1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Cadence CDNSP DRD Driver.
4 *
5 * Copyright (C) 2020 Cadence.
6 *
7 * Author: Pawel Laszczak <pawell@cadence.com>
8 *
9 */
10
11 #include <linux/moduleparam.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/module.h>
14 #include <linux/iopoll.h>
15 #include <linux/delay.h>
16 #include <linux/log2.h>
17 #include <linux/slab.h>
18 #include <linux/pci.h>
19 #include <linux/irq.h>
20 #include <linux/dmi.h>
21
22 #include "core.h"
23 #include "gadget-export.h"
24 #include "drd.h"
25 #include "cdnsp-gadget.h"
26 #include "cdnsp-trace.h"
27
cdnsp_port_speed(unsigned int port_status)28 unsigned int cdnsp_port_speed(unsigned int port_status)
29 {
30 /*Detect gadget speed based on PORTSC register*/
31 if (DEV_SUPERSPEEDPLUS(port_status) ||
32 DEV_SSP_GEN1x2(port_status) || DEV_SSP_GEN2x2(port_status))
33 return USB_SPEED_SUPER_PLUS;
34 else if (DEV_SUPERSPEED(port_status))
35 return USB_SPEED_SUPER;
36 else if (DEV_HIGHSPEED(port_status))
37 return USB_SPEED_HIGH;
38 else if (DEV_FULLSPEED(port_status))
39 return USB_SPEED_FULL;
40
41 /* If device is detached then speed will be USB_SPEED_UNKNOWN.*/
42 return USB_SPEED_UNKNOWN;
43 }
44
45 /*
46 * Given a port state, this function returns a value that would result in the
47 * port being in the same state, if the value was written to the port status
48 * control register.
49 * Save Read Only (RO) bits and save read/write bits where
50 * writing a 0 clears the bit and writing a 1 sets the bit (RWS).
51 * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect.
52 */
cdnsp_port_state_to_neutral(u32 state)53 u32 cdnsp_port_state_to_neutral(u32 state)
54 {
55 /* Save read-only status and port state. */
56 return (state & CDNSP_PORT_RO) | (state & CDNSP_PORT_RWS);
57 }
58
59 /**
60 * cdnsp_find_next_ext_cap - Find the offset of the extended capabilities
61 * with capability ID id.
62 * @base: PCI MMIO registers base address.
63 * @start: Address at which to start looking, (0 or HCC_PARAMS to start at
64 * beginning of list)
65 * @id: Extended capability ID to search for.
66 *
67 * Returns the offset of the next matching extended capability structure.
68 * Some capabilities can occur several times,
69 * e.g., the EXT_CAPS_PROTOCOL, and this provides a way to find them all.
70 */
cdnsp_find_next_ext_cap(void __iomem * base,u32 start,int id)71 int cdnsp_find_next_ext_cap(void __iomem *base, u32 start, int id)
72 {
73 u32 offset = start;
74 u32 next;
75 u32 val;
76
77 if (!start || start == HCC_PARAMS_OFFSET) {
78 val = readl(base + HCC_PARAMS_OFFSET);
79 if (val == ~0)
80 return 0;
81
82 offset = HCC_EXT_CAPS(val) << 2;
83 if (!offset)
84 return 0;
85 }
86
87 do {
88 val = readl(base + offset);
89 if (val == ~0)
90 return 0;
91
92 if (EXT_CAPS_ID(val) == id && offset != start)
93 return offset;
94
95 next = EXT_CAPS_NEXT(val);
96 offset += next << 2;
97 } while (next);
98
99 return 0;
100 }
101
cdnsp_set_link_state(struct cdnsp_device * pdev,__le32 __iomem * port_regs,u32 link_state)102 void cdnsp_set_link_state(struct cdnsp_device *pdev,
103 __le32 __iomem *port_regs,
104 u32 link_state)
105 {
106 int port_num = 0xFF;
107 u32 temp;
108
109 temp = readl(port_regs);
110 temp = cdnsp_port_state_to_neutral(temp);
111 temp |= PORT_WKCONN_E | PORT_WKDISC_E;
112 writel(temp, port_regs);
113
114 temp &= ~PORT_PLS_MASK;
115 temp |= PORT_LINK_STROBE | link_state;
116
117 if (pdev->active_port)
118 port_num = pdev->active_port->port_num;
119
120 trace_cdnsp_handle_port_status(port_num, readl(port_regs));
121 writel(temp, port_regs);
122 trace_cdnsp_link_state_changed(port_num, readl(port_regs));
123 }
124
cdnsp_disable_port(struct cdnsp_device * pdev,__le32 __iomem * port_regs)125 static void cdnsp_disable_port(struct cdnsp_device *pdev,
126 __le32 __iomem *port_regs)
127 {
128 u32 temp = cdnsp_port_state_to_neutral(readl(port_regs));
129
130 writel(temp | PORT_PED, port_regs);
131 }
132
cdnsp_clear_port_change_bit(struct cdnsp_device * pdev,__le32 __iomem * port_regs)133 static void cdnsp_clear_port_change_bit(struct cdnsp_device *pdev,
134 __le32 __iomem *port_regs)
135 {
136 u32 portsc = readl(port_regs);
137
138 writel(cdnsp_port_state_to_neutral(portsc) |
139 (portsc & PORT_CHANGE_BITS), port_regs);
140 }
141
cdnsp_set_apb_timeout_value(struct cdnsp_device * pdev)142 static void cdnsp_set_apb_timeout_value(struct cdnsp_device *pdev)
143 {
144 struct cdns *cdns = dev_get_drvdata(pdev->dev);
145 __le32 __iomem *reg;
146 void __iomem *base;
147 u32 offset = 0;
148 u32 val;
149
150 if (!cdns->override_apb_timeout)
151 return;
152
153 base = &pdev->cap_regs->hc_capbase;
154 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
155 reg = base + offset + REG_CHICKEN_BITS_3_OFFSET;
156
157 val = le32_to_cpu(readl(reg));
158 val = CHICKEN_APB_TIMEOUT_SET(val, cdns->override_apb_timeout);
159 writel(cpu_to_le32(val), reg);
160 }
161
cdnsp_set_chicken_bits_2(struct cdnsp_device * pdev,u32 bit)162 static void cdnsp_set_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
163 {
164 __le32 __iomem *reg;
165 void __iomem *base;
166 u32 offset = 0;
167
168 base = &pdev->cap_regs->hc_capbase;
169 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
170 reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
171
172 bit = readl(reg) | bit;
173 writel(bit, reg);
174 }
175
cdnsp_clear_chicken_bits_2(struct cdnsp_device * pdev,u32 bit)176 static void cdnsp_clear_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
177 {
178 __le32 __iomem *reg;
179 void __iomem *base;
180 u32 offset = 0;
181
182 base = &pdev->cap_regs->hc_capbase;
183 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
184 reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
185
186 bit = readl(reg) & ~bit;
187 writel(bit, reg);
188 }
189
190 /*
191 * Disable interrupts and begin the controller halting process.
192 */
cdnsp_quiesce(struct cdnsp_device * pdev)193 static void cdnsp_quiesce(struct cdnsp_device *pdev)
194 {
195 u32 halted;
196 u32 mask;
197 u32 cmd;
198
199 mask = ~(u32)(CDNSP_IRQS);
200
201 halted = readl(&pdev->op_regs->status) & STS_HALT;
202 if (!halted)
203 mask &= ~(CMD_R_S | CMD_DEVEN);
204
205 cmd = readl(&pdev->op_regs->command);
206 cmd &= mask;
207 writel(cmd, &pdev->op_regs->command);
208 }
209
210 /*
211 * Force controller into halt state.
212 *
213 * Disable any IRQs and clear the run/stop bit.
214 * Controller will complete any current and actively pipelined transactions, and
215 * should halt within 16 ms of the run/stop bit being cleared.
216 * Read controller Halted bit in the status register to see when the
217 * controller is finished.
218 */
cdnsp_halt(struct cdnsp_device * pdev)219 int cdnsp_halt(struct cdnsp_device *pdev)
220 {
221 int ret;
222 u32 val;
223
224 cdnsp_quiesce(pdev);
225
226 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, val,
227 val & STS_HALT, 1,
228 CDNSP_MAX_HALT_USEC);
229 if (ret) {
230 dev_err(pdev->dev, "ERROR: Device halt failed\n");
231 return ret;
232 }
233
234 pdev->cdnsp_state |= CDNSP_STATE_HALTED;
235
236 return 0;
237 }
238
239 /*
240 * device controller died, register read returns 0xffffffff, or command never
241 * ends.
242 */
cdnsp_died(struct cdnsp_device * pdev)243 void cdnsp_died(struct cdnsp_device *pdev)
244 {
245 dev_err(pdev->dev, "ERROR: CDNSP controller not responding\n");
246 pdev->cdnsp_state |= CDNSP_STATE_DYING;
247 cdnsp_halt(pdev);
248 }
249
250 /*
251 * Set the run bit and wait for the device to be running.
252 */
cdnsp_start(struct cdnsp_device * pdev)253 static int cdnsp_start(struct cdnsp_device *pdev)
254 {
255 u32 temp;
256 int ret;
257
258 temp = readl(&pdev->op_regs->command);
259 temp |= (CMD_R_S | CMD_DEVEN);
260 writel(temp, &pdev->op_regs->command);
261
262 pdev->cdnsp_state = 0;
263
264 /*
265 * Wait for the STS_HALT Status bit to be 0 to indicate the device is
266 * running.
267 */
268 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
269 !(temp & STS_HALT), 1,
270 CDNSP_MAX_HALT_USEC);
271 if (ret) {
272 pdev->cdnsp_state = CDNSP_STATE_DYING;
273 dev_err(pdev->dev, "ERROR: Controller run failed\n");
274 }
275
276 return ret;
277 }
278
279 /*
280 * Reset a halted controller.
281 *
282 * This resets pipelines, timers, counters, state machines, etc.
