1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62
63 /* No special request */
64 #define FPI_NONE ((__force fpi_t)0)
65
66 /*
67 * Skip free page reporting notification for the (possibly merged) page.
68 * This does not hinder free page reporting from grabbing the page,
69 * reporting it and marking it "reported" - it only skips notifying
70 * the free page reporting infrastructure about a newly freed page. For
71 * example, used when temporarily pulling a page from a freelist and
72 * putting it back unmodified.
73 */
74 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
75
76 /*
77 * Place the (possibly merged) page to the tail of the freelist. Will ignore
78 * page shuffling (relevant code - e.g., memory onlining - is expected to
79 * shuffle the whole zone).
80 *
81 * Note: No code should rely on this flag for correctness - it's purely
82 * to allow for optimizations when handing back either fresh pages
83 * (memory onlining) or untouched pages (page isolation, free page
84 * reporting).
85 */
86 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
87
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94 * On SMP, spin_trylock is sufficient protection.
95 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96 */
97 #define pcp_trylock_prepare(flags) do { } while (0)
98 #define pcp_trylock_finish(flag) do { } while (0)
99 #else
100
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags) local_irq_save(flags)
103 #define pcp_trylock_finish(flags) local_irq_restore(flags)
104 #endif
105
106 /*
107 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108 * a migration causing the wrong PCP to be locked and remote memory being
109 * potentially allocated, pin the task to the CPU for the lookup+lock.
110 * preempt_disable is used on !RT because it is faster than migrate_disable.
111 * migrate_disable is used on RT because otherwise RT spinlock usage is
112 * interfered with and a high priority task cannot preempt the allocator.
113 */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin() preempt_disable()
116 #define pcpu_task_unpin() preempt_enable()
117 #else
118 #define pcpu_task_pin() migrate_disable()
119 #define pcpu_task_unpin() migrate_enable()
120 #endif
121
122 /*
123 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124 * Return value should be used with equivalent unlock helper.
125 */
126 #define pcpu_spin_lock(type, member, ptr) \
127 ({ \
128 type *_ret; \
129 pcpu_task_pin(); \
130 _ret = this_cpu_ptr(ptr); \
131 spin_lock(&_ret->member); \
132 _ret; \
133 })
134
135 #define pcpu_spin_trylock(type, member, ptr) \
136 ({ \
137 type *_ret; \
138 pcpu_task_pin(); \
139 _ret = this_cpu_ptr(ptr); \
140 if (!spin_trylock(&_ret->member)) { \
141 pcpu_task_unpin(); \
142 _ret = NULL; \
143 } \
144 _ret; \
145 })
146
147 #define pcpu_spin_unlock(member, ptr) \
148 ({ \
149 spin_unlock(&ptr->member); \
150 pcpu_task_unpin(); \
151 })
152
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr) \
155 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156
157 #define pcp_spin_trylock(ptr) \
158 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159
160 #define pcp_spin_unlock(ptr) \
161 pcpu_spin_unlock(lock, ptr)
162
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175 * defined in <linux/topology.h>.
176 */
177 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187
188 /*
189 * Array of node states.
190 */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 [N_POSSIBLE] = NODE_MASK_ALL,
193 [N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 [N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 [N_MEMORY] = { { [0] = 1UL } },
200 [N_CPU] = { { [0] = 1UL } },
201 #endif /* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206
207 /*
208 * A cached value of the page's pageblock's migratetype, used when the page is
209 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211 * Also the migratetype set in the page does not necessarily match the pcplist
212 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213 * other index - this ensures that it will be put on the correct CMA freelist.
214 */
get_pcppage_migratetype(struct page * page)215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 return page->index;
218 }
219
set_pcppage_migratetype(struct page * page,int migratetype)220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 page->index = migratetype;
223 }
224
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 fpi_t fpi_flags);
231
232 /*
233 * results with 256, 32 in the lowmem_reserve sysctl:
234 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235 * 1G machine -> (16M dma, 784M normal, 224M high)
236 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239 *
240 * TBD: should special case ZONE_DMA32 machines here - in those we normally
241 * don't need any ZONE_NORMAL reservation
242 */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 [ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 [ZONE_DMA32] = 256,
249 #endif
250 [ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 [ZONE_HIGHMEM] = 0,
253 #endif
254 [ZONE_MOVABLE] = 0,
255 };
256
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 "DMA32",
263 #endif
264 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 "HighMem",
267 #endif
268 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 "Device",
271 #endif
272 };
273
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 "Unmovable",
276 "Movable",
277 "Reclaimable",
278 "HighAtomic",
279 #ifdef CONFIG_CMA
280 "CMA",
281 #endif
282 #ifdef CONFIG_MEMORY_ISOLATION
283 "Isolate",
284 #endif
285 };
286
287 int min_free_kbytes = 1024;
288 int user_min_free_kbytes = -1;
289 static int watermark_boost_factor __read_mostly = 15000;
290 static int watermark_scale_factor = 10;
291
292 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
293 int movable_zone;
294 EXPORT_SYMBOL(movable_zone);
295
296 #if MAX_NUMNODES > 1
297 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
298 unsigned int nr_online_nodes __read_mostly = 1;
299 EXPORT_SYMBOL(nr_node_ids);
300 EXPORT_SYMBOL(nr_online_nodes);
301 #endif
302
303 static bool page_contains_unaccepted(struct page *page, unsigned int order);
304 static void accept_page(struct page *page, unsigned int order);
305 static bool cond_accept_memory(struct zone *zone, unsigned int order);
306 static inline bool has_unaccepted_memory(void);
307 static bool __free_unaccepted(struct page *page);
308
309 int page_group_by_mobility_disabled __read_mostly;
310
311 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
312 /*
313 * During boot we initialize deferred pages on-demand, as needed, but once
314 * page_alloc_init_late() has finished, the deferred pages are all initialized,
315 * and we can permanently disable that path.
316 */
317 DEFINE_STATIC_KEY_TRUE(deferred_pages);
318
deferred_pages_enabled(void)319 static inline bool deferred_pages_enabled(void)
320 {
321 return static_branch_unlikely(&deferred_pages);
322 }
323
324 /*
325 * deferred_grow_zone() is __init, but it is called from
326 * get_page_from_freelist() during early boot until deferred_pages permanently
327 * disables this call. This is why we have refdata wrapper to avoid warning,
328 * and to ensure that the function body gets unloaded.
329 */
330 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)331 _deferred_grow_zone(struct zone *zone, unsigned int order)
332 {
333 return deferred_grow_zone(zone, order);
334 }
335 #else
deferred_pages_enabled(void)336 static inline bool deferred_pages_enabled(void)
337 {
338 return false;
339 }
340 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
341
342 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)343 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
344 unsigned long pfn)
345 {
346 #ifdef CONFIG_SPARSEMEM
347 return section_to_usemap(__pfn_to_section(pfn));
348 #else
349 return page_zone(page)->pageblock_flags;
350 #endif /* CONFIG_SPARSEMEM */
351 }
352
pfn_to_bitidx(const struct page * page,unsigned long pfn)353 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
354 {
355 #ifdef CONFIG_SPARSEMEM
356 pfn &= (PAGES_PER_SECTION-1);
357 #else
358 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
359 #endif /* CONFIG_SPARSEMEM */
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 }
362
363 /**
364 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
365 * @page: The page within the block of interest
366 * @pfn: The target page frame number
367 * @mask: mask of bits that the caller is interested in
368 *
369 * Return: pageblock_bits flags
370 */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)371 unsigned long get_pfnblock_flags_mask(const struct page *page,
372 unsigned long pfn, unsigned long mask)
373 {
374 unsigned long *bitmap;
375 unsigned long bitidx, word_bitidx;
376 unsigned long word;
377
378 bitmap = get_pageblock_bitmap(page, pfn);
379 bitidx = pfn_to_bitidx(page, pfn);
380 word_bitidx = bitidx / BITS_PER_LONG;
381 bitidx &= (BITS_PER_LONG-1);
382 /*
383 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
384 * a consistent read of the memory array, so that results, even though
385 * racy, are not corrupted.
386 */
387 word = READ_ONCE(bitmap[word_bitidx]);
388 return (word >> bitidx) & mask;
389 }
390
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)391 static __always_inline int get_pfnblock_migratetype(const struct page *page,
392 unsigned long pfn)
393 {
394 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
395 }
396
397 /**
398 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
399 * @page: The page within the block of interest
400 * @flags: The flags to set
401 * @pfn: The target page frame number
402 * @mask: mask of bits that the caller is interested in
403 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)404 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
405 unsigned long pfn,
406 unsigned long mask)
407 {
408 unsigned long *bitmap;
409 unsigned long bitidx, word_bitidx;
410 unsigned long word;
411
412 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
413 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
414
415 bitmap = get_pageblock_bitmap(page, pfn);
416 bitidx = pfn_to_bitidx(page, pfn);
417 word_bitidx = bitidx / BITS_PER_LONG;
418 bitidx &= (BITS_PER_LONG-1);
419
420 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
421
422 mask <<= bitidx;
423 flags <<= bitidx;
424
425 word = READ_ONCE(bitmap[word_bitidx]);
426 do {
427 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
428 }
429
set_pageblock_migratetype(struct page * page,int migratetype)430 void set_pageblock_migratetype(struct page *page, int migratetype)
431 {
432 if (unlikely(page_group_by_mobility_disabled &&
433 migratetype < MIGRATE_PCPTYPES))
434 migratetype = MIGRATE_UNMOVABLE;
435
436 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
437 page_to_pfn(page), MIGRATETYPE_MASK);
438 }
439
440 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)441 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
442 {
443 int ret;
444 unsigned seq;
445 unsigned long pfn = page_to_pfn(page);
446 unsigned long sp, start_pfn;
447
448 do {
449 seq = zone_span_seqbegin(zone);
450 start_pfn = zone->zone_start_pfn;
451 sp = zone->spanned_pages;
452 ret = !zone_spans_pfn(zone, pfn);
453 } while (zone_span_seqretry(zone, seq));
454
455 if (ret)
456 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
457 pfn, zone_to_nid(zone), zone->name,
458 start_pfn, start_pfn + sp);
459
460 return ret;
461 }
462
463 /*
464 * Temporary debugging check for pages not lying within a given zone.
465 */
bad_range(struct zone * zone,struct page * page)466 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
467 {
468 if (page_outside_zone_boundaries(zone, page))
469 return 1;
470 if (zone != page_zone(page))
471 return 1;
472
473 return 0;
474 }
475 #else
bad_range(struct zone * zone,struct page * page)476 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
477 {
478 return 0;
479 }
480 #endif
481
bad_page(struct page * page,const char * reason)482 static void bad_page(struct page *page, const char *reason)
483 {
484 static unsigned long resume;
485 static unsigned long nr_shown;
486 static unsigned long nr_unshown;
487
488 /*
489 * Allow a burst of 60 reports, then keep quiet for that minute;
490 * or allow a steady drip of one report per second.
491 */
492 if (nr_shown == 60) {
493 if (time_before(jiffies, resume)) {
494 nr_unshown++;
495 goto out;
496 }
497 if (nr_unshown) {
498 pr_alert(
499 "BUG: Bad page state: %lu messages suppressed\n",
500 nr_unshown);
501 nr_unshown = 0;
502 }
503 nr_shown = 0;
504 }
505 if (nr_shown++ == 0)
506 resume = jiffies + 60 * HZ;
507
508 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
509 current->comm, page_to_pfn(page));
510 dump_page(page, reason);
511
512 print_modules();
513 dump_stack();
514 out:
515 /* Leave bad fields for debug, except PageBuddy could make trouble */
516 page_mapcount_reset(page); /* remove PageBuddy */
517 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
518 }
519
order_to_pindex(int migratetype,int order)520 static inline unsigned int order_to_pindex(int migratetype, int order)
521 {
522 bool __maybe_unused movable;
523
524 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
525 if (order > PAGE_ALLOC_COSTLY_ORDER) {
526 VM_BUG_ON(order != pageblock_order);
527
528 movable = migratetype == MIGRATE_MOVABLE;
529
530 return NR_LOWORDER_PCP_LISTS + movable;
531 }
532 #else
533 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
534 #endif
535
536 return (MIGRATE_PCPTYPES * order) + migratetype;
537 }
538
pindex_to_order(unsigned int pindex)539 static inline int pindex_to_order(unsigned int pindex)
540 {
541 int order = pindex / MIGRATE_PCPTYPES;
542
543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
544 if (pindex >= NR_LOWORDER_PCP_LISTS)
545 order = pageblock_order;
546 #else
547 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
548 #endif
549
550 return order;
551 }
552
pcp_allowed_order(unsigned int order)553 static inline bool pcp_allowed_order(unsigned int order)
554 {
555 if (order <= PAGE_ALLOC_COSTLY_ORDER)
556 return true;
557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
558 if (order == pageblock_order)
559 return true;
560 #endif
561 return false;
562 }
563
free_the_page(struct page * page,unsigned int order)564 static inline void free_the_page(struct page *page, unsigned int order)
565 {
566 if (pcp_allowed_order(order)) /* Via pcp? */
567 free_unref_page(page, order);
568 else
569 __free_pages_ok(page, order, FPI_NONE);
570 }
571
572 /*
573 * Higher-order pages are called "compound pages". They are structured thusly:
574 *
575 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
576 *
577 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
578 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
579 *
580 * The first tail page's ->compound_order holds the order of allocation.
581 * This usage means that zero-order pages may not be compound.
582 */
583
prep_compound_page(struct page * page,unsigned int order)584 void prep_compound_page(struct page *page, unsigned int order)
585 {
586 int i;
587 int nr_pages = 1 << order;
588
589 __SetPageHead(page);
590 for (i = 1; i < nr_pages; i++)
591 prep_compound_tail(page, i);
592
593 prep_compound_head(page, order);
594 }
595
destroy_large_folio(struct folio * folio)596 void destroy_large_folio(struct folio *folio)
597 {
598 if (folio_test_hugetlb(folio)) {
599 free_huge_folio(folio);
600 return;
601 }
602
603 folio_unqueue_deferred_split(folio);
604 mem_cgroup_uncharge(folio);
605 free_the_page(&folio->page, folio_order(folio));
606 }
607
set_buddy_order(struct page * page,unsigned int order)608 static inline void set_buddy_order(struct page *page, unsigned int order)
609 {
610 set_page_private(page, order);
611 __SetPageBuddy(page);
612 }
613
614 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)615 static inline struct capture_control *task_capc(struct zone *zone)
616 {
617 struct capture_control *capc = current->capture_control;
618
619 return unlikely(capc) &&
620 !(current->flags & PF_KTHREAD) &&
621 !capc->page &&
622 capc->cc->zone == zone ? capc : NULL;
623 }
624
625 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)626 compaction_capture(struct capture_control *capc, struct page *page,
627 int order, int migratetype)
628 {
629 if (!capc || order != capc->cc->order)
630 return false;
631
632 /* Do not accidentally pollute CMA or isolated regions*/
633 if (is_migrate_cma(migratetype) ||
634 is_migrate_isolate(migratetype))
635 return false;
636
637 /*
638 * Do not let lower order allocations pollute a movable pageblock.
639 * This might let an unmovable request use a reclaimable pageblock
640 * and vice-versa but no more than normal fallback logic which can
641 * have trouble finding a high-order free page.
642 */
643 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
644 return false;
645
646 capc->page = page;
647 return true;
648 }
649
650 #else
task_capc(struct zone * zone)651 static inline struct capture_control *task_capc(struct zone *zone)
652 {
653 return NULL;
654 }
655
656 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)657 compaction_capture(struct capture_control *capc, struct page *page,
658 int order, int migratetype)
659 {
660 return false;
661 }
662 #endif /* CONFIG_COMPACTION */
663
664 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)665 static inline void add_to_free_list(struct page *page, struct zone *zone,
666 unsigned int order, int migratetype)
667 {
668 struct free_area *area = &zone->free_area[order];
669
670 list_add(&page->buddy_list, &area->free_list[migratetype]);
671 area->nr_free++;
672 }
673
674 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)675 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
676 unsigned int order, int migratetype)
677 {
678 struct free_area *area = &zone->free_area[order];
679
680 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
681 area->nr_free++;
682 }
683
684 /*
685 * Used for pages which are on another list. Move the pages to the tail
686 * of the list - so the moved pages won't immediately be considered for
687 * allocation again (e.g., optimization for memory onlining).
688 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)689 static inline void move_to_free_list(struct page *page, struct zone *zone,
690 unsigned int order, int migratetype)
691 {
692 struct free_area *area = &zone->free_area[order];
693
694 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
695 }
696
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)697 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
698 unsigned int order)
699 {
700 /* clear reported state and update reported page count */
701 if (page_reported(page))
702 __ClearPageReported(page);
703
704 list_del(&page->buddy_list);
705 __ClearPageBuddy(page);
706 set_page_private(page, 0);
707 zone->free_area[order].nr_free--;
708 }
709
get_page_from_free_area(struct free_area * area,int migratetype)710 static inline struct page *get_page_from_free_area(struct free_area *area,
711 int migratetype)
712 {
713 return list_first_entry_or_null(&area->free_list[migratetype],
714 struct page, buddy_list);
715 }
716
717 /*
718 * If this is not the largest possible page, check if the buddy
719 * of the next-highest order is free. If it is, it's possible
720 * that pages are being freed that will coalesce soon. In case,
721 * that is happening, add the free page to the tail of the list
722 * so it's less likely to be used soon and more likely to be merged
723 * as a higher order page
724 */
725 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)726 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
727 struct page *page, unsigned int order)
728 {
729 unsigned long higher_page_pfn;
730 struct page *higher_page;
731
732 if (order >= MAX_ORDER - 1)
733 return false;
734
735 higher_page_pfn = buddy_pfn & pfn;
736 higher_page = page + (higher_page_pfn - pfn);
737
738 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
739 NULL) != NULL;
740 }
741
742 /*
743 * Freeing function for a buddy system allocator.
744 *
745 * The concept of a buddy system is to maintain direct-mapped table
746 * (containing bit values) for memory blocks of various "orders".
747 * The bottom level table contains the map for the smallest allocatable
748 * units of memory (here, pages), and each level above it describes
749 * pairs of units from the levels below, hence, "buddies".
750 * At a high level, all that happens here is marking the table entry
751 * at the bottom level available, and propagating the changes upward
752 * as necessary, plus some accounting needed to play nicely with other
753 * parts of the VM system.
754 * At each level, we keep a list of pages, which are heads of continuous
755 * free pages of length of (1 << order) and marked with PageBuddy.
756 * Page's order is recorded in page_private(page) field.
757 * So when we are allocating or freeing one, we can derive the state of the
758 * other. That is, if we allocate a small block, and both were
759 * free, the remainder of the region must be split into blocks.
760 * If a block is freed, and its buddy is also free, then this
761 * triggers coalescing into a block of larger size.
762 *
763 * -- nyc
764 */
765
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)766 static inline void __free_one_page(struct page *page,
767 unsigned long pfn,
768 struct zone *zone, unsigned int order,
769 int migratetype, fpi_t fpi_flags)
770 {
771 struct capture_control *capc = task_capc(zone);
772 unsigned long buddy_pfn = 0;
773 unsigned long combined_pfn;
774 struct page *buddy;
775 bool to_tail;
776
777 VM_BUG_ON(!zone_is_initialized(zone));
778 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
779
780 VM_BUG_ON(migratetype == -1);
781 if (likely(!is_migrate_isolate(migratetype)))
782 __mod_zone_freepage_state(zone, 1 << order, migratetype);
783
784 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
785 VM_BUG_ON_PAGE(bad_range(zone, page), page);
786
787 while (order < MAX_ORDER) {
788 if (compaction_capture(capc, page, order, migratetype)) {
789 __mod_zone_freepage_state(zone, -(1 << order),
790 migratetype);
791 return;
792 }
793
794 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
795 if (!buddy)
796 goto done_merging;
797
798 if (unlikely(order >= pageblock_order)) {
799 /*
800 * We want to prevent merge between freepages on pageblock
801 * without fallbacks and normal pageblock. Without this,
802 * pageblock isolation could cause incorrect freepage or CMA
803 * accounting or HIGHATOMIC accounting.
804 */
805 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
806
807 if (migratetype != buddy_mt
808 && (!migratetype_is_mergeable(migratetype) ||
809 !migratetype_is_mergeable(buddy_mt)))
810 goto done_merging;
811 }
812
813 /*
814 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
815 * merge with it and move up one order.
816 */
817 if (page_is_guard(buddy))
818 clear_page_guard(zone, buddy, order, migratetype);
819 else
820 del_page_from_free_list(buddy, zone, order);
821 combined_pfn = buddy_pfn & pfn;
822 page = page + (combined_pfn - pfn);
823 pfn = combined_pfn;
824 order++;
825 }
826
827 done_merging:
828 set_buddy_order(page, order);
829
830 if (fpi_flags & FPI_TO_TAIL)
831 to_tail = true;
832 else if (is_shuffle_order(order))
833 to_tail = shuffle_pick_tail();
834 else
835 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
836
837 if (to_tail)
838 add_to_free_list_tail(page, zone, order, migratetype);
839 else
840 add_to_free_list(page, zone, order, migratetype);
841
842 /* Notify page reporting subsystem of freed page */
843 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
844 page_reporting_notify_free(order);
845 }
846
847 /**
848 * split_free_page() -- split a free page at split_pfn_offset
849 * @free_page: the original free page
850 * @order: the order of the page
851 * @split_pfn_offset: split offset within the page
852 *
853 * Return -ENOENT if the free page is changed, otherwise 0
854 *
855 * It is used when the free page crosses two pageblocks with different migratetypes
856 * at split_pfn_offset within the page. The split free page will be put into
857 * separate migratetype lists afterwards. Otherwise, the function achieves
858 * nothing.
859 */
split_free_page(struct page * free_page,unsigned int order,unsigned long split_pfn_offset)860 int split_free_page(struct page *free_page,
861 unsigned int order, unsigned long split_pfn_offset)
862 {
863 struct zone *zone = page_zone(free_page);
864 unsigned long free_page_pfn = page_to_pfn(free_page);
865 unsigned long pfn;
866 unsigned long flags;
867 int free_page_order;
868 int mt;
869 int ret = 0;
870
871 if (split_pfn_offset == 0)
872 return ret;
873
874 spin_lock_irqsave(&zone->lock, flags);
875
876 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
877 ret = -ENOENT;
878 goto out;
879 }
880
881 mt = get_pfnblock_migratetype(free_page, free_page_pfn);
882 if (likely(!is_migrate_isolate(mt)))
883 __mod_zone_freepage_state(zone, -(1UL << order), mt);
884
885 del_page_from_free_list(free_page, zone, order);
886 for (pfn = free_page_pfn;
887 pfn < free_page_pfn + (1UL << order);) {
888 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
889
890 free_page_order = min_t(unsigned int,
891 pfn ? __ffs(pfn) : order,
892 __fls(split_pfn_offset));
893 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
894 mt, FPI_NONE);
895 pfn += 1UL << free_page_order;
896 split_pfn_offset -= (1UL << free_page_order);
897 /* we have done the first part, now switch to second part */
898 if (split_pfn_offset == 0)
899 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
900 }
901 out:
902 spin_unlock_irqrestore(&zone->lock, flags);
903 return ret;
904 }
905 /*
906 * A bad page could be due to a number of fields. Instead of multiple branches,
907 * try and check multiple fields with one check. The caller must do a detailed
908 * check if necessary.
