1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * CAAM/SEC 4.x QI transport/backend driver
4 * Queue Interface backend functionality
5 *
6 * Copyright 2013-2016 Freescale Semiconductor, Inc.
7 * Copyright 2016-2017, 2019-2020 NXP
8 */
9
10 #include <linux/cpumask.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/kernel.h>
14 #include <linux/kthread.h>
15 #include <linux/netdevice.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <soc/fsl/qman.h>
20
21 #include "debugfs.h"
22 #include "regs.h"
23 #include "qi.h"
24 #include "desc.h"
25 #include "intern.h"
26 #include "desc_constr.h"
27
28 #define PREHDR_RSLS_SHIFT 31
29 #define PREHDR_ABS BIT(25)
30
31 /*
32 * Use a reasonable backlog of frames (per CPU) as congestion threshold,
33 * so that resources used by the in-flight buffers do not become a memory hog.
34 */
35 #define MAX_RSP_FQ_BACKLOG_PER_CPU 256
36
37 #define CAAM_QI_ENQUEUE_RETRIES 10000
38
39 #define CAAM_NAPI_WEIGHT 63
40
41 /*
42 * caam_napi - struct holding CAAM NAPI-related params
43 * @irqtask: IRQ task for QI backend
44 * @p: QMan portal
45 */
46 struct caam_napi {
47 struct napi_struct irqtask;
48 struct qman_portal *p;
49 };
50
51 /*
52 * caam_qi_pcpu_priv - percpu private data structure to main list of pending
53 * responses expected on each cpu.
54 * @caam_napi: CAAM NAPI params
55 * @net_dev: netdev used by NAPI
56 * @rsp_fq: response FQ from CAAM
57 */
58 struct caam_qi_pcpu_priv {
59 struct caam_napi caam_napi;
60 struct net_device net_dev;
61 struct qman_fq *rsp_fq;
62 } ____cacheline_aligned;
63
64 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
65 static DEFINE_PER_CPU(int, last_cpu);
66
67 /*
68 * caam_qi_priv - CAAM QI backend private params
69 * @cgr: QMan congestion group
70 */
71 struct caam_qi_priv {
72 struct qman_cgr cgr;
73 };
74
75 static struct caam_qi_priv qipriv ____cacheline_aligned;
76
77 /*
78 * This is written by only one core - the one that initialized the CGR - and
79 * read by multiple cores (all the others).
80 */
81 bool caam_congested __read_mostly;
82 EXPORT_SYMBOL(caam_congested);
83
84 /*
85 * This is a cache of buffers, from which the users of CAAM QI driver
86 * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
87 * doing malloc on the hotpath.
88 * NOTE: A more elegant solution would be to have some headroom in the frames
89 * being processed. This could be added by the dpaa-ethernet driver.
90 * This would pose a problem for userspace application processing which
91 * cannot know of this limitation. So for now, this will work.
