xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 9144f784f852f9a125cabe9927b986d909bfa439)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/jiffies.h>
12 #include <linux/pci.h>
13 #include <linux/iommu.h>
14 #include <linux/iopoll.h>
15 #include <linux/irq.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/slab.h>
20 #include <linux/dmi.h>
21 #include <linux/dma-mapping.h>
22 
23 #include "xhci.h"
24 #include "xhci-trace.h"
25 #include "xhci-debugfs.h"
26 #include "xhci-dbgcap.h"
27 
28 #define DRIVER_AUTHOR "Sarah Sharp"
29 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
30 
31 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
32 
33 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
34 static int link_quirk;
35 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
36 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
37 
38 static unsigned long long quirks;
39 module_param(quirks, ullong, S_IRUGO);
40 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
41 
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)42 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
43 {
44 	struct xhci_segment *seg = ring->first_seg;
45 
46 	if (!td || !td->start_seg)
47 		return false;
48 	do {
49 		if (seg == td->start_seg)
50 			return true;
51 		seg = seg->next;
52 	} while (seg && seg != ring->first_seg);
53 
54 	return false;
55 }
56 
57 /*
58  * xhci_handshake - spin reading hc until handshake completes or fails
59  * @ptr: address of hc register to be read
60  * @mask: bits to look at in result of read
61  * @done: value of those bits when handshake succeeds
62  * @usec: timeout in microseconds
63  *
64  * Returns negative errno, or zero on success
65  *
66  * Success happens when the "mask" bits have the specified value (hardware
67  * handshake done).  There are two failure modes:  "usec" have passed (major
68  * hardware flakeout), or the register reads as all-ones (hardware removed).
69  */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)70 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
71 {
72 	u32	result;
73 	int	ret;
74 
75 	ret = readl_poll_timeout_atomic(ptr, result,
76 					(result & mask) == done ||
77 					result == U32_MAX,
78 					1, timeout_us);
79 	if (result == U32_MAX)		/* card removed */
80 		return -ENODEV;
81 
82 	return ret;
83 }
84 
85 /*
86  * Disable interrupts and begin the xHCI halting process.
87  */
xhci_quiesce(struct xhci_hcd * xhci)88 void xhci_quiesce(struct xhci_hcd *xhci)
89 {
90 	u32 halted;
91 	u32 cmd;
92 	u32 mask;
93 
94 	mask = ~(XHCI_IRQS);
95 	halted = readl(&xhci->op_regs->status) & STS_HALT;
96 	if (!halted)
97 		mask &= ~CMD_RUN;
98 
99 	cmd = readl(&xhci->op_regs->command);
100 	cmd &= mask;
101 	writel(cmd, &xhci->op_regs->command);
102 }
103 
104 /*
105  * Force HC into halt state.
106  *
107  * Disable any IRQs and clear the run/stop bit.
108  * HC will complete any current and actively pipelined transactions, and
109  * should halt within 16 ms of the run/stop bit being cleared.
110  * Read HC Halted bit in the status register to see when the HC is finished.
111  */
xhci_halt(struct xhci_hcd * xhci)112 int xhci_halt(struct xhci_hcd *xhci)
113 {
114 	int ret;
115 
116 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117 	xhci_quiesce(xhci);
118 
119 	ret = xhci_handshake(&xhci->op_regs->status,
120 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121 	if (ret) {
122 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
123 		return ret;
124 	}
125 
126 	xhci->xhc_state |= XHCI_STATE_HALTED;
127 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
128 
129 	return ret;
130 }
131 
132 /*
133  * Set the run bit and wait for the host to be running.
134  */
xhci_start(struct xhci_hcd * xhci)135 int xhci_start(struct xhci_hcd *xhci)
136 {
137 	u32 temp;
138 	int ret;
139 
140 	temp = readl(&xhci->op_regs->command);
141 	temp |= (CMD_RUN);
142 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
143 			temp);
144 	writel(temp, &xhci->op_regs->command);
145 
146 	/*
147 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
148 	 * running.
149 	 */
150 	ret = xhci_handshake(&xhci->op_regs->status,
151 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
152 	if (ret == -ETIMEDOUT)
153 		xhci_err(xhci, "Host took too long to start, "
154 				"waited %u microseconds.\n",
155 				XHCI_MAX_HALT_USEC);
156 	if (!ret) {
157 		/* clear state flags. Including dying, halted or removing */
158 		xhci->xhc_state = 0;
159 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
160 	}
161 
162 	return ret;
163 }
164 
165 /*
166  * Reset a halted HC.
167  *
168  * This resets pipelines, timers, counters, state machines, etc.
169  * Transactions will be terminated immediately, and operational registers
170  * will be set to their defaults.
171  */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)172 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
173 {
174 	u32 command;
175 	u32 state;
176 	int ret;
177 
178 	state = readl(&xhci->op_regs->status);
179 
180 	if (state == ~(u32)0) {
181 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
182 		return -ENODEV;
183 	}
184 
185 	if ((state & STS_HALT) == 0) {
186 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
187 		return 0;
188 	}
189 
190 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
191 	command = readl(&xhci->op_regs->command);
192 	command |= CMD_RESET;
193 	writel(command, &xhci->op_regs->command);
194 
195 	/* Existing Intel xHCI controllers require a delay of 1 mS,
196 	 * after setting the CMD_RESET bit, and before accessing any
197 	 * HC registers. This allows the HC to complete the
198 	 * reset operation and be ready for HC register access.
199 	 * Without this delay, the subsequent HC register access,
200 	 * may result in a system hang very rarely.
201 	 */
202 	if (xhci->quirks & XHCI_INTEL_HOST)
203 		udelay(1000);
204 
205 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
206 	if (ret)
207 		return ret;
208 
209 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
210 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
211 
212 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
213 			 "Wait for controller to be ready for doorbell rings");
214 	/*
215 	 * xHCI cannot write to any doorbells or operational registers other
216 	 * than status until the "Controller Not Ready" flag is cleared.
217 	 */
218 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
219 
220 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
221 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
222 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
223 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
224 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
225 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
226 
227 	return ret;
228 }
229 
xhci_zero_64b_regs(struct xhci_hcd * xhci)230 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
231 {
232 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
233 	struct iommu_domain *domain;
234 	int err, i;
235 	u64 val;
236 	u32 intrs;
237 
238 	/*
239 	 * Some Renesas controllers get into a weird state if they are
240 	 * reset while programmed with 64bit addresses (they will preserve
241 	 * the top half of the address in internal, non visible
242 	 * registers). You end up with half the address coming from the
243 	 * kernel, and the other half coming from the firmware. Also,
244 	 * changing the programming leads to extra accesses even if the
245 	 * controller is supposed to be halted. The controller ends up with
246 	 * a fatal fault, and is then ripe for being properly reset.
247 	 *
248 	 * Special care is taken to only apply this if the device is behind
249 	 * an iommu. Doing anything when there is no iommu is definitely
250 	 * unsafe...
251 	 */
252 	domain = iommu_get_domain_for_dev(dev);
253 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
254 	    domain->type == IOMMU_DOMAIN_IDENTITY)
255 		return;
256 
257 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
258 
259 	/* Clear HSEIE so that faults do not get signaled */
260 	val = readl(&xhci->op_regs->command);
261 	val &= ~CMD_HSEIE;
262 	writel(val, &xhci->op_regs->command);
263 
264 	/* Clear HSE (aka FATAL) */
265 	val = readl(&xhci->op_regs->status);
266 	val |= STS_FATAL;
267 	writel(val, &xhci->op_regs->status);
268 
269 	/* Now zero the registers, and brace for impact */
270 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
271 	if (upper_32_bits(val))
272 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
273 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
274 	if (upper_32_bits(val))
275 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
276 
277 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
278 		      ARRAY_SIZE(xhci->run_regs->ir_set));
279 
280 	for (i = 0; i < intrs; i++) {
281 		struct xhci_intr_reg __iomem *ir;
282 
283 		ir = &xhci->run_regs->ir_set[i];
284 		val = xhci_read_64(xhci, &ir->erst_base);
285 		if (upper_32_bits(val))
286 			xhci_write_64(xhci, 0, &ir->erst_base);
287 		val= xhci_read_64(xhci, &ir->erst_dequeue);
288 		if (upper_32_bits(val))
289 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
290 	}
291 
292 	/* Wait for the fault to appear. It will be cleared on reset */
293 	err = xhci_handshake(&xhci->op_regs->status,
294 			     STS_FATAL, STS_FATAL,
295 			     XHCI_MAX_HALT_USEC);
296 	if (!err)
297 		xhci_info(xhci, "Fault detected\n");
298 }
299 
xhci_enable_interrupter(struct xhci_interrupter * ir)300 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
301 {
302 	u32 iman;
303 
304 	if (!ir || !ir->ir_set)
305 		return -EINVAL;
306 
307 	iman = readl(&ir->ir_set->irq_pending);
308 	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
309 
310 	return 0;
311 }
312 
xhci_disable_interrupter(struct xhci_interrupter * ir)313 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
314 {
315 	u32 iman;
316 
317 	if (!ir || !ir->ir_set)
318 		return -EINVAL;
319 
320 	iman = readl(&ir->ir_set->irq_pending);
321 	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
322 
323 	return 0;
324 }
325 
compliance_mode_recovery(struct timer_list * t)326 static void compliance_mode_recovery(struct timer_list *t)
327 {
328 	struct xhci_hcd *xhci;
329 	struct usb_hcd *hcd;
330 	struct xhci_hub *rhub;
331 	u32 temp;
332 	int i;
333 
334 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
335 	rhub = &xhci->usb3_rhub;
336 	hcd = rhub->hcd;
337 
338 	if (!hcd)
339 		return;
340 
341 	for (i = 0; i < rhub->num_ports; i++) {
342 		temp = readl(rhub->ports[i]->addr);
343 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
344 			/*
345 			 * Compliance Mode Detected. Letting USB Core
346 			 * handle the Warm Reset
347 			 */
348 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
349 					"Compliance mode detected->port %d",
350 					i + 1);
351 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
352 					"Attempting compliance mode recovery");
353 
354 			if (hcd->state == HC_STATE_SUSPENDED)
355 				usb_hcd_resume_root_hub(hcd);
356 
357 			usb_hcd_poll_rh_status(hcd);
358 		}
359 	}
360 
361 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
362 		mod_timer(&xhci->comp_mode_recovery_timer,
363 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
364 }
365 
366 /*
367  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
368  * that causes ports behind that hardware to enter compliance mode sometimes.
369  * The quirk creates a timer that polls every 2 seconds the link state of
370  * each host controller's port and recovers it by issuing a Warm reset
371  * if Compliance mode is detected, otherwise the port will become "dead" (no
372  * device connections or disconnections will be detected anymore). Becasue no
373  * status event is generated when entering compliance mode (per xhci spec),
374  * this quirk is needed on systems that have the failing hardware installed.
375  */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)376 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
377 {
378 	xhci->port_status_u0 = 0;
379 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
380 		    0);
381 	xhci->comp_mode_recovery_timer.expires = jiffies +
382 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
383 
384 	add_timer(&xhci->comp_mode_recovery_timer);
385 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
386 			"Compliance mode recovery timer initialized");
387 }
388 
389 /*
390  * This function identifies the systems that have installed the SN65LVPE502CP
391  * USB3.0 re-driver and that need the Compliance Mode Quirk.
392  * Systems:
393  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
394  */
xhci_compliance_mode_recovery_timer_quirk_check(void)395 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
396 {
397 	const char *dmi_product_name, *dmi_sys_vendor;
398 
399 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
400 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
401 	if (!dmi_product_name || !dmi_sys_vendor)
402 		return false;
403 
404 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
405 		return false;
406 
407 	if (strstr(dmi_product_name, "Z420") ||
408 			strstr(dmi_product_name, "Z620") ||
409 			strstr(dmi_product_name, "Z820") ||
410 			strstr(dmi_product_name, "Z1 Workstation"))
411 		return true;
412 
413 	return false;
414 }
415 
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)416 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
417 {
418 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
419 }
420 
421 
422 /*
423  * Initialize memory for HCD and xHC (one-time init).
424  *
425  * Program the PAGESIZE register, initialize the device context array, create
426  * device contexts (?), set up a command ring segment (or two?), create event
427  * ring (one for now).
428  */
xhci_init(struct usb_hcd * hcd)429 static int xhci_init(struct usb_hcd *hcd)
430 {
431 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
432 	int retval;
433 
434 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
435 	spin_lock_init(&xhci->lock);
436 	if (xhci->hci_version == 0x95 && link_quirk) {
437 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
438 				"QUIRK: Not clearing Link TRB chain bits.");
439 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
440 	} else {
441 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
442 				"xHCI doesn't need link TRB QUIRK");
443 	}
444 	retval = xhci_mem_init(xhci, GFP_KERNEL);
445 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
446 
447 	/* Initializing Compliance Mode Recovery Data If Needed */
448 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
449 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
450 		compliance_mode_recovery_timer_init(xhci);
451 	}
452 
453 	return retval;
454 }
455 
456 /*-------------------------------------------------------------------------*/
457 
xhci_run_finished(struct xhci_hcd * xhci)458 static int xhci_run_finished(struct xhci_hcd *xhci)
459 {
460 	struct xhci_interrupter *ir = xhci->interrupter;
461 	unsigned long	flags;
462 	u32		temp;
463 
464 	/*
465 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
466 	 * Protect the short window before host is running with a lock
467 	 */
468 	spin_lock_irqsave(&xhci->lock, flags);
469 
470 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
471 	temp = readl(&xhci->op_regs->command);
472 	temp |= (CMD_EIE);
473 	writel(temp, &xhci->op_regs->command);
474 
475 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
476 	xhci_enable_interrupter(ir);
477 
478 	if (xhci_start(xhci)) {
479 		xhci_halt(xhci);
480 		spin_unlock_irqrestore(&xhci->lock, flags);
481 		return -ENODEV;
482 	}
483 
484 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
485 
486 	if (xhci->quirks & XHCI_NEC_HOST)
487 		xhci_ring_cmd_db(xhci);
488 
489 	spin_unlock_irqrestore(&xhci->lock, flags);
490 
491 	return 0;
492 }
493 
494 /*
495  * Start the HC after it was halted.
496  *
497  * This function is called by the USB core when the HC driver is added.
498  * Its opposite is xhci_stop().
499  *
500  * xhci_init() must be called once before this function can be called.
501  * Reset the HC, enable device slot contexts, program DCBAAP, and
502  * set command ring pointer and event ring pointer.
503  *
504  * Setup MSI-X vectors and enable interrupts.
505  */
xhci_run(struct usb_hcd * hcd)506 int xhci_run(struct usb_hcd *hcd)
507 {
508 	u32 temp;
509 	u64 temp_64;
510 	int ret;
511 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
512 	struct xhci_interrupter *ir = xhci->interrupter;
513 	/* Start the xHCI host controller running only after the USB 2.0 roothub
514 	 * is setup.
515 	 */
516 
517 	hcd->uses_new_polling = 1;
518 	if (!usb_hcd_is_primary_hcd(hcd))
519 		return xhci_run_finished(xhci);
520 
521 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
522 
523 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
524 	temp_64 &= ~ERST_PTR_MASK;
525 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
526 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
527 
528 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
529 			"// Set the interrupt modulation register");
530 	temp = readl(&ir->ir_set->irq_control);
531 	temp &= ~ER_IRQ_INTERVAL_MASK;
532 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
533 	writel(temp, &ir->ir_set->irq_control);
534 
535 	if (xhci->quirks & XHCI_NEC_HOST) {
536 		struct xhci_command *command;
537 
538 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
539 		if (!command)
540 			return -ENOMEM;
541 
542 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
543 				TRB_TYPE(TRB_NEC_GET_FW));
544 		if (ret)
545 			xhci_free_command(xhci, command);
546 	}
547 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
548 			"Finished %s for main hcd", __func__);
549 
550 	xhci_create_dbc_dev(xhci);
551 
552 	xhci_debugfs_init(xhci);
553 
554 	if (xhci_has_one_roothub(xhci))
555 		return xhci_run_finished(xhci);
556 
557 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
558 
559 	return 0;
560 }
561 EXPORT_SYMBOL_GPL(xhci_run);
562 
563 /*
564  * Stop xHCI driver.
565  *
566  * This function is called by the USB core when the HC driver is removed.
567  * Its opposite is xhci_run().
568  *
569  * Disable device contexts, disable IRQs, and quiesce the HC.
570  * Reset the HC, finish any completed transactions, and cleanup memory.
571  */
xhci_stop(struct usb_hcd * hcd)572 void xhci_stop(struct usb_hcd *hcd)
573 {
574 	u32 temp;
575 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
576 	struct xhci_interrupter *ir = xhci->interrupter;
577 
578 	mutex_lock(&xhci->mutex);
579 
580 	/* Only halt host and free memory after both hcds are removed */
581 	if (!usb_hcd_is_primary_hcd(hcd)) {
582 		mutex_unlock(&xhci->mutex);
583 		return;
584 	}
585 
586 	xhci_remove_dbc_dev(xhci);
587 
588 	spin_lock_irq(&xhci->lock);
589 	xhci->xhc_state |= XHCI_STATE_HALTED;
590 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
591 	xhci_halt(xhci);
592 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
593 	spin_unlock_irq(&xhci->lock);
594 
595 	/* Deleting Compliance Mode Recovery Timer */
596 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
597 			(!(xhci_all_ports_seen_u0(xhci)))) {
598 		del_timer_sync(&xhci->comp_mode_recovery_timer);
599 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
600 				"%s: compliance mode recovery timer deleted",
601 				__func__);
602 	}
603 
604 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
605 		usb_amd_dev_put();
606 
607 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
608 			"// Disabling event ring interrupts");
609 	temp = readl(&xhci->op_regs->status);
610 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
611 	xhci_disable_interrupter(ir);
612 
613 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
614 	xhci_mem_cleanup(xhci);
615 	xhci_debugfs_exit(xhci);
616 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
617 			"xhci_stop completed - status = %x",
618 			readl(&xhci->op_regs->status));
619 	mutex_unlock(&xhci->mutex);
620 }
621 EXPORT_SYMBOL_GPL(xhci_stop);
622 
623 /*
624  * Shutdown HC (not bus-specific)
625  *
626  * This is called when the machine is rebooting or halting.  We assume that the
627  * machine will be powered off, and the HC's internal state will be reset.
628  * Don't bother to free memory.
629  *
630  * This will only ever be called with the main usb_hcd (the USB3 roothub).
631  */
xhci_shutdown(struct usb_hcd * hcd)632 void xhci_shutdown(struct usb_hcd *hcd)
633 {
634 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
635 
636 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
637 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
638 
639 	/* Don't poll the roothubs after shutdown. */
640 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
641 			__func__, hcd->self.busnum);
642 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
643 	del_timer_sync(&hcd->rh_timer);
644 
645 	if (xhci->shared_hcd) {
646 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
647 		del_timer_sync(&xhci->shared_hcd->rh_timer);
648 	}
649 
650 	spin_lock_irq(&xhci->lock);
651 	xhci_halt(xhci);
652 
653 	/*
654 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
655 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
656 	 */
657 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
658 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
659 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
660 
661 	spin_unlock_irq(&xhci->lock);
662 
663 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664 			"xhci_shutdown completed - status = %x",
665 			readl(&xhci->op_regs->status));
666 }
667 EXPORT_SYMBOL_GPL(xhci_shutdown);
668 
669 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)670 static void xhci_save_registers(struct xhci_hcd *xhci)
671 {
672 	struct xhci_interrupter *ir = xhci->interrupter;
673 
674 	xhci->s3.command = readl(&xhci->op_regs->command);
675 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
676 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
677 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
678 
679 	if (!ir)
680 		return;
681 
682 	ir->s3_erst_size = readl(&ir->ir_set->erst_size);
683 	ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
684 	ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
685 	ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
686 	ir->s3_irq_control = readl(&ir->ir_set->irq_control);
687 }
688 
xhci_restore_registers(struct xhci_hcd * xhci)689 static void xhci_restore_registers(struct xhci_hcd *xhci)
690 {
691 	struct xhci_interrupter *ir = xhci->interrupter;
692 
693 	writel(xhci->s3.command, &xhci->op_regs->command);
694 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
695 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
696 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
697 	writel(ir->s3_erst_size, &ir->ir_set->erst_size);
698 	xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
699 	xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
700 	writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
701 	writel(ir->s3_irq_control, &ir->ir_set->irq_control);
702 }
703 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)704 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
705 {
706 	u64	val_64;
707 
708 	/* step 2: initialize command ring buffer */
709 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
710 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
711 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
712 				      xhci->cmd_ring->dequeue) &
713 		 (u64) ~CMD_RING_RSVD_BITS) |
714 		xhci->cmd_ring->cycle_state;
715 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
716 			"// Setting command ring address to 0x%llx",
717 			(long unsigned long) val_64);
718 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
719 }
720 
721 /*
722  * The whole command ring must be cleared to zero when we suspend the host.
723  *
724  * The host doesn't save the command ring pointer in the suspend well, so we
725  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
726  * aligned, because of the reserved bits in the command ring dequeue pointer
727  * register.  Therefore, we can't just set the dequeue pointer back in the
728  * middle of the ring (TRBs are 16-byte aligned).