909 */
page_expected_state(struct page * page,unsigned long check_flags)910 static inline bool page_expected_state(struct page *page,
911 unsigned long check_flags)
912 {
913 if (unlikely(atomic_read(&page->_mapcount) != -1))
914 return false;
915
916 if (unlikely((unsigned long)page->mapping |
917 page_ref_count(page) |
918 #ifdef CONFIG_MEMCG
919 page->memcg_data |
920 #endif
921 (page->flags & check_flags)))
922 return false;
923
924 return true;
925 }
926
page_bad_reason(struct page * page,unsigned long flags)927 static const char *page_bad_reason(struct page *page, unsigned long flags)
928 {
929 const char *bad_reason = NULL;
930
931 if (unlikely(atomic_read(&page->_mapcount) != -1))
932 bad_reason = "nonzero mapcount";
933 if (unlikely(page->mapping != NULL))
934 bad_reason = "non-NULL mapping";
935 if (unlikely(page_ref_count(page) != 0))
936 bad_reason = "nonzero _refcount";
937 if (unlikely(page->flags & flags)) {
938 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
939 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
940 else
941 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
942 }
943 #ifdef CONFIG_MEMCG
944 if (unlikely(page->memcg_data))
945 bad_reason = "page still charged to cgroup";
946 #endif
947 return bad_reason;
948 }
949
free_page_is_bad_report(struct page * page)950 static void free_page_is_bad_report(struct page *page)
951 {
952 bad_page(page,
953 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
954 }
955
free_page_is_bad(struct page * page)956 static inline bool free_page_is_bad(struct page *page)
957 {
958 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
959 return false;
960
961 /* Something has gone sideways, find it */
962 free_page_is_bad_report(page);
963 return true;
964 }
965
is_check_pages_enabled(void)966 static inline bool is_check_pages_enabled(void)
967 {
968 return static_branch_unlikely(&check_pages_enabled);
969 }
970
free_tail_page_prepare(struct page * head_page,struct page * page)971 static int free_tail_page_prepare(struct page *head_page, struct page *page)
972 {
973 struct folio *folio = (struct folio *)head_page;
974 int ret = 1;
975
976 /*
977 * We rely page->lru.next never has bit 0 set, unless the page
978 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
979 */
980 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
981
982 if (!is_check_pages_enabled()) {
983 ret = 0;
984 goto out;
985 }
986 switch (page - head_page) {
987 case 1:
988 /* the first tail page: these may be in place of ->mapping */
989 if (unlikely(folio_entire_mapcount(folio))) {
990 bad_page(page, "nonzero entire_mapcount");
991 goto out;
992 }
993 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
994 bad_page(page, "nonzero nr_pages_mapped");
995 goto out;
996 }
997 if (unlikely(atomic_read(&folio->_pincount))) {
998 bad_page(page, "nonzero pincount");
999 goto out;
1000 }
1001 break;
1002 case 2:
1003 /* the second tail page: deferred_list overlaps ->mapping */
1004 if (unlikely(!list_empty(&folio->_deferred_list))) {
1005 bad_page(page, "on deferred list");
1006 goto out;
1007 }
1008 break;
1009 default:
1010 if (page->mapping != TAIL_MAPPING) {
1011 bad_page(page, "corrupted mapping in tail page");
1012 goto out;
1013 }
1014 break;
1015 }
1016 if (unlikely(!PageTail(page))) {
1017 bad_page(page, "PageTail not set");
1018 goto out;
1019 }
1020 if (unlikely(compound_head(page) != head_page)) {
1021 bad_page(page, "compound_head not consistent");
1022 goto out;
1023 }
1024 ret = 0;
1025 out:
1026 page->mapping = NULL;
1027 clear_compound_head(page);
1028 return ret;
1029 }
1030
1031 /*
1032 * Skip KASAN memory poisoning when either:
1033 *
1034 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1035 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1036 * using page tags instead (see below).
1037 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1038 * that error detection is disabled for accesses via the page address.
1039 *
1040 * Pages will have match-all tags in the following circumstances:
1041 *
1042 * 1. Pages are being initialized for the first time, including during deferred
1043 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1044 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1045 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1046 * 3. The allocation was excluded from being checked due to sampling,
1047 * see the call to kasan_unpoison_pages.
1048 *
1049 * Poisoning pages during deferred memory init will greatly lengthen the
1050 * process and cause problem in large memory systems as the deferred pages
1051 * initialization is done with interrupt disabled.
1052 *
1053 * Assuming that there will be no reference to those newly initialized
1054 * pages before they are ever allocated, this should have no effect on
1055 * KASAN memory tracking as the poison will be properly inserted at page
1056 * allocation time. The only corner case is when pages are allocated by
1057 * on-demand allocation and then freed again before the deferred pages
1058 * initialization is done, but this is not likely to happen.
1059 */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)1060 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1061 {
1062 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1063 return deferred_pages_enabled();
1064
1065 return page_kasan_tag(page) == 0xff;
1066 }
1067
kernel_init_pages(struct page * page,int numpages)1068 static void kernel_init_pages(struct page *page, int numpages)
1069 {
1070 int i;
1071
1072 /* s390's use of memset() could override KASAN redzones. */
1073 kasan_disable_current();
1074 for (i = 0; i < numpages; i++)
1075 clear_highpage_kasan_tagged(page + i);
1076 kasan_enable_current();
1077 }
1078
free_pages_prepare(struct page * page,unsigned int order,fpi_t fpi_flags)1079 static __always_inline bool free_pages_prepare(struct page *page,
1080 unsigned int order, fpi_t fpi_flags)
1081 {
1082 int bad = 0;
1083 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1084 bool init = want_init_on_free();
1085 struct folio *folio = page_folio(page);
1086
1087 VM_BUG_ON_PAGE(PageTail(page), page);
1088
1089 trace_mm_page_free(page, order);
1090 kmsan_free_page(page, order);
1091
1092 /*
1093 * In rare cases, when truncation or holepunching raced with
1094 * munlock after VM_LOCKED was cleared, Mlocked may still be
1095 * found set here. This does not indicate a problem, unless
1096 * "unevictable_pgs_cleared" appears worryingly large.
1097 */
1098 if (unlikely(folio_test_mlocked(folio))) {
1099 long nr_pages = folio_nr_pages(folio);
1100
1101 __folio_clear_mlocked(folio);
1102 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1103 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1104 }
1105
1106 if (unlikely(PageHWPoison(page)) && !order) {
1107 /*
1108 * Do not let hwpoison pages hit pcplists/buddy
1109 * Untie memcg state and reset page's owner
1110 */
1111 if (memcg_kmem_online() && PageMemcgKmem(page))
1112 __memcg_kmem_uncharge_page(page, order);
1113 reset_page_owner(page, order);
1114 page_table_check_free(page, order);
1115 return false;
1116 }
1117
1118 /*
1119 * Check tail pages before head page information is cleared to
1120 * avoid checking PageCompound for order-0 pages.
1121 */
1122 if (unlikely(order)) {
1123 bool compound = PageCompound(page);
1124 int i;
1125
1126 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1127
1128 if (compound)
1129 page[1].flags &= ~PAGE_FLAGS_SECOND;
1130 for (i = 1; i < (1 << order); i++) {
1131 if (compound)
1132 bad += free_tail_page_prepare(page, page + i);
1133 if (is_check_pages_enabled()) {
1134 if (free_page_is_bad(page + i)) {
1135 bad++;
1136 continue;
1137 }
1138 }
1139 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1140 }
1141 }
1142 if (PageMappingFlags(page))
1143 page->mapping = NULL;
1144 if (memcg_kmem_online() && PageMemcgKmem(page))
1145 __memcg_kmem_uncharge_page(page, order);
1146 if (is_check_pages_enabled()) {
1147 if (free_page_is_bad(page))
1148 bad++;
1149 if (bad)
1150 return false;
1151 }
1152
1153 page_cpupid_reset_last(page);
1154 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1155 reset_page_owner(page, order);
1156 page_table_check_free(page, order);
1157
1158 if (!PageHighMem(page)) {
1159 debug_check_no_locks_freed(page_address(page),
1160 PAGE_SIZE << order);
1161 debug_check_no_obj_freed(page_address(page),
1162 PAGE_SIZE << order);
1163 }
1164
1165 kernel_poison_pages(page, 1 << order);
1166
1167 /*
1168 * As memory initialization might be integrated into KASAN,
1169 * KASAN poisoning and memory initialization code must be
1170 * kept together to avoid discrepancies in behavior.
1171 *
1172 * With hardware tag-based KASAN, memory tags must be set before the
1173 * page becomes unavailable via debug_pagealloc or arch_free_page.
1174 */
1175 if (!skip_kasan_poison) {
1176 kasan_poison_pages(page, order, init);
1177
1178 /* Memory is already initialized if KASAN did it internally. */
1179 if (kasan_has_integrated_init())
1180 init = false;
1181 }
1182 if (init)
1183 kernel_init_pages(page, 1 << order);
1184
1185 /*
1186 * arch_free_page() can make the page's contents inaccessible. s390
1187 * does this. So nothing which can access the page's contents should
1188 * happen after this.
1189 */
1190 arch_free_page(page, order);
1191
1192 debug_pagealloc_unmap_pages(page, 1 << order);
1193
1194 return true;
1195 }
1196
1197 /*
1198 * Frees a number of pages from the PCP lists
1199 * Assumes all pages on list are in same zone.
1200 * count is the number of pages to free.
1201 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1202 static void free_pcppages_bulk(struct zone *zone, int count,
1203 struct per_cpu_pages *pcp,
1204 int pindex)
1205 {
1206 unsigned long flags;
1207 unsigned int order;
1208 bool isolated_pageblocks;
1209 struct page *page;
1210
1211 /*
1212 * Ensure proper count is passed which otherwise would stuck in the
1213 * below while (list_empty(list)) loop.
1214 */
1215 count = min(pcp->count, count);
1216
1217 /* Ensure requested pindex is drained first. */
1218 pindex = pindex - 1;
1219
1220 spin_lock_irqsave(&zone->lock, flags);
1221 isolated_pageblocks = has_isolate_pageblock(zone);
1222
1223 while (count > 0) {
1224 struct list_head *list;
1225 int nr_pages;
1226
1227 /* Remove pages from lists in a round-robin fashion. */
1228 do {
1229 if (++pindex > NR_PCP_LISTS - 1)
1230 pindex = 0;
1231 list = &pcp->lists[pindex];
1232 } while (list_empty(list));
1233
1234 order = pindex_to_order(pindex);
1235 nr_pages = 1 << order;
1236 do {
1237 int mt;
1238
1239 page = list_last_entry(list, struct page, pcp_list);
1240 mt = get_pcppage_migratetype(page);
1241
1242 /* must delete to avoid corrupting pcp list */
1243 list_del(&page->pcp_list);
1244 count -= nr_pages;
1245 pcp->count -= nr_pages;
1246
1247 /* MIGRATE_ISOLATE page should not go to pcplists */
1248 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1249 /* Pageblock could have been isolated meanwhile */
1250 if (unlikely(isolated_pageblocks))
1251 mt = get_pageblock_migratetype(page);
1252
1253 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1254 trace_mm_page_pcpu_drain(page, order, mt);
1255 } while (count > 0 && !list_empty(list));
1256 }
1257
1258 spin_unlock_irqrestore(&zone->lock, flags);
1259 }
1260
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1261 static void free_one_page(struct zone *zone,
1262 struct page *page, unsigned long pfn,
1263 unsigned int order,
1264 int migratetype, fpi_t fpi_flags)
1265 {
1266 unsigned long flags;
1267
1268 spin_lock_irqsave(&zone->lock, flags);
1269 if (unlikely(has_isolate_pageblock(zone) ||
1270 is_migrate_isolate(migratetype))) {
1271 migratetype = get_pfnblock_migratetype(page, pfn);
1272 }
1273 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1274 spin_unlock_irqrestore(&zone->lock, flags);
1275 }
1276
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1277 static void __free_pages_ok(struct page *page, unsigned int order,
1278 fpi_t fpi_flags)
1279 {
1280 unsigned long flags;
1281 int migratetype;
1282 unsigned long pfn = page_to_pfn(page);
1283 struct zone *zone = page_zone(page);
1284
1285 if (!free_pages_prepare(page, order, fpi_flags))
1286 return;
1287
1288 /*
1289 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1290 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1291 * This will reduce the lock holding time.
1292 */
1293 migratetype = get_pfnblock_migratetype(page, pfn);
1294
1295 spin_lock_irqsave(&zone->lock, flags);
1296 if (unlikely(has_isolate_pageblock(zone) ||
1297 is_migrate_isolate(migratetype))) {
1298 migratetype = get_pfnblock_migratetype(page, pfn);
1299 }
1300 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1301 spin_unlock_irqrestore(&zone->lock, flags);
1302
1303 __count_vm_events(PGFREE, 1 << order);
1304 }
1305
__free_pages_core(struct page * page,unsigned int order)1306 void __free_pages_core(struct page *page, unsigned int order)
1307 {
1308 unsigned int nr_pages = 1 << order;
1309 struct page *p = page;
1310 unsigned int loop;
1311
1312 /*
1313 * When initializing the memmap, __init_single_page() sets the refcount
1314 * of all pages to 1 ("allocated"/"not free"). We have to set the
1315 * refcount of all involved pages to 0.
1316 */
1317 prefetchw(p);
1318 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1319 prefetchw(p + 1);
1320 __ClearPageReserved(p);
1321 set_page_count(p, 0);
1322 }
1323 __ClearPageReserved(p);
1324 set_page_count(p, 0);
1325
1326 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1327
1328 if (page_contains_unaccepted(page, order)) {
1329 if (order == MAX_ORDER && __free_unaccepted(page))
1330 return;
1331
1332 accept_page(page, order);
1333 }
1334
1335 /*
1336 * Bypass PCP and place fresh pages right to the tail, primarily
1337 * relevant for memory onlining.
1338 */
1339 __free_pages_ok(page, order, FPI_TO_TAIL);
1340 }
1341
1342 /*
1343 * Check that the whole (or subset of) a pageblock given by the interval of
1344 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1345 * with the migration of free compaction scanner.
1346 *
1347 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348 *
1349 * It's possible on some configurations to have a setup like node0 node1 node0
1350 * i.e. it's possible that all pages within a zones range of pages do not
1351 * belong to a single zone. We assume that a border between node0 and node1
1352 * can occur within a single pageblock, but not a node0 node1 node0
1353 * interleaving within a single pageblock. It is therefore sufficient to check
1354 * the first and last page of a pageblock and avoid checking each individual
1355 * page in a pageblock.
1356 *
1357 * Note: the function may return non-NULL struct page even for a page block
1358 * which contains a memory hole (i.e. there is no physical memory for a subset
1359 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1360 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1361 * even though the start pfn is online and valid. This should be safe most of
1362 * the time because struct pages are still initialized via init_unavailable_range()
1363 * and pfn walkers shouldn't touch any physical memory range for which they do
1364 * not recognize any specific metadata in struct pages.
1365 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1366 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1367 unsigned long end_pfn, struct zone *zone)
1368 {
1369 struct page *start_page;
1370 struct page *end_page;
1371
1372 /* end_pfn is one past the range we are checking */
1373 end_pfn--;
1374
1375 if (!pfn_valid(end_pfn))
1376 return NULL;
1377
1378 start_page = pfn_to_online_page(start_pfn);
1379 if (!start_page)
1380 return NULL;
1381
1382 if (page_zone(start_page) != zone)
1383 return NULL;
1384
1385 end_page = pfn_to_page(end_pfn);
1386
1387 /* This gives a shorter code than deriving page_zone(end_page) */
1388 if (page_zone_id(start_page) != page_zone_id(end_page))
1389 return NULL;
1390
1391 return start_page;
1392 }
1393
1394 /*
1395 * The order of subdivision here is critical for the IO subsystem.
1396 * Please do not alter this order without good reasons and regression
1397 * testing. Specifically, as large blocks of memory are subdivided,
1398 * the order in which smaller blocks are delivered depends on the order
1399 * they're subdivided in this function. This is the primary factor
1400 * influencing the order in which pages are delivered to the IO
1401 * subsystem according to empirical testing, and this is also justified
1402 * by considering the behavior of a buddy system containing a single
1403 * large block of memory acted on by a series of small allocations.
1404 * This behavior is a critical factor in sglist merging's success.
1405 *
1406 * -- nyc
1407 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1408 static inline void expand(struct zone *zone, struct page *page,
1409 int low, int high, int migratetype)
1410 {
1411 unsigned long size = 1 << high;
1412
1413 while (high > low) {
1414 high--;
1415 size >>= 1;
1416 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1417
1418 /*
1419 * Mark as guard pages (or page), that will allow to
1420 * merge back to allocator when buddy will be freed.
1421 * Corresponding page table entries will not be touched,
1422 * pages will stay not present in virtual address space
1423 */
1424 if (set_page_guard(zone, &page[size], high, migratetype))
1425 continue;
1426
1427 add_to_free_list(&page[size], zone, high, migratetype);
1428 set_buddy_order(&page[size], high);
1429 }
1430 }
1431
check_new_page_bad(struct page * page)1432 static void check_new_page_bad(struct page *page)
1433 {
1434 if (unlikely(page->flags & __PG_HWPOISON)) {
1435 /* Don't complain about hwpoisoned pages */
1436 page_mapcount_reset(page); /* remove PageBuddy */
1437 return;
1438 }
1439
1440 bad_page(page,
1441 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1442 }
1443
1444 /*
1445 * This page is about to be returned from the page allocator
1446 */
check_new_page(struct page * page)1447 static int check_new_page(struct page *page)
1448 {
1449 if (likely(page_expected_state(page,
1450 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1451 return 0;
1452
1453 check_new_page_bad(page);
1454 return 1;
1455 }
1456
check_new_pages(struct page * page,unsigned int order)1457 static inline bool check_new_pages(struct page *page, unsigned int order)
1458 {
1459 if (is_check_pages_enabled()) {
1460 for (int i = 0; i < (1 << order); i++) {
1461 struct page *p = page + i;
1462
1463 if (check_new_page(p))
1464 return true;
1465 }
1466 }
1467
1468 return false;
1469 }
1470
should_skip_kasan_unpoison(gfp_t flags)1471 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1472 {
1473 /* Don't skip if a software KASAN mode is enabled. */
1474 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1475 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1476 return false;
1477
1478 /* Skip, if hardware tag-based KASAN is not enabled. */
1479 if (!kasan_hw_tags_enabled())
1480 return true;
1481
1482 /*
1483 * With hardware tag-based KASAN enabled, skip if this has been
1484 * requested via __GFP_SKIP_KASAN.
1485 */
1486 return flags & __GFP_SKIP_KASAN;
1487 }
1488
should_skip_init(gfp_t flags)1489 static inline bool should_skip_init(gfp_t flags)
1490 {
1491 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1492 if (!kasan_hw_tags_enabled())
1493 return false;
1494
1495 /* For hardware tag-based KASAN, skip if requested. */
1496 return (flags & __GFP_SKIP_ZERO);
1497 }
1498
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1499 inline void post_alloc_hook(struct page *page, unsigned int order,
1500 gfp_t gfp_flags)
1501 {
1502 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1503 !should_skip_init(gfp_flags);
1504 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1505 int i;
1506
1507 set_page_private(page, 0);
1508 set_page_refcounted(page);
1509
1510 arch_alloc_page(page, order);
1511 debug_pagealloc_map_pages(page, 1 << order);
1512
1513 /*
1514 * Page unpoisoning must happen before memory initialization.
1515 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1516 * allocations and the page unpoisoning code will complain.
1517 */
1518 kernel_unpoison_pages(page, 1 << order);
1519
1520 /*
1521 * As memory initialization might be integrated into KASAN,
1522 * KASAN unpoisoning and memory initializion code must be
1523 * kept together to avoid discrepancies in behavior.
1524 */
1525
1526 /*
1527 * If memory tags should be zeroed
1528 * (which happens only when memory should be initialized as well).
1529 */
1530 if (zero_tags) {
1531 /* Initialize both memory and memory tags. */
1532 for (i = 0; i != 1 << order; ++i)
1533 tag_clear_highpage(page + i);
1534
1535 /* Take note that memory was initialized by the loop above. */
1536 init = false;
1537 }
1538 if (!should_skip_kasan_unpoison(gfp_flags) &&
1539 kasan_unpoison_pages(page, order, init)) {
1540 /* Take note that memory was initialized by KASAN. */
1541 if (kasan_has_integrated_init())
1542 init = false;
1543 } else {
1544 /*
1545 * If memory tags have not been set by KASAN, reset the page
1546 * tags to ensure page_address() dereferencing does not fault.
1547 */
1548 for (i = 0; i != 1 << order; ++i)
1549 page_kasan_tag_reset(page + i);
1550 }
1551 /* If memory is still not initialized, initialize it now. */
1552 if (init)
1553 kernel_init_pages(page, 1 << order);
1554
1555 set_page_owner(page, order, gfp_flags);
1556 page_table_check_alloc(page, order);
1557 }
1558
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1559 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1560 unsigned int alloc_flags)
1561 {
1562 post_alloc_hook(page, order, gfp_flags);
1563
1564 if (order && (gfp_flags & __GFP_COMP))
1565 prep_compound_page(page, order);
1566
1567 /*
1568 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1569 * allocate the page. The expectation is that the caller is taking
1570 * steps that will free more memory. The caller should avoid the page
1571 * being used for !PFMEMALLOC purposes.
1572 */
1573 if (alloc_flags & ALLOC_NO_WATERMARKS)
1574 set_page_pfmemalloc(page);
1575 else
1576 clear_page_pfmemalloc(page);
1577 }
1578
1579 /*
1580 * Go through the free lists for the given migratetype and remove
1581 * the smallest available page from the freelists
1582 */
1583 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1584 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1585 int migratetype)
1586 {
1587 unsigned int current_order;
1588 struct free_area *area;
1589 struct page *page;
1590
1591 /* Find a page of the appropriate size in the preferred list */
1592 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1593 area = &(zone->free_area[current_order]);
1594 page = get_page_from_free_area(area, migratetype);
1595 if (!page)
1596 continue;
1597 del_page_from_free_list(page, zone, current_order);
1598 expand(zone, page, order, current_order, migratetype);
1599 set_pcppage_migratetype(page, migratetype);
1600 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1601 pcp_allowed_order(order) &&
1602 migratetype < MIGRATE_PCPTYPES);
1603 return page;
1604 }
1605
1606 return NULL;
1607 }
1608
1609
1610 /*
1611 * This array describes the order lists are fallen back to when
1612 * the free lists for the desirable migrate type are depleted
1613 *
1614 * The other migratetypes do not have fallbacks.
1615 */
1616 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1617 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1618 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1619 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1620 };
1621
1622 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1623 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1624 unsigned int order)
1625 {
1626 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1627 }
1628 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1629 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1630 unsigned int order) { return NULL; }
1631 #endif
1632
1633 /*
1634 * Move the free pages in a range to the freelist tail of the requested type.
1635 * Note that start_page and end_pages are not aligned on a pageblock
1636 * boundary. If alignment is required, use move_freepages_block()
1637 */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)1638 static int move_freepages(struct zone *zone,
1639 unsigned long start_pfn, unsigned long end_pfn,
1640 int migratetype, int *num_movable)
1641 {
1642 struct page *page;
1643 unsigned long pfn;
1644 unsigned int order;
1645 int pages_moved = 0;
1646
1647 for (pfn = start_pfn; pfn <= end_pfn;) {
1648 page = pfn_to_page(pfn);
1649 if (!PageBuddy(page)) {
1650 /*
1651 * We assume that pages that could be isolated for
1652 * migration are movable. But we don't actually try
1653 * isolating, as that would be expensive.