92 * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
93 */
94 static struct kmem_cache *qi_cache;
95
caam_iova_to_virt(struct iommu_domain * domain,dma_addr_t iova_addr)96 static void *caam_iova_to_virt(struct iommu_domain *domain,
97 dma_addr_t iova_addr)
98 {
99 phys_addr_t phys_addr;
100
101 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
102
103 return phys_to_virt(phys_addr);
104 }
105
caam_qi_enqueue(struct device * qidev,struct caam_drv_req * req)106 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
107 {
108 struct qm_fd fd;
109 dma_addr_t addr;
110 int ret;
111 int num_retries = 0;
112
113 qm_fd_clear_fd(&fd);
114 qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
115
116 addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
117 DMA_BIDIRECTIONAL);
118 if (dma_mapping_error(qidev, addr)) {
119 dev_err(qidev, "DMA mapping error for QI enqueue request\n");
120 return -EIO;
121 }
122 qm_fd_addr_set64(&fd, addr);
123
124 do {
125 ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
126 if (likely(!ret)) {
127 refcount_inc(&req->drv_ctx->refcnt);
128 return 0;
129 }
130
131 if (ret != -EBUSY)
132 break;
133 num_retries++;
134 } while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
135
136 dev_err(qidev, "qman_enqueue failed: %d\n", ret);
137
138 return ret;
139 }
140 EXPORT_SYMBOL(caam_qi_enqueue);
141
caam_fq_ern_cb(struct qman_portal * qm,struct qman_fq * fq,const union qm_mr_entry * msg)142 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
143 const union qm_mr_entry *msg)
144 {
145 const struct qm_fd *fd;
146 struct caam_drv_req *drv_req;
147 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
148 struct caam_drv_private *priv = dev_get_drvdata(qidev);
149
150 fd = &msg->ern.fd;
151
152 drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
153 if (!drv_req) {
154 dev_err(qidev,
155 "Can't find original request for CAAM response\n");
156 return;
157 }
158
159 refcount_dec(&drv_req->drv_ctx->refcnt);
160
161 if (qm_fd_get_format(fd) != qm_fd_compound) {
162 dev_err(qidev, "Non-compound FD from CAAM\n");
163 return;
164 }
165
166 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
167 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
168
169 if (fd->status)
170 drv_req->cbk(drv_req, be32_to_cpu(fd->status));
171 else
172 drv_req->cbk(drv_req, JRSTA_SSRC_QI);
173 }
174
create_caam_req_fq(struct device * qidev,struct qman_fq * rsp_fq,dma_addr_t hwdesc,int fq_sched_flag)175 static struct qman_fq *create_caam_req_fq(struct device *qidev,
176 struct qman_fq *rsp_fq,
177 dma_addr_t hwdesc,
178 int fq_sched_flag)
179 {
180 int ret;
181 struct qman_fq *req_fq;
182 struct qm_mcc_initfq opts;
183
184 req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
185 if (!req_fq)
186 return ERR_PTR(-ENOMEM);
187
188 req_fq->cb.ern = caam_fq_ern_cb;
189 req_fq->cb.fqs = NULL;
190
191 ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
192 QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
193 if (ret) {
194 dev_err(qidev, "Failed to create session req FQ\n");
195 goto create_req_fq_fail;
196 }
197
198 memset(&opts, 0, sizeof(opts));
199 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
200 QM_INITFQ_WE_CONTEXTB |
201 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
202 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
203 qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
204 opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
205 qm_fqd_context_a_set64(&opts.fqd, hwdesc);
206 opts.fqd.cgid = qipriv.cgr.cgrid;
207
208 ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
209 if (ret) {
210 dev_err(qidev, "Failed to init session req FQ\n");
211 goto init_req_fq_fail;
212 }
213
214 dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
215 smp_processor_id());
216 return req_fq;
217
218 init_req_fq_fail:
219 qman_destroy_fq(req_fq);
220 create_req_fq_fail:
221 kfree(req_fq);
222 return ERR_PTR(ret);
223 }
224
empty_retired_fq(struct device * qidev,struct qman_fq * fq)225 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
226 {
227 int ret;
228