283 * Transactions will be terminated immediately, and operational registers
284 * will be set to their defaults.
285 */
cdnsp_reset(struct cdnsp_device * pdev)286 int cdnsp_reset(struct cdnsp_device *pdev)
287 {
288 u32 command;
289 u32 temp;
290 int ret;
291
292 temp = readl(&pdev->op_regs->status);
293
294 if (temp == ~(u32)0) {
295 dev_err(pdev->dev, "Device not accessible, reset failed.\n");
296 return -ENODEV;
297 }
298
299 if ((temp & STS_HALT) == 0) {
300 dev_err(pdev->dev, "Controller not halted, aborting reset.\n");
301 return -EINVAL;
302 }
303
304 command = readl(&pdev->op_regs->command);
305 command |= CMD_RESET;
306 writel(command, &pdev->op_regs->command);
307
308 ret = readl_poll_timeout_atomic(&pdev->op_regs->command, temp,
309 !(temp & CMD_RESET), 1,
310 10 * 1000);
311 if (ret) {
312 dev_err(pdev->dev, "ERROR: Controller reset failed\n");
313 return ret;
314 }
315
316 /*
317 * CDNSP cannot write any doorbells or operational registers other
318 * than status until the "Controller Not Ready" flag is cleared.
319 */
320 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
321 !(temp & STS_CNR), 1,
322 10 * 1000);
323
324 if (ret) {
325 dev_err(pdev->dev, "ERROR: Controller not ready to work\n");
326 return ret;
327 }
328
329 dev_dbg(pdev->dev, "Controller ready to work");
330
331 return ret;
332 }
333
334 /*
335 * cdnsp_get_endpoint_index - Find the index for an endpoint given its
336 * descriptor.Use the return value to right shift 1 for the bitmask.
337 *
338 * Index = (epnum * 2) + direction - 1,
339 * where direction = 0 for OUT, 1 for IN.
340 * For control endpoints, the IN index is used (OUT index is unused), so
341 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
342 */
343 static unsigned int
cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor * desc)344 cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor *desc)
345 {
346 unsigned int index = (unsigned int)usb_endpoint_num(desc);
347
348 if (usb_endpoint_xfer_control(desc))
349 return index * 2;
350
351 return (index * 2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
352 }
353
354 /*
355 * Find the flag for this endpoint (for use in the control context). Use the
356 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
357 * bit 1, etc.
358 */
359 static unsigned int
cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor * desc)360 cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor *desc)
361 {
362 return 1 << (cdnsp_get_endpoint_index(desc) + 1);
363 }
364
cdnsp_ep_enqueue(struct cdnsp_ep * pep,struct cdnsp_request * preq)365 int cdnsp_ep_enqueue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
366 {
367 struct cdnsp_device *pdev = pep->pdev;
368 struct usb_request *request;
369 int ret;
370
371 if (preq->epnum == 0 && !list_empty(&pep->pending_list)) {
372 trace_cdnsp_request_enqueue_busy(preq);
373 return -EBUSY;
374 }
375
376 request = &preq->request;
377 request->actual = 0;
378 request->status = -EINPROGRESS;
379 preq->direction = pep->direction;
380 preq->epnum = pep->number;
381 preq->td.drbl = 0;
382
383 ret = usb_gadget_map_request_by_dev(pdev->dev, request, pep->direction);
384 if (ret) {
385 trace_cdnsp_request_enqueue_error(preq);
386 return ret;
387 }
388
389 list_add_tail(&preq->list, &pep->pending_list);
390
391 trace_cdnsp_request_enqueue(preq);
392
393 switch (usb_endpoint_type(pep->endpoint.desc)) {
394 case USB_ENDPOINT_XFER_CONTROL:
395 ret = cdnsp_queue_ctrl_tx(pdev, preq);
396 break;
397 case USB_ENDPOINT_XFER_BULK:
398 case USB_ENDPOINT_XFER_INT:
399 ret = cdnsp_queue_bulk_tx(pdev, preq);
400 break;
401 case USB_ENDPOINT_XFER_ISOC:
402 ret = cdnsp_queue_isoc_tx(pdev, preq);
403 }
404
405 if (ret)
406 goto unmap;
407
408 return 0;
409
410 unmap:
411 usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
412 pep->direction);
413 list_del(&preq->list);
414 trace_cdnsp_request_enqueue_error(preq);
415
416 return ret;
417 }
418
419 /*
420 * Remove the request's TD from the endpoint ring. This may cause the
421 * controller to stop USB transfers, potentially stopping in the middle of a
422 * TRB buffer. The controller should pick up where it left off in the TD,
423 * unless a Set Transfer Ring Dequeue Pointer is issued.
424 *
425 * The TRBs that make up the buffers for the canceled request will be "removed"
426 * from the ring. Since the ring is a contiguous structure, they can't be
427 * physically removed. Instead, there are two options:
428 *
429 * 1) If the controller is in the middle of processing the request to be
430 * canceled, we simply move the ring's dequeue pointer past those TRBs
431 * using the Set Transfer Ring Dequeue Pointer command. This will be
432 * the common case, when drivers timeout on the last submitted request
433 * and attempt to cancel.
434 *
435 * 2) If the controller is in the middle of a different TD, we turn the TRBs
436 * into a series of 1-TRB transfer no-op TDs. No-ops shouldn't be chained.
437 * The controller will need to invalidate the any TRBs it has cached after
438 * the stop endpoint command.
439 *
440 * 3) The TD may have completed by the time the Stop Endpoint Command
441 * completes, so software needs to handle that case too.
442 *
443 */
cdnsp_ep_dequeue(struct cdnsp_ep * pep,struct cdnsp_request * preq)444 int cdnsp_ep_dequeue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
445 {
446 struct cdnsp_device *pdev = pep->pdev;
447 int ret_stop = 0;
448 int ret_rem;
449
450 trace_cdnsp_request_dequeue(preq);
451
452 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_RUNNING)
453 ret_stop = cdnsp_cmd_stop_ep(pdev, pep);
454
455 ret_rem = cdnsp_remove_request(pdev, preq, pep);
456
457 return ret_rem ? ret_rem : ret_stop;
458 }
459
cdnsp_zero_in_ctx(struct cdnsp_device * pdev)460 static void cdnsp_zero_in_ctx(struct cdnsp_device *pdev)
461 {
462 struct cdnsp_input_control_ctx *ctrl_ctx;
463 struct cdnsp_slot_ctx *slot_ctx;
464 struct cdnsp_ep_ctx *ep_ctx;
465 int i;
466
467 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
468
469 /*
470 * When a device's add flag and drop flag are zero, any subsequent
471 * configure endpoint command will leave that endpoint's state
472 * untouched. Make sure we don't leave any old state in the input
473 * endpoint contexts.
474 */
475 ctrl_ctx->drop_flags = 0;
476 ctrl_ctx->add_flags = 0;
477 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
478 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
479
480 /* Endpoint 0 is always valid */
481 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
482 for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) {
483 ep_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, i);
484 ep_ctx->ep_info = 0;
485 ep_ctx->ep_info2 = 0;
486 ep_ctx->deq = 0;
487 ep_ctx->tx_info = 0;
488 }
489 }
490
491 /* Issue a configure endpoint command and wait for it to finish. */
cdnsp_configure_endpoint(struct cdnsp_device * pdev)492 static int cdnsp_configure_endpoint(struct cdnsp_device *pdev)
493 {
494 int ret;
495
496 cdnsp_queue_configure_endpoint(pdev, pdev->cmd.in_ctx->dma);
497 cdnsp_ring_cmd_db(pdev);
498 ret = cdnsp_wait_for_cmd_compl(pdev);
499 if (ret) {
500 dev_err(pdev->dev,
501 "ERR: unexpected command completion code 0x%x.\n", ret);
502 return -EINVAL;
503 }
504
505 return ret;
506 }
507
cdnsp_invalidate_ep_events(struct cdnsp_device * pdev,struct cdnsp_ep * pep)508 static void cdnsp_invalidate_ep_events(struct cdnsp_device *pdev,
509 struct cdnsp_ep *pep)
510 {
511 struct cdnsp_segment *segment;
512 union cdnsp_trb *event;
513 u32 cycle_state;
514 u32 data;
515
516 event = pdev->event_ring->dequeue;
517 segment = pdev->event_ring->deq_seg;
518 cycle_state = pdev->event_ring->cycle_state;
519
520 while (1) {
521 data = le32_to_cpu(event->trans_event.flags);
522
523 /* Check the owner of the TRB. */
524 if ((data & TRB_CYCLE) != cycle_state)
525 break;
526
527 if (TRB_FIELD_TO_TYPE(data) == TRB_TRANSFER &&
528 TRB_TO_EP_ID(data) == (pep->idx + 1)) {
529 data |= TRB_EVENT_INVALIDATE;
530 event->trans_event.flags = cpu_to_le32(data);
531 }
532
533 if (cdnsp_last_trb_on_seg(segment, event)) {
534 cycle_state ^= 1;
535 segment = pdev->event_ring->deq_seg->next;
536 event = segment->trbs;
537 } else {
538 event++;
539 }
540 }
541 }
542
cdnsp_wait_for_cmd_compl(struct cdnsp_device * pdev)543 int cdnsp_wait_for_cmd_compl(struct cdnsp_device *pdev)
544 {
545 struct cdnsp_segment *event_deq_seg;
546 union cdnsp_trb *cmd_trb;
547 dma_addr_t cmd_deq_dma;
548 union cdnsp_trb *event;
549 u32 cycle_state;
550 u32 retry = 10;
551 int ret, val;
552 u64 cmd_dma;
553 u32 flags;
554
555 cmd_trb = pdev->cmd.command_trb;
556 pdev->cmd.status = 0;
557
558 trace_cdnsp_cmd_wait_for_compl(pdev->cmd_ring, &cmd_trb->generic);
559
560 ret = readl_poll_timeout_atomic(&pdev->op_regs->cmd_ring, val,
561 !CMD_RING_BUSY(val), 1,
562 CDNSP_CMD_TIMEOUT);
563 if (ret) {
564 dev_err(pdev->dev, "ERR: Timeout while waiting for command\n");
565 trace_cdnsp_cmd_timeout(pdev->cmd_ring, &cmd_trb->generic);
566 pdev->cdnsp_state = CDNSP_STATE_DYING;
567 return -ETIMEDOUT;
568 }
569
570 event = pdev->event_ring->dequeue;
571 event_deq_seg = pdev->event_ring->deq_seg;
572 cycle_state = pdev->event_ring->cycle_state;
573
574 cmd_deq_dma = cdnsp_trb_virt_to_dma(pdev->cmd_ring->deq_seg, cmd_trb);
575 if (!cmd_deq_dma)
576 return -EINVAL;
577
578 while (1) {
579 flags = le32_to_cpu(event->event_cmd.flags);
580
581 /* Check the owner of the TRB. */
582 if ((flags & TRB_CYCLE) != cycle_state) {
583 /*
584 * Give some extra time to get chance controller
585 * to finish command before returning error code.