729  */
xhci_clear_command_ring(struct xhci_hcd * xhci)730 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
731 {
732 	struct xhci_ring *ring;
733 	struct xhci_segment *seg;
734 
735 	ring = xhci->cmd_ring;
736 	seg = ring->deq_seg;
737 	do {
738 		memset(seg->trbs, 0,
739 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
740 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
741 			cpu_to_le32(~TRB_CYCLE);
742 		seg = seg->next;
743 	} while (seg != ring->deq_seg);
744 
745 	/* Reset the software enqueue and dequeue pointers */
746 	ring->deq_seg = ring->first_seg;
747 	ring->dequeue = ring->first_seg->trbs;
748 	ring->enq_seg = ring->deq_seg;
749 	ring->enqueue = ring->dequeue;
750 
751 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
752 	/*
753 	 * Ring is now zeroed, so the HW should look for change of ownership
754 	 * when the cycle bit is set to 1.
755 	 */
756 	ring->cycle_state = 1;
757 
758 	/*
759 	 * Reset the hardware dequeue pointer.
760 	 * Yes, this will need to be re-written after resume, but we're paranoid
761 	 * and want to make sure the hardware doesn't access bogus memory
762 	 * because, say, the BIOS or an SMI started the host without changing
763 	 * the command ring pointers.
764 	 */
765 	xhci_set_cmd_ring_deq(xhci);
766 }
767 
768 /*
769  * Disable port wake bits if do_wakeup is not set.
770  *
771  * Also clear a possible internal port wake state left hanging for ports that
772  * detected termination but never successfully enumerated (trained to 0U).
773  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
774  * at enumeration clears this wake, force one here as well for unconnected ports
775  */
776 
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)777 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
778 				       struct xhci_hub *rhub,
779 				       bool do_wakeup)
780 {
781 	unsigned long flags;
782 	u32 t1, t2, portsc;
783 	int i;
784 
785 	spin_lock_irqsave(&xhci->lock, flags);
786 
787 	for (i = 0; i < rhub->num_ports; i++) {
788 		portsc = readl(rhub->ports[i]->addr);
789 		t1 = xhci_port_state_to_neutral(portsc);
790 		t2 = t1;
791 
792 		/* clear wake bits if do_wake is not set */
793 		if (!do_wakeup)
794 			t2 &= ~PORT_WAKE_BITS;
795 
796 		/* Don't touch csc bit if connected or connect change is set */
797 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
798 			t2 |= PORT_CSC;
799 
800 		if (t1 != t2) {
801 			writel(t2, rhub->ports[i]->addr);
802 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
803 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
804 		}
805 	}
806 	spin_unlock_irqrestore(&xhci->lock, flags);
807 }
808 
xhci_pending_portevent(struct xhci_hcd * xhci)809 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
810 {
811 	struct xhci_port	**ports;
812 	int			port_index;
813 	u32			status;
814 	u32			portsc;
815 
816 	status = readl(&xhci->op_regs->status);
817 	if (status & STS_EINT)
818 		return true;
819 	/*
820 	 * Checking STS_EINT is not enough as there is a lag between a change
821 	 * bit being set and the Port Status Change Event that it generated
822 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
823 	 */
824 
825 	port_index = xhci->usb2_rhub.num_ports;
826 	ports = xhci->usb2_rhub.ports;
827 	while (port_index--) {
828 		portsc = readl(ports[port_index]->addr);
829 		if (portsc & PORT_CHANGE_MASK ||
830 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
831 			return true;
832 	}
833 	port_index = xhci->usb3_rhub.num_ports;
834 	ports = xhci->usb3_rhub.ports;
835 	while (port_index--) {
836 		portsc = readl(ports[port_index]->addr);
837 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
838 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
839 			return true;
840 	}
841 	return false;
842 }
843 
844 /*
845  * Stop HC (not bus-specific)
846  *
847  * This is called when the machine transition into S3/S4 mode.
848  *
849  */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)850 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
851 {
852 	int			rc = 0;
853 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
854 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
855 	u32			command;
856 	u32			res;
857 
858 	if (!hcd->state)
859 		return 0;
860 
861 	if (hcd->state != HC_STATE_SUSPENDED ||
862 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
863 		return -EINVAL;
864 
865 	/* Clear root port wake on bits if wakeup not allowed. */
866 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
867 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
868 
869 	if (!HCD_HW_ACCESSIBLE(hcd))
870 		return 0;
871 
872 	xhci_dbc_suspend(xhci);
873 
874 	/* Don't poll the roothubs on bus suspend. */
875 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
876 		 __func__, hcd->self.busnum);
877 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
878 	del_timer_sync(&hcd->rh_timer);
879 	if (xhci->shared_hcd) {
880 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
881 		del_timer_sync(&xhci->shared_hcd->rh_timer);
882 	}
883 
884 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
885 		usleep_range(1000, 1500);
886 
887 	spin_lock_irq(&xhci->lock);
888 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
889 	if (xhci->shared_hcd)
890 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
891 	/* step 1: stop endpoint */
892 	/* skipped assuming that port suspend has done */
893 
894 	/* step 2: clear Run/Stop bit */
895 	command = readl(&xhci->op_regs->command);
896 	command &= ~CMD_RUN;
897 	writel(command, &xhci->op_regs->command);
898 
899 	/* Some chips from Fresco Logic need an extraordinary delay */
900 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
901 
902 	if (xhci_handshake(&xhci->op_regs->status,
903 		      STS_HALT, STS_HALT, delay)) {
904 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
905 		spin_unlock_irq(&xhci->lock);
906 		return -ETIMEDOUT;
907 	}
908 	xhci_clear_command_ring(xhci);
909 
910 	/* step 3: save registers */
911 	xhci_save_registers(xhci);
912 
913 	/* step 4: set CSS flag */
914 	command = readl(&xhci->op_regs->command);
915 	command |= CMD_CSS;
916 	writel(command, &xhci->op_regs->command);
917 	xhci->broken_suspend = 0;
918 	if (xhci_handshake(&xhci->op_regs->status,
919 				STS_SAVE, 0, 20 * 1000)) {
920 	/*
921 	 * AMD SNPS xHC 3.0 occasionally does not clear the
922 	 * SSS bit of USBSTS and when driver tries to poll
923 	 * to see if the xHC clears BIT(8) which never happens
924 	 * and driver assumes that controller is not responding
925 	 * and times out. To workaround this, its good to check
926 	 * if SRE and HCE bits are not set (as per xhci
927 	 * Section 5.4.2) and bypass the timeout.
928 	 */
929 		res = readl(&xhci->op_regs->status);
930 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
931 		    (((res & STS_SRE) == 0) &&
932 				((res & STS_HCE) == 0))) {
933 			xhci->broken_suspend = 1;
934 		} else {
935 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
936 			spin_unlock_irq(&xhci->lock);
937 			return -ETIMEDOUT;
938 		}
939 	}
940 	spin_unlock_irq(&xhci->lock);
941 
942 	/*
943 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
944 	 * is about to be suspended.
945 	 */
946 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
947 			(!(xhci_all_ports_seen_u0(xhci)))) {
948 		del_timer_sync(&xhci->comp_mode_recovery_timer);
949 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
950 				"%s: compliance mode recovery timer deleted",
951 				__func__);
952 	}
953 
954 	return rc;
955 }
956 EXPORT_SYMBOL_GPL(xhci_suspend);
957 
958 /*
959  * start xHC (not bus-specific)
960  *
961  * This is called when the machine transition from S3/S4 mode.
962  *
963  */
xhci_resume(struct xhci_hcd * xhci,pm_message_t msg)964 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
965 {
966 	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
967 	u32			command, temp = 0;
968 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
969 	int			retval = 0;
970 	bool			comp_timer_running = false;
971 	bool			pending_portevent = false;
972 	bool			suspended_usb3_devs = false;
973 	bool			reinit_xhc = false;
974 
975 	if (!hcd->state)
976 		return 0;
977 
978 	/* Wait a bit if either of the roothubs need to settle from the
979 	 * transition into bus suspend.
980 	 */
981 
982 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
983 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
984 		msleep(100);
985 
986 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
987 	if (xhci->shared_hcd)
988 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
989 
990 	spin_lock_irq(&xhci->lock);
991 
992 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
993 		reinit_xhc = true;
994 
995 	if (!reinit_xhc) {
996 		/*
997 		 * Some controllers might lose power during suspend, so wait
998 		 * for controller not ready bit to clear, just as in xHC init.
999 		 */
1000 		retval = xhci_handshake(&xhci->op_regs->status,
1001 					STS_CNR, 0, 10 * 1000 * 1000);
1002 		if (retval) {
1003 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1004 				  retval);
1005 			spin_unlock_irq(&xhci->lock);
1006 			return retval;
1007 		}
1008 		/* step 1: restore register */
1009 		xhci_restore_registers(xhci);
1010 		/* step 2: initialize command ring buffer */
1011 		xhci_set_cmd_ring_deq(xhci);
1012 		/* step 3: restore state and start state*/
1013 		/* step 3: set CRS flag */
1014 		command = readl(&xhci->op_regs->command);
1015 		command |= CMD_CRS;
1016 		writel(command, &xhci->op_regs->command);
1017 		/*
1018 		 * Some controllers take up to 55+ ms to complete the controller
1019 		 * restore so setting the timeout to 100ms. Xhci specification
1020 		 * doesn't mention any timeout value.
1021 		 */
1022 		if (xhci_handshake(&xhci->op_regs->status,
1023 			      STS_RESTORE, 0, 100 * 1000)) {
1024 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1025 			spin_unlock_irq(&xhci->lock);
1026 			return -ETIMEDOUT;
1027 		}
1028 	}
1029 
1030 	temp = readl(&xhci->op_regs->status);
1031 
1032 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1033 	if ((temp & (STS_SRE | STS_HCE)) &&
1034 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1035 		reinit_xhc = true;
1036 		if (!xhci->broken_suspend)
1037 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1038 	}
1039 
1040 	if (reinit_xhc) {
1041 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1042 				!(xhci_all_ports_seen_u0(xhci))) {
1043 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1044 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1045 				"Compliance Mode Recovery Timer deleted!");
1046 		}
1047 
1048 		/* Let the USB core know _both_ roothubs lost power. */
1049 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1050 		if (xhci->shared_hcd)
1051 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1052 
1053 		xhci_dbg(xhci, "Stop HCD\n");
1054 		xhci_halt(xhci);
1055 		xhci_zero_64b_regs(xhci);
1056 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1057 		spin_unlock_irq(&xhci->lock);
1058 		if (retval)
1059 			return retval;
1060 
1061 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1062 		temp = readl(&xhci->op_regs->status);
1063 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1064 		xhci_disable_interrupter(xhci->interrupter);
1065 
1066 		xhci_dbg(xhci, "cleaning up memory\n");
1067 		xhci_mem_cleanup(xhci);
1068 		xhci_debugfs_exit(xhci);
1069 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1070 			    readl(&xhci->op_regs->status));
1071 
1072 		/* USB core calls the PCI reinit and start functions twice:
1073 		 * first with the primary HCD, and then with the secondary HCD.
1074 		 * If we don't do the same, the host will never be started.
1075 		 */
1076 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1077 		retval = xhci_init(hcd);
1078 		if (retval)
1079 			return retval;
1080 		comp_timer_running = true;
1081 
1082 		xhci_dbg(xhci, "Start the primary HCD\n");
1083 		retval = xhci_run(hcd);
1084 		if (!retval && xhci->shared_hcd) {
1085 			xhci_dbg(xhci, "Start the secondary HCD\n");
1086 			retval = xhci_run(xhci->shared_hcd);
1087 		}
1088 		if (retval)
1089 			return retval;
1090 		/*
1091 		 * Resume roothubs unconditionally as PORTSC change bits are not
1092 		 * immediately visible after xHC reset
1093 		 */
1094 		hcd->state = HC_STATE_SUSPENDED;
1095 
1096 		if (xhci->shared_hcd) {
1097 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1098 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1099 		}
1100 		usb_hcd_resume_root_hub(hcd);
1101 
1102 		goto done;
1103 	}
1104 
1105 	/* step 4: set Run/Stop bit */
1106 	command = readl(&xhci->op_regs->command);
1107 	command |= CMD_RUN;
1108 	writel(command, &xhci->op_regs->command);
1109 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1110 		  0, 250 * 1000);
1111 
1112 	/* step 5: walk topology and initialize portsc,
1113 	 * portpmsc and portli
1114 	 */
1115 	/* this is done in bus_resume */
1116 
1117 	/* step 6: restart each of the previously
1118 	 * Running endpoints by ringing their doorbells
1119 	 */
1120 
1121 	spin_unlock_irq(&xhci->lock);
1122 
1123 	xhci_dbc_resume(xhci);
1124 
1125 	if (retval == 0) {
1126 		/*
1127 		 * Resume roothubs only if there are pending events.
1128 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1129 		 * the first wake signalling failed, give it that chance if
1130 		 * there are suspended USB 3 devices.
1131 		 */
1132 		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1133 		    xhci->usb3_rhub.bus_state.bus_suspended)
1134 			suspended_usb3_devs = true;
1135 
1136 		pending_portevent = xhci_pending_portevent(xhci);
1137 
1138 		if (suspended_usb3_devs && !pending_portevent &&
1139 		    msg.event == PM_EVENT_AUTO_RESUME) {
1140 			msleep(120);
1141 			pending_portevent = xhci_pending_portevent(xhci);
1142 		}
1143 
1144 		if (pending_portevent) {
1145 			if (xhci->shared_hcd)
1146 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1147 			usb_hcd_resume_root_hub(hcd);
1148 		}
1149 	}
1150 done:
1151 	/*
1152 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1153 	 * be re-initialized Always after a system resume. Ports are subject
1154 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1155 	 * ports have entered previously to U0 before system's suspension.
1156 	 */
1157 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1158 		compliance_mode_recovery_timer_init(xhci);
1159 
1160 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1161 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1162 
1163 	/* Re-enable port polling. */
1164 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1165 		 __func__, hcd->self.busnum);
1166 	if (xhci->shared_hcd) {
1167 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1168 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1169 	}
1170 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1171 	usb_hcd_poll_rh_status(hcd);
1172 
1173 	return retval;
1174 }
1175 EXPORT_SYMBOL_GPL(xhci_resume);
1176 #endif	/* CONFIG_PM */
1177 
1178 /*-------------------------------------------------------------------------*/
1179 
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1180 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1181 {
1182 	void *temp;
1183 	int ret = 0;
1184 	unsigned int buf_len;
1185 	enum dma_data_direction dir;
1186 
1187 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1188 	buf_len = urb->transfer_buffer_length;
1189 
1190 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1191 			    dev_to_node(hcd->self.sysdev));
1192 	if (!temp)
1193 		return -ENOMEM;
1194 
1195 	if (usb_urb_dir_out(urb))
1196 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1197 				   temp, buf_len, 0);
1198 
1199 	urb->transfer_buffer = temp;
1200 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1201 					   urb->transfer_buffer,
1202 					   urb->transfer_buffer_length,
1203 					   dir);
1204 
1205 	if (dma_mapping_error(hcd->self.sysdev,
1206 			      urb->transfer_dma)) {
1207 		ret = -EAGAIN;
1208 		kfree(temp);
1209 	} else {
1210 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1211 	}
1212 
1213 	return ret;
1214 }
1215 
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1216 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1217 					  struct urb *urb)
1218 {
1219 	bool ret = false;
1220 	unsigned int i;
1221 	unsigned int len = 0;
1222 	unsigned int trb_size;
1223 	unsigned int max_pkt;
1224 	struct scatterlist *sg;
1225 	struct scatterlist *tail_sg;
1226 
1227 	tail_sg = urb->sg;
1228 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1229 
1230 	if (!urb->num_sgs)
1231 		return ret;
1232 
1233 	if (urb->dev->speed >= USB_SPEED_SUPER)
1234 		trb_size = TRB_CACHE_SIZE_SS;
1235 	else
1236 		trb_size = TRB_CACHE_SIZE_HS;
1237 
1238 	if (urb->transfer_buffer_length != 0 &&
1239 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1240 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1241 			len = len + sg->length;
1242 			if (i > trb_size - 2) {
1243 				len = len - tail_sg->length;
1244 				if (len < max_pkt) {
1245 					ret = true;
1246 					break;
1247 				}
1248 
1249 				tail_sg = sg_next(tail_sg);
1250 			}
1251 		}
1252 	}
1253 	return ret;
1254 }
1255 
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1256 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1257 {
1258 	unsigned int len;
1259 	unsigned int buf_len;
1260 	enum dma_data_direction dir;
1261 
1262 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1263 
1264 	buf_len = urb->transfer_buffer_length;
1265 
1266 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1267 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1268 		dma_unmap_single(hcd->self.sysdev,
1269 				 urb->transfer_dma,
1270 				 urb->transfer_buffer_length,
1271 				 dir);
1272 
1273 	if (usb_urb_dir_in(urb)) {
1274 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1275 					   urb->transfer_buffer,
1276 					   buf_len,
1277 					   0);
1278 		if (len != buf_len) {
1279 			xhci_dbg(hcd_to_xhci(hcd),
1280 				 "Copy from tmp buf to urb sg list failed\n");
1281 			urb->actual_length = len;
1282 		}
1283 	}
1284 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1285 	kfree(urb->transfer_buffer);
1286 	urb->transfer_buffer = NULL;
1287 }
1288 
1289 /*
1290  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1291  * we'll copy the actual data into the TRB address register. This is limited to
1292  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1293  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1294  */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1295 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1296 				gfp_t mem_flags)
1297 {
1298 	struct xhci_hcd *xhci;
1299 
1300 	xhci = hcd_to_xhci(hcd);
1301 
1302 	if (xhci_urb_suitable_for_idt(urb))
1303 		return 0;
1304 
1305 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1306 		if (xhci_urb_temp_buffer_required(hcd, urb))
1307 			return xhci_map_temp_buffer(hcd, urb);
1308 	}
1309 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1310 }
1311 
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1312 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1313 {
1314 	struct xhci_hcd *xhci;
1315 	bool unmap_temp_buf = false;
1316 
1317 	xhci = hcd_to_xhci(hcd);
1318 
1319 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1320 		unmap_temp_buf = true;
1321 
1322 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1323 		xhci_unmap_temp_buf(hcd, urb);
1324 	else
1325 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1326 }
1327 
1328 /**
1329  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1330  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1331  * value to right shift 1 for the bitmask.
1332  *
1333  * Index  = (epnum * 2) + direction - 1,
1334  * where direction = 0 for OUT, 1 for IN.
1335  * For control endpoints, the IN index is used (OUT index is unused), so
1336  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1337  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1338 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1339 {
1340 	unsigned int index;
1341 	if (usb_endpoint_xfer_control(desc))
1342 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1343 	else
1344 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1345 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1346 	return index;
1347 }
1348 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1349 
1350 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1351  * address from the XHCI endpoint index.
1352  */
xhci_get_endpoint_address(unsigned int ep_index)1353 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1354 {
1355 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1356 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1357 	return direction | number;
1358 }
1359 
1360 /* Find the flag for this endpoint (for use in the control context).  Use the
1361  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1362  * bit 1, etc.
1363  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1364 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1365 {
1366 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1367 }
1368 
1369 /* Compute the last valid endpoint context index.  Basically, this is the
1370  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1371  * we find the most significant bit set in the added contexts flags.
1372  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1373  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1374  */
xhci_last_valid_endpoint(u32 added_ctxs)1375 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1376 {
1377 	return fls(added_ctxs) - 1;
1378 }
1379 
1380 /* Returns 1 if the arguments are OK;
1381  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1382  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1383 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1384 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1385 		const char *func) {
1386 	struct xhci_hcd	*xhci;
1387 	struct xhci_virt_device	*virt_dev;
1388 
1389 	if (!hcd || (check_ep && !ep) || !udev) {
1390 		pr_debug("xHCI %s called with invalid args\n", func);
1391 		return -EINVAL;
1392 	}
1393 	if (!udev->parent) {
1394 		pr_debug("xHCI %s called for root hub\n", func);
1395 		return 0;
1396 	}
1397 
1398 	xhci = hcd_to_xhci(hcd);
1399 	if (check_virt_dev) {
1400 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1401 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1402 					func);
1403 			return -EINVAL;
1404 		}
1405 
1406 		virt_dev = xhci->devs[udev->slot_id];
1407 		if (virt_dev->udev != udev) {
1408 			xhci_dbg(xhci, "xHCI %s called with udev and "
1409 					  "virt_dev does not match\n", func);
1410 			return -EINVAL;
1411 		}
1412 	}
1413 
1414 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1415 		return -ENODEV;
1416 
1417 	return 1;
1418 }
1419 
1420 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1421 		struct usb_device *udev, struct xhci_command *command,
1422 		bool ctx_change, bool must_succeed);
1423 
1424 /*
1425  * Full speed devices may have a max packet size greater than 8 bytes, but the
1426  * USB core doesn't know that until it reads the first 8 bytes of the
1427  * descriptor.  If the usb_device's max packet size changes after that point,
1428  * we need to issue an evaluate context command and wait on it.
