1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2
3 /* COMMON Applications Kept Enhanced (CAKE) discipline
4 *
5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
11 *
12 * The CAKE Principles:
13 * (or, how to have your cake and eat it too)
14 *
15 * This is a combination of several shaping, AQM and FQ techniques into one
16 * easy-to-use package:
17 *
18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
19 * equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
20 * eliminating the need for any sort of burst parameter (eg. token bucket
21 * depth). Burst support is limited to that necessary to overcome scheduling
22 * latency.
23 *
24 * - A Diffserv-aware priority queue, giving more priority to certain classes,
25 * up to a specified fraction of bandwidth. Above that bandwidth threshold,
26 * the priority is reduced to avoid starving other tins.
27 *
28 * - Each priority tin has a separate Flow Queue system, to isolate traffic
29 * flows from each other. This prevents a burst on one flow from increasing
30 * the delay to another. Flows are distributed to queues using a
31 * set-associative hash function.
32 *
33 * - Each queue is actively managed by Cobalt, which is a combination of the
34 * Codel and Blue AQM algorithms. This serves flows fairly, and signals
35 * congestion early via ECN (if available) and/or packet drops, to keep
36 * latency low. The codel parameters are auto-tuned based on the bandwidth
37 * setting, as is necessary at low bandwidths.
38 *
39 * The configuration parameters are kept deliberately simple for ease of use.
40 * Everything has sane defaults. Complete generality of configuration is *not*
41 * a goal.
42 *
43 * The priority queue operates according to a weighted DRR scheme, combined with
44 * a bandwidth tracker which reuses the shaper logic to detect which side of the
45 * bandwidth sharing threshold the tin is operating. This determines whether a
46 * priority-based weight (high) or a bandwidth-based weight (low) is used for
47 * that tin in the current pass.
48 *
49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
50 * granted us permission to leverage.
51 */
52
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/kernel.h>
56 #include <linux/jiffies.h>
57 #include <linux/string.h>
58 #include <linux/in.h>
59 #include <linux/errno.h>
60 #include <linux/init.h>
61 #include <linux/skbuff.h>
62 #include <linux/jhash.h>
63 #include <linux/slab.h>
64 #include <linux/vmalloc.h>
65 #include <linux/reciprocal_div.h>
66 #include <net/netlink.h>
67 #include <linux/if_vlan.h>
68 #include <net/gso.h>
69 #include <net/pkt_sched.h>
70 #include <net/pkt_cls.h>
71 #include <net/tcp.h>
72 #include <net/flow_dissector.h>
73
74 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
75 #include <net/netfilter/nf_conntrack_core.h>
76 #endif
77
78 #define CAKE_SET_WAYS (8)
79 #define CAKE_MAX_TINS (8)
80 #define CAKE_QUEUES (1024)
81 #define CAKE_FLOW_MASK 63
82 #define CAKE_FLOW_NAT_FLAG 64
83
84 /* struct cobalt_params - contains codel and blue parameters
85 * @interval: codel initial drop rate
86 * @target: maximum persistent sojourn time & blue update rate
87 * @mtu_time: serialisation delay of maximum-size packet
88 * @p_inc: increment of blue drop probability (0.32 fxp)
89 * @p_dec: decrement of blue drop probability (0.32 fxp)
90 */
91 struct cobalt_params {
92 u64 interval;
93 u64 target;
94 u64 mtu_time;
95 u32 p_inc;
96 u32 p_dec;
97 };
98
99 /* struct cobalt_vars - contains codel and blue variables
100 * @count: codel dropping frequency
101 * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
102 * @drop_next: time to drop next packet, or when we dropped last
103 * @blue_timer: Blue time to next drop
104 * @p_drop: BLUE drop probability (0.32 fxp)
105 * @dropping: set if in dropping state
106 * @ecn_marked: set if marked
107 */
108 struct cobalt_vars {
109 u32 count;
110 u32 rec_inv_sqrt;
111 ktime_t drop_next;
112 ktime_t blue_timer;
113 u32 p_drop;
114 bool dropping;
115 bool ecn_marked;
116 };
117
118 enum {
119 CAKE_SET_NONE = 0,
120 CAKE_SET_SPARSE,
121 CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
122 CAKE_SET_BULK,
123 CAKE_SET_DECAYING
124 };
125
126 struct cake_flow {
127 /* this stuff is all needed per-flow at dequeue time */
128 struct sk_buff *head;
129 struct sk_buff *tail;
130 struct list_head flowchain;
131 s32 deficit;
132 u32 dropped;
133 struct cobalt_vars cvars;
134 u16 srchost; /* index into cake_host table */
135 u16 dsthost;
136 u8 set;
137 }; /* please try to keep this structure <= 64 bytes */
138
139 struct cake_host {
140 u32 srchost_tag;
141 u32 dsthost_tag;
142 u16 srchost_bulk_flow_count;
143 u16 dsthost_bulk_flow_count;
144 };
145
146 struct cake_heap_entry {
147 u16 t:3, b:10;
148 };
149
150 struct cake_tin_data {
151 struct cake_flow flows[CAKE_QUEUES];
152 u32 backlogs[CAKE_QUEUES];
153 u32 tags[CAKE_QUEUES]; /* for set association */
154 u16 overflow_idx[CAKE_QUEUES];
155 struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
156 u16 flow_quantum;
157
158 struct cobalt_params cparams;
159 u32 drop_overlimit;
160 u16 bulk_flow_count;
161 u16 sparse_flow_count;
162 u16 decaying_flow_count;
163 u16 unresponsive_flow_count;
164
165 u32 max_skblen;
166
167 struct list_head new_flows;
168 struct list_head old_flows;
169 struct list_head decaying_flows;
170
171 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
172 ktime_t time_next_packet;
173 u64 tin_rate_ns;
174 u64 tin_rate_bps;
175 u16 tin_rate_shft;
176
177 u16 tin_quantum;
178 s32 tin_deficit;
179 u32 tin_backlog;
180 u32 tin_dropped;
181 u32 tin_ecn_mark;
182
183 u32 packets;
184 u64 bytes;
185
186 u32 ack_drops;
187
188 /* moving averages */
189 u64 avge_delay;
190 u64 peak_delay;
191 u64 base_delay;
192
193 /* hash function stats */
194 u32 way_directs;
195 u32 way_hits;
196 u32 way_misses;
197 u32 way_collisions;
198 }; /* number of tins is small, so size of this struct doesn't matter much */
199
200 struct cake_sched_data {
201 struct tcf_proto __rcu *filter_list; /* optional external classifier */
202 struct tcf_block *block;
203 struct cake_tin_data *tins;
204
205 struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
206 u16 overflow_timeout;
207
208 u16 tin_cnt;
209 u8 tin_mode;
210 u8 flow_mode;
211 u8 ack_filter;
212 u8 atm_mode;
213
214 u32 fwmark_mask;
215 u16 fwmark_shft;
216
217 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
218 u16 rate_shft;
219 ktime_t time_next_packet;
220 ktime_t failsafe_next_packet;
221 u64 rate_ns;
222 u64 rate_bps;
223 u16 rate_flags;
224 s16 rate_overhead;
225 u16 rate_mpu;
226 u64 interval;
227 u64 target;
228
229 /* resource tracking */
230 u32 buffer_used;
231 u32 buffer_max_used;
232 u32 buffer_limit;
233 u32 buffer_config_limit;
234
235 /* indices for dequeue */
236 u16 cur_tin;
237 u16 cur_flow;
238
239 struct qdisc_watchdog watchdog;
240 const u8 *tin_index;
241 const u8 *tin_order;
242
243 /* bandwidth capacity estimate */
244 ktime_t last_packet_time;
245 ktime_t avg_window_begin;
246 u64 avg_packet_interval;
247 u64 avg_window_bytes;
248 u64 avg_peak_bandwidth;
249 ktime_t last_reconfig_time;
250
251 /* packet length stats */
252 u32 avg_netoff;
253 u16 max_netlen;
254 u16 max_adjlen;
255 u16 min_netlen;
256 u16 min_adjlen;
257 };
258
259 enum {
260 CAKE_FLAG_OVERHEAD = BIT(0),
261 CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
262 CAKE_FLAG_INGRESS = BIT(2),
263 CAKE_FLAG_WASH = BIT(3),
264 CAKE_FLAG_SPLIT_GSO = BIT(4)
265 };
266
267 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to
268 * obtain the best features of each. Codel is excellent on flows which
269 * respond to congestion signals in a TCP-like way. BLUE is more effective on
270 * unresponsive flows.
271 */
272
273 struct cobalt_skb_cb {
274 ktime_t enqueue_time;
275 u32 adjusted_len;
276 };
277
us_to_ns(u64 us)278 static u64 us_to_ns(u64 us)
279 {
280 return us * NSEC_PER_USEC;
281 }
282
get_cobalt_cb(const struct sk_buff * skb)283 static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
284 {
285 qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
286 return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
287 }
288
cobalt_get_enqueue_time(const struct sk_buff * skb)289 static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
290 {
291 return get_cobalt_cb(skb)->enqueue_time;
292 }
293
cobalt_set_enqueue_time(struct sk_buff * skb,ktime_t now)294 static void cobalt_set_enqueue_time(struct sk_buff *skb,
295 ktime_t now)
296 {
297 get_cobalt_cb(skb)->enqueue_time = now;
298 }
299
300 static u16 quantum_div[CAKE_QUEUES + 1] = {0};
301
302 /* Diffserv lookup tables */
303
304 static const u8 precedence[] = {
305 0, 0, 0, 0, 0, 0, 0, 0,
306 1, 1, 1, 1, 1, 1, 1, 1,
307 2, 2, 2, 2, 2, 2, 2, 2,
308 3, 3, 3, 3, 3, 3, 3, 3,
309 4, 4, 4, 4, 4, 4, 4, 4,
310 5, 5, 5, 5, 5, 5, 5, 5,
311 6, 6, 6, 6, 6, 6, 6, 6,
312 7, 7, 7, 7, 7, 7, 7, 7,
313 };
314
315 static const u8 diffserv8[] = {
316 2, 0, 1, 2, 4, 2, 2, 2,
317 1, 2, 1, 2, 1, 2, 1, 2,
318 5, 2, 4, 2, 4, 2, 4, 2,
319 3, 2, 3, 2, 3, 2, 3, 2,
320 6, 2, 3, 2, 3, 2, 3, 2,
321 6, 2, 2, 2, 6, 2, 6, 2,
322 7, 2, 2, 2, 2, 2, 2, 2,
323 7, 2, 2, 2, 2, 2, 2, 2,
324 };
325
326 static const u8 diffserv4[] = {
327 0, 1, 0, 0, 2, 0, 0, 0,
328 1, 0, 0, 0, 0, 0, 0, 0,
329 2, 0, 2, 0, 2, 0, 2, 0,
330 2, 0, 2, 0, 2, 0, 2, 0,
331 3, 0, 2, 0, 2, 0, 2, 0,
332 3, 0, 0, 0, 3, 0, 3, 0,
333 3, 0, 0, 0, 0, 0, 0, 0,
334 3, 0, 0, 0, 0, 0, 0, 0,
335 };
336
337 static const u8 diffserv3[] = {
338 0, 1, 0, 0, 2, 0, 0, 0,
339 1, 0, 0, 0, 0, 0, 0, 0,
340 0, 0, 0, 0, 0, 0, 0, 0,
341 0, 0, 0, 0, 0, 0, 0, 0,
342 0, 0, 0, 0, 0, 0, 0, 0,
343 0, 0, 0, 0, 2, 0, 2, 0,
344 2, 0, 0, 0, 0, 0, 0, 0,
345 2, 0, 0, 0, 0, 0, 0, 0,
346 };
347
348 static const u8 besteffort[] = {
349 0, 0, 0, 0, 0, 0, 0, 0,
350 0, 0, 0, 0, 0, 0, 0, 0,
351 0, 0, 0, 0, 0, 0, 0, 0,
352 0, 0, 0, 0, 0, 0, 0, 0,
353 0, 0, 0, 0, 0, 0, 0, 0,
354 0, 0, 0, 0, 0, 0, 0, 0,
355 0, 0, 0, 0, 0, 0, 0, 0,
356 0, 0, 0, 0, 0, 0, 0, 0,
357 };
358
359 /* tin priority order for stats dumping */
360
361 static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
362 static const u8 bulk_order[] = {1, 0, 2, 3};
363
364 #define REC_INV_SQRT_CACHE (16)
365 static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
366
367 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
368 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
369 *
370 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
371 */
372
cobalt_newton_step(struct cobalt_vars * vars)373 static void cobalt_newton_step(struct cobalt_vars *vars)
374 {
375 u32 invsqrt, invsqrt2;
376 u64 val;
377
378 invsqrt = vars->rec_inv_sqrt;
379 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
380 val = (3LL << 32) - ((u64)vars->count * invsqrt2);
381
382 val >>= 2; /* avoid overflow in following multiply */
383 val = (val * invsqrt) >> (32 - 2 + 1);
384
385 vars->rec_inv_sqrt = val;
386 }
387
cobalt_invsqrt(struct cobalt_vars * vars)388 static void cobalt_invsqrt(struct cobalt_vars *vars)
389 {
390 if (vars->count < REC_INV_SQRT_CACHE)
391 vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
392 else
393 cobalt_newton_step(vars);
394 }
395
396 /* There is a big difference in timing between the accurate values placed in
397 * the cache and the approximations given by a single Newton step for small
398 * count values, particularly when stepping from count 1 to 2 or vice versa.