586 * Checking CMD_RING_BUSY is not sufficient because
587 * this bit is cleared to '0' when the Command
588 * Descriptor has been executed by controller
589 * and not when command completion event has
590 * be added to event ring.
591 */
592 if (retry--) {
593 udelay(20);
594 continue;
595 }
596
597 return -EINVAL;
598 }
599
600 cmd_dma = le64_to_cpu(event->event_cmd.cmd_trb);
601
602 /*
603 * Check whether the completion event is for last queued
604 * command.
605 */
606 if (TRB_FIELD_TO_TYPE(flags) != TRB_COMPLETION ||
607 cmd_dma != (u64)cmd_deq_dma) {
608 if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
609 event++;
610 continue;
611 }
612
613 if (cdnsp_last_trb_on_ring(pdev->event_ring,
614 event_deq_seg, event))
615 cycle_state ^= 1;
616
617 event_deq_seg = event_deq_seg->next;
618 event = event_deq_seg->trbs;
619 continue;
620 }
621
622 trace_cdnsp_handle_command(pdev->cmd_ring, &cmd_trb->generic);
623
624 pdev->cmd.status = GET_COMP_CODE(le32_to_cpu(event->event_cmd.status));
625 if (pdev->cmd.status == COMP_SUCCESS)
626 return 0;
627
628 return -pdev->cmd.status;
629 }
630 }
631
cdnsp_halt_endpoint(struct cdnsp_device * pdev,struct cdnsp_ep * pep,int value)632 int cdnsp_halt_endpoint(struct cdnsp_device *pdev,
633 struct cdnsp_ep *pep,
634 int value)
635 {
636 int ret;
637
638 trace_cdnsp_ep_halt(value ? "Set" : "Clear");
639
640 ret = cdnsp_cmd_stop_ep(pdev, pep);
641 if (ret)
642 return ret;
643
644 if (value) {
645 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_STOPPED) {
646 cdnsp_queue_halt_endpoint(pdev, pep->idx);
647 cdnsp_ring_cmd_db(pdev);
648 ret = cdnsp_wait_for_cmd_compl(pdev);
649 }
650
651 pep->ep_state |= EP_HALTED;
652 } else {
653 cdnsp_queue_reset_ep(pdev, pep->idx);
654 cdnsp_ring_cmd_db(pdev);
655 ret = cdnsp_wait_for_cmd_compl(pdev);
656 trace_cdnsp_handle_cmd_reset_ep(pep->out_ctx);
657
658 if (ret)
659 return ret;
660
661 pep->ep_state &= ~EP_HALTED;
662
663 if (pep->idx != 0 && !(pep->ep_state & EP_WEDGE))
664 cdnsp_ring_doorbell_for_active_rings(pdev, pep);
665
666 pep->ep_state &= ~EP_WEDGE;
667 }
668
669 return 0;
670 }
671
cdnsp_update_eps_configuration(struct cdnsp_device * pdev,struct cdnsp_ep * pep)672 static int cdnsp_update_eps_configuration(struct cdnsp_device *pdev,
673 struct cdnsp_ep *pep)
674 {
675 struct cdnsp_input_control_ctx *ctrl_ctx;
676 struct cdnsp_slot_ctx *slot_ctx;
677 int ret = 0;
678 u32 ep_sts;
679 int i;
680
681 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
682
683 /* Don't issue the command if there's no endpoints to update. */
684 if (ctrl_ctx->add_flags == 0 && ctrl_ctx->drop_flags == 0)
685 return 0;
686
687 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
688 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
689 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
690
691 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
692 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
693 for (i = CDNSP_ENDPOINTS_NUM; i >= 1; i--) {
694 __le32 le32 = cpu_to_le32(BIT(i));
695
696 if ((pdev->eps[i - 1].ring && !(ctrl_ctx->drop_flags & le32)) ||
697 (ctrl_ctx->add_flags & le32) || i == 1) {
698 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
699 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
700 break;
701 }
702 }
703
704 ep_sts = GET_EP_CTX_STATE(pep->out_ctx);
705
706 if ((ctrl_ctx->add_flags != cpu_to_le32(SLOT_FLAG) &&
707 ep_sts == EP_STATE_DISABLED) ||
708 (ep_sts != EP_STATE_DISABLED && ctrl_ctx->drop_flags))
709 ret = cdnsp_configure_endpoint(pdev);
710
711 trace_cdnsp_configure_endpoint(cdnsp_get_slot_ctx(&pdev->out_ctx));
712 trace_cdnsp_handle_cmd_config_ep(pep->out_ctx);
713
714 cdnsp_zero_in_ctx(pdev);
715
716 return ret;
717 }
718
719 /*
720 * This submits a Reset Device Command, which will set the device state to 0,
721 * set the device address to 0, and disable all the endpoints except the default
722 * control endpoint. The USB core should come back and call
723 * cdnsp_setup_device(), and then re-set up the configuration.
724 */
cdnsp_reset_device(struct cdnsp_device * pdev)725 int cdnsp_reset_device(struct cdnsp_device *pdev)
726 {
727 struct cdnsp_slot_ctx *slot_ctx;
728 int slot_state;
729 int ret, i;
730
731 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
732 slot_ctx->dev_info = 0;
733 pdev->device_address = 0;
734
735 /* If device is not setup, there is no point in resetting it. */
736 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
737 slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
738 trace_cdnsp_reset_device(slot_ctx);
739
740 if (slot_state <= SLOT_STATE_DEFAULT &&
741 pdev->eps[0].ep_state & EP_HALTED) {
742 cdnsp_halt_endpoint(pdev, &pdev->eps[0], 0);
743 }
744
745 /*
746 * During Reset Device command controller shall transition the
747 * endpoint ep0 to the Running State.
748 */
749 pdev->eps[0].ep_state &= ~(EP_STOPPED | EP_HALTED);
750 pdev->eps[0].ep_state |= EP_ENABLED;
751
752 if (slot_state <= SLOT_STATE_DEFAULT)
753 return 0;
754
755 cdnsp_queue_reset_device(pdev);
756 cdnsp_ring_cmd_db(pdev);
757 ret = cdnsp_wait_for_cmd_compl(pdev);
758
759 /*
760 * After Reset Device command all not default endpoints
761 * are in Disabled state.
762 */
763 for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i)
764 pdev->eps[i].ep_state |= EP_STOPPED | EP_UNCONFIGURED;
765
766 trace_cdnsp_handle_cmd_reset_dev(slot_ctx);
767
768 if (ret)
769 dev_err(pdev->dev, "Reset device failed with error code %d",
770 ret);
771
772 return ret;
773 }
774
775 /*
776 * Sets the MaxPStreams field and the Linear Stream Array field.
777 * Sets the dequeue pointer to the stream context array.
778 */
cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device * pdev,struct cdnsp_ep_ctx * ep_ctx,struct cdnsp_stream_info * stream_info)779 static void cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device *pdev,
780 struct cdnsp_ep_ctx *ep_ctx,
781 struct cdnsp_stream_info *stream_info)
782 {
783 u32 max_primary_streams;
784
785 /* MaxPStreams is the number of stream context array entries, not the
786 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
787 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
788 */
789 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
790 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
791 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
792 | EP_HAS_LSA);
793 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
794 }
795
796 /*
797 * The drivers use this function to prepare a bulk endpoints to use streams.
798 *
799 * Don't allow the call to succeed if endpoint only supports one stream
800 * (which means it doesn't support streams at all).
801 */
cdnsp_alloc_streams(struct cdnsp_device * pdev,struct cdnsp_ep * pep)802 int cdnsp_alloc_streams(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
803 {
804 unsigned int num_streams = usb_ss_max_streams(pep->endpoint.comp_desc);
805 unsigned int num_stream_ctxs;
806 int ret;
807
808 if (num_streams == 0)
809 return 0;
810
811 if (num_streams > STREAM_NUM_STREAMS)
812 return -EINVAL;
813
814 /*
815 * Add two to the number of streams requested to account for
816 * stream 0 that is reserved for controller usage and one additional
817 * for TASK SET FULL response.