1429  */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1430 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1431 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1432 {
1433 	struct xhci_container_ctx *out_ctx;
1434 	struct xhci_input_control_ctx *ctrl_ctx;
1435 	struct xhci_ep_ctx *ep_ctx;
1436 	struct xhci_command *command;
1437 	int max_packet_size;
1438 	int hw_max_packet_size;
1439 	int ret = 0;
1440 
1441 	out_ctx = xhci->devs[slot_id]->out_ctx;
1442 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1443 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1444 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1445 	if (hw_max_packet_size != max_packet_size) {
1446 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1447 				"Max Packet Size for ep 0 changed.");
1448 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1449 				"Max packet size in usb_device = %d",
1450 				max_packet_size);
1451 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1452 				"Max packet size in xHCI HW = %d",
1453 				hw_max_packet_size);
1454 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1455 				"Issuing evaluate context command.");
1456 
1457 		/* Set up the input context flags for the command */
1458 		/* FIXME: This won't work if a non-default control endpoint
1459 		 * changes max packet sizes.
1460 		 */
1461 
1462 		command = xhci_alloc_command(xhci, true, mem_flags);
1463 		if (!command)
1464 			return -ENOMEM;
1465 
1466 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1467 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1468 		if (!ctrl_ctx) {
1469 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1470 					__func__);
1471 			ret = -ENOMEM;
1472 			goto command_cleanup;
1473 		}
1474 		/* Set up the modified control endpoint 0 */
1475 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1476 				xhci->devs[slot_id]->out_ctx, ep_index);
1477 
1478 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1479 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1480 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1481 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1482 
1483 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1484 		ctrl_ctx->drop_flags = 0;
1485 
1486 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1487 				true, false);
1488 
1489 		/* Clean up the input context for later use by bandwidth
1490 		 * functions.
1491 		 */
1492 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1493 command_cleanup:
1494 		kfree(command->completion);
1495 		kfree(command);
1496 	}
1497 	return ret;
1498 }
1499 
1500 /*
1501  * non-error returns are a promise to giveback() the urb later
1502  * we drop ownership so next owner (or urb unlink) can get it
1503  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1504 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1505 {
1506 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1507 	unsigned long flags;
1508 	int ret = 0;
1509 	unsigned int slot_id, ep_index;
1510 	unsigned int *ep_state;
1511 	struct urb_priv	*urb_priv;
1512 	int num_tds;
1513 
1514 	if (!urb)
1515 		return -EINVAL;
1516 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1517 					true, true, __func__);
1518 	if (ret <= 0)
1519 		return ret ? ret : -EINVAL;
1520 
1521 	slot_id = urb->dev->slot_id;
1522 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1523 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1524 
1525 	if (!HCD_HW_ACCESSIBLE(hcd))
1526 		return -ESHUTDOWN;
1527 
1528 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1529 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1530 		return -ENODEV;
1531 	}
1532 
1533 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1534 		num_tds = urb->number_of_packets;
1535 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1536 	    urb->transfer_buffer_length > 0 &&
1537 	    urb->transfer_flags & URB_ZERO_PACKET &&
1538 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1539 		num_tds = 2;
1540 	else
1541 		num_tds = 1;
1542 
1543 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1544 	if (!urb_priv)
1545 		return -ENOMEM;
1546 
1547 	urb_priv->num_tds = num_tds;
1548 	urb_priv->num_tds_done = 0;
1549 	urb->hcpriv = urb_priv;
1550 
1551 	trace_xhci_urb_enqueue(urb);
1552 
1553 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1554 		/* Check to see if the max packet size for the default control
1555 		 * endpoint changed during FS device enumeration
1556 		 */
1557 		if (urb->dev->speed == USB_SPEED_FULL) {
1558 			ret = xhci_check_maxpacket(xhci, slot_id,
1559 					ep_index, urb, mem_flags);
1560 			if (ret < 0) {
1561 				xhci_urb_free_priv(urb_priv);
1562 				urb->hcpriv = NULL;
1563 				return ret;
1564 			}
1565 		}
1566 	}
1567 
1568 	spin_lock_irqsave(&xhci->lock, flags);
1569 
1570 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1571 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1572 			 urb->ep->desc.bEndpointAddress, urb);
1573 		ret = -ESHUTDOWN;
1574 		goto free_priv;
1575 	}
1576 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1577 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1578 			  *ep_state);
1579 		ret = -EINVAL;
1580 		goto free_priv;
1581 	}
1582 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1583 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1584 		ret = -EINVAL;
1585 		goto free_priv;
1586 	}
1587 
1588 	switch (usb_endpoint_type(&urb->ep->desc)) {
1589 
1590 	case USB_ENDPOINT_XFER_CONTROL:
1591 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1592 					 slot_id, ep_index);
1593 		break;
1594 	case USB_ENDPOINT_XFER_BULK:
1595 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1596 					 slot_id, ep_index);
1597 		break;
1598 	case USB_ENDPOINT_XFER_INT:
1599 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1600 				slot_id, ep_index);
1601 		break;
1602 	case USB_ENDPOINT_XFER_ISOC:
1603 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1604 				slot_id, ep_index);
1605 	}
1606 
1607 	if (ret) {
1608 free_priv:
1609 		xhci_urb_free_priv(urb_priv);
1610 		urb->hcpriv = NULL;
1611 	}
1612 	spin_unlock_irqrestore(&xhci->lock, flags);
1613 	return ret;
1614 }
1615 
1616 /*
1617  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1618  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1619  * should pick up where it left off in the TD, unless a Set Transfer Ring
1620  * Dequeue Pointer is issued.
1621  *
1622  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1623  * the ring.  Since the ring is a contiguous structure, they can't be physically
1624  * removed.  Instead, there are two options:
1625  *
1626  *  1) If the HC is in the middle of processing the URB to be canceled, we
1627  *     simply move the ring's dequeue pointer past those TRBs using the Set
1628  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1629  *     when drivers timeout on the last submitted URB and attempt to cancel.
1630  *
1631  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1632  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1633  *     HC will need to invalidate the any TRBs it has cached after the stop
1634  *     endpoint command, as noted in the xHCI 0.95 errata.
1635  *
1636  *  3) The TD may have completed by the time the Stop Endpoint Command
1637  *     completes, so software needs to handle that case too.
1638  *
1639  * This function should protect against the TD enqueueing code ringing the
1640  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1641  * It also needs to account for multiple cancellations on happening at the same
1642  * time for the same endpoint.
1643  *
1644  * Note that this function can be called in any context, or so says
1645  * usb_hcd_unlink_urb()
1646  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1647 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1648 {
1649 	unsigned long flags;
1650 	int ret, i;
1651 	u32 temp;
1652 	struct xhci_hcd *xhci;
1653 	struct urb_priv	*urb_priv;
1654 	struct xhci_td *td;
1655 	unsigned int ep_index;
1656 	struct xhci_ring *ep_ring;
1657 	struct xhci_virt_ep *ep;
1658 	struct xhci_command *command;
1659 	struct xhci_virt_device *vdev;
1660 
1661 	xhci = hcd_to_xhci(hcd);
1662 	spin_lock_irqsave(&xhci->lock, flags);
1663 
1664 	trace_xhci_urb_dequeue(urb);
1665 
1666 	/* Make sure the URB hasn't completed or been unlinked already */
1667 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1668 	if (ret)
1669 		goto done;
1670 
1671 	/* give back URB now if we can't queue it for cancel */
1672 	vdev = xhci->devs[urb->dev->slot_id];
1673 	urb_priv = urb->hcpriv;
1674 	if (!vdev || !urb_priv)
1675 		goto err_giveback;
1676 
1677 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1678 	ep = &vdev->eps[ep_index];
1679 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1680 	if (!ep || !ep_ring)
1681 		goto err_giveback;
1682 
1683 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1684 	temp = readl(&xhci->op_regs->status);
1685 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1686 		xhci_hc_died(xhci);
1687 		goto done;
1688 	}
1689 
1690 	/*
1691 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1692 	 * make sure none of the ring related pointers in this URB private data
1693 	 * are touched, such as td_list, otherwise we overwrite freed data
1694 	 */
1695 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1696 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1697 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1698 			td = &urb_priv->td[i];
1699 			if (!list_empty(&td->cancelled_td_list))
1700 				list_del_init(&td->cancelled_td_list);
1701 		}
1702 		goto err_giveback;
1703 	}
1704 
1705 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1706 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1707 				"HC halted, freeing TD manually.");
1708 		for (i = urb_priv->num_tds_done;
1709 		     i < urb_priv->num_tds;
1710 		     i++) {
1711 			td = &urb_priv->td[i];
1712 			if (!list_empty(&td->td_list))
1713 				list_del_init(&td->td_list);
1714 			if (!list_empty(&td->cancelled_td_list))
1715 				list_del_init(&td->cancelled_td_list);
1716 		}
1717 		goto err_giveback;
1718 	}
1719 
1720 	i = urb_priv->num_tds_done;
1721 	if (i < urb_priv->num_tds)
1722 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1723 				"Cancel URB %p, dev %s, ep 0x%x, "
1724 				"starting at offset 0x%llx",
1725 				urb, urb->dev->devpath,
1726 				urb->ep->desc.bEndpointAddress,
1727 				(unsigned long long) xhci_trb_virt_to_dma(
1728 					urb_priv->td[i].start_seg,
1729 					urb_priv->td[i].first_trb));
1730 
1731 	for (; i < urb_priv->num_tds; i++) {
1732 		td = &urb_priv->td[i];
1733 		/* TD can already be on cancelled list if ep halted on it */
1734 		if (list_empty(&td->cancelled_td_list)) {
1735 			td->cancel_status = TD_DIRTY;
1736 			list_add_tail(&td->cancelled_td_list,
1737 				      &ep->cancelled_td_list);
1738 		}
1739 	}
1740 
1741 	/* These completion handlers will sort out cancelled TDs for us */
1742 	if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1743 		xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1744 				urb->dev->slot_id, ep_index, ep->ep_state);
1745 		goto done;
1746 	}
1747 
1748 	/* In this case no commands are pending but the endpoint is stopped */
1749 	if (ep->ep_state & EP_CLEARING_TT) {
1750 		/* and cancelled TDs can be given back right away */
1751 		xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1752 				urb->dev->slot_id, ep_index, ep->ep_state);
1753 		xhci_process_cancelled_tds(ep);
1754 	} else {
1755 		/* Otherwise, queue a new Stop Endpoint command */
1756 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1757 		if (!command) {
1758 			ret = -ENOMEM;
1759 			goto done;
1760 		}
1761 		ep->stop_time = jiffies;
1762 		ep->ep_state |= EP_STOP_CMD_PENDING;
1763 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1764 					 ep_index, 0);
1765 		xhci_ring_cmd_db(xhci);
1766 	}
1767 done:
1768 	spin_unlock_irqrestore(&xhci->lock, flags);
1769 	return ret;
1770 
1771 err_giveback:
1772 	if (urb_priv)
1773 		xhci_urb_free_priv(urb_priv);
1774 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1775 	spin_unlock_irqrestore(&xhci->lock, flags);
1776 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1777 	return ret;
1778 }
1779 
1780 /* Drop an endpoint from a new bandwidth configuration for this device.
1781  * Only one call to this function is allowed per endpoint before
1782  * check_bandwidth() or reset_bandwidth() must be called.
1783  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1784  * add the endpoint to the schedule with possibly new parameters denoted by a
1785  * different endpoint descriptor in usb_host_endpoint.
1786  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1787  * not allowed.
1788  *
1789  * The USB core will not allow URBs to be queued to an endpoint that is being
1790  * disabled, so there's no need for mutual exclusion to protect
1791  * the xhci->devs[slot_id] structure.
1792  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1793 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1794 		       struct usb_host_endpoint *ep)
1795 {
1796 	struct xhci_hcd *xhci;
1797 	struct xhci_container_ctx *in_ctx, *out_ctx;
1798 	struct xhci_input_control_ctx *ctrl_ctx;
1799 	unsigned int ep_index;
1800 	struct xhci_ep_ctx *ep_ctx;
1801 	u32 drop_flag;
1802 	u32 new_add_flags, new_drop_flags;
1803 	int ret;
1804 
1805 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1806 	if (ret <= 0)
1807 		return ret;
1808 	xhci = hcd_to_xhci(hcd);
1809 	if (xhci->xhc_state & XHCI_STATE_DYING)
1810 		return -ENODEV;
1811 
1812 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1813 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1814 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1815 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1816 				__func__, drop_flag);
1817 		return 0;
1818 	}
1819 
1820 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1821 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1822 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1823 	if (!ctrl_ctx) {
1824 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1825 				__func__);
1826 		return 0;
1827 	}
1828 
1829 	ep_index = xhci_get_endpoint_index(&ep->desc);
1830 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1831 	/* If the HC already knows the endpoint is disabled,
1832 	 * or the HCD has noted it is disabled, ignore this request
1833 	 */
1834 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1835 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1836 	    xhci_get_endpoint_flag(&ep->desc)) {
1837 		/* Do not warn when called after a usb_device_reset */
1838 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1839 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1840 				  __func__, ep);
1841 		return 0;
1842 	}
1843 
1844 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1845 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1846 
1847 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1848 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1849 
1850 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1851 
1852 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1853 
1854 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1855 			(unsigned int) ep->desc.bEndpointAddress,
1856 			udev->slot_id,
1857 			(unsigned int) new_drop_flags,
1858 			(unsigned int) new_add_flags);
1859 	return 0;
1860 }
1861 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1862 
1863 /* Add an endpoint to a new possible bandwidth configuration for this device.
1864  * Only one call to this function is allowed per endpoint before
1865  * check_bandwidth() or reset_bandwidth() must be called.
1866  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1867  * add the endpoint to the schedule with possibly new parameters denoted by a
1868  * different endpoint descriptor in usb_host_endpoint.
1869  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1870  * not allowed.
1871  *
1872  * The USB core will not allow URBs to be queued to an endpoint until the
1873  * configuration or alt setting is installed in the device, so there's no need
1874  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1875  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1876 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1877 		      struct usb_host_endpoint *ep)
1878 {
1879 	struct xhci_hcd *xhci;
1880 	struct xhci_container_ctx *in_ctx;
1881 	unsigned int ep_index;
1882 	struct xhci_input_control_ctx *ctrl_ctx;
1883 	struct xhci_ep_ctx *ep_ctx;
1884 	u32 added_ctxs;
1885 	u32 new_add_flags, new_drop_flags;
1886 	struct xhci_virt_device *virt_dev;
1887 	int ret = 0;
1888 
1889 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1890 	if (ret <= 0) {
1891 		/* So we won't queue a reset ep command for a root hub */
1892 		ep->hcpriv = NULL;
1893 		return ret;
1894 	}
1895 	xhci = hcd_to_xhci(hcd);
1896 	if (xhci->xhc_state & XHCI_STATE_DYING)
1897 		return -ENODEV;
1898 
1899 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1900 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1901 		/* FIXME when we have to issue an evaluate endpoint command to
1902 		 * deal with ep0 max packet size changing once we get the
1903 		 * descriptors
1904 		 */
1905 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1906 				__func__, added_ctxs);
1907 		return 0;
1908 	}
1909 
1910 	virt_dev = xhci->devs[udev->slot_id];
1911 	in_ctx = virt_dev->in_ctx;
1912 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1913 	if (!ctrl_ctx) {
1914 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1915 				__func__);
1916 		return 0;
1917 	}
1918 
1919 	ep_index = xhci_get_endpoint_index(&ep->desc);
1920 	/* If this endpoint is already in use, and the upper layers are trying
1921 	 * to add it again without dropping it, reject the addition.
1922 	 */
1923 	if (virt_dev->eps[ep_index].ring &&
1924 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1925 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1926 				"without dropping it.\n",
1927 				(unsigned int) ep->desc.bEndpointAddress);
1928 		return -EINVAL;
1929 	}
1930 
1931 	/* If the HCD has already noted the endpoint is enabled,
1932 	 * ignore this request.
1933 	 */
1934 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1935 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1936 				__func__, ep);
1937 		return 0;
1938 	}
1939 
1940 	/*
1941 	 * Configuration and alternate setting changes must be done in
1942 	 * process context, not interrupt context (or so documenation
1943 	 * for usb_set_interface() and usb_set_configuration() claim).
1944 	 */
1945 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1946 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1947 				__func__, ep->desc.bEndpointAddress);
1948 		return -ENOMEM;
1949 	}
1950 
1951 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1952 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1953 
1954 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1955 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1956 	 * this re-adds a new state for the endpoint from the new endpoint
1957 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1958 	 * drop flags alone.
1959 	 */
1960 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1961 
1962 	/* Store the usb_device pointer for later use */
1963 	ep->hcpriv = udev;
1964 
1965 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1966 	trace_xhci_add_endpoint(ep_ctx);
1967 
1968 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1969 			(unsigned int) ep->desc.bEndpointAddress,
1970 			udev->slot_id,
1971 			(unsigned int) new_drop_flags,
1972 			(unsigned int) new_add_flags);
1973 	return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1976 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1977 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1978 {
1979 	struct xhci_input_control_ctx *ctrl_ctx;
1980 	struct xhci_ep_ctx *ep_ctx;
1981 	struct xhci_slot_ctx *slot_ctx;
1982 	int i;
1983 
1984 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1985 	if (!ctrl_ctx) {
1986 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1987 				__func__);
1988 		return;
1989 	}
1990 
1991 	/* When a device's add flag and drop flag are zero, any subsequent
1992 	 * configure endpoint command will leave that endpoint's state
1993 	 * untouched.  Make sure we don't leave any old state in the input
1994 	 * endpoint contexts.
1995 	 */
1996 	ctrl_ctx->drop_flags = 0;
1997 	ctrl_ctx->add_flags = 0;
1998 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1999 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2000 	/* Endpoint 0 is always valid */
2001 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2002 	for (i = 1; i < 31; i++) {
2003 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2004 		ep_ctx->ep_info = 0;
2005 		ep_ctx->ep_info2 = 0;
2006 		ep_ctx->deq = 0;
2007 		ep_ctx->tx_info = 0;
2008 	}
2009 }
2010 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2011 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2012 		struct usb_device *udev, u32 *cmd_status)
2013 {
2014 	int ret;
2015 
2016 	switch (*cmd_status) {
2017 	case COMP_COMMAND_ABORTED:
2018 	case COMP_COMMAND_RING_STOPPED:
2019 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2020 		ret = -ETIME;
2021 		break;
2022 	case COMP_RESOURCE_ERROR:
2023 		dev_warn(&udev->dev,
2024 			 "Not enough host controller resources for new device state.\n");
2025 		ret = -ENOMEM;
2026 		/* FIXME: can we allocate more resources for the HC? */
2027 		break;
2028 	case COMP_BANDWIDTH_ERROR:
2029 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2030 		dev_warn(&udev->dev,
2031 			 "Not enough bandwidth for new device state.\n");
2032 		ret = -ENOSPC;
2033 		/* FIXME: can we go back to the old state? */
2034 		break;
2035 	case COMP_TRB_ERROR:
2036 		/* the HCD set up something wrong */
2037 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2038 				"add flag = 1, "
2039 				"and endpoint is not disabled.\n");
2040 		ret = -EINVAL;
2041 		break;
2042 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2043 		dev_warn(&udev->dev,
2044 			 "ERROR: Incompatible device for endpoint configure command.\n");
2045 		ret = -ENODEV;
2046 		break;
2047 	case COMP_SUCCESS:
2048 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2049 				"Successful Endpoint Configure command");
2050 		ret = 0;
2051 		break;
2052 	default:
2053 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2054 				*cmd_status);
2055 		ret = -EINVAL;
2056 		break;
2057 	}
2058 	return ret;
2059 }
2060 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2061 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2062 		struct usb_device *udev, u32 *cmd_status)
2063 {
2064 	int ret;
2065 
2066 	switch (*cmd_status) {
2067 	case COMP_COMMAND_ABORTED:
2068 	case COMP_COMMAND_RING_STOPPED:
2069 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2070 		ret = -ETIME;
2071 		break;
2072 	case COMP_PARAMETER_ERROR:
2073 		dev_warn(&udev->dev,
2074 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2075 		ret = -EINVAL;
2076 		break;
2077 	case COMP_SLOT_NOT_ENABLED_ERROR:
2078 		dev_warn(&udev->dev,
2079 			"WARN: slot not enabled for evaluate context command.\n");
2080 		ret = -EINVAL;
2081 		break;
2082 	case COMP_CONTEXT_STATE_ERROR:
2083 		dev_warn(&udev->dev,
2084 			"WARN: invalid context state for evaluate context command.\n");
2085 		ret = -EINVAL;
2086 		break;
2087 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2088 		dev_warn(&udev->dev,
2089 			"ERROR: Incompatible device for evaluate context command.\n");
2090 		ret = -ENODEV;
2091 		break;
2092 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2093 		/* Max Exit Latency too large error */
2094 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2095 		ret = -EINVAL;
2096 		break;
2097 	case COMP_SUCCESS:
2098 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2099 				"Successful evaluate context command");
2100 		ret = 0;
2101 		break;
2102 	default:
2103 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2104 			*cmd_status);
2105 		ret = -EINVAL;
2106 		break;
2107 	}
2108 	return ret;
2109 }
2110 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2111 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2112 		struct xhci_input_control_ctx *ctrl_ctx)
2113 {
2114 	u32 valid_add_flags;
2115 	u32 valid_drop_flags;
2116 
2117 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2118 	 * (bit 1).  The default control endpoint is added during the Address
2119 	 * Device command and is never removed until the slot is disabled.
2120 	 */
2121 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2122 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2123 
2124 	/* Use hweight32 to count the number of ones in the add flags, or
2125 	 * number of endpoints added.  Don't count endpoints that are changed
2126 	 * (both added and dropped).
