndrome)
1084 {
1085     ARMCPU *arm_cpu = ARM_CPU(cpu);
1086     CPUARMState *env = &arm_cpu->env;
1087 
1088     cpu->exception_index = excp;
1089     env->exception.target_el = 1;
1090     env->exception.syndrome = syndrome;
1091 
1092     arm_cpu_do_interrupt(cpu);
1093 }
1094 
hvf_psci_cpu_off(ARMCPU * arm_cpu)1095 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
1096 {
1097     int32_t ret = arm_set_cpu_off(arm_cpu_mp_affinity(arm_cpu));
1098     assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
1099 }
1100 
1101 /*
1102  * Handle a PSCI call.
1103  *
1104  * Returns 0 on success
1105  *         -1 when the PSCI call is unknown,
1106  */
hvf_handle_psci_call(CPUState * cpu)1107 static bool hvf_handle_psci_call(CPUState *cpu)
1108 {
1109     ARMCPU *arm_cpu = ARM_CPU(cpu);
1110     CPUARMState *env = &arm_cpu->env;
1111     uint64_t param[4] = {
1112         env->xregs[0],
1113         env->xregs[1],
1114         env->xregs[2],
1115         env->xregs[3]
1116     };
1117     uint64_t context_id, mpidr;
1118     bool target_aarch64 = true;
1119     CPUState *target_cpu_state;
1120     ARMCPU *target_cpu;
1121     target_ulong entry;
1122     int target_el = 1;
1123     int32_t ret = 0;
1124 
1125     trace_hvf_psci_call(param[0], param[1], param[2], param[3],
1126                         arm_cpu_mp_affinity(arm_cpu));
1127 
1128     switch (param[0]) {
1129     case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1130         ret = QEMU_PSCI_VERSION_1_1;
1131         break;
1132     case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1133         ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
1134         break;
1135     case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1136     case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1137         mpidr = param[1];
1138 
1139         switch (param[2]) {
1140         case 0:
1141             target_cpu_state = arm_get_cpu_by_id(mpidr);
1142             if (!target_cpu_state) {
1143                 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1144                 break;
1145             }
1146             target_cpu = ARM_CPU(target_cpu_state);
1147 
1148             ret = target_cpu->power_state;
1149             break;
1150         default:
1151             /* Everything above affinity level 0 is always on. */
1152             ret = 0;
1153         }
1154         break;
1155     case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1156         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1157         /*
1158          * QEMU reset and shutdown are async requests, but PSCI
1159          * mandates that we never return from the reset/shutdown
1160          * call, so power the CPU off now so it doesn't execute
1161          * anything further.
1162          */
1163         hvf_psci_cpu_off(arm_cpu);
1164         break;
1165     case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1166         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1167         hvf_psci_cpu_off(arm_cpu);
1168         break;
1169     case QEMU_PSCI_0_1_FN_CPU_ON:
1170     case QEMU_PSCI_0_2_FN_CPU_ON:
1171     case QEMU_PSCI_0_2_FN64_CPU_ON:
1172         mpidr = param[1];
1173         entry = param[2];
1174         context_id = param[3];
1175         ret = arm_set_cpu_on(mpidr, entry, context_id,
1176                              target_el, target_aarch64);
1177         break;
1178     case QEMU_PSCI_0_1_FN_CPU_OFF:
1179     case QEMU_PSCI_0_2_FN_CPU_OFF:
1180         hvf_psci_cpu_off(arm_cpu);
1181         break;
1182     case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1183     case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1184     case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1185         /* Affinity levels are not supported in QEMU */
1186         if (param[1] & 0xfffe0000) {
1187             ret = QEMU_PSCI_RET_INVALID_PARAMS;
1188             break;
1189         }
1190         /* Powerdown is not supported, we always go into WFI */
1191         env->xregs[0] = 0;
1192         hvf_wfi(cpu);
1193         break;
1194     case QEMU_PSCI_0_1_FN_MIGRATE:
1195     case QEMU_PSCI_0_2_FN_MIGRATE:
1196         ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1197         break;
1198     case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1199         switch (param[1]) {
1200         case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1201         case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1202         case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1203         case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1204         case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1205         case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1206         case QEMU_PSCI_0_1_FN_CPU_ON:
1207         case QEMU_PSCI_0_2_FN_CPU_ON:
1208         case QEMU_PSCI_0_2_FN64_CPU_ON:
1209         case QEMU_PSCI_0_1_FN_CPU_OFF:
1210         case QEMU_PSCI_0_2_FN_CPU_OFF:
1211         case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1212         case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1213         case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1214         case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1215             ret = 0;
1216             break;
1217         case QEMU_PSCI_0_1_FN_MIGRATE:
1218         case QEMU_PSCI_0_2_FN_MIGRATE:
1219         default:
1220             ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1221         }