818 */
819 num_streams += 2;
820
821 /* The stream context array size must be a power of two */
822 num_stream_ctxs = roundup_pow_of_two(num_streams);
823
824 trace_cdnsp_stream_number(pep, num_stream_ctxs, num_streams);
825
826 ret = cdnsp_alloc_stream_info(pdev, pep, num_stream_ctxs, num_streams);
827 if (ret)
828 return ret;
829
830 cdnsp_setup_streams_ep_input_ctx(pdev, pep->in_ctx, &pep->stream_info);
831
832 pep->ep_state |= EP_HAS_STREAMS;
833 pep->stream_info.td_count = 0;
834 pep->stream_info.first_prime_det = 0;
835
836 /* Subtract 1 for stream 0, which drivers can't use. */
837 return num_streams - 1;
838 }
839
cdnsp_disable_slot(struct cdnsp_device * pdev)840 int cdnsp_disable_slot(struct cdnsp_device *pdev)
841 {
842 int ret;
843
844 cdnsp_queue_slot_control(pdev, TRB_DISABLE_SLOT);
845 cdnsp_ring_cmd_db(pdev);
846 ret = cdnsp_wait_for_cmd_compl(pdev);
847
848 pdev->slot_id = 0;
849 pdev->active_port = NULL;
850
851 trace_cdnsp_handle_cmd_disable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
852
853 memset(pdev->in_ctx.bytes, 0, CDNSP_CTX_SIZE);
854 memset(pdev->out_ctx.bytes, 0, CDNSP_CTX_SIZE);
855
856 return ret;
857 }
858
cdnsp_enable_slot(struct cdnsp_device * pdev)859 int cdnsp_enable_slot(struct cdnsp_device *pdev)
860 {
861 struct cdnsp_slot_ctx *slot_ctx;
862 int slot_state;
863 int ret;
864
865 /* If device is not setup, there is no point in resetting it */
866 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
867 slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
868
869 if (slot_state != SLOT_STATE_DISABLED)
870 return 0;
871
872 cdnsp_queue_slot_control(pdev, TRB_ENABLE_SLOT);
873 cdnsp_ring_cmd_db(pdev);
874 ret = cdnsp_wait_for_cmd_compl(pdev);
875 if (ret)
876 goto show_trace;
877
878 pdev->slot_id = 1;
879
880 show_trace:
881 trace_cdnsp_handle_cmd_enable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
882
883 return ret;
884 }
885
886 /*
887 * Issue an Address Device command with BSR=0 if setup is SETUP_CONTEXT_ONLY
888 * or with BSR = 1 if set_address is SETUP_CONTEXT_ADDRESS.
889 */
cdnsp_setup_device(struct cdnsp_device * pdev,enum cdnsp_setup_dev setup)890 int cdnsp_setup_device(struct cdnsp_device *pdev, enum cdnsp_setup_dev setup)
891 {
892 struct cdnsp_input_control_ctx *ctrl_ctx;
893 struct cdnsp_slot_ctx *slot_ctx;
894 int dev_state = 0;
895 int ret;
896
897 if (!pdev->slot_id) {
898 trace_cdnsp_slot_id("incorrect");
899 return -EINVAL;
900 }
901
902 if (!pdev->active_port->port_num)
903 return -EINVAL;
904
905 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
906 dev_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
907
908 if (setup == SETUP_CONTEXT_ONLY && dev_state == SLOT_STATE_DEFAULT) {
909 trace_cdnsp_slot_already_in_default(slot_ctx);
910 return 0;
911 }
912
913 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
914 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
915
916 if (!slot_ctx->dev_info || dev_state == SLOT_STATE_DEFAULT) {
917 ret = cdnsp_setup_addressable_priv_dev(pdev);
918 if (ret)
919 return ret;
920 }
921
922 cdnsp_copy_ep0_dequeue_into_input_ctx(pdev);
923
924 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
925 ctrl_ctx->drop_flags = 0;
926
927 trace_cdnsp_setup_device_slot(slot_ctx);
928
929 cdnsp_queue_address_device(pdev, pdev->in_ctx.dma, setup);
930 cdnsp_ring_cmd_db(pdev);
931 ret = cdnsp_wait_for_cmd_compl(pdev);
932
933 trace_cdnsp_handle_cmd_addr_dev(cdnsp_get_slot_ctx(&pdev->out_ctx));
934
935 /* Zero the input context control for later use. */
936 ctrl_ctx->add_flags = 0;
937 ctrl_ctx->drop_flags = 0;
938
939 return ret;
940 }
941
cdnsp_set_usb2_hardware_lpm(struct cdnsp_device * pdev,struct usb_request * req,int enable)942 void cdnsp_set_usb2_hardware_lpm(struct cdnsp_device *pdev,
943 struct usb_request *req,
944 int enable)
945 {
946 if (pdev->active_port != &pdev->usb2_port || !pdev->gadget.lpm_capable)
947 return;
948
949 trace_cdnsp_lpm(enable);
950
951 if (enable)
952 writel(PORT_BESL(CDNSP_DEFAULT_BESL) | PORT_L1S_NYET | PORT_HLE,
953 &pdev->active_port->regs->portpmsc);
954 else
955 writel(PORT_L1S_NYET, &pdev->active_port->regs->portpmsc);
956 }
957
cdnsp_get_frame(struct cdnsp_device * pdev)958 static int cdnsp_get_frame(struct cdnsp_device *pdev)
959 {
960 return readl(&pdev->run_regs->microframe_index) >> 3;
961 }
962
cdnsp_gadget_ep_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)963 static int cdnsp_gadget_ep_enable(struct usb_ep *ep,
964 const struct usb_endpoint_descriptor *desc)
965 {
966 struct cdnsp_input_control_ctx *ctrl_ctx;
967 struct cdnsp_device *pdev;
968 struct cdnsp_ep *pep;
969 unsigned long flags;
970 u32 added_ctxs;
971 int ret;
972
973 if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT ||
974 !desc->wMaxPacketSize)
975 return -EINVAL;
976
977 pep = to_cdnsp_ep(ep);
978 pdev = pep->pdev;
979 pep->ep_state &= ~EP_UNCONFIGURED;
980
981 if (dev_WARN_ONCE(pdev->dev, pep->ep_state & EP_ENABLED,
982 "%s is already enabled\n", pep->name))
983 return 0;
984
985 spin_lock_irqsave(&pdev->lock, flags);
986
987 added_ctxs = cdnsp_get_endpoint_flag(desc);
988 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
989 dev_err(pdev->dev, "ERROR: Bad endpoint number\n");
990 ret = -EINVAL;
991 goto unlock;
992 }
993
994 pep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0;
995
996 if (pdev->gadget.speed == USB_SPEED_FULL) {
997 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_INT)
998 pep->interval = desc->bInterval << 3;
999 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC)
1000 pep->interval = BIT(desc->bInterval - 1) << 3;
1001 }
1002
1003 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) {
1004 if (pep->interval > BIT(12)) {
1005 dev_err(pdev->dev, "bInterval %d not supported\n",
1006 desc->bInterval);
1007 ret = -EINVAL;
1008 goto unlock;
1009 }
1010 cdnsp_set_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
1011 }
1012
1013 ret = cdnsp_endpoint_init(pdev, pep, GFP_ATOMIC);
1014 if (ret)
1015 goto unlock;
1016
1017 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
1018 ctrl_ctx->add_flags = cpu_to_le32(added_ctxs);
1019 ctrl_ctx->drop_flags = 0;
1020
1021 ret = cdnsp_update_eps_configuration(pdev, pep);
1022 if (ret) {
1023 cdnsp_free_endpoint_rings(pdev, pep);
1024 goto unlock;
1025 }
1026
1027 pep->ep_state |= EP_ENABLED;
1028 pep->ep_state &= ~EP_STOPPED;
1029
1030 unlock:
1031 trace_cdnsp_ep_enable_end(pep, 0);
1032 spin_unlock_irqrestore(&pdev->lock, flags);
1033
1034 return ret;
1035 }
1036
cdnsp_gadget_ep_disable(struct usb_ep * ep)1037 static int cdnsp_gadget_ep_disable(struct usb_ep *ep)
1038 {
1039 struct cdnsp_input_control_ctx *ctrl_ctx;
1040 struct cdnsp_request *preq;
1041 struct cdnsp_device *pdev;
1042 struct cdnsp_ep *pep;
1043 unsigned long flags;
1044 u32 drop_flag;
1045 int ret = 0;
1046
1047 if (!ep)
1048 return -EINVAL;
1049
1050 pep = to_cdnsp_ep(ep);
1051 pdev = pep->pdev;
1052
1053 spin_lock_irqsave(&pdev->lock, flags);
1054
1055 if (!(pep->ep_state & EP_ENABLED)) {
1056 dev_err(pdev->dev, "%s is already disabled\n", pep->name);
1057 ret = -EINVAL;
1058 goto finish;
1059 }
1060
1061 pep->ep_state |= EP_DIS_IN_RROGRESS;
1062
1063 /* Endpoint was unconfigured by Reset Device command. */
1064 if (!(pep->ep_state & EP_UNCONFIGURED))
1065 cdnsp_cmd_stop_ep(pdev, pep);
1066
1067 /* Remove all queued USB requests. */
1068 while (!list_empty(&pep->pending_list)) {
1069 preq = next_request(&pep->pending_list);
1070 cdnsp_ep_dequeue(pep, preq);
1071 }
1072
1073 cdnsp_invalidate_ep_events(pdev, pep);
1074
1075 pep->ep_state &= ~EP_DIS_IN_RROGRESS;
1076 drop_flag = cdnsp_get_endpoint_flag(pep->endpoint.desc);
1077 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