399 * Above 16, a single Newton step gives sufficient accuracy in either
400 * direction, given the precision stored.
401 *
402 * The magnitude of the error when stepping up to count 2 is such as to give
403 * the value that *should* have been produced at count 4.
404 */
405
cobalt_cache_init(void)406 static void cobalt_cache_init(void)
407 {
408 struct cobalt_vars v;
409
410 memset(&v, 0, sizeof(v));
411 v.rec_inv_sqrt = ~0U;
412 cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
413
414 for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
415 cobalt_newton_step(&v);
416 cobalt_newton_step(&v);
417 cobalt_newton_step(&v);
418 cobalt_newton_step(&v);
419
420 cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
421 }
422 }
423
cobalt_vars_init(struct cobalt_vars * vars)424 static void cobalt_vars_init(struct cobalt_vars *vars)
425 {
426 memset(vars, 0, sizeof(*vars));
427
428 if (!cobalt_rec_inv_sqrt_cache[0]) {
429 cobalt_cache_init();
430 cobalt_rec_inv_sqrt_cache[0] = ~0;
431 }
432 }
433
434 /* CoDel control_law is t + interval/sqrt(count)
435 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
436 * both sqrt() and divide operation.
437 */
cobalt_control(ktime_t t,u64 interval,u32 rec_inv_sqrt)438 static ktime_t cobalt_control(ktime_t t,
439 u64 interval,
440 u32 rec_inv_sqrt)
441 {
442 return ktime_add_ns(t, reciprocal_scale(interval,
443 rec_inv_sqrt));
444 }
445
446 /* Call this when a packet had to be dropped due to queue overflow. Returns
447 * true if the BLUE state was quiescent before but active after this call.
448 */
cobalt_queue_full(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now)449 static bool cobalt_queue_full(struct cobalt_vars *vars,
450 struct cobalt_params *p,
451 ktime_t now)
452 {
453 bool up = false;
454
455 if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
456 up = !vars->p_drop;
457 vars->p_drop += p->p_inc;
458 if (vars->p_drop < p->p_inc)
459 vars->p_drop = ~0;
460 vars->blue_timer = now;
461 }
462 vars->dropping = true;
463 vars->drop_next = now;
464 if (!vars->count)
465 vars->count = 1;
466
467 return up;
468 }
469
470 /* Call this when the queue was serviced but turned out to be empty. Returns
471 * true if the BLUE state was active before but quiescent after this call.
472 */
cobalt_queue_empty(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now)473 static bool cobalt_queue_empty(struct cobalt_vars *vars,
474 struct cobalt_params *p,
475 ktime_t now)
476 {
477 bool down = false;
478
479 if (vars->p_drop &&
480 ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
481 if (vars->p_drop < p->p_dec)
482 vars->p_drop = 0;
483 else
484 vars->p_drop -= p->p_dec;
485 vars->blue_timer = now;
486 down = !vars->p_drop;
487 }
488 vars->dropping = false;
489
490 if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
491 vars->count--;
492 cobalt_invsqrt(vars);
493 vars->drop_next = cobalt_control(vars->drop_next,
494 p->interval,
495 vars->rec_inv_sqrt);
496 }
497
498 return down;
499 }
500
501 /* Call this with a freshly dequeued packet for possible congestion marking.
502 * Returns true as an instruction to drop the packet, false for delivery.
503 */
cobalt_should_drop(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now,struct sk_buff * skb,u32 bulk_flows)504 static bool cobalt_should_drop(struct cobalt_vars *vars,
505 struct cobalt_params *p,
506 ktime_t now,
507 struct sk_buff *skb,
508 u32 bulk_flows)
509 {
510 bool next_due, over_target, drop = false;
511 ktime_t schedule;
512 u64 sojourn;
513
514 /* The 'schedule' variable records, in its sign, whether 'now' is before or
515 * after 'drop_next'. This allows 'drop_next' to be updated before the next
516 * scheduling decision is actually branched, without destroying that
517 * information. Similarly, the first 'schedule' value calculated is preserved
518 * in the boolean 'next_due'.
519 *
520 * As for 'drop_next', we take advantage of the fact that 'interval' is both
521 * the delay between first exceeding 'target' and the first signalling event,
522 * *and* the scaling factor for the signalling frequency. It's therefore very
523 * natural to use a single mechanism for both purposes, and eliminates a
524 * significant amount of reference Codel's spaghetti code. To help with this,
525 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
526 * as possible to 1.0 in fixed-point.
527 */
528
529 sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
530 schedule = ktime_sub(now, vars->drop_next);
531 over_target = sojourn > p->target &&
532 sojourn > p->mtu_time * bulk_flows * 2 &&
533 sojourn > p->mtu_time * 4;
534 next_due = vars->count && ktime_to_ns(schedule) >= 0;
535
536 vars->ecn_marked = false;
537
538 if (over_target) {
539 if (!vars->dropping) {
540 vars->dropping = true;
541 vars->drop_next = cobalt_control(now,
542 p->interval,
543 vars->rec_inv_sqrt);
544 }
545 if (!vars->count)
546 vars->count = 1;
547 } else if (vars->dropping) {
548 vars->dropping = false;
549 }
550
551 if (next_due && vars->dropping) {
552 /* Use ECN mark if possible, otherwise drop */
553 drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
554
555 vars->count++;
556 if (!vars->count)
557 vars->count--;
558 cobalt_invsqrt(vars);
559 vars->drop_next = cobalt_control(vars->drop_next,
560 p->interval,
561 vars->rec_inv_sqrt);
562 schedule = ktime_sub(now, vars->drop_next);
563 } else {
564 while (next_due) {
565 vars->count--;
566 cobalt_invsqrt(vars);
567 vars->drop_next = cobalt_control(vars->drop_next,
568 p->interval,
569 vars->rec_inv_sqrt);
570 schedule = ktime_sub(now, vars->drop_next);
571 next_due = vars->count && ktime_to_ns(schedule) >= 0;
572 }
573 }
574
575 /* Simple BLUE implementation. Lack of ECN is deliberate. */
576 if (vars->p_drop)
577 drop |= (get_random_u32() < vars->p_drop);
578
579 /* Overload the drop_next field as an activity timeout */
580 if (!vars->count)
581 vars->drop_next = ktime_add_ns(now, p->interval);
582 else if (ktime_to_ns(schedule) > 0 && !drop)
583 vars->drop_next = now;
584
585 return drop;
586 }
587
cake_update_flowkeys(struct flow_keys * keys,const struct sk_buff * skb)588 static bool cake_update_flowkeys(struct flow_keys *keys,
589 const struct sk_buff *skb)
590 {
591 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
592 struct nf_conntrack_tuple tuple = {};
593 bool rev = !skb->_nfct, upd = false;
594 __be32 ip;
595
596 if (skb_protocol(skb, true) != htons(ETH_P_IP))
597 return false;
598
599 if (!nf_ct_get_tuple_skb(&tuple, skb))
600 return false;
601
602 ip = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
603 if (ip != keys->addrs.v4addrs.src) {
604 keys->addrs.v4addrs.src = ip;
605 upd = true;
606 }
607 ip = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
608 if (ip != keys->addrs.v4addrs.dst) {
609 keys->addrs.v4addrs.dst = ip;
610 upd = true;
611 }
612
613 if (keys->ports.ports) {
614 __be16 port;
615
616 port = rev ? tuple.dst.u.all : tuple.src.u.all;
617 if (port != keys->ports.src) {
618 keys->ports.src = port;
619 upd = true;
620 }
621 port = rev ? tuple.src.u.all : tuple.dst.u.all;
622 if (port != keys->ports.dst) {
623 port = keys->ports.dst;
624 upd = true;
625 }
626 }
627 return upd;
628 #else
629 return false;
630 #endif
631 }
632
633 /* Cake has several subtle multiple bit settings. In these cases you
634 * would be matching triple isolate mode as well.
635 */
636
cake_dsrc(int flow_mode)637 static bool cake_dsrc(int flow_mode)
638 {
639 return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
640 }
641
cake_ddst(int flow_mode)642 static bool cake_ddst(int flow_mode)
643 {
644 return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
645 }
646
cake_hash(struct cake_tin_data * q,const struct sk_buff * skb,int flow_mode,u16 flow_override,u16 host_override)647 static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
648 int flow_mode, u16 flow_override, u16 host_override)
649 {
650 bool hash_flows = (!flow_override && !!(flow_mode & CAKE_FLOW_FLOWS));
651 bool hash_hosts = (!host_override && !!(flow_mode & CAKE_FLOW_HOSTS));
652 bool nat_enabled = !!(flow_mode & CAKE_FLOW_NAT_FLAG);
653 u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
654 u16 reduced_hash, srchost_idx, dsthost_idx;
655 struct flow_keys keys, host_keys;
656 bool use_skbhash = skb->l4_hash;
657
658 if (unlikely(flow_mode == CAKE_FLOW_NONE))
659 return 0;
660
661 /* If both overrides are set, or we can use the SKB hash and nat mode is
662 * disabled, we can skip packet dissection entirely. If nat mode is
663 * enabled there's another check below after doing the conntrack lookup.
664 */
665 if ((!hash_flows || (use_skbhash && !nat_enabled)) && !hash_hosts)
666 goto skip_hash;
667
668 skb_flow_dissect_flow_keys(skb, &keys,
669 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
670
671 /* Don't use the SKB hash if we change the lookup keys from conntrack */
672 if (nat_enabled && cake_update_flowkeys(&keys, skb))
673 use_skbhash = false;
674
675 /* If we can still use the SKB hash and don't need the host hash, we can
676 * skip the rest of the hashing procedure
677 */
678 if (use_skbhash && !hash_hosts)
679 goto skip_hash;
680
681 /* flow_hash_from_keys() sorts the addresses by value, so we have
682 * to preserve their order in a separate data structure to treat
683 * src and dst host addresses as independently selectable.
684 */
685 host_keys = keys;
686 host_keys.ports.ports = 0;
687 host_keys.basic.ip_proto = 0;
688 host_keys.keyid.keyid = 0;
689 host_keys.tags.flow_label = 0;
690
691 switch (host_keys.control.addr_type) {
692 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
693 host_keys.addrs.v4addrs.src = 0;
694 dsthost_hash = flow_hash_from_keys(&host_keys);
695 host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
696 host_keys.addrs.v4addrs.dst = 0;
697 srchost_hash = flow_hash_from_keys(&host_keys);
698 break;
699
700 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
701 memset(&host_keys.addrs.v6addrs.src, 0,
702 sizeof(host_keys.addrs.v6addrs.src));
703 dsthost_hash = flow_hash_from_keys(&host_keys);
704 host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
705 memset(&host_keys.addrs.v6addrs.dst, 0,
706 sizeof(host_keys.addrs.v6addrs.dst));
707 srchost_hash = flow_hash_from_keys(&host_keys);
708 break;
709
710 default:
711 dsthost_hash = 0;
712 srchost_hash = 0;
713 }
714
715 /* This *must* be after the above switch, since as a
716 * side-effect it sorts the src and dst addresses.
717 */
718 if (hash_flows && !use_skbhash)
719 flow_hash = flow_hash_from_keys(&keys);
720
721 skip_hash:
722 if (flow_override)
723 flow_hash = flow_override - 1;
724 else if (use_skbhash && (flow_mode & CAKE_FLOW_FLOWS))
725 flow_hash = skb->hash;
726 if (host_override) {
727 dsthost_hash = host_override - 1;
728 srchost_hash = host_override - 1;
729 }
730
731 if (!(flow_mode & CAKE_FLOW_FLOWS)) {
732 if (flow_mode & CAKE_FLOW_SRC_IP)
733 flow_hash ^= srchost_hash;
734
735 if (flow_mode & CAKE_FLOW_DST_IP)
736 flow_hash ^= dsthost_hash;
737 }
738
739 reduced_hash = flow_hash % CAKE_QUEUES;
740
741 /* set-associative hashing */
742 /* fast path if no hash collision (direct lookup succeeds) */
743 if (likely(q->tags[reduced_hash] == flow_hash &&
744 q->flows[reduced_hash].set)) {
745 q->way_directs++;
746 } else {
747 u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
748 u32 outer_hash = reduced_hash - inner_hash;
749 bool allocate_src = false;
750 bool allocate_dst = false;
751 u32 i, k;
752
753 /* check if any active queue in the set is reserved for
754 * this flow.
755 */
756 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
757 i++, k = (k + 1) % CAKE_SET_WAYS) {
758 if (q->tags[outer_hash + k] == flow_hash) {
759 if (i)
760 q->way_hits++;
761
762 if (!q->flows[outer_hash + k].set) {
763 /* need to increment host refcnts */
764 allocate_src = cake_dsrc(flow_mode);
765 allocate_dst = cake_ddst(flow_mode);
766 }
767
768 goto found;
769 }
770 }
771
772 /* no queue is reserved for this flow, look for an
773 * empty one.