1222         break;
1223     default:
1224         return false;
1225     }
1226 
1227     env->xregs[0] = ret;
1228     return true;
1229 }
1230 
is_id_sysreg(uint32_t reg)1231 static bool is_id_sysreg(uint32_t reg)
1232 {
1233     return SYSREG_OP0(reg) == 3 &&
1234            SYSREG_OP1(reg) == 0 &&
1235            SYSREG_CRN(reg) == 0 &&
1236            SYSREG_CRM(reg) >= 1 &&
1237            SYSREG_CRM(reg) < 8;
1238 }
1239 
hvf_reg2cp_reg(uint32_t reg)1240 static uint32_t hvf_reg2cp_reg(uint32_t reg)
1241 {
1242     return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1243                               (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
1244                               (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
1245                               (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
1246                               (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
1247                               (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
1248 }
1249 
hvf_sysreg_read_cp(CPUState * cpu,uint32_t reg,uint64_t * val)1250 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
1251 {
1252     ARMCPU *arm_cpu = ARM_CPU(cpu);
1253     CPUARMState *env = &arm_cpu->env;
1254     const ARMCPRegInfo *ri;
1255 
1256     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1257     if (ri) {
1258         if (ri->accessfn) {
1259             if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
1260                 return false;
1261             }
1262         }
1263         if (ri->type & ARM_CP_CONST) {
1264             *val = ri->resetvalue;
1265         } else if (ri->readfn) {
1266             *val = ri->readfn(env, ri);
1267         } else {
1268             *val = CPREG_FIELD64(env, ri);
1269         }
1270         trace_hvf_vgic_read(ri->name, *val);
1271         return true;
1272     }
1273 
1274     return false;
1275 }
1276 
hvf_sysreg_read(CPUState * cpu,uint32_t reg,uint64_t * val)1277 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint64_t *val)
1278 {
1279     ARMCPU *arm_cpu = ARM_CPU(cpu);
1280     CPUARMState *env = &arm_cpu->env;
1281 
1282     if (arm_feature(env, ARM_FEATURE_PMU)) {
1283         switch (reg) {
1284         case SYSREG_PMCR_EL0:
1285             *val = env->cp15.c9_pmcr;
1286             return 0;
1287         case SYSREG_PMCCNTR_EL0:
1288             pmu_op_start(env);
1289             *val = env->cp15.c15_ccnt;
1290             pmu_op_finish(env);
1291             return 0;
1292         case SYSREG_PMCNTENCLR_EL0:
1293             *val = env->cp15.c9_pmcnten;
1294             return 0;
1295         case SYSREG_PMOVSCLR_EL0:
1296             *val = env->cp15.c9_pmovsr;
1297             return 0;
1298         case SYSREG_PMSELR_EL0:
1299             *val = env->cp15.c9_pmselr;
1300             return 0;
1301         case SYSREG_PMINTENCLR_EL1:
1302             *val = env->cp15.c9_pminten;
1303             return 0;
1304         case SYSREG_PMCCFILTR_EL0:
1305             *val = env->cp15.pmccfiltr_el0;
1306             return 0;
1307         case SYSREG_PMCNTENSET_EL0:
1308             *val = env->cp15.c9_pmcnten;
1309             return 0;
1310         case SYSREG_PMUSERENR_EL0:
1311             *val = env->cp15.c9_pmuserenr;
1312             return 0;
1313         case SYSREG_PMCEID0_EL0:
1314         case SYSREG_PMCEID1_EL0:
1315             /* We can't really count anything yet, declare all events invalid */
1316             *val = 0;
1317             return 0;
1318         }
1319     }
1320 
1321     switch (reg) {
1322     case SYSREG_CNTPCT_EL0:
1323         *val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
1324               gt_cntfrq_period_ns(arm_cpu);
1325         return 0;
1326     case SYSREG_OSLSR_EL1:
1327         *val = env->cp15.oslsr_el1;
1328         return 0;
1329     case SYSREG_OSDLR_EL1:
1330         /* Dummy register */
1331         return 0;
1332     case SYSREG_ICC_AP0R0_EL1:
1333     case SYSREG_ICC_AP0R1_EL1:
1334     case SYSREG_ICC_AP0R2_EL1:
1335     case SYSREG_ICC_AP0R3_EL1:
1336     case SYSREG_ICC_AP1R0_EL1:
1337     case SYSREG_ICC_AP1R1_EL1:
1338     case SYSREG_ICC_AP1R2_EL1:
1339     case SYSREG_ICC_AP1R3_EL1:
1340     case SYSREG_ICC_ASGI1R_EL1:
1341     case SYSREG_ICC_BPR0_EL1:
1342     case SYSREG_ICC_BPR1_EL1:
1343     case SYSREG_ICC_DIR_EL1:
1344     case SYSREG_ICC_EOIR0_EL1:
1345     case SYSREG_ICC_EOIR1_EL1:
1346     case SYSREG_ICC_HPPIR0_EL1:
1347     case SYSREG_ICC_HPPIR1_EL1:
1348     case SYSREG_ICC_IAR0_EL1:
1349     case SYSREG_ICC_IAR1_EL1:
1350     case SYSREG_ICC_IGRPEN0_EL1:
1351     case SYSREG_ICC_IGRPEN1_EL1:
1352     case SYSREG_ICC_PMR_EL1:
1353     case SYSREG_ICC_SGI0R_EL1:
1354     case SYSREG_ICC_SGI1R_EL1:
1355     case SYSREG_ICC_SRE_EL1:
1356     case SYSREG_ICC_CTLR_EL1:
1357         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1358         if (hvf_sysreg_read_cp(cpu, reg, val)) {
1359             return 0;
1360         }
1361         break;
1362     case SYSREG_DBGBVR0_EL1:
1363     case SYSREG_DBGBVR1_EL1:
1364     case SYSREG_DBGBVR2_EL1:
1365     case SYSREG_DBGBVR3_EL1:
1366     case SYSREG_DBGBVR4_EL1:
1367     case SYSREG_DBGBVR5_EL1:
1368     case SYSREG_DBGBVR6_EL1:
1369     case SYSREG_DBGBVR7_EL1:
1370     case SYSREG_DBGBVR8_EL1:
1371     case SYSREG_DBGBVR9_EL1:
1372     case SYSREG_DBGBVR10_EL1:
1373     case SYSREG_DBGBVR11_EL1:
1374     case SYSREG_DBGBVR12_EL1:
1375     case SYSREG_DBGBVR13_EL1:
1376     case SYSREG_DBGBVR14_EL1:
1377     case SYSREG_DBGBVR15_EL1:
1378         *val = env->cp15.dbgbvr[SYSREG_CRM(reg)];
1379         return 0;
1380     case SYSREG_DBGBCR0_EL1:
1381     case SYSREG_DBGBCR1_EL1:
1382     case SYSREG_DBGBCR2_EL1:
1383     case SYSREG_DBGBCR3_EL1:
1384     case SYSREG_DBGBCR4_EL1:
1385     case SYSREG_DBGBCR5_EL1:
1386     case SYSREG_DBGBCR6_EL1:
1387     case SYSREG_DBGBCR7_EL1:
1388     case SYSREG_DBGBCR8_EL1:
1389     case SYSREG_DBGBCR9_EL1:
1390     case SYSREG_DBGBCR10_EL1:
1391     case SYSREG_DBGBCR11_EL1:
1392     case SYSREG_DBGBCR12_EL1:
1393     case SYSREG_DBGBCR13_EL1:
1394     case SYSREG_DBGBCR14_EL1:
1395     case SYSREG_DBGBCR15_EL1:
1396         *val = env->cp15.dbgbcr[SYSREG_CRM(reg)];
1397         return 0;
1398     case SYSREG_DBGWVR0_EL1:
1399     case SYSREG_DBGWVR1_EL1:
1400     case SYSREG_DBGWVR2_EL1:
1401     case SYSREG_DBGWVR3_EL1:
1402     case SYSREG_DBGWVR4_EL1:
1403     case SYSREG_DBGWVR5_EL1:
1404     case SYSREG_DBGWVR6_EL1:
1405     case SYSREG_DBGWVR7_EL1:
1406     case SYSREG_DBGWVR8_EL1:
1407     case SYSREG_DBGWVR9_EL1:
1408     case SYSREG_DBGWVR10_EL1:
1409     case SYSREG_DBGWVR11_EL1:
1410     case SYSREG_DBGWVR12_EL1:
1411     case SYSREG_DBGWVR13_EL1:
1412     case SYSREG_DBGWVR14_EL1:
1413     case SYSREG_DBGWVR15_EL1:
1414         *val = env->cp15.dbgwvr[SYSREG_CRM(reg)];
1415         return 0;
1416     case SYSREG_DBGWCR0_EL1:
1417     case SYSREG_DBGWCR1_EL1:
1418     case SYSREG_DBGWCR2_EL1:
1419     case SYSREG_DBGWCR3_EL1:
1420     case SYSREG_DBGWCR4_EL1:
1421     case SYSREG_DBGWCR5_EL1:
1422     case SYSREG_DBGWCR6_EL1:
1423     case SYSREG_DBGWCR7_EL1:
1424     case SYSREG_DBGWCR8_EL1:
1425     case SYSREG_DBGWCR9_EL1:
1426     case SYSREG_DBGWCR10_EL1:
1427     case SYSREG_DBGWCR11_EL1:
1428     case SYSREG_DBGWCR12_EL1:
1429     case SYSREG_DBGWCR13_EL1:
1430     case SYSREG_DBGWCR14_EL1:
1431     case SYSREG_DBGWCR15_EL1:
1432         *val = env->cp15.dbgwcr[SYSREG_CRM(reg)];
1433         return 0;
1434     default:
1435         if (is_id_sysreg(reg)) {
1436             /* ID system registers read as RES0 */
1437             *val = 0;
1438             return 0;
1439         }
1440     }
1441 
1442     cpu_synchronize_state(cpu);
1443     trace_hvf_unhandled_sysreg_read(env->pc, reg,
1444                                     SYSREG_OP0(reg),
1445                                     SYSREG_OP1(reg),
1446                                     SYSREG_CRN(reg),
1447                                     SYSREG_CRM(reg),
1448                                     SYSREG_OP2(reg));
1449     hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1450     return 1;
1451 }
1452 
pmu_update_irq(CPUARMState * env)1453 static void pmu_update_irq(CPUARMState *env)
1454 {
1455     ARMCPU *cpu = env_archcpu(env);
1456     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1457             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1458 }
1459 
pmu_event_supported(uint16_t number)1460 static bool pmu_event_supported(uint16_t number)
1461 {
1462     return false;
1463 }
1464 
1465 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1466  * the current EL, security state, and register configuration.
1467  */
pmu_counter_enabled(CPUARMState * env,uint8_t counter)1468 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1469 {
1470     uint64_t filter;
1471     bool enabled, filtered = true;
1472     int el = arm_current_el(env);
1473 
1474     enabled = (env->cp15.c9_pmcr & PMCRE) &&
1475               (env->cp15.c9_pmcnten & (1 << counter));
1476 
1477     if (counter == 31) {
1478         filter = env->cp15.pmccfiltr_el0;
1479     } else {
1480         filter = env->cp15.c14_pmevtyper[counter];
1481     }
1482 
1483     if (el == 0) {
1484         filtered = filter & PMXEVTYPER_U;
1485     } else if (el == 1) {
1486         filtered = filter & PMXEVTYPER_P;
1487     }
1488 
1489     if (counter != 31) {
1490         /*
1491          * If not checking PMCCNTR, ensure the counter is setup to an event we
1492          * support
1493          */
1494         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1495         if (!pmu_event_supported(event)) {
1496             return false;
1497         }
1498     }
1499 
1500     return enabled && !filtered;
1501 }
1502 
pmswinc_write(CPUARMState * env,uint64_t value)1503 static void pmswinc_write(CPUARMState *env, uint64_t value)
1504 {
1505     unsigned int i;
1506     for (i = 0; i < pmu_num_counters(env); i++) {
1507         /* Increment a counter's count iff: */
1508         if ((value & (1 << i)) && /* counter's bit is set */
1509                 /* counter is enabled and not filtered */
1510                 pmu_counter_enabled(env, i) &&
1511                 /* counter is SW_INCR */
1512                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1513             /*
1514              * Detect if this write causes an overflow since we can't predict
1515              * PMSWINC overflows like we can for other events
1516              */
1517             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1518 
1519             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1520                 env->cp15.c9_pmovsr |= (1 << i);
1521                 pmu_update_irq(env);
1522             }
1523 
1524             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1525         }
1526     }
1527 }
1528 