229 ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
230 QMAN_VOLATILE_FLAG_FINISH,
231 QM_VDQCR_PRECEDENCE_VDQCR |
232 QM_VDQCR_NUMFRAMES_TILLEMPTY);
233 if (ret) {
234 dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
235 return ret;
236 }
237
238 do {
239 struct qman_portal *p;
240
241 p = qman_get_affine_portal(smp_processor_id());
242 qman_p_poll_dqrr(p, 16);
243 } while (fq->flags & QMAN_FQ_STATE_NE);
244
245 return 0;
246 }
247
kill_fq(struct device * qidev,struct qman_fq * fq)248 static int kill_fq(struct device *qidev, struct qman_fq *fq)
249 {
250 u32 flags;
251 int ret;
252
253 ret = qman_retire_fq(fq, &flags);
254 if (ret < 0) {
255 dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
256 return ret;
257 }
258
259 if (!ret)
260 goto empty_fq;
261
262 /* Async FQ retirement condition */
263 if (ret == 1) {
264 /* Retry till FQ gets in retired state */
265 do {
266 msleep(20);
267 } while (fq->state != qman_fq_state_retired);
268
269 WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
270 WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
271 }
272
273 empty_fq:
274 if (fq->flags & QMAN_FQ_STATE_NE) {
275 ret = empty_retired_fq(qidev, fq);
276 if (ret) {
277 dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
278 fq->fqid);
279 return ret;
280 }
281 }
282
283 ret = qman_oos_fq(fq);
284 if (ret)
285 dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
286
287 qman_destroy_fq(fq);
288 kfree(fq);
289
290 return ret;
291 }
292
empty_caam_fq(struct qman_fq * fq,struct caam_drv_ctx * drv_ctx)293 static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx)
294 {
295 int ret;
296 int retries = 10;
297 struct qm_mcr_queryfq_np np;
298
299 /* Wait till the older CAAM FQ get empty */
300 do {
301 ret = qman_query_fq_np(fq, &np);
302 if (ret)
303 return ret;
304
305 if (!qm_mcr_np_get(&np, frm_cnt))
306 break;
307
308 msleep(20);
309 } while (1);
310
311 /* Wait until pending jobs from this FQ are processed by CAAM */
312 do {
313 if (refcount_read(&drv_ctx->refcnt) == 1)
314 break;
315
316 msleep(20);
317 } while (--retries);
318
319 if (!retries)
320 dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n",
321 refcount_read(&drv_ctx->refcnt), fq->fqid);
322
323 return 0;
324 }
325
caam_drv_ctx_update(struct caam_drv_ctx * drv_ctx,u32 * sh_desc)326 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
327 {
328 int ret;
329 u32 num_words;
330 struct qman_fq *new_fq, *old_fq;
331 struct device *qidev = drv_ctx->qidev;
332
333 num_words = desc_len(sh_desc);
334 if (num_words > MAX_SDLEN) {
335 dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
336 return -EINVAL;
337 }
338
339 /* Note down older req FQ */
340 old_fq = drv_ctx->req_fq;
341
342 /* Create a new req FQ in parked state */
343 new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
344 drv_ctx->context_a, 0);
345 if (IS_ERR(new_fq)) {
346 dev_err(qidev, "FQ allocation for shdesc update failed\n");
347 return PTR_ERR(new_fq);
348 }
349
350 /* Hook up new FQ to context so that new requests keep queuing */
351 drv_ctx->req_fq = new_fq;
352
353 /* Empty and remove the older FQ */
354 ret = empty_caam_fq(old_fq, drv_ctx);
355 if (ret) {
356 dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
357
358 /* We can revert to older FQ */
359 drv_ctx->req_fq = old_fq;
360
361 if (kill_fq(qidev, new_fq))
362 dev_warn(qidev, "New CAAM FQ kill failed\n");
363
364 return ret;
365 }
366
367 /*
368 * Re-initialise pre-header. Set RSLS and SDLEN.
369 * Update the shared descriptor for driver context.
370 */
371 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
372 num_words);
373 drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
374 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
375 dma_sync_single_for_device(qidev, drv_ctx->context_a,
376 sizeof(drv_ctx->sh_desc) +
377 sizeof(drv_ctx->prehdr),
378 DMA_BIDIRECTIONAL);
379
380 /* Put the new FQ in scheduled state */
381 ret = qman_schedule_fq(new_fq);
382 if (ret) {
383 dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
384
385 /*
386 * We can kill new FQ and revert to old FQ.