774 */
775 for (i = 0; i < CAKE_SET_WAYS;
776 i++, k = (k + 1) % CAKE_SET_WAYS) {
777 if (!q->flows[outer_hash + k].set) {
778 q->way_misses++;
779 allocate_src = cake_dsrc(flow_mode);
780 allocate_dst = cake_ddst(flow_mode);
781 goto found;
782 }
783 }
784
785 /* With no empty queues, default to the original
786 * queue, accept the collision, update the host tags.
787 */
788 q->way_collisions++;
789 allocate_src = cake_dsrc(flow_mode);
790 allocate_dst = cake_ddst(flow_mode);
791
792 if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
793 if (allocate_src)
794 q->hosts[q->flows[reduced_hash].srchost].srchost_bulk_flow_count--;
795 if (allocate_dst)
796 q->hosts[q->flows[reduced_hash].dsthost].dsthost_bulk_flow_count--;
797 }
798 found:
799 /* reserve queue for future packets in same flow */
800 reduced_hash = outer_hash + k;
801 q->tags[reduced_hash] = flow_hash;
802
803 if (allocate_src) {
804 srchost_idx = srchost_hash % CAKE_QUEUES;
805 inner_hash = srchost_idx % CAKE_SET_WAYS;
806 outer_hash = srchost_idx - inner_hash;
807 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
808 i++, k = (k + 1) % CAKE_SET_WAYS) {
809 if (q->hosts[outer_hash + k].srchost_tag ==
810 srchost_hash)
811 goto found_src;
812 }
813 for (i = 0; i < CAKE_SET_WAYS;
814 i++, k = (k + 1) % CAKE_SET_WAYS) {
815 if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
816 break;
817 }
818 q->hosts[outer_hash + k].srchost_tag = srchost_hash;
819 found_src:
820 srchost_idx = outer_hash + k;
821 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
822 q->hosts[srchost_idx].srchost_bulk_flow_count++;
823 q->flows[reduced_hash].srchost = srchost_idx;
824 }
825
826 if (allocate_dst) {
827 dsthost_idx = dsthost_hash % CAKE_QUEUES;
828 inner_hash = dsthost_idx % CAKE_SET_WAYS;
829 outer_hash = dsthost_idx - inner_hash;
830 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
831 i++, k = (k + 1) % CAKE_SET_WAYS) {
832 if (q->hosts[outer_hash + k].dsthost_tag ==
833 dsthost_hash)
834 goto found_dst;
835 }
836 for (i = 0; i < CAKE_SET_WAYS;
837 i++, k = (k + 1) % CAKE_SET_WAYS) {
838 if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
839 break;
840 }
841 q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
842 found_dst:
843 dsthost_idx = outer_hash + k;
844 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
845 q->hosts[dsthost_idx].dsthost_bulk_flow_count++;
846 q->flows[reduced_hash].dsthost = dsthost_idx;
847 }
848 }
849
850 return reduced_hash;
851 }
852
853 /* helper functions : might be changed when/if skb use a standard list_head */
854 /* remove one skb from head of slot queue */
855
dequeue_head(struct cake_flow * flow)856 static struct sk_buff *dequeue_head(struct cake_flow *flow)
857 {
858 struct sk_buff *skb = flow->head;
859
860 if (skb) {
861 flow->head = skb->next;
862 skb_mark_not_on_list(skb);
863 }
864
865 return skb;
866 }
867
868 /* add skb to flow queue (tail add) */
869
flow_queue_add(struct cake_flow * flow,struct sk_buff * skb)870 static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
871 {
872 if (!flow->head)
873 flow->head = skb;
874 else
875 flow->tail->next = skb;
876 flow->tail = skb;
877 skb->next = NULL;
878 }
879
cake_get_iphdr(const struct sk_buff * skb,struct ipv6hdr * buf)880 static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
881 struct ipv6hdr *buf)
882 {
883 unsigned int offset = skb_network_offset(skb);
884 struct iphdr *iph;
885
886 iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
887
888 if (!iph)
889 return NULL;
890
891 if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
892 return skb_header_pointer(skb, offset + iph->ihl * 4,
893 sizeof(struct ipv6hdr), buf);
894
895 else if (iph->version == 4)
896 return iph;
897
898 else if (iph->version == 6)
899 return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
900 buf);
901
902 return NULL;
903 }
904
cake_get_tcphdr(const struct sk_buff * skb,void * buf,unsigned int bufsize)905 static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
906 void *buf, unsigned int bufsize)
907 {
908 unsigned int offset = skb_network_offset(skb);
909 const struct ipv6hdr *ipv6h;
910 const struct tcphdr *tcph;
911 const struct iphdr *iph;
912 struct ipv6hdr _ipv6h;
913 struct tcphdr _tcph;
914
915 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
916
917 if (!ipv6h)
918 return NULL;
919
920 if (ipv6h->version == 4) {
921 iph = (struct iphdr *)ipv6h;
922 offset += iph->ihl * 4;
923
924 /* special-case 6in4 tunnelling, as that is a common way to get
925 * v6 connectivity in the home
926 */
927 if (iph->protocol == IPPROTO_IPV6) {
928 ipv6h = skb_header_pointer(skb, offset,
929 sizeof(_ipv6h), &_ipv6h);
930
931 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
932 return NULL;
933
934 offset += sizeof(struct ipv6hdr);
935
936 } else if (iph->protocol != IPPROTO_TCP) {
937 return NULL;
938 }
939
940 } else if (ipv6h->version == 6) {
941 if (ipv6h->nexthdr != IPPROTO_TCP)
942 return NULL;
943
944 offset += sizeof(struct ipv6hdr);
945 } else {
946 return NULL;
947 }
948
949 tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
950 if (!tcph || tcph->doff < 5)
951 return NULL;
952
953 return skb_header_pointer(skb, offset,
954 min(__tcp_hdrlen(tcph), bufsize), buf);
955 }
956
cake_get_tcpopt(const struct tcphdr * tcph,int code,int * oplen)957 static const void *cake_get_tcpopt(const struct tcphdr *tcph,
958 int code, int *oplen)
959 {
960 /* inspired by tcp_parse_options in tcp_input.c */
961 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
962 const u8 *ptr = (const u8 *)(tcph + 1);
963
964 while (length > 0) {
965 int opcode = *ptr++;
966 int opsize;
967
968 if (opcode == TCPOPT_EOL)
969 break;
970 if (opcode == TCPOPT_NOP) {
971 length--;
972 continue;
973 }
974 if (length < 2)
975 break;
976 opsize = *ptr++;
977 if (opsize < 2 || opsize > length)
978 break;
979
980 if (opcode == code) {
981 *oplen = opsize;
982 return ptr;
983 }
984
985 ptr += opsize - 2;
986 length -= opsize;
987 }
988
989 return NULL;
990 }
991
992 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more
993 * bytes than the other. In the case where both sequences ACKs bytes that the
994 * other doesn't, A is considered greater. DSACKs in A also makes A be
995 * considered greater.
996 *
997 * @return -1, 0 or 1 as normal compare functions
998 */
cake_tcph_sack_compare(const struct tcphdr * tcph_a,const struct tcphdr * tcph_b)999 static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
1000 const struct tcphdr *tcph_b)
1001 {
1002 const struct tcp_sack_block_wire *sack_a, *sack_b;
1003 u32 ack_seq_a = ntohl(tcph_a->ack_seq);
1004 u32 bytes_a = 0, bytes_b = 0;
1005 int oplen_a, oplen_b;
1006 bool first = true;
1007
1008 sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
1009 sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
1010
1011 /* pointers point to option contents */
1012 oplen_a -= TCPOLEN_SACK_BASE;
1013 oplen_b -= TCPOLEN_SACK_BASE;
1014
1015 if (sack_a && oplen_a >= sizeof(*sack_a) &&
1016 (!sack_b || oplen_b < sizeof(*sack_b)))
1017 return -1;
1018 else if (sack_b && oplen_b >= sizeof(*sack_b) &&
1019 (!sack_a || oplen_a < sizeof(*sack_a)))
1020 return 1;
1021 else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
1022 (!sack_b || oplen_b < sizeof(*sack_b)))
1023 return 0;
1024
1025 while (oplen_a >= sizeof(*sack_a)) {
1026 const struct tcp_sack_block_wire *sack_tmp = sack_b;
1027 u32 start_a = get_unaligned_be32(&sack_a->start_seq);
1028 u32 end_a = get_unaligned_be32(&sack_a->end_seq);
1029 int oplen_tmp = oplen_b;
1030 bool found = false;
1031
1032 /* DSACK; always considered greater to prevent dropping */
1033 if (before(start_a, ack_seq_a))
1034 return -1;
1035
1036 bytes_a += end_a - start_a;
1037
1038 while (oplen_tmp >= sizeof(*sack_tmp)) {
1039 u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
1040 u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
1041
1042 /* first time through we count the total size */
1043 if (first)
1044 bytes_b += end_b - start_b;
1045
1046 if (!after(start_b, start_a) && !before(end_b, end_a)) {
1047 found = true;
1048 if (!first)
1049 break;
1050 }
1051 oplen_tmp -= sizeof(*sack_tmp);
1052 sack_tmp++;
1053 }
1054
1055 if (!found)
1056 return -1;
1057
1058 oplen_a -= sizeof(*sack_a);
1059 sack_a++;
1060 first = false;
1061 }
1062
1063 /* If we made it this far, all ranges SACKed by A are covered by B, so
1064 * either the SACKs are equal, or B SACKs more bytes.
1065 */
1066 return bytes_b > bytes_a ? 1 : 0;
1067 }
1068
cake_tcph_get_tstamp(const struct tcphdr * tcph,u32 * tsval,u32 * tsecr)1069 static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1070 u32 *tsval, u32 *tsecr)
1071 {
1072 const u8 *ptr;
1073 int opsize;
1074
1075 ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1076
1077 if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1078 *tsval = get_unaligned_be32(ptr);
1079 *tsecr = get_unaligned_be32(ptr + 4);
1080 }
1081 }
1082
cake_tcph_may_drop(const struct tcphdr * tcph,u32 tstamp_new,u32 tsecr_new)1083 static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1084 u32 tstamp_new, u32 tsecr_new)
1085 {
1086 /* inspired by tcp_parse_options in tcp_input.c */
1087 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1088 const u8 *ptr = (const u8 *)(tcph + 1);
1089 u32 tstamp, tsecr;
1090
1091 /* 3 reserved flags must be unset to avoid future breakage
1092 * ACK must be set
1093 * ECE/CWR are handled separately
1094 * All other flags URG/PSH/RST/SYN/FIN must be unset
1095 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1096 * 0x00C00000 = CWR/ECE (handled separately)
1097 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1098 */
1099 if (((tcp_flag_word(tcph) &
1100 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1101 return false;
1102
1103 while (length > 0) {
1104 int opcode = *ptr++;
1105 int opsize;
1106
1107 if (opcode == TCPOPT_EOL)
1108 break;
1109 if (opcode == TCPOPT_NOP) {
1110 length--;
1111 continue;
1112 }
1113 if (length < 2)
1114 break;
1115 opsize = *ptr++;
1116 if (opsize < 2 || opsize > length)
1117 break;
1118
1119 switch (opcode) {
1120 case TCPOPT_MD5SIG: /* doesn't influence state */
1121 break;
1122
1123 case TCPOPT_SACK: /* stricter checking performed later */
1124 if (opsize % 8 != 2)
1125 return false;
1126 break;
1127
1128 case TCPOPT_TIMESTAMP:
1129 /* only drop timestamps lower than new */
1130 if (opsize != TCPOLEN_TIMESTAMP)
1131 return false;
1132 tstamp = get_unaligned_be32(ptr);
1133 tsecr = get_unaligned_be32(ptr + 4);
1134 if (after(tstamp, tstamp_new) ||
1135 after(tsecr, tsecr_new))
1136 return false;
1137 break;
1138
1139 case TCPOPT_MSS: /* these should only be set on SYN */
1140 case TCPOPT_WINDOW:
1141 case TCPOPT_SACK_PERM:
1142 case TCPOPT_FASTOPEN:
1143 case TCPOPT_EXP:
1144 default: /* don't drop if any unknown options are present */
1145 return false;
1146 }
1147
1148 ptr += opsize - 2;
1149 length -= opsize;
1150 }
1151
1152 return true;
1153 }
1154
cake_ack_filter(struct cake_sched_data * q,struct cake_flow * flow)1155 static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1156 struct cake_flow *flow)
1157 {
1158 bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1159 struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1160 struct sk_buff *skb_check, *skb_prev = NULL;
1161 const struct ipv6hdr *ipv6h, *ipv6h_check;
1162 unsigned char _tcph[64], _tcph_check[64];
1163 const struct tcphdr *tcph, *tcph_check;
1164 const struct iphdr *iph, *iph_check;
1165 struct ipv6hdr _iph, _iph_check;
1166 const struct sk_buff *skb;
1167 int seglen, num_found = 0;
1168 u32 tstamp = 0, tsecr = 0;
1169 __be32 elig_flags = 0;
1170 int sack_comp;
1171
1172 /* no other possible ACKs to filter */
1173 if (flow->head == flow->tail)
1174 return NULL;
1175
1176 skb = flow->tail;
1177 tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1178 iph = cake_get_iphdr(skb, &_iph);
1179 if (!tcph)
1180 return NULL;
1181
1182 cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1183
1184 /* the 'triggering' packet need only have the ACK flag set.