hvf_sysreg_write_cp(CPUState * cpu,uint32_t reg,uint64_t val)1529 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
1530 {
1531     ARMCPU *arm_cpu = ARM_CPU(cpu);
1532     CPUARMState *env = &arm_cpu->env;
1533     const ARMCPRegInfo *ri;
1534 
1535     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1536 
1537     if (ri) {
1538         if (ri->accessfn) {
1539             if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
1540                 return false;
1541             }
1542         }
1543         if (ri->writefn) {
1544             ri->writefn(env, ri, val);
1545         } else {
1546             CPREG_FIELD64(env, ri) = val;
1547         }
1548 
1549         trace_hvf_vgic_write(ri->name, val);
1550         return true;
1551     }
1552 
1553     return false;
1554 }
1555 
hvf_sysreg_write(CPUState * cpu,uint32_t reg,uint64_t val)1556 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
1557 {
1558     ARMCPU *arm_cpu = ARM_CPU(cpu);
1559     CPUARMState *env = &arm_cpu->env;
1560 
1561     trace_hvf_sysreg_write(reg,
1562                            SYSREG_OP0(reg),
1563                            SYSREG_OP1(reg),
1564                            SYSREG_CRN(reg),
1565                            SYSREG_CRM(reg),
1566                            SYSREG_OP2(reg),
1567                            val);
1568 
1569     if (arm_feature(env, ARM_FEATURE_PMU)) {
1570         switch (reg) {
1571         case SYSREG_PMCCNTR_EL0:
1572             pmu_op_start(env);
1573             env->cp15.c15_ccnt = val;
1574             pmu_op_finish(env);
1575             return 0;
1576         case SYSREG_PMCR_EL0:
1577             pmu_op_start(env);
1578 
1579             if (val & PMCRC) {
1580                 /* The counter has been reset */
1581                 env->cp15.c15_ccnt = 0;
1582             }
1583 
1584             if (val & PMCRP) {
1585                 unsigned int i;
1586                 for (i = 0; i < pmu_num_counters(env); i++) {
1587                     env->cp15.c14_pmevcntr[i] = 0;
1588                 }
1589             }
1590 
1591             env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1592             env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
1593 
1594             pmu_op_finish(env);
1595             return 0;
1596         case SYSREG_PMUSERENR_EL0:
1597             env->cp15.c9_pmuserenr = val & 0xf;
1598             return 0;
1599         case SYSREG_PMCNTENSET_EL0:
1600             env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
1601             return 0;
1602         case SYSREG_PMCNTENCLR_EL0:
1603             env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
1604             return 0;
1605         case SYSREG_PMINTENCLR_EL1:
1606             pmu_op_start(env);
1607             env->cp15.c9_pminten |= val;
1608             pmu_op_finish(env);
1609             return 0;
1610         case SYSREG_PMOVSCLR_EL0:
1611             pmu_op_start(env);
1612             env->cp15.c9_pmovsr &= ~val;
1613             pmu_op_finish(env);
1614             return 0;
1615         case SYSREG_PMSWINC_EL0:
1616             pmu_op_start(env);
1617             pmswinc_write(env, val);
1618             pmu_op_finish(env);
1619             return 0;
1620         case SYSREG_PMSELR_EL0:
1621             env->cp15.c9_pmselr = val & 0x1f;
1622             return 0;
1623         case SYSREG_PMCCFILTR_EL0:
1624             pmu_op_start(env);
1625             env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1626             pmu_op_finish(env);
1627             return 0;
1628         }
1629     }
1630 
1631     switch (reg) {
1632     case SYSREG_OSLAR_EL1:
1633         env->cp15.oslsr_el1 = val & 1;
1634         return 0;
1635     case SYSREG_OSDLR_EL1:
1636         /* Dummy register */
1637         return 0;
1638     case SYSREG_ICC_AP0R0_EL1:
1639     case SYSREG_ICC_AP0R1_EL1:
1640     case SYSREG_ICC_AP0R2_EL1:
1641     case SYSREG_ICC_AP0R3_EL1:
1642     case SYSREG_ICC_AP1R0_EL1:
1643     case SYSREG_ICC_AP1R1_EL1:
1644     case SYSREG_ICC_AP1R2_EL1:
1645     case SYSREG_ICC_AP1R3_EL1:
1646     case SYSREG_ICC_ASGI1R_EL1:
1647     case SYSREG_ICC_BPR0_EL1:
1648     case SYSREG_ICC_BPR1_EL1:
1649     case SYSREG_ICC_CTLR_EL1:
1650     case SYSREG_ICC_DIR_EL1:
1651     case SYSREG_ICC_EOIR0_EL1:
1652     case SYSREG_ICC_EOIR1_EL1:
1653     case SYSREG_ICC_HPPIR0_EL1:
1654     case SYSREG_ICC_HPPIR1_EL1:
1655     case SYSREG_ICC_IAR0_EL1:
1656     case SYSREG_ICC_IAR1_EL1:
1657     case SYSREG_ICC_IGRPEN0_EL1:
1658     case SYSREG_ICC_IGRPEN1_EL1:
1659     case SYSREG_ICC_PMR_EL1:
1660     case SYSREG_ICC_SGI0R_EL1:
1661     case SYSREG_ICC_SGI1R_EL1:
1662     case SYSREG_ICC_SRE_EL1:
1663         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1664         if (hvf_sysreg_write_cp(cpu, reg, val)) {
1665             return 0;
1666         }
1667         break;
1668     case SYSREG_MDSCR_EL1:
1669         env->cp15.mdscr_el1 = val;
1670         return 0;
1671     case SYSREG_DBGBVR0_EL1:
1672     case SYSREG_DBGBVR1_EL1:
1673     case SYSREG_DBGBVR2_EL1:
1674     case SYSREG_DBGBVR3_EL1:
1675     case SYSREG_DBGBVR4_EL1:
1676     case SYSREG_DBGBVR5_EL1:
1677     case SYSREG_DBGBVR6_EL1:
1678     case SYSREG_DBGBVR7_EL1:
1679     case SYSREG_DBGBVR8_EL1:
1680     case SYSREG_DBGBVR9_EL1:
1681     case SYSREG_DBGBVR10_EL1:
1682     case SYSREG_DBGBVR11_EL1:
1683     case SYSREG_DBGBVR12_EL1:
1684     case SYSREG_DBGBVR13_EL1:
1685     case SYSREG_DBGBVR14_EL1:
1686     case SYSREG_DBGBVR15_EL1:
1687         env->cp15.dbgbvr[SYSREG_CRM(reg)] = val;
1688         return 0;
1689     case SYSREG_DBGBCR0_EL1:
1690     case SYSREG_DBGBCR1_EL1:
1691     case SYSREG_DBGBCR2_EL1:
1692     case SYSREG_DBGBCR3_EL1:
1693     case SYSREG_DBGBCR4_EL1:
1694     case SYSREG_DBGBCR5_EL1:
1695     case SYSREG_DBGBCR6_EL1:
1696     case SYSREG_DBGBCR7_EL1:
1697     case SYSREG_DBGBCR8_EL1:
1698     case SYSREG_DBGBCR9_EL1:
1699     case SYSREG_DBGBCR10_EL1:
1700     case SYSREG_DBGBCR11_EL1:
1701     case SYSREG_DBGBCR12_EL1:
1702     case SYSREG_DBGBCR13_EL1:
1703     case SYSREG_DBGBCR14_EL1:
1704     case SYSREG_DBGBCR15_EL1:
1705         env->cp15.dbgbcr[SYSREG_CRM(reg)] = val;
1706         return 0;
1707     case SYSREG_DBGWVR0_EL1:
1708     case SYSREG_DBGWVR1_EL1:
1709     case SYSREG_DBGWVR2_EL1:
1710     case SYSREG_DBGWVR3_EL1:
1711     case SYSREG_DBGWVR4_EL1:
1712     case SYSREG_DBGWVR5_EL1:
1713     case SYSREG_DBGWVR6_EL1:
1714     case SYSREG_DBGWVR7_EL1:
1715     case SYSREG_DBGWVR8_EL1:
1716     case SYSREG_DBGWVR9_EL1:
1717     case SYSREG_DBGWVR10_EL1:
1718     case SYSREG_DBGWVR11_EL1:
1719     case SYSREG_DBGWVR12_EL1:
1720     case SYSREG_DBGWVR13_EL1:
1721     case SYSREG_DBGWVR14_EL1:
1722     case SYSREG_DBGWVR15_EL1:
1723         env->cp15.dbgwvr[SYSREG_CRM(reg)] = val;
1724         return 0;
1725     case SYSREG_DBGWCR0_EL1:
1726     case SYSREG_DBGWCR1_EL1:
1727     case SYSREG_DBGWCR2_EL1:
1728     case SYSREG_DBGWCR3_EL1:
1729     case SYSREG_DBGWCR4_EL1:
1730     case SYSREG_DBGWCR5_EL1:
1731     case SYSREG_DBGWCR6_EL1:
1732     case SYSREG_DBGWCR7_EL1:
1733     case SYSREG_DBGWCR8_EL1:
1734     case SYSREG_DBGWCR9_EL1:
1735     case SYSREG_DBGWCR10_EL1:
1736     case SYSREG_DBGWCR11_EL1:
1737     case SYSREG_DBGWCR12_EL1:
1738     case SYSREG_DBGWCR13_EL1:
1739     case SYSREG_DBGWCR14_EL1:
1740     case SYSREG_DBGWCR15_EL1:
1741         env->cp15.dbgwcr[SYSREG_CRM(reg)] = val;
1742         return 0;
1743     }
1744 
1745     cpu_synchronize_state(cpu);
1746     trace_hvf_unhandled_sysreg_write(env->pc, reg,
1747                                      SYSREG_OP0(reg),
1748                                      SYSREG_OP1(reg),
1749                                      SYSREG_CRN(reg),
1750                                      SYSREG_CRM(reg),
1751                                      SYSREG_OP2(reg));
1752     hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1753     return 1;
1754 }
1755 
hvf_inject_interrupts(CPUState * cpu)1756 static int hvf_inject_interrupts(CPUState *cpu)
1757 {
1758     if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1759         trace_hvf_inject_fiq();
1760         hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ,
1761                                       true);
1762     }
1763 
1764     if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1765         trace_hvf_inject_irq();
1766         hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ,
1767                                       true);
1768     }
1769 
1770     return 0;
1771 }
1772 
hvf_vtimer_val_raw(void)1773 static uint64_t hvf_vtimer_val_raw(void)
1774 {
1775     /*
1776      * mach_absolute_time() returns the vtimer value without the VM
1777      * offset that we define. Add our own offset on top.
1778      */
1779     return mach_absolute_time() - hvf_state->vtimer_offset;
1780 }
1781 
hvf_vtimer_val(void)1782 static uint64_t hvf_vtimer_val(void)
1783 {
1784     if (!runstate_is_running()) {
1785         /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1786         return vtimer.vtimer_val;
1787     }
1788 
1789     return hvf_vtimer_val_raw();
1790 }
1791 
hvf_wait_for_ipi(CPUState * cpu,struct timespec * ts)1792 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1793 {
1794     /*
1795      * Use pselect to sleep so that other threads can IPI us while we're
1796      * sleeping.
1797      */
1798     qatomic_set_mb(&cpu->thread_kicked, false);
1799     bql_unlock();
1800     pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask);
1801     bql_lock();
1802 }
1803 
hvf_wfi(CPUState * cpu)1804 static void hvf_wfi(CPUState *cpu)
1805 {
1806     ARMCPU *arm_cpu = ARM_CPU(cpu);
1807     struct timespec ts;
1808     hv_return_t r;
1809     uint64_t ctl;
1810     uint64_t cval;
1811     int64_t ticks_to_sleep;
1812     uint64_t seconds;
1813     uint64_t nanos;
1814     uint32_t cntfrq;
1815 
1816     if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1817         /* Interrupt pending, no need to wait */
1818         return;
1819     }
1820 
1821     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1822     assert_hvf_ok(r);
1823 
1824     if (!(ctl & 1) || (ctl & 2)) {
1825         /* Timer disabled or masked, just wait for an IPI. */
1826         hvf_wait_for_ipi(cpu, NULL);
1827         return;
1828     }
1829 
1830     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1831     assert_hvf_ok(r);
1832 
1833     ticks_to_sleep = cval - hvf_vtimer_val();
1834     if (ticks_to_sleep < 0) {
1835         return;
1836     }
1837 
1838     cntfrq = gt_cntfrq_period_ns(arm_cpu);
1839     seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1840     ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1841     nanos = ticks_to_sleep * cntfrq;
1842 
1843     /*
1844      * Don't sleep for less than the time a context switch would take,
1845      * so that we can satisfy fast timer requests on the same CPU.