1654 */
1655 if (num_movable &&
1656 (PageLRU(page) || __PageMovable(page)))
1657 (*num_movable)++;
1658 pfn++;
1659 continue;
1660 }
1661
1662 /* Make sure we are not inadvertently changing nodes */
1663 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1664 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1665
1666 order = buddy_order(page);
1667 move_to_free_list(page, zone, order, migratetype);
1668 pfn += 1 << order;
1669 pages_moved += 1 << order;
1670 }
1671
1672 return pages_moved;
1673 }
1674
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)1675 int move_freepages_block(struct zone *zone, struct page *page,
1676 int migratetype, int *num_movable)
1677 {
1678 unsigned long start_pfn, end_pfn, pfn;
1679
1680 if (num_movable)
1681 *num_movable = 0;
1682
1683 pfn = page_to_pfn(page);
1684 start_pfn = pageblock_start_pfn(pfn);
1685 end_pfn = pageblock_end_pfn(pfn) - 1;
1686
1687 /* Do not cross zone boundaries */
1688 if (!zone_spans_pfn(zone, start_pfn))
1689 start_pfn = pfn;
1690 if (!zone_spans_pfn(zone, end_pfn))
1691 return 0;
1692
1693 return move_freepages(zone, start_pfn, end_pfn, migratetype,
1694 num_movable);
1695 }
1696
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1697 static void change_pageblock_range(struct page *pageblock_page,
1698 int start_order, int migratetype)
1699 {
1700 int nr_pageblocks = 1 << (start_order - pageblock_order);
1701
1702 while (nr_pageblocks--) {
1703 set_pageblock_migratetype(pageblock_page, migratetype);
1704 pageblock_page += pageblock_nr_pages;
1705 }
1706 }
1707
1708 /*
1709 * When we are falling back to another migratetype during allocation, try to
1710 * steal extra free pages from the same pageblocks to satisfy further
1711 * allocations, instead of polluting multiple pageblocks.
1712 *
1713 * If we are stealing a relatively large buddy page, it is likely there will
1714 * be more free pages in the pageblock, so try to steal them all. For
1715 * reclaimable and unmovable allocations, we steal regardless of page size,
1716 * as fragmentation caused by those allocations polluting movable pageblocks
1717 * is worse than movable allocations stealing from unmovable and reclaimable
1718 * pageblocks.
1719 */
can_steal_fallback(unsigned int order,int start_mt)1720 static bool can_steal_fallback(unsigned int order, int start_mt)
1721 {
1722 /*
1723 * Leaving this order check is intended, although there is
1724 * relaxed order check in next check. The reason is that
1725 * we can actually steal whole pageblock if this condition met,
1726 * but, below check doesn't guarantee it and that is just heuristic
1727 * so could be changed anytime.
1728 */
1729 if (order >= pageblock_order)
1730 return true;
1731
1732 if (order >= pageblock_order / 2 ||
1733 start_mt == MIGRATE_RECLAIMABLE ||
1734 start_mt == MIGRATE_UNMOVABLE ||
1735 page_group_by_mobility_disabled)
1736 return true;
1737
1738 return false;
1739 }
1740
boost_watermark(struct zone * zone)1741 static inline bool boost_watermark(struct zone *zone)
1742 {
1743 unsigned long max_boost;
1744
1745 if (!watermark_boost_factor)
1746 return false;
1747 /*
1748 * Don't bother in zones that are unlikely to produce results.
1749 * On small machines, including kdump capture kernels running
1750 * in a small area, boosting the watermark can cause an out of
1751 * memory situation immediately.
1752 */
1753 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1754 return false;
1755
1756 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1757 watermark_boost_factor, 10000);
1758
1759 /*
1760 * high watermark may be uninitialised if fragmentation occurs
1761 * very early in boot so do not boost. We do not fall
1762 * through and boost by pageblock_nr_pages as failing
1763 * allocations that early means that reclaim is not going
1764 * to help and it may even be impossible to reclaim the
1765 * boosted watermark resulting in a hang.
1766 */
1767 if (!max_boost)
1768 return false;
1769
1770 max_boost = max(pageblock_nr_pages, max_boost);
1771
1772 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1773 max_boost);
1774
1775 return true;
1776 }
1777
1778 /*
1779 * This function implements actual steal behaviour. If order is large enough,
1780 * we can steal whole pageblock. If not, we first move freepages in this
1781 * pageblock to our migratetype and determine how many already-allocated pages
1782 * are there in the pageblock with a compatible migratetype. If at least half
1783 * of pages are free or compatible, we can change migratetype of the pageblock
1784 * itself, so pages freed in the future will be put on the correct free list.
1785 */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)1786 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1787 unsigned int alloc_flags, int start_type, bool whole_block)
1788 {
1789 unsigned int current_order = buddy_order(page);
1790 int free_pages, movable_pages, alike_pages;
1791 int old_block_type;
1792
1793 old_block_type = get_pageblock_migratetype(page);
1794
1795 /*
1796 * This can happen due to races and we want to prevent broken
1797 * highatomic accounting.
1798 */
1799 if (is_migrate_highatomic(old_block_type))
1800 goto single_page;
1801
1802 /* Take ownership for orders >= pageblock_order */
1803 if (current_order >= pageblock_order) {
1804 change_pageblock_range(page, current_order, start_type);
1805 goto single_page;
1806 }
1807
1808 /*
1809 * Boost watermarks to increase reclaim pressure to reduce the
1810 * likelihood of future fallbacks. Wake kswapd now as the node
1811 * may be balanced overall and kswapd will not wake naturally.
1812 */
1813 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1814 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1815
1816 /* We are not allowed to try stealing from the whole block */
1817 if (!whole_block)
1818 goto single_page;
1819
1820 free_pages = move_freepages_block(zone, page, start_type,
1821 &movable_pages);
1822 /* moving whole block can fail due to zone boundary conditions */
1823 if (!free_pages)
1824 goto single_page;
1825
1826 /*
1827 * Determine how many pages are compatible with our allocation.
1828 * For movable allocation, it's the number of movable pages which
1829 * we just obtained. For other types it's a bit more tricky.
1830 */
1831 if (start_type == MIGRATE_MOVABLE) {
1832 alike_pages = movable_pages;
1833 } else {
1834 /*
1835 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1836 * to MOVABLE pageblock, consider all non-movable pages as
1837 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1838 * vice versa, be conservative since we can't distinguish the
1839 * exact migratetype of non-movable pages.
1840 */
1841 if (old_block_type == MIGRATE_MOVABLE)
1842 alike_pages = pageblock_nr_pages
1843 - (free_pages + movable_pages);
1844 else
1845 alike_pages = 0;
1846 }
1847 /*
1848 * If a sufficient number of pages in the block are either free or of
1849 * compatible migratability as our allocation, claim the whole block.
1850 */
1851 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1852 page_group_by_mobility_disabled)
1853 set_pageblock_migratetype(page, start_type);
1854
1855 return;
1856
1857 single_page:
1858 move_to_free_list(page, zone, current_order, start_type);
1859 }
1860
1861 /*
1862 * Check whether there is a suitable fallback freepage with requested order.
1863 * If only_stealable is true, this function returns fallback_mt only if
1864 * we can steal other freepages all together. This would help to reduce
1865 * fragmentation due to mixed migratetype pages in one pageblock.
1866 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1867 int find_suitable_fallback(struct free_area *area, unsigned int order,
1868 int migratetype, bool only_stealable, bool *can_steal)
1869 {
1870 int i;
1871 int fallback_mt;
1872
1873 if (area->nr_free == 0)
1874 return -1;
1875
1876 *can_steal = false;
1877 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1878 fallback_mt = fallbacks[migratetype][i];
1879 if (free_area_empty(area, fallback_mt))
1880 continue;
1881
1882 if (can_steal_fallback(order, migratetype))
1883 *can_steal = true;
1884
1885 if (!only_stealable)
1886 return fallback_mt;
1887
1888 if (*can_steal)
1889 return fallback_mt;
1890 }
1891
1892 return -1;
1893 }
1894
1895 /*
1896 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1897 * there are no empty page blocks that contain a page with a suitable order
1898 */
reserve_highatomic_pageblock(struct page * page,struct zone * zone)1899 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1900 {
1901 int mt;
1902 unsigned long max_managed, flags;
1903
1904 /*
1905 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1906 * Check is race-prone but harmless.
1907 */
1908 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1909 if (zone->nr_reserved_highatomic >= max_managed)
1910 return;
1911
1912 spin_lock_irqsave(&zone->lock, flags);
1913
1914 /* Recheck the nr_reserved_highatomic limit under the lock */
1915 if (zone->nr_reserved_highatomic >= max_managed)
1916 goto out_unlock;
1917
1918 /* Yoink! */
1919 mt = get_pageblock_migratetype(page);
1920 /* Only reserve normal pageblocks (i.e., they can merge with others) */
1921 if (migratetype_is_mergeable(mt)) {
1922 zone->nr_reserved_highatomic += pageblock_nr_pages;
1923 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1924 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1925 }
1926
1927 out_unlock:
1928 spin_unlock_irqrestore(&zone->lock, flags);
1929 }
1930
1931 /*
1932 * Used when an allocation is about to fail under memory pressure. This
1933 * potentially hurts the reliability of high-order allocations when under
1934 * intense memory pressure but failed atomic allocations should be easier
1935 * to recover from than an OOM.
1936 *
1937 * If @force is true, try to unreserve a pageblock even though highatomic
1938 * pageblock is exhausted.
1939 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)1940 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1941 bool force)
1942 {
1943 struct zonelist *zonelist = ac->zonelist;
1944 unsigned long flags;
1945 struct zoneref *z;
1946 struct zone *zone;
1947 struct page *page;
1948 int order;
1949 bool ret;
1950
1951 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1952 ac->nodemask) {
1953 /*
1954 * Preserve at least one pageblock unless memory pressure
1955 * is really high.
1956 */
1957 if (!force && zone->nr_reserved_highatomic <=
1958 pageblock_nr_pages)
1959 continue;
1960
1961 spin_lock_irqsave(&zone->lock, flags);
1962 for (order = 0; order < NR_PAGE_ORDERS; order++) {
1963 struct free_area *area = &(zone->free_area[order]);
1964
1965 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1966 if (!page)
1967 continue;
1968
1969 /*
1970 * In page freeing path, migratetype change is racy so
1971 * we can counter several free pages in a pageblock
1972 * in this loop although we changed the pageblock type
1973 * from highatomic to ac->migratetype. So we should
1974 * adjust the count once.
1975 */
1976 if (is_migrate_highatomic_page(page)) {
1977 /*
1978 * It should never happen but changes to
1979 * locking could inadvertently allow a per-cpu
1980 * drain to add pages to MIGRATE_HIGHATOMIC
1981 * while unreserving so be safe and watch for
1982 * underflows.
1983 */
1984 zone->nr_reserved_highatomic -= min(
1985 pageblock_nr_pages,
1986 zone->nr_reserved_highatomic);
1987 }
1988
1989 /*
1990 * Convert to ac->migratetype and avoid the normal
1991 * pageblock stealing heuristics. Minimally, the caller
1992 * is doing the work and needs the pages. More
1993 * importantly, if the block was always converted to
1994 * MIGRATE_UNMOVABLE or another type then the number
1995 * of pageblocks that cannot be completely freed
1996 * may increase.
1997 */
1998 set_pageblock_migratetype(page, ac->migratetype);
1999 ret = move_freepages_block(zone, page, ac->migratetype,
2000 NULL);
2001 if (ret) {
2002 spin_unlock_irqrestore(&zone->lock, flags);
2003 return ret;
2004 }
2005 }
2006 spin_unlock_irqrestore(&zone->lock, flags);
2007 }
2008
2009 return false;
2010 }
2011
2012 /*
2013 * Try finding a free buddy page on the fallback list and put it on the free
2014 * list of requested migratetype, possibly along with other pages from the same
2015 * block, depending on fragmentation avoidance heuristics. Returns true if
2016 * fallback was found so that __rmqueue_smallest() can grab it.
2017 *
2018 * The use of signed ints for order and current_order is a deliberate
2019 * deviation from the rest of this file, to make the for loop
2020 * condition simpler.
2021 */
2022 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2023 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2024 unsigned int alloc_flags)
2025 {
2026 struct free_area *area;
2027 int current_order;
2028 int min_order = order;
2029 struct page *page;
2030 int fallback_mt;
2031 bool can_steal;
2032
2033 /*
2034 * Do not steal pages from freelists belonging to other pageblocks
2035 * i.e. orders < pageblock_order. If there are no local zones free,
2036 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2037 */
2038 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2039 min_order = pageblock_order;
2040
2041 /*
2042 * Find the largest available free page in the other list. This roughly
2043 * approximates finding the pageblock with the most free pages, which
2044 * would be too costly to do exactly.
2045 */
2046 for (current_order = MAX_ORDER; current_order >= min_order;
2047 --current_order) {
2048 area = &(zone->free_area[current_order]);
2049 fallback_mt = find_suitable_fallback(area, current_order,
2050 start_migratetype, false, &can_steal);
2051 if (fallback_mt == -1)
2052 continue;
2053
2054 /*
2055 * We cannot steal all free pages from the pageblock and the
2056 * requested migratetype is movable. In that case it's better to
2057 * steal and split the smallest available page instead of the
2058 * largest available page, because even if the next movable
2059 * allocation falls back into a different pageblock than this
2060 * one, it won't cause permanent fragmentation.
2061 */
2062 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2063 && current_order > order)
2064 goto find_smallest;
2065
2066 goto do_steal;
2067 }
2068
2069 return false;
2070
2071 find_smallest:
2072 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2073 area = &(zone->free_area[current_order]);
2074 fallback_mt = find_suitable_fallback(area, current_order,
2075 start_migratetype, false, &can_steal);
2076 if (fallback_mt != -1)
2077 break;
2078 }
2079
2080 /*
2081 * This should not happen - we already found a suitable fallback
2082 * when looking for the largest page.
2083 */
2084 VM_BUG_ON(current_order > MAX_ORDER);
2085
2086 do_steal:
2087 page = get_page_from_free_area(area, fallback_mt);
2088
2089 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2090 can_steal);
2091
2092 trace_mm_page_alloc_extfrag(page, order, current_order,
2093 start_migratetype, fallback_mt);
2094
2095 return true;
2096
2097 }
2098
2099 /*
2100 * Do the hard work of removing an element from the buddy allocator.
2101 * Call me with the zone->lock already held.
2102 */
2103 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2104 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2105 unsigned int alloc_flags)
2106 {
2107 struct page *page;
2108
2109 if (IS_ENABLED(CONFIG_CMA)) {
2110 /*
2111 * Balance movable allocations between regular and CMA areas by
2112 * allocating from CMA when over half of the zone's free memory
2113 * is in the CMA area.
2114 */
2115 if (alloc_flags & ALLOC_CMA &&
2116 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2117 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2118 page = __rmqueue_cma_fallback(zone, order);
2119 if (page)
2120 return page;
2121 }
2122 }
2123 retry:
2124 page = __rmqueue_smallest(zone, order, migratetype);
2125 if (unlikely(!page)) {
2126 if (alloc_flags & ALLOC_CMA)
2127 page = __rmqueue_cma_fallback(zone, order);
2128
2129 if (!page && __rmqueue_fallback(zone, order, migratetype,
2130 alloc_flags))
2131 goto retry;
2132 }
2133 return page;
2134 }
2135
2136 /*
2137 * Obtain a specified number of elements from the buddy allocator, all under
2138 * a single hold of the lock, for efficiency. Add them to the supplied list.
2139 * Returns the number of new pages which were placed at *list.
2140 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2141 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2142 unsigned long count, struct list_head *list,
2143 int migratetype, unsigned int alloc_flags)
2144 {
2145 unsigned long flags;
2146 int i;
2147
2148 spin_lock_irqsave(&zone->lock, flags);
2149 for (i = 0; i < count; ++i) {
2150 struct page *page = __rmqueue(zone, order, migratetype,
2151 alloc_flags);
2152 if (unlikely(page == NULL))
2153 break;
2154
2155 /*
2156 * Split buddy pages returned by expand() are received here in
2157 * physical page order. The page is added to the tail of
2158 * caller's list. From the callers perspective, the linked list
2159 * is ordered by page number under some conditions. This is
2160 * useful for IO devices that can forward direction from the
2161 * head, thus also in the physical page order. This is useful
2162 * for IO devices that can merge IO requests if the physical
2163 * pages are ordered properly.
2164 */
2165 list_add_tail(&page->pcp_list, list);
2166 if (is_migrate_cma(get_pcppage_migratetype(page)))
2167 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2168 -(1 << order));
2169 }
2170
2171 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2172 spin_unlock_irqrestore(&zone->lock, flags);
2173
2174 return i;
2175 }
2176
2177 #ifdef CONFIG_NUMA
2178 /*
2179 * Called from the vmstat counter updater to drain pagesets of this
2180 * currently executing processor on remote nodes after they have
2181 * expired.
2182 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2183 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2184 {
2185 int to_drain, batch;
2186
2187 batch = READ_ONCE(pcp->batch);
2188 to_drain = min(pcp->count, batch);
2189 if (to_drain > 0) {
2190 spin_lock(&pcp->lock);
2191 free_pcppages_bulk(zone, to_drain, pcp, 0);
2192 spin_unlock(&pcp->lock);
2193 }
2194 }
2195 #endif
2196
2197 /*
2198 * Drain pcplists of the indicated processor and zone.
2199 */
drain_pages_zone(unsigned int cpu,struct zone * zone)2200 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2201 {
2202 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2203 int count;
2204
2205 do {
2206 spin_lock(&pcp->lock);
2207 count = pcp->count;
2208 if (count) {
2209 int to_drain = min(count,
2210 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2211
2212 free_pcppages_bulk(zone, to_drain, pcp, 0);
2213 count -= to_drain;
2214 }
2215 spin_unlock(&pcp->lock);
2216 } while (count);
2217 }
2218
2219 /*
2220 * Drain pcplists of all zones on the indicated processor.
2221 */
drain_pages(unsigned int cpu)2222 static void drain_pages(unsigned int cpu)
2223 {
2224 struct zone *zone;
2225
2226 for_each_populated_zone(zone) {
2227 drain_pages_zone(cpu, zone);
2228 }
2229 }
2230
2231 /*
2232 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2233 */
drain_local_pages(struct zone * zone)2234 void drain_local_pages(struct zone *zone)
2235 {
2236 int cpu = smp_processor_id();
2237
2238 if (zone)
2239 drain_pages_zone(cpu, zone);
2240 else
2241 drain_pages(cpu);
2242 }
2243
2244 /*
2245 * The implementation of drain_all_pages(), exposing an extra parameter to
2246 * drain on all cpus.
2247 *
2248 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2249 * not empty. The check for non-emptiness can however race with a free to
2250 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2251 * that need the guarantee that every CPU has drained can disable the
2252 * optimizing racy check.
2253 */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2254 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2255 {
2256 int cpu;
2257
2258 /*
2259 * Allocate in the BSS so we won't require allocation in
2260 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2261 */
2262 static cpumask_t cpus_with_pcps;
2263
2264 /*
2265 * Do not drain if one is already in progress unless it's specific to
2266 * a zone. Such callers are primarily CMA and memory hotplug and need
2267 * the drain to be complete when the call returns.
2268 */
2269 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2270 if (!zone)
2271 return;
2272 mutex_lock(&pcpu_drain_mutex);
2273 }
2274
2275 /*
2276 * We don't care about racing with CPU hotplug event
2277 * as offline notification will cause the notified
2278 * cpu to drain that CPU pcps and on_each_cpu_mask
2279 * disables preemption as part of its processing
2280 */
2281 for_each_online_cpu(cpu) {
2282 struct per_cpu_pages *pcp;
2283 struct zone *z;
2284 bool has_pcps = false;
2285
2286 if (force_all_cpus) {
2287 /*
2288 * The pcp.count check is racy, some callers need a
2289 * guarantee that no cpu is missed.
2290 */
2291 has_pcps = true;
2292 } else if (zone) {
2293 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2294 if (pcp->count)
2295 has_pcps = true;
2296 } else {
2297 for_each_populated_zone(z) {
2298 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2299 if (pcp->count) {
2300 has_pcps = true;
2301 break;
2302 }
2303 }
2304 }
2305
2306 if (has_pcps)
2307 cpumask_set_cpu(cpu, &cpus_with_pcps);
2308 else
2309 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2310 }
2311
2312 for_each_cpu(cpu, &cpus_with_pcps) {
2313 if (zone)
2314 drain_pages_zone(cpu, zone);
2315 else
2316 drain_pages(cpu);
2317 }
2318
2319 mutex_unlock(&pcpu_drain_mutex);
2320 }
2321
2322 /*
2323 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2324 *
2325 * When zone parameter is non-NULL, spill just the single zone's pages.
2326 */
drain_all_pages(struct zone * zone)2327 void drain_all_pages(struct zone *zone)
2328 {
2329 __drain_all_pages(zone, false);
2330 }
2331
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)2332 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2333 unsigned int order)
2334 {
2335 int migratetype;
2336
2337 if (!free_pages_prepare(page, order, FPI_NONE))
2338 return false;
2339
2340 migratetype = get_pfnblock_migratetype(page, pfn);
2341 set_pcppage_migratetype(page, migratetype);
2342 return true;
2343 }
2344
nr_pcp_free(struct per_cpu_pages * pcp,int high,bool free_high)2345 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2346 {
2347 int min_nr_free, max_nr_free;
2348 int batch = READ_ONCE(pcp->batch);
2349
2350 /* Free everything if batch freeing high-order pages. */
2351 if (unlikely(free_high))
2352 return pcp->count;
2353
2354 /* Check for PCP disabled or boot pageset */
2355 if (unlikely(high < batch))
2356 return 1;
2357
2358 /* Leave at least pcp->batch pages on the list */
2359 min_nr_free = batch;
2360 max_nr_free = high - batch;
2361
2362 /*
2363 * Double the number of pages freed each time there is subsequent
2364 * freeing of pages without any allocation.
2365 */
2366 batch <<= pcp->free_factor;
2367 if (batch < max_nr_free && pcp->free_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2368 pcp->free_factor++;
2369 batch = clamp(batch, min_nr_free, max_nr_free);
2370
2371 return batch;
2372 }
2373
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,bool free_high)2374 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2375 bool free_high)
2376 {
2377 int high = READ_ONCE(pcp->high);
2378
2379 if (unlikely(!high || free_high))
2380 return 0;
2381
2382 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2383 return high;
2384
2385 /*
2386 * If reclaim is active, limit the number of pages that can be
2387 * stored on pcp lists
2388 */
2389 return min(READ_ONCE(pcp->batch) << 2, high);
2390 }
2391
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2392 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2393 struct page *page, int migratetype,
2394 unsigned int order)
2395 {
2396 int high;
2397 int pindex;
2398 bool free_high;
2399
2400 __count_vm_events(PGFREE, 1 << order);
2401 pindex = order_to_pindex(migratetype, order);
2402 list_add(&page->pcp_list, &pcp->lists[pindex]);
2403 pcp->count += 1 << order;
2404
2405 /*
2406 * As high-order pages other than THP's stored on PCP can contribute
2407 * to fragmentation, limit the number stored when PCP is heavily
2408 * freeing without allocation. The remainder after bulk freeing
2409 * stops will be drained from vmstat refresh context.
2410 */
2411 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2412
2413 high = nr_pcp_high(pcp, zone, free_high);
2414 if (pcp->count >= high) {
2415 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2416 }
2417 }
2418
2419 /*
2420 * Free a pcp page
2421 */
free_unref_page(struct page * page,unsigned int order)2422 void free_unref_page(struct page *page, unsigned int order)
2423 {
2424 unsigned long __maybe_unused UP_flags;
2425 struct per_cpu_pages *pcp;
2426 struct zone *zone;
2427 unsigned long pfn = page_to_pfn(page);
2428 int migratetype, pcpmigratetype;
2429
2430 if (!free_unref_page_prepare(page, pfn, order))
2431 return;
2432
2433 /*
2434 * We only track unmovable, reclaimable and movable on pcp lists.