2127 	 */
2128 	return hweight32(valid_add_flags) -
2129 		hweight32(valid_add_flags & valid_drop_flags);
2130 }
2131 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2132 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2133 		struct xhci_input_control_ctx *ctrl_ctx)
2134 {
2135 	u32 valid_add_flags;
2136 	u32 valid_drop_flags;
2137 
2138 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2139 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2140 
2141 	return hweight32(valid_drop_flags) -
2142 		hweight32(valid_add_flags & valid_drop_flags);
2143 }
2144 
2145 /*
2146  * We need to reserve the new number of endpoints before the configure endpoint
2147  * command completes.  We can't subtract the dropped endpoints from the number
2148  * of active endpoints until the command completes because we can oversubscribe
2149  * the host in this case:
2150  *
2151  *  - the first configure endpoint command drops more endpoints than it adds
2152  *  - a second configure endpoint command that adds more endpoints is queued
2153  *  - the first configure endpoint command fails, so the config is unchanged
2154  *  - the second command may succeed, even though there isn't enough resources
2155  *
2156  * Must be called with xhci->lock held.
2157  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2158 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2159 		struct xhci_input_control_ctx *ctrl_ctx)
2160 {
2161 	u32 added_eps;
2162 
2163 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2164 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2165 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2166 				"Not enough ep ctxs: "
2167 				"%u active, need to add %u, limit is %u.",
2168 				xhci->num_active_eps, added_eps,
2169 				xhci->limit_active_eps);
2170 		return -ENOMEM;
2171 	}
2172 	xhci->num_active_eps += added_eps;
2173 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2174 			"Adding %u ep ctxs, %u now active.", added_eps,
2175 			xhci->num_active_eps);
2176 	return 0;
2177 }
2178 
2179 /*
2180  * The configure endpoint was failed by the xHC for some other reason, so we
2181  * need to revert the resources that failed configuration would have used.
2182  *
2183  * Must be called with xhci->lock held.
2184  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2185 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2186 		struct xhci_input_control_ctx *ctrl_ctx)
2187 {
2188 	u32 num_failed_eps;
2189 
2190 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2191 	xhci->num_active_eps -= num_failed_eps;
2192 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2193 			"Removing %u failed ep ctxs, %u now active.",
2194 			num_failed_eps,
2195 			xhci->num_active_eps);
2196 }
2197 
2198 /*
2199  * Now that the command has completed, clean up the active endpoint count by
2200  * subtracting out the endpoints that were dropped (but not changed).
2201  *
2202  * Must be called with xhci->lock held.
2203  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2204 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2205 		struct xhci_input_control_ctx *ctrl_ctx)
2206 {
2207 	u32 num_dropped_eps;
2208 
2209 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2210 	xhci->num_active_eps -= num_dropped_eps;
2211 	if (num_dropped_eps)
2212 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2213 				"Removing %u dropped ep ctxs, %u now active.",
2214 				num_dropped_eps,
2215 				xhci->num_active_eps);
2216 }
2217 
xhci_get_block_size(struct usb_device * udev)2218 static unsigned int xhci_get_block_size(struct usb_device *udev)
2219 {
2220 	switch (udev->speed) {
2221 	case USB_SPEED_LOW:
2222 	case USB_SPEED_FULL:
2223 		return FS_BLOCK;
2224 	case USB_SPEED_HIGH:
2225 		return HS_BLOCK;
2226 	case USB_SPEED_SUPER:
2227 	case USB_SPEED_SUPER_PLUS:
2228 		return SS_BLOCK;
2229 	case USB_SPEED_UNKNOWN:
2230 	default:
2231 		/* Should never happen */
2232 		return 1;
2233 	}
2234 }
2235 
2236 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2237 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2238 {
2239 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2240 		return LS_OVERHEAD;
2241 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2242 		return FS_OVERHEAD;
2243 	return HS_OVERHEAD;
2244 }
2245 
2246 /* If we are changing a LS/FS device under a HS hub,
2247  * make sure (if we are activating a new TT) that the HS bus has enough
2248  * bandwidth for this new TT.
2249  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2250 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2251 		struct xhci_virt_device *virt_dev,
2252 		int old_active_eps)
2253 {
2254 	struct xhci_interval_bw_table *bw_table;
2255 	struct xhci_tt_bw_info *tt_info;
2256 
2257 	/* Find the bandwidth table for the root port this TT is attached to. */
2258 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2259 	tt_info = virt_dev->tt_info;
2260 	/* If this TT already had active endpoints, the bandwidth for this TT
2261 	 * has already been added.  Removing all periodic endpoints (and thus
2262 	 * making the TT enactive) will only decrease the bandwidth used.
2263 	 */
2264 	if (old_active_eps)
2265 		return 0;
2266 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2267 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2268 			return -ENOMEM;
2269 		return 0;
2270 	}
2271 	/* Not sure why we would have no new active endpoints...
2272 	 *
2273 	 * Maybe because of an Evaluate Context change for a hub update or a
2274 	 * control endpoint 0 max packet size change?
2275 	 * FIXME: skip the bandwidth calculation in that case.
2276 	 */
2277 	return 0;
2278 }
2279 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2280 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2281 		struct xhci_virt_device *virt_dev)
2282 {
2283 	unsigned int bw_reserved;
2284 
2285 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2286 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2287 		return -ENOMEM;
2288 
2289 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2290 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2291 		return -ENOMEM;
2292 
2293 	return 0;
2294 }
2295 
2296 /*
2297  * This algorithm is a very conservative estimate of the worst-case scheduling
2298  * scenario for any one interval.  The hardware dynamically schedules the
2299  * packets, so we can't tell which microframe could be the limiting factor in
2300  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2301  *
2302  * Obviously, we can't solve an NP complete problem to find the minimum worst
2303  * case scenario.  Instead, we come up with an estimate that is no less than
2304  * the worst case bandwidth used for any one microframe, but may be an
2305  * over-estimate.
2306  *
2307  * We walk the requirements for each endpoint by interval, starting with the
2308  * smallest interval, and place packets in the schedule where there is only one
2309  * possible way to schedule packets for that interval.  In order to simplify
2310  * this algorithm, we record the largest max packet size for each interval, and
2311  * assume all packets will be that size.
2312  *
2313  * For interval 0, we obviously must schedule all packets for each interval.
2314  * The bandwidth for interval 0 is just the amount of data to be transmitted
2315  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2316  * the number of packets).
2317  *
2318  * For interval 1, we have two possible microframes to schedule those packets
2319  * in.  For this algorithm, if we can schedule the same number of packets for
2320  * each possible scheduling opportunity (each microframe), we will do so.  The
2321  * remaining number of packets will be saved to be transmitted in the gaps in
2322  * the next interval's scheduling sequence.
2323  *
2324  * As we move those remaining packets to be scheduled with interval 2 packets,
2325  * we have to double the number of remaining packets to transmit.  This is
2326  * because the intervals are actually powers of 2, and we would be transmitting
2327  * the previous interval's packets twice in this interval.  We also have to be
2328  * sure that when we look at the largest max packet size for this interval, we
2329  * also look at the largest max packet size for the remaining packets and take
2330  * the greater of the two.
2331  *
2332  * The algorithm continues to evenly distribute packets in each scheduling
2333  * opportunity, and push the remaining packets out, until we get to the last
2334  * interval.  Then those packets and their associated overhead are just added
2335  * to the bandwidth used.
2336  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2337 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2338 		struct xhci_virt_device *virt_dev,
2339 		int old_active_eps)
2340 {
2341 	unsigned int bw_reserved;
2342 	unsigned int max_bandwidth;
2343 	unsigned int bw_used;
2344 	unsigned int block_size;
2345 	struct xhci_interval_bw_table *bw_table;
2346 	unsigned int packet_size = 0;
2347 	unsigned int overhead = 0;
2348 	unsigned int packets_transmitted = 0;
2349 	unsigned int packets_remaining = 0;
2350 	unsigned int i;
2351 
2352 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2353 		return xhci_check_ss_bw(xhci, virt_dev);
2354 
2355 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2356 		max_bandwidth = HS_BW_LIMIT;
2357 		/* Convert percent of bus BW reserved to blocks reserved */
2358 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2359 	} else {
2360 		max_bandwidth = FS_BW_LIMIT;
2361 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2362 	}
2363 
2364 	bw_table = virt_dev->bw_table;
2365 	/* We need to translate the max packet size and max ESIT payloads into
2366 	 * the units the hardware uses.
2367 	 */
2368 	block_size = xhci_get_block_size(virt_dev->udev);
2369 
2370 	/* If we are manipulating a LS/FS device under a HS hub, double check
2371 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2372 	 */
2373 	if (virt_dev->tt_info) {
2374 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2375 				"Recalculating BW for rootport %u",
2376 				virt_dev->real_port);
2377 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2378 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2379 					"newly activated TT.\n");
2380 			return -ENOMEM;
2381 		}
2382 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2383 				"Recalculating BW for TT slot %u port %u",
2384 				virt_dev->tt_info->slot_id,
2385 				virt_dev->tt_info->ttport);
2386 	} else {
2387 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2388 				"Recalculating BW for rootport %u",
2389 				virt_dev->real_port);
2390 	}
2391 
2392 	/* Add in how much bandwidth will be used for interval zero, or the
2393 	 * rounded max ESIT payload + number of packets * largest overhead.
2394 	 */
2395 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2396 		bw_table->interval_bw[0].num_packets *
2397 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2398 
2399 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2400 		unsigned int bw_added;
2401 		unsigned int largest_mps;
2402 		unsigned int interval_overhead;
2403 
2404 		/*
2405 		 * How many packets could we transmit in this interval?
2406 		 * If packets didn't fit in the previous interval, we will need
2407 		 * to transmit that many packets twice within this interval.
2408 		 */
2409 		packets_remaining = 2 * packets_remaining +
2410 			bw_table->interval_bw[i].num_packets;
2411 
2412 		/* Find the largest max packet size of this or the previous
2413 		 * interval.
2414 		 */
2415 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2416 			largest_mps = 0;
2417 		else {
2418 			struct xhci_virt_ep *virt_ep;
2419 			struct list_head *ep_entry;
2420 
2421 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2422 			virt_ep = list_entry(ep_entry,
2423 					struct xhci_virt_ep, bw_endpoint_list);
2424 			/* Convert to blocks, rounding up */
2425 			largest_mps = DIV_ROUND_UP(
2426 					virt_ep->bw_info.max_packet_size,
2427 					block_size);
2428 		}
2429 		if (largest_mps > packet_size)
2430 			packet_size = largest_mps;
2431 
2432 		/* Use the larger overhead of this or the previous interval. */
2433 		interval_overhead = xhci_get_largest_overhead(
2434 				&bw_table->interval_bw[i]);
2435 		if (interval_overhead > overhead)
2436 			overhead = interval_overhead;
2437 
2438 		/* How many packets can we evenly distribute across
2439 		 * (1 << (i + 1)) possible scheduling opportunities?
2440 		 */
2441 		packets_transmitted = packets_remaining >> (i + 1);
2442 
2443 		/* Add in the bandwidth used for those scheduled packets */
2444 		bw_added = packets_transmitted * (overhead + packet_size);
2445 
2446 		/* How many packets do we have remaining to transmit? */
2447 		packets_remaining = packets_remaining % (1 << (i + 1));
2448 
2449 		/* What largest max packet size should those packets have? */
2450 		/* If we've transmitted all packets, don't carry over the
2451 		 * largest packet size.
2452 		 */
2453 		if (packets_remaining == 0) {
2454 			packet_size = 0;
2455 			overhead = 0;
2456 		} else if (packets_transmitted > 0) {
2457 			/* Otherwise if we do have remaining packets, and we've
2458 			 * scheduled some packets in this interval, take the
2459 			 * largest max packet size from endpoints with this
2460 			 * interval.
2461 			 */
2462 			packet_size = largest_mps;
2463 			overhead = interval_overhead;
2464 		}
2465 		/* Otherwise carry over packet_size and overhead from the last
2466 		 * time we had a remainder.
2467 		 */
2468 		bw_used += bw_added;
2469 		if (bw_used > max_bandwidth) {
2470 			xhci_warn(xhci, "Not enough bandwidth. "
2471 					"Proposed: %u, Max: %u\n",
2472 				bw_used, max_bandwidth);
2473 			return -ENOMEM;
2474 		}
2475 	}
2476 	/*
2477 	 * Ok, we know we have some packets left over after even-handedly
2478 	 * scheduling interval 15.  We don't know which microframes they will
2479 	 * fit into, so we over-schedule and say they will be scheduled every
2480 	 * microframe.
2481 	 */
2482 	if (packets_remaining > 0)
2483 		bw_used += overhead + packet_size;
2484 
2485 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2486 		unsigned int port_index = virt_dev->real_port - 1;
2487 
2488 		/* OK, we're manipulating a HS device attached to a
2489 		 * root port bandwidth domain.  Include the number of active TTs
2490 		 * in the bandwidth used.
2491 		 */
2492 		bw_used += TT_HS_OVERHEAD *
2493 			xhci->rh_bw[port_index].num_active_tts;
2494 	}
2495 
2496 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2497 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2498 		"Available: %u " "percent",
2499 		bw_used, max_bandwidth, bw_reserved,
2500 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2501 		max_bandwidth);
2502 
2503 	bw_used += bw_reserved;
2504 	if (bw_used > max_bandwidth) {
2505 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2506 				bw_used, max_bandwidth);
2507 		return -ENOMEM;
2508 	}
2509 
2510 	bw_table->bw_used = bw_used;
2511 	return 0;
2512 }
2513 
xhci_is_async_ep(unsigned int ep_type)2514 static bool xhci_is_async_ep(unsigned int ep_type)
2515 {
2516 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2517 					ep_type != ISOC_IN_EP &&
2518 					ep_type != INT_IN_EP);
2519 }
2520 
xhci_is_sync_in_ep(unsigned int ep_type)2521 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2522 {
2523 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2524 }
2525 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2526 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2527 {
2528 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2529 
2530 	if (ep_bw->ep_interval == 0)
2531 		return SS_OVERHEAD_BURST +
2532 			(ep_bw->mult * ep_bw->num_packets *
2533 					(SS_OVERHEAD + mps));
2534 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2535 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2536 				1 << ep_bw->ep_interval);
2537 
2538 }
2539 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2540 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2541 		struct xhci_bw_info *ep_bw,
2542 		struct xhci_interval_bw_table *bw_table,
2543 		struct usb_device *udev,
2544 		struct xhci_virt_ep *virt_ep,
2545 		struct xhci_tt_bw_info *tt_info)
2546 {
2547 	struct xhci_interval_bw	*interval_bw;
2548 	int normalized_interval;
2549 
2550 	if (xhci_is_async_ep(ep_bw->type))
2551 		return;
2552 
2553 	if (udev->speed >= USB_SPEED_SUPER) {
2554 		if (xhci_is_sync_in_ep(ep_bw->type))
2555 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2556 				xhci_get_ss_bw_consumed(ep_bw);
2557 		else
2558 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2559 				xhci_get_ss_bw_consumed(ep_bw);
2560 		return;
2561 	}
2562 
2563 	/* SuperSpeed endpoints never get added to intervals in the table, so
2564 	 * this check is only valid for HS/FS/LS devices.
2565 	 */
2566 	if (list_empty(&virt_ep->bw_endpoint_list))
2567 		return;
2568 	/* For LS/FS devices, we need to translate the interval expressed in
2569 	 * microframes to frames.
2570 	 */
2571 	if (udev->speed == USB_SPEED_HIGH)
2572 		normalized_interval = ep_bw->ep_interval;
2573 	else
2574 		normalized_interval = ep_bw->ep_interval - 3;
2575 
2576 	if (normalized_interval == 0)
2577 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2578 	interval_bw = &bw_table->interval_bw[normalized_interval];
2579 	interval_bw->num_packets -= ep_bw->num_packets;
2580 	switch (udev->speed) {
2581 	case USB_SPEED_LOW:
2582 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2583 		break;
2584 	case USB_SPEED_FULL:
2585 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2586 		break;
2587 	case USB_SPEED_HIGH:
2588 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2589 		break;
2590 	default:
2591 		/* Should never happen because only LS/FS/HS endpoints will get
2592 		 * added to the endpoint list.
2593 		 */
2594 		return;
2595 	}
2596 	if (tt_info)
2597 		tt_info->active_eps -= 1;
2598 	list_del_init(&virt_ep->bw_endpoint_list);
2599 }
2600 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2601 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2602 		struct xhci_bw_info *ep_bw,
2603 		struct xhci_interval_bw_table *bw_table,
2604 		struct usb_device *udev,
2605 		struct xhci_virt_ep *virt_ep,
2606 		struct xhci_tt_bw_info *tt_info)
2607 {
2608 	struct xhci_interval_bw	*interval_bw;
2609 	struct xhci_virt_ep *smaller_ep;
2610 	int normalized_interval;
2611 
2612 	if (xhci_is_async_ep(ep_bw->type))
2613 		return;
2614 
2615 	if (udev->speed == USB_SPEED_SUPER) {
2616 		if (xhci_is_sync_in_ep(ep_bw->type))
2617 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2618 				xhci_get_ss_bw_consumed(ep_bw);
2619 		else
2620 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2621 				xhci_get_ss_bw_consumed(ep_bw);
2622 		return;
2623 	}
2624 
2625 	/* For LS/FS devices, we need to translate the interval expressed in
2626 	 * microframes to frames.
2627 	 */
2628 	if (udev->speed == USB_SPEED_HIGH)
2629 		normalized_interval = ep_bw->ep_interval;
2630 	else
2631 		normalized_interval = ep_bw->ep_interval - 3;
2632 
2633 	if (normalized_interval == 0)
2634 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2635 	interval_bw = &bw_table->interval_bw[normalized_interval];
2636 	interval_bw->num_packets += ep_bw->num_packets;
2637 	switch (udev->speed) {
2638 	case USB_SPEED_LOW:
2639 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2640 		break;
2641 	case USB_SPEED_FULL:
2642 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2643 		break;
2644 	case USB_SPEED_HIGH:
2645 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2646 		break;
2647 	default:
2648 		/* Should never happen because only LS/FS/HS endpoints will get
2649 		 * added to the endpoint list.
2650 		 */
2651 		return;
2652 	}
2653 
2654 	if (tt_info)
2655 		tt_info->active_eps += 1;
2656 	/* Insert the endpoint into the list, largest max packet size first. */
2657 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2658 			bw_endpoint_list) {
2659 		if (ep_bw->max_packet_size >=
2660 				smaller_ep->bw_info.max_packet_size) {
2661 			/* Add the new ep before the smaller endpoint */
2662 			list_add_tail(&virt_ep->bw_endpoint_list,
2663 					&smaller_ep->bw_endpoint_list);
2664 			return;
2665 		}
2666 	}
2667 	/* Add the new endpoint at the end of the list. */
2668 	list_add_tail(&virt_ep->bw_endpoint_list,
2669 			&interval_bw->endpoints);
2670 }
2671 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2672 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2673 		struct xhci_virt_device *virt_dev,
2674 		int old_active_eps)
2675 {
2676 	struct xhci_root_port_bw_info *rh_bw_info;
2677 	if (!virt_dev->tt_info)
2678 		return;
2679 
2680 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2681 	if (old_active_eps == 0 &&
2682 				virt_dev->tt_info->active_eps != 0) {
2683 		rh_bw_info->num_active_tts += 1;
2684 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2685 	} else if (old_active_eps != 0 &&
2686 				virt_dev->tt_info->active_eps == 0) {
2687 		rh_bw_info->num_active_tts -= 1;
2688 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2689 	}
2690 }
2691 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2692 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2693 		struct xhci_virt_device *virt_dev,
2694 		struct xhci_container_ctx *in_ctx)
2695 {
2696 	struct xhci_bw_info ep_bw_info[31];
2697 	int i;
2698 	struct xhci_input_control_ctx *ctrl_ctx;
2699 	int old_active_eps = 0;
2700 
2701 	if (virt_dev->tt_info)
2702 		old_active_eps = virt_dev->tt_info->active_eps;
2703 
2704 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2705 	if (!ctrl_ctx) {
2706 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2707 				__func__);
2708 		return -ENOMEM;
2709 	}
2710 
2711 	for (i = 0; i < 31; i++) {
2712 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2713 			continue;
2714 
2715 		/* Make a copy of the BW info in case we need to revert this */
2716 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2717 				sizeof(ep_bw_info[i]));
2718 		/* Drop the endpoint from the interval table if the endpoint is
2719 		 * being dropped or changed.
2720 		 */
2721 		if (EP_IS_DROPPED(ctrl_ctx, i))
2722 			xhci_drop_ep_from_interval_table(xhci,
2723 					&virt_dev->eps[i].bw_info,
2724 					virt_dev->bw_table,
2725 					virt_dev->udev,
2726 					&virt_dev->eps[i],
2727 					virt_dev->tt_info);
2728 	}
2729 	/* Overwrite the information stored in the endpoints' bw_info */
2730 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2731 	for (i = 0; i < 31; i++) {
2732 		/* Add any changed or added endpoints to the interval table */
2733 		if (EP_IS_ADDED(ctrl_ctx, i))
2734 			xhci_add_ep_to_interval_table(xhci,
2735 					&virt_dev->eps[i].bw_info,
2736 					virt_dev->bw_table,
2737 					virt_dev->udev,
2738 					&virt_dev->eps[i],
2739 					virt_dev->tt_info);
2740 	}
2741 
2742 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2743 		/* Ok, this fits in the bandwidth we have.