1846      * Measurements on M1 show the sweet spot to be ~2ms.
1847      */
1848     if (!seconds && nanos < (2 * SCALE_MS)) {
1849         return;
1850     }
1851 
1852     ts = (struct timespec) { seconds, nanos };
1853     hvf_wait_for_ipi(cpu, &ts);
1854 }
1855 
hvf_sync_vtimer(CPUState * cpu)1856 static void hvf_sync_vtimer(CPUState *cpu)
1857 {
1858     ARMCPU *arm_cpu = ARM_CPU(cpu);
1859     hv_return_t r;
1860     uint64_t ctl;
1861     bool irq_state;
1862 
1863     if (!cpu->accel->vtimer_masked) {
1864         /* We will get notified on vtimer changes by hvf, nothing to do */
1865         return;
1866     }
1867 
1868     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1869     assert_hvf_ok(r);
1870 
1871     irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1872                 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1873     qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1874 
1875     if (!irq_state) {
1876         /* Timer no longer asserting, we can unmask it */
1877         hv_vcpu_set_vtimer_mask(cpu->accel->fd, false);
1878         cpu->accel->vtimer_masked = false;
1879     }
1880 }
1881 
hvf_vcpu_exec(CPUState * cpu)1882 int hvf_vcpu_exec(CPUState *cpu)
1883 {
1884     ARMCPU *arm_cpu = ARM_CPU(cpu);
1885     CPUARMState *env = &arm_cpu->env;
1886     int ret;
1887     hv_vcpu_exit_t *hvf_exit = cpu->accel->exit;
1888     hv_return_t r;
1889     bool advance_pc = false;
1890 
1891     if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) &&
1892         hvf_inject_interrupts(cpu)) {
1893         return EXCP_INTERRUPT;
1894     }
1895 
1896     if (cpu->halted) {
1897         return EXCP_HLT;
1898     }
1899 
1900     flush_cpu_state(cpu);
1901 
1902     bql_unlock();
1903     assert_hvf_ok(hv_vcpu_run(cpu->accel->fd));
1904 
1905     /* handle VMEXIT */
1906     uint64_t exit_reason = hvf_exit->reason;
1907     uint64_t syndrome = hvf_exit->exception.syndrome;
1908     uint32_t ec = syn_get_ec(syndrome);
1909 
1910     ret = 0;
1911     bql_lock();
1912     switch (exit_reason) {
1913     case HV_EXIT_REASON_EXCEPTION:
1914         /* This is the main one, handle below. */
1915         break;
1916     case HV_EXIT_REASON_VTIMER_ACTIVATED:
1917         qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1918         cpu->accel->vtimer_masked = true;
1919         return 0;
1920     case HV_EXIT_REASON_CANCELED:
1921         /* we got kicked, no exit to process */
1922         return 0;
1923     default:
1924         g_assert_not_reached();
1925     }
1926 
1927     hvf_sync_vtimer(cpu);
1928 
1929     switch (ec) {
1930     case EC_SOFTWARESTEP: {
1931         ret = EXCP_DEBUG;
1932 
1933         if (!cpu->singlestep_enabled) {
1934             error_report("EC_SOFTWARESTEP but single-stepping not enabled");
1935         }
1936         break;
1937     }
1938     case EC_AA64_BKPT: {
1939         ret = EXCP_DEBUG;
1940 
1941         cpu_synchronize_state(cpu);
1942 
1943         if (!hvf_find_sw_breakpoint(cpu, env->pc)) {
1944             /* Re-inject into the guest */
1945             ret = 0;
1946             hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0));
1947         }
1948         break;
1949     }
1950     case EC_BREAKPOINT: {
1951         ret = EXCP_DEBUG;
1952 
1953         cpu_synchronize_state(cpu);
1954 
1955         if (!find_hw_breakpoint(cpu, env->pc)) {
1956             error_report("EC_BREAKPOINT but unknown hw breakpoint");
1957         }
1958         break;
1959     }
1960     case EC_WATCHPOINT: {
1961         ret = EXCP_DEBUG;
1962 
1963         cpu_synchronize_state(cpu);
1964 
1965         CPUWatchpoint *wp =
1966             find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address);
1967         if (!wp) {
1968             error_report("EXCP_DEBUG but unknown hw watchpoint");
1969         }
1970         cpu->watchpoint_hit = wp;
1971         break;
1972     }
1973     case EC_DATAABORT: {
1974         bool isv = syndrome & ARM_EL_ISV;
1975         bool iswrite = (syndrome >> 6) & 1;
1976         bool s1ptw = (syndrome >> 7) & 1;
1977         bool sse = (syndrome >> 21) & 1;
1978         uint32_t sas = (syndrome >> 22) & 3;
1979         uint32_t len = 1 << sas;
1980         uint32_t srt = (syndrome >> 16) & 0x1f;
1981         uint32_t cm = (syndrome >> 8) & 0x1;
1982         uint64_t val = 0;
1983 
1984         trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1985                              hvf_exit->exception.physical_address, isv,
1986                              iswrite, s1ptw, len, srt);
1987 
1988         if (cm) {
1989             /* We don't cache MMIO regions */
1990             advance_pc = true;
1991             break;
1992         }
1993 
1994         assert(isv);
1995 
1996         if (iswrite) {
1997             val = hvf_get_reg(cpu, srt);
1998             address_space_write(&address_space_memory,
1999                                 hvf_exit->exception.physical_address,
2000                                 MEMTXATTRS_UNSPECIFIED, &val, len);
2001         } else {
2002             address_space_read(&address_space_memory,
2003                                hvf_exit->exception.physical_address,
2004                                MEMTXATTRS_UNSPECIFIED, &val, len);
2005             if (sse) {
2006                 val = sextract64(val, 0, len * 8);
2007             }
2008             hvf_set_reg(cpu, srt, val);
2009         }
2010 
2011         advance_pc = true;
2012         break;
2013     }
2014     case EC_SYSTEMREGISTERTRAP: {
2015         bool isread = (syndrome >> 0) & 1;
2016         uint32_t rt = (syndrome >> 5) & 0x1f;
2017         uint32_t reg = syndrome & SYSREG_MASK;
2018         uint64_t val;
2019         int sysreg_ret = 0;
2020 
2021         if (isread) {
2022             sysreg_ret = hvf_sysreg_read(cpu, reg, &val);
2023             if (!sysreg_ret) {
2024                 trace_hvf_sysreg_read(reg,
2025                                       SYSREG_OP0(reg),
2026                                       SYSREG_OP1(reg),
