1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/setup.c
4 *
5 * Copyright (C) 1995-2001 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/initrd.h>
16 #include <linux/console.h>
17 #include <linux/cache.h>
18 #include <linux/screen_info.h>
19 #include <linux/init.h>
20 #include <linux/kexec.h>
21 #include <linux/root_dev.h>
22 #include <linux/cpu.h>
23 #include <linux/interrupt.h>
24 #include <linux/smp.h>
25 #include <linux/fs.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/proc_fs.h>
28 #include <linux/memblock.h>
29 #include <linux/of_fdt.h>
30 #include <linux/efi.h>
31 #include <linux/psci.h>
32 #include <linux/sched/task.h>
33 #include <linux/scs.h>
34 #include <linux/mm.h>
35
36 #include <asm/acpi.h>
37 #include <asm/fixmap.h>
38 #include <asm/cpu.h>
39 #include <asm/cputype.h>
40 #include <asm/daifflags.h>
41 #include <asm/elf.h>
42 #include <asm/cpufeature.h>
43 #include <asm/cpu_ops.h>
44 #include <asm/kasan.h>
45 #include <asm/numa.h>
46 #include <asm/scs.h>
47 #include <asm/sections.h>
48 #include <asm/setup.h>
49 #include <asm/smp_plat.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlbflush.h>
52 #include <asm/traps.h>
53 #include <asm/efi.h>
54 #include <asm/xen/hypervisor.h>
55 #include <asm/mmu_context.h>
56
57 static int num_standard_resources;
58 static struct resource *standard_resources;
59
60 phys_addr_t __fdt_pointer __initdata;
61 u64 mmu_enabled_at_boot __initdata;
62
63 /*
64 * Standard memory resources
65 */
66 static struct resource mem_res[] = {
67 {
68 .name = "Kernel code",
69 .start = 0,
70 .end = 0,
71 .flags = IORESOURCE_SYSTEM_RAM
72 },
73 {
74 .name = "Kernel data",
75 .start = 0,
76 .end = 0,
77 .flags = IORESOURCE_SYSTEM_RAM
78 }
79 };
80
81 #define kernel_code mem_res[0]
82 #define kernel_data mem_res[1]
83
84 /*
85 * The recorded values of x0 .. x3 upon kernel entry.
86 */
87 u64 __cacheline_aligned boot_args[4];
88
smp_setup_processor_id(void)89 void __init smp_setup_processor_id(void)
90 {
91 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
92 set_cpu_logical_map(0, mpidr);
93
94 pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
95 (unsigned long)mpidr, read_cpuid_id());
96 }
97
arch_match_cpu_phys_id(int cpu,u64 phys_id)98 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
99 {
100 return phys_id == cpu_logical_map(cpu);
101 }
102
103 struct mpidr_hash mpidr_hash;
104 /**
105 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
106 * level in order to build a linear index from an
107 * MPIDR value. Resulting algorithm is a collision
108 * free hash carried out through shifting and ORing
109 */
smp_build_mpidr_hash(void)110 static void __init smp_build_mpidr_hash(void)
111 {
112 u32 i, affinity, fs[4], bits[4], ls;
113 u64 mask = 0;
114 /*
115 * Pre-scan the list of MPIDRS and filter out bits that do
116 * not contribute to affinity levels, ie they never toggle.
117 */
118 for_each_possible_cpu(i)
119 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
120 pr_debug("mask of set bits %#llx\n", mask);
121 /*
122 * Find and stash the last and first bit set at all affinity levels to
123 * check how many bits are required to represent them.
124 */
125 for (i = 0; i < 4; i++) {
126 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
127 /*
128 * Find the MSB bit and LSB bits position
129 * to determine how many bits are required
130 * to express the affinity level.
131 */
132 ls = fls(affinity);
133 fs[i] = affinity ? ffs(affinity) - 1 : 0;
134 bits[i] = ls - fs[i];
135 }
136 /*
137 * An index can be created from the MPIDR_EL1 by isolating the
138 * significant bits at each affinity level and by shifting
139 * them in order to compress the 32 bits values space to a
140 * compressed set of values. This is equivalent to hashing
141 * the MPIDR_EL1 through shifting and ORing. It is a collision free
142 * hash though not minimal since some levels might contain a number
143 * of CPUs that is not an exact power of 2 and their bit
144 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
145 */
146 mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
147 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
148 mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
149 (bits[1] + bits[0]);
150 mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
151 fs[3] - (bits[2] + bits[1] + bits[0]);
152 mpidr_hash.mask = mask;
153 mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
154 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
155 mpidr_hash.shift_aff[0],
156 mpidr_hash.shift_aff[1],
157 mpidr_hash.shift_aff[2],
158 mpidr_hash.shift_aff[3],
159 mpidr_hash.mask,
160 mpidr_hash.bits);
161 /*
162 * 4x is an arbitrary value used to warn on a hash table much bigger
163 * than expected on most systems.