387 * Since the desc is already modified, it is success case
388 */
389
390 drv_ctx->req_fq = old_fq;
391
392 if (kill_fq(qidev, new_fq))
393 dev_warn(qidev, "New CAAM FQ kill failed\n");
394 } else if (kill_fq(qidev, old_fq)) {
395 dev_warn(qidev, "Old CAAM FQ kill failed\n");
396 }
397
398 return 0;
399 }
400 EXPORT_SYMBOL(caam_drv_ctx_update);
401
caam_drv_ctx_init(struct device * qidev,int * cpu,u32 * sh_desc)402 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
403 int *cpu,
404 u32 *sh_desc)
405 {
406 size_t size;
407 u32 num_words;
408 dma_addr_t hwdesc;
409 struct caam_drv_ctx *drv_ctx;
410 const cpumask_t *cpus = qman_affine_cpus();
411
412 num_words = desc_len(sh_desc);
413 if (num_words > MAX_SDLEN) {
414 dev_err(qidev, "Invalid descriptor len: %d words\n",
415 num_words);
416 return ERR_PTR(-EINVAL);
417 }
418
419 drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
420 if (!drv_ctx)
421 return ERR_PTR(-ENOMEM);
422
423 /*
424 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor
425 * and dma-map them.
426 */
427 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
428 num_words);
429 drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
430 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
431 size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
432 hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
433 DMA_BIDIRECTIONAL);
434 if (dma_mapping_error(qidev, hwdesc)) {
435 dev_err(qidev, "DMA map error for preheader + shdesc\n");
436 kfree(drv_ctx);
437 return ERR_PTR(-ENOMEM);
438 }
439 drv_ctx->context_a = hwdesc;
440
441 /* If given CPU does not own the portal, choose another one that does */
442 if (!cpumask_test_cpu(*cpu, cpus)) {
443 int *pcpu = &get_cpu_var(last_cpu);
444
445 *pcpu = cpumask_next(*pcpu, cpus);
446 if (*pcpu >= nr_cpu_ids)
447 *pcpu = cpumask_first(cpus);
448 *cpu = *pcpu;
449
450 put_cpu_var(last_cpu);
451 }
452 drv_ctx->cpu = *cpu;
453
454 /* Find response FQ hooked with this CPU */
455 drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
456
457 /* Attach request FQ */
458 drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
459 QMAN_INITFQ_FLAG_SCHED);
460 if (IS_ERR(drv_ctx->req_fq)) {
461 dev_err(qidev, "create_caam_req_fq failed\n");
462 dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
463 kfree(drv_ctx);
464 return ERR_PTR(-ENOMEM);
465 }
466
467 /* init reference counter used to track references to request FQ */
468 refcount_set(&drv_ctx->refcnt, 1);
469
470 drv_ctx->qidev = qidev;
471 return drv_ctx;
472 }
473 EXPORT_SYMBOL(caam_drv_ctx_init);
474
qi_cache_alloc(gfp_t flags)475 void *qi_cache_alloc(gfp_t flags)
476 {
477 return kmem_cache_alloc(qi_cache, flags);
478 }
479 EXPORT_SYMBOL(qi_cache_alloc);
480
qi_cache_free(void * obj)481 void qi_cache_free(void *obj)
482 {
483 kmem_cache_free(qi_cache, obj);
484 }
485 EXPORT_SYMBOL(qi_cache_free);
486
caam_qi_poll(struct napi_struct * napi,int budget)487 static int caam_qi_poll(struct napi_struct *napi, int budget)
488 {
489 struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
490
491 int cleaned = qman_p_poll_dqrr(np->p, budget);
492
493 if (cleaned < budget) {
494 napi_complete(napi);
495 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
496 }
497
498 return cleaned;
499 }
500
caam_drv_ctx_rel(struct caam_drv_ctx * drv_ctx)501 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
502 {
503 if (IS_ERR_OR_NULL(drv_ctx))
504 return;
505
506 /* Remove request FQ */
507 if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
508 dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
509
510 dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
511 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
512 DMA_BIDIRECTIONAL);
513 kfree(drv_ctx);
514 }
515 EXPORT_SYMBOL(caam_drv_ctx_rel);
516