2027                                       SYSREG_CRN(reg),
2028                                       SYSREG_CRM(reg),
2029                                       SYSREG_OP2(reg),
2030                                       val);
2031                 hvf_set_reg(cpu, rt, val);
2032             }
2033         } else {
2034             val = hvf_get_reg(cpu, rt);
2035             sysreg_ret = hvf_sysreg_write(cpu, reg, val);
2036         }
2037 
2038         advance_pc = !sysreg_ret;
2039         break;
2040     }
2041     case EC_WFX_TRAP:
2042         advance_pc = true;
2043         if (!(syndrome & WFX_IS_WFE)) {
2044             hvf_wfi(cpu);
2045         }
2046         break;
2047     case EC_AA64_HVC:
2048         cpu_synchronize_state(cpu);
2049         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
2050             if (!hvf_handle_psci_call(cpu)) {
2051                 trace_hvf_unknown_hvc(env->xregs[0]);
2052                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
2053                 env->xregs[0] = -1;
2054             }
2055         } else {
2056             trace_hvf_unknown_hvc(env->xregs[0]);
2057             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
2058         }
2059         break;
2060     case EC_AA64_SMC:
2061         cpu_synchronize_state(cpu);
2062         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
2063             advance_pc = true;
2064 
2065             if (!hvf_handle_psci_call(cpu)) {
2066                 trace_hvf_unknown_smc(env->xregs[0]);
2067                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
2068                 env->xregs[0] = -1;
2069             }
2070         } else {
2071             trace_hvf_unknown_smc(env->xregs[0]);
2072             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
2073         }
2074         break;
2075     default:
2076         cpu_synchronize_state(cpu);
2077         trace_hvf_exit(syndrome, ec, env->pc);
2078         error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
2079     }
2080 
2081     if (advance_pc) {
2082         uint64_t pc;
2083 
2084         flush_cpu_state(cpu);
2085 
2086         r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc);
2087         assert_hvf_ok(r);
2088         pc += 4;
2089         r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc);
2090         assert_hvf_ok(r);
2091 
2092         /* Handle single-stepping over instructions which trigger a VM exit */
2093         if (cpu->singlestep_enabled) {
2094             ret = EXCP_DEBUG;
2095         }
2096     }
2097 
2098     return ret;
2099 }
2100 
2101 static const VMStateDescription vmstate_hvf_vtimer = {
2102     .name = "hvf-vtimer",
2103     .version_id = 1,
2104     .minimum_version_id = 1,
2105     .fields = (const VMStateField[]) {
2106         VMSTATE_UINT64(vtimer_val, HVFVTimer),
2107         VMSTATE_END_OF_LIST()
2108     },
2109 };
2110 
hvf_vm_state_change(void * opaque,bool running,RunState state)2111 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
2112 {
2113     HVFVTimer *s = opaque;
2114 
2115     if (running) {
2116         /* Update vtimer offset on all CPUs */
2117         hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
2118         cpu_synchronize_all_states();
2119     } else {
2120         /* Remember vtimer value on every pause */
2121         s->vtimer_val = hvf_vtimer_val_raw();
2122     }
2123 }
2124 
hvf_arch_init(void)2125 int hvf_arch_init(void)
2126 {
2127     hvf_state->vtimer_offset = mach_absolute_time();
2128     vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
2129     qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
2130 
2131     hvf_arm_init_debug();
2132 
2133     return 0;
2134 }
2135 
2136 static const uint32_t brk_insn = 0xd4200000;
2137 
hvf_arch_insert_sw_breakpoint(CPUState * cpu,struct hvf_sw_breakpoint * bp)2138 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2139 {
2140     if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2141         cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2142         return -EINVAL;
2143     }
2144     return 0;
2145 }
2146 
hvf_arch_remove_sw_breakpoint(CPUState * cpu,struct hvf_sw_breakpoint * bp)2147 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2148 {
2149     static uint32_t brk;
2150 
2151     if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) ||
2152         brk != brk_insn ||
2153         cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2154         return -EINVAL;
2155     }
2156     return 0;
2157 }
2158 
hvf_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)2159 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
2160 {
2161     switch (type) {
2162     case GDB_BREAKPOINT_HW:
2163         return insert_hw_breakpoint(addr);
2164     case GDB_WATCHPOINT_READ:
2165     case GDB_WATCHPOINT_WRITE:
2166     case GDB_WATCHPOINT_ACCESS:
2167         return insert_hw_watchpoint(addr, len, type);
2168     default:
2169         return -ENOSYS;
2170     }
2171 }
2172 
hvf_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)2173 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
2174 {
2175     switch (type) {
2176     case GDB_BREAKPOINT_HW:
2177         return delete_hw_breakpoint(addr);
2178     case GDB_WATCHPOINT_READ:
2179     case GDB_WATCHPOINT_WRITE:
2180     case GDB_WATCHPOINT_ACCESS:
2181         return delete_hw_watchpoint(addr, len, type);
2182     default:
2183         return -ENOSYS;
2184     }
2185 }
2186 
hvf_arch_remove_all_hw_breakpoints(void)2187 void hvf_arch_remove_all_hw_breakpoints(void)
2188 {
2189     if (cur_hw_wps > 0) {
2190         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
2191     }
2192     if (cur_hw_bps > 0) {
2193         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
2194     }
2195 }
2196 
2197 /*
2198  * Update the vCPU with the gdbstub's view of debug registers. This view
2199  * consists of all hardware breakpoints and watchpoints inserted so far while
2200  * debugging the guest.