164 */
165 if (mpidr_hash_size() > 4 * num_possible_cpus())
166 pr_warn("Large number of MPIDR hash buckets detected\n");
167 }
168
169 static void *early_fdt_ptr __initdata;
170
get_early_fdt_ptr(void)171 void __init *get_early_fdt_ptr(void)
172 {
173 return early_fdt_ptr;
174 }
175
early_fdt_map(u64 dt_phys)176 asmlinkage void __init early_fdt_map(u64 dt_phys)
177 {
178 int fdt_size;
179
180 early_fixmap_init();
181 early_fdt_ptr = fixmap_remap_fdt(dt_phys, &fdt_size, PAGE_KERNEL);
182 }
183
setup_machine_fdt(phys_addr_t dt_phys)184 static void __init setup_machine_fdt(phys_addr_t dt_phys)
185 {
186 int size;
187 void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
188 const char *name;
189
190 if (dt_virt)
191 memblock_reserve(dt_phys, size);
192
193 /*
194 * dt_virt is a fixmap address, hence __pa(dt_virt) can't be used.
195 * Pass dt_phys directly.
196 */
197 if (!early_init_dt_scan(dt_virt, dt_phys)) {
198 pr_crit("\n"
199 "Error: invalid device tree blob at physical address %pa (virtual address 0x%px)\n"
200 "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
201 "\nPlease check your bootloader.",
202 &dt_phys, dt_virt);
203
204 /*
205 * Note that in this _really_ early stage we cannot even BUG()
206 * or oops, so the least terrible thing to do is cpu_relax(),
207 * or else we could end-up printing non-initialized data, etc.
208 */
209 while (true)
210 cpu_relax();
211 }
212
213 /* Early fixups are done, map the FDT as read-only now */
214 fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
215
216 name = of_flat_dt_get_machine_name();
217 if (!name)
218 return;
219
220 pr_info("Machine model: %s\n", name);
221 dump_stack_set_arch_desc("%s (DT)", name);
222 }
223
request_standard_resources(void)224 static void __init request_standard_resources(void)
225 {
226 struct memblock_region *region;
227 struct resource *res;
228 unsigned long i = 0;
229 size_t res_size;
230
231 kernel_code.start = __pa_symbol(_stext);
232 kernel_code.end = __pa_symbol(__init_begin - 1);
233 kernel_data.start = __pa_symbol(_sdata);
234 kernel_data.end = __pa_symbol(_end - 1);
235 insert_resource(&iomem_resource, &kernel_code);
236 insert_resource(&iomem_resource, &kernel_data);
237
238 num_standard_resources = memblock.memory.cnt;
239 res_size = num_standard_resources * sizeof(*standard_resources);
240 standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
241 if (!standard_resources)
242 panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
243
244 for_each_mem_region(region) {
245 res = &standard_resources[i++];
246 if (memblock_is_nomap(region)) {
247 res->name = "reserved";
248 res->flags = IORESOURCE_MEM;
249 res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
250 res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
251 } else {
252 res->name = "System RAM";
253 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
254 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
255 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
256 }
257
258 insert_resource(&iomem_resource, res);
259 }
260 }
261
reserve_memblock_reserved_regions(void)262 static int __init reserve_memblock_reserved_regions(void)
263 {
264 u64 i, j;
265
266 for (i = 0; i < num_standard_resources; ++i) {
267 struct resource *mem = &standard_resources[i];
268 phys_addr_t r_start, r_end, mem_size = resource_size(mem);
269
270 if (!memblock_is_region_reserved(mem->start, mem_size))
271 continue;
272
273 for_each_reserved_mem_range(j, &r_start, &r_end) {
274 resource_size_t start, end;
275
276 start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
277 end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
278
279 if (start > mem->end || end < mem->start)
280 continue;
281
282 reserve_region_with_split(mem, start, end, "reserved");
283 }
284 }
285
286 return 0;
287 }
288 arch_initcall(reserve_memblock_reserved_regions);
289
290 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
291
cpu_logical_map(unsigned int cpu)292 u64 cpu_logical_map(unsigned int cpu)
293 {
294 return __cpu_logical_map[cpu];
295 }
296
setup_arch(char ** cmdline_p)297 void __init __no_sanitize_address setup_arch(char **cmdline_p)
298 {
299 setup_initial_init_mm(_stext, _etext, _edata, _end);
300
301 *cmdline_p = boot_command_line;
302
303 kaslr_init();
304
305 /*
306 * If know now we are going to need KPTI then use non-global
307 * mappings from the start, avoiding the cost of rewriting
308 * everything later.