1078 ctrl_ctx->drop_flags = cpu_to_le32(drop_flag);
1079 ctrl_ctx->add_flags = 0;
1080
1081 cdnsp_endpoint_zero(pdev, pep);
1082
1083 if (!(pep->ep_state & EP_UNCONFIGURED))
1084 ret = cdnsp_update_eps_configuration(pdev, pep);
1085
1086 cdnsp_free_endpoint_rings(pdev, pep);
1087
1088 pep->ep_state &= ~(EP_ENABLED | EP_UNCONFIGURED);
1089 pep->ep_state |= EP_STOPPED;
1090
1091 finish:
1092 trace_cdnsp_ep_disable_end(pep, 0);
1093 spin_unlock_irqrestore(&pdev->lock, flags);
1094
1095 return ret;
1096 }
1097
cdnsp_gadget_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)1098 static struct usb_request *cdnsp_gadget_ep_alloc_request(struct usb_ep *ep,
1099 gfp_t gfp_flags)
1100 {
1101 struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1102 struct cdnsp_request *preq;
1103
1104 preq = kzalloc(sizeof(*preq), gfp_flags);
1105 if (!preq)
1106 return NULL;
1107
1108 preq->epnum = pep->number;
1109 preq->pep = pep;
1110
1111 trace_cdnsp_alloc_request(preq);
1112
1113 return &preq->request;
1114 }
1115
cdnsp_gadget_ep_free_request(struct usb_ep * ep,struct usb_request * request)1116 static void cdnsp_gadget_ep_free_request(struct usb_ep *ep,
1117 struct usb_request *request)
1118 {
1119 struct cdnsp_request *preq = to_cdnsp_request(request);
1120
1121 trace_cdnsp_free_request(preq);
1122 kfree(preq);
1123 }
1124
cdnsp_gadget_ep_queue(struct usb_ep * ep,struct usb_request * request,gfp_t gfp_flags)1125 static int cdnsp_gadget_ep_queue(struct usb_ep *ep,
1126 struct usb_request *request,
1127 gfp_t gfp_flags)
1128 {
1129 struct cdnsp_request *preq;
1130 struct cdnsp_device *pdev;
1131 struct cdnsp_ep *pep;
1132 unsigned long flags;
1133 int ret;
1134
1135 if (!request || !ep)
1136 return -EINVAL;
1137
1138 pep = to_cdnsp_ep(ep);
1139 pdev = pep->pdev;
1140
1141 if (!(pep->ep_state & EP_ENABLED)) {
1142 dev_err(pdev->dev, "%s: can't queue to disabled endpoint\n",
1143 pep->name);
1144 return -EINVAL;
1145 }
1146
1147 preq = to_cdnsp_request(request);
1148 spin_lock_irqsave(&pdev->lock, flags);
1149 ret = cdnsp_ep_enqueue(pep, preq);
1150 spin_unlock_irqrestore(&pdev->lock, flags);
1151
1152 return ret;
1153 }
1154
cdnsp_gadget_ep_dequeue(struct usb_ep * ep,struct usb_request * request)1155 static int cdnsp_gadget_ep_dequeue(struct usb_ep *ep,
1156 struct usb_request *request)
1157 {
1158 struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1159 struct cdnsp_device *pdev = pep->pdev;
1160 unsigned long flags;
1161 int ret;
1162
1163 if (request->status != -EINPROGRESS)
1164 return 0;
1165
1166 if (!pep->endpoint.desc) {
1167 dev_err(pdev->dev,
1168 "%s: can't dequeue to disabled endpoint\n",
1169 pep->name);
1170 return -ESHUTDOWN;
1171 }
1172
1173 /* Requests has been dequeued during disabling endpoint. */
1174 if (!(pep->ep_state & EP_ENABLED))
1175 return 0;
1176
1177 spin_lock_irqsave(&pdev->lock, flags);
1178 ret = cdnsp_ep_dequeue(pep, to_cdnsp_request(request));
1179 spin_unlock_irqrestore(&pdev->lock, flags);
1180
1181 return ret;
1182 }
1183
cdnsp_gadget_ep_set_halt(struct usb_ep * ep,int value)1184 static int cdnsp_gadget_ep_set_halt(struct usb_ep *ep, int value)
1185 {
1186 struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1187 struct cdnsp_device *pdev = pep->pdev;
1188 struct cdnsp_request *preq;
1189 unsigned long flags;
1190 int ret;
1191
1192 spin_lock_irqsave(&pdev->lock, flags);
1193
1194 preq = next_request(&pep->pending_list);
1195 if (value) {
1196 if (preq) {
1197 trace_cdnsp_ep_busy_try_halt_again(pep, 0);
1198 ret = -EAGAIN;
1199 goto done;
1200 }
1201 }
1202
1203 ret = cdnsp_halt_endpoint(pdev, pep, value);
1204
1205 done:
1206 spin_unlock_irqrestore(&pdev->lock, flags);
1207 return ret;
1208 }
1209
cdnsp_gadget_ep_set_wedge(struct usb_ep * ep)1210 static int cdnsp_gadget_ep_set_wedge(struct usb_ep *ep)
1211 {
1212 struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1213 struct cdnsp_device *pdev = pep->pdev;
1214 unsigned long flags;
1215 int ret;
1216
1217 spin_lock_irqsave(&pdev->lock, flags);
1218 pep->ep_state |= EP_WEDGE;
1219 ret = cdnsp_halt_endpoint(pdev, pep, 1);
1220 spin_unlock_irqrestore(&pdev->lock, flags);
1221
1222 return ret;
1223 }
1224
1225 static const struct usb_ep_ops cdnsp_gadget_ep0_ops = {
1226 .enable = cdnsp_gadget_ep_enable,
1227 .disable = cdnsp_gadget_ep_disable,
1228 .alloc_request = cdnsp_gadget_ep_alloc_request,
1229 .free_request = cdnsp_gadget_ep_free_request,
1230 .queue = cdnsp_gadget_ep_queue,
1231 .dequeue = cdnsp_gadget_ep_dequeue,
1232 .set_halt = cdnsp_gadget_ep_set_halt,
1233 .set_wedge = cdnsp_gadget_ep_set_wedge,
1234 };
1235
1236 static const struct usb_ep_ops cdnsp_gadget_ep_ops = {
1237 .enable = cdnsp_gadget_ep_enable,
1238 .disable = cdnsp_gadget_ep_disable,
1239 .alloc_request = cdnsp_gadget_ep_alloc_request,
1240 .free_request = cdnsp_gadget_ep_free_request,
1241 .queue = cdnsp_gadget_ep_queue,
1242 .dequeue = cdnsp_gadget_ep_dequeue,
1243 .set_halt = cdnsp_gadget_ep_set_halt,
1244 .set_wedge = cdnsp_gadget_ep_set_wedge,
1245 };
1246
cdnsp_gadget_giveback(struct cdnsp_ep * pep,struct cdnsp_request * preq,int status)1247 void cdnsp_gadget_giveback(struct cdnsp_ep *pep,
1248 struct cdnsp_request *preq,
1249 int status)
1250 {
1251 struct cdnsp_device *pdev = pep->pdev;
1252
1253 list_del(&preq->list);
1254
1255 if (preq->request.status == -EINPROGRESS)
1256 preq->request.status = status;
1257
1258 usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
1259 preq->direction);
1260
1261 trace_cdnsp_request_giveback(preq);
1262
1263 if (preq != &pdev->ep0_preq) {
1264 spin_unlock(&pdev->lock);
1265 usb_gadget_giveback_request(&pep->endpoint, &preq->request);
1266 spin_lock(&pdev->lock);
1267 }
1268 }
1269
1270 static struct usb_endpoint_descriptor cdnsp_gadget_ep0_desc = {
1271 .bLength = USB_DT_ENDPOINT_SIZE,
1272 .bDescriptorType = USB_DT_ENDPOINT,
1273 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
1274 };
1275
cdnsp_run(struct cdnsp_device * pdev,enum usb_device_speed speed)1276 static int cdnsp_run(struct cdnsp_device *pdev,
1277 enum usb_device_speed speed)
1278 {
1279 u32 fs_speed = 0;
1280 u32 temp;
1281 int ret;
1282
1283 temp = readl(&pdev->ir_set->irq_control);
1284 temp &= ~IMOD_INTERVAL_MASK;
1285 temp |= ((IMOD_DEFAULT_INTERVAL / 250) & IMOD_INTERVAL_MASK);
1286 writel(temp, &pdev->ir_set->irq_control);
1287
1288 temp = readl(&pdev->port3x_regs->mode_addr);
1289
1290 switch (speed) {
1291 case USB_SPEED_SUPER_PLUS:
1292 temp |= CFG_3XPORT_SSP_SUPPORT;
1293 break;
1294 case USB_SPEED_SUPER:
1295 temp &= ~CFG_3XPORT_SSP_SUPPORT;
1296 break;
1297 case USB_SPEED_HIGH:
1298 break;
1299 case USB_SPEED_FULL:
1300 fs_speed = PORT_REG6_FORCE_FS;
1301 break;
1302 default:
1303 dev_err(pdev->dev, "invalid maximum_speed parameter %d\n",
1304 speed);
1305 fallthrough;
1306 case USB_SPEED_UNKNOWN:
1307 /* Default to superspeed. */
1308 speed = USB_SPEED_SUPER;
1309 break;
1310 }
1311
1312 if (speed >= USB_SPEED_SUPER) {
1313 writel(temp, &pdev->port3x_regs->mode_addr);
1314 cdnsp_set_link_state(pdev, &pdev->usb3_port.regs->portsc,
1315 XDEV_RXDETECT);
1316 } else {
1317 cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1318 }
1319
1320 cdnsp_set_link_state(pdev, &pdev->usb2_port.regs->portsc,
1321 XDEV_RXDETECT);
1322
1323 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1324
1325 writel(PORT_REG6_L1_L0_HW_EN | fs_speed, &pdev->port20_regs->port_reg6);
1326
1327 ret = cdnsp_start(pdev);
1328 if (ret) {
1329 ret = -ENODEV;
1330 goto err;
1331 }
1332
1333 temp = readl(&pdev->op_regs->command);
1334 temp |= (CMD_INTE);
1335 writel(temp, &pdev->op_regs->command);
1336
1337 temp = readl(&pdev->ir_set->irq_pending);
1338 writel(IMAN_IE_SET(temp), &pdev->ir_set->irq_pending);