2435 * Place ISOLATE pages on the isolated list because they are being
2436 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2437 * get those areas back if necessary. Otherwise, we may have to free
2438 * excessively into the page allocator
2439 */
2440 migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2441 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2442 if (unlikely(is_migrate_isolate(migratetype))) {
2443 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2444 return;
2445 }
2446 pcpmigratetype = MIGRATE_MOVABLE;
2447 }
2448
2449 zone = page_zone(page);
2450 pcp_trylock_prepare(UP_flags);
2451 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2452 if (pcp) {
2453 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2454 pcp_spin_unlock(pcp);
2455 } else {
2456 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2457 }
2458 pcp_trylock_finish(UP_flags);
2459 }
2460
2461 /*
2462 * Free a list of 0-order pages
2463 */
free_unref_page_list(struct list_head * list)2464 void free_unref_page_list(struct list_head *list)
2465 {
2466 unsigned long __maybe_unused UP_flags;
2467 struct page *page, *next;
2468 struct per_cpu_pages *pcp = NULL;
2469 struct zone *locked_zone = NULL;
2470 int batch_count = 0;
2471 int migratetype;
2472
2473 /* Prepare pages for freeing */
2474 list_for_each_entry_safe(page, next, list, lru) {
2475 unsigned long pfn = page_to_pfn(page);
2476 if (!free_unref_page_prepare(page, pfn, 0)) {
2477 list_del(&page->lru);
2478 continue;
2479 }
2480
2481 /*
2482 * Free isolated pages directly to the allocator, see
2483 * comment in free_unref_page.
2484 */
2485 migratetype = get_pcppage_migratetype(page);
2486 if (unlikely(is_migrate_isolate(migratetype))) {
2487 list_del(&page->lru);
2488 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2489 continue;
2490 }
2491 }
2492
2493 list_for_each_entry_safe(page, next, list, lru) {
2494 struct zone *zone = page_zone(page);
2495
2496 list_del(&page->lru);
2497 migratetype = get_pcppage_migratetype(page);
2498
2499 /*
2500 * Either different zone requiring a different pcp lock or
2501 * excessive lock hold times when freeing a large list of
2502 * pages.
2503 */
2504 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2505 if (pcp) {
2506 pcp_spin_unlock(pcp);
2507 pcp_trylock_finish(UP_flags);
2508 }
2509
2510 batch_count = 0;
2511
2512 /*
2513 * trylock is necessary as pages may be getting freed
2514 * from IRQ or SoftIRQ context after an IO completion.
2515 */
2516 pcp_trylock_prepare(UP_flags);
2517 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2518 if (unlikely(!pcp)) {
2519 pcp_trylock_finish(UP_flags);
2520 free_one_page(zone, page, page_to_pfn(page),
2521 0, migratetype, FPI_NONE);
2522 locked_zone = NULL;
2523 continue;
2524 }
2525 locked_zone = zone;
2526 }
2527
2528 /*
2529 * Non-isolated types over MIGRATE_PCPTYPES get added
2530 * to the MIGRATE_MOVABLE pcp list.
2531 */
2532 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2533 migratetype = MIGRATE_MOVABLE;
2534
2535 trace_mm_page_free_batched(page);
2536 free_unref_page_commit(zone, pcp, page, migratetype, 0);
2537 batch_count++;
2538 }
2539
2540 if (pcp) {
2541 pcp_spin_unlock(pcp);
2542 pcp_trylock_finish(UP_flags);
2543 }
2544 }
2545
2546 /*
2547 * split_page takes a non-compound higher-order page, and splits it into
2548 * n (1<<order) sub-pages: page[0..n]
2549 * Each sub-page must be freed individually.
2550 *
2551 * Note: this is probably too low level an operation for use in drivers.
2552 * Please consult with lkml before using this in your driver.
2553 */
split_page(struct page * page,unsigned int order)2554 void split_page(struct page *page, unsigned int order)
2555 {
2556 int i;
2557
2558 VM_BUG_ON_PAGE(PageCompound(page), page);
2559 VM_BUG_ON_PAGE(!page_count(page), page);
2560
2561 for (i = 1; i < (1 << order); i++)
2562 set_page_refcounted(page + i);
2563 split_page_owner(page, 1 << order);
2564 split_page_memcg(page, 1 << order);
2565 }
2566 EXPORT_SYMBOL_GPL(split_page);
2567
__isolate_free_page(struct page * page,unsigned int order)2568 int __isolate_free_page(struct page *page, unsigned int order)
2569 {
2570 struct zone *zone = page_zone(page);
2571 int mt = get_pageblock_migratetype(page);
2572
2573 if (!is_migrate_isolate(mt)) {
2574 unsigned long watermark;
2575 /*
2576 * Obey watermarks as if the page was being allocated. We can
2577 * emulate a high-order watermark check with a raised order-0
2578 * watermark, because we already know our high-order page
2579 * exists.
2580 */
2581 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2582 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2583 return 0;
2584
2585 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2586 }
2587
2588 del_page_from_free_list(page, zone, order);
2589
2590 /*
2591 * Set the pageblock if the isolated page is at least half of a
2592 * pageblock
2593 */
2594 if (order >= pageblock_order - 1) {
2595 struct page *endpage = page + (1 << order) - 1;
2596 for (; page < endpage; page += pageblock_nr_pages) {
2597 int mt = get_pageblock_migratetype(page);
2598 /*
2599 * Only change normal pageblocks (i.e., they can merge
2600 * with others)
2601 */
2602 if (migratetype_is_mergeable(mt))
2603 set_pageblock_migratetype(page,
2604 MIGRATE_MOVABLE);
2605 }
2606 }
2607
2608 return 1UL << order;
2609 }
2610
2611 /**
2612 * __putback_isolated_page - Return a now-isolated page back where we got it
2613 * @page: Page that was isolated
2614 * @order: Order of the isolated page
2615 * @mt: The page's pageblock's migratetype
2616 *
2617 * This function is meant to return a page pulled from the free lists via
2618 * __isolate_free_page back to the free lists they were pulled from.
2619 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2620 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2621 {
2622 struct zone *zone = page_zone(page);
2623
2624 /* zone lock should be held when this function is called */
2625 lockdep_assert_held(&zone->lock);
2626
2627 /* Return isolated page to tail of freelist. */
2628 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2629 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2630 }
2631
2632 /*
2633 * Update NUMA hit/miss statistics
2634 */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2635 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2636 long nr_account)
2637 {
2638 #ifdef CONFIG_NUMA
2639 enum numa_stat_item local_stat = NUMA_LOCAL;
2640
2641 /* skip numa counters update if numa stats is disabled */
2642 if (!static_branch_likely(&vm_numa_stat_key))
2643 return;
2644
2645 if (zone_to_nid(z) != numa_node_id())
2646 local_stat = NUMA_OTHER;
2647
2648 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2649 __count_numa_events(z, NUMA_HIT, nr_account);
2650 else {
2651 __count_numa_events(z, NUMA_MISS, nr_account);
2652 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2653 }
2654 __count_numa_events(z, local_stat, nr_account);
2655 #endif
2656 }
2657
2658 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2659 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2660 unsigned int order, unsigned int alloc_flags,
2661 int migratetype)
2662 {
2663 struct page *page;
2664 unsigned long flags;
2665
2666 do {
2667 page = NULL;
2668 spin_lock_irqsave(&zone->lock, flags);
2669 if (alloc_flags & ALLOC_HIGHATOMIC)
2670 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2671 if (!page) {
2672 page = __rmqueue(zone, order, migratetype, alloc_flags);
2673
2674 /*
2675 * If the allocation fails, allow OOM handling and
2676 * order-0 (atomic) allocs access to HIGHATOMIC
2677 * reserves as failing now is worse than failing a
2678 * high-order atomic allocation in the future.
2679 */
2680 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2681 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2682
2683 if (!page) {
2684 spin_unlock_irqrestore(&zone->lock, flags);
2685 return NULL;
2686 }
2687 }
2688 __mod_zone_freepage_state(zone, -(1 << order),
2689 get_pcppage_migratetype(page));
2690 spin_unlock_irqrestore(&zone->lock, flags);
2691 } while (check_new_pages(page, order));
2692
2693 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2694 zone_statistics(preferred_zone, zone, 1);
2695
2696 return page;
2697 }
2698
2699 /* Remove page from the per-cpu list, caller must protect the list */
2700 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2701 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2702 int migratetype,
2703 unsigned int alloc_flags,
2704 struct per_cpu_pages *pcp,
2705 struct list_head *list)
2706 {
2707 struct page *page;
2708
2709 do {
2710 if (list_empty(list)) {
2711 int batch = READ_ONCE(pcp->batch);
2712 int alloced;
2713
2714 /*
2715 * Scale batch relative to order if batch implies
2716 * free pages can be stored on the PCP. Batch can
2717 * be 1 for small zones or for boot pagesets which
2718 * should never store free pages as the pages may
2719 * belong to arbitrary zones.
2720 */
2721 if (batch > 1)
2722 batch = max(batch >> order, 2);
2723 alloced = rmqueue_bulk(zone, order,
2724 batch, list,
2725 migratetype, alloc_flags);
2726
2727 pcp->count += alloced << order;
2728 if (unlikely(list_empty(list)))
2729 return NULL;
2730 }
2731
2732 page = list_first_entry(list, struct page, pcp_list);
2733 list_del(&page->pcp_list);
2734 pcp->count -= 1 << order;
2735 } while (check_new_pages(page, order));
2736
2737 return page;
2738 }
2739
2740 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2741 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2742 struct zone *zone, unsigned int order,
2743 int migratetype, unsigned int alloc_flags)
2744 {
2745 struct per_cpu_pages *pcp;
2746 struct list_head *list;
2747 struct page *page;
2748 unsigned long __maybe_unused UP_flags;
2749
2750 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2751 pcp_trylock_prepare(UP_flags);
2752 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2753 if (!pcp) {
2754 pcp_trylock_finish(UP_flags);
2755 return NULL;
2756 }
2757
2758 /*
2759 * On allocation, reduce the number of pages that are batch freed.
2760 * See nr_pcp_free() where free_factor is increased for subsequent
2761 * frees.
2762 */
2763 pcp->free_factor >>= 1;
2764 list = &pcp->lists[order_to_pindex(migratetype, order)];
2765 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2766 pcp_spin_unlock(pcp);
2767 pcp_trylock_finish(UP_flags);
2768 if (page) {
2769 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2770 zone_statistics(preferred_zone, zone, 1);
2771 }
2772 return page;
2773 }
2774
2775 /*
2776 * Allocate a page from the given zone.
2777 * Use pcplists for THP or "cheap" high-order allocations.
2778 */
2779
2780 /*
2781 * Do not instrument rmqueue() with KMSAN. This function may call
2782 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2783 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2784 * may call rmqueue() again, which will result in a deadlock.
2785 */
2786 __no_sanitize_memory
2787 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)2788 struct page *rmqueue(struct zone *preferred_zone,
2789 struct zone *zone, unsigned int order,
2790 gfp_t gfp_flags, unsigned int alloc_flags,
2791 int migratetype)
2792 {
2793 struct page *page;
2794
2795 /*
2796 * We most definitely don't want callers attempting to
2797 * allocate greater than order-1 page units with __GFP_NOFAIL.
2798 */
2799 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2800
2801 if (likely(pcp_allowed_order(order))) {
2802 page = rmqueue_pcplist(preferred_zone, zone, order,
2803 migratetype, alloc_flags);
2804 if (likely(page))
2805 goto out;
2806 }
2807
2808 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2809 migratetype);
2810
2811 out:
2812 /* Separate test+clear to avoid unnecessary atomics */
2813 if ((alloc_flags & ALLOC_KSWAPD) &&
2814 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2815 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2816 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2817 }
2818
2819 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2820 return page;
2821 }
2822
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2823 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2824 {
2825 return __should_fail_alloc_page(gfp_mask, order);
2826 }
2827 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2828
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)2829 static inline long __zone_watermark_unusable_free(struct zone *z,
2830 unsigned int order, unsigned int alloc_flags)
2831 {
2832 long unusable_free = (1 << order) - 1;
2833
2834 /*
2835 * If the caller does not have rights to reserves below the min
2836 * watermark then subtract the high-atomic reserves. This will
2837 * over-estimate the size of the atomic reserve but it avoids a search.
2838 */
2839 if (likely(!(alloc_flags & ALLOC_RESERVES)))
2840 unusable_free += z->nr_reserved_highatomic;
2841
2842 #ifdef CONFIG_CMA
2843 /* If allocation can't use CMA areas don't use free CMA pages */
2844 if (!(alloc_flags & ALLOC_CMA))
2845 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2846 #endif
2847
2848 return unusable_free;
2849 }
2850
2851 /*
2852 * Return true if free base pages are above 'mark'. For high-order checks it
2853 * will return true of the order-0 watermark is reached and there is at least
2854 * one free page of a suitable size. Checking now avoids taking the zone lock
2855 * to check in the allocation paths if no pages are free.
2856 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)2857 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2858 int highest_zoneidx, unsigned int alloc_flags,
2859 long free_pages)
2860 {
2861 long min = mark;
2862 int o;
2863
2864 /* free_pages may go negative - that's OK */
2865 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2866
2867 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2868 /*
2869 * __GFP_HIGH allows access to 50% of the min reserve as well
2870 * as OOM.
2871 */
2872 if (alloc_flags & ALLOC_MIN_RESERVE) {
2873 min -= min / 2;
2874
2875 /*
2876 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2877 * access more reserves than just __GFP_HIGH. Other
2878 * non-blocking allocations requests such as GFP_NOWAIT
2879 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2880 * access to the min reserve.
2881 */
2882 if (alloc_flags & ALLOC_NON_BLOCK)
2883 min -= min / 4;
2884 }
2885
2886 /*
2887 * OOM victims can try even harder than the normal reserve
2888 * users on the grounds that it's definitely going to be in
2889 * the exit path shortly and free memory. Any allocation it
2890 * makes during the free path will be small and short-lived.
2891 */
2892 if (alloc_flags & ALLOC_OOM)
2893 min -= min / 2;
2894 }
2895
2896 /*
2897 * Check watermarks for an order-0 allocation request. If these
2898 * are not met, then a high-order request also cannot go ahead
2899 * even if a suitable page happened to be free.
2900 */
2901 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2902 return false;
2903
2904 /* If this is an order-0 request then the watermark is fine */
2905 if (!order)
2906 return true;
2907
2908 /* For a high-order request, check at least one suitable page is free */
2909 for (o = order; o < NR_PAGE_ORDERS; o++) {
2910 struct free_area *area = &z->free_area[o];
2911 int mt;
2912
2913 if (!area->nr_free)
2914 continue;
2915
2916 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2917 if (!free_area_empty(area, mt))
2918 return true;
2919 }
2920
2921 #ifdef CONFIG_CMA
2922 if ((alloc_flags & ALLOC_CMA) &&
2923 !free_area_empty(area, MIGRATE_CMA)) {
2924 return true;
2925 }
2926 #endif
2927 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2928 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2929 return true;
2930 }
2931 }
2932 return false;
2933 }
2934
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)2935 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2936 int highest_zoneidx, unsigned int alloc_flags)
2937 {
2938 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2939 zone_page_state(z, NR_FREE_PAGES));
2940 }
2941
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)2942 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2943 unsigned long mark, int highest_zoneidx,
2944 unsigned int alloc_flags, gfp_t gfp_mask)
2945 {
2946 long free_pages;
2947
2948 free_pages = zone_page_state(z, NR_FREE_PAGES);
2949
2950 /*
2951 * Fast check for order-0 only. If this fails then the reserves
2952 * need to be calculated.
2953 */
2954 if (!order) {
2955 long usable_free;
2956 long reserved;
2957
2958 usable_free = free_pages;
2959 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2960
2961 /* reserved may over estimate high-atomic reserves. */
2962 usable_free -= min(usable_free, reserved);
2963 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2964 return true;
2965 }
2966
2967 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2968 free_pages))
2969 return true;
2970
2971 /*
2972 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2973 * when checking the min watermark. The min watermark is the
2974 * point where boosting is ignored so that kswapd is woken up
2975 * when below the low watermark.
2976 */
2977 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
2978 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2979 mark = z->_watermark[WMARK_MIN];
2980 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2981 alloc_flags, free_pages);
2982 }
2983
2984 return false;
2985 }
2986
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)2987 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2988 unsigned long mark, int highest_zoneidx)
2989 {
2990 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2991
2992 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2993 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2994
2995 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
2996 free_pages);
2997 }
2998
2999 #ifdef CONFIG_NUMA
3000 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3001
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3002 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3003 {
3004 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3005 node_reclaim_distance;
3006 }
3007 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3008 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3009 {
3010 return true;
3011 }
3012 #endif /* CONFIG_NUMA */
3013
3014 /*
3015 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3016 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3017 * premature use of a lower zone may cause lowmem pressure problems that
3018 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3019 * probably too small. It only makes sense to spread allocations to avoid
3020 * fragmentation between the Normal and DMA32 zones.
3021 */
3022 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3023 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3024 {
3025 unsigned int alloc_flags;
3026
3027 /*
3028 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3029 * to save a branch.
3030 */
3031 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3032
3033 #ifdef CONFIG_ZONE_DMA32
3034 if (!zone)
3035 return alloc_flags;
3036
3037 if (zone_idx(zone) != ZONE_NORMAL)
3038 return alloc_flags;
3039
3040 /*
3041 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3042 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3043 * on UMA that if Normal is populated then so is DMA32.
3044 */
3045 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3046 if (nr_online_nodes > 1 && !populated_zone(--zone))
3047 return alloc_flags;
3048
3049 alloc_flags |= ALLOC_NOFRAGMENT;
3050 #endif /* CONFIG_ZONE_DMA32 */
3051 return alloc_flags;
3052 }
3053
3054 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3055 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3056 unsigned int alloc_flags)
3057 {
3058 #ifdef CONFIG_CMA
3059 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3060 alloc_flags |= ALLOC_CMA;
3061 #endif
3062 return alloc_flags;
3063 }
3064
3065 /*
3066 * get_page_from_freelist goes through the zonelist trying to allocate
3067 * a page.
3068 */
3069 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3070 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3071 const struct alloc_context *ac)
3072 {
3073 struct zoneref *z;
3074 struct zone *zone;
3075 struct pglist_data *last_pgdat = NULL;
3076 bool last_pgdat_dirty_ok = false;
3077 bool no_fallback;
3078
3079 retry:
3080 /*
3081 * Scan zonelist, looking for a zone with enough free.
3082 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3083 */
3084 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3085 z = ac->preferred_zoneref;
3086 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3087 ac->nodemask) {
3088 struct page *page;
3089 unsigned long mark;
3090
3091 if (cpusets_enabled() &&
3092 (alloc_flags & ALLOC_CPUSET) &&
3093 !__cpuset_zone_allowed(zone, gfp_mask))
3094 continue;
3095 /*
3096 * When allocating a page cache page for writing, we
3097 * want to get it from a node that is within its dirty
3098 * limit, such that no single node holds more than its
3099 * proportional share of globally allowed dirty pages.
3100 * The dirty limits take into account the node's
3101 * lowmem reserves and high watermark so that kswapd
3102 * should be able to balance it without having to
3103 * write pages from its LRU list.
3104 *
3105 * XXX: For now, allow allocations to potentially
3106 * exceed the per-node dirty limit in the slowpath
3107 * (spread_dirty_pages unset) before going into reclaim,
3108 * which is important when on a NUMA setup the allowed
3109 * nodes are together not big enough to reach the
3110 * global limit. The proper fix for these situations
3111 * will require awareness of nodes in the
3112 * dirty-throttling and the flusher threads.
3113 */
3114 if (ac->spread_dirty_pages) {
3115 if (last_pgdat != zone->zone_pgdat) {
3116 last_pgdat = zone->zone_pgdat;
3117 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3118 }
3119
3120 if (!last_pgdat_dirty_ok)
3121 continue;
3122 }
3123
3124 if (no_fallback && nr_online_nodes > 1 &&
3125 zone != ac->preferred_zoneref->zone) {
3126 int local_nid;
3127
3128 /*
3129 * If moving to a remote node, retry but allow
3130 * fragmenting fallbacks. Locality is more important
3131 * than fragmentation avoidance.
3132 */
3133 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3134 if (zone_to_nid(zone) != local_nid) {
3135 alloc_flags &= ~ALLOC_NOFRAGMENT;
3136 goto retry;
3137 }
3138 }
3139
3140 cond_accept_memory(zone, order);
3141
3142 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3143 if (!zone_watermark_fast(zone, order, mark,
3144 ac->highest_zoneidx, alloc_flags,
3145 gfp_mask)) {
3146 int ret;
3147
3148 if (cond_accept_memory(zone, order))
3149 goto try_this_zone;
3150
3151 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3152 /*
3153 * Watermark failed for this zone, but see if we can
3154 * grow this zone if it contains deferred pages.
3155 */
3156 if (deferred_pages_enabled()) {
3157 if (_deferred_grow_zone(zone, order))
3158 goto try_this_zone;
3159 }
3160 #endif
3161 /* Checked here to keep the fast path fast */
3162 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3163 if (alloc_flags & ALLOC_NO_WATERMARKS)
3164 goto try_this_zone;
3165
3166 if (!node_reclaim_enabled() ||
3167 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3168 continue;
3169
3170 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3171 switch (ret) {
3172 case NODE_RECLAIM_NOSCAN:
3173 /* did not scan */
3174 continue;
3175 case NODE_RECLAIM_FULL:
3176 /* scanned but unreclaimable */
3177 continue;
3178 default:
3179 /* did we reclaim enough */
3180 if (zone_watermark_ok(zone, order, mark,
3181 ac->highest_zoneidx, alloc_flags))
3182 goto try_this_zone;
3183
3184 continue;
3185 }
3186 }
3187
3188 try_this_zone:
3189 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3190 gfp_mask, alloc_flags, ac->migratetype);
3191 if (page) {
3192 prep_new_page(page, order, gfp_mask, alloc_flags);
3193
3194 /*
3195 * If this is a high-order atomic allocation then check
3196 * if the pageblock should be reserved for the future
3197 */
3198 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3199 reserve_highatomic_pageblock(page, zone);
3200
3201 return page;
3202 } else {
3203 if (cond_accept_memory(zone, order))
3204 goto try_this_zone;
3205
3206 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3207 /* Try again if zone has deferred pages */
3208 if (deferred_pages_enabled()) {
3209 if (_deferred_grow_zone(zone, order))
3210 goto try_this_zone;
3211 }
3212 #endif
3213 }
3214 }
3215
3216 /*
3217 * It's possible on a UMA machine to get through all zones that are
3218 * fragmented. If avoiding fragmentation, reset and try again.
3219 */
3220 if (no_fallback) {
3221 alloc_flags &= ~ALLOC_NOFRAGMENT;
3222 goto retry;
3223 }
3224
3225 return NULL;
3226 }
3227
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3228 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3229 {
3230 unsigned int filter = SHOW_MEM_FILTER_NODES;
3231
3232 /*
3233 * This documents exceptions given to allocations in certain
3234 * contexts that are allowed to allocate outside current's set
3235 * of allowed nodes.