2744 		 * Update the number of active TTs.
2745 		 */
2746 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2747 		return 0;
2748 	}
2749 
2750 	/* We don't have enough bandwidth for this, revert the stored info. */
2751 	for (i = 0; i < 31; i++) {
2752 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2753 			continue;
2754 
2755 		/* Drop the new copies of any added or changed endpoints from
2756 		 * the interval table.
2757 		 */
2758 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2759 			xhci_drop_ep_from_interval_table(xhci,
2760 					&virt_dev->eps[i].bw_info,
2761 					virt_dev->bw_table,
2762 					virt_dev->udev,
2763 					&virt_dev->eps[i],
2764 					virt_dev->tt_info);
2765 		}
2766 		/* Revert the endpoint back to its old information */
2767 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2768 				sizeof(ep_bw_info[i]));
2769 		/* Add any changed or dropped endpoints back into the table */
2770 		if (EP_IS_DROPPED(ctrl_ctx, i))
2771 			xhci_add_ep_to_interval_table(xhci,
2772 					&virt_dev->eps[i].bw_info,
2773 					virt_dev->bw_table,
2774 					virt_dev->udev,
2775 					&virt_dev->eps[i],
2776 					virt_dev->tt_info);
2777 	}
2778 	return -ENOMEM;
2779 }
2780 
2781 
2782 /* Issue a configure endpoint command or evaluate context command
2783  * and wait for it to finish.
2784  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2785 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2786 		struct usb_device *udev,
2787 		struct xhci_command *command,
2788 		bool ctx_change, bool must_succeed)
2789 {
2790 	int ret;
2791 	unsigned long flags;
2792 	struct xhci_input_control_ctx *ctrl_ctx;
2793 	struct xhci_virt_device *virt_dev;
2794 	struct xhci_slot_ctx *slot_ctx;
2795 
2796 	if (!command)
2797 		return -EINVAL;
2798 
2799 	spin_lock_irqsave(&xhci->lock, flags);
2800 
2801 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2802 		spin_unlock_irqrestore(&xhci->lock, flags);
2803 		return -ESHUTDOWN;
2804 	}
2805 
2806 	virt_dev = xhci->devs[udev->slot_id];
2807 
2808 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2809 	if (!ctrl_ctx) {
2810 		spin_unlock_irqrestore(&xhci->lock, flags);
2811 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2812 				__func__);
2813 		return -ENOMEM;
2814 	}
2815 
2816 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2817 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2818 		spin_unlock_irqrestore(&xhci->lock, flags);
2819 		xhci_warn(xhci, "Not enough host resources, "
2820 				"active endpoint contexts = %u\n",
2821 				xhci->num_active_eps);
2822 		return -ENOMEM;
2823 	}
2824 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2825 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2826 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2827 			xhci_free_host_resources(xhci, ctrl_ctx);
2828 		spin_unlock_irqrestore(&xhci->lock, flags);
2829 		xhci_warn(xhci, "Not enough bandwidth\n");
2830 		return -ENOMEM;
2831 	}
2832 
2833 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2834 
2835 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2836 	trace_xhci_configure_endpoint(slot_ctx);
2837 
2838 	if (!ctx_change)
2839 		ret = xhci_queue_configure_endpoint(xhci, command,
2840 				command->in_ctx->dma,
2841 				udev->slot_id, must_succeed);
2842 	else
2843 		ret = xhci_queue_evaluate_context(xhci, command,
2844 				command->in_ctx->dma,
2845 				udev->slot_id, must_succeed);
2846 	if (ret < 0) {
2847 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2848 			xhci_free_host_resources(xhci, ctrl_ctx);
2849 		spin_unlock_irqrestore(&xhci->lock, flags);
2850 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2851 				"FIXME allocate a new ring segment");
2852 		return -ENOMEM;
2853 	}
2854 	xhci_ring_cmd_db(xhci);
2855 	spin_unlock_irqrestore(&xhci->lock, flags);
2856 
2857 	/* Wait for the configure endpoint command to complete */
2858 	wait_for_completion(command->completion);
2859 
2860 	if (!ctx_change)
2861 		ret = xhci_configure_endpoint_result(xhci, udev,
2862 						     &command->status);
2863 	else
2864 		ret = xhci_evaluate_context_result(xhci, udev,
2865 						   &command->status);
2866 
2867 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2868 		spin_lock_irqsave(&xhci->lock, flags);
2869 		/* If the command failed, remove the reserved resources.
2870 		 * Otherwise, clean up the estimate to include dropped eps.
2871 		 */
2872 		if (ret)
2873 			xhci_free_host_resources(xhci, ctrl_ctx);
2874 		else
2875 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2876 		spin_unlock_irqrestore(&xhci->lock, flags);
2877 	}
2878 	return ret;
2879 }
2880 
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2881 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2882 	struct xhci_virt_device *vdev, int i)
2883 {
2884 	struct xhci_virt_ep *ep = &vdev->eps[i];
2885 
2886 	if (ep->ep_state & EP_HAS_STREAMS) {
2887 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2888 				xhci_get_endpoint_address(i));
2889 		xhci_free_stream_info(xhci, ep->stream_info);
2890 		ep->stream_info = NULL;
2891 		ep->ep_state &= ~EP_HAS_STREAMS;
2892 	}
2893 }
2894 
2895 /* Called after one or more calls to xhci_add_endpoint() or
2896  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2897  * to call xhci_reset_bandwidth().
2898  *
2899  * Since we are in the middle of changing either configuration or
2900  * installing a new alt setting, the USB core won't allow URBs to be
2901  * enqueued for any endpoint on the old config or interface.  Nothing
2902  * else should be touching the xhci->devs[slot_id] structure, so we
2903  * don't need to take the xhci->lock for manipulating that.
2904  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2905 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2906 {
2907 	int i;
2908 	int ret = 0;
2909 	struct xhci_hcd *xhci;
2910 	struct xhci_virt_device	*virt_dev;
2911 	struct xhci_input_control_ctx *ctrl_ctx;
2912 	struct xhci_slot_ctx *slot_ctx;
2913 	struct xhci_command *command;
2914 
2915 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2916 	if (ret <= 0)
2917 		return ret;
2918 	xhci = hcd_to_xhci(hcd);
2919 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2920 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2921 		return -ENODEV;
2922 
2923 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2924 	virt_dev = xhci->devs[udev->slot_id];
2925 
2926 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2927 	if (!command)
2928 		return -ENOMEM;
2929 
2930 	command->in_ctx = virt_dev->in_ctx;
2931 
2932 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2933 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2934 	if (!ctrl_ctx) {
2935 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2936 				__func__);
2937 		ret = -ENOMEM;
2938 		goto command_cleanup;
2939 	}
2940 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2941 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2942 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2943 
2944 	/* Don't issue the command if there's no endpoints to update. */
2945 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2946 	    ctrl_ctx->drop_flags == 0) {
2947 		ret = 0;
2948 		goto command_cleanup;
2949 	}
2950 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2951 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2952 	for (i = 31; i >= 1; i--) {
2953 		__le32 le32 = cpu_to_le32(BIT(i));
2954 
2955 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2956 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2957 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2958 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2959 			break;
2960 		}
2961 	}
2962 
2963 	ret = xhci_configure_endpoint(xhci, udev, command,
2964 			false, false);
2965 	if (ret)
2966 		/* Callee should call reset_bandwidth() */
2967 		goto command_cleanup;
2968 
2969 	/* Free any rings that were dropped, but not changed. */
2970 	for (i = 1; i < 31; i++) {
2971 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2972 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2973 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2974 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2975 		}
2976 	}
2977 	xhci_zero_in_ctx(xhci, virt_dev);
2978 	/*
2979 	 * Install any rings for completely new endpoints or changed endpoints,
2980 	 * and free any old rings from changed endpoints.
2981 	 */
2982 	for (i = 1; i < 31; i++) {
2983 		if (!virt_dev->eps[i].new_ring)
2984 			continue;
2985 		/* Only free the old ring if it exists.
2986 		 * It may not if this is the first add of an endpoint.
2987 		 */
2988 		if (virt_dev->eps[i].ring) {
2989 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2990 		}
2991 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2992 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2993 		virt_dev->eps[i].new_ring = NULL;
2994 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2995 	}
2996 command_cleanup:
2997 	kfree(command->completion);
2998 	kfree(command);
2999 
3000 	return ret;
3001 }
3002 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3003 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3004 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3005 {
3006 	struct xhci_hcd *xhci;
3007 	struct xhci_virt_device	*virt_dev;
3008 	int i, ret;
3009 
3010 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3011 	if (ret <= 0)
3012 		return;
3013 	xhci = hcd_to_xhci(hcd);
3014 
3015 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3016 	virt_dev = xhci->devs[udev->slot_id];
3017 	/* Free any rings allocated for added endpoints */
3018 	for (i = 0; i < 31; i++) {
3019 		if (virt_dev->eps[i].new_ring) {
3020 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3021 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3022 			virt_dev->eps[i].new_ring = NULL;
3023 		}
3024 	}
3025 	xhci_zero_in_ctx(xhci, virt_dev);
3026 }
3027 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3028 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3029 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3030 		struct xhci_container_ctx *in_ctx,
3031 		struct xhci_container_ctx *out_ctx,
3032 		struct xhci_input_control_ctx *ctrl_ctx,
3033 		u32 add_flags, u32 drop_flags)
3034 {
3035 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3036 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3037 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3038 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3039 }
3040 
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3041 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3042 				  struct usb_host_endpoint *host_ep)
3043 {
3044 	struct xhci_hcd		*xhci;
3045 	struct xhci_virt_device	*vdev;
3046 	struct xhci_virt_ep	*ep;
3047 	struct usb_device	*udev;
3048 	unsigned long		flags;
3049 	unsigned int		ep_index;
3050 
3051 	xhci = hcd_to_xhci(hcd);
3052 rescan:
3053 	spin_lock_irqsave(&xhci->lock, flags);
3054 
3055 	udev = (struct usb_device *)host_ep->hcpriv;
3056 	if (!udev || !udev->slot_id)
3057 		goto done;
3058 
3059 	vdev = xhci->devs[udev->slot_id];
3060 	if (!vdev)
3061 		goto done;
3062 
3063 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3064 	ep = &vdev->eps[ep_index];
3065 
3066 	/* wait for hub_tt_work to finish clearing hub TT */
3067 	if (ep->ep_state & EP_CLEARING_TT) {
3068 		spin_unlock_irqrestore(&xhci->lock, flags);
3069 		schedule_timeout_uninterruptible(1);
3070 		goto rescan;
3071 	}
3072 
3073 	if (ep->ep_state)
3074 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3075 			 ep->ep_state);
3076 done:
3077 	host_ep->hcpriv = NULL;
3078 	spin_unlock_irqrestore(&xhci->lock, flags);
3079 }
3080 
3081 /*
3082  * Called after usb core issues a clear halt control message.
3083  * The host side of the halt should already be cleared by a reset endpoint
3084  * command issued when the STALL event was received.
3085  *
3086  * The reset endpoint command may only be issued to endpoints in the halted
3087  * state. For software that wishes to reset the data toggle or sequence number
3088  * of an endpoint that isn't in the halted state this function will issue a
3089  * configure endpoint command with the Drop and Add bits set for the target
3090  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3091  */
3092 
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3093 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3094 		struct usb_host_endpoint *host_ep)
3095 {
3096 	struct xhci_hcd *xhci;
3097 	struct usb_device *udev;
3098 	struct xhci_virt_device *vdev;
3099 	struct xhci_virt_ep *ep;
3100 	struct xhci_input_control_ctx *ctrl_ctx;
3101 	struct xhci_command *stop_cmd, *cfg_cmd;
3102 	unsigned int ep_index;
3103 	unsigned long flags;
3104 	u32 ep_flag;
3105 	int err;
3106 
3107 	xhci = hcd_to_xhci(hcd);
3108 	if (!host_ep->hcpriv)
3109 		return;
3110 	udev = (struct usb_device *) host_ep->hcpriv;
3111 	vdev = xhci->devs[udev->slot_id];
3112 
3113 	/*
3114 	 * vdev may be lost due to xHC restore error and re-initialization
3115 	 * during S3/S4 resume. A new vdev will be allocated later by
3116 	 * xhci_discover_or_reset_device()
3117 	 */
3118 	if (!udev->slot_id || !vdev)
3119 		return;
3120 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3121 	ep = &vdev->eps[ep_index];
3122 
3123 	/* Bail out if toggle is already being cleared by a endpoint reset */
3124 	spin_lock_irqsave(&xhci->lock, flags);
3125 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3126 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3127 		spin_unlock_irqrestore(&xhci->lock, flags);
3128 		return;
3129 	}
3130 	spin_unlock_irqrestore(&xhci->lock, flags);
3131 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3132 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3133 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3134 		return;
3135 
3136 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3137 
3138 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3139 		return;
3140 
3141 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3142 	if (!stop_cmd)
3143 		return;
3144 
3145 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3146 	if (!cfg_cmd)
3147 		goto cleanup;
3148 
3149 	spin_lock_irqsave(&xhci->lock, flags);
3150 
3151 	/* block queuing new trbs and ringing ep doorbell */
3152 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3153 
3154 	/*
3155 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3156 	 * Driver is required to synchronously cancel all transfer request.
3157 	 * Stop the endpoint to force xHC to update the output context
3158 	 */
3159 
3160 	if (!list_empty(&ep->ring->td_list)) {
3161 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3162 		spin_unlock_irqrestore(&xhci->lock, flags);
3163 		xhci_free_command(xhci, cfg_cmd);
3164 		goto cleanup;
3165 	}
3166 
3167 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3168 					ep_index, 0);
3169 	if (err < 0) {
3170 		spin_unlock_irqrestore(&xhci->lock, flags);
3171 		xhci_free_command(xhci, cfg_cmd);
3172 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3173 				__func__, err);
3174 		goto cleanup;
3175 	}
3176 
3177 	xhci_ring_cmd_db(xhci);
3178 	spin_unlock_irqrestore(&xhci->lock, flags);
3179 
3180 	wait_for_completion(stop_cmd->completion);
3181 
3182 	spin_lock_irqsave(&xhci->lock, flags);
3183 
3184 	/* config ep command clears toggle if add and drop ep flags are set */
3185 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3186 	if (!ctrl_ctx) {
3187 		spin_unlock_irqrestore(&xhci->lock, flags);
3188 		xhci_free_command(xhci, cfg_cmd);
3189 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3190 				__func__);
3191 		goto cleanup;
3192 	}
3193 
3194 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3195 					   ctrl_ctx, ep_flag, ep_flag);
3196 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3197 
3198 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3199 				      udev->slot_id, false);
3200 	if (err < 0) {
3201 		spin_unlock_irqrestore(&xhci->lock, flags);
3202 		xhci_free_command(xhci, cfg_cmd);
3203 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3204 				__func__, err);
3205 		goto cleanup;
3206 	}
3207 
3208 	xhci_ring_cmd_db(xhci);
3209 	spin_unlock_irqrestore(&xhci->lock, flags);
3210 
3211 	wait_for_completion(cfg_cmd->completion);
3212 
3213 	xhci_free_command(xhci, cfg_cmd);
3214 cleanup:
3215 	xhci_free_command(xhci, stop_cmd);
3216 	spin_lock_irqsave(&xhci->lock, flags);
3217 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3218 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3219 	spin_unlock_irqrestore(&xhci->lock, flags);
3220 }
3221 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3222 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3223 		struct usb_device *udev, struct usb_host_endpoint *ep,
3224 		unsigned int slot_id)
3225 {
3226 	int ret;
3227 	unsigned int ep_index;
3228 	unsigned int ep_state;
3229 
3230 	if (!ep)
3231 		return -EINVAL;
3232 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3233 	if (ret <= 0)
3234 		return ret ? ret : -EINVAL;
3235 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3236 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3237 				" descriptor for ep 0x%x does not support streams\n",
3238 				ep->desc.bEndpointAddress);
3239 		return -EINVAL;
3240 	}
3241 
3242 	ep_index = xhci_get_endpoint_index(&ep->desc);
3243 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3244 	if (ep_state & EP_HAS_STREAMS ||
3245 			ep_state & EP_GETTING_STREAMS) {
3246 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3247 				"already has streams set up.\n",
3248 				ep->desc.bEndpointAddress);
3249 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3250 				"dynamic stream context array reallocation.\n");
3251 		return -EINVAL;
3252 	}
3253 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3254 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3255 				"endpoint 0x%x; URBs are pending.\n",
3256 				ep->desc.bEndpointAddress);
3257 		return -EINVAL;
3258 	}
3259 	return 0;
3260 }
3261 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3262 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3263 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3264 {
3265 	unsigned int max_streams;
3266 
3267 	/* The stream context array size must be a power of two */
3268 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3269 	/*
3270 	 * Find out how many primary stream array entries the host controller
3271 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3272 	 * level page entries), but that's an optional feature for xHCI host
3273 	 * controllers. xHCs must support at least 4 stream IDs.
3274 	 */
3275 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3276 	if (*num_stream_ctxs > max_streams) {
3277 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3278 				max_streams);
3279 		*num_stream_ctxs = max_streams;
3280 		*num_streams = max_streams;
3281 	}
3282 }
3283 
3284 /* Returns an error code if one of the endpoint already has streams.
3285  * This does not change any data structures, it only checks and gathers
3286  * information.
3287  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3288 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3289 		struct usb_device *udev,
3290 		struct usb_host_endpoint **eps, unsigned int num_eps,
3291 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3292 {
3293 	unsigned int max_streams;
3294 	unsigned int endpoint_flag;
3295 	int i;
3296 	int ret;
3297 
3298 	for (i = 0; i < num_eps; i++) {
3299 		ret = xhci_check_streams_endpoint(xhci, udev,
3300 				eps[i], udev->slot_id);
3301 		if (ret < 0)
3302 			return ret;
3303 
3304 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3305 		if (max_streams < (*num_streams - 1)) {
3306 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3307 					eps[i]->desc.bEndpointAddress,
3308 					max_streams);
3309 			*num_streams = max_streams+1;
3310 		}
3311 
3312 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3313 		if (*changed_ep_bitmask & endpoint_flag)
3314 			return -EINVAL;
3315 		*changed_ep_bitmask |= endpoint_flag;
3316 	}
3317 	return 0;
3318 }
3319 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3320 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3321 		struct usb_device *udev,
3322 		struct usb_host_endpoint **eps, unsigned int num_eps)
3323 {
3324 	u32 changed_ep_bitmask = 0;
3325 	unsigned int slot_id;
3326 	unsigned int ep_index;
3327 	unsigned int ep_state;
3328 	int i;
3329 
3330 	slot_id = udev->slot_id;
3331 	if (!xhci->devs[slot_id])
3332 		return 0;
3333 
3334 	for (i = 0; i < num_eps; i++) {
3335 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3336 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3337 		/* Are streams already being freed for the endpoint? */
3338 		if (ep_state & EP_GETTING_NO_STREAMS) {
3339 			xhci_warn(xhci, "WARN Can't disable streams for "
3340 					"endpoint 0x%x, "
3341 					"streams are being disabled already\n",
3342 					eps[i]->desc.bEndpointAddress);
3343 			return 0;
3344 		}
3345 		/* Are there actually any streams to free? */
3346 		if (!(ep_state & EP_HAS_STREAMS) &&
3347 				!(ep_state & EP_GETTING_STREAMS)) {
3348 			xhci_warn(xhci, "WARN Can't disable streams for "
3349 					"endpoint 0x%x, "
3350 					"streams are already disabled!\n",
3351 					eps[i]->desc.bEndpointAddress);
3352 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3353 					"with non-streams endpoint\n");
3354 			return 0;
3355 		}
3356 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3357 	}
3358 	return changed_ep_bitmask;
3359 }
3360 
3361 /*
3362  * The USB device drivers use this function (through the HCD interface in USB
3363  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3364  * coordinate mass storage command queueing across multiple endpoints (basically
3365  * a stream ID == a task ID).
3366  *
3367  * Setting up streams involves allocating the same size stream context array
3368  * for each endpoint and issuing a configure endpoint command for all endpoints.
3369  *
3370  * Don't allow the call to succeed if one endpoint only supports one stream
3371  * (which means it doesn't support streams at all).
3372  *
3373  * Drivers may get less stream IDs than they asked for, if the host controller
3374  * hardware or endpoints claim they can't support the number of requested
3375  * stream IDs.
3376  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3377 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3378 		struct usb_host_endpoint **eps, unsigned int num_eps,
3379 		unsigned int num_streams, gfp_t mem_flags)
3380 {
3381 	int i, ret;
3382 	struct xhci_hcd *xhci;
3383 	struct xhci_virt_device *vdev;
3384 	struct xhci_command *config_cmd;
3385 	struct xhci_input_control_ctx *ctrl_ctx;
3386 	unsigned int ep_index;
3387 	unsigned int num_stream_ctxs;
3388 	unsigned int max_packet;
3389 	unsigned long flags;
3390 	u32 changed_ep_bitmask = 0;
3391 
3392 	if (!eps)
3393 		return -EINVAL;
3394 
3395 	/* Add one to the number of streams requested to account for
3396 	 * stream 0 that is reserved for xHCI usage.