caam_qi_shutdown(void * data)517 static void caam_qi_shutdown(void *data)
518 {
519 int i;
520 struct device *qidev = data;
521 struct caam_qi_priv *priv = &qipriv;
522 const cpumask_t *cpus = qman_affine_cpus();
523
524 for_each_cpu(i, cpus) {
525 struct napi_struct *irqtask;
526
527 irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
528 napi_disable(irqtask);
529 netif_napi_del(irqtask);
530
531 if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
532 dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
533 }
534
535 qman_delete_cgr_safe(&priv->cgr);
536 qman_release_cgrid(priv->cgr.cgrid);
537
538 kmem_cache_destroy(qi_cache);
539 }
540
cgr_cb(struct qman_portal * qm,struct qman_cgr * cgr,int congested)541 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
542 {
543 caam_congested = congested;
544
545 if (congested) {
546 caam_debugfs_qi_congested();
547
548 pr_debug_ratelimited("CAAM entered congestion\n");
549
550 } else {
551 pr_debug_ratelimited("CAAM exited congestion\n");
552 }
553 }
554
caam_qi_napi_schedule(struct qman_portal * p,struct caam_napi * np,bool sched_napi)555 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np,
556 bool sched_napi)
557 {
558 if (sched_napi) {
559 /* Disable QMan IRQ source and invoke NAPI */
560 qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
561 np->p = p;
562 napi_schedule(&np->irqtask);
563 return 1;
564 }
565 return 0;
566 }
567
caam_rsp_fq_dqrr_cb(struct qman_portal * p,struct qman_fq * rsp_fq,const struct qm_dqrr_entry * dqrr,bool sched_napi)568 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
569 struct qman_fq *rsp_fq,
570 const struct qm_dqrr_entry *dqrr,
571 bool sched_napi)
572 {
573 struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
574 struct caam_drv_req *drv_req;
575 const struct qm_fd *fd;
576 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
577 struct caam_drv_private *priv = dev_get_drvdata(qidev);
578 u32 status;
579
580 if (caam_qi_napi_schedule(p, caam_napi, sched_napi))
581 return qman_cb_dqrr_stop;
582
583 fd = &dqrr->fd;
584
585 drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
586 if (unlikely(!drv_req)) {
587 dev_err(qidev,
588 "Can't find original request for caam response\n");
589 return qman_cb_dqrr_consume;
590 }
591
592 refcount_dec(&drv_req->drv_ctx->refcnt);
593
594 status = be32_to_cpu(fd->status);
595 if (unlikely(status)) {
596 u32 ssrc = status & JRSTA_SSRC_MASK;
597 u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
598
599 if (ssrc != JRSTA_SSRC_CCB_ERROR ||
600 err_id != JRSTA_CCBERR_ERRID_ICVCHK)
601 dev_err_ratelimited(qidev,
602 "Error: %#x in CAAM response FD\n",
603 status);
604 }
605
606 if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
607 dev_err(qidev, "Non-compound FD from CAAM\n");
608 return qman_cb_dqrr_consume;
609 }
610
611 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
612 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
613
614 drv_req->cbk(drv_req, status);
615 return qman_cb_dqrr_consume;
616 }
617
alloc_rsp_fq_cpu(struct device * qidev,unsigned int cpu)618 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
619 {
620 struct qm_mcc_initfq opts;
621 struct qman_fq *fq;
622 int ret;
623
624 fq = kzalloc(sizeof(*fq), GFP_KERNEL);
625 if (!fq)
626 return -ENOMEM;
627
628 fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
629
630 ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
631 QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
632 if (ret) {
633 dev_err(qidev, "Rsp FQ create failed\n");
634 kfree(fq);
635 return -ENODEV;
636 }
637
638 memset(&opts, 0, sizeof(opts));
639 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
640 QM_INITFQ_WE_CONTEXTB |
641 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
642 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
643 QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
