xref: /openbmc/u-boot/drivers/crypto/fsl/jobdesc.c (revision 83d290c56fab2d38cd1ab4c4cc7099559c1d5046)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * SEC Descriptor Construction Library
4  * Basic job descriptor construction
5  *
6  * Copyright 2014 Freescale Semiconductor, Inc.
7  *
8  */
9 
10 #include <common.h>
11 #include <fsl_sec.h>
12 #include "desc_constr.h"
13 #include "jobdesc.h"
14 #include "rsa_caam.h"
15 
16 #if defined(CONFIG_MX6) || defined(CONFIG_MX7)
17 /*!
18  * Secure memory run command
19  *
20  * @param   sec_mem_cmd  Secure memory command register
21  * @return  cmd_status  Secure memory command status register
22  */
secmem_set_cmd(uint32_t sec_mem_cmd)23 uint32_t secmem_set_cmd(uint32_t sec_mem_cmd)
24 {
25 	uint32_t temp_reg;
26 
27 	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
28 	uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
29 	uint32_t jr_id = 0;
30 
31 	sec_out32(CAAM_SMCJR(sm_vid, jr_id), sec_mem_cmd);
32 
33 	do {
34 		temp_reg = sec_in32(CAAM_SMCSJR(sm_vid, jr_id));
35 	} while (temp_reg & CMD_COMPLETE);
36 
37 	return temp_reg;
38 }
39 
40 /*!
41  * CAAM page allocation:
42  * Allocates a partition from secure memory, with the id
43  * equal to partition_num. This will de-allocate the page
44  * if it is already allocated. The partition will have
45  * full access permissions. The permissions are set before,
46  * running a job descriptor. A memory page of secure RAM
47  * is allocated for the partition.
48  *
49  * @param   page  Number of the page to allocate.
50  * @param   partition  Number of the partition to allocate.
51  * @return  0 on success, ERROR_IN_PAGE_ALLOC otherwise
52  */
caam_page_alloc(uint8_t page_num,uint8_t partition_num)53 int caam_page_alloc(uint8_t page_num, uint8_t partition_num)
54 {
55 	uint32_t temp_reg;
56 
57 	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
58 	uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
59 	uint32_t jr_id = 0;
60 
61 	/*
62 	 * De-Allocate partition_num if already allocated to ARM core
63 	 */
64 	if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) {
65 		temp_reg = secmem_set_cmd(PARTITION(partition_num) |
66 						CMD_PART_DEALLOC);
67 		if (temp_reg & SMCSJR_AERR) {
68 			printf("Error: De-allocation status 0x%X\n", temp_reg);
69 			return ERROR_IN_PAGE_ALLOC;
70 		}
71 	}
72 
73 	/* set the access rights to allow full access */
74 	sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, partition_num), 0xF);
75 	sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, partition_num), 0xF);
76 	sec_out32(CAAM_SMAPJR(sm_vid, jr_id, partition_num), 0xFF);
77 
78 	/* Now need to allocate partition_num of secure RAM. */
79 	/* De-Allocate page_num by starting with a page inquiry command */
80 	temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
81 
82 	/* if the page is owned, de-allocate it */
83 	if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) {
84 		temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC);
85 		if (temp_reg & SMCSJR_AERR) {
86 			printf("Error: Allocation status 0x%X\n", temp_reg);
87 			return ERROR_IN_PAGE_ALLOC;
88 		}
89 	}
90 
91 	/* Allocate page_num to partition_num */
92 	temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num)
93 						| CMD_PAGE_ALLOC);
94 	if (temp_reg & SMCSJR_AERR) {
95 		printf("Error: Allocation status 0x%X\n", temp_reg);
96 		return ERROR_IN_PAGE_ALLOC;
97 	}
98 	/* page inquiry command to ensure that the page was allocated */
99 	temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
100 
101 	/* if the page is not owned => problem */
102 	if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) {
103 		printf("Allocation of page %d in partition %d failed 0x%X\n",
104 		       temp_reg, page_num, partition_num);
105 
106 		return ERROR_IN_PAGE_ALLOC;
107 	}
108 
109 	return 0;
110 }
111 