3397 	 */
3398 	num_streams += 1;
3399 	xhci = hcd_to_xhci(hcd);
3400 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3401 			num_streams);
3402 
3403 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3404 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3405 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3406 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3407 		return -ENOSYS;
3408 	}
3409 
3410 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3411 	if (!config_cmd)
3412 		return -ENOMEM;
3413 
3414 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3415 	if (!ctrl_ctx) {
3416 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3417 				__func__);
3418 		xhci_free_command(xhci, config_cmd);
3419 		return -ENOMEM;
3420 	}
3421 
3422 	/* Check to make sure all endpoints are not already configured for
3423 	 * streams.  While we're at it, find the maximum number of streams that
3424 	 * all the endpoints will support and check for duplicate endpoints.
3425 	 */
3426 	spin_lock_irqsave(&xhci->lock, flags);
3427 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3428 			num_eps, &num_streams, &changed_ep_bitmask);
3429 	if (ret < 0) {
3430 		xhci_free_command(xhci, config_cmd);
3431 		spin_unlock_irqrestore(&xhci->lock, flags);
3432 		return ret;
3433 	}
3434 	if (num_streams <= 1) {
3435 		xhci_warn(xhci, "WARN: endpoints can't handle "
3436 				"more than one stream.\n");
3437 		xhci_free_command(xhci, config_cmd);
3438 		spin_unlock_irqrestore(&xhci->lock, flags);
3439 		return -EINVAL;
3440 	}
3441 	vdev = xhci->devs[udev->slot_id];
3442 	/* Mark each endpoint as being in transition, so
3443 	 * xhci_urb_enqueue() will reject all URBs.
3444 	 */
3445 	for (i = 0; i < num_eps; i++) {
3446 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3447 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3448 	}
3449 	spin_unlock_irqrestore(&xhci->lock, flags);
3450 
3451 	/* Setup internal data structures and allocate HW data structures for
3452 	 * streams (but don't install the HW structures in the input context
3453 	 * until we're sure all memory allocation succeeded).
3454 	 */
3455 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3456 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3457 			num_stream_ctxs, num_streams);
3458 
3459 	for (i = 0; i < num_eps; i++) {
3460 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3461 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3462 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3463 				num_stream_ctxs,
3464 				num_streams,
3465 				max_packet, mem_flags);
3466 		if (!vdev->eps[ep_index].stream_info)
3467 			goto cleanup;
3468 		/* Set maxPstreams in endpoint context and update deq ptr to
3469 		 * point to stream context array. FIXME
3470 		 */
3471 	}
3472 
3473 	/* Set up the input context for a configure endpoint command. */
3474 	for (i = 0; i < num_eps; i++) {
3475 		struct xhci_ep_ctx *ep_ctx;
3476 
3477 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3478 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3479 
3480 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3481 				vdev->out_ctx, ep_index);
3482 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3483 				vdev->eps[ep_index].stream_info);
3484 	}
3485 	/* Tell the HW to drop its old copy of the endpoint context info
3486 	 * and add the updated copy from the input context.
3487 	 */
3488 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3489 			vdev->out_ctx, ctrl_ctx,
3490 			changed_ep_bitmask, changed_ep_bitmask);
3491 
3492 	/* Issue and wait for the configure endpoint command */
3493 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3494 			false, false);
3495 
3496 	/* xHC rejected the configure endpoint command for some reason, so we
3497 	 * leave the old ring intact and free our internal streams data
3498 	 * structure.
3499 	 */
3500 	if (ret < 0)
3501 		goto cleanup;
3502 
3503 	spin_lock_irqsave(&xhci->lock, flags);
3504 	for (i = 0; i < num_eps; i++) {
3505 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3506 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3507 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3508 			 udev->slot_id, ep_index);
3509 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3510 	}
3511 	xhci_free_command(xhci, config_cmd);
3512 	spin_unlock_irqrestore(&xhci->lock, flags);
3513 
3514 	for (i = 0; i < num_eps; i++) {
3515 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3516 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3517 	}
3518 	/* Subtract 1 for stream 0, which drivers can't use */
3519 	return num_streams - 1;
3520 
3521 cleanup:
3522 	/* If it didn't work, free the streams! */
3523 	for (i = 0; i < num_eps; i++) {
3524 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3525 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3526 		vdev->eps[ep_index].stream_info = NULL;
3527 		/* FIXME Unset maxPstreams in endpoint context and
3528 		 * update deq ptr to point to normal string ring.
3529 		 */
3530 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3531 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3532 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3533 	}
3534 	xhci_free_command(xhci, config_cmd);
3535 	return -ENOMEM;
3536 }
3537 
3538 /* Transition the endpoint from using streams to being a "normal" endpoint
3539  * without streams.
3540  *
3541  * Modify the endpoint context state, submit a configure endpoint command,
3542  * and free all endpoint rings for streams if that completes successfully.
3543  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3544 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3545 		struct usb_host_endpoint **eps, unsigned int num_eps,
3546 		gfp_t mem_flags)
3547 {
3548 	int i, ret;
3549 	struct xhci_hcd *xhci;
3550 	struct xhci_virt_device *vdev;
3551 	struct xhci_command *command;
3552 	struct xhci_input_control_ctx *ctrl_ctx;
3553 	unsigned int ep_index;
3554 	unsigned long flags;
3555 	u32 changed_ep_bitmask;
3556 
3557 	xhci = hcd_to_xhci(hcd);
3558 	vdev = xhci->devs[udev->slot_id];
3559 
3560 	/* Set up a configure endpoint command to remove the streams rings */
3561 	spin_lock_irqsave(&xhci->lock, flags);
3562 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3563 			udev, eps, num_eps);
3564 	if (changed_ep_bitmask == 0) {
3565 		spin_unlock_irqrestore(&xhci->lock, flags);
3566 		return -EINVAL;
3567 	}
3568 
3569 	/* Use the xhci_command structure from the first endpoint.  We may have
3570 	 * allocated too many, but the driver may call xhci_free_streams() for
3571 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3572 	 */
3573 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3574 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3575 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3576 	if (!ctrl_ctx) {
3577 		spin_unlock_irqrestore(&xhci->lock, flags);
3578 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3579 				__func__);
3580 		return -EINVAL;
3581 	}
3582 
3583 	for (i = 0; i < num_eps; i++) {
3584 		struct xhci_ep_ctx *ep_ctx;
3585 
3586 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3587 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3588 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3589 			EP_GETTING_NO_STREAMS;
3590 
3591 		xhci_endpoint_copy(xhci, command->in_ctx,
3592 				vdev->out_ctx, ep_index);
3593 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3594 				&vdev->eps[ep_index]);
3595 	}
3596 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3597 			vdev->out_ctx, ctrl_ctx,
3598 			changed_ep_bitmask, changed_ep_bitmask);
3599 	spin_unlock_irqrestore(&xhci->lock, flags);
3600 
3601 	/* Issue and wait for the configure endpoint command,
3602 	 * which must succeed.
3603 	 */
3604 	ret = xhci_configure_endpoint(xhci, udev, command,
3605 			false, true);
3606 
3607 	/* xHC rejected the configure endpoint command for some reason, so we
3608 	 * leave the streams rings intact.
3609 	 */
3610 	if (ret < 0)
3611 		return ret;
3612 
3613 	spin_lock_irqsave(&xhci->lock, flags);
3614 	for (i = 0; i < num_eps; i++) {
3615 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3616 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3617 		vdev->eps[ep_index].stream_info = NULL;
3618 		/* FIXME Unset maxPstreams in endpoint context and
3619 		 * update deq ptr to point to normal string ring.
3620 		 */
3621 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3622 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3623 	}
3624 	spin_unlock_irqrestore(&xhci->lock, flags);
3625 
3626 	return 0;
3627 }
3628 
3629 /*
3630  * Deletes endpoint resources for endpoints that were active before a Reset
3631  * Device command, or a Disable Slot command.  The Reset Device command leaves
3632  * the control endpoint intact, whereas the Disable Slot command deletes it.
3633  *
3634  * Must be called with xhci->lock held.
3635  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3636 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3637 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3638 {
3639 	int i;
3640 	unsigned int num_dropped_eps = 0;
3641 	unsigned int drop_flags = 0;
3642 
3643 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3644 		if (virt_dev->eps[i].ring) {
3645 			drop_flags |= 1 << i;
3646 			num_dropped_eps++;
3647 		}
3648 	}
3649 	xhci->num_active_eps -= num_dropped_eps;
3650 	if (num_dropped_eps)
3651 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3652 				"Dropped %u ep ctxs, flags = 0x%x, "
3653 				"%u now active.",
3654 				num_dropped_eps, drop_flags,
3655 				xhci->num_active_eps);
3656 }
3657 
3658 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3659 
3660 /*
3661  * This submits a Reset Device Command, which will set the device state to 0,
3662  * set the device address to 0, and disable all the endpoints except the default
3663  * control endpoint.  The USB core should come back and call
3664  * xhci_address_device(), and then re-set up the configuration.  If this is
3665  * called because of a usb_reset_and_verify_device(), then the old alternate
3666  * settings will be re-installed through the normal bandwidth allocation
3667  * functions.
3668  *
3669  * Wait for the Reset Device command to finish.  Remove all structures
3670  * associated with the endpoints that were disabled.  Clear the input device
3671  * structure? Reset the control endpoint 0 max packet size?
3672  *
3673  * If the virt_dev to be reset does not exist or does not match the udev,
3674  * it means the device is lost, possibly due to the xHC restore error and
3675  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3676  * re-allocate the device.
3677  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3678 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3679 		struct usb_device *udev)
3680 {
3681 	int ret, i;
3682 	unsigned long flags;
3683 	struct xhci_hcd *xhci;
3684 	unsigned int slot_id;
3685 	struct xhci_virt_device *virt_dev;
3686 	struct xhci_command *reset_device_cmd;
3687 	struct xhci_slot_ctx *slot_ctx;
3688 	int old_active_eps = 0;
3689 
3690 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3691 	if (ret <= 0)
3692 		return ret;
3693 	xhci = hcd_to_xhci(hcd);
3694 	slot_id = udev->slot_id;
3695 	virt_dev = xhci->devs[slot_id];
3696 	if (!virt_dev) {
3697 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3698 				"not exist. Re-allocate the device\n", slot_id);
3699 		ret = xhci_alloc_dev(hcd, udev);
3700 		if (ret == 1)
3701 			return 0;
3702 		else
3703 			return -EINVAL;
3704 	}
3705 
3706 	if (virt_dev->tt_info)
3707 		old_active_eps = virt_dev->tt_info->active_eps;
3708 
3709 	if (virt_dev->udev != udev) {
3710 		/* If the virt_dev and the udev does not match, this virt_dev
3711 		 * may belong to another udev.
3712 		 * Re-allocate the device.
3713 		 */
3714 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3715 				"not match the udev. Re-allocate the device\n",
3716 				slot_id);
3717 		ret = xhci_alloc_dev(hcd, udev);
3718 		if (ret == 1)
3719 			return 0;
3720 		else
3721 			return -EINVAL;
3722 	}
3723 
3724 	/* If device is not setup, there is no point in resetting it */
3725 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3726 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3727 						SLOT_STATE_DISABLED)
3728 		return 0;
3729 
3730 	if (xhci->quirks & XHCI_ETRON_HOST) {
3731 		/*
3732 		 * Obtaining a new device slot to inform the xHCI host that
3733 		 * the USB device has been reset.
3734 		 */
3735 		ret = xhci_disable_slot(xhci, udev->slot_id);
3736 		xhci_free_virt_device(xhci, udev->slot_id);
3737 		if (!ret) {
3738 			ret = xhci_alloc_dev(hcd, udev);
3739 			if (ret == 1)
3740 				ret = 0;
3741 			else
3742 				ret = -EINVAL;
3743 		}
3744 		return ret;
3745 	}
3746 
3747 	trace_xhci_discover_or_reset_device(slot_ctx);
3748 
3749 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3750 	/* Allocate the command structure that holds the struct completion.
3751 	 * Assume we're in process context, since the normal device reset
3752 	 * process has to wait for the device anyway.  Storage devices are
3753 	 * reset as part of error handling, so use GFP_NOIO instead of
3754 	 * GFP_KERNEL.
3755 	 */
3756 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3757 	if (!reset_device_cmd) {
3758 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3759 		return -ENOMEM;
3760 	}
3761 
3762 	/* Attempt to submit the Reset Device command to the command ring */
3763 	spin_lock_irqsave(&xhci->lock, flags);
3764 
3765 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3766 	if (ret) {
3767 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3768 		spin_unlock_irqrestore(&xhci->lock, flags);
3769 		goto command_cleanup;
3770 	}
3771 	xhci_ring_cmd_db(xhci);
3772 	spin_unlock_irqrestore(&xhci->lock, flags);
3773 
3774 	/* Wait for the Reset Device command to finish */
3775 	wait_for_completion(reset_device_cmd->completion);
3776 
3777 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3778 	 * unless we tried to reset a slot ID that wasn't enabled,
3779 	 * or the device wasn't in the addressed or configured state.
3780 	 */
3781 	ret = reset_device_cmd->status;
3782 	switch (ret) {
3783 	case COMP_COMMAND_ABORTED:
3784 	case COMP_COMMAND_RING_STOPPED:
3785 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3786 		ret = -ETIME;
3787 		goto command_cleanup;
3788 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3789 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3790 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3791 				slot_id,
3792 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3793 		xhci_dbg(xhci, "Not freeing device rings.\n");
3794 		/* Don't treat this as an error.  May change my mind later. */
3795 		ret = 0;
3796 		goto command_cleanup;
3797 	case COMP_SUCCESS:
3798 		xhci_dbg(xhci, "Successful reset device command.\n");
3799 		break;
3800 	default:
3801 		if (xhci_is_vendor_info_code(xhci, ret))
3802 			break;
3803 		xhci_warn(xhci, "Unknown completion code %u for "
3804 				"reset device command.\n", ret);
3805 		ret = -EINVAL;
3806 		goto command_cleanup;
3807 	}
3808 
3809 	/* Free up host controller endpoint resources */
3810 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3811 		spin_lock_irqsave(&xhci->lock, flags);
3812 		/* Don't delete the default control endpoint resources */
3813 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3814 		spin_unlock_irqrestore(&xhci->lock, flags);
3815 	}
3816 
3817 	/* Everything but endpoint 0 is disabled, so free the rings. */
3818 	for (i = 1; i < 31; i++) {
3819 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3820 
3821 		if (ep->ep_state & EP_HAS_STREAMS) {
3822 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3823 					xhci_get_endpoint_address(i));
3824 			xhci_free_stream_info(xhci, ep->stream_info);
3825 			ep->stream_info = NULL;
3826 			ep->ep_state &= ~EP_HAS_STREAMS;
3827 		}
3828 
3829 		if (ep->ring) {
3830 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3831 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3832 		}
3833 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3834 			xhci_drop_ep_from_interval_table(xhci,
3835 					&virt_dev->eps[i].bw_info,
3836 					virt_dev->bw_table,
3837 					udev,
3838 					&virt_dev->eps[i],
3839 					virt_dev->tt_info);
3840 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3841 	}
3842 	/* If necessary, update the number of active TTs on this root port */
3843 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3844 	virt_dev->flags = 0;
3845 	ret = 0;
3846 
3847 command_cleanup:
3848 	xhci_free_command(xhci, reset_device_cmd);
3849 	return ret;
3850 }
3851 
3852 /*
3853  * At this point, the struct usb_device is about to go away, the device has
3854  * disconnected, and all traffic has been stopped and the endpoints have been
3855  * disabled.  Free any HC data structures associated with that device.
3856  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3857 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3858 {
3859 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3860 	struct xhci_virt_device *virt_dev;
3861 	struct xhci_slot_ctx *slot_ctx;
3862 	unsigned long flags;
3863 	int i, ret;
3864 
3865 	/*
3866 	 * We called pm_runtime_get_noresume when the device was attached.
3867 	 * Decrement the counter here to allow controller to runtime suspend
3868 	 * if no devices remain.
3869 	 */
3870 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3871 		pm_runtime_put_noidle(hcd->self.controller);
3872 
3873 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3874 	/* If the host is halted due to driver unload, we still need to free the
3875 	 * device.
3876 	 */
3877 	if (ret <= 0 && ret != -ENODEV)
3878 		return;
3879 
3880 	virt_dev = xhci->devs[udev->slot_id];
3881 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3882 	trace_xhci_free_dev(slot_ctx);
3883 
3884 	/* Stop any wayward timer functions (which may grab the lock) */
3885 	for (i = 0; i < 31; i++)
3886 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3887 	virt_dev->udev = NULL;
3888 	xhci_disable_slot(xhci, udev->slot_id);
3889 
3890 	spin_lock_irqsave(&xhci->lock, flags);
3891 	xhci_free_virt_device(xhci, udev->slot_id);
3892 	spin_unlock_irqrestore(&xhci->lock, flags);
3893 
3894 }
3895 
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3896 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3897 {
3898 	struct xhci_command *command;
3899 	unsigned long flags;
3900 	u32 state;
3901 	int ret;
3902 
3903 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3904 	if (!command)
3905 		return -ENOMEM;
3906 
3907 	xhci_debugfs_remove_slot(xhci, slot_id);
3908 
3909 	spin_lock_irqsave(&xhci->lock, flags);
3910 	/* Don't disable the slot if the host controller is dead. */
3911 	state = readl(&xhci->op_regs->status);
3912 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3913 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3914 		spin_unlock_irqrestore(&xhci->lock, flags);
3915 		kfree(command);
3916 		return -ENODEV;
3917 	}
3918 
3919 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3920 				slot_id);
3921 	if (ret) {
3922 		spin_unlock_irqrestore(&xhci->lock, flags);
3923 		kfree(command);
3924 		return ret;
3925 	}
3926 	xhci_ring_cmd_db(xhci);
3927 	spin_unlock_irqrestore(&xhci->lock, flags);
3928 
3929 	wait_for_completion(command->completion);
3930 
3931 	if (command->status != COMP_SUCCESS)
3932 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3933 			  slot_id, command->status);
3934 
3935 	xhci_free_command(xhci, command);
3936 
3937 	return 0;
3938 }
3939 
3940 /*
3941  * Checks if we have enough host controller resources for the default control
3942  * endpoint.
3943  *
3944  * Must be called with xhci->lock held.
3945  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3946 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3947 {
3948 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3949 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3950 				"Not enough ep ctxs: "
3951 				"%u active, need to add 1, limit is %u.",
3952 				xhci->num_active_eps, xhci->limit_active_eps);
3953 		return -ENOMEM;
3954 	}
3955 	xhci->num_active_eps += 1;
3956 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3957 			"Adding 1 ep ctx, %u now active.",
3958 			xhci->num_active_eps);
3959 	return 0;
3960 }
3961 
3962 
3963 /*
3964  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3965  * timed out, or allocating memory failed.  Returns 1 on success.
3966  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3967 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3968 {
3969 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3970 	struct xhci_virt_device *vdev;
3971 	struct xhci_slot_ctx *slot_ctx;
3972 	unsigned long flags;
3973 	int ret, slot_id;
3974 	struct xhci_command *command;
3975 
3976 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3977 	if (!command)
3978 		return 0;
3979 
3980 	spin_lock_irqsave(&xhci->lock, flags);
3981 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3982 	if (ret) {
3983 		spin_unlock_irqrestore(&xhci->lock, flags);
3984 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3985 		xhci_free_command(xhci, command);
3986 		return 0;
3987 	}
3988 	xhci_ring_cmd_db(xhci);
3989 	spin_unlock_irqrestore(&xhci->lock, flags);
3990 
3991 	wait_for_completion(command->completion);
3992 	slot_id = command->slot_id;
3993 
3994 	if (!slot_id || command->status != COMP_SUCCESS) {
3995 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
3996 			 xhci_trb_comp_code_string(command->status));
3997 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3998 				HCS_MAX_SLOTS(
3999 					readl(&xhci->cap_regs->hcs_params1)));
4000 		xhci_free_command(xhci, command);
4001 		return 0;
4002 	}
4003 
4004 	xhci_free_command(xhci, command);
4005 
4006 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4007 		spin_lock_irqsave(&xhci->lock, flags);
4008 		ret = xhci_reserve_host_control_ep_resources(xhci);
4009 		if (ret) {
4010 			spin_unlock_irqrestore(&xhci->lock, flags);
4011 			xhci_warn(xhci, "Not enough host resources, "
4012 					"active endpoint contexts = %u\n",
4013 					xhci->num_active_eps);
4014 			goto disable_slot;
4015 		}
4016 		spin_unlock_irqrestore(&xhci->lock, flags);
4017 	}
4018 	/* Use GFP_NOIO, since this function can be called from
4019 	 * xhci_discover_or_reset_device(), which may be called as part of
4020 	 * mass storage driver error handling.
4021 	 */
4022 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4023 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4024 		goto disable_slot;
4025 	}
4026 	vdev = xhci->devs[slot_id];
4027 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4028 	trace_xhci_alloc_dev(slot_ctx);
4029 
4030 	udev->slot_id = slot_id;
4031 
4032 	xhci_debugfs_create_slot(xhci, slot_id);
4033 
4034 	/*
4035 	 * If resetting upon resume, we can't put the controller into runtime
4036 	 * suspend if there is a device attached.