1185 * also check that SYN is not set, as there won't be any previous ACKs.
1186 */
1187 if ((tcp_flag_word(tcph) &
1188 (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1189 return NULL;
1190
1191 /* the 'triggering' ACK is at the tail of the queue, we have already
1192 * returned if it is the only packet in the flow. loop through the rest
1193 * of the queue looking for pure ACKs with the same 5-tuple as the
1194 * triggering one.
1195 */
1196 for (skb_check = flow->head;
1197 skb_check && skb_check != skb;
1198 skb_prev = skb_check, skb_check = skb_check->next) {
1199 iph_check = cake_get_iphdr(skb_check, &_iph_check);
1200 tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1201 sizeof(_tcph_check));
1202
1203 /* only TCP packets with matching 5-tuple are eligible, and only
1204 * drop safe headers
1205 */
1206 if (!tcph_check || iph->version != iph_check->version ||
1207 tcph_check->source != tcph->source ||
1208 tcph_check->dest != tcph->dest)
1209 continue;
1210
1211 if (iph_check->version == 4) {
1212 if (iph_check->saddr != iph->saddr ||
1213 iph_check->daddr != iph->daddr)
1214 continue;
1215
1216 seglen = iph_totlen(skb, iph_check) -
1217 (4 * iph_check->ihl);
1218 } else if (iph_check->version == 6) {
1219 ipv6h = (struct ipv6hdr *)iph;
1220 ipv6h_check = (struct ipv6hdr *)iph_check;
1221
1222 if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1223 ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1224 continue;
1225
1226 seglen = ntohs(ipv6h_check->payload_len);
1227 } else {
1228 WARN_ON(1); /* shouldn't happen */
1229 continue;
1230 }
1231
1232 /* If the ECE/CWR flags changed from the previous eligible
1233 * packet in the same flow, we should no longer be dropping that
1234 * previous packet as this would lose information.
1235 */
1236 if (elig_ack && (tcp_flag_word(tcph_check) &
1237 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1238 elig_ack = NULL;
1239 elig_ack_prev = NULL;
1240 num_found--;
1241 }
1242
1243 /* Check TCP options and flags, don't drop ACKs with segment
1244 * data, and don't drop ACKs with a higher cumulative ACK
1245 * counter than the triggering packet. Check ACK seqno here to
1246 * avoid parsing SACK options of packets we are going to exclude
1247 * anyway.
1248 */
1249 if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1250 (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1251 after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1252 continue;
1253
1254 /* Check SACK options. The triggering packet must SACK more data
1255 * than the ACK under consideration, or SACK the same range but
1256 * have a larger cumulative ACK counter. The latter is a
1257 * pathological case, but is contained in the following check
1258 * anyway, just to be safe.
1259 */
1260 sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1261
1262 if (sack_comp < 0 ||
1263 (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1264 sack_comp == 0))
1265 continue;
1266
1267 /* At this point we have found an eligible pure ACK to drop; if
1268 * we are in aggressive mode, we are done. Otherwise, keep
1269 * searching unless this is the second eligible ACK we
1270 * found.
1271 *
1272 * Since we want to drop ACK closest to the head of the queue,
1273 * save the first eligible ACK we find, even if we need to loop
1274 * again.
1275 */
1276 if (!elig_ack) {
1277 elig_ack = skb_check;
1278 elig_ack_prev = skb_prev;
1279 elig_flags = (tcp_flag_word(tcph_check)
1280 & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1281 }
1282
1283 if (num_found++ > 0)
1284 goto found;
1285 }
1286
1287 /* We made it through the queue without finding two eligible ACKs . If
1288 * we found a single eligible ACK we can drop it in aggressive mode if
1289 * we can guarantee that this does not interfere with ECN flag
1290 * information. We ensure this by dropping it only if the enqueued
1291 * packet is consecutive with the eligible ACK, and their flags match.
1292 */
1293 if (elig_ack && aggressive && elig_ack->next == skb &&
1294 (elig_flags == (tcp_flag_word(tcph) &
1295 (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1296 goto found;
1297
1298 return NULL;
1299
1300 found:
1301 if (elig_ack_prev)
1302 elig_ack_prev->next = elig_ack->next;
1303 else
1304 flow->head = elig_ack->next;
1305
1306 skb_mark_not_on_list(elig_ack);
1307
1308 return elig_ack;
1309 }
1310
cake_ewma(u64 avg,u64 sample,u32 shift)1311 static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1312 {
1313 avg -= avg >> shift;
1314 avg += sample >> shift;
1315 return avg;
1316 }
1317
cake_calc_overhead(struct cake_sched_data * q,u32 len,u32 off)1318 static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1319 {
1320 if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1321 len -= off;
1322
1323 if (q->max_netlen < len)
1324 q->max_netlen = len;
1325 if (q->min_netlen > len)
1326 q->min_netlen = len;
1327
1328 len += q->rate_overhead;
1329
1330 if (len < q->rate_mpu)
1331 len = q->rate_mpu;
1332
1333 if (q->atm_mode == CAKE_ATM_ATM) {
1334 len += 47;
1335 len /= 48;
1336 len *= 53;
1337 } else if (q->atm_mode == CAKE_ATM_PTM) {
1338 /* Add one byte per 64 bytes or part thereof.
1339 * This is conservative and easier to calculate than the
1340 * precise value.
1341 */
1342 len += (len + 63) / 64;
1343 }
1344
1345 if (q->max_adjlen < len)
1346 q->max_adjlen = len;
1347 if (q->min_adjlen > len)
1348 q->min_adjlen = len;
1349
1350 return len;
1351 }
1352
cake_overhead(struct cake_sched_data * q,const struct sk_buff * skb)1353 static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1354 {
1355 const struct skb_shared_info *shinfo = skb_shinfo(skb);
1356 unsigned int hdr_len, last_len = 0;
1357 u32 off = skb_network_offset(skb);
1358 u32 len = qdisc_pkt_len(skb);
1359 u16 segs = 1;
1360
1361 q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1362
1363 if (!shinfo->gso_size)
1364 return cake_calc_overhead(q, len, off);
1365
1366 /* borrowed from qdisc_pkt_len_init() */
1367 hdr_len = skb_transport_offset(skb);
1368
1369 /* + transport layer */
1370 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1371 SKB_GSO_TCPV6))) {
1372 const struct tcphdr *th;
1373 struct tcphdr _tcphdr;
1374
1375 th = skb_header_pointer(skb, hdr_len,
1376 sizeof(_tcphdr), &_tcphdr);
1377 if (likely(th))
1378 hdr_len += __tcp_hdrlen(th);
1379 } else {
1380 struct udphdr _udphdr;
1381
1382 if (skb_header_pointer(skb, hdr_len,
1383 sizeof(_udphdr), &_udphdr))
1384 hdr_len += sizeof(struct udphdr);
1385 }
1386
1387 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
1388 segs = DIV_ROUND_UP(skb->len - hdr_len,
1389 shinfo->gso_size);
1390 else
1391 segs = shinfo->gso_segs;
1392
1393 len = shinfo->gso_size + hdr_len;
1394 last_len = skb->len - shinfo->gso_size * (segs - 1);
1395
1396 return (cake_calc_overhead(q, len, off) * (segs - 1) +
1397 cake_calc_overhead(q, last_len, off));
1398 }
1399
cake_heap_swap(struct cake_sched_data * q,u16 i,u16 j)1400 static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1401 {
1402 struct cake_heap_entry ii = q->overflow_heap[i];
1403 struct cake_heap_entry jj = q->overflow_heap[j];
1404
1405 q->overflow_heap[i] = jj;
1406 q->overflow_heap[j] = ii;
1407
1408 q->tins[ii.t].overflow_idx[ii.b] = j;
1409 q->tins[jj.t].overflow_idx[jj.b] = i;
1410 }
1411
cake_heap_get_backlog(const struct cake_sched_data * q,u16 i)1412 static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1413 {
1414 struct cake_heap_entry ii = q->overflow_heap[i];
1415
1416 return q->tins[ii.t].backlogs[ii.b];
1417 }
1418
cake_heapify(struct cake_sched_data * q,u16 i)1419 static void cake_heapify(struct cake_sched_data *q, u16 i)
1420 {
1421 static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1422 u32 mb = cake_heap_get_backlog(q, i);
1423 u32 m = i;
1424
1425 while (m < a) {
1426 u32 l = m + m + 1;
1427 u32 r = l + 1;
1428
1429 if (l < a) {
1430 u32 lb = cake_heap_get_backlog(q, l);
1431
1432 if (lb > mb) {
1433 m = l;
1434 mb = lb;
1435 }
1436 }
1437
1438 if (r < a) {
1439 u32 rb = cake_heap_get_backlog(q, r);
1440
1441 if (rb > mb) {
1442 m = r;
1443 mb = rb;
1444 }
1445 }
1446
1447 if (m != i) {
1448 cake_heap_swap(q, i, m);
1449 i = m;
1450 } else {
1451 break;
1452 }
1453 }
1454 }
1455
cake_heapify_up(struct cake_sched_data * q,u16 i)1456 static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1457 {
1458 while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1459 u16 p = (i - 1) >> 1;
1460 u32 ib = cake_heap_get_backlog(q, i);
1461 u32 pb = cake_heap_get_backlog(q, p);
1462
1463 if (ib > pb) {
1464 cake_heap_swap(q, i, p);
1465 i = p;
1466 } else {
1467 break;
1468 }
1469 }
1470 }
1471
cake_advance_shaper(struct cake_sched_data * q,struct cake_tin_data * b,struct sk_buff * skb,ktime_t now,bool drop)1472 static int cake_advance_shaper(struct cake_sched_data *q,
1473 struct cake_tin_data *b,
1474 struct sk_buff *skb,
1475 ktime_t now, bool drop)
1476 {
1477 u32 len = get_cobalt_cb(skb)->adjusted_len;
1478
1479 /* charge packet bandwidth to this tin
1480 * and to the global shaper.
1481 */
1482 if (q->rate_ns) {
1483 u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1484 u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1485 u64 failsafe_dur = global_dur + (global_dur >> 1);
1486
1487 if (ktime_before(b->time_next_packet, now))
1488 b->time_next_packet = ktime_add_ns(b->time_next_packet,
1489 tin_dur);
1490
1491 else if (ktime_before(b->time_next_packet,
1492 ktime_add_ns(now, tin_dur)))
1493 b->time_next_packet = ktime_add_ns(now, tin_dur);
1494
1495 q->time_next_packet = ktime_add_ns(q->time_next_packet,
1496 global_dur);
1497 if (!drop)
1498 q->failsafe_next_packet = \
1499 ktime_add_ns(q->failsafe_next_packet,
1500 failsafe_dur);
1501 }
1502 return len;
1503 }
1504
cake_drop(struct Qdisc * sch,struct sk_buff ** to_free)1505 static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1506 {
1507 struct cake_sched_data *q = qdisc_priv(sch);
1508 ktime_t now = ktime_get();
1509 u32 idx = 0, tin = 0, len;
1510 struct cake_heap_entry qq;
1511 struct cake_tin_data *b;
1512 struct cake_flow *flow;
1513 struct sk_buff *skb;
1514
1515 if (!q->overflow_timeout) {
1516 int i;
1517 /* Build fresh max-heap */
1518 for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
1519 cake_heapify(q, i);
1520 }
1521 q->overflow_timeout = 65535;
1522
1523 /* select longest queue for pruning */
1524 qq = q->overflow_heap[0];
1525 tin = qq.t;
1526 idx = qq.b;
1527
1528 b = &q->tins[tin];
1529 flow = &b->flows[idx];
1530 skb = dequeue_head(flow);
1531 if (unlikely(!skb)) {
1532 /* heap has gone wrong, rebuild it next time */
1533 q->overflow_timeout = 0;
1534 return idx + (tin << 16);
1535 }
1536
1537 if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1538 b->unresponsive_flow_count++;
1539
1540 len = qdisc_pkt_len(skb);
1541 q->buffer_used -= skb->truesize;
1542 b->backlogs[idx] -= len;
1543 b->tin_backlog -= len;
1544 sch->qstats.backlog -= len;
1545
1546 flow->dropped++;
1547 b->tin_dropped++;
1548 sch->qstats.drops++;
1549
1550 if (q->rate_flags & CAKE_FLAG_INGRESS)
1551 cake_advance_shaper(q, b, skb, now, true);
1552
1553 __qdisc_drop(skb, to_free);
1554 sch->q.qlen--;
1555 qdisc_tree_reduce_backlog(sch, 1, len);
1556
1557 cake_heapify(q, 0);
1558
1559 return idx + (tin << 16);
1560 }
1561
cake_handle_diffserv(struct sk_buff * skb,bool wash)1562 static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash)
1563 {
1564 const int offset = skb_network_offset(skb);
1565 u16 *buf, buf_;
1566 u8 dscp;
1567
1568 switch (skb_protocol(skb, true)) {
1569 case htons(ETH_P_IP):
1570 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1571 if (unlikely(!buf))
1572 return 0;
1573
1574 /* ToS is in the second byte of iphdr */
1575 dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2;
1576
1577 if (wash && dscp) {
1578 const int wlen = offset + sizeof(struct iphdr);
1579
1580 if (!pskb_may_pull(skb, wlen) ||
1581 skb_try_make_writable(skb, wlen))
1582 return 0;
1583
1584 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1585 }
1586
1587 return dscp;
1588
1589 case htons(ETH_P_IPV6):
1590 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1591 if (unlikely(!buf))
1592 return 0;
1593
1594 /* Traffic class is in the first and second bytes of ipv6hdr */
1595 dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2;
1596
1597 if (wash && dscp) {
1598 const int wlen = offset + sizeof(struct ipv6hdr);
1599
1600 if (!pskb_may_pull(skb, wlen) ||
1601 skb_try_make_writable(skb, wlen))
1602 return 0;
1603
1604 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1605 }
1606
1607 return dscp;
1608
1609 case htons(ETH_P_ARP):
1610 return 0x38; /* CS7 - Net Control */
1611
1612 default:
1613 /* If there is no Diffserv field, treat as best-effort */
1614 return 0;
1615 }
1616 }
1617
cake_select_tin(struct Qdisc * sch,struct sk_buff * skb)1618 static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1619 struct sk_buff *skb)
1620 {
1621 struct cake_sched_data *q = qdisc_priv(sch);
1622 u32 tin, mark;
1623 bool wash;
1624 u8 dscp;
1625
1626 /* Tin selection: Default to diffserv-based selection, allow overriding
1627 * using firewall marks or skb->priority. Call DSCP parsing early if
1628 * wash is enabled, otherwise defer to below to skip unneeded parsing.