2201  */
hvf_put_gdbstub_debug_registers(CPUState * cpu)2202 static void hvf_put_gdbstub_debug_registers(CPUState *cpu)
2203 {
2204     hv_return_t r = HV_SUCCESS;
2205     int i;
2206 
2207     for (i = 0; i < cur_hw_bps; i++) {
2208         HWBreakpoint *bp = get_hw_bp(i);
2209         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr);
2210         assert_hvf_ok(r);
2211         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr);
2212         assert_hvf_ok(r);
2213     }
2214     for (i = cur_hw_bps; i < max_hw_bps; i++) {
2215         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0);
2216         assert_hvf_ok(r);
2217         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0);
2218         assert_hvf_ok(r);
2219     }
2220 
2221     for (i = 0; i < cur_hw_wps; i++) {
2222         HWWatchpoint *wp = get_hw_wp(i);
2223         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr);
2224         assert_hvf_ok(r);
2225         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr);
2226         assert_hvf_ok(r);
2227     }
2228     for (i = cur_hw_wps; i < max_hw_wps; i++) {
2229         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0);
2230         assert_hvf_ok(r);
2231         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0);
2232         assert_hvf_ok(r);
2233     }
2234 }
2235 
2236 /*
2237  * Update the vCPU with the guest's view of debug registers. This view is kept
2238  * in the environment at all times.
2239  */
hvf_put_guest_debug_registers(CPUState * cpu)2240 static void hvf_put_guest_debug_registers(CPUState *cpu)
2241 {
2242     ARMCPU *arm_cpu = ARM_CPU(cpu);
2243     CPUARMState *env = &arm_cpu->env;
2244     hv_return_t r = HV_SUCCESS;
2245     int i;
2246 
2247     for (i = 0; i < max_hw_bps; i++) {
2248         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i],
2249                                 env->cp15.dbgbcr[i]);
2250         assert_hvf_ok(r);
2251         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i],
2252                                 env->cp15.dbgbvr[i]);
2253         assert_hvf_ok(r);
2254     }
2255 
2256     for (i = 0; i < max_hw_wps; i++) {
2257         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i],
2258                                 env->cp15.dbgwcr[i]);
2259         assert_hvf_ok(r);
2260         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i],
2261                                 env->cp15.dbgwvr[i]);
2262         assert_hvf_ok(r);
2263     }
2264 }
2265 
hvf_arm_hw_debug_active(CPUState * cpu)2266 static inline bool hvf_arm_hw_debug_active(CPUState *cpu)
2267 {
2268     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
2269 }
2270 
hvf_arch_set_traps(void)2271 static void hvf_arch_set_traps(void)
2272 {
2273     CPUState *cpu;
2274     bool should_enable_traps = false;
2275     hv_return_t r = HV_SUCCESS;
2276 
2277     /* Check whether guest debugging is enabled for at least one vCPU; if it
2278      * is, enable exiting the guest on all vCPUs */
2279     CPU_FOREACH(cpu) {
2280         should_enable_traps |= cpu->accel->guest_debug_enabled;
2281     }
2282     CPU_FOREACH(cpu) {
2283         /* Set whether debug exceptions exit the guest */
2284         r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd,
2285                                               should_enable_traps);
2286         assert_hvf_ok(r);
2287 
2288         /* Set whether accesses to debug registers exit the guest */
2289         r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd,
2290                                                 should_enable_traps);
2291         assert_hvf_ok(r);
2292     }
2293 }
2294 
hvf_arch_update_guest_debug(CPUState * cpu)2295 void hvf_arch_update_guest_debug(CPUState *cpu)
2296 {
2297     ARMCPU *arm_cpu = ARM_CPU(cpu);
2298     CPUARMState *env = &arm_cpu->env;
2299 
2300     /* Check whether guest debugging is enabled */
2301     cpu->accel->guest_debug_enabled = cpu->singlestep_enabled ||
2302                                     hvf_sw_breakpoints_active(cpu) ||
2303                                     hvf_arm_hw_debug_active(cpu);
2304 
2305     /* Update debug registers */
2306     if (cpu->accel->guest_debug_enabled) {
2307         hvf_put_gdbstub_debug_registers(cpu);
2308     } else {
2309         hvf_put_guest_debug_registers(cpu);
2310     }
2311 
2312     cpu_synchronize_state(cpu);
2313 
2314     /* Enable/disable single-stepping */
2315     if (cpu->singlestep_enabled) {
2316         env->cp15.mdscr_el1 =
2317             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1);
2318         pstate_write(env, pstate_read(env) | PSTATE_SS);
2319     } else {
2320         env->cp15.mdscr_el1 =
2321             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0);
2322     }
2323 
2324     /* Enable/disable Breakpoint exceptions */
2325     if (hvf_arm_hw_debug_active(cpu)) {
2326         env->cp15.mdscr_el1 =
2327             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1);
2328     } else {
2329         env->cp15.mdscr_el1 =
2330             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0);
2331     }
2332 
2333     hvf_arch_set_traps();
2334 }
2335 
hvf_arch_supports_guest_debug(void)2336 bool hvf_arch_supports_guest_debug(void)
2337 {
2338     return true;
2339 }
2340