3236 */
3237 if (!(gfp_mask & __GFP_NOMEMALLOC))
3238 if (tsk_is_oom_victim(current) ||
3239 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3240 filter &= ~SHOW_MEM_FILTER_NODES;
3241 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3242 filter &= ~SHOW_MEM_FILTER_NODES;
3243
3244 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3245 }
3246
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3247 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3248 {
3249 struct va_format vaf;
3250 va_list args;
3251 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3252
3253 if ((gfp_mask & __GFP_NOWARN) ||
3254 !__ratelimit(&nopage_rs) ||
3255 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3256 return;
3257
3258 va_start(args, fmt);
3259 vaf.fmt = fmt;
3260 vaf.va = &args;
3261 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3262 current->comm, &vaf, gfp_mask, &gfp_mask,
3263 nodemask_pr_args(nodemask));
3264 va_end(args);
3265
3266 cpuset_print_current_mems_allowed();
3267 pr_cont("\n");
3268 dump_stack();
3269 warn_alloc_show_mem(gfp_mask, nodemask);
3270 }
3271
3272 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3273 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3274 unsigned int alloc_flags,
3275 const struct alloc_context *ac)
3276 {
3277 struct page *page;
3278
3279 page = get_page_from_freelist(gfp_mask, order,
3280 alloc_flags|ALLOC_CPUSET, ac);
3281 /*
3282 * fallback to ignore cpuset restriction if our nodes
3283 * are depleted
3284 */
3285 if (!page)
3286 page = get_page_from_freelist(gfp_mask, order,
3287 alloc_flags, ac);
3288
3289 return page;
3290 }
3291
3292 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3293 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3294 const struct alloc_context *ac, unsigned long *did_some_progress)
3295 {
3296 struct oom_control oc = {
3297 .zonelist = ac->zonelist,
3298 .nodemask = ac->nodemask,
3299 .memcg = NULL,
3300 .gfp_mask = gfp_mask,
3301 .order = order,
3302 };
3303 struct page *page;
3304
3305 *did_some_progress = 0;
3306
3307 /*
3308 * Acquire the oom lock. If that fails, somebody else is
3309 * making progress for us.
3310 */
3311 if (!mutex_trylock(&oom_lock)) {
3312 *did_some_progress = 1;
3313 schedule_timeout_uninterruptible(1);
3314 return NULL;
3315 }
3316
3317 /*
3318 * Go through the zonelist yet one more time, keep very high watermark
3319 * here, this is only to catch a parallel oom killing, we must fail if
3320 * we're still under heavy pressure. But make sure that this reclaim
3321 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3322 * allocation which will never fail due to oom_lock already held.
3323 */
3324 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3325 ~__GFP_DIRECT_RECLAIM, order,
3326 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3327 if (page)
3328 goto out;
3329
3330 /* Coredumps can quickly deplete all memory reserves */
3331 if (current->flags & PF_DUMPCORE)
3332 goto out;
3333 /* The OOM killer will not help higher order allocs */
3334 if (order > PAGE_ALLOC_COSTLY_ORDER)
3335 goto out;
3336 /*
3337 * We have already exhausted all our reclaim opportunities without any
3338 * success so it is time to admit defeat. We will skip the OOM killer
3339 * because it is very likely that the caller has a more reasonable
3340 * fallback than shooting a random task.
3341 *
3342 * The OOM killer may not free memory on a specific node.
3343 */
3344 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3345 goto out;
3346 /* The OOM killer does not needlessly kill tasks for lowmem */
3347 if (ac->highest_zoneidx < ZONE_NORMAL)
3348 goto out;
3349 if (pm_suspended_storage())
3350 goto out;
3351 /*
3352 * XXX: GFP_NOFS allocations should rather fail than rely on
3353 * other request to make a forward progress.
3354 * We are in an unfortunate situation where out_of_memory cannot
3355 * do much for this context but let's try it to at least get
3356 * access to memory reserved if the current task is killed (see
3357 * out_of_memory). Once filesystems are ready to handle allocation
3358 * failures more gracefully we should just bail out here.
3359 */
3360
3361 /* Exhausted what can be done so it's blame time */
3362 if (out_of_memory(&oc) ||
3363 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3364 *did_some_progress = 1;
3365
3366 /*
3367 * Help non-failing allocations by giving them access to memory
3368 * reserves
3369 */
3370 if (gfp_mask & __GFP_NOFAIL)
3371 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3372 ALLOC_NO_WATERMARKS, ac);
3373 }
3374 out:
3375 mutex_unlock(&oom_lock);
3376 return page;
3377 }
3378
3379 /*
3380 * Maximum number of compaction retries with a progress before OOM
3381 * killer is consider as the only way to move forward.
3382 */
3383 #define MAX_COMPACT_RETRIES 16
3384
3385 #ifdef CONFIG_COMPACTION
3386 /* Try memory compaction for high-order allocations before reclaim */
3387 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3388 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3389 unsigned int alloc_flags, const struct alloc_context *ac,
3390 enum compact_priority prio, enum compact_result *compact_result)
3391 {
3392 struct page *page = NULL;
3393 unsigned long pflags;
3394 unsigned int noreclaim_flag;
3395
3396 if (!order)
3397 return NULL;
3398
3399 psi_memstall_enter(&pflags);
3400 delayacct_compact_start();
3401 noreclaim_flag = memalloc_noreclaim_save();
3402
3403 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3404 prio, &page);
3405
3406 memalloc_noreclaim_restore(noreclaim_flag);
3407 psi_memstall_leave(&pflags);
3408 delayacct_compact_end();
3409
3410 if (*compact_result == COMPACT_SKIPPED)
3411 return NULL;
3412 /*
3413 * At least in one zone compaction wasn't deferred or skipped, so let's
3414 * count a compaction stall
3415 */
3416 count_vm_event(COMPACTSTALL);
3417
3418 /* Prep a captured page if available */
3419 if (page)
3420 prep_new_page(page, order, gfp_mask, alloc_flags);
3421
3422 /* Try get a page from the freelist if available */
3423 if (!page)
3424 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3425
3426 if (page) {
3427 struct zone *zone = page_zone(page);
3428
3429 zone->compact_blockskip_flush = false;
3430 compaction_defer_reset(zone, order, true);
3431 count_vm_event(COMPACTSUCCESS);
3432 return page;
3433 }
3434
3435 /*
3436 * It's bad if compaction run occurs and fails. The most likely reason
3437 * is that pages exist, but not enough to satisfy watermarks.
3438 */
3439 count_vm_event(COMPACTFAIL);
3440
3441 cond_resched();
3442
3443 return NULL;
3444 }
3445
3446 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3447 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3448 enum compact_result compact_result,
3449 enum compact_priority *compact_priority,
3450 int *compaction_retries)
3451 {
3452 int max_retries = MAX_COMPACT_RETRIES;
3453 int min_priority;
3454 bool ret = false;
3455 int retries = *compaction_retries;
3456 enum compact_priority priority = *compact_priority;
3457
3458 if (!order)
3459 return false;
3460
3461 if (fatal_signal_pending(current))
3462 return false;
3463
3464 /*
3465 * Compaction was skipped due to a lack of free order-0
3466 * migration targets. Continue if reclaim can help.
3467 */
3468 if (compact_result == COMPACT_SKIPPED) {
3469 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3470 goto out;
3471 }
3472
3473 /*
3474 * Compaction managed to coalesce some page blocks, but the
3475 * allocation failed presumably due to a race. Retry some.
3476 */
3477 if (compact_result == COMPACT_SUCCESS) {
3478 /*
3479 * !costly requests are much more important than
3480 * __GFP_RETRY_MAYFAIL costly ones because they are de
3481 * facto nofail and invoke OOM killer to move on while
3482 * costly can fail and users are ready to cope with
3483 * that. 1/4 retries is rather arbitrary but we would
3484 * need much more detailed feedback from compaction to
3485 * make a better decision.
3486 */
3487 if (order > PAGE_ALLOC_COSTLY_ORDER)
3488 max_retries /= 4;
3489
3490 if (++(*compaction_retries) <= max_retries) {
3491 ret = true;
3492 goto out;
3493 }
3494 }
3495
3496 /*
3497 * Compaction failed. Retry with increasing priority.
3498 */
3499 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3500 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3501
3502 if (*compact_priority > min_priority) {
3503 (*compact_priority)--;
3504 *compaction_retries = 0;
3505 ret = true;
3506 }
3507 out:
3508 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3509 return ret;
3510 }
3511 #else
3512 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3513 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3514 unsigned int alloc_flags, const struct alloc_context *ac,
3515 enum compact_priority prio, enum compact_result *compact_result)
3516 {
3517 *compact_result = COMPACT_SKIPPED;
3518 return NULL;
3519 }
3520
3521 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3522 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3523 enum compact_result compact_result,
3524 enum compact_priority *compact_priority,
3525 int *compaction_retries)
3526 {
3527 struct zone *zone;
3528 struct zoneref *z;
3529
3530 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3531 return false;
3532
3533 /*
3534 * There are setups with compaction disabled which would prefer to loop
3535 * inside the allocator rather than hit the oom killer prematurely.
3536 * Let's give them a good hope and keep retrying while the order-0
3537 * watermarks are OK.
3538 */
3539 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3540 ac->highest_zoneidx, ac->nodemask) {
3541 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3542 ac->highest_zoneidx, alloc_flags))
3543 return true;
3544 }
3545 return false;
3546 }
3547 #endif /* CONFIG_COMPACTION */
3548
3549 #ifdef CONFIG_LOCKDEP
3550 static struct lockdep_map __fs_reclaim_map =
3551 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3552
__need_reclaim(gfp_t gfp_mask)3553 static bool __need_reclaim(gfp_t gfp_mask)
3554 {
3555 /* no reclaim without waiting on it */
3556 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3557 return false;
3558
3559 /* this guy won't enter reclaim */
3560 if (current->flags & PF_MEMALLOC)
3561 return false;
3562
3563 if (gfp_mask & __GFP_NOLOCKDEP)
3564 return false;
3565
3566 return true;
3567 }
3568
__fs_reclaim_acquire(unsigned long ip)3569 void __fs_reclaim_acquire(unsigned long ip)
3570 {
3571 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3572 }
3573
__fs_reclaim_release(unsigned long ip)3574 void __fs_reclaim_release(unsigned long ip)
3575 {
3576 lock_release(&__fs_reclaim_map, ip);
3577 }
3578
fs_reclaim_acquire(gfp_t gfp_mask)3579 void fs_reclaim_acquire(gfp_t gfp_mask)
3580 {
3581 gfp_mask = current_gfp_context(gfp_mask);
3582
3583 if (__need_reclaim(gfp_mask)) {
3584 if (gfp_mask & __GFP_FS)
3585 __fs_reclaim_acquire(_RET_IP_);
3586
3587 #ifdef CONFIG_MMU_NOTIFIER
3588 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3589 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3590 #endif
3591
3592 }
3593 }
3594 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3595
fs_reclaim_release(gfp_t gfp_mask)3596 void fs_reclaim_release(gfp_t gfp_mask)
3597 {
3598 gfp_mask = current_gfp_context(gfp_mask);
3599
3600 if (__need_reclaim(gfp_mask)) {
3601 if (gfp_mask & __GFP_FS)
3602 __fs_reclaim_release(_RET_IP_);
3603 }
3604 }
3605 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3606 #endif
3607
3608 /*
3609 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3610 * have been rebuilt so allocation retries. Reader side does not lock and
3611 * retries the allocation if zonelist changes. Writer side is protected by the
3612 * embedded spin_lock.
3613 */
3614 static DEFINE_SEQLOCK(zonelist_update_seq);
3615
zonelist_iter_begin(void)3616 static unsigned int zonelist_iter_begin(void)
3617 {
3618 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3619 return read_seqbegin(&zonelist_update_seq);
3620
3621 return 0;
3622 }
3623
check_retry_zonelist(unsigned int seq)3624 static unsigned int check_retry_zonelist(unsigned int seq)
3625 {
3626 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3627 return read_seqretry(&zonelist_update_seq, seq);
3628
3629 return seq;
3630 }
3631
3632 /* Perform direct synchronous page reclaim */
3633 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3634 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3635 const struct alloc_context *ac)
3636 {
3637 unsigned int noreclaim_flag;
3638 unsigned long progress;
3639
3640 cond_resched();
3641
3642 /* We now go into synchronous reclaim */
3643 cpuset_memory_pressure_bump();
3644 fs_reclaim_acquire(gfp_mask);
3645 noreclaim_flag = memalloc_noreclaim_save();
3646
3647 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3648 ac->nodemask);
3649
3650 memalloc_noreclaim_restore(noreclaim_flag);
3651 fs_reclaim_release(gfp_mask);
3652
3653 cond_resched();
3654
3655 return progress;
3656 }
3657
3658 /* The really slow allocator path where we enter direct reclaim */
3659 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3660 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3661 unsigned int alloc_flags, const struct alloc_context *ac,
3662 unsigned long *did_some_progress)
3663 {
3664 struct page *page = NULL;
3665 unsigned long pflags;
3666 bool drained = false;
3667
3668 psi_memstall_enter(&pflags);
3669 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3670 if (unlikely(!(*did_some_progress)))
3671 goto out;
3672
3673 retry:
3674 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3675
3676 /*
3677 * If an allocation failed after direct reclaim, it could be because
3678 * pages are pinned on the per-cpu lists or in high alloc reserves.
3679 * Shrink them and try again
3680 */
3681 if (!page && !drained) {
3682 unreserve_highatomic_pageblock(ac, false);
3683 drain_all_pages(NULL);
3684 drained = true;
3685 goto retry;
3686 }
3687 out:
3688 psi_memstall_leave(&pflags);
3689
3690 return page;
3691 }
3692
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3693 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3694 const struct alloc_context *ac)
3695 {
3696 struct zoneref *z;
3697 struct zone *zone;
3698 pg_data_t *last_pgdat = NULL;
3699 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3700
3701 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3702 ac->nodemask) {
3703 if (!managed_zone(zone))
3704 continue;
3705 if (last_pgdat != zone->zone_pgdat) {
3706 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3707 last_pgdat = zone->zone_pgdat;
3708 }
3709 }
3710 }
3711
3712 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3713 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3714 {
3715 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3716
3717 /*
3718 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3719 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3720 * to save two branches.
3721 */
3722 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3723 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3724
3725 /*
3726 * The caller may dip into page reserves a bit more if the caller
3727 * cannot run direct reclaim, or if the caller has realtime scheduling
3728 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3729 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3730 */
3731 alloc_flags |= (__force int)
3732 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3733
3734 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3735 /*
3736 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3737 * if it can't schedule.
3738 */
3739 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3740 alloc_flags |= ALLOC_NON_BLOCK;
3741
3742 if (order > 0)
3743 alloc_flags |= ALLOC_HIGHATOMIC;
3744 }
3745
3746 /*
3747 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3748 * GFP_ATOMIC) rather than fail, see the comment for
3749 * cpuset_node_allowed().
3750 */
3751 if (alloc_flags & ALLOC_MIN_RESERVE)
3752 alloc_flags &= ~ALLOC_CPUSET;
3753 } else if (unlikely(rt_task(current)) && in_task())
3754 alloc_flags |= ALLOC_MIN_RESERVE;
3755
3756 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3757
3758 return alloc_flags;
3759 }
3760
oom_reserves_allowed(struct task_struct * tsk)3761 static bool oom_reserves_allowed(struct task_struct *tsk)
3762 {
3763 if (!tsk_is_oom_victim(tsk))
3764 return false;
3765
3766 /*
3767 * !MMU doesn't have oom reaper so give access to memory reserves
3768 * only to the thread with TIF_MEMDIE set
3769 */
3770 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3771 return false;
3772
3773 return true;
3774 }
3775
3776 /*
3777 * Distinguish requests which really need access to full memory
3778 * reserves from oom victims which can live with a portion of it
3779 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)3780 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3781 {
3782 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3783 return 0;
3784 if (gfp_mask & __GFP_MEMALLOC)
3785 return ALLOC_NO_WATERMARKS;
3786 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3787 return ALLOC_NO_WATERMARKS;
3788 if (!in_interrupt()) {
3789 if (current->flags & PF_MEMALLOC)
3790 return ALLOC_NO_WATERMARKS;
3791 else if (oom_reserves_allowed(current))
3792 return ALLOC_OOM;
3793 }
3794
3795 return 0;
3796 }
3797
gfp_pfmemalloc_allowed(gfp_t gfp_mask)3798 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3799 {
3800 return !!__gfp_pfmemalloc_flags(gfp_mask);
3801 }
3802
3803 /*
3804 * Checks whether it makes sense to retry the reclaim to make a forward progress
3805 * for the given allocation request.
3806 *
3807 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3808 * without success, or when we couldn't even meet the watermark if we
3809 * reclaimed all remaining pages on the LRU lists.
3810 *
3811 * Returns true if a retry is viable or false to enter the oom path.
3812 */
3813 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)3814 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3815 struct alloc_context *ac, int alloc_flags,
3816 bool did_some_progress, int *no_progress_loops)
3817 {
3818 struct zone *zone;
3819 struct zoneref *z;
3820 bool ret = false;
3821
3822 /*
3823 * Costly allocations might have made a progress but this doesn't mean
3824 * their order will become available due to high fragmentation so
3825 * always increment the no progress counter for them
3826 */
3827 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3828 *no_progress_loops = 0;
3829 else
3830 (*no_progress_loops)++;
3831
3832 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3833 goto out;
3834
3835
3836 /*
3837 * Keep reclaiming pages while there is a chance this will lead
3838 * somewhere. If none of the target zones can satisfy our allocation
3839 * request even if all reclaimable pages are considered then we are
3840 * screwed and have to go OOM.
3841 */
3842 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3843 ac->highest_zoneidx, ac->nodemask) {
3844 unsigned long available;
3845 unsigned long reclaimable;
3846 unsigned long min_wmark = min_wmark_pages(zone);
3847 bool wmark;
3848
3849 available = reclaimable = zone_reclaimable_pages(zone);
3850 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3851
3852 /*
3853 * Would the allocation succeed if we reclaimed all
3854 * reclaimable pages?
3855 */
3856 wmark = __zone_watermark_ok(zone, order, min_wmark,
3857 ac->highest_zoneidx, alloc_flags, available);
3858 trace_reclaim_retry_zone(z, order, reclaimable,
3859 available, min_wmark, *no_progress_loops, wmark);
3860 if (wmark) {
3861 ret = true;
3862 break;
3863 }
3864 }
3865
3866 /*
3867 * Memory allocation/reclaim might be called from a WQ context and the
3868 * current implementation of the WQ concurrency control doesn't
3869 * recognize that a particular WQ is congested if the worker thread is
3870 * looping without ever sleeping. Therefore we have to do a short sleep
3871 * here rather than calling cond_resched().
3872 */
3873 if (current->flags & PF_WQ_WORKER)
3874 schedule_timeout_uninterruptible(1);
3875 else
3876 cond_resched();
3877 out:
3878 /* Before OOM, exhaust highatomic_reserve */
3879 if (!ret)
3880 return unreserve_highatomic_pageblock(ac, true);
3881
3882 return ret;
3883 }
3884
3885 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)3886 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3887 {
3888 /*
3889 * It's possible that cpuset's mems_allowed and the nodemask from
3890 * mempolicy don't intersect. This should be normally dealt with by
3891 * policy_nodemask(), but it's possible to race with cpuset update in
3892 * such a way the check therein was true, and then it became false
3893 * before we got our cpuset_mems_cookie here.
3894 * This assumes that for all allocations, ac->nodemask can come only
3895 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3896 * when it does not intersect with the cpuset restrictions) or the
3897 * caller can deal with a violated nodemask.
3898 */
3899 if (cpusets_enabled() && ac->nodemask &&
3900 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3901 ac->nodemask = NULL;
3902 return true;
3903 }
3904
3905 /*
3906 * When updating a task's mems_allowed or mempolicy nodemask, it is
3907 * possible to race with parallel threads in such a way that our
3908 * allocation can fail while the mask is being updated. If we are about
3909 * to fail, check if the cpuset changed during allocation and if so,
3910 * retry.
3911 */
3912 if (read_mems_allowed_retry(cpuset_mems_cookie))
3913 return true;
3914
3915 return false;
3916 }
3917
3918 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)3919 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3920 struct alloc_context *ac)
3921 {
3922 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3923 bool can_compact = gfp_compaction_allowed(gfp_mask);
3924 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3925 struct page *page = NULL;
3926 unsigned int alloc_flags;
3927 unsigned long did_some_progress;
3928 enum compact_priority compact_priority;
3929 enum compact_result compact_result;
3930 int compaction_retries;
3931 int no_progress_loops;
3932 unsigned int cpuset_mems_cookie;
3933 unsigned int zonelist_iter_cookie;
3934 int reserve_flags;
3935
3936 restart:
3937 compaction_retries = 0;
3938 no_progress_loops = 0;
3939 compact_result = COMPACT_SKIPPED;
3940 compact_priority = DEF_COMPACT_PRIORITY;
3941 cpuset_mems_cookie = read_mems_allowed_begin();
3942 zonelist_iter_cookie = zonelist_iter_begin();
3943
3944 /*
3945 * The fast path uses conservative alloc_flags to succeed only until
3946 * kswapd needs to be woken up, and to avoid the cost of setting up
3947 * alloc_flags precisely. So we do that now.
3948 */
3949 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3950
3951 /*
3952 * We need to recalculate the starting point for the zonelist iterator
3953 * because we might have used different nodemask in the fast path, or
3954 * there was a cpuset modification and we are retrying - otherwise we
3955 * could end up iterating over non-eligible zones endlessly.
3956 */
3957 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3958 ac->highest_zoneidx, ac->nodemask);
3959 if (!ac->preferred_zoneref->zone)
3960 goto nopage;
3961
3962 /*
3963 * Check for insane configurations where the cpuset doesn't contain
3964 * any suitable zone to satisfy the request - e.g. non-movable
3965 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3966 */
3967 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3968 struct zoneref *z = first_zones_zonelist(ac->zonelist,
3969 ac->highest_zoneidx,
3970 &cpuset_current_mems_allowed);
3971 if (!z->zone)
3972 goto nopage;
3973 }
3974
3975 if (alloc_flags & ALLOC_KSWAPD)
3976 wake_all_kswapds(order, gfp_mask, ac);
3977
3978 /*
3979 * The adjusted alloc_flags might result in immediate success, so try
3980 * that first
3981 */
3982 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3983 if (page)
3984 goto got_pg;
3985
3986 /*
3987 * For costly allocations, try direct compaction first, as it's likely
3988 * that we have enough base pages and don't need to reclaim. For non-
3989 * movable high-order allocations, do that as well, as compaction will
3990 * try prevent permanent fragmentation by migrating from blocks of the
3991 * same migratetype.
3992 * Don't try this for allocations that are allowed to ignore
3993 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3994 */
3995 if (can_direct_reclaim && can_compact &&
3996 (costly_order ||
3997 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3998 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3999 page = __alloc_pages_direct_compact(gfp_mask, order,
4000 alloc_flags, ac,
4001 INIT_COMPACT_PRIORITY,
4002 &compact_result);
4003 if (page)
4004 goto got_pg;
4005
4006 /*
4007 * Checks for costly allocations with __GFP_NORETRY, which
4008 * includes some THP page fault allocations
4009 */
4010 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4011 /*
4012 * If allocating entire pageblock(s) and compaction
4013 * failed because all zones are below low watermarks
4014 * or is prohibited because it recently failed at this
4015 * order, fail immediately unless the allocator has
4016 * requested compaction and reclaim retry.
4017 *
4018 * Reclaim is
4019 * - potentially very expensive because zones are far
4020 * below their low watermarks or this is part of very
4021 * bursty high order allocations,
4022 * - not guaranteed to help because isolate_freepages()
4023 * may not iterate over freed pages as part of its
4024 * linear scan, and
4025 * - unlikely to make entire pageblocks free on its
4026 * own.
4027 */
4028 if (compact_result == COMPACT_SKIPPED ||
4029 compact_result == COMPACT_DEFERRED)
4030 goto nopage;
4031
4032 /*
4033 * Looks like reclaim/compaction is worth trying, but
4034 * sync compaction could be very expensive, so keep
4035 * using async compaction.