4037 	 */
4038 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4039 		pm_runtime_get_noresume(hcd->self.controller);
4040 
4041 	/* Is this a LS or FS device under a HS hub? */
4042 	/* Hub or peripherial? */
4043 	return 1;
4044 
4045 disable_slot:
4046 	xhci_disable_slot(xhci, udev->slot_id);
4047 	xhci_free_virt_device(xhci, udev->slot_id);
4048 
4049 	return 0;
4050 }
4051 
4052 /**
4053  * xhci_setup_device - issues an Address Device command to assign a unique
4054  *			USB bus address.
4055  * @hcd: USB host controller data structure.
4056  * @udev: USB dev structure representing the connected device.
4057  * @setup: Enum specifying setup mode: address only or with context.
4058  * @timeout_ms: Max wait time (ms) for the command operation to complete.
4059  *
4060  * Return: 0 if successful; otherwise, negative error code.
4061  */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4062 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4063 			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4064 {
4065 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4066 	unsigned long flags;
4067 	struct xhci_virt_device *virt_dev;
4068 	int ret = 0;
4069 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4070 	struct xhci_slot_ctx *slot_ctx;
4071 	struct xhci_input_control_ctx *ctrl_ctx;
4072 	u64 temp_64;
4073 	struct xhci_command *command = NULL;
4074 
4075 	mutex_lock(&xhci->mutex);
4076 
4077 	if (xhci->xhc_state) {	/* dying, removing or halted */
4078 		ret = -ESHUTDOWN;
4079 		goto out;
4080 	}
4081 
4082 	if (!udev->slot_id) {
4083 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4084 				"Bad Slot ID %d", udev->slot_id);
4085 		ret = -EINVAL;
4086 		goto out;
4087 	}
4088 
4089 	virt_dev = xhci->devs[udev->slot_id];
4090 
4091 	if (WARN_ON(!virt_dev)) {
4092 		/*
4093 		 * In plug/unplug torture test with an NEC controller,
4094 		 * a zero-dereference was observed once due to virt_dev = 0.
4095 		 * Print useful debug rather than crash if it is observed again!
4096 		 */
4097 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4098 			udev->slot_id);
4099 		ret = -EINVAL;
4100 		goto out;
4101 	}
4102 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4103 	trace_xhci_setup_device_slot(slot_ctx);
4104 
4105 	if (setup == SETUP_CONTEXT_ONLY) {
4106 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4107 		    SLOT_STATE_DEFAULT) {
4108 			xhci_dbg(xhci, "Slot already in default state\n");
4109 			goto out;
4110 		}
4111 	}
4112 
4113 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4114 	if (!command) {
4115 		ret = -ENOMEM;
4116 		goto out;
4117 	}
4118 
4119 	command->in_ctx = virt_dev->in_ctx;
4120 	command->timeout_ms = timeout_ms;
4121 
4122 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4123 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4124 	if (!ctrl_ctx) {
4125 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4126 				__func__);
4127 		ret = -EINVAL;
4128 		goto out;
4129 	}
4130 	/*
4131 	 * If this is the first Set Address since device plug-in or
4132 	 * virt_device realloaction after a resume with an xHCI power loss,
4133 	 * then set up the slot context.
4134 	 */
4135 	if (!slot_ctx->dev_info)
4136 		xhci_setup_addressable_virt_dev(xhci, udev);
4137 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4138 	else
4139 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4140 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4141 	ctrl_ctx->drop_flags = 0;
4142 
4143 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4144 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4145 
4146 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4147 	spin_lock_irqsave(&xhci->lock, flags);
4148 	trace_xhci_setup_device(virt_dev);
4149 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4150 					udev->slot_id, setup);
4151 	if (ret) {
4152 		spin_unlock_irqrestore(&xhci->lock, flags);
4153 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4154 				"FIXME: allocate a command ring segment");
4155 		goto out;
4156 	}
4157 	xhci_ring_cmd_db(xhci);
4158 	spin_unlock_irqrestore(&xhci->lock, flags);
4159 
4160 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4161 	wait_for_completion(command->completion);
4162 
4163 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4164 	 * the SetAddress() "recovery interval" required by USB and aborting the
4165 	 * command on a timeout.
4166 	 */
4167 	switch (command->status) {
4168 	case COMP_COMMAND_ABORTED:
4169 	case COMP_COMMAND_RING_STOPPED:
4170 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4171 		ret = -ETIME;
4172 		break;
4173 	case COMP_CONTEXT_STATE_ERROR:
4174 	case COMP_SLOT_NOT_ENABLED_ERROR:
4175 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4176 			 act, udev->slot_id);
4177 		ret = -EINVAL;
4178 		break;
4179 	case COMP_USB_TRANSACTION_ERROR:
4180 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4181 
4182 		mutex_unlock(&xhci->mutex);
4183 		ret = xhci_disable_slot(xhci, udev->slot_id);
4184 		xhci_free_virt_device(xhci, udev->slot_id);
4185 		if (!ret) {
4186 			if (xhci_alloc_dev(hcd, udev) == 1)
4187 				xhci_setup_addressable_virt_dev(xhci, udev);
4188 		}
4189 		kfree(command->completion);
4190 		kfree(command);
4191 		return -EPROTO;
4192 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4193 		dev_warn(&udev->dev,
4194 			 "ERROR: Incompatible device for setup %s command\n", act);
4195 		ret = -ENODEV;
4196 		break;
4197 	case COMP_SUCCESS:
4198 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4199 			       "Successful setup %s command", act);
4200 		break;
4201 	default:
4202 		xhci_err(xhci,
4203 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4204 			 act, command->status);
4205 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4206 		ret = -EINVAL;
4207 		break;
4208 	}
4209 	if (ret)
4210 		goto out;
4211 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4212 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4213 			"Op regs DCBAA ptr = %#016llx", temp_64);
4214 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4215 		"Slot ID %d dcbaa entry @%p = %#016llx",
4216 		udev->slot_id,
4217 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4218 		(unsigned long long)
4219 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4220 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4221 			"Output Context DMA address = %#08llx",
4222 			(unsigned long long)virt_dev->out_ctx->dma);
4223 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4224 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4225 	/*
4226 	 * USB core uses address 1 for the roothubs, so we add one to the
4227 	 * address given back to us by the HC.
4228 	 */
4229 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4230 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4231 	/* Zero the input context control for later use */
4232 	ctrl_ctx->add_flags = 0;
4233 	ctrl_ctx->drop_flags = 0;
4234 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4235 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4236 
4237 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4238 		       "Internal device address = %d",
4239 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4240 out:
4241 	mutex_unlock(&xhci->mutex);
4242 	if (command) {
4243 		kfree(command->completion);
4244 		kfree(command);
4245 	}
4246 	return ret;
4247 }
4248 
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4249 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4250 			       unsigned int timeout_ms)
4251 {
4252 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4253 }
4254 
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4255 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4256 {
4257 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4258 				 XHCI_CMD_DEFAULT_TIMEOUT);
4259 }
4260 
4261 /*
4262  * Transfer the port index into real index in the HW port status
4263  * registers. Caculate offset between the port's PORTSC register
4264  * and port status base. Divide the number of per port register
4265  * to get the real index. The raw port number bases 1.
4266  */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4267 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4268 {
4269 	struct xhci_hub *rhub;
4270 
4271 	rhub = xhci_get_rhub(hcd);
4272 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4273 }
4274 
4275 /*
4276  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4277  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4278  */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4279 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4280 			struct usb_device *udev, u16 max_exit_latency)
4281 {
4282 	struct xhci_virt_device *virt_dev;
4283 	struct xhci_command *command;
4284 	struct xhci_input_control_ctx *ctrl_ctx;
4285 	struct xhci_slot_ctx *slot_ctx;
4286 	unsigned long flags;
4287 	int ret;
4288 
4289 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4290 	if (!command)
4291 		return -ENOMEM;
4292 
4293 	spin_lock_irqsave(&xhci->lock, flags);
4294 
4295 	virt_dev = xhci->devs[udev->slot_id];
4296 
4297 	/*
4298 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4299 	 * xHC was re-initialized. Exit latency will be set later after
4300 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4301 	 */
4302 
4303 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4304 		spin_unlock_irqrestore(&xhci->lock, flags);
4305 		xhci_free_command(xhci, command);
4306 		return 0;
4307 	}
4308 
4309 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4310 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4311 	if (!ctrl_ctx) {
4312 		spin_unlock_irqrestore(&xhci->lock, flags);
4313 		xhci_free_command(xhci, command);
4314 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4315 				__func__);
4316 		return -ENOMEM;
4317 	}
4318 
4319 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4320 	spin_unlock_irqrestore(&xhci->lock, flags);
4321 
4322 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4323 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4324 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4325 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4326 	slot_ctx->dev_state = 0;
4327 
4328 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4329 			"Set up evaluate context for LPM MEL change.");
4330 
4331 	/* Issue and wait for the evaluate context command. */
4332 	ret = xhci_configure_endpoint(xhci, udev, command,
4333 			true, true);
4334 
4335 	if (!ret) {
4336 		spin_lock_irqsave(&xhci->lock, flags);
4337 		virt_dev->current_mel = max_exit_latency;
4338 		spin_unlock_irqrestore(&xhci->lock, flags);
4339 	}
4340 
4341 	xhci_free_command(xhci, command);
4342 
4343 	return ret;
4344 }
4345 
4346 #ifdef CONFIG_PM
4347 
4348 /* BESL to HIRD Encoding array for USB2 LPM */
4349 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4350 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4351 
4352 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4353 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4354 					struct usb_device *udev)
4355 {
4356 	int u2del, besl, besl_host;
4357 	int besl_device = 0;
4358 	u32 field;
4359 
4360 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4361 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4362 
4363 	if (field & USB_BESL_SUPPORT) {
4364 		for (besl_host = 0; besl_host < 16; besl_host++) {
4365 			if (xhci_besl_encoding[besl_host] >= u2del)
4366 				break;
4367 		}
4368 		/* Use baseline BESL value as default */
4369 		if (field & USB_BESL_BASELINE_VALID)
4370 			besl_device = USB_GET_BESL_BASELINE(field);
4371 		else if (field & USB_BESL_DEEP_VALID)
4372 			besl_device = USB_GET_BESL_DEEP(field);
4373 	} else {
4374 		if (u2del <= 50)
4375 			besl_host = 0;
4376 		else
4377 			besl_host = (u2del - 51) / 75 + 1;
4378 	}
4379 
4380 	besl = besl_host + besl_device;
4381 	if (besl > 15)
4382 		besl = 15;
4383 
4384 	return besl;
4385 }
4386 
4387 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4388 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4389 {
4390 	u32 field;
4391 	int l1;
4392 	int besld = 0;
4393 	int hirdm = 0;
4394 
4395 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4396 
4397 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4398 	l1 = udev->l1_params.timeout / 256;
4399 
4400 	/* device has preferred BESLD */
4401 	if (field & USB_BESL_DEEP_VALID) {
4402 		besld = USB_GET_BESL_DEEP(field);
4403 		hirdm = 1;
4404 	}
4405 
4406 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4407 }
4408 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4409 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4410 			struct usb_device *udev, int enable)
4411 {
4412 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4413 	struct xhci_port **ports;
4414 	__le32 __iomem	*pm_addr, *hlpm_addr;
4415 	u32		pm_val, hlpm_val, field;
4416 	unsigned int	port_num;
4417 	unsigned long	flags;
4418 	int		hird, exit_latency;
4419 	int		ret;
4420 
4421 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4422 		return -EPERM;
4423 
4424 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4425 			!udev->lpm_capable)
4426 		return -EPERM;
4427 
4428 	if (!udev->parent || udev->parent->parent ||
4429 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4430 		return -EPERM;
4431 
4432 	if (udev->usb2_hw_lpm_capable != 1)
4433 		return -EPERM;
4434 
4435 	spin_lock_irqsave(&xhci->lock, flags);
4436 
4437 	ports = xhci->usb2_rhub.ports;
4438 	port_num = udev->portnum - 1;
4439 	pm_addr = ports[port_num]->addr + PORTPMSC;
4440 	pm_val = readl(pm_addr);
4441 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4442 
4443 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4444 			enable ? "enable" : "disable", port_num + 1);
4445 
4446 	if (enable) {
4447 		/* Host supports BESL timeout instead of HIRD */
4448 		if (udev->usb2_hw_lpm_besl_capable) {
4449 			/* if device doesn't have a preferred BESL value use a
4450 			 * default one which works with mixed HIRD and BESL
4451 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4452 			 */
4453 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4454 			if ((field & USB_BESL_SUPPORT) &&
4455 			    (field & USB_BESL_BASELINE_VALID))
4456 				hird = USB_GET_BESL_BASELINE(field);
4457 			else
4458 				hird = udev->l1_params.besl;
4459 
4460 			exit_latency = xhci_besl_encoding[hird];
4461 			spin_unlock_irqrestore(&xhci->lock, flags);
4462 
4463 			ret = xhci_change_max_exit_latency(xhci, udev,
4464 							   exit_latency);
4465 			if (ret < 0)
4466 				return ret;
4467 			spin_lock_irqsave(&xhci->lock, flags);
4468 
4469 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4470 			writel(hlpm_val, hlpm_addr);
4471 			/* flush write */
4472 			readl(hlpm_addr);
4473 		} else {
4474 			hird = xhci_calculate_hird_besl(xhci, udev);
4475 		}
4476 
4477 		pm_val &= ~PORT_HIRD_MASK;
4478 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4479 		writel(pm_val, pm_addr);
4480 		pm_val = readl(pm_addr);
4481 		pm_val |= PORT_HLE;
4482 		writel(pm_val, pm_addr);
4483 		/* flush write */
4484 		readl(pm_addr);
4485 	} else {
4486 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4487 		writel(pm_val, pm_addr);
4488 		/* flush write */
4489 		readl(pm_addr);
4490 		if (udev->usb2_hw_lpm_besl_capable) {
4491 			spin_unlock_irqrestore(&xhci->lock, flags);
4492 			xhci_change_max_exit_latency(xhci, udev, 0);
4493 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4494 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4495 					   100, 10000);
4496 			return 0;
4497 		}
4498 	}
4499 
4500 	spin_unlock_irqrestore(&xhci->lock, flags);
4501 	return 0;
4502 }
4503 
4504 /* check if a usb2 port supports a given extened capability protocol
4505  * only USB2 ports extended protocol capability values are cached.
4506  * Return 1 if capability is supported
4507  */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4508 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4509 					   unsigned capability)
4510 {
4511 	u32 port_offset, port_count;
4512 	int i;
4513 
4514 	for (i = 0; i < xhci->num_ext_caps; i++) {
4515 		if (xhci->ext_caps[i] & capability) {
4516 			/* port offsets starts at 1 */
4517 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4518 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4519 			if (port >= port_offset &&
4520 			    port < port_offset + port_count)
4521 				return 1;
4522 		}
4523 	}
4524 	return 0;
4525 }
4526 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4527 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4528 {
4529 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4530 	int		portnum = udev->portnum - 1;
4531 
4532 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4533 		return 0;
4534 
4535 	/* we only support lpm for non-hub device connected to root hub yet */
4536 	if (!udev->parent || udev->parent->parent ||
4537 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4538 		return 0;
4539 
4540 	if (xhci->hw_lpm_support == 1 &&
4541 			xhci_check_usb2_port_capability(
4542 				xhci, portnum, XHCI_HLC)) {
4543 		udev->usb2_hw_lpm_capable = 1;
4544 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4545 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4546 		if (xhci_check_usb2_port_capability(xhci, portnum,
4547 					XHCI_BLC))
4548 			udev->usb2_hw_lpm_besl_capable = 1;
4549 	}
4550 
4551 	return 0;
4552 }
4553 
4554 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4555 
4556 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4557 static unsigned long long xhci_service_interval_to_ns(
4558 		struct usb_endpoint_descriptor *desc)
4559 {
4560 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4561 }
4562 
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4563 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4564 		enum usb3_link_state state)
4565 {
4566 	unsigned long long sel;
4567 	unsigned long long pel;
4568 	unsigned int max_sel_pel;
4569 	char *state_name;
4570 
4571 	switch (state) {
4572 	case USB3_LPM_U1:
4573 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4574 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4575 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4576 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4577 		state_name = "U1";
4578 		break;
4579 	case USB3_LPM_U2:
4580 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4581 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4582 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4583 		state_name = "U2";
4584 		break;
4585 	default:
4586 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4587 				__func__);
4588 		return USB3_LPM_DISABLED;
4589 	}
4590 
4591 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4592 		return USB3_LPM_DEVICE_INITIATED;
4593 
4594 	if (sel > max_sel_pel)
4595 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4596 				"due to long SEL %llu ms\n",
4597 				state_name, sel);
4598 	else
4599 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4600 				"due to long PEL %llu ms\n",
4601 				state_name, pel);
4602 	return USB3_LPM_DISABLED;
4603 }
4604 
4605 /* The U1 timeout should be the maximum of the following values:
4606  *  - For control endpoints, U1 system exit latency (SEL) * 3
4607  *  - For bulk endpoints, U1 SEL * 5
4608  *  - For interrupt endpoints:
4609  *    - Notification EPs, U1 SEL * 3
4610  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4611  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4612  */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4613 static unsigned long long xhci_calculate_intel_u1_timeout(
4614 		struct usb_device *udev,
4615 		struct usb_endpoint_descriptor *desc)
4616 {
4617 	unsigned long long timeout_ns;
4618 	int ep_type;
4619 	int intr_type;
4620 
4621 	ep_type = usb_endpoint_type(desc);
4622 	switch (ep_type) {
4623 	case USB_ENDPOINT_XFER_CONTROL:
4624 		timeout_ns = udev->u1_params.sel * 3;
4625 		break;
4626 	case USB_ENDPOINT_XFER_BULK:
4627 		timeout_ns = udev->u1_params.sel * 5;
4628 		break;
4629 	case USB_ENDPOINT_XFER_INT:
4630 		intr_type = usb_endpoint_interrupt_type(desc);
4631 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4632 			timeout_ns = udev->u1_params.sel * 3;
4633 			break;
4634 		}
4635 		/* Otherwise the calculation is the same as isoc eps */
4636 		fallthrough;
4637 	case USB_ENDPOINT_XFER_ISOC:
4638 		timeout_ns = xhci_service_interval_to_ns(desc);
4639 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4640 		if (timeout_ns < udev->u1_params.sel * 2)
4641 			timeout_ns = udev->u1_params.sel * 2;
4642 		break;
4643 	default:
4644 		return 0;
4645 	}
4646 
4647 	return timeout_ns;
4648 }
4649 
4650 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4651 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4652 		struct usb_device *udev,
4653 		struct usb_endpoint_descriptor *desc)
4654 {
4655 	unsigned long long timeout_ns;
4656 
4657 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4658 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4659 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4660 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4661 			return USB3_LPM_DISABLED;
4662 		}
4663 	}
4664 
4665 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4666 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4667 	else
4668 		timeout_ns = udev->u1_params.sel;
4669 
4670 	/* The U1 timeout is encoded in 1us intervals.
4671 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4672 	 */
4673 	if (timeout_ns == USB3_LPM_DISABLED)
4674 		timeout_ns = 1;
4675 	else
4676 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4677 
4678 	/* If the necessary timeout value is bigger than what we can set in the
4679 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4680 	 */
4681 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4682 		return timeout_ns;
4683 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4684 			"due to long timeout %llu ms\n", timeout_ns);
4685 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4686 }
4687 
4688 /* The U2 timeout should be the maximum of:
4689  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4690  *  - largest bInterval of any active periodic endpoint (to avoid going
4691  *    into lower power link states between intervals).
4692  *  - the U2 Exit Latency of the device
4693  */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4694 static unsigned long long xhci_calculate_intel_u2_timeout(
4695 		struct usb_device *udev,
4696 		struct usb_endpoint_descriptor *desc)
4697 {
4698 	unsigned long long timeout_ns;
4699 	unsigned long long u2_del_ns;
4700 
4701 	timeout_ns = 10 * 1000 * 1000;
4702 
4703 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4704 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4705 		timeout_ns = xhci_service_interval_to_ns(desc);
4706 
4707 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4708 	if (u2_del_ns > timeout_ns)
4709 		timeout_ns = u2_del_ns;
4710 
4711 	return timeout_ns;
4712 }
4713 
4714 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4715 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4716 		struct usb_device *udev,
4717 		struct usb_endpoint_descriptor *desc)
4718 {
4719 	unsigned long long timeout_ns;
4720 
4721 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4722 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4723 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4724 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4725 			return USB3_LPM_DISABLED;
4726 		}
4727 	}
4728 
4729 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4730 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4731 	else
4732 		timeout_ns = udev->u2_params.sel;
4733 
4734 	/* The U2 timeout is encoded in 256us intervals */
4735 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4736 	/* If the necessary timeout value is bigger than what we can set in the
4737 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4738 	 */
4739 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4740 		return timeout_ns;
4741 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4742 			"due to long timeout %llu ms\n", timeout_ns);
4743 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4744 }
4745 
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4746 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4747 		struct usb_device *udev,
4748 		struct usb_endpoint_descriptor *desc,
4749 		enum usb3_link_state state,
4750 		u16 *timeout)
4751 {
4752 	if (state == USB3_LPM_U1)
4753 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4754 	else if (state == USB3_LPM_U2)
4755 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4756 
4757 	return USB3_LPM_DISABLED;
4758 }
4759 
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4760 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4761 		struct usb_device *udev,
4762 		struct usb_endpoint_descriptor *desc,
4763 		enum usb3_link_state state,
4764 		u16 *timeout)
4765 {
4766 	u16 alt_timeout;
4767 
4768 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4769 		desc, state, timeout);
4770 
4771 	/* If we found we can't enable hub-initiated LPM, and
4772 	 * the U1 or U2 exit latency was too high to allow
4773 	 * device-initiated LPM as well, then we will disable LPM
4774 	 * for this device, so stop searching any further.