1629 */
1630 mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
1631 wash = !!(q->rate_flags & CAKE_FLAG_WASH);
1632 if (wash)
1633 dscp = cake_handle_diffserv(skb, wash);
1634
1635 if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
1636 tin = 0;
1637
1638 else if (mark && mark <= q->tin_cnt)
1639 tin = q->tin_order[mark - 1];
1640
1641 else if (TC_H_MAJ(skb->priority) == sch->handle &&
1642 TC_H_MIN(skb->priority) > 0 &&
1643 TC_H_MIN(skb->priority) <= q->tin_cnt)
1644 tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
1645
1646 else {
1647 if (!wash)
1648 dscp = cake_handle_diffserv(skb, wash);
1649 tin = q->tin_index[dscp];
1650
1651 if (unlikely(tin >= q->tin_cnt))
1652 tin = 0;
1653 }
1654
1655 return &q->tins[tin];
1656 }
1657
cake_classify(struct Qdisc * sch,struct cake_tin_data ** t,struct sk_buff * skb,int flow_mode,int * qerr)1658 static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
1659 struct sk_buff *skb, int flow_mode, int *qerr)
1660 {
1661 struct cake_sched_data *q = qdisc_priv(sch);
1662 struct tcf_proto *filter;
1663 struct tcf_result res;
1664 u16 flow = 0, host = 0;
1665 int result;
1666
1667 filter = rcu_dereference_bh(q->filter_list);
1668 if (!filter)
1669 goto hash;
1670
1671 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1672 result = tcf_classify(skb, NULL, filter, &res, false);
1673
1674 if (result >= 0) {
1675 #ifdef CONFIG_NET_CLS_ACT
1676 switch (result) {
1677 case TC_ACT_STOLEN:
1678 case TC_ACT_QUEUED:
1679 case TC_ACT_TRAP:
1680 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1681 fallthrough;
1682 case TC_ACT_SHOT:
1683 return 0;
1684 }
1685 #endif
1686 if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
1687 flow = TC_H_MIN(res.classid);
1688 if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1689 host = TC_H_MAJ(res.classid) >> 16;
1690 }
1691 hash:
1692 *t = cake_select_tin(sch, skb);
1693 return cake_hash(*t, skb, flow_mode, flow, host) + 1;
1694 }
1695
1696 static void cake_reconfigure(struct Qdisc *sch);
1697
cake_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)1698 static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1699 struct sk_buff **to_free)
1700 {
1701 struct cake_sched_data *q = qdisc_priv(sch);
1702 int len = qdisc_pkt_len(skb);
1703 int ret;
1704 struct sk_buff *ack = NULL;
1705 ktime_t now = ktime_get();
1706 struct cake_tin_data *b;
1707 struct cake_flow *flow;
1708 u32 idx;
1709
1710 /* choose flow to insert into */
1711 idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
1712 if (idx == 0) {
1713 if (ret & __NET_XMIT_BYPASS)
1714 qdisc_qstats_drop(sch);
1715 __qdisc_drop(skb, to_free);
1716 return ret;
1717 }
1718 idx--;
1719 flow = &b->flows[idx];
1720
1721 /* ensure shaper state isn't stale */
1722 if (!b->tin_backlog) {
1723 if (ktime_before(b->time_next_packet, now))
1724 b->time_next_packet = now;
1725
1726 if (!sch->q.qlen) {
1727 if (ktime_before(q->time_next_packet, now)) {
1728 q->failsafe_next_packet = now;
1729 q->time_next_packet = now;
1730 } else if (ktime_after(q->time_next_packet, now) &&
1731 ktime_after(q->failsafe_next_packet, now)) {
1732 u64 next = \
1733 min(ktime_to_ns(q->time_next_packet),
1734 ktime_to_ns(
1735 q->failsafe_next_packet));
1736 sch->qstats.overlimits++;
1737 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1738 }
1739 }
1740 }
1741
1742 if (unlikely(len > b->max_skblen))
1743 b->max_skblen = len;
1744
1745 if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1746 struct sk_buff *segs, *nskb;
1747 netdev_features_t features = netif_skb_features(skb);
1748 unsigned int slen = 0, numsegs = 0;
1749
1750 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1751 if (IS_ERR_OR_NULL(segs))
1752 return qdisc_drop(skb, sch, to_free);
1753
1754 skb_list_walk_safe(segs, segs, nskb) {
1755 skb_mark_not_on_list(segs);
1756 qdisc_skb_cb(segs)->pkt_len = segs->len;
1757 cobalt_set_enqueue_time(segs, now);
1758 get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1759 segs);
1760 flow_queue_add(flow, segs);
1761
1762 sch->q.qlen++;
1763 numsegs++;
1764 slen += segs->len;
1765 q->buffer_used += segs->truesize;
1766 b->packets++;
1767 }
1768
1769 /* stats */
1770 b->bytes += slen;
1771 b->backlogs[idx] += slen;
1772 b->tin_backlog += slen;
1773 sch->qstats.backlog += slen;
1774 q->avg_window_bytes += slen;
1775
1776 qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
1777 consume_skb(skb);
1778 } else {
1779 /* not splitting */
1780 cobalt_set_enqueue_time(skb, now);
1781 get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1782 flow_queue_add(flow, skb);
1783
1784 if (q->ack_filter)
1785 ack = cake_ack_filter(q, flow);
1786
1787 if (ack) {
1788 b->ack_drops++;
1789 sch->qstats.drops++;
1790 b->bytes += qdisc_pkt_len(ack);
1791 len -= qdisc_pkt_len(ack);
1792 q->buffer_used += skb->truesize - ack->truesize;
1793 if (q->rate_flags & CAKE_FLAG_INGRESS)
1794 cake_advance_shaper(q, b, ack, now, true);
1795
1796 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1797 consume_skb(ack);
1798 } else {
1799 sch->q.qlen++;
1800 q->buffer_used += skb->truesize;
1801 }
1802
1803 /* stats */
1804 b->packets++;
1805 b->bytes += len;
1806 b->backlogs[idx] += len;
1807 b->tin_backlog += len;
1808 sch->qstats.backlog += len;
1809 q->avg_window_bytes += len;
1810 }
1811
1812 if (q->overflow_timeout)
1813 cake_heapify_up(q, b->overflow_idx[idx]);
1814
1815 /* incoming bandwidth capacity estimate */
1816 if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1817 u64 packet_interval = \
1818 ktime_to_ns(ktime_sub(now, q->last_packet_time));
1819
1820 if (packet_interval > NSEC_PER_SEC)
1821 packet_interval = NSEC_PER_SEC;
1822
1823 /* filter out short-term bursts, eg. wifi aggregation */
1824 q->avg_packet_interval = \
1825 cake_ewma(q->avg_packet_interval,
1826 packet_interval,
1827 (packet_interval > q->avg_packet_interval ?
1828 2 : 8));
1829
1830 q->last_packet_time = now;
1831
1832 if (packet_interval > q->avg_packet_interval) {
1833 u64 window_interval = \
1834 ktime_to_ns(ktime_sub(now,
1835 q->avg_window_begin));
1836 u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1837
1838 b = div64_u64(b, window_interval);
1839 q->avg_peak_bandwidth =
1840 cake_ewma(q->avg_peak_bandwidth, b,
1841 b > q->avg_peak_bandwidth ? 2 : 8);
1842 q->avg_window_bytes = 0;
1843 q->avg_window_begin = now;
1844
1845 if (ktime_after(now,
1846 ktime_add_ms(q->last_reconfig_time,
1847 250))) {
1848 q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1849 cake_reconfigure(sch);
1850 }
1851 }
1852 } else {
1853 q->avg_window_bytes = 0;
1854 q->last_packet_time = now;
1855 }
1856
1857 /* flowchain */
1858 if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1859 struct cake_host *srchost = &b->hosts[flow->srchost];
1860 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1861 u16 host_load = 1;
1862
1863 if (!flow->set) {
1864 list_add_tail(&flow->flowchain, &b->new_flows);
1865 } else {
1866 b->decaying_flow_count--;
1867 list_move_tail(&flow->flowchain, &b->new_flows);
1868 }
1869 flow->set = CAKE_SET_SPARSE;
1870 b->sparse_flow_count++;
1871
1872 if (cake_dsrc(q->flow_mode))
1873 host_load = max(host_load, srchost->srchost_bulk_flow_count);
1874
1875 if (cake_ddst(q->flow_mode))
1876 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
1877
1878 flow->deficit = (b->flow_quantum *
1879 quantum_div[host_load]) >> 16;
1880 } else if (flow->set == CAKE_SET_SPARSE_WAIT) {
1881 struct cake_host *srchost = &b->hosts[flow->srchost];
1882 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1883
1884 /* this flow was empty, accounted as a sparse flow, but actually
1885 * in the bulk rotation.
1886 */
1887 flow->set = CAKE_SET_BULK;
1888 b->sparse_flow_count--;
1889 b->bulk_flow_count++;
1890
1891 if (cake_dsrc(q->flow_mode))
1892 srchost->srchost_bulk_flow_count++;
1893
1894 if (cake_ddst(q->flow_mode))
1895 dsthost->dsthost_bulk_flow_count++;
1896
1897 }
1898
1899 if (q->buffer_used > q->buffer_max_used)
1900 q->buffer_max_used = q->buffer_used;
1901
1902 if (q->buffer_used > q->buffer_limit) {
1903 u32 dropped = 0;
1904
1905 while (q->buffer_used > q->buffer_limit) {
1906 dropped++;
1907 cake_drop(sch, to_free);
1908 }
1909 b->drop_overlimit += dropped;
1910 }
1911 return NET_XMIT_SUCCESS;
1912 }
1913
cake_dequeue_one(struct Qdisc * sch)1914 static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1915 {
1916 struct cake_sched_data *q = qdisc_priv(sch);
1917 struct cake_tin_data *b = &q->tins[q->cur_tin];
1918 struct cake_flow *flow = &b->flows[q->cur_flow];
1919 struct sk_buff *skb = NULL;
1920 u32 len;
1921
1922 if (flow->head) {
1923 skb = dequeue_head(flow);
1924 len = qdisc_pkt_len(skb);
1925 b->backlogs[q->cur_flow] -= len;
1926 b->tin_backlog -= len;
1927 sch->qstats.backlog -= len;
1928 q->buffer_used -= skb->truesize;
1929 sch->q.qlen--;
1930
1931 if (q->overflow_timeout)
1932 cake_heapify(q, b->overflow_idx[q->cur_flow]);
1933 }
1934 return skb;
1935 }
1936
1937 /* Discard leftover packets from a tin no longer in use. */
cake_clear_tin(struct Qdisc * sch,u16 tin)1938 static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1939 {
1940 struct cake_sched_data *q = qdisc_priv(sch);
1941 struct sk_buff *skb;
1942
1943 q->cur_tin = tin;
1944 for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1945 while (!!(skb = cake_dequeue_one(sch)))
1946 kfree_skb(skb);
1947 }
1948
cake_dequeue(struct Qdisc * sch)1949 static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1950 {
1951 struct cake_sched_data *q = qdisc_priv(sch);
1952 struct cake_tin_data *b = &q->tins[q->cur_tin];
1953 struct cake_host *srchost, *dsthost;
1954 ktime_t now = ktime_get();
1955 struct cake_flow *flow;
1956 struct list_head *head;
1957 bool first_flow = true;
1958 struct sk_buff *skb;
1959 u16 host_load;
1960 u64 delay;
1961 u32 len;
1962
1963 begin:
1964 if (!sch->q.qlen)
1965 return NULL;
1966
1967 /* global hard shaper */
1968 if (ktime_after(q->time_next_packet, now) &&
1969 ktime_after(q->failsafe_next_packet, now)) {
1970 u64 next = min(ktime_to_ns(q->time_next_packet),
1971 ktime_to_ns(q->failsafe_next_packet));
1972
1973 sch->qstats.overlimits++;
1974 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1975 return NULL;
1976 }
1977
1978 /* Choose a class to work on. */
1979 if (!q->rate_ns) {
1980 /* In unlimited mode, can't rely on shaper timings, just balance
1981 * with DRR
1982 */
1983 bool wrapped = false, empty = true;
1984
1985 while (b->tin_deficit < 0 ||
1986 !(b->sparse_flow_count + b->bulk_flow_count)) {
1987 if (b->tin_deficit <= 0)
1988 b->tin_deficit += b->tin_quantum;
1989 if (b->sparse_flow_count + b->bulk_flow_count)
1990 empty = false;
1991
1992 q->cur_tin++;
1993 b++;
1994 if (q->cur_tin >= q->tin_cnt) {
1995 q->cur_tin = 0;
1996 b = q->tins;
1997
1998 if (wrapped) {
1999 /* It's possible for q->qlen to be
2000 * nonzero when we actually have no
2001 * packets anywhere.