4036 */
4037 compact_priority = INIT_COMPACT_PRIORITY;
4038 }
4039 }
4040
4041 retry:
4042 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4043 if (alloc_flags & ALLOC_KSWAPD)
4044 wake_all_kswapds(order, gfp_mask, ac);
4045
4046 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4047 if (reserve_flags)
4048 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4049 (alloc_flags & ALLOC_KSWAPD);
4050
4051 /*
4052 * Reset the nodemask and zonelist iterators if memory policies can be
4053 * ignored. These allocations are high priority and system rather than
4054 * user oriented.
4055 */
4056 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4057 ac->nodemask = NULL;
4058 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4059 ac->highest_zoneidx, ac->nodemask);
4060 }
4061
4062 /* Attempt with potentially adjusted zonelist and alloc_flags */
4063 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4064 if (page)
4065 goto got_pg;
4066
4067 /* Caller is not willing to reclaim, we can't balance anything */
4068 if (!can_direct_reclaim)
4069 goto nopage;
4070
4071 /* Avoid recursion of direct reclaim */
4072 if (current->flags & PF_MEMALLOC)
4073 goto nopage;
4074
4075 /* Try direct reclaim and then allocating */
4076 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4077 &did_some_progress);
4078 if (page)
4079 goto got_pg;
4080
4081 /* Try direct compaction and then allocating */
4082 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4083 compact_priority, &compact_result);
4084 if (page)
4085 goto got_pg;
4086
4087 /* Do not loop if specifically requested */
4088 if (gfp_mask & __GFP_NORETRY)
4089 goto nopage;
4090
4091 /*
4092 * Do not retry costly high order allocations unless they are
4093 * __GFP_RETRY_MAYFAIL and we can compact
4094 */
4095 if (costly_order && (!can_compact ||
4096 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4097 goto nopage;
4098
4099 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4100 did_some_progress > 0, &no_progress_loops))
4101 goto retry;
4102
4103 /*
4104 * It doesn't make any sense to retry for the compaction if the order-0
4105 * reclaim is not able to make any progress because the current
4106 * implementation of the compaction depends on the sufficient amount
4107 * of free memory (see __compaction_suitable)
4108 */
4109 if (did_some_progress > 0 && can_compact &&
4110 should_compact_retry(ac, order, alloc_flags,
4111 compact_result, &compact_priority,
4112 &compaction_retries))
4113 goto retry;
4114
4115
4116 /*
4117 * Deal with possible cpuset update races or zonelist updates to avoid
4118 * a unnecessary OOM kill.
4119 */
4120 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4121 check_retry_zonelist(zonelist_iter_cookie))
4122 goto restart;
4123
4124 /* Reclaim has failed us, start killing things */
4125 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4126 if (page)
4127 goto got_pg;
4128
4129 /* Avoid allocations with no watermarks from looping endlessly */
4130 if (tsk_is_oom_victim(current) &&
4131 (alloc_flags & ALLOC_OOM ||
4132 (gfp_mask & __GFP_NOMEMALLOC)))
4133 goto nopage;
4134
4135 /* Retry as long as the OOM killer is making progress */
4136 if (did_some_progress) {
4137 no_progress_loops = 0;
4138 goto retry;
4139 }
4140
4141 nopage:
4142 /*
4143 * Deal with possible cpuset update races or zonelist updates to avoid
4144 * a unnecessary OOM kill.
4145 */
4146 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4147 check_retry_zonelist(zonelist_iter_cookie))
4148 goto restart;
4149
4150 /*
4151 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4152 * we always retry
4153 */
4154 if (gfp_mask & __GFP_NOFAIL) {
4155 /*
4156 * All existing users of the __GFP_NOFAIL are blockable, so warn
4157 * of any new users that actually require GFP_NOWAIT
4158 */
4159 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4160 goto fail;
4161
4162 /*
4163 * PF_MEMALLOC request from this context is rather bizarre
4164 * because we cannot reclaim anything and only can loop waiting
4165 * for somebody to do a work for us
4166 */
4167 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4168
4169 /*
4170 * non failing costly orders are a hard requirement which we
4171 * are not prepared for much so let's warn about these users
4172 * so that we can identify them and convert them to something
4173 * else.
4174 */
4175 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4176
4177 /*
4178 * Help non-failing allocations by giving some access to memory
4179 * reserves normally used for high priority non-blocking
4180 * allocations but do not use ALLOC_NO_WATERMARKS because this
4181 * could deplete whole memory reserves which would just make
4182 * the situation worse.
4183 */
4184 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4185 if (page)
4186 goto got_pg;
4187
4188 cond_resched();
4189 goto retry;
4190 }
4191 fail:
4192 warn_alloc(gfp_mask, ac->nodemask,
4193 "page allocation failure: order:%u", order);
4194 got_pg:
4195 return page;
4196 }
4197
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4198 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4199 int preferred_nid, nodemask_t *nodemask,
4200 struct alloc_context *ac, gfp_t *alloc_gfp,
4201 unsigned int *alloc_flags)
4202 {
4203 ac->highest_zoneidx = gfp_zone(gfp_mask);
4204 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4205 ac->nodemask = nodemask;
4206 ac->migratetype = gfp_migratetype(gfp_mask);
4207
4208 if (cpusets_enabled()) {
4209 *alloc_gfp |= __GFP_HARDWALL;
4210 /*
4211 * When we are in the interrupt context, it is irrelevant
4212 * to the current task context. It means that any node ok.
4213 */
4214 if (in_task() && !ac->nodemask)
4215 ac->nodemask = &cpuset_current_mems_allowed;
4216 else
4217 *alloc_flags |= ALLOC_CPUSET;
4218 }
4219
4220 might_alloc(gfp_mask);
4221
4222 if (should_fail_alloc_page(gfp_mask, order))
4223 return false;
4224
4225 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4226
4227 /* Dirty zone balancing only done in the fast path */
4228 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4229
4230 /*
4231 * The preferred zone is used for statistics but crucially it is
4232 * also used as the starting point for the zonelist iterator. It
4233 * may get reset for allocations that ignore memory policies.
4234 */
4235 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4236 ac->highest_zoneidx, ac->nodemask);
4237
4238 return true;
4239 }
4240
4241 /*
4242 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4243 * @gfp: GFP flags for the allocation
4244 * @preferred_nid: The preferred NUMA node ID to allocate from
4245 * @nodemask: Set of nodes to allocate from, may be NULL
4246 * @nr_pages: The number of pages desired on the list or array
4247 * @page_list: Optional list to store the allocated pages
4248 * @page_array: Optional array to store the pages
4249 *
4250 * This is a batched version of the page allocator that attempts to
4251 * allocate nr_pages quickly. Pages are added to page_list if page_list
4252 * is not NULL, otherwise it is assumed that the page_array is valid.
4253 *
4254 * For lists, nr_pages is the number of pages that should be allocated.
4255 *
4256 * For arrays, only NULL elements are populated with pages and nr_pages
4257 * is the maximum number of pages that will be stored in the array.
4258 *
4259 * Returns the number of pages on the list or array.
4260 */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)4261 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4262 nodemask_t *nodemask, int nr_pages,
4263 struct list_head *page_list,
4264 struct page **page_array)
4265 {
4266 struct page *page;
4267 unsigned long __maybe_unused UP_flags;
4268 struct zone *zone;
4269 struct zoneref *z;
4270 struct per_cpu_pages *pcp;
4271 struct list_head *pcp_list;
4272 struct alloc_context ac;
4273 gfp_t alloc_gfp;
4274 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4275 int nr_populated = 0, nr_account = 0;
4276
4277 /*
4278 * Skip populated array elements to determine if any pages need
4279 * to be allocated before disabling IRQs.
4280 */
4281 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4282 nr_populated++;
4283
4284 /* No pages requested? */
4285 if (unlikely(nr_pages <= 0))
4286 goto out;
4287
4288 /* Already populated array? */
4289 if (unlikely(page_array && nr_pages - nr_populated == 0))
4290 goto out;
4291
4292 /* Bulk allocator does not support memcg accounting. */
4293 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4294 goto failed;
4295
4296 /* Use the single page allocator for one page. */
4297 if (nr_pages - nr_populated == 1)
4298 goto failed;
4299
4300 #ifdef CONFIG_PAGE_OWNER
4301 /*
4302 * PAGE_OWNER may recurse into the allocator to allocate space to
4303 * save the stack with pagesets.lock held. Releasing/reacquiring
4304 * removes much of the performance benefit of bulk allocation so
4305 * force the caller to allocate one page at a time as it'll have
4306 * similar performance to added complexity to the bulk allocator.
4307 */
4308 if (static_branch_unlikely(&page_owner_inited))
4309 goto failed;
4310 #endif
4311
4312 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4313 gfp &= gfp_allowed_mask;
4314 alloc_gfp = gfp;
4315 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4316 goto out;
4317 gfp = alloc_gfp;
4318
4319 /* Find an allowed local zone that meets the low watermark. */
4320 z = ac.preferred_zoneref;
4321 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4322 unsigned long mark;
4323
4324 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4325 !__cpuset_zone_allowed(zone, gfp)) {
4326 continue;
4327 }
4328
4329 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4330 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4331 goto failed;
4332 }
4333
4334 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4335 if (zone_watermark_fast(zone, 0, mark,
4336 zonelist_zone_idx(ac.preferred_zoneref),
4337 alloc_flags, gfp)) {
4338 break;
4339 }
4340 }
4341
4342 /*
4343 * If there are no allowed local zones that meets the watermarks then
4344 * try to allocate a single page and reclaim if necessary.
4345 */
4346 if (unlikely(!zone))
4347 goto failed;
4348
4349 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4350 pcp_trylock_prepare(UP_flags);
4351 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4352 if (!pcp)
4353 goto failed_irq;
4354
4355 /* Attempt the batch allocation */
4356 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4357 while (nr_populated < nr_pages) {
4358
4359 /* Skip existing pages */
4360 if (page_array && page_array[nr_populated]) {
4361 nr_populated++;
4362 continue;
4363 }
4364
4365 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4366 pcp, pcp_list);
4367 if (unlikely(!page)) {
4368 /* Try and allocate at least one page */
4369 if (!nr_account) {
4370 pcp_spin_unlock(pcp);
4371 goto failed_irq;
4372 }
4373 break;
4374 }
4375 nr_account++;
4376
4377 prep_new_page(page, 0, gfp, 0);
4378 if (page_list)
4379 list_add(&page->lru, page_list);
4380 else
4381 page_array[nr_populated] = page;
4382 nr_populated++;
4383 }
4384
4385 pcp_spin_unlock(pcp);
4386 pcp_trylock_finish(UP_flags);
4387
4388 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4389 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4390
4391 out:
4392 return nr_populated;
4393
4394 failed_irq:
4395 pcp_trylock_finish(UP_flags);
4396
4397 failed:
4398 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4399 if (page) {
4400 if (page_list)
4401 list_add(&page->lru, page_list);
4402 else
4403 page_array[nr_populated] = page;
4404 nr_populated++;
4405 }
4406
4407 goto out;
4408 }
4409 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4410
4411 /*
4412 * This is the 'heart' of the zoned buddy allocator.
4413 */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4414 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4415 nodemask_t *nodemask)
4416 {
4417 struct page *page;
4418 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4419 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4420 struct alloc_context ac = { };
4421
4422 /*
4423 * There are several places where we assume that the order value is sane
4424 * so bail out early if the request is out of bound.
4425 */
4426 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4427 return NULL;
4428
4429 gfp &= gfp_allowed_mask;
4430 /*
4431 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4432 * resp. GFP_NOIO which has to be inherited for all allocation requests
4433 * from a particular context which has been marked by
4434 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4435 * movable zones are not used during allocation.
4436 */
4437 gfp = current_gfp_context(gfp);
4438 alloc_gfp = gfp;
4439 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4440 &alloc_gfp, &alloc_flags))
4441 return NULL;
4442
4443 /*
4444 * Forbid the first pass from falling back to types that fragment
4445 * memory until all local zones are considered.
4446 */
4447 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4448
4449 /* First allocation attempt */
4450 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4451 if (likely(page))
4452 goto out;
4453
4454 alloc_gfp = gfp;
4455 ac.spread_dirty_pages = false;
4456
4457 /*
4458 * Restore the original nodemask if it was potentially replaced with
4459 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4460 */
4461 ac.nodemask = nodemask;
4462
4463 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4464
4465 out:
4466 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4467 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4468 __free_pages(page, order);
4469 page = NULL;
4470 }
4471
4472 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4473 kmsan_alloc_page(page, order, alloc_gfp);
4474
4475 return page;
4476 }
4477 EXPORT_SYMBOL(__alloc_pages);
4478
__folio_alloc(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4479 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4480 nodemask_t *nodemask)
4481 {
4482 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4483 preferred_nid, nodemask);
4484 return page_rmappable_folio(page);
4485 }
4486 EXPORT_SYMBOL(__folio_alloc);
4487
4488 /*
4489 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4490 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4491 * you need to access high mem.
4492 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)4493 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4494 {
4495 struct page *page;
4496
4497 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4498 if (!page)
4499 return 0;
4500 return (unsigned long) page_address(page);
4501 }
4502 EXPORT_SYMBOL(__get_free_pages);
4503
get_zeroed_page(gfp_t gfp_mask)4504 unsigned long get_zeroed_page(gfp_t gfp_mask)
4505 {
4506 return __get_free_page(gfp_mask | __GFP_ZERO);
4507 }
4508 EXPORT_SYMBOL(get_zeroed_page);
4509
4510 /**
4511 * __free_pages - Free pages allocated with alloc_pages().
4512 * @page: The page pointer returned from alloc_pages().
4513 * @order: The order of the allocation.
4514 *
4515 * This function can free multi-page allocations that are not compound
4516 * pages. It does not check that the @order passed in matches that of
4517 * the allocation, so it is easy to leak memory. Freeing more memory
4518 * than was allocated will probably emit a warning.
4519 *
4520 * If the last reference to this page is speculative, it will be released
4521 * by put_page() which only frees the first page of a non-compound
4522 * allocation. To prevent the remaining pages from being leaked, we free
4523 * the subsequent pages here. If you want to use the page's reference
4524 * count to decide when to free the allocation, you should allocate a
4525 * compound page, and use put_page() instead of __free_pages().
4526 *
4527 * Context: May be called in interrupt context or while holding a normal
4528 * spinlock, but not in NMI context or while holding a raw spinlock.
4529 */
__free_pages(struct page * page,unsigned int order)4530 void __free_pages(struct page *page, unsigned int order)
4531 {
4532 /* get PageHead before we drop reference */
4533 int head = PageHead(page);
4534
4535 if (put_page_testzero(page))
4536 free_the_page(page, order);
4537 else if (!head)
4538 while (order-- > 0)
4539 free_the_page(page + (1 << order), order);
4540 }
4541 EXPORT_SYMBOL(__free_pages);
4542
free_pages(unsigned long addr,unsigned int order)4543 void free_pages(unsigned long addr, unsigned int order)
4544 {
4545 if (addr != 0) {
4546 VM_BUG_ON(!virt_addr_valid((void *)addr));
4547 __free_pages(virt_to_page((void *)addr), order);
4548 }
4549 }
4550
4551 EXPORT_SYMBOL(free_pages);
4552
4553 /*
4554 * Page Fragment:
4555 * An arbitrary-length arbitrary-offset area of memory which resides
4556 * within a 0 or higher order page. Multiple fragments within that page
4557 * are individually refcounted, in the page's reference counter.
4558 *
4559 * The page_frag functions below provide a simple allocation framework for
4560 * page fragments. This is used by the network stack and network device
4561 * drivers to provide a backing region of memory for use as either an
4562 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4563 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4564 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4565 gfp_t gfp_mask)
4566 {
4567 struct page *page = NULL;
4568 gfp_t gfp = gfp_mask;
4569
4570 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4571 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4572 __GFP_NOMEMALLOC;
4573 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4574 PAGE_FRAG_CACHE_MAX_ORDER);
4575 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4576 #endif
4577 if (unlikely(!page))
4578 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4579
4580 nc->va = page ? page_address(page) : NULL;
4581
4582 return page;
4583 }
4584
__page_frag_cache_drain(struct page * page,unsigned int count)4585 void __page_frag_cache_drain(struct page *page, unsigned int count)
4586 {
4587 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4588
4589 if (page_ref_sub_and_test(page, count))
4590 free_the_page(page, compound_order(page));
4591 }
4592 EXPORT_SYMBOL(__page_frag_cache_drain);
4593
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)4594 void *page_frag_alloc_align(struct page_frag_cache *nc,
4595 unsigned int fragsz, gfp_t gfp_mask,
4596 unsigned int align_mask)
4597 {
4598 unsigned int size = PAGE_SIZE;
4599 struct page *page;
4600 int offset;
4601
4602 if (unlikely(!nc->va)) {
4603 refill:
4604 page = __page_frag_cache_refill(nc, gfp_mask);
4605 if (!page)
4606 return NULL;
4607
4608 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4609 /* if size can vary use size else just use PAGE_SIZE */
4610 size = nc->size;
4611 #endif
4612 /* Even if we own the page, we do not use atomic_set().
4613 * This would break get_page_unless_zero() users.
4614 */
4615 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4616
4617 /* reset page count bias and offset to start of new frag */
4618 nc->pfmemalloc = page_is_pfmemalloc(page);
4619 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4620 nc->offset = size;
4621 }
4622
4623 offset = nc->offset - fragsz;
4624 if (unlikely(offset < 0)) {
4625 page = virt_to_page(nc->va);
4626
4627 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4628 goto refill;
4629
4630 if (unlikely(nc->pfmemalloc)) {
4631 free_the_page(page, compound_order(page));
4632 goto refill;
4633 }
4634
4635 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4636 /* if size can vary use size else just use PAGE_SIZE */
4637 size = nc->size;
4638 #endif
4639 /* OK, page count is 0, we can safely set it */
4640 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4641
4642 /* reset page count bias and offset to start of new frag */
4643 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4644 offset = size - fragsz;
4645 if (unlikely(offset < 0)) {
4646 /*
4647 * The caller is trying to allocate a fragment
4648 * with fragsz > PAGE_SIZE but the cache isn't big
4649 * enough to satisfy the request, this may
4650 * happen in low memory conditions.
4651 * We don't release the cache page because
4652 * it could make memory pressure worse
4653 * so we simply return NULL here.
4654 */
4655 return NULL;
4656 }
4657 }
4658
4659 nc->pagecnt_bias--;
4660 offset &= align_mask;
4661 nc->offset = offset;
4662
4663 return nc->va + offset;
4664 }
4665 EXPORT_SYMBOL(page_frag_alloc_align);
4666
4667 /*
4668 * Frees a page fragment allocated out of either a compound or order 0 page.
4669 */
page_frag_free(void * addr)4670 void page_frag_free(void *addr)
4671 {
4672 struct page *page = virt_to_head_page(addr);
4673
4674 if (unlikely(put_page_testzero(page)))
4675 free_the_page(page, compound_order(page));
4676 }
4677 EXPORT_SYMBOL(page_frag_free);
4678
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4679 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4680 size_t size)
4681 {
4682 if (addr) {
4683 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4684 struct page *page = virt_to_page((void *)addr);
4685 struct page *last = page + nr;
4686
4687 split_page_owner(page, 1 << order);
4688 split_page_memcg(page, 1 << order);
4689 while (page < --last)
4690 set_page_refcounted(last);
4691
4692 last = page + (1UL << order);
4693 for (page += nr; page < last; page++)
4694 __free_pages_ok(page, 0, FPI_TO_TAIL);
4695 }
4696 return (void *)addr;
4697 }
4698
4699 /**
4700 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4701 * @size: the number of bytes to allocate
4702 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4703 *
4704 * This function is similar to alloc_pages(), except that it allocates the
4705 * minimum number of pages to satisfy the request. alloc_pages() can only
4706 * allocate memory in power-of-two pages.
4707 *
4708 * This function is also limited by MAX_ORDER.
4709 *
4710 * Memory allocated by this function must be released by free_pages_exact().
4711 *
4712 * Return: pointer to the allocated area or %NULL in case of error.
4713 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)4714 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4715 {
4716 unsigned int order = get_order(size);
4717 unsigned long addr;
4718
4719 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4720 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4721
4722 addr = __get_free_pages(gfp_mask, order);
4723 return make_alloc_exact(addr, order, size);
4724 }
4725 EXPORT_SYMBOL(alloc_pages_exact);
4726
4727 /**
4728 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4729 * pages on a node.
4730 * @nid: the preferred node ID where memory should be allocated
4731 * @size: the number of bytes to allocate
4732 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4733 *
4734 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4735 * back.
4736 *
4737 * Return: pointer to the allocated area or %NULL in case of error.
4738 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)4739 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4740 {
4741 unsigned int order = get_order(size);
4742 struct page *p;
4743
4744 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4745 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4746
4747 p = alloc_pages_node(nid, gfp_mask, order);
4748 if (!p)
4749 return NULL;
4750 return make_alloc_exact((unsigned long)page_address(p), order, size);
4751 }
4752
4753 /**
4754 * free_pages_exact - release memory allocated via alloc_pages_exact()
4755 * @virt: the value returned by alloc_pages_exact.
4756 * @size: size of allocation, same value as passed to alloc_pages_exact().
4757 *
4758 * Release the memory allocated by a previous call to alloc_pages_exact.
4759 */
free_pages_exact(void * virt,size_t size)4760 void free_pages_exact(void *virt, size_t size)
4761 {
4762 unsigned long addr = (unsigned long)virt;
4763 unsigned long end = addr + PAGE_ALIGN(size);
4764
4765 while (addr < end) {
4766 free_page(addr);
4767 addr += PAGE_SIZE;
4768 }
4769 }
4770 EXPORT_SYMBOL(free_pages_exact);
4771
4772 /**
4773 * nr_free_zone_pages - count number of pages beyond high watermark
4774 * @offset: The zone index of the highest zone
4775 *
4776 * nr_free_zone_pages() counts the number of pages which are beyond the
4777 * high watermark within all zones at or below a given zone index. For each
4778 * zone, the number of pages is calculated as:
4779 *
4780 * nr_free_zone_pages = managed_pages - high_pages
4781 *
4782 * Return: number of pages beyond high watermark.
4783 */
nr_free_zone_pages(int offset)4784 static unsigned long nr_free_zone_pages(int offset)
4785 {
4786 struct zoneref *z;
4787 struct zone *zone;
4788
4789 /* Just pick one node, since fallback list is circular */
4790 unsigned long sum = 0;
4791
4792 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4793
4794 for_each_zone_zonelist(zone, z, zonelist, offset) {
4795 unsigned long size = zone_managed_pages(zone);
4796 unsigned long high = high_wmark_pages(zone);
4797 if (size > high)
4798 sum += size - high;
4799 }
4800
4801 return sum;
4802 }
4803
4804 /**
4805 * nr_free_buffer_pages - count number of pages beyond high watermark
4806 *
4807 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4808 * watermark within ZONE_DMA and ZONE_NORMAL.
4809 *
4810 * Return: number of pages beyond high watermark within ZONE_DMA and
4811 * ZONE_NORMAL.
4812 */
nr_free_buffer_pages(void)4813 unsigned long nr_free_buffer_pages(void)
4814 {
4815 return nr_free_zone_pages(gfp_zone(GFP_USER));
4816 }
4817 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4818
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)4819 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4820 {
4821 zoneref->zone = zone;
4822 zoneref->zone_idx = zone_idx(zone);
4823 }
4824
4825 /*
4826 * Builds allocation fallback zone lists.
4827 *
4828 * Add all populated zones of a node to the zonelist.