inline_cnstr_jobdesc_blob_dek(uint32_t * desc,const uint8_t * plain_txt,uint8_t * dek_blob,uint32_t in_sz)112 int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt,
113 				       uint8_t *dek_blob, uint32_t in_sz)
114 {
115 	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
116 	uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
117 	uint32_t jr_id = 0;
118 
119 	uint32_t ret = 0;
120 	u32 aad_w1, aad_w2;
121 	/* output blob will have 32 bytes key blob in beginning and
122 	 * 16 byte HMAC identifier at end of data blob */
123 	uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
124 	/* Setting HDR for blob */
125 	uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz,
126 			     HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG};
127 
128 	/* initialize the blob array */
129 	memset(dek_blob, 0, out_sz + 8);
130 	/* Copy the header into the DEK blob buffer */
131 	memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr));
132 
133 	/* allocating secure memory */
134 	ret = caam_page_alloc(PAGE_1, PARTITION_1);
135 	if (ret)
136 		return ret;
137 
138 	/* Write DEK to secure memory */
139 	memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz);
140 
141 	unsigned long start = (unsigned long)SEC_MEM_PAGE1 &
142 				~(ARCH_DMA_MINALIGN - 1);
143 	unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN);
144 	flush_dcache_range(start, end);
145 
146 	/* Now configure the access rights of the partition */
147 	sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, PARTITION_1), KS_G1);
148 	sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, PARTITION_1), 0);
149 	sec_out32(CAAM_SMAPJR(sm_vid, jr_id, PARTITION_1), PERM);
150 
151 	/* construct aad for AES */
152 	aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE;
153 	aad_w2 = 0x0;
154 
155 	init_job_desc(desc, 0);
156 
157 	append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC |
158 				(0x0c << LDST_OFFSET_SHIFT) | 0x08);
159 
160 	append_u32(desc, aad_w1);
161 
162 	append_u32(desc, aad_w2);
163 
164 	append_cmd_ptr(desc, (dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR);
165 
166 	append_cmd_ptr(desc, (dma_addr_t)dek_blob + 8, out_sz, CMD_SEQ_OUT_PTR);
167 
168 	append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB |
169 						OP_PCLID_SECMEM);
170 
171 	return ret;
172 }
173 #endif
174 
inline_cnstr_jobdesc_hash(uint32_t * desc,const uint8_t * msg,uint32_t msgsz,uint8_t * digest,u32 alg_type,uint32_t alg_size,int sg_tbl)175 void inline_cnstr_jobdesc_hash(uint32_t *desc,
176 			  const uint8_t *msg, uint32_t msgsz, uint8_t *digest,
177 			  u32 alg_type, uint32_t alg_size, int sg_tbl)
178 {
179 	/* SHA 256 , output is of length 32 words */
180 	uint32_t storelen = alg_size;
181 	u32 options;
182 	dma_addr_t dma_addr_in, dma_addr_out;
183 
184 	dma_addr_in = virt_to_phys((void *)msg);
185 	dma_addr_out = virt_to_phys((void *)digest);
186 
187 	init_job_desc(desc, 0);
188 	append_operation(desc, OP_TYPE_CLASS2_ALG |
189 			 OP_ALG_AAI_HASH | OP_ALG_AS_INITFINAL |
190 			 OP_ALG_ENCRYPT | OP_ALG_ICV_OFF | alg_type);
191 
192 	options = LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2;
193 	if (sg_tbl)
194 		options |= FIFOLDST_SGF;
195 	if (msgsz > 0xffff) {
196 		options |= FIFOLDST_EXT;
197 		append_fifo_load(desc, dma_addr_in, 0, options);
198 		append_cmd(desc, msgsz);
199 	} else {
200 		append_fifo_load(desc, dma_addr_in, msgsz, options);
201 	}
202 
203 	append_store(desc, dma_addr_out, storelen,
204 		     LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT);
205 }
206 #ifndef CONFIG_SPL_BUILD
inline_cnstr_jobdesc_blob_encap(uint32_t * desc,uint8_t * key_idnfr,uint8_t * plain_txt,uint8_t * enc_blob,uint32_t in_sz)207 void inline_cnstr_jobdesc_blob_encap(uint32_t *desc, uint8_t *key_idnfr,
208 				     uint8_t *plain_txt, uint8_t *enc_blob,
209 				     uint32_t in_sz)
210 {
211 	dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