1339
1340 trace_cdnsp_init("Controller ready to work");
1341 return 0;
1342 err:
1343 cdnsp_halt(pdev);
1344 return ret;
1345 }
1346
cdnsp_gadget_udc_start(struct usb_gadget * g,struct usb_gadget_driver * driver)1347 static int cdnsp_gadget_udc_start(struct usb_gadget *g,
1348 struct usb_gadget_driver *driver)
1349 {
1350 enum usb_device_speed max_speed = driver->max_speed;
1351 struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1352 unsigned long flags;
1353 int ret;
1354
1355 spin_lock_irqsave(&pdev->lock, flags);
1356 pdev->gadget_driver = driver;
1357
1358 /* limit speed if necessary */
1359 max_speed = min(driver->max_speed, g->max_speed);
1360 ret = cdnsp_run(pdev, max_speed);
1361
1362 spin_unlock_irqrestore(&pdev->lock, flags);
1363
1364 return ret;
1365 }
1366
1367 /*
1368 * Update Event Ring Dequeue Pointer:
1369 * - When all events have finished
1370 * - To avoid "Event Ring Full Error" condition
1371 */
cdnsp_update_erst_dequeue(struct cdnsp_device * pdev,union cdnsp_trb * event_ring_deq,u8 clear_ehb)1372 void cdnsp_update_erst_dequeue(struct cdnsp_device *pdev,
1373 union cdnsp_trb *event_ring_deq,
1374 u8 clear_ehb)
1375 {
1376 u64 temp_64;
1377 dma_addr_t deq;
1378
1379 temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
1380
1381 /* If necessary, update the HW's version of the event ring deq ptr. */
1382 if (event_ring_deq != pdev->event_ring->dequeue) {
1383 deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
1384 pdev->event_ring->dequeue);
1385 temp_64 &= ERST_PTR_MASK;
1386 temp_64 |= ((u64)deq & (u64)~ERST_PTR_MASK);
1387 }
1388
1389 /* Clear the event handler busy flag (RW1C). */
1390 if (clear_ehb)
1391 temp_64 |= ERST_EHB;
1392 else
1393 temp_64 &= ~ERST_EHB;
1394
1395 cdnsp_write_64(temp_64, &pdev->ir_set->erst_dequeue);
1396 }
1397
cdnsp_clear_cmd_ring(struct cdnsp_device * pdev)1398 static void cdnsp_clear_cmd_ring(struct cdnsp_device *pdev)
1399 {
1400 struct cdnsp_segment *seg;
1401 u64 val_64;
1402 int i;
1403
1404 cdnsp_initialize_ring_info(pdev->cmd_ring);
1405
1406 seg = pdev->cmd_ring->first_seg;
1407 for (i = 0; i < pdev->cmd_ring->num_segs; i++) {
1408 memset(seg->trbs, 0,
1409 sizeof(union cdnsp_trb) * (TRBS_PER_SEGMENT - 1));
1410 seg = seg->next;
1411 }
1412
1413 /* Set the address in the Command Ring Control register. */
1414 val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring);
1415 val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) |
1416 (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) |
1417 pdev->cmd_ring->cycle_state;
1418 cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring);
1419 }
1420
cdnsp_consume_all_events(struct cdnsp_device * pdev)1421 static void cdnsp_consume_all_events(struct cdnsp_device *pdev)
1422 {
1423 struct cdnsp_segment *event_deq_seg;
1424 union cdnsp_trb *event_ring_deq;
1425 union cdnsp_trb *event;
1426 u32 cycle_bit;
1427
1428 event_ring_deq = pdev->event_ring->dequeue;
1429 event_deq_seg = pdev->event_ring->deq_seg;
1430 event = pdev->event_ring->dequeue;
1431
1432 /* Update ring dequeue pointer. */
1433 while (1) {
1434 cycle_bit = (le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE);
1435
1436 /* Does the controller or driver own the TRB? */
1437 if (cycle_bit != pdev->event_ring->cycle_state)
1438 break;
1439
1440 cdnsp_inc_deq(pdev, pdev->event_ring);
1441
1442 if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
1443 event++;
1444 continue;
1445 }
1446
1447 if (cdnsp_last_trb_on_ring(pdev->event_ring, event_deq_seg,
1448 event))
1449 cycle_bit ^= 1;
1450
1451 event_deq_seg = event_deq_seg->next;
1452 event = event_deq_seg->trbs;
1453 }
1454
1455 cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1);
1456 }
1457
cdnsp_stop(struct cdnsp_device * pdev)1458 static void cdnsp_stop(struct cdnsp_device *pdev)
1459 {
1460 u32 temp;
1461
1462 /* Remove internally queued request for ep0. */
1463 if (!list_empty(&pdev->eps[0].pending_list)) {
1464 struct cdnsp_request *req;
1465
1466 req = next_request(&pdev->eps[0].pending_list);
1467 if (req == &pdev->ep0_preq)
1468 cdnsp_ep_dequeue(&pdev->eps[0], req);
1469 }
1470
1471 cdnsp_disable_port(pdev, &pdev->usb2_port.regs->portsc);
1472 cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1473 cdnsp_disable_slot(pdev);
1474 cdnsp_halt(pdev);
1475
1476 temp = readl(&pdev->op_regs->status);
1477 writel((temp & ~0x1fff) | STS_EINT, &pdev->op_regs->status);
1478 temp = readl(&pdev->ir_set->irq_pending);
1479 writel(IMAN_IE_CLEAR(temp), &pdev->ir_set->irq_pending);
1480
1481 cdnsp_clear_port_change_bit(pdev, &pdev->usb2_port.regs->portsc);
1482 cdnsp_clear_port_change_bit(pdev, &pdev->usb3_port.regs->portsc);
1483
1484 /* Clear interrupt line */
1485 temp = readl(&pdev->ir_set->irq_pending);
1486 temp |= IMAN_IP;
1487 writel(temp, &pdev->ir_set->irq_pending);
1488
1489 cdnsp_consume_all_events(pdev);
1490 cdnsp_clear_cmd_ring(pdev);
1491
1492 trace_cdnsp_exit("Controller stopped.");
1493 }
1494
1495 /*
1496 * Stop controller.
1497 * This function is called by the gadget core when the driver is removed.
1498 * Disable slot, disable IRQs, and quiesce the controller.
1499 */
cdnsp_gadget_udc_stop(struct usb_gadget * g)1500 static int cdnsp_gadget_udc_stop(struct usb_gadget *g)
1501 {
1502 struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1503 unsigned long flags;
1504
1505 spin_lock_irqsave(&pdev->lock, flags);
1506 cdnsp_stop(pdev);
1507 pdev->gadget_driver = NULL;
1508 spin_unlock_irqrestore(&pdev->lock, flags);
1509
1510 return 0;
1511 }
1512
cdnsp_gadget_get_frame(struct usb_gadget * g)1513 static int cdnsp_gadget_get_frame(struct usb_gadget *g)
1514 {
1515 struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1516
1517 return cdnsp_get_frame(pdev);
1518 }
1519
__cdnsp_gadget_wakeup(struct cdnsp_device * pdev)1520 static void __cdnsp_gadget_wakeup(struct cdnsp_device *pdev)
1521 {
1522 struct cdnsp_port_regs __iomem *port_regs;
1523 u32 portpm, portsc;
1524
1525 port_regs = pdev->active_port->regs;
1526 portsc = readl(&port_regs->portsc) & PORT_PLS_MASK;
1527
1528 /* Remote wakeup feature is not enabled by host. */
1529 if (pdev->gadget.speed < USB_SPEED_SUPER && portsc == XDEV_U2) {
1530 portpm = readl(&port_regs->portpmsc);
1531
1532 if (!(portpm & PORT_RWE))
1533 return;
1534 }
1535
1536 if (portsc == XDEV_U3 && !pdev->may_wakeup)
1537 return;
1538
1539 cdnsp_set_link_state(pdev, &port_regs->portsc, XDEV_U0);
1540
1541 pdev->cdnsp_state |= CDNSP_WAKEUP_PENDING;
1542 }
1543
cdnsp_gadget_wakeup(struct usb_gadget * g)1544 static int cdnsp_gadget_wakeup(struct usb_gadget *g)
1545 {
1546 struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1547 unsigned long flags;
1548
1549 spin_lock_irqsave(&pdev->lock, flags);
1550 __cdnsp_gadget_wakeup(pdev);
1551 spin_unlock_irqrestore(&pdev->lock, flags);
1552
1553 return 0;
1554 }
1555
cdnsp_gadget_set_selfpowered(struct usb_gadget * g,int is_selfpowered)1556 static int cdnsp_gadget_set_selfpowered(struct usb_gadget *g,
1557 int is_selfpowered)
1558 {
1559 struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1560 unsigned long flags;
1561
1562 spin_lock_irqsave(&pdev->lock, flags);
1563 g->is_selfpowered = !!is_selfpowered;
1564 spin_unlock_irqrestore(&pdev->lock, flags);
1565
1566 return 0;
1567 }
1568
cdnsp_gadget_pullup(struct usb_gadget * gadget,int is_on)1569 static int cdnsp_gadget_pullup(struct usb_gadget *gadget, int is_on)
1570 {
1571 struct cdnsp_device *pdev = gadget_to_cdnsp(gadget);
1572 struct cdns *cdns = dev_get_drvdata(pdev->dev);
1573 unsigned long flags;
1574
1575 trace_cdnsp_pullup(is_on);
1576
1577 /*
1578 * Disable events handling while controller is being
1579 * enabled/disabled.