4829 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)4830 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4831 {
4832 struct zone *zone;
4833 enum zone_type zone_type = MAX_NR_ZONES;
4834 int nr_zones = 0;
4835
4836 do {
4837 zone_type--;
4838 zone = pgdat->node_zones + zone_type;
4839 if (populated_zone(zone)) {
4840 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4841 check_highest_zone(zone_type);
4842 }
4843 } while (zone_type);
4844
4845 return nr_zones;
4846 }
4847
4848 #ifdef CONFIG_NUMA
4849
__parse_numa_zonelist_order(char * s)4850 static int __parse_numa_zonelist_order(char *s)
4851 {
4852 /*
4853 * We used to support different zonelists modes but they turned
4854 * out to be just not useful. Let's keep the warning in place
4855 * if somebody still use the cmd line parameter so that we do
4856 * not fail it silently
4857 */
4858 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4859 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4860 return -EINVAL;
4861 }
4862 return 0;
4863 }
4864
4865 static char numa_zonelist_order[] = "Node";
4866 #define NUMA_ZONELIST_ORDER_LEN 16
4867 /*
4868 * sysctl handler for numa_zonelist_order
4869 */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4870 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4871 void *buffer, size_t *length, loff_t *ppos)
4872 {
4873 if (write)
4874 return __parse_numa_zonelist_order(buffer);
4875 return proc_dostring(table, write, buffer, length, ppos);
4876 }
4877
4878 static int node_load[MAX_NUMNODES];
4879
4880 /**
4881 * find_next_best_node - find the next node that should appear in a given node's fallback list
4882 * @node: node whose fallback list we're appending
4883 * @used_node_mask: nodemask_t of already used nodes
4884 *
4885 * We use a number of factors to determine which is the next node that should
4886 * appear on a given node's fallback list. The node should not have appeared
4887 * already in @node's fallback list, and it should be the next closest node
4888 * according to the distance array (which contains arbitrary distance values
4889 * from each node to each node in the system), and should also prefer nodes
4890 * with no CPUs, since presumably they'll have very little allocation pressure
4891 * on them otherwise.
4892 *
4893 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4894 */
find_next_best_node(int node,nodemask_t * used_node_mask)4895 int find_next_best_node(int node, nodemask_t *used_node_mask)
4896 {
4897 int n, val;
4898 int min_val = INT_MAX;
4899 int best_node = NUMA_NO_NODE;
4900
4901 /* Use the local node if we haven't already */
4902 if (!node_isset(node, *used_node_mask)) {
4903 node_set(node, *used_node_mask);
4904 return node;
4905 }
4906
4907 for_each_node_state(n, N_MEMORY) {
4908
4909 /* Don't want a node to appear more than once */
4910 if (node_isset(n, *used_node_mask))
4911 continue;
4912
4913 /* Use the distance array to find the distance */
4914 val = node_distance(node, n);
4915
4916 /* Penalize nodes under us ("prefer the next node") */
4917 val += (n < node);
4918
4919 /* Give preference to headless and unused nodes */
4920 if (!cpumask_empty(cpumask_of_node(n)))
4921 val += PENALTY_FOR_NODE_WITH_CPUS;
4922
4923 /* Slight preference for less loaded node */
4924 val *= MAX_NUMNODES;
4925 val += node_load[n];
4926
4927 if (val < min_val) {
4928 min_val = val;
4929 best_node = n;
4930 }
4931 }
4932
4933 if (best_node >= 0)
4934 node_set(best_node, *used_node_mask);
4935
4936 return best_node;
4937 }
4938
4939
4940 /*
4941 * Build zonelists ordered by node and zones within node.
4942 * This results in maximum locality--normal zone overflows into local
4943 * DMA zone, if any--but risks exhausting DMA zone.
4944 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)4945 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4946 unsigned nr_nodes)
4947 {
4948 struct zoneref *zonerefs;
4949 int i;
4950
4951 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4952
4953 for (i = 0; i < nr_nodes; i++) {
4954 int nr_zones;
4955
4956 pg_data_t *node = NODE_DATA(node_order[i]);
4957
4958 nr_zones = build_zonerefs_node(node, zonerefs);
4959 zonerefs += nr_zones;
4960 }
4961 zonerefs->zone = NULL;
4962 zonerefs->zone_idx = 0;
4963 }
4964
4965 /*
4966 * Build gfp_thisnode zonelists
4967 */
build_thisnode_zonelists(pg_data_t * pgdat)4968 static void build_thisnode_zonelists(pg_data_t *pgdat)
4969 {
4970 struct zoneref *zonerefs;
4971 int nr_zones;
4972
4973 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4974 nr_zones = build_zonerefs_node(pgdat, zonerefs);
4975 zonerefs += nr_zones;
4976 zonerefs->zone = NULL;
4977 zonerefs->zone_idx = 0;
4978 }
4979
4980 /*
4981 * Build zonelists ordered by zone and nodes within zones.
4982 * This results in conserving DMA zone[s] until all Normal memory is
4983 * exhausted, but results in overflowing to remote node while memory
4984 * may still exist in local DMA zone.
4985 */
4986
build_zonelists(pg_data_t * pgdat)4987 static void build_zonelists(pg_data_t *pgdat)
4988 {
4989 static int node_order[MAX_NUMNODES];
4990 int node, nr_nodes = 0;
4991 nodemask_t used_mask = NODE_MASK_NONE;
4992 int local_node, prev_node;
4993
4994 /* NUMA-aware ordering of nodes */
4995 local_node = pgdat->node_id;
4996 prev_node = local_node;
4997
4998 memset(node_order, 0, sizeof(node_order));
4999 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5000 /*
5001 * We don't want to pressure a particular node.
5002 * So adding penalty to the first node in same
5003 * distance group to make it round-robin.
5004 */
5005 if (node_distance(local_node, node) !=
5006 node_distance(local_node, prev_node))
5007 node_load[node] += 1;
5008
5009 node_order[nr_nodes++] = node;
5010 prev_node = node;
5011 }
5012
5013 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5014 build_thisnode_zonelists(pgdat);
5015 pr_info("Fallback order for Node %d: ", local_node);
5016 for (node = 0; node < nr_nodes; node++)
5017 pr_cont("%d ", node_order[node]);
5018 pr_cont("\n");
5019 }
5020
5021 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5022 /*
5023 * Return node id of node used for "local" allocations.
5024 * I.e., first node id of first zone in arg node's generic zonelist.
5025 * Used for initializing percpu 'numa_mem', which is used primarily
5026 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5027 */
local_memory_node(int node)5028 int local_memory_node(int node)
5029 {
5030 struct zoneref *z;
5031
5032 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5033 gfp_zone(GFP_KERNEL),
5034 NULL);
5035 return zone_to_nid(z->zone);
5036 }
5037 #endif
5038
5039 static void setup_min_unmapped_ratio(void);
5040 static void setup_min_slab_ratio(void);
5041 #else /* CONFIG_NUMA */
5042
build_zonelists(pg_data_t * pgdat)5043 static void build_zonelists(pg_data_t *pgdat)
5044 {
5045 int node, local_node;
5046 struct zoneref *zonerefs;
5047 int nr_zones;
5048
5049 local_node = pgdat->node_id;
5050
5051 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5052 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5053 zonerefs += nr_zones;
5054
5055 /*
5056 * Now we build the zonelist so that it contains the zones
5057 * of all the other nodes.
5058 * We don't want to pressure a particular node, so when
5059 * building the zones for node N, we make sure that the
5060 * zones coming right after the local ones are those from
5061 * node N+1 (modulo N)
5062 */
5063 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5064 if (!node_online(node))
5065 continue;
5066 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5067 zonerefs += nr_zones;
5068 }
5069 for (node = 0; node < local_node; node++) {
5070 if (!node_online(node))
5071 continue;
5072 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5073 zonerefs += nr_zones;
5074 }
5075
5076 zonerefs->zone = NULL;
5077 zonerefs->zone_idx = 0;
5078 }
5079
5080 #endif /* CONFIG_NUMA */
5081
5082 /*
5083 * Boot pageset table. One per cpu which is going to be used for all
5084 * zones and all nodes. The parameters will be set in such a way
5085 * that an item put on a list will immediately be handed over to
5086 * the buddy list. This is safe since pageset manipulation is done
5087 * with interrupts disabled.
5088 *
5089 * The boot_pagesets must be kept even after bootup is complete for
5090 * unused processors and/or zones. They do play a role for bootstrapping
5091 * hotplugged processors.
5092 *
5093 * zoneinfo_show() and maybe other functions do
5094 * not check if the processor is online before following the pageset pointer.
5095 * Other parts of the kernel may not check if the zone is available.
5096 */
5097 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5098 /* These effectively disable the pcplists in the boot pageset completely */
5099 #define BOOT_PAGESET_HIGH 0
5100 #define BOOT_PAGESET_BATCH 1
5101 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5102 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5103
__build_all_zonelists(void * data)5104 static void __build_all_zonelists(void *data)
5105 {
5106 int nid;
5107 int __maybe_unused cpu;
5108 pg_data_t *self = data;
5109 unsigned long flags;
5110
5111 /*
5112 * The zonelist_update_seq must be acquired with irqsave because the
5113 * reader can be invoked from IRQ with GFP_ATOMIC.
5114 */
5115 write_seqlock_irqsave(&zonelist_update_seq, flags);
5116 /*
5117 * Also disable synchronous printk() to prevent any printk() from
5118 * trying to hold port->lock, for
5119 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5120 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5121 */
5122 printk_deferred_enter();
5123
5124 #ifdef CONFIG_NUMA
5125 memset(node_load, 0, sizeof(node_load));
5126 #endif
5127
5128 /*
5129 * This node is hotadded and no memory is yet present. So just
5130 * building zonelists is fine - no need to touch other nodes.
5131 */
5132 if (self && !node_online(self->node_id)) {
5133 build_zonelists(self);
5134 } else {
5135 /*
5136 * All possible nodes have pgdat preallocated
5137 * in free_area_init
5138 */
5139 for_each_node(nid) {
5140 pg_data_t *pgdat = NODE_DATA(nid);
5141
5142 build_zonelists(pgdat);
5143 }
5144
5145 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5146 /*
5147 * We now know the "local memory node" for each node--
5148 * i.e., the node of the first zone in the generic zonelist.
5149 * Set up numa_mem percpu variable for on-line cpus. During
5150 * boot, only the boot cpu should be on-line; we'll init the
5151 * secondary cpus' numa_mem as they come on-line. During
5152 * node/memory hotplug, we'll fixup all on-line cpus.
5153 */
5154 for_each_online_cpu(cpu)
5155 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5156 #endif
5157 }
5158
5159 printk_deferred_exit();
5160 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5161 }
5162
5163 static noinline void __init
build_all_zonelists_init(void)5164 build_all_zonelists_init(void)
5165 {
5166 int cpu;
5167
5168 __build_all_zonelists(NULL);
5169
5170 /*
5171 * Initialize the boot_pagesets that are going to be used
5172 * for bootstrapping processors. The real pagesets for
5173 * each zone will be allocated later when the per cpu
5174 * allocator is available.
5175 *
5176 * boot_pagesets are used also for bootstrapping offline
5177 * cpus if the system is already booted because the pagesets
5178 * are needed to initialize allocators on a specific cpu too.
5179 * F.e. the percpu allocator needs the page allocator which
5180 * needs the percpu allocator in order to allocate its pagesets
5181 * (a chicken-egg dilemma).
5182 */
5183 for_each_possible_cpu(cpu)
5184 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5185
5186 mminit_verify_zonelist();
5187 cpuset_init_current_mems_allowed();
5188 }
5189
5190 /*
5191 * unless system_state == SYSTEM_BOOTING.
5192 *
5193 * __ref due to call of __init annotated helper build_all_zonelists_init
5194 * [protected by SYSTEM_BOOTING].
5195 */
build_all_zonelists(pg_data_t * pgdat)5196 void __ref build_all_zonelists(pg_data_t *pgdat)
5197 {
5198 unsigned long vm_total_pages;
5199
5200 if (system_state == SYSTEM_BOOTING) {
5201 build_all_zonelists_init();
5202 } else {
5203 __build_all_zonelists(pgdat);
5204 /* cpuset refresh routine should be here */
5205 }
5206 /* Get the number of free pages beyond high watermark in all zones. */
5207 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5208 /*
5209 * Disable grouping by mobility if the number of pages in the
5210 * system is too low to allow the mechanism to work. It would be
5211 * more accurate, but expensive to check per-zone. This check is
5212 * made on memory-hotadd so a system can start with mobility
5213 * disabled and enable it later
5214 */
5215 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5216 page_group_by_mobility_disabled = 1;
5217 else
5218 page_group_by_mobility_disabled = 0;
5219
5220 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5221 nr_online_nodes,
5222 page_group_by_mobility_disabled ? "off" : "on",
5223 vm_total_pages);
5224 #ifdef CONFIG_NUMA
5225 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5226 #endif
5227 }
5228
zone_batchsize(struct zone * zone)5229 static int zone_batchsize(struct zone *zone)
5230 {
5231 #ifdef CONFIG_MMU
5232 int batch;
5233
5234 /*
5235 * The number of pages to batch allocate is either ~0.1%
5236 * of the zone or 1MB, whichever is smaller. The batch
5237 * size is striking a balance between allocation latency
5238 * and zone lock contention.
5239 */
5240 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5241 batch /= 4; /* We effectively *= 4 below */
5242 if (batch < 1)
5243 batch = 1;
5244
5245 /*
5246 * Clamp the batch to a 2^n - 1 value. Having a power
5247 * of 2 value was found to be more likely to have
5248 * suboptimal cache aliasing properties in some cases.
5249 *
5250 * For example if 2 tasks are alternately allocating
5251 * batches of pages, one task can end up with a lot
5252 * of pages of one half of the possible page colors
5253 * and the other with pages of the other colors.
5254 */
5255 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5256
5257 return batch;
5258
5259 #else
5260 /* The deferral and batching of frees should be suppressed under NOMMU
5261 * conditions.
5262 *
5263 * The problem is that NOMMU needs to be able to allocate large chunks
5264 * of contiguous memory as there's no hardware page translation to
5265 * assemble apparent contiguous memory from discontiguous pages.
5266 *
5267 * Queueing large contiguous runs of pages for batching, however,
5268 * causes the pages to actually be freed in smaller chunks. As there
5269 * can be a significant delay between the individual batches being
5270 * recycled, this leads to the once large chunks of space being
5271 * fragmented and becoming unavailable for high-order allocations.
5272 */
5273 return 0;
5274 #endif
5275 }
5276
5277 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online)5278 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5279 {
5280 #ifdef CONFIG_MMU
5281 int high;
5282 int nr_split_cpus;
5283 unsigned long total_pages;
5284
5285 if (!percpu_pagelist_high_fraction) {
5286 /*
5287 * By default, the high value of the pcp is based on the zone
5288 * low watermark so that if they are full then background
5289 * reclaim will not be started prematurely.
5290 */
5291 total_pages = low_wmark_pages(zone);
5292 } else {
5293 /*
5294 * If percpu_pagelist_high_fraction is configured, the high
5295 * value is based on a fraction of the managed pages in the
5296 * zone.
5297 */
5298 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5299 }
5300
5301 /*
5302 * Split the high value across all online CPUs local to the zone. Note
5303 * that early in boot that CPUs may not be online yet and that during
5304 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5305 * onlined. For memory nodes that have no CPUs, split pcp->high across
5306 * all online CPUs to mitigate the risk that reclaim is triggered
5307 * prematurely due to pages stored on pcp lists.
5308 */
5309 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5310 if (!nr_split_cpus)
5311 nr_split_cpus = num_online_cpus();
5312 high = total_pages / nr_split_cpus;
5313
5314 /*
5315 * Ensure high is at least batch*4. The multiple is based on the
5316 * historical relationship between high and batch.
5317 */
5318 high = max(high, batch << 2);
5319
5320 return high;
5321 #else
5322 return 0;
5323 #endif
5324 }
5325
5326 /*
5327 * pcp->high and pcp->batch values are related and generally batch is lower
5328 * than high. They are also related to pcp->count such that count is lower
5329 * than high, and as soon as it reaches high, the pcplist is flushed.
5330 *
5331 * However, guaranteeing these relations at all times would require e.g. write
5332 * barriers here but also careful usage of read barriers at the read side, and
5333 * thus be prone to error and bad for performance. Thus the update only prevents
5334 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5335 * can cope with those fields changing asynchronously, and fully trust only the
5336 * pcp->count field on the local CPU with interrupts disabled.
5337 *
5338 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5339 * outside of boot time (or some other assurance that no concurrent updaters
5340 * exist).
5341 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)5342 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5343 unsigned long batch)
5344 {
5345 WRITE_ONCE(pcp->batch, batch);
5346 WRITE_ONCE(pcp->high, high);
5347 }
5348
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5349 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5350 {
5351 int pindex;
5352
5353 memset(pcp, 0, sizeof(*pcp));
5354 memset(pzstats, 0, sizeof(*pzstats));
5355
5356 spin_lock_init(&pcp->lock);
5357 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5358 INIT_LIST_HEAD(&pcp->lists[pindex]);
5359
5360 /*
5361 * Set batch and high values safe for a boot pageset. A true percpu
5362 * pageset's initialization will update them subsequently. Here we don't
5363 * need to be as careful as pageset_update() as nobody can access the
5364 * pageset yet.
5365 */
5366 pcp->high = BOOT_PAGESET_HIGH;
5367 pcp->batch = BOOT_PAGESET_BATCH;
5368 pcp->free_factor = 0;
5369 }
5370
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high,unsigned long batch)5371 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5372 unsigned long batch)
5373 {
5374 struct per_cpu_pages *pcp;
5375 int cpu;
5376
5377 for_each_possible_cpu(cpu) {
5378 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5379 pageset_update(pcp, high, batch);
5380 }
5381 }
5382
5383 /*
5384 * Calculate and set new high and batch values for all per-cpu pagesets of a
5385 * zone based on the zone's size.
5386 */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5387 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5388 {
5389 int new_high, new_batch;
5390
5391 new_batch = max(1, zone_batchsize(zone));
5392 new_high = zone_highsize(zone, new_batch, cpu_online);
5393
5394 if (zone->pageset_high == new_high &&
5395 zone->pageset_batch == new_batch)
5396 return;
5397
5398 zone->pageset_high = new_high;
5399 zone->pageset_batch = new_batch;
5400
5401 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5402 }
5403
setup_zone_pageset(struct zone * zone)5404 void __meminit setup_zone_pageset(struct zone *zone)
5405 {
5406 int cpu;
5407
5408 /* Size may be 0 on !SMP && !NUMA */
5409 if (sizeof(struct per_cpu_zonestat) > 0)
5410 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5411
5412 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5413 for_each_possible_cpu(cpu) {
5414 struct per_cpu_pages *pcp;
5415 struct per_cpu_zonestat *pzstats;
5416
5417 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5418 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5419 per_cpu_pages_init(pcp, pzstats);
5420 }
5421
5422 zone_set_pageset_high_and_batch(zone, 0);
5423 }
5424
5425 /*
5426 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5427 * page high values need to be recalculated.
5428 */
zone_pcp_update(struct zone * zone,int cpu_online)5429 static void zone_pcp_update(struct zone *zone, int cpu_online)
5430 {
5431 mutex_lock(&pcp_batch_high_lock);
5432 zone_set_pageset_high_and_batch(zone, cpu_online);
5433 mutex_unlock(&pcp_batch_high_lock);
5434 }
5435
5436 /*
5437 * Allocate per cpu pagesets and initialize them.
5438 * Before this call only boot pagesets were available.
5439 */
setup_per_cpu_pageset(void)5440 void __init setup_per_cpu_pageset(void)
5441 {
5442 struct pglist_data *pgdat;
5443 struct zone *zone;
5444 int __maybe_unused cpu;
5445
5446 for_each_populated_zone(zone)
5447 setup_zone_pageset(zone);
5448
5449 #ifdef CONFIG_NUMA
5450 /*
5451 * Unpopulated zones continue using the boot pagesets.
5452 * The numa stats for these pagesets need to be reset.
5453 * Otherwise, they will end up skewing the stats of
5454 * the nodes these zones are associated with.
5455 */
5456 for_each_possible_cpu(cpu) {
5457 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5458 memset(pzstats->vm_numa_event, 0,
5459 sizeof(pzstats->vm_numa_event));
5460 }
5461 #endif
5462
5463 for_each_online_pgdat(pgdat)
5464 pgdat->per_cpu_nodestats =
5465 alloc_percpu(struct per_cpu_nodestat);
5466 }
5467
zone_pcp_init(struct zone * zone)5468 __meminit void zone_pcp_init(struct zone *zone)
5469 {
5470 /*
5471 * per cpu subsystem is not up at this point. The following code
5472 * relies on the ability of the linker to provide the
5473 * offset of a (static) per cpu variable into the per cpu area.
5474 */
5475 zone->per_cpu_pageset = &boot_pageset;
5476 zone->per_cpu_zonestats = &boot_zonestats;
5477 zone->pageset_high = BOOT_PAGESET_HIGH;
5478 zone->pageset_batch = BOOT_PAGESET_BATCH;
5479
5480 if (populated_zone(zone))
5481 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5482 zone->present_pages, zone_batchsize(zone));
5483 }
5484
adjust_managed_page_count(struct page * page,long count)5485 void adjust_managed_page_count(struct page *page, long count)
5486 {
5487 atomic_long_add(count, &page_zone(page)->managed_pages);
5488 totalram_pages_add(count);
5489 #ifdef CONFIG_HIGHMEM
5490 if (PageHighMem(page))
5491 totalhigh_pages_add(count);
5492 #endif
5493 }
5494 EXPORT_SYMBOL(adjust_managed_page_count);
5495
free_reserved_area(void * start,void * end,int poison,const char * s)5496 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5497 {
5498 void *pos;
5499 unsigned long pages = 0;
5500
5501 start = (void *)PAGE_ALIGN((unsigned long)start);
5502 end = (void *)((unsigned long)end & PAGE_MASK);
5503 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5504 struct page *page = virt_to_page(pos);
5505 void *direct_map_addr;
5506
5507 /*
5508 * 'direct_map_addr' might be different from 'pos'
5509 * because some architectures' virt_to_page()
5510 * work with aliases. Getting the direct map
5511 * address ensures that we get a _writeable_
5512 * alias for the memset().
5513 */
5514 direct_map_addr = page_address(page);
5515 /*
5516 * Perform a kasan-unchecked memset() since this memory
5517 * has not been initialized.
5518 */
5519 direct_map_addr = kasan_reset_tag(direct_map_addr);
5520 if ((unsigned int)poison <= 0xFF)
5521 memset(direct_map_addr, poison, PAGE_SIZE);
5522
5523 free_reserved_page(page);
5524 }
5525
5526 if (pages && s)
5527 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5528
5529 return pages;
5530 }
5531
page_alloc_cpu_dead(unsigned int cpu)5532 static int page_alloc_cpu_dead(unsigned int cpu)
5533 {
5534 struct zone *zone;
5535
5536 lru_add_drain_cpu(cpu);
5537 mlock_drain_remote(cpu);
5538 drain_pages(cpu);
5539
5540 /*
5541 * Spill the event counters of the dead processor
5542 * into the current processors event counters.
5543 * This artificially elevates the count of the current
5544 * processor.
5545 */
5546 vm_events_fold_cpu(cpu);
5547
5548 /*
5549 * Zero the differential counters of the dead processor
5550 * so that the vm statistics are consistent.
5551 *
5552 * This is only okay since the processor is dead and cannot
5553 * race with what we are doing.