309 */
310 arm64_use_ng_mappings = kaslr_requires_kpti();
311
312 early_fixmap_init();
313 early_ioremap_init();
314
315 setup_machine_fdt(__fdt_pointer);
316
317 /*
318 * Initialise the static keys early as they may be enabled by the
319 * cpufeature code and early parameters.
320 */
321 jump_label_init();
322 parse_early_param();
323
324 dynamic_scs_init();
325
326 /*
327 * Unmask asynchronous aborts and fiq after bringing up possible
328 * earlycon. (Report possible System Errors once we can report this
329 * occurred).
330 */
331 local_daif_restore(DAIF_PROCCTX_NOIRQ);
332
333 /*
334 * TTBR0 is only used for the identity mapping at this stage. Make it
335 * point to zero page to avoid speculatively fetching new entries.
336 */
337 cpu_uninstall_idmap();
338
339 xen_early_init();
340 efi_init();
341
342 if (!efi_enabled(EFI_BOOT)) {
343 if ((u64)_text % MIN_KIMG_ALIGN)
344 pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
345 WARN_TAINT(mmu_enabled_at_boot, TAINT_FIRMWARE_WORKAROUND,
346 FW_BUG "Booted with MMU enabled!");
347 }
348
349 arm64_memblock_init();
350
351 paging_init();
352
353 acpi_table_upgrade();
354
355 /* Parse the ACPI tables for possible boot-time configuration */
356 acpi_boot_table_init();
357
358 if (acpi_disabled)
359 unflatten_device_tree();
360
361 bootmem_init();
362
363 kasan_init();
364
365 request_standard_resources();
366
367 early_ioremap_reset();
368
369 if (acpi_disabled)
370 psci_dt_init();
371 else
372 psci_acpi_init();
373
374 init_bootcpu_ops();
375 smp_init_cpus();
376 smp_build_mpidr_hash();
377
378 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
379 /*
380 * Make sure init_thread_info.ttbr0 always generates translation
381 * faults in case uaccess_enable() is inadvertently called by the init
382 * thread.
383 */
384 init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
385 #endif
386
387 if (boot_args[1] || boot_args[2] || boot_args[3]) {
388 pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
389 "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
390 "This indicates a broken bootloader or old kernel\n",
391 boot_args[1], boot_args[2], boot_args[3]);
392 }
393 }
394
cpu_can_disable(unsigned int cpu)395 static inline bool cpu_can_disable(unsigned int cpu)
396 {
397 #ifdef CONFIG_HOTPLUG_CPU
398 const struct cpu_operations *ops = get_cpu_ops(cpu);
399
400 if (ops && ops->cpu_can_disable)
401 return ops->cpu_can_disable(cpu);
402 #endif
403 return false;
404 }
405
topology_init(void)406 static int __init topology_init(void)
407 {
408 int i;
409
410 for_each_possible_cpu(i) {
411 struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
412 cpu->hotpluggable = cpu_can_disable(i);
413 register_cpu(cpu, i);
414 }
415
416 return 0;
417 }
418 subsys_initcall(topology_init);
419
dump_kernel_offset(void)420 static void dump_kernel_offset(void)
421 {
422 const unsigned long offset = kaslr_offset();
423
424 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
425 pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
426 offset, KIMAGE_VADDR);
427 pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
428 } else {
429 pr_emerg("Kernel Offset: disabled\n");
430 }
431 }
432
arm64_panic_block_dump(struct notifier_block * self,unsigned long v,void * p)433 static int arm64_panic_block_dump(struct notifier_block *self,
434 unsigned long v, void *p)
435 {
436 dump_kernel_offset();
437 dump_cpu_features();
438 dump_mem_limit();
439 return 0;
440 }
441
442 static struct notifier_block arm64_panic_block = {
443 .notifier_call = arm64_panic_block_dump
444 };
445
register_arm64_panic_block(void)446 static int __init register_arm64_panic_block(void)
447 {
448 atomic_notifier_chain_register(&panic_notifier_list,
449 &arm64_panic_block);
450 return 0;
451 }
452 device_initcall(register_arm64_panic_block);
453
check_mmu_enabled_at_boot(void)454 static int __init check_mmu_enabled_at_boot(void)
455 {
456 if (!efi_enabled(EFI_BOOT) && mmu_enabled_at_boot)
457 panic("Non-EFI boot detected with MMU and caches enabled");
458 return 0;
459 }
460 device_initcall_sync(check_mmu_enabled_at_boot);
461