1580 */
1581 disable_irq(cdns->dev_irq);
1582 spin_lock_irqsave(&pdev->lock, flags);
1583
1584 if (!is_on) {
1585 cdnsp_reset_device(pdev);
1586 cdns_clear_vbus(cdns);
1587 } else {
1588 cdns_set_vbus(cdns);
1589 }
1590
1591 spin_unlock_irqrestore(&pdev->lock, flags);
1592 enable_irq(cdns->dev_irq);
1593
1594 return 0;
1595 }
1596
1597 static const struct usb_gadget_ops cdnsp_gadget_ops = {
1598 .get_frame = cdnsp_gadget_get_frame,
1599 .wakeup = cdnsp_gadget_wakeup,
1600 .set_selfpowered = cdnsp_gadget_set_selfpowered,
1601 .pullup = cdnsp_gadget_pullup,
1602 .udc_start = cdnsp_gadget_udc_start,
1603 .udc_stop = cdnsp_gadget_udc_stop,
1604 };
1605
cdnsp_get_ep_buffering(struct cdnsp_device * pdev,struct cdnsp_ep * pep)1606 static void cdnsp_get_ep_buffering(struct cdnsp_device *pdev,
1607 struct cdnsp_ep *pep)
1608 {
1609 void __iomem *reg = &pdev->cap_regs->hc_capbase;
1610 int endpoints;
1611
1612 reg += cdnsp_find_next_ext_cap(reg, 0, XBUF_CAP_ID);
1613
1614 if (!pep->direction) {
1615 pep->buffering = readl(reg + XBUF_RX_TAG_MASK_0_OFFSET);
1616 pep->buffering_period = readl(reg + XBUF_RX_TAG_MASK_1_OFFSET);
1617 pep->buffering = (pep->buffering + 1) / 2;
1618 pep->buffering_period = (pep->buffering_period + 1) / 2;
1619 return;
1620 }
1621
1622 endpoints = HCS_ENDPOINTS(pdev->hcs_params1) / 2;
1623
1624 /* Set to XBUF_TX_TAG_MASK_0 register. */
1625 reg += XBUF_TX_CMD_OFFSET + (endpoints * 2 + 2) * sizeof(u32);
1626 /* Set reg to XBUF_TX_TAG_MASK_N related with this endpoint. */
1627 reg += pep->number * sizeof(u32) * 2;
1628
1629 pep->buffering = (readl(reg) + 1) / 2;
1630 pep->buffering_period = pep->buffering;
1631 }
1632
cdnsp_gadget_init_endpoints(struct cdnsp_device * pdev)1633 static int cdnsp_gadget_init_endpoints(struct cdnsp_device *pdev)
1634 {
1635 int max_streams = HCC_MAX_PSA(pdev->hcc_params);
1636 struct cdnsp_ep *pep;
1637 int i;
1638
1639 INIT_LIST_HEAD(&pdev->gadget.ep_list);
1640
1641 if (max_streams < STREAM_LOG_STREAMS) {
1642 dev_err(pdev->dev, "Stream size %d not supported\n",
1643 max_streams);
1644 return -EINVAL;
1645 }
1646
1647 max_streams = STREAM_LOG_STREAMS;
1648
1649 for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1650 bool direction = !(i & 1); /* Start from OUT endpoint. */
1651 u8 epnum = ((i + 1) >> 1);
1652
1653 if (!CDNSP_IF_EP_EXIST(pdev, epnum, direction))
1654 continue;
1655
1656 pep = &pdev->eps[i];
1657 pep->pdev = pdev;
1658 pep->number = epnum;
1659 pep->direction = direction; /* 0 for OUT, 1 for IN. */
1660
1661 /*
1662 * Ep0 is bidirectional, so ep0in and ep0out are represented by
1663 * pdev->eps[0]
1664 */
1665 if (epnum == 0) {
1666 snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1667 epnum, "BiDir");
1668
1669 pep->idx = 0;
1670 usb_ep_set_maxpacket_limit(&pep->endpoint, 512);
1671 pep->endpoint.maxburst = 1;
1672 pep->endpoint.ops = &cdnsp_gadget_ep0_ops;
1673 pep->endpoint.desc = &cdnsp_gadget_ep0_desc;
1674 pep->endpoint.comp_desc = NULL;
1675 pep->endpoint.caps.type_control = true;
1676 pep->endpoint.caps.dir_in = true;
1677 pep->endpoint.caps.dir_out = true;
1678
1679 pdev->ep0_preq.epnum = pep->number;
1680 pdev->ep0_preq.pep = pep;
1681 pdev->gadget.ep0 = &pep->endpoint;
1682 } else {
1683 snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1684 epnum, (pep->direction) ? "in" : "out");
1685
1686 pep->idx = (epnum * 2 + (direction ? 1 : 0)) - 1;
1687 usb_ep_set_maxpacket_limit(&pep->endpoint, 1024);
1688
1689 pep->endpoint.max_streams = max_streams;
1690 pep->endpoint.ops = &cdnsp_gadget_ep_ops;
1691 list_add_tail(&pep->endpoint.ep_list,
1692 &pdev->gadget.ep_list);
1693
1694 pep->endpoint.caps.type_iso = true;
1695 pep->endpoint.caps.type_bulk = true;
1696 pep->endpoint.caps.type_int = true;
1697
1698 pep->endpoint.caps.dir_in = direction;
1699 pep->endpoint.caps.dir_out = !direction;
1700 }
1701
1702 pep->endpoint.name = pep->name;
1703 pep->in_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, pep->idx);
1704 pep->out_ctx = cdnsp_get_ep_ctx(&pdev->out_ctx, pep->idx);
1705 cdnsp_get_ep_buffering(pdev, pep);
1706
1707 dev_dbg(pdev->dev, "Init %s, MPS: %04x SupType: "
1708 "CTRL: %s, INT: %s, BULK: %s, ISOC %s, "
1709 "SupDir IN: %s, OUT: %s\n",
1710 pep->name, 1024,
1711 (pep->endpoint.caps.type_control) ? "yes" : "no",
1712 (pep->endpoint.caps.type_int) ? "yes" : "no",
1713 (pep->endpoint.caps.type_bulk) ? "yes" : "no",
1714 (pep->endpoint.caps.type_iso) ? "yes" : "no",
1715 (pep->endpoint.caps.dir_in) ? "yes" : "no",
1716 (pep->endpoint.caps.dir_out) ? "yes" : "no");
1717
1718 INIT_LIST_HEAD(&pep->pending_list);
1719 }
1720
1721 return 0;
1722 }
1723
cdnsp_gadget_free_endpoints(struct cdnsp_device * pdev)1724 static void cdnsp_gadget_free_endpoints(struct cdnsp_device *pdev)
1725 {
1726 struct cdnsp_ep *pep;
1727 int i;
1728
1729 for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1730 pep = &pdev->eps[i];
1731 if (pep->number != 0 && pep->out_ctx)
1732 list_del(&pep->endpoint.ep_list);
1733 }
1734 }
1735
cdnsp_disconnect_gadget(struct cdnsp_device * pdev)1736 void cdnsp_disconnect_gadget(struct cdnsp_device *pdev)
1737 {
1738 pdev->cdnsp_state |= CDNSP_STATE_DISCONNECT_PENDING;
1739
1740 if (pdev->gadget_driver && pdev->gadget_driver->disconnect) {
1741 spin_unlock(&pdev->lock);
1742 pdev->gadget_driver->disconnect(&pdev->gadget);
1743 spin_lock(&pdev->lock);
1744 }
1745
1746 pdev->gadget.speed = USB_SPEED_UNKNOWN;
1747 usb_gadget_set_state(&pdev->gadget, USB_STATE_NOTATTACHED);
1748
1749 pdev->cdnsp_state &= ~CDNSP_STATE_DISCONNECT_PENDING;
1750 }
1751
cdnsp_suspend_gadget(struct cdnsp_device * pdev)1752 void cdnsp_suspend_gadget(struct cdnsp_device *pdev)
1753 {
1754 if (pdev->gadget_driver && pdev->gadget_driver->suspend) {
1755 spin_unlock(&pdev->lock);
1756 pdev->gadget_driver->suspend(&pdev->gadget);
1757 spin_lock(&pdev->lock);
1758 }
1759 }
1760
cdnsp_resume_gadget(struct cdnsp_device * pdev)1761 void cdnsp_resume_gadget(struct cdnsp_device *pdev)
1762 {
1763 if (pdev->gadget_driver && pdev->gadget_driver->resume) {
1764 spin_unlock(&pdev->lock);
1765 pdev->gadget_driver->resume(&pdev->gadget);
1766 spin_lock(&pdev->lock);
1767 }
1768 }
1769
cdnsp_irq_reset(struct cdnsp_device * pdev)1770 void cdnsp_irq_reset(struct cdnsp_device *pdev)
1771 {
1772 struct cdnsp_port_regs __iomem *port_regs;
1773
1774 cdnsp_reset_device(pdev);
1775
1776 port_regs = pdev->active_port->regs;
1777 pdev->gadget.speed = cdnsp_port_speed(readl(port_regs));
1778
1779 spin_unlock(&pdev->lock);
1780 usb_gadget_udc_reset(&pdev->gadget, pdev->gadget_driver);
1781 spin_lock(&pdev->lock);
1782
1783 switch (pdev->gadget.speed) {
1784 case USB_SPEED_SUPER_PLUS:
1785 case USB_SPEED_SUPER:
1786 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1787 pdev->gadget.ep0->maxpacket = 512;
1788 break;
1789 case USB_SPEED_HIGH:
1790 case USB_SPEED_FULL:
1791 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(64);
1792 pdev->gadget.ep0->maxpacket = 64;
1793 break;
1794 default:
1795 /* Low speed is not supported. */
1796 dev_err(pdev->dev, "Unknown device speed\n");
1797 break;
1798 }
1799
1800 cdnsp_clear_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
1801 cdnsp_setup_device(pdev, SETUP_CONTEXT_ONLY);
1802 usb_gadget_set_state(&pdev->gadget, USB_STATE_DEFAULT);
1803 }
1804
cdnsp_get_rev_cap(struct cdnsp_device * pdev)1805 static void cdnsp_get_rev_cap(struct cdnsp_device *pdev)
1806 {
1807 void __iomem *reg = &pdev->cap_regs->hc_capbase;
1808
1809 reg += cdnsp_find_next_ext_cap(reg, 0, RTL_REV_CAP);
1810 pdev->rev_cap = reg;
1811
1812 pdev->rtl_revision = readl(&pdev->rev_cap->rtl_revision);
1813
1814 dev_info(pdev->dev, "Rev: %08x/%08x, eps: %08x, buff: %08x/%08x\n",
1815 readl(&pdev->rev_cap->ctrl_revision),
1816 readl(&pdev->rev_cap->rtl_revision),
1817 readl(&pdev->rev_cap->ep_supported),
1818 readl(&pdev->rev_cap->rx_buff_size),
1819 readl(&pdev->rev_cap->tx_buff_size));
1820 }
1821
cdnsp_gen_setup(struct cdnsp_device * pdev)1822 static int cdnsp_gen_setup(struct cdnsp_device *pdev)
1823 {
1824 int ret;
1825 u32 reg;
1826
1827 pdev->cap_regs = pdev->regs;
1828 pdev->op_regs = pdev->regs +
1829 HC_LENGTH(readl(&pdev->cap_regs->hc_capbase));
1830 pdev->run_regs = pdev->regs +
1831 (readl(&pdev->cap_regs->run_regs_off) & RTSOFF_MASK);
1832
1833 /* Cache read-only capability registers */
1834 pdev->hcs_params1 = readl(&pdev->cap_regs->hcs_params1);
1835 pdev->hcc_params = readl(&pdev->cap_regs->hc_capbase);
1836 pdev->hci_version = HC_VERSION(pdev->hcc_params);
1837 pdev->hcc_params = readl(&pdev->cap_regs->hcc_params);
1838
1839 /*
1840 * Override the APB timeout value to give the controller more time for
1841 * enabling UTMI clock and synchronizing APB and UTMI clock domains.