2002 */
2003 if (empty)
2004 return NULL;
2005 } else {
2006 wrapped = true;
2007 }
2008 }
2009 }
2010 } else {
2011 /* In shaped mode, choose:
2012 * - Highest-priority tin with queue and meeting schedule, or
2013 * - The earliest-scheduled tin with queue.
2014 */
2015 ktime_t best_time = KTIME_MAX;
2016 int tin, best_tin = 0;
2017
2018 for (tin = 0; tin < q->tin_cnt; tin++) {
2019 b = q->tins + tin;
2020 if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
2021 ktime_t time_to_pkt = \
2022 ktime_sub(b->time_next_packet, now);
2023
2024 if (ktime_to_ns(time_to_pkt) <= 0 ||
2025 ktime_compare(time_to_pkt,
2026 best_time) <= 0) {
2027 best_time = time_to_pkt;
2028 best_tin = tin;
2029 }
2030 }
2031 }
2032
2033 q->cur_tin = best_tin;
2034 b = q->tins + best_tin;
2035
2036 /* No point in going further if no packets to deliver. */
2037 if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
2038 return NULL;
2039 }
2040
2041 retry:
2042 /* service this class */
2043 head = &b->decaying_flows;
2044 if (!first_flow || list_empty(head)) {
2045 head = &b->new_flows;
2046 if (list_empty(head)) {
2047 head = &b->old_flows;
2048 if (unlikely(list_empty(head))) {
2049 head = &b->decaying_flows;
2050 if (unlikely(list_empty(head)))
2051 goto begin;
2052 }
2053 }
2054 }
2055 flow = list_first_entry(head, struct cake_flow, flowchain);
2056 q->cur_flow = flow - b->flows;
2057 first_flow = false;
2058
2059 /* triple isolation (modified DRR++) */
2060 srchost = &b->hosts[flow->srchost];
2061 dsthost = &b->hosts[flow->dsthost];
2062 host_load = 1;
2063
2064 /* flow isolation (DRR++) */
2065 if (flow->deficit <= 0) {
2066 /* Keep all flows with deficits out of the sparse and decaying
2067 * rotations. No non-empty flow can go into the decaying
2068 * rotation, so they can't get deficits
2069 */
2070 if (flow->set == CAKE_SET_SPARSE) {
2071 if (flow->head) {
2072 b->sparse_flow_count--;
2073 b->bulk_flow_count++;
2074
2075 if (cake_dsrc(q->flow_mode))
2076 srchost->srchost_bulk_flow_count++;
2077
2078 if (cake_ddst(q->flow_mode))
2079 dsthost->dsthost_bulk_flow_count++;
2080
2081 flow->set = CAKE_SET_BULK;
2082 } else {
2083 /* we've moved it to the bulk rotation for
2084 * correct deficit accounting but we still want
2085 * to count it as a sparse flow, not a bulk one.
2086 */
2087 flow->set = CAKE_SET_SPARSE_WAIT;
2088 }
2089 }
2090
2091 if (cake_dsrc(q->flow_mode))
2092 host_load = max(host_load, srchost->srchost_bulk_flow_count);
2093
2094 if (cake_ddst(q->flow_mode))
2095 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
2096
2097 WARN_ON(host_load > CAKE_QUEUES);
2098
2099 /* The get_random_u16() is a way to apply dithering to avoid
2100 * accumulating roundoff errors
2101 */
2102 flow->deficit += (b->flow_quantum * quantum_div[host_load] +
2103 get_random_u16()) >> 16;
2104 list_move_tail(&flow->flowchain, &b->old_flows);
2105
2106 goto retry;
2107 }
2108
2109 /* Retrieve a packet via the AQM */
2110 while (1) {
2111 skb = cake_dequeue_one(sch);
2112 if (!skb) {
2113 /* this queue was actually empty */
2114 if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2115 b->unresponsive_flow_count--;
2116
2117 if (flow->cvars.p_drop || flow->cvars.count ||
2118 ktime_before(now, flow->cvars.drop_next)) {
2119 /* keep in the flowchain until the state has
2120 * decayed to rest
2121 */
2122 list_move_tail(&flow->flowchain,
2123 &b->decaying_flows);
2124 if (flow->set == CAKE_SET_BULK) {
2125 b->bulk_flow_count--;
2126
2127 if (cake_dsrc(q->flow_mode))
2128 srchost->srchost_bulk_flow_count--;
2129
2130 if (cake_ddst(q->flow_mode))
2131 dsthost->dsthost_bulk_flow_count--;
2132
2133 b->decaying_flow_count++;
2134 } else if (flow->set == CAKE_SET_SPARSE ||
2135 flow->set == CAKE_SET_SPARSE_WAIT) {
2136 b->sparse_flow_count--;
2137 b->decaying_flow_count++;
2138 }
2139 flow->set = CAKE_SET_DECAYING;
2140 } else {
2141 /* remove empty queue from the flowchain */
2142 list_del_init(&flow->flowchain);
2143 if (flow->set == CAKE_SET_SPARSE ||
2144 flow->set == CAKE_SET_SPARSE_WAIT)
2145 b->sparse_flow_count--;
2146 else if (flow->set == CAKE_SET_BULK) {
2147 b->bulk_flow_count--;
2148
2149 if (cake_dsrc(q->flow_mode))
2150 srchost->srchost_bulk_flow_count--;
2151
2152 if (cake_ddst(q->flow_mode))
2153 dsthost->dsthost_bulk_flow_count--;
2154
2155 } else
2156 b->decaying_flow_count--;
2157
2158 flow->set = CAKE_SET_NONE;
2159 }
2160 goto begin;
2161 }
2162
2163 /* Last packet in queue may be marked, shouldn't be dropped */
2164 if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2165 (b->bulk_flow_count *
2166 !!(q->rate_flags &
2167 CAKE_FLAG_INGRESS))) ||
2168 !flow->head)
2169 break;
2170
2171 /* drop this packet, get another one */
2172 if (q->rate_flags & CAKE_FLAG_INGRESS) {
2173 len = cake_advance_shaper(q, b, skb,
2174 now, true);
2175 flow->deficit -= len;
2176 b->tin_deficit -= len;
2177 }
2178 flow->dropped++;
2179 b->tin_dropped++;
2180 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2181 qdisc_qstats_drop(sch);
2182 kfree_skb(skb);
2183 if (q->rate_flags & CAKE_FLAG_INGRESS)
2184 goto retry;
2185 }
2186
2187 b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2188 qdisc_bstats_update(sch, skb);
2189
2190 /* collect delay stats */
2191 delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2192 b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2193 b->peak_delay = cake_ewma(b->peak_delay, delay,
2194 delay > b->peak_delay ? 2 : 8);
2195 b->base_delay = cake_ewma(b->base_delay, delay,
2196 delay < b->base_delay ? 2 : 8);
2197
2198 len = cake_advance_shaper(q, b, skb, now, false);
2199 flow->deficit -= len;
2200 b->tin_deficit -= len;
2201
2202 if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2203 u64 next = min(ktime_to_ns(q->time_next_packet),
2204 ktime_to_ns(q->failsafe_next_packet));
2205
2206 qdisc_watchdog_schedule_ns(&q->watchdog, next);
2207 } else if (!sch->q.qlen) {
2208 int i;
2209
2210 for (i = 0; i < q->tin_cnt; i++) {
2211 if (q->tins[i].decaying_flow_count) {
2212 ktime_t next = \
2213 ktime_add_ns(now,
2214 q->tins[i].cparams.target);
2215
2216 qdisc_watchdog_schedule_ns(&q->watchdog,
2217 ktime_to_ns(next));
2218 break;
2219 }
2220 }
2221 }
2222
2223 if (q->overflow_timeout)
2224 q->overflow_timeout--;
2225
2226 return skb;
2227 }
2228
cake_reset(struct Qdisc * sch)2229 static void cake_reset(struct Qdisc *sch)
2230 {
2231 struct cake_sched_data *q = qdisc_priv(sch);
2232 u32 c;
2233
2234 if (!q->tins)
2235 return;
2236
2237 for (c = 0; c < CAKE_MAX_TINS; c++)
2238 cake_clear_tin(sch, c);
2239 }
2240
2241 static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2242 [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 },
2243 [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2244 [TCA_CAKE_ATM] = { .type = NLA_U32 },
2245 [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
2246 [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
2247 [TCA_CAKE_RTT] = { .type = NLA_U32 },
2248 [TCA_CAKE_TARGET] = { .type = NLA_U32 },
2249 [TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
2250 [TCA_CAKE_MEMORY] = { .type = NLA_U32 },
2251 [TCA_CAKE_NAT] = { .type = NLA_U32 },
2252 [TCA_CAKE_RAW] = { .type = NLA_U32 },
2253 [TCA_CAKE_WASH] = { .type = NLA_U32 },
2254 [TCA_CAKE_MPU] = { .type = NLA_U32 },
2255 [TCA_CAKE_INGRESS] = { .type = NLA_U32 },
2256 [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
2257 [TCA_CAKE_SPLIT_GSO] = { .type = NLA_U32 },
2258 [TCA_CAKE_FWMARK] = { .type = NLA_U32 },
2259 };
2260
cake_set_rate(struct cake_tin_data * b,u64 rate,u32 mtu,u64 target_ns,u64 rtt_est_ns)2261 static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2262 u64 target_ns, u64 rtt_est_ns)
2263 {
2264 /* convert byte-rate into time-per-byte
2265 * so it will always unwedge in reasonable time.
2266 */
2267 static const u64 MIN_RATE = 64;
2268 u32 byte_target = mtu;
2269 u64 byte_target_ns;
2270 u8 rate_shft = 0;
2271 u64 rate_ns = 0;
2272
2273 b->flow_quantum = 1514;
2274 if (rate) {
2275 b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2276 rate_shft = 34;
2277 rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2278 rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2279 while (!!(rate_ns >> 34)) {
2280 rate_ns >>= 1;
2281 rate_shft--;
2282 }
2283 } /* else unlimited, ie. zero delay */
2284
2285 b->tin_rate_bps = rate;
2286 b->tin_rate_ns = rate_ns;
2287 b->tin_rate_shft = rate_shft;
2288
2289 byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2290
2291 b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2292 b->cparams.interval = max(rtt_est_ns +
2293 b->cparams.target - target_ns,
2294 b->cparams.target * 2);
2295 b->cparams.mtu_time = byte_target_ns;
2296 b->cparams.p_inc = 1 << 24; /* 1/256 */
2297 b->cparams.p_dec = 1 << 20; /* 1/4096 */
2298 }
2299
cake_config_besteffort(struct Qdisc * sch)2300 static int cake_config_besteffort(struct Qdisc *sch)
2301 {
2302 struct cake_sched_data *q = qdisc_priv(sch);
2303 struct cake_tin_data *b = &q->tins[0];
2304 u32 mtu = psched_mtu(qdisc_dev(sch));
2305 u64 rate = q->rate_bps;
2306
2307 q->tin_cnt = 1;
2308
2309 q->tin_index = besteffort;
2310 q->tin_order = normal_order;
2311
2312 cake_set_rate(b, rate, mtu,
2313 us_to_ns(q->target), us_to_ns(q->interval));
2314 b->tin_quantum = 65535;
2315
2316 return 0;
2317 }
2318
cake_config_precedence(struct Qdisc * sch)2319 static int cake_config_precedence(struct Qdisc *sch)
2320 {
2321 /* convert high-level (user visible) parameters into internal format */
2322 struct cake_sched_data *q = qdisc_priv(sch);
2323 u32 mtu = psched_mtu(qdisc_dev(sch));
2324 u64 rate = q->rate_bps;
2325 u32 quantum = 256;
2326 u32 i;
2327
2328 q->tin_cnt = 8;
2329 q->tin_index = precedence;
2330 q->tin_order = normal_order;
2331
2332 for (i = 0; i < q->tin_cnt; i++) {
2333 struct cake_tin_data *b = &q->tins[i];
2334
2335 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2336 us_to_ns(q->interval));
2337
2338 b->tin_quantum = max_t(u16, 1U, quantum);
2339
2340 /* calculate next class's parameters */
2341 rate *= 7;
2342 rate >>= 3;
2343
2344 quantum *= 7;
2345 quantum >>= 3;
2346 }
2347
2348 return 0;
2349 }
2350
2351 /* List of known Diffserv codepoints:
2352 *
2353 * Default Forwarding (DF/CS0) - Best Effort
2354 * Max Throughput (TOS2)
2355 * Min Delay (TOS4)
2356 * LLT "La" (TOS5)
2357 * Assured Forwarding 1 (AF1x) - x3
2358 * Assured Forwarding 2 (AF2x) - x3
2359 * Assured Forwarding 3 (AF3x) - x3
2360 * Assured Forwarding 4 (AF4x) - x3
2361 * Precedence Class 1 (CS1)
2362 * Precedence Class 2 (CS2)
2363 * Precedence Class 3 (CS3)
2364 * Precedence Class 4 (CS4)
2365 * Precedence Class 5 (CS5)
2366 * Precedence Class 6 (CS6)
2367 * Precedence Class 7 (CS7)
2368 * Voice Admit (VA)
2369 * Expedited Forwarding (EF)
2370 * Lower Effort (LE)
2371 *
2372 * Total 26 codepoints.