4775 	 */
4776 	if (alt_timeout == USB3_LPM_DISABLED) {
4777 		*timeout = alt_timeout;
4778 		return -E2BIG;
4779 	}
4780 	if (alt_timeout > *timeout)
4781 		*timeout = alt_timeout;
4782 	return 0;
4783 }
4784 
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4785 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4786 		struct usb_device *udev,
4787 		struct usb_host_interface *alt,
4788 		enum usb3_link_state state,
4789 		u16 *timeout)
4790 {
4791 	int j;
4792 
4793 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4794 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4795 					&alt->endpoint[j].desc, state, timeout))
4796 			return -E2BIG;
4797 	}
4798 	return 0;
4799 }
4800 
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4801 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4802 		struct usb_device *udev,
4803 		enum usb3_link_state state)
4804 {
4805 	struct usb_device *parent = udev->parent;
4806 	int tier = 1; /* roothub is tier1 */
4807 
4808 	while (parent) {
4809 		parent = parent->parent;
4810 		tier++;
4811 	}
4812 
4813 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4814 		goto fail;
4815 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4816 		goto fail;
4817 
4818 	return 0;
4819 fail:
4820 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4821 			tier);
4822 	return -E2BIG;
4823 }
4824 
4825 /* Returns the U1 or U2 timeout that should be enabled.
4826  * If the tier check or timeout setting functions return with a non-zero exit
4827  * code, that means the timeout value has been finalized and we shouldn't look
4828  * at any more endpoints.
4829  */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4830 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4831 			struct usb_device *udev, enum usb3_link_state state)
4832 {
4833 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4834 	struct usb_host_config *config;
4835 	char *state_name;
4836 	int i;
4837 	u16 timeout = USB3_LPM_DISABLED;
4838 
4839 	if (state == USB3_LPM_U1)
4840 		state_name = "U1";
4841 	else if (state == USB3_LPM_U2)
4842 		state_name = "U2";
4843 	else {
4844 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4845 				state);
4846 		return timeout;
4847 	}
4848 
4849 	/* Gather some information about the currently installed configuration
4850 	 * and alternate interface settings.
4851 	 */
4852 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4853 			state, &timeout))
4854 		return timeout;
4855 
4856 	config = udev->actconfig;
4857 	if (!config)
4858 		return timeout;
4859 
4860 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4861 		struct usb_driver *driver;
4862 		struct usb_interface *intf = config->interface[i];
4863 
4864 		if (!intf)
4865 			continue;
4866 
4867 		/* Check if any currently bound drivers want hub-initiated LPM
4868 		 * disabled.
4869 		 */
4870 		if (intf->dev.driver) {
4871 			driver = to_usb_driver(intf->dev.driver);
4872 			if (driver && driver->disable_hub_initiated_lpm) {
4873 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4874 					state_name, driver->name);
4875 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4876 								      state);
4877 				if (timeout == USB3_LPM_DISABLED)
4878 					return timeout;
4879 			}
4880 		}
4881 
4882 		/* Not sure how this could happen... */
4883 		if (!intf->cur_altsetting)
4884 			continue;
4885 
4886 		if (xhci_update_timeout_for_interface(xhci, udev,
4887 					intf->cur_altsetting,
4888 					state, &timeout))
4889 			return timeout;
4890 	}
4891 	return timeout;
4892 }
4893 
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4894 static int calculate_max_exit_latency(struct usb_device *udev,
4895 		enum usb3_link_state state_changed,
4896 		u16 hub_encoded_timeout)
4897 {
4898 	unsigned long long u1_mel_us = 0;
4899 	unsigned long long u2_mel_us = 0;
4900 	unsigned long long mel_us = 0;
4901 	bool disabling_u1;
4902 	bool disabling_u2;
4903 	bool enabling_u1;
4904 	bool enabling_u2;
4905 
4906 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4907 			hub_encoded_timeout == USB3_LPM_DISABLED);
4908 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4909 			hub_encoded_timeout == USB3_LPM_DISABLED);
4910 
4911 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4912 			hub_encoded_timeout != USB3_LPM_DISABLED);
4913 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4914 			hub_encoded_timeout != USB3_LPM_DISABLED);
4915 
4916 	/* If U1 was already enabled and we're not disabling it,
4917 	 * or we're going to enable U1, account for the U1 max exit latency.
4918 	 */
4919 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4920 			enabling_u1)
4921 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4922 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4923 			enabling_u2)
4924 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4925 
4926 	mel_us = max(u1_mel_us, u2_mel_us);
4927 
4928 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4929 	if (mel_us > MAX_EXIT) {
4930 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4931 				"is too big.\n", mel_us);
4932 		return -E2BIG;
4933 	}
4934 	return mel_us;
4935 }
4936 
4937 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4938 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4939 			struct usb_device *udev, enum usb3_link_state state)
4940 {
4941 	struct xhci_hcd	*xhci;
4942 	struct xhci_port *port;
4943 	u16 hub_encoded_timeout;
4944 	int mel;
4945 	int ret;
4946 
4947 	xhci = hcd_to_xhci(hcd);
4948 	/* The LPM timeout values are pretty host-controller specific, so don't
4949 	 * enable hub-initiated timeouts unless the vendor has provided
4950 	 * information about their timeout algorithm.
4951 	 */
4952 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4953 			!xhci->devs[udev->slot_id])
4954 		return USB3_LPM_DISABLED;
4955 
4956 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4957 		return USB3_LPM_DISABLED;
4958 
4959 	/* If connected to root port then check port can handle lpm */
4960 	if (udev->parent && !udev->parent->parent) {
4961 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4962 		if (port->lpm_incapable)
4963 			return USB3_LPM_DISABLED;
4964 	}
4965 
4966 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4967 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4968 	if (mel < 0) {
4969 		/* Max Exit Latency is too big, disable LPM. */
4970 		hub_encoded_timeout = USB3_LPM_DISABLED;
4971 		mel = 0;
4972 	}
4973 
4974 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4975 	if (ret)
4976 		return ret;
4977 	return hub_encoded_timeout;
4978 }
4979 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4980 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4981 			struct usb_device *udev, enum usb3_link_state state)
4982 {
4983 	struct xhci_hcd	*xhci;
4984 	u16 mel;
4985 
4986 	xhci = hcd_to_xhci(hcd);
4987 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4988 			!xhci->devs[udev->slot_id])
4989 		return 0;
4990 
4991 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4992 	return xhci_change_max_exit_latency(xhci, udev, mel);
4993 }
4994 #else /* CONFIG_PM */
4995 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4996 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4997 				struct usb_device *udev, int enable)
4998 {
4999 	return 0;
5000 }
5001 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5002 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5003 {
5004 	return 0;
5005 }
5006 
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5007 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5008 			struct usb_device *udev, enum usb3_link_state state)
5009 {
5010 	return USB3_LPM_DISABLED;
5011 }
5012 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5013 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5014 			struct usb_device *udev, enum usb3_link_state state)
5015 {
5016 	return 0;
5017 }
5018 #endif	/* CONFIG_PM */
5019 
5020 /*-------------------------------------------------------------------------*/
5021 
5022 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5023  * internal data structures for the device.
5024  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5025 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5026 			struct usb_tt *tt, gfp_t mem_flags)
5027 {
5028 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5029 	struct xhci_virt_device *vdev;
5030 	struct xhci_command *config_cmd;
5031 	struct xhci_input_control_ctx *ctrl_ctx;
5032 	struct xhci_slot_ctx *slot_ctx;
5033 	unsigned long flags;
5034 	unsigned think_time;
5035 	int ret;
5036 
5037 	/* Ignore root hubs */
5038 	if (!hdev->parent)
5039 		return 0;
5040 
5041 	vdev = xhci->devs[hdev->slot_id];
5042 	if (!vdev) {
5043 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5044 		return -EINVAL;
5045 	}
5046 
5047 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5048 	if (!config_cmd)
5049 		return -ENOMEM;
5050 
5051 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5052 	if (!ctrl_ctx) {
5053 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5054 				__func__);
5055 		xhci_free_command(xhci, config_cmd);
5056 		return -ENOMEM;
5057 	}
5058 
5059 	spin_lock_irqsave(&xhci->lock, flags);
5060 	if (hdev->speed == USB_SPEED_HIGH &&
5061 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5062 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5063 		xhci_free_command(xhci, config_cmd);
5064 		spin_unlock_irqrestore(&xhci->lock, flags);
5065 		return -ENOMEM;
5066 	}
5067 
5068 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5069 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5070 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5071 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5072 	/*
5073 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5074 	 * but it may be already set to 1 when setup an xHCI virtual
5075 	 * device, so clear it anyway.
5076 	 */
5077 	if (tt->multi)
5078 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5079 	else if (hdev->speed == USB_SPEED_FULL)
5080 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5081 
5082 	if (xhci->hci_version > 0x95) {
5083 		xhci_dbg(xhci, "xHCI version %x needs hub "
5084 				"TT think time and number of ports\n",
5085 				(unsigned int) xhci->hci_version);
5086 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5087 		/* Set TT think time - convert from ns to FS bit times.
5088 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5089 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5090 		 *
5091 		 * xHCI 1.0: this field shall be 0 if the device is not a
5092 		 * High-spped hub.
5093 		 */
5094 		think_time = tt->think_time;
5095 		if (think_time != 0)
5096 			think_time = (think_time / 666) - 1;
5097 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5098 			slot_ctx->tt_info |=
5099 				cpu_to_le32(TT_THINK_TIME(think_time));
5100 	} else {
5101 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5102 				"TT think time or number of ports\n",
5103 				(unsigned int) xhci->hci_version);
5104 	}
5105 	slot_ctx->dev_state = 0;
5106 	spin_unlock_irqrestore(&xhci->lock, flags);
5107 
5108 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5109 			(xhci->hci_version > 0x95) ?
5110 			"configure endpoint" : "evaluate context");
5111 
5112 	/* Issue and wait for the configure endpoint or
5113 	 * evaluate context command.
5114 	 */
5115 	if (xhci->hci_version > 0x95)
5116 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5117 				false, false);
5118 	else
5119 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5120 				true, false);
5121 
5122 	xhci_free_command(xhci, config_cmd);
5123 	return ret;
5124 }
5125 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5126 
xhci_get_frame(struct usb_hcd * hcd)5127 static int xhci_get_frame(struct usb_hcd *hcd)
5128 {
5129 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5130 	/* EHCI mods by the periodic size.  Why? */
5131 	return readl(&xhci->run_regs->microframe_index) >> 3;
5132 }
5133 
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5134 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5135 {
5136 	xhci->usb2_rhub.hcd = hcd;
5137 	hcd->speed = HCD_USB2;
5138 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5139 	/*
5140 	 * USB 2.0 roothub under xHCI has an integrated TT,
5141 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5142 	 * companion controller.
5143 	 */
5144 	hcd->has_tt = 1;
5145 }
5146 
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5147 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5148 {
5149 	unsigned int minor_rev;
5150 
5151 	/*
5152 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5153 	 * should return 0x31 for sbrn, or that the minor revision
5154 	 * is a two digit BCD containig minor and sub-minor numbers.
5155 	 * This was later clarified in xHCI 1.2.
5156 	 *
5157 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5158 	 * minor revision set to 0x1 instead of 0x10.
5159 	 */
5160 	if (xhci->usb3_rhub.min_rev == 0x1)
5161 		minor_rev = 1;
5162 	else
5163 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5164 
5165 	switch (minor_rev) {
5166 	case 2:
5167 		hcd->speed = HCD_USB32;
5168 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5169 		hcd->self.root_hub->rx_lanes = 2;
5170 		hcd->self.root_hub->tx_lanes = 2;
5171 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5172 		break;
5173 	case 1:
5174 		hcd->speed = HCD_USB31;
5175 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5176 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5177 		break;
5178 	}
5179 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5180 		  minor_rev, minor_rev ? "Enhanced " : "");
5181 
5182 	xhci->usb3_rhub.hcd = hcd;
5183 }
5184 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5185 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5186 {
5187 	struct xhci_hcd		*xhci;
5188 	/*
5189 	 * TODO: Check with DWC3 clients for sysdev according to
5190 	 * quirks
5191 	 */
5192 	struct device		*dev = hcd->self.sysdev;
5193 	int			retval;
5194 
5195 	/* Accept arbitrarily long scatter-gather lists */
5196 	hcd->self.sg_tablesize = ~0;
5197 
5198 	/* support to build packet from discontinuous buffers */
5199 	hcd->self.no_sg_constraint = 1;
5200 
5201 	/* XHCI controllers don't stop the ep queue on short packets :| */
5202 	hcd->self.no_stop_on_short = 1;
5203 
5204 	xhci = hcd_to_xhci(hcd);
5205 
5206 	if (!usb_hcd_is_primary_hcd(hcd)) {
5207 		xhci_hcd_init_usb3_data(xhci, hcd);
5208 		return 0;
5209 	}
5210 
5211 	mutex_init(&xhci->mutex);
5212 	xhci->main_hcd = hcd;
5213 	xhci->cap_regs = hcd->regs;
5214 	xhci->op_regs = hcd->regs +
5215 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5216 	xhci->run_regs = hcd->regs +
5217 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5218 	/* Cache read-only capability registers */
5219 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5220 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5221 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5222 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5223 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5224 	if (xhci->hci_version > 0x100)
5225 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5226 
5227 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5228 	if ((!xhci->max_interrupters) ||
5229 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5230 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5231 
5232 	xhci->quirks |= quirks;
5233 
5234 	if (get_quirks)
5235 		get_quirks(dev, xhci);
5236 
5237 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5238 	 * success event after a short transfer. This quirk will ignore such
5239 	 * spurious event.
5240 	 */
5241 	if (xhci->hci_version > 0x96)
5242 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5243 
5244 	/* Make sure the HC is halted. */
5245 	retval = xhci_halt(xhci);
5246 	if (retval)
5247 		return retval;
5248 
5249 	xhci_zero_64b_regs(xhci);
5250 
5251 	xhci_dbg(xhci, "Resetting HCD\n");
5252 	/* Reset the internal HC memory state and registers. */
5253 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5254 	if (retval)
5255 		return retval;
5256 	xhci_dbg(xhci, "Reset complete\n");
5257 
5258 	/*
5259 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5260 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5261 	 * address memory pointers actually. So, this driver clears the AC64
5262 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5263 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5264 	 */
5265 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5266 		xhci->hcc_params &= ~BIT(0);
5267 
5268 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5269 	 * if xHC supports 64-bit addressing */
5270 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5271 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5272 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5273 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5274 	} else {
5275 		/*
5276 		 * This is to avoid error in cases where a 32-bit USB
5277 		 * controller is used on a 64-bit capable system.
5278 		 */
5279 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5280 		if (retval)
5281 			return retval;
5282 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5283 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5284 	}
5285 
5286 	xhci_dbg(xhci, "Calling HCD init\n");
5287 	/* Initialize HCD and host controller data structures. */
5288 	retval = xhci_init(hcd);
5289 	if (retval)
5290 		return retval;
5291 	xhci_dbg(xhci, "Called HCD init\n");
5292 
5293 	if (xhci_hcd_is_usb3(hcd))
5294 		xhci_hcd_init_usb3_data(xhci, hcd);
5295 	else
5296 		xhci_hcd_init_usb2_data(xhci, hcd);
5297 
5298 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5299 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5300 
5301 	return 0;
5302 }
5303 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5304 
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5305 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5306 		struct usb_host_endpoint *ep)
5307 {
5308 	struct xhci_hcd *xhci;
5309 	struct usb_device *udev;
5310 	unsigned int slot_id;
5311 	unsigned int ep_index;
5312 	unsigned long flags;
5313 
5314 	xhci = hcd_to_xhci(hcd);
5315 
5316 	spin_lock_irqsave(&xhci->lock, flags);
5317 	udev = (struct usb_device *)ep->hcpriv;
5318 	slot_id = udev->slot_id;
5319 	ep_index = xhci_get_endpoint_index(&ep->desc);
5320 
5321 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5322 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5323 	spin_unlock_irqrestore(&xhci->lock, flags);
5324 }
5325 
5326 static const struct hc_driver xhci_hc_driver = {
5327 	.description =		"xhci-hcd",
5328 	.product_desc =		"xHCI Host Controller",
5329 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5330 
5331 	/*
5332 	 * generic hardware linkage
5333 	 */
5334 	.irq =			xhci_irq,
5335 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5336 				HCD_BH,
5337 
5338 	/*
5339 	 * basic lifecycle operations
5340 	 */
5341 	.reset =		NULL, /* set in xhci_init_driver() */
5342 	.start =		xhci_run,
5343 	.stop =			xhci_stop,
5344 	.shutdown =		xhci_shutdown,
5345 
5346 	/*
5347 	 * managing i/o requests and associated device resources
5348 	 */
5349 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5350 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5351 	.urb_enqueue =		xhci_urb_enqueue,
5352 	.urb_dequeue =		xhci_urb_dequeue,
5353 	.alloc_dev =		xhci_alloc_dev,
5354 	.free_dev =		xhci_free_dev,
5355 	.alloc_streams =	xhci_alloc_streams,
5356 	.free_streams =		xhci_free_streams,
5357 	.add_endpoint =		xhci_add_endpoint,
5358 	.drop_endpoint =	xhci_drop_endpoint,
5359 	.endpoint_disable =	xhci_endpoint_disable,
5360 	.endpoint_reset =	xhci_endpoint_reset,
5361 	.check_bandwidth =	xhci_check_bandwidth,
5362 	.reset_bandwidth =	xhci_reset_bandwidth,
5363 	.address_device =	xhci_address_device,
5364 	.enable_device =	xhci_enable_device,
5365 	.update_hub_device =	xhci_update_hub_device,
5366 	.reset_device =		xhci_discover_or_reset_device,
5367 
5368 	/*
5369 	 * scheduling support
5370 	 */
5371 	.get_frame_number =	xhci_get_frame,
5372 
5373 	/*
5374 	 * root hub support
5375 	 */
5376 	.hub_control =		xhci_hub_control,
5377 	.hub_status_data =	xhci_hub_status_data,
5378 	.bus_suspend =		xhci_bus_suspend,
5379 	.bus_resume =		xhci_bus_resume,
5380 	.get_resuming_ports =	xhci_get_resuming_ports,
5381 
5382 	/*
5383 	 * call back when device connected and addressed
5384 	 */
5385 	.update_device =        xhci_update_device,
5386 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5387 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5388 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5389 	.find_raw_port_number =	xhci_find_raw_port_number,
5390 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5391 };
5392 
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5393 void xhci_init_driver(struct hc_driver *drv,
5394 		      const struct xhci_driver_overrides *over)
5395 {
5396 	BUG_ON(!over);
5397 
5398 	/* Copy the generic table to drv then apply the overrides */
5399 	*drv = xhci_hc_driver;
5400 
5401 	if (over) {
5402 		drv->hcd_priv_size += over->extra_priv_size;
5403 		if (over->reset)
5404 			drv->reset = over->reset;
5405 		if (over->start)
5406 			drv->start = over->start;
5407 		if (over->add_endpoint)
5408 			drv->add_endpoint = over->add_endpoint;
5409 		if (over->drop_endpoint)
5410 			drv->drop_endpoint = over->drop_endpoint;
5411 		if (over->check_bandwidth)
5412 			drv->check_bandwidth = over->check_bandwidth;
5413 		if (over->reset_bandwidth)
5414 			drv->reset_bandwidth = over->reset_bandwidth;
5415 		if (over->update_hub_device)
5416 			drv->update_hub_device = over->update_hub_device;
5417 		if (over->hub_control)
5418 			drv->hub_control = over->hub_control;
5419 	}
5420 }
5421 EXPORT_SYMBOL_GPL(xhci_init_driver);
5422 
5423 MODULE_DESCRIPTION(DRIVER_DESC);
5424 MODULE_AUTHOR(DRIVER_AUTHOR);
5425 MODULE_LICENSE("GPL");
5426 
xhci_hcd_init(void)5427 static int __init xhci_hcd_init(void)
5428 {
5429 	/*
5430 	 * Check the compiler generated sizes of structures that must be laid
5431 	 * out in specific ways for hardware access.
5432 	 */
5433 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5434 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5435 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5436 	/* xhci_device_control has eight fields, and also
5437 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5438 	 */
5439 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5440 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5441 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5442 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5443 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5444 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5445 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5446 
5447 	if (usb_disabled())
5448 		return -ENODEV;
5449 
5450 	xhci_debugfs_create_root();
5451 	xhci_dbc_init();
5452 
5453 	return 0;
5454 }
5455 
5456 /*
5457  * If an init function is provided, an exit function must also be provided
5458  * to allow module unload.
5459  */
xhci_hcd_fini(void)5460 static void __exit xhci_hcd_fini(void)
5461 {
5462 	xhci_debugfs_remove_root();
5463 	xhci_dbc_exit();
5464 }
5465 
5466 module_init(xhci_hcd_init);
5467 module_exit(xhci_hcd_fini);
5468