1842 * This fix is platform specific and is required to fixes issue with
1843 * reading incorrect value from PORTSC register after resuming
1844 * from L1 state.
1845 */
1846 cdnsp_set_apb_timeout_value(pdev);
1847
1848 cdnsp_get_rev_cap(pdev);
1849
1850 /* Make sure the Device Controller is halted. */
1851 ret = cdnsp_halt(pdev);
1852 if (ret)
1853 return ret;
1854
1855 /* Reset the internal controller memory state and registers. */
1856 ret = cdnsp_reset(pdev);
1857 if (ret)
1858 return ret;
1859
1860 /*
1861 * Set dma_mask and coherent_dma_mask to 64-bits,
1862 * if controller supports 64-bit addressing.
1863 */
1864 if (HCC_64BIT_ADDR(pdev->hcc_params) &&
1865 !dma_set_mask(pdev->dev, DMA_BIT_MASK(64))) {
1866 dev_dbg(pdev->dev, "Enabling 64-bit DMA addresses.\n");
1867 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(64));
1868 } else {
1869 /*
1870 * This is to avoid error in cases where a 32-bit USB
1871 * controller is used on a 64-bit capable system.
1872 */
1873 ret = dma_set_mask(pdev->dev, DMA_BIT_MASK(32));
1874 if (ret)
1875 return ret;
1876
1877 dev_dbg(pdev->dev, "Enabling 32-bit DMA addresses.\n");
1878 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(32));
1879 }
1880
1881 spin_lock_init(&pdev->lock);
1882
1883 ret = cdnsp_mem_init(pdev);
1884 if (ret)
1885 return ret;
1886
1887 /*
1888 * Software workaround for U1: after transition
1889 * to U1 the controller starts gating clock, and in some cases,
1890 * it causes that controller stack.
1891 */
1892 reg = readl(&pdev->port3x_regs->mode_2);
1893 reg &= ~CFG_3XPORT_U1_PIPE_CLK_GATE_EN;
1894 writel(reg, &pdev->port3x_regs->mode_2);
1895
1896 return 0;
1897 }
1898
__cdnsp_gadget_init(struct cdns * cdns)1899 static int __cdnsp_gadget_init(struct cdns *cdns)
1900 {
1901 struct cdnsp_device *pdev;
1902 u32 max_speed;
1903 int ret = -ENOMEM;
1904
1905 cdns_drd_gadget_on(cdns);
1906
1907 pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
1908 if (!pdev)
1909 return -ENOMEM;
1910
1911 pm_runtime_get_sync(cdns->dev);
1912
1913 cdns->gadget_dev = pdev;
1914 pdev->dev = cdns->dev;
1915 pdev->regs = cdns->dev_regs;
1916 max_speed = usb_get_maximum_speed(cdns->dev);
1917
1918 switch (max_speed) {
1919 case USB_SPEED_FULL:
1920 case USB_SPEED_HIGH:
1921 case USB_SPEED_SUPER:
1922 case USB_SPEED_SUPER_PLUS:
1923 break;
1924 default:
1925 dev_err(cdns->dev, "invalid speed parameter %d\n", max_speed);
1926 fallthrough;
1927 case USB_SPEED_UNKNOWN:
1928 /* Default to SSP */
1929 max_speed = USB_SPEED_SUPER_PLUS;
1930 break;
1931 }
1932
1933 pdev->gadget.ops = &cdnsp_gadget_ops;
1934 pdev->gadget.name = "cdnsp-gadget";
1935 pdev->gadget.speed = USB_SPEED_UNKNOWN;
1936 pdev->gadget.sg_supported = 1;
1937 pdev->gadget.max_speed = max_speed;
1938 pdev->gadget.lpm_capable = 1;
1939
1940 pdev->setup_buf = kzalloc(CDNSP_EP0_SETUP_SIZE, GFP_KERNEL);
1941 if (!pdev->setup_buf)
1942 goto free_pdev;
1943
1944 /*
1945 * Controller supports not aligned buffer but it should improve
1946 * performance.
1947 */
1948 pdev->gadget.quirk_ep_out_aligned_size = true;
1949
1950 ret = cdnsp_gen_setup(pdev);
1951 if (ret) {
1952 dev_err(pdev->dev, "Generic initialization failed %d\n", ret);
1953 goto free_setup;
1954 }
1955
1956 ret = cdnsp_gadget_init_endpoints(pdev);
1957 if (ret) {
1958 dev_err(pdev->dev, "failed to initialize endpoints\n");
1959 goto halt_pdev;
1960 }
1961
1962 ret = usb_add_gadget_udc(pdev->dev, &pdev->gadget);
1963 if (ret) {
1964 dev_err(pdev->dev, "failed to register udc\n");
1965 goto free_endpoints;
1966 }
1967
1968 ret = devm_request_threaded_irq(pdev->dev, cdns->dev_irq,
1969 cdnsp_irq_handler,
1970 cdnsp_thread_irq_handler, IRQF_SHARED,
1971 dev_name(pdev->dev), pdev);
1972 if (ret)
1973 goto del_gadget;
1974
1975 return 0;
1976
1977 del_gadget:
1978 usb_del_gadget_udc(&pdev->gadget);
1979 free_endpoints:
1980 cdnsp_gadget_free_endpoints(pdev);
1981 halt_pdev:
1982 cdnsp_halt(pdev);
1983 cdnsp_reset(pdev);
1984 cdnsp_mem_cleanup(pdev);
1985 free_setup:
1986 kfree(pdev->setup_buf);
1987 free_pdev:
1988 kfree(pdev);
1989
1990 return ret;
1991 }
1992
cdnsp_gadget_exit(struct cdns * cdns)1993 static void cdnsp_gadget_exit(struct cdns *cdns)
1994 {
1995 struct cdnsp_device *pdev = cdns->gadget_dev;
1996
1997 devm_free_irq(pdev->dev, cdns->dev_irq, pdev);
1998 pm_runtime_mark_last_busy(cdns->dev);
1999 pm_runtime_put_autosuspend(cdns->dev);
2000 usb_del_gadget_udc(&pdev->gadget);
2001 cdnsp_gadget_free_endpoints(pdev);
2002 cdnsp_mem_cleanup(pdev);
2003 kfree(pdev);
2004 cdns->gadget_dev = NULL;
2005 cdns_drd_gadget_off(cdns);
2006 }
2007
cdnsp_gadget_suspend(struct cdns * cdns,bool do_wakeup)2008 static int cdnsp_gadget_suspend(struct cdns *cdns, bool do_wakeup)
2009 {
2010 struct cdnsp_device *pdev = cdns->gadget_dev;
2011 unsigned long flags;
2012
2013 if (pdev->link_state == XDEV_U3)
2014 return 0;
2015
2016 spin_lock_irqsave(&pdev->lock, flags);
2017 cdnsp_disconnect_gadget(pdev);
2018 cdnsp_stop(pdev);
2019 spin_unlock_irqrestore(&pdev->lock, flags);
2020
2021 return 0;
2022 }
2023
cdnsp_gadget_resume(struct cdns * cdns,bool hibernated)2024 static int cdnsp_gadget_resume(struct cdns *cdns, bool hibernated)
2025 {
2026 struct cdnsp_device *pdev = cdns->gadget_dev;
2027 enum usb_device_speed max_speed;
2028 unsigned long flags;
2029 int ret;
2030
2031 if (!pdev->gadget_driver)
2032 return 0;
2033
2034 spin_lock_irqsave(&pdev->lock, flags);
2035 max_speed = pdev->gadget_driver->max_speed;
2036
2037 /* Limit speed if necessary. */
2038 max_speed = min(max_speed, pdev->gadget.max_speed);
2039
2040 ret = cdnsp_run(pdev, max_speed);
2041
2042 if (pdev->link_state == XDEV_U3)
2043 __cdnsp_gadget_wakeup(pdev);
2044
2045 spin_unlock_irqrestore(&pdev->lock, flags);
2046
2047 return ret;
2048 }
2049
2050 /**
2051 * cdnsp_gadget_init - initialize device structure
2052 * @cdns: cdnsp instance
2053 *
2054 * This function initializes the gadget.
2055 */
cdnsp_gadget_init(struct cdns * cdns)2056 int cdnsp_gadget_init(struct cdns *cdns)
2057 {
2058 struct cdns_role_driver *rdrv;
2059
2060 rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL);
2061 if (!rdrv)
2062 return -ENOMEM;
2063
2064 rdrv->start = __cdnsp_gadget_init;
2065 rdrv->stop = cdnsp_gadget_exit;
2066 rdrv->suspend = cdnsp_gadget_suspend;
2067 rdrv->resume = cdnsp_gadget_resume;
2068 rdrv->state = CDNS_ROLE_STATE_INACTIVE;
2069 rdrv->name = "gadget";
2070 cdns->roles[USB_ROLE_DEVICE] = rdrv;
2071
2072 return 0;
2073 }
2074