2373 */
2374
2375 /* List of traffic classes in RFC 4594, updated by RFC 8622:
2376 * (roughly descending order of contended priority)
2377 * (roughly ascending order of uncontended throughput)
2378 *
2379 * Network Control (CS6,CS7) - routing traffic
2380 * Telephony (EF,VA) - aka. VoIP streams
2381 * Signalling (CS5) - VoIP setup
2382 * Multimedia Conferencing (AF4x) - aka. video calls
2383 * Realtime Interactive (CS4) - eg. games
2384 * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
2385 * Broadcast Video (CS3)
2386 * Low-Latency Data (AF2x,TOS4) - eg. database
2387 * Ops, Admin, Management (CS2) - eg. ssh
2388 * Standard Service (DF & unrecognised codepoints)
2389 * High-Throughput Data (AF1x,TOS2) - eg. web traffic
2390 * Low-Priority Data (LE,CS1) - eg. BitTorrent
2391 *
2392 * Total 12 traffic classes.
2393 */
2394
cake_config_diffserv8(struct Qdisc * sch)2395 static int cake_config_diffserv8(struct Qdisc *sch)
2396 {
2397 /* Pruned list of traffic classes for typical applications:
2398 *
2399 * Network Control (CS6, CS7)
2400 * Minimum Latency (EF, VA, CS5, CS4)
2401 * Interactive Shell (CS2)
2402 * Low Latency Transactions (AF2x, TOS4)
2403 * Video Streaming (AF4x, AF3x, CS3)
2404 * Bog Standard (DF etc.)
2405 * High Throughput (AF1x, TOS2, CS1)
2406 * Background Traffic (LE)
2407 *
2408 * Total 8 traffic classes.
2409 */
2410
2411 struct cake_sched_data *q = qdisc_priv(sch);
2412 u32 mtu = psched_mtu(qdisc_dev(sch));
2413 u64 rate = q->rate_bps;
2414 u32 quantum = 256;
2415 u32 i;
2416
2417 q->tin_cnt = 8;
2418
2419 /* codepoint to class mapping */
2420 q->tin_index = diffserv8;
2421 q->tin_order = normal_order;
2422
2423 /* class characteristics */
2424 for (i = 0; i < q->tin_cnt; i++) {
2425 struct cake_tin_data *b = &q->tins[i];
2426
2427 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2428 us_to_ns(q->interval));
2429
2430 b->tin_quantum = max_t(u16, 1U, quantum);
2431
2432 /* calculate next class's parameters */
2433 rate *= 7;
2434 rate >>= 3;
2435
2436 quantum *= 7;
2437 quantum >>= 3;
2438 }
2439
2440 return 0;
2441 }
2442
cake_config_diffserv4(struct Qdisc * sch)2443 static int cake_config_diffserv4(struct Qdisc *sch)
2444 {
2445 /* Further pruned list of traffic classes for four-class system:
2446 *
2447 * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
2448 * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2)
2449 * Best Effort (DF, AF1x, TOS2, and those not specified)
2450 * Background Traffic (LE, CS1)
2451 *
2452 * Total 4 traffic classes.
2453 */
2454
2455 struct cake_sched_data *q = qdisc_priv(sch);
2456 u32 mtu = psched_mtu(qdisc_dev(sch));
2457 u64 rate = q->rate_bps;
2458 u32 quantum = 1024;
2459
2460 q->tin_cnt = 4;
2461
2462 /* codepoint to class mapping */
2463 q->tin_index = diffserv4;
2464 q->tin_order = bulk_order;
2465
2466 /* class characteristics */
2467 cake_set_rate(&q->tins[0], rate, mtu,
2468 us_to_ns(q->target), us_to_ns(q->interval));
2469 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2470 us_to_ns(q->target), us_to_ns(q->interval));
2471 cake_set_rate(&q->tins[2], rate >> 1, mtu,
2472 us_to_ns(q->target), us_to_ns(q->interval));
2473 cake_set_rate(&q->tins[3], rate >> 2, mtu,
2474 us_to_ns(q->target), us_to_ns(q->interval));
2475
2476 /* bandwidth-sharing weights */
2477 q->tins[0].tin_quantum = quantum;
2478 q->tins[1].tin_quantum = quantum >> 4;
2479 q->tins[2].tin_quantum = quantum >> 1;
2480 q->tins[3].tin_quantum = quantum >> 2;
2481
2482 return 0;
2483 }
2484
cake_config_diffserv3(struct Qdisc * sch)2485 static int cake_config_diffserv3(struct Qdisc *sch)
2486 {
2487 /* Simplified Diffserv structure with 3 tins.
2488 * Latency Sensitive (CS7, CS6, EF, VA, TOS4)
2489 * Best Effort
2490 * Low Priority (LE, CS1)
2491 */
2492 struct cake_sched_data *q = qdisc_priv(sch);
2493 u32 mtu = psched_mtu(qdisc_dev(sch));
2494 u64 rate = q->rate_bps;
2495 u32 quantum = 1024;
2496
2497 q->tin_cnt = 3;
2498
2499 /* codepoint to class mapping */
2500 q->tin_index = diffserv3;
2501 q->tin_order = bulk_order;
2502
2503 /* class characteristics */
2504 cake_set_rate(&q->tins[0], rate, mtu,
2505 us_to_ns(q->target), us_to_ns(q->interval));
2506 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2507 us_to_ns(q->target), us_to_ns(q->interval));
2508 cake_set_rate(&q->tins[2], rate >> 2, mtu,
2509 us_to_ns(q->target), us_to_ns(q->interval));
2510
2511 /* bandwidth-sharing weights */
2512 q->tins[0].tin_quantum = quantum;
2513 q->tins[1].tin_quantum = quantum >> 4;
2514 q->tins[2].tin_quantum = quantum >> 2;
2515
2516 return 0;
2517 }
2518
cake_reconfigure(struct Qdisc * sch)2519 static void cake_reconfigure(struct Qdisc *sch)
2520 {
2521 struct cake_sched_data *q = qdisc_priv(sch);
2522 int c, ft;
2523
2524 switch (q->tin_mode) {
2525 case CAKE_DIFFSERV_BESTEFFORT:
2526 ft = cake_config_besteffort(sch);
2527 break;
2528
2529 case CAKE_DIFFSERV_PRECEDENCE:
2530 ft = cake_config_precedence(sch);
2531 break;
2532
2533 case CAKE_DIFFSERV_DIFFSERV8:
2534 ft = cake_config_diffserv8(sch);
2535 break;
2536
2537 case CAKE_DIFFSERV_DIFFSERV4:
2538 ft = cake_config_diffserv4(sch);
2539 break;
2540
2541 case CAKE_DIFFSERV_DIFFSERV3:
2542 default:
2543 ft = cake_config_diffserv3(sch);
2544 break;
2545 }
2546
2547 for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2548 cake_clear_tin(sch, c);
2549 q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2550 }
2551
2552 q->rate_ns = q->tins[ft].tin_rate_ns;
2553 q->rate_shft = q->tins[ft].tin_rate_shft;
2554
2555 if (q->buffer_config_limit) {
2556 q->buffer_limit = q->buffer_config_limit;
2557 } else if (q->rate_bps) {
2558 u64 t = q->rate_bps * q->interval;
2559
2560 do_div(t, USEC_PER_SEC / 4);
2561 q->buffer_limit = max_t(u32, t, 4U << 20);
2562 } else {
2563 q->buffer_limit = ~0;
2564 }
2565
2566 sch->flags &= ~TCQ_F_CAN_BYPASS;
2567
2568 q->buffer_limit = min(q->buffer_limit,
2569 max(sch->limit * psched_mtu(qdisc_dev(sch)),
2570 q->buffer_config_limit));
2571 }
2572
cake_change(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)2573 static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2574 struct netlink_ext_ack *extack)
2575 {
2576 struct cake_sched_data *q = qdisc_priv(sch);
2577 struct nlattr *tb[TCA_CAKE_MAX + 1];
2578 int err;
2579
2580 err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy,
2581 extack);
2582 if (err < 0)
2583 return err;
2584
2585 if (tb[TCA_CAKE_NAT]) {
2586 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2587 q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2588 q->flow_mode |= CAKE_FLOW_NAT_FLAG *
2589 !!nla_get_u32(tb[TCA_CAKE_NAT]);
2590 #else
2591 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2592 "No conntrack support in kernel");
2593 return -EOPNOTSUPP;
2594 #endif
2595 }
2596
2597 if (tb[TCA_CAKE_BASE_RATE64])
2598 q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);
2599
2600 if (tb[TCA_CAKE_DIFFSERV_MODE])
2601 q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
2602
2603 if (tb[TCA_CAKE_WASH]) {
2604 if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2605 q->rate_flags |= CAKE_FLAG_WASH;
2606 else
2607 q->rate_flags &= ~CAKE_FLAG_WASH;
2608 }
2609
2610 if (tb[TCA_CAKE_FLOW_MODE])
2611 q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) |
2612 (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2613 CAKE_FLOW_MASK));
2614
2615 if (tb[TCA_CAKE_ATM])
2616 q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]);
2617
2618 if (tb[TCA_CAKE_OVERHEAD]) {
2619 q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
2620 q->rate_flags |= CAKE_FLAG_OVERHEAD;
2621
2622 q->max_netlen = 0;
2623 q->max_adjlen = 0;
2624 q->min_netlen = ~0;
2625 q->min_adjlen = ~0;
2626 }
2627
2628 if (tb[TCA_CAKE_RAW]) {
2629 q->rate_flags &= ~CAKE_FLAG_OVERHEAD;
2630
2631 q->max_netlen = 0;
2632 q->max_adjlen = 0;
2633 q->min_netlen = ~0;
2634 q->min_adjlen = ~0;
2635 }
2636
2637 if (tb[TCA_CAKE_MPU])
2638 q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
2639
2640 if (tb[TCA_CAKE_RTT]) {
2641 q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2642
2643 if (!q->interval)
2644 q->interval = 1;
2645 }
2646
2647 if (tb[TCA_CAKE_TARGET]) {
2648 q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2649
2650 if (!q->target)
2651 q->target = 1;
2652 }
2653
2654 if (tb[TCA_CAKE_AUTORATE]) {
2655 if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2656 q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2657 else
2658 q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2659 }
2660
2661 if (tb[TCA_CAKE_INGRESS]) {
2662 if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2663 q->rate_flags |= CAKE_FLAG_INGRESS;
2664 else
2665 q->rate_flags &= ~CAKE_FLAG_INGRESS;
2666 }
2667
2668 if (tb[TCA_CAKE_ACK_FILTER])
2669 q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]);
2670
2671 if (tb[TCA_CAKE_MEMORY])
2672 q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);
2673
2674 if (tb[TCA_CAKE_SPLIT_GSO]) {
2675 if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2676 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2677 else
2678 q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2679 }
2680
2681 if (tb[TCA_CAKE_FWMARK]) {
2682 q->fwmark_mask = nla_get_u32(tb[TCA_CAKE_FWMARK]);
2683 q->fwmark_shft = q->fwmark_mask ? __ffs(q->fwmark_mask) : 0;
2684 }
2685
2686 if (q->tins) {
2687 sch_tree_lock(sch);
2688 cake_reconfigure(sch);
2689 sch_tree_unlock(sch);
2690 }
2691
2692 return 0;
2693 }
2694
cake_destroy(struct Qdisc * sch)2695 static void cake_destroy(struct Qdisc *sch)
2696 {
2697 struct cake_sched_data *q = qdisc_priv(sch);
2698
2699 qdisc_watchdog_cancel(&q->watchdog);
2700 tcf_block_put(q->block);
2701 kvfree(q->tins);
2702 }
2703
cake_init(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)2704 static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2705 struct netlink_ext_ack *extack)
2706 {
2707 struct cake_sched_data *q = qdisc_priv(sch);
2708 int i, j, err;
2709
2710 sch->limit = 10240;
2711 q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
2712 q->flow_mode = CAKE_FLOW_TRIPLE;
2713
2714 q->rate_bps = 0; /* unlimited by default */
2715
2716 q->interval = 100000; /* 100ms default */
2717 q->target = 5000; /* 5ms: codel RFC argues
2718 * for 5 to 10% of interval
2719 */
2720 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2721 q->cur_tin = 0;
2722 q->cur_flow = 0;
2723
2724 qdisc_watchdog_init(&q->watchdog, sch);
2725
2726 if (opt) {
2727 err = cake_change(sch, opt, extack);
2728
2729 if (err)
2730 return err;
2731 }
2732
2733 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2734 if (err)
2735 return err;
2736
2737 quantum_div[0] = ~0;
2738 for (i = 1; i <= CAKE_QUEUES; i++)
2739 quantum_div[i] = 65535 / i;
2740
2741 q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
2742 GFP_KERNEL);
2743 if (!q->tins)
2744 return -ENOMEM;
2745
2746 for (i = 0; i < CAKE_MAX_TINS; i++) {
2747 struct cake_tin_data *b = q->tins + i;
2748
2749 INIT_LIST_HEAD(&b->new_flows);
2750 INIT_LIST_HEAD(&b->old_flows);
2751 INIT_LIST_HEAD(&b->decaying_flows);
2752 b->sparse_flow_count = 0;
2753 b->bulk_flow_count = 0;
2754 b->decaying_flow_count = 0;
2755
2756 for (j = 0; j < CAKE_QUEUES; j++) {
2757 struct cake_flow *flow = b->flows + j;