212 	uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
213 	/* output blob will have 32 bytes key blob in beginning and
214 	 * 16 byte HMAC identifier at end of data blob */
215 	uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
216 
217 	dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
218 	dma_addr_in	= virt_to_phys((void *)plain_txt);
219 	dma_addr_out	= virt_to_phys((void *)enc_blob);
220 
221 	init_job_desc(desc, 0);
222 
223 	append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
224 
225 	append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
226 
227 	append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
228 
229 	append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB);
230 }
231 
inline_cnstr_jobdesc_blob_decap(uint32_t * desc,uint8_t * key_idnfr,uint8_t * enc_blob,uint8_t * plain_txt,uint32_t out_sz)232 void inline_cnstr_jobdesc_blob_decap(uint32_t *desc, uint8_t *key_idnfr,
233 				     uint8_t *enc_blob, uint8_t *plain_txt,
234 				     uint32_t out_sz)
235 {
236 	dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
237 	uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
238 	uint32_t in_sz = out_sz + KEY_BLOB_SIZE + MAC_SIZE;
239 
240 	dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
241 	dma_addr_in	= virt_to_phys((void *)enc_blob);
242 	dma_addr_out	= virt_to_phys((void *)plain_txt);
243 
244 	init_job_desc(desc, 0);
245 
246 	append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
247 
248 	append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
249 
250 	append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
251 
252 	append_operation(desc, OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB);
253 }
254 #endif
255 /*
256  * Descriptor to instantiate RNG State Handle 0 in normal mode and
257  * load the JDKEK, TDKEK and TDSK registers
258  */
inline_cnstr_jobdesc_rng_instantiation(uint32_t * desc,int handle)259 void inline_cnstr_jobdesc_rng_instantiation(uint32_t *desc, int handle)
260 {
261 	u32 *jump_cmd;
262 
263 	init_job_desc(desc, 0);
264 
265 	/* INIT RNG in non-test mode */
266 	append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
267 			(handle << OP_ALG_AAI_SHIFT) | OP_ALG_AS_INIT);
268 
269 	/* For SH0, Secure Keys must be generated as well */
270 	if (handle == 0) {
271 		/* wait for done */
272 		jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1);
273 		set_jump_tgt_here(desc, jump_cmd);
274 
275 		/*
276 		 * load 1 to clear written reg:
277 		 * resets the done interrupt and returns the RNG to idle.
278 		 */
279 		append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW);
280 
281 		/* generate secure keys (non-test) */
282 		append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
283 				OP_ALG_RNG4_SK);
284 	}
285 }
286 
287 /* Change key size to bytes form bits in calling function*/
inline_cnstr_jobdesc_pkha_rsaexp(uint32_t * desc,struct pk_in_params * pkin,uint8_t * out,uint32_t out_siz)288 void inline_cnstr_jobdesc_pkha_rsaexp(uint32_t *desc,
289 				      struct pk_in_params *pkin, uint8_t *out,
290 				      uint32_t out_siz)
291 {
292 	dma_addr_t dma_addr_e, dma_addr_a, dma_addr_n, dma_addr_out;
293 
294 	dma_addr_e = virt_to_phys((void *)pkin->e);
295 	dma_addr_a = virt_to_phys((void *)pkin->a);
296 	dma_addr_n = virt_to_phys((void *)pkin->n);
297 	dma_addr_out = virt_to_phys((void *)out);
298 
299 	init_job_desc(desc, 0);
300 	append_key(desc, dma_addr_e, pkin->e_siz, KEY_DEST_PKHA_E | CLASS_1);
301 
302 	append_fifo_load(desc, dma_addr_a,
303 			 pkin->a_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_A);
304 
305 	append_fifo_load(desc, dma_addr_n,
306 			 pkin->n_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_N);
307 
308 	append_operation(desc, OP_TYPE_PK | OP_ALG_PK | OP_ALG_PKMODE_MOD_EXPO);
309 
310 	append_fifo_store(desc, dma_addr_out, out_siz,
311 			  LDST_CLASS_1_CCB | FIFOST_TYPE_PKHA_B);
312 }
313