644 qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
645 opts.fqd.cgid = qipriv.cgr.cgrid;
646 opts.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_CTX |
647 QM_STASHING_EXCL_DATA;
648 qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
649
650 ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
651 if (ret) {
652 dev_err(qidev, "Rsp FQ init failed\n");
653 kfree(fq);
654 return -ENODEV;
655 }
656
657 per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
658
659 dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
660 return 0;
661 }
662
init_cgr(struct device * qidev)663 static int init_cgr(struct device *qidev)
664 {
665 int ret;
666 struct qm_mcc_initcgr opts;
667 const u64 val = (u64)cpumask_weight(qman_affine_cpus()) *
668 MAX_RSP_FQ_BACKLOG_PER_CPU;
669
670 ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
671 if (ret) {
672 dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
673 return ret;
674 }
675
676 qipriv.cgr.cb = cgr_cb;
677 memset(&opts, 0, sizeof(opts));
678 opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
679 QM_CGR_WE_MODE);
680 opts.cgr.cscn_en = QM_CGR_EN;
681 opts.cgr.mode = QMAN_CGR_MODE_FRAME;
682 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
683
684 ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
685 if (ret) {
686 dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
687 qipriv.cgr.cgrid);
688 return ret;
689 }
690
691 dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
692 return 0;
693 }
694
alloc_rsp_fqs(struct device * qidev)695 static int alloc_rsp_fqs(struct device *qidev)
696 {
697 int ret, i;
698 const cpumask_t *cpus = qman_affine_cpus();
699
700 /*Now create response FQs*/
701 for_each_cpu(i, cpus) {
702 ret = alloc_rsp_fq_cpu(qidev, i);
703 if (ret) {
704 dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
705 return ret;
706 }
707 }
708
709 return 0;
710 }
711
free_rsp_fqs(void)712 static void free_rsp_fqs(void)
713 {
714 int i;
715 const cpumask_t *cpus = qman_affine_cpus();
716
717 for_each_cpu(i, cpus)
718 kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
719 }
720
caam_qi_init(struct platform_device * caam_pdev)721 int caam_qi_init(struct platform_device *caam_pdev)
722 {
723 int err, i;
724 struct device *ctrldev = &caam_pdev->dev, *qidev;
725 struct caam_drv_private *ctrlpriv;
726 const cpumask_t *cpus = qman_affine_cpus();
727
728 ctrlpriv = dev_get_drvdata(ctrldev);
729 qidev = ctrldev;
730
731 /* Initialize the congestion detection */
732 err = init_cgr(qidev);
733 if (err) {
734 dev_err(qidev, "CGR initialization failed: %d\n", err);
735 return err;
736 }
737
738 /* Initialise response FQs */
739 err = alloc_rsp_fqs(qidev);
740 if (err) {
741 dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
742 free_rsp_fqs();
743 return err;
744 }
745
746 /*
747 * Enable the NAPI contexts on each of the core which has an affine
748 * portal.
749 */
750 for_each_cpu(i, cpus) {
751 struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
752 struct caam_napi *caam_napi = &priv->caam_napi;
753 struct napi_struct *irqtask = &caam_napi->irqtask;
754 struct net_device *net_dev = &priv->net_dev;
755
756 net_dev->dev = *qidev;
757 INIT_LIST_HEAD(&net_dev->napi_list);
758
759 netif_napi_add_tx_weight(net_dev, irqtask, caam_qi_poll,
760 CAAM_NAPI_WEIGHT);
761
762 napi_enable(irqtask);
763 }
764
765 qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE,
766 dma_get_cache_alignment(), 0, NULL);
767 if (!qi_cache) {
768 dev_err(qidev, "Can't allocate CAAM cache\n");
769 free_rsp_fqs();
770 return -ENOMEM;
771 }
772
773 caam_debugfs_qi_init(ctrlpriv);
774
775 err = devm_add_action_or_reset(qidev, caam_qi_shutdown, qidev);
776 if (err)
777 return err;
778
779 dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
780 return 0;
781 }
782