2758 u32 k = j * CAKE_MAX_TINS + i;
2759
2760 INIT_LIST_HEAD(&flow->flowchain);
2761 cobalt_vars_init(&flow->cvars);
2762
2763 q->overflow_heap[k].t = i;
2764 q->overflow_heap[k].b = j;
2765 b->overflow_idx[j] = k;
2766 }
2767 }
2768
2769 cake_reconfigure(sch);
2770 q->avg_peak_bandwidth = q->rate_bps;
2771 q->min_netlen = ~0;
2772 q->min_adjlen = ~0;
2773 return 0;
2774 }
2775
cake_dump(struct Qdisc * sch,struct sk_buff * skb)2776 static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2777 {
2778 struct cake_sched_data *q = qdisc_priv(sch);
2779 struct nlattr *opts;
2780
2781 opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
2782 if (!opts)
2783 goto nla_put_failure;
2784
2785 if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
2786 TCA_CAKE_PAD))
2787 goto nla_put_failure;
2788
2789 if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
2790 q->flow_mode & CAKE_FLOW_MASK))
2791 goto nla_put_failure;
2792
2793 if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
2794 goto nla_put_failure;
2795
2796 if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
2797 goto nla_put_failure;
2798
2799 if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
2800 goto nla_put_failure;
2801
2802 if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2803 !!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2804 goto nla_put_failure;
2805
2806 if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2807 !!(q->rate_flags & CAKE_FLAG_INGRESS)))
2808 goto nla_put_failure;
2809
2810 if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter))
2811 goto nla_put_failure;
2812
2813 if (nla_put_u32(skb, TCA_CAKE_NAT,
2814 !!(q->flow_mode & CAKE_FLOW_NAT_FLAG)))
2815 goto nla_put_failure;
2816
2817 if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
2818 goto nla_put_failure;
2819
2820 if (nla_put_u32(skb, TCA_CAKE_WASH,
2821 !!(q->rate_flags & CAKE_FLAG_WASH)))
2822 goto nla_put_failure;
2823
2824 if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead))
2825 goto nla_put_failure;
2826
2827 if (!(q->rate_flags & CAKE_FLAG_OVERHEAD))
2828 if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2829 goto nla_put_failure;
2830
2831 if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode))
2832 goto nla_put_failure;
2833
2834 if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
2835 goto nla_put_failure;
2836
2837 if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2838 !!(q->rate_flags & CAKE_FLAG_SPLIT_GSO)))
2839 goto nla_put_failure;
2840
2841 if (nla_put_u32(skb, TCA_CAKE_FWMARK, q->fwmark_mask))
2842 goto nla_put_failure;
2843
2844 return nla_nest_end(skb, opts);
2845
2846 nla_put_failure:
2847 return -1;
2848 }
2849
cake_dump_stats(struct Qdisc * sch,struct gnet_dump * d)2850 static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2851 {
2852 struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
2853 struct cake_sched_data *q = qdisc_priv(sch);
2854 struct nlattr *tstats, *ts;
2855 int i;
2856
2857 if (!stats)
2858 return -1;
2859
2860 #define PUT_STAT_U32(attr, data) do { \
2861 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2862 goto nla_put_failure; \
2863 } while (0)
2864 #define PUT_STAT_U64(attr, data) do { \
2865 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2866 data, TCA_CAKE_STATS_PAD)) \
2867 goto nla_put_failure; \
2868 } while (0)
2869
2870 PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2871 PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2872 PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2873 PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2874 PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2875 PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2876 PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2877 PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2878
2879 #undef PUT_STAT_U32
2880 #undef PUT_STAT_U64
2881
2882 tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS);
2883 if (!tstats)
2884 goto nla_put_failure;
2885
2886 #define PUT_TSTAT_U32(attr, data) do { \
2887 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2888 goto nla_put_failure; \
2889 } while (0)
2890 #define PUT_TSTAT_U64(attr, data) do { \
2891 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2892 data, TCA_CAKE_TIN_STATS_PAD)) \
2893 goto nla_put_failure; \
2894 } while (0)
2895
2896 for (i = 0; i < q->tin_cnt; i++) {
2897 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
2898
2899 ts = nla_nest_start_noflag(d->skb, i + 1);
2900 if (!ts)
2901 goto nla_put_failure;
2902
2903 PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2904 PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2905 PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2906
2907 PUT_TSTAT_U32(TARGET_US,
2908 ktime_to_us(ns_to_ktime(b->cparams.target)));
2909 PUT_TSTAT_U32(INTERVAL_US,
2910 ktime_to_us(ns_to_ktime(b->cparams.interval)));
2911
2912 PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2913 PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2914 PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2915 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2916
2917 PUT_TSTAT_U32(PEAK_DELAY_US,
2918 ktime_to_us(ns_to_ktime(b->peak_delay)));
2919 PUT_TSTAT_U32(AVG_DELAY_US,
2920 ktime_to_us(ns_to_ktime(b->avge_delay)));
2921 PUT_TSTAT_U32(BASE_DELAY_US,
2922 ktime_to_us(ns_to_ktime(b->base_delay)));
2923
2924 PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2925 PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2926 PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2927
2928 PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2929 b->decaying_flow_count);
2930 PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2931 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2932 PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2933
2934 PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2935 nla_nest_end(d->skb, ts);
2936 }
2937
2938 #undef PUT_TSTAT_U32
2939 #undef PUT_TSTAT_U64
2940
2941 nla_nest_end(d->skb, tstats);
2942 return nla_nest_end(d->skb, stats);
2943
2944 nla_put_failure:
2945 nla_nest_cancel(d->skb, stats);
2946 return -1;
2947 }
2948
cake_leaf(struct Qdisc * sch,unsigned long arg)2949 static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2950 {
2951 return NULL;
2952 }
2953
cake_find(struct Qdisc * sch,u32 classid)2954 static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2955 {
2956 return 0;
2957 }
2958
cake_bind(struct Qdisc * sch,unsigned long parent,u32 classid)2959 static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2960 u32 classid)
2961 {
2962 return 0;
2963 }
2964
cake_unbind(struct Qdisc * q,unsigned long cl)2965 static void cake_unbind(struct Qdisc *q, unsigned long cl)
2966 {
2967 }
2968
cake_tcf_block(struct Qdisc * sch,unsigned long cl,struct netlink_ext_ack * extack)2969 static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2970 struct netlink_ext_ack *extack)
2971 {
2972 struct cake_sched_data *q = qdisc_priv(sch);
2973
2974 if (cl)
2975 return NULL;
2976 return q->block;
2977 }
2978
cake_dump_class(struct Qdisc * sch,unsigned long cl,struct sk_buff * skb,struct tcmsg * tcm)2979 static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
2980 struct sk_buff *skb, struct tcmsg *tcm)
2981 {
2982 tcm->tcm_handle |= TC_H_MIN(cl);
2983 return 0;
2984 }
2985
cake_dump_class_stats(struct Qdisc * sch,unsigned long cl,struct gnet_dump * d)2986 static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2987 struct gnet_dump *d)
2988 {
2989 struct cake_sched_data *q = qdisc_priv(sch);
2990 const struct cake_flow *flow = NULL;
2991 struct gnet_stats_queue qs = { 0 };
2992 struct nlattr *stats;
2993 u32 idx = cl - 1;
2994
2995 if (idx < CAKE_QUEUES * q->tin_cnt) {
2996 const struct cake_tin_data *b = \
2997 &q->tins[q->tin_order[idx / CAKE_QUEUES]];
2998 const struct sk_buff *skb;
2999
3000 flow = &b->flows[idx % CAKE_QUEUES];
3001
3002 if (flow->head) {
3003 sch_tree_lock(sch);
3004 skb = flow->head;
3005 while (skb) {
3006 qs.qlen++;
3007 skb = skb->next;
3008 }
3009 sch_tree_unlock(sch);
3010 }
3011 qs.backlog = b->backlogs[idx % CAKE_QUEUES];
3012 qs.drops = flow->dropped;
3013 }
3014 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
3015 return -1;
3016 if (flow) {
3017 ktime_t now = ktime_get();
3018
3019 stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
3020 if (!stats)
3021 return -1;
3022
3023 #define PUT_STAT_U32(attr, data) do { \
3024 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3025 goto nla_put_failure; \
3026 } while (0)
3027 #define PUT_STAT_S32(attr, data) do { \
3028 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3029 goto nla_put_failure; \
3030 } while (0)
3031
3032 PUT_STAT_S32(DEFICIT, flow->deficit);
3033 PUT_STAT_U32(DROPPING, flow->cvars.dropping);
3034 PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
3035 PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
3036 if (flow->cvars.p_drop) {
3037 PUT_STAT_S32(BLUE_TIMER_US,
3038 ktime_to_us(
3039 ktime_sub(now,
3040 flow->cvars.blue_timer)));
3041 }
3042 if (flow->cvars.dropping) {
3043 PUT_STAT_S32(DROP_NEXT_US,
3044 ktime_to_us(
3045 ktime_sub(now,
3046 flow->cvars.drop_next)));
3047 }
3048
3049 if (nla_nest_end(d->skb, stats) < 0)
3050 return -1;
3051 }
3052
3053 return 0;
3054
3055 nla_put_failure:
3056 nla_nest_cancel(d->skb, stats);
3057 return -1;
3058 }
3059
cake_walk(struct Qdisc * sch,struct qdisc_walker * arg)3060 static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
3061 {
3062 struct cake_sched_data *q = qdisc_priv(sch);
3063 unsigned int i, j;
3064
3065 if (arg->stop)
3066 return;
3067
3068 for (i = 0; i < q->tin_cnt; i++) {
3069 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
3070
3071 for (j = 0; j < CAKE_QUEUES; j++) {
3072 if (list_empty(&b->flows[j].flowchain)) {
3073 arg->count++;
3074 continue;
3075 }
3076 if (!tc_qdisc_stats_dump(sch, i * CAKE_QUEUES + j + 1,
3077 arg))
3078 break;
3079 }
3080 }
3081 }
3082
3083 static const struct Qdisc_class_ops cake_class_ops = {
3084 .leaf = cake_leaf,
3085 .find = cake_find,
3086 .tcf_block = cake_tcf_block,
3087 .bind_tcf = cake_bind,
3088 .unbind_tcf = cake_unbind,
3089 .dump = cake_dump_class,
3090 .dump_stats = cake_dump_class_stats,
3091 .walk = cake_walk,
3092 };
3093
3094 static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3095 .cl_ops = &cake_class_ops,
3096 .id = "cake",
3097 .priv_size = sizeof(struct cake_sched_data),
3098 .enqueue = cake_enqueue,
3099 .dequeue = cake_dequeue,
3100 .peek = qdisc_peek_dequeued,
3101 .init = cake_init,
3102 .reset = cake_reset,
3103 .destroy = cake_destroy,
3104 .change = cake_change,
3105 .dump = cake_dump,
3106 .dump_stats = cake_dump_stats,
3107 .owner = THIS_MODULE,
3108 };
3109
cake_module_init(void)3110 static int __init cake_module_init(void)
3111 {
3112 return register_qdisc(&cake_qdisc_ops);
3113 }
3114
cake_module_exit(void)3115 static void __exit cake_module_exit(void)
3116 {
3117 unregister_qdisc(&cake_qdisc_ops);
3118 }
3119
3120 module_init(cake_module_init)
3121 module_exit(cake_module_exit)
3122 MODULE_AUTHOR("Jonathan Morton");
3123 MODULE_LICENSE("Dual BSD/GPL");
3124 MODULE_DESCRIPTION("The CAKE shaper.");
3125