5554 */
5555 cpu_vm_stats_fold(cpu);
5556
5557 for_each_populated_zone(zone)
5558 zone_pcp_update(zone, 0);
5559
5560 return 0;
5561 }
5562
page_alloc_cpu_online(unsigned int cpu)5563 static int page_alloc_cpu_online(unsigned int cpu)
5564 {
5565 struct zone *zone;
5566
5567 for_each_populated_zone(zone)
5568 zone_pcp_update(zone, 1);
5569 return 0;
5570 }
5571
page_alloc_init_cpuhp(void)5572 void __init page_alloc_init_cpuhp(void)
5573 {
5574 int ret;
5575
5576 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5577 "mm/page_alloc:pcp",
5578 page_alloc_cpu_online,
5579 page_alloc_cpu_dead);
5580 WARN_ON(ret < 0);
5581 }
5582
5583 /*
5584 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5585 * or min_free_kbytes changes.
5586 */
calculate_totalreserve_pages(void)5587 static void calculate_totalreserve_pages(void)
5588 {
5589 struct pglist_data *pgdat;
5590 unsigned long reserve_pages = 0;
5591 enum zone_type i, j;
5592
5593 for_each_online_pgdat(pgdat) {
5594
5595 pgdat->totalreserve_pages = 0;
5596
5597 for (i = 0; i < MAX_NR_ZONES; i++) {
5598 struct zone *zone = pgdat->node_zones + i;
5599 long max = 0;
5600 unsigned long managed_pages = zone_managed_pages(zone);
5601
5602 /* Find valid and maximum lowmem_reserve in the zone */
5603 for (j = i; j < MAX_NR_ZONES; j++) {
5604 if (zone->lowmem_reserve[j] > max)
5605 max = zone->lowmem_reserve[j];
5606 }
5607
5608 /* we treat the high watermark as reserved pages. */
5609 max += high_wmark_pages(zone);
5610
5611 if (max > managed_pages)
5612 max = managed_pages;
5613
5614 pgdat->totalreserve_pages += max;
5615
5616 reserve_pages += max;
5617 }
5618 }
5619 totalreserve_pages = reserve_pages;
5620 }
5621
5622 /*
5623 * setup_per_zone_lowmem_reserve - called whenever
5624 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5625 * has a correct pages reserved value, so an adequate number of
5626 * pages are left in the zone after a successful __alloc_pages().
5627 */
setup_per_zone_lowmem_reserve(void)5628 static void setup_per_zone_lowmem_reserve(void)
5629 {
5630 struct pglist_data *pgdat;
5631 enum zone_type i, j;
5632
5633 for_each_online_pgdat(pgdat) {
5634 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5635 struct zone *zone = &pgdat->node_zones[i];
5636 int ratio = sysctl_lowmem_reserve_ratio[i];
5637 bool clear = !ratio || !zone_managed_pages(zone);
5638 unsigned long managed_pages = 0;
5639
5640 for (j = i + 1; j < MAX_NR_ZONES; j++) {
5641 struct zone *upper_zone = &pgdat->node_zones[j];
5642
5643 managed_pages += zone_managed_pages(upper_zone);
5644
5645 if (clear)
5646 zone->lowmem_reserve[j] = 0;
5647 else
5648 zone->lowmem_reserve[j] = managed_pages / ratio;
5649 }
5650 }
5651 }
5652
5653 /* update totalreserve_pages */
5654 calculate_totalreserve_pages();
5655 }
5656
__setup_per_zone_wmarks(void)5657 static void __setup_per_zone_wmarks(void)
5658 {
5659 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5660 unsigned long lowmem_pages = 0;
5661 struct zone *zone;
5662 unsigned long flags;
5663
5664 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5665 for_each_zone(zone) {
5666 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5667 lowmem_pages += zone_managed_pages(zone);
5668 }
5669
5670 for_each_zone(zone) {
5671 u64 tmp;
5672
5673 spin_lock_irqsave(&zone->lock, flags);
5674 tmp = (u64)pages_min * zone_managed_pages(zone);
5675 do_div(tmp, lowmem_pages);
5676 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5677 /*
5678 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5679 * need highmem and movable zones pages, so cap pages_min
5680 * to a small value here.
5681 *
5682 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5683 * deltas control async page reclaim, and so should
5684 * not be capped for highmem and movable zones.
5685 */
5686 unsigned long min_pages;
5687
5688 min_pages = zone_managed_pages(zone) / 1024;
5689 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5690 zone->_watermark[WMARK_MIN] = min_pages;
5691 } else {
5692 /*
5693 * If it's a lowmem zone, reserve a number of pages
5694 * proportionate to the zone's size.
5695 */
5696 zone->_watermark[WMARK_MIN] = tmp;
5697 }
5698
5699 /*
5700 * Set the kswapd watermarks distance according to the
5701 * scale factor in proportion to available memory, but
5702 * ensure a minimum size on small systems.
5703 */
5704 tmp = max_t(u64, tmp >> 2,
5705 mult_frac(zone_managed_pages(zone),
5706 watermark_scale_factor, 10000));
5707
5708 zone->watermark_boost = 0;
5709 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
5710 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5711 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5712
5713 spin_unlock_irqrestore(&zone->lock, flags);
5714 }
5715
5716 /* update totalreserve_pages */
5717 calculate_totalreserve_pages();
5718 }
5719
5720 /**
5721 * setup_per_zone_wmarks - called when min_free_kbytes changes
5722 * or when memory is hot-{added|removed}
5723 *
5724 * Ensures that the watermark[min,low,high] values for each zone are set
5725 * correctly with respect to min_free_kbytes.
5726 */
setup_per_zone_wmarks(void)5727 void setup_per_zone_wmarks(void)
5728 {
5729 struct zone *zone;
5730 static DEFINE_SPINLOCK(lock);
5731
5732 spin_lock(&lock);
5733 __setup_per_zone_wmarks();
5734 spin_unlock(&lock);
5735
5736 /*
5737 * The watermark size have changed so update the pcpu batch
5738 * and high limits or the limits may be inappropriate.
5739 */
5740 for_each_zone(zone)
5741 zone_pcp_update(zone, 0);
5742 }
5743
5744 /*
5745 * Initialise min_free_kbytes.
5746 *
5747 * For small machines we want it small (128k min). For large machines
5748 * we want it large (256MB max). But it is not linear, because network
5749 * bandwidth does not increase linearly with machine size. We use
5750 *
5751 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5752 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5753 *
5754 * which yields
5755 *
5756 * 16MB: 512k
5757 * 32MB: 724k
5758 * 64MB: 1024k
5759 * 128MB: 1448k
5760 * 256MB: 2048k
5761 * 512MB: 2896k
5762 * 1024MB: 4096k
5763 * 2048MB: 5792k
5764 * 4096MB: 8192k
5765 * 8192MB: 11584k
5766 * 16384MB: 16384k
5767 */
calculate_min_free_kbytes(void)5768 void calculate_min_free_kbytes(void)
5769 {
5770 unsigned long lowmem_kbytes;
5771 int new_min_free_kbytes;
5772
5773 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5774 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5775
5776 if (new_min_free_kbytes > user_min_free_kbytes)
5777 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5778 else
5779 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5780 new_min_free_kbytes, user_min_free_kbytes);
5781
5782 }
5783
init_per_zone_wmark_min(void)5784 int __meminit init_per_zone_wmark_min(void)
5785 {
5786 calculate_min_free_kbytes();
5787 setup_per_zone_wmarks();
5788 refresh_zone_stat_thresholds();
5789 setup_per_zone_lowmem_reserve();
5790
5791 #ifdef CONFIG_NUMA
5792 setup_min_unmapped_ratio();
5793 setup_min_slab_ratio();
5794 #endif
5795
5796 khugepaged_min_free_kbytes_update();
5797
5798 return 0;
5799 }
postcore_initcall(init_per_zone_wmark_min)5800 postcore_initcall(init_per_zone_wmark_min)
5801
5802 /*
5803 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5804 * that we can call two helper functions whenever min_free_kbytes
5805 * changes.
5806 */
5807 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5808 void *buffer, size_t *length, loff_t *ppos)
5809 {
5810 int rc;
5811
5812 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5813 if (rc)
5814 return rc;
5815
5816 if (write) {
5817 user_min_free_kbytes = min_free_kbytes;
5818 setup_per_zone_wmarks();
5819 }
5820 return 0;
5821 }
5822
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5823 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5824 void *buffer, size_t *length, loff_t *ppos)
5825 {
5826 int rc;
5827
5828 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5829 if (rc)
5830 return rc;
5831
5832 if (write)
5833 setup_per_zone_wmarks();
5834
5835 return 0;
5836 }
5837
5838 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)5839 static void setup_min_unmapped_ratio(void)
5840 {
5841 pg_data_t *pgdat;
5842 struct zone *zone;
5843
5844 for_each_online_pgdat(pgdat)
5845 pgdat->min_unmapped_pages = 0;
5846
5847 for_each_zone(zone)
5848 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5849 sysctl_min_unmapped_ratio) / 100;
5850 }
5851
5852
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5853 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5854 void *buffer, size_t *length, loff_t *ppos)
5855 {
5856 int rc;
5857
5858 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5859 if (rc)
5860 return rc;
5861
5862 setup_min_unmapped_ratio();
5863
5864 return 0;
5865 }
5866
setup_min_slab_ratio(void)5867 static void setup_min_slab_ratio(void)
5868 {
5869 pg_data_t *pgdat;
5870 struct zone *zone;
5871
5872 for_each_online_pgdat(pgdat)
5873 pgdat->min_slab_pages = 0;
5874
5875 for_each_zone(zone)
5876 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5877 sysctl_min_slab_ratio) / 100;
5878 }
5879
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5880 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5881 void *buffer, size_t *length, loff_t *ppos)
5882 {
5883 int rc;
5884
5885 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5886 if (rc)
5887 return rc;
5888
5889 setup_min_slab_ratio();
5890
5891 return 0;
5892 }
5893 #endif
5894
5895 /*
5896 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5897 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5898 * whenever sysctl_lowmem_reserve_ratio changes.
5899 *
5900 * The reserve ratio obviously has absolutely no relation with the
5901 * minimum watermarks. The lowmem reserve ratio can only make sense
5902 * if in function of the boot time zone sizes.
5903 */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5904 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5905 int write, void *buffer, size_t *length, loff_t *ppos)
5906 {
5907 int i;
5908
5909 proc_dointvec_minmax(table, write, buffer, length, ppos);
5910
5911 for (i = 0; i < MAX_NR_ZONES; i++) {
5912 if (sysctl_lowmem_reserve_ratio[i] < 1)
5913 sysctl_lowmem_reserve_ratio[i] = 0;
5914 }
5915
5916 setup_per_zone_lowmem_reserve();
5917 return 0;
5918 }
5919
5920 /*
5921 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5922 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5923 * pagelist can have before it gets flushed back to buddy allocator.
5924 */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5925 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5926 int write, void *buffer, size_t *length, loff_t *ppos)
5927 {
5928 struct zone *zone;
5929 int old_percpu_pagelist_high_fraction;
5930 int ret;
5931
5932 mutex_lock(&pcp_batch_high_lock);
5933 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5934
5935 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5936 if (!write || ret < 0)
5937 goto out;
5938
5939 /* Sanity checking to avoid pcp imbalance */
5940 if (percpu_pagelist_high_fraction &&
5941 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5942 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5943 ret = -EINVAL;
5944 goto out;
5945 }
5946
5947 /* No change? */
5948 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5949 goto out;
5950
5951 for_each_populated_zone(zone)
5952 zone_set_pageset_high_and_batch(zone, 0);
5953 out:
5954 mutex_unlock(&pcp_batch_high_lock);
5955 return ret;
5956 }
5957
5958 static struct ctl_table page_alloc_sysctl_table[] = {
5959 {
5960 .procname = "min_free_kbytes",
5961 .data = &min_free_kbytes,
5962 .maxlen = sizeof(min_free_kbytes),
5963 .mode = 0644,
5964 .proc_handler = min_free_kbytes_sysctl_handler,
5965 .extra1 = SYSCTL_ZERO,
5966 },
5967 {
5968 .procname = "watermark_boost_factor",
5969 .data = &watermark_boost_factor,
5970 .maxlen = sizeof(watermark_boost_factor),
5971 .mode = 0644,
5972 .proc_handler = proc_dointvec_minmax,
5973 .extra1 = SYSCTL_ZERO,
5974 },
5975 {
5976 .procname = "watermark_scale_factor",
5977 .data = &watermark_scale_factor,
5978 .maxlen = sizeof(watermark_scale_factor),
5979 .mode = 0644,
5980 .proc_handler = watermark_scale_factor_sysctl_handler,
5981 .extra1 = SYSCTL_ONE,
5982 .extra2 = SYSCTL_THREE_THOUSAND,
5983 },
5984 {
5985 .procname = "percpu_pagelist_high_fraction",
5986 .data = &percpu_pagelist_high_fraction,
5987 .maxlen = sizeof(percpu_pagelist_high_fraction),
5988 .mode = 0644,
5989 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
5990 .extra1 = SYSCTL_ZERO,
5991 },
5992 {
5993 .procname = "lowmem_reserve_ratio",
5994 .data = &sysctl_lowmem_reserve_ratio,
5995 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
5996 .mode = 0644,
5997 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
5998 },
5999 #ifdef CONFIG_NUMA
6000 {
6001 .procname = "numa_zonelist_order",
6002 .data = &numa_zonelist_order,
6003 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6004 .mode = 0644,
6005 .proc_handler = numa_zonelist_order_handler,
6006 },
6007 {
6008 .procname = "min_unmapped_ratio",
6009 .data = &sysctl_min_unmapped_ratio,
6010 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6011 .mode = 0644,
6012 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6013 .extra1 = SYSCTL_ZERO,
6014 .extra2 = SYSCTL_ONE_HUNDRED,
6015 },
6016 {
6017 .procname = "min_slab_ratio",
6018 .data = &sysctl_min_slab_ratio,
6019 .maxlen = sizeof(sysctl_min_slab_ratio),
6020 .mode = 0644,
6021 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6022 .extra1 = SYSCTL_ZERO,
6023 .extra2 = SYSCTL_ONE_HUNDRED,
6024 },
6025 #endif
6026 {}
6027 };
6028
page_alloc_sysctl_init(void)6029 void __init page_alloc_sysctl_init(void)
6030 {
6031 register_sysctl_init("vm", page_alloc_sysctl_table);
6032 }
6033
6034 #ifdef CONFIG_CONTIG_ALLOC
6035 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6036 static void alloc_contig_dump_pages(struct list_head *page_list)
6037 {
6038 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6039
6040 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6041 struct page *page;
6042
6043 dump_stack();
6044 list_for_each_entry(page, page_list, lru)
6045 dump_page(page, "migration failure");
6046 }
6047 }
6048
6049 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6050 int __alloc_contig_migrate_range(struct compact_control *cc,
6051 unsigned long start, unsigned long end)
6052 {
6053 /* This function is based on compact_zone() from compaction.c. */
6054 unsigned int nr_reclaimed;
6055 unsigned long pfn = start;
6056 unsigned int tries = 0;
6057 int ret = 0;
6058 struct migration_target_control mtc = {
6059 .nid = zone_to_nid(cc->zone),
6060 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6061 };
6062
6063 lru_cache_disable();
6064
6065 while (pfn < end || !list_empty(&cc->migratepages)) {
6066 if (fatal_signal_pending(current)) {
6067 ret = -EINTR;
6068 break;
6069 }
6070
6071 if (list_empty(&cc->migratepages)) {
6072 cc->nr_migratepages = 0;
6073 ret = isolate_migratepages_range(cc, pfn, end);
6074 if (ret && ret != -EAGAIN)
6075 break;
6076 pfn = cc->migrate_pfn;
6077 tries = 0;
6078 } else if (++tries == 5) {
6079 ret = -EBUSY;
6080 break;
6081 }
6082
6083 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6084 &cc->migratepages);
6085 cc->nr_migratepages -= nr_reclaimed;
6086
6087 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6088 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6089
6090 /*
6091 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6092 * to retry again over this error, so do the same here.
6093 */
6094 if (ret == -ENOMEM)
6095 break;
6096 }
6097
6098 lru_cache_enable();
6099 if (ret < 0) {
6100 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6101 alloc_contig_dump_pages(&cc->migratepages);
6102 putback_movable_pages(&cc->migratepages);
6103 return ret;
6104 }
6105 return 0;
6106 }
6107
6108 /**
6109 * alloc_contig_range() -- tries to allocate given range of pages
6110 * @start: start PFN to allocate
6111 * @end: one-past-the-last PFN to allocate
6112 * @migratetype: migratetype of the underlying pageblocks (either
6113 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6114 * in range must have the same migratetype and it must
6115 * be either of the two.
6116 * @gfp_mask: GFP mask to use during compaction
6117 *
6118 * The PFN range does not have to be pageblock aligned. The PFN range must
6119 * belong to a single zone.
6120 *
6121 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6122 * pageblocks in the range. Once isolated, the pageblocks should not
6123 * be modified by others.
6124 *
6125 * Return: zero on success or negative error code. On success all
6126 * pages which PFN is in [start, end) are allocated for the caller and
6127 * need to be freed with free_contig_range().
6128 */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6129 int alloc_contig_range(unsigned long start, unsigned long end,
6130 unsigned migratetype, gfp_t gfp_mask)
6131 {
6132 unsigned long outer_start, outer_end;
6133 int order;
6134 int ret = 0;
6135
6136 struct compact_control cc = {
6137 .nr_migratepages = 0,
6138 .order = -1,
6139 .zone = page_zone(pfn_to_page(start)),
6140 .mode = MIGRATE_SYNC,
6141 .ignore_skip_hint = true,
6142 .no_set_skip_hint = true,
6143 .gfp_mask = current_gfp_context(gfp_mask),
6144 .alloc_contig = true,
6145 };
6146 INIT_LIST_HEAD(&cc.migratepages);
6147
6148 /*
6149 * What we do here is we mark all pageblocks in range as
6150 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6151 * have different sizes, and due to the way page allocator
6152 * work, start_isolate_page_range() has special handlings for this.
6153 *
6154 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6155 * migrate the pages from an unaligned range (ie. pages that
6156 * we are interested in). This will put all the pages in
6157 * range back to page allocator as MIGRATE_ISOLATE.
6158 *
6159 * When this is done, we take the pages in range from page
6160 * allocator removing them from the buddy system. This way
6161 * page allocator will never consider using them.
6162 *
6163 * This lets us mark the pageblocks back as
6164 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6165 * aligned range but not in the unaligned, original range are
6166 * put back to page allocator so that buddy can use them.
6167 */
6168
6169 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6170 if (ret)
6171 goto done;
6172
6173 drain_all_pages(cc.zone);
6174
6175 /*
6176 * In case of -EBUSY, we'd like to know which page causes problem.
6177 * So, just fall through. test_pages_isolated() has a tracepoint
6178 * which will report the busy page.
6179 *
6180 * It is possible that busy pages could become available before
6181 * the call to test_pages_isolated, and the range will actually be
6182 * allocated. So, if we fall through be sure to clear ret so that
6183 * -EBUSY is not accidentally used or returned to caller.
6184 */
6185 ret = __alloc_contig_migrate_range(&cc, start, end);
6186 if (ret && ret != -EBUSY)
6187 goto done;
6188 ret = 0;
6189
6190 /*
6191 * Pages from [start, end) are within a pageblock_nr_pages
6192 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6193 * more, all pages in [start, end) are free in page allocator.
6194 * What we are going to do is to allocate all pages from
6195 * [start, end) (that is remove them from page allocator).
6196 *
6197 * The only problem is that pages at the beginning and at the
6198 * end of interesting range may be not aligned with pages that
6199 * page allocator holds, ie. they can be part of higher order
6200 * pages. Because of this, we reserve the bigger range and
6201 * once this is done free the pages we are not interested in.
6202 *
6203 * We don't have to hold zone->lock here because the pages are
6204 * isolated thus they won't get removed from buddy.
6205 */
6206
6207 order = 0;
6208 outer_start = start;
6209 while (!PageBuddy(pfn_to_page(outer_start))) {
6210 if (++order > MAX_ORDER) {
6211 outer_start = start;
6212 break;
6213 }
6214 outer_start &= ~0UL << order;
6215 }
6216
6217 if (outer_start != start) {
6218 order = buddy_order(pfn_to_page(outer_start));
6219
6220 /*
6221 * outer_start page could be small order buddy page and
6222 * it doesn't include start page. Adjust outer_start
6223 * in this case to report failed page properly
6224 * on tracepoint in test_pages_isolated()
6225 */
6226 if (outer_start + (1UL << order) <= start)
6227 outer_start = start;
6228 }
6229
6230 /* Make sure the range is really isolated. */
6231 if (test_pages_isolated(outer_start, end, 0)) {
6232 ret = -EBUSY;
6233 goto done;
6234 }
6235
6236 /* Grab isolated pages from freelists. */
6237 outer_end = isolate_freepages_range(&cc, outer_start, end);
6238 if (!outer_end) {
6239 ret = -EBUSY;
6240 goto done;
6241 }
6242
6243 /* Free head and tail (if any) */
6244 if (start != outer_start)
6245 free_contig_range(outer_start, start - outer_start);
6246 if (end != outer_end)
6247 free_contig_range(end, outer_end - end);
6248
6249 done:
6250 undo_isolate_page_range(start, end, migratetype);
6251 return ret;
6252 }
6253 EXPORT_SYMBOL(alloc_contig_range);
6254
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6255 static int __alloc_contig_pages(unsigned long start_pfn,
6256 unsigned long nr_pages, gfp_t gfp_mask)
6257 {
6258 unsigned long end_pfn = start_pfn + nr_pages;
6259
6260 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6261 gfp_mask);
6262 }
6263
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6264 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6265 unsigned long nr_pages)
6266 {
6267 unsigned long i, end_pfn = start_pfn + nr_pages;
6268 struct page *page;
6269
6270 for (i = start_pfn; i < end_pfn; i++) {
6271 page = pfn_to_online_page(i);
6272 if (!page)
6273 return false;
6274
6275 if (page_zone(page) != z)
6276 return false;
6277
6278 if (PageReserved(page))
6279 return false;
6280
6281 if (PageHuge(page))
6282 return false;
6283 }
6284 return true;
6285 }
6286
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6287 static bool zone_spans_last_pfn(const struct zone *zone,
6288 unsigned long start_pfn, unsigned long nr_pages)
6289 {
6290 unsigned long last_pfn = start_pfn + nr_pages - 1;
6291
6292 return zone_spans_pfn(zone, last_pfn);
6293 }
6294
6295 /**
6296 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6297 * @nr_pages: Number of contiguous pages to allocate
6298 * @gfp_mask: GFP mask to limit search and used during compaction
6299 * @nid: Target node
6300 * @nodemask: Mask for other possible nodes
6301 *
6302 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6303 * on an applicable zonelist to find a contiguous pfn range which can then be
6304 * tried for allocation with alloc_contig_range(). This routine is intended
6305 * for allocation requests which can not be fulfilled with the buddy allocator.
6306 *
6307 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6308 * power of two, then allocated range is also guaranteed to be aligned to same
6309 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6310 *
6311 * Allocated pages can be freed with free_contig_range() or by manually calling
6312 * __free_page() on each allocated page.
6313 *
6314 * Return: pointer to contiguous pages on success, or NULL if not successful.
6315 */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6316 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6317 int nid, nodemask_t *nodemask)
6318 {
6319 unsigned long ret, pfn, flags;
6320 struct zonelist *zonelist;
6321 struct zone *zone;
6322 struct zoneref *z;
6323
6324 zonelist = node_zonelist(nid, gfp_mask);
6325 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6326 gfp_zone(gfp_mask), nodemask) {
6327 spin_lock_irqsave(&zone->lock, flags);
6328
6329 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6330 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6331 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6332 /*
6333 * We release the zone lock here because
6334 * alloc_contig_range() will also lock the zone
6335 * at some point. If there's an allocation
6336 * spinning on this lock, it may win the race
6337 * and cause alloc_contig_range() to fail...
6338 */
6339 spin_unlock_irqrestore(&zone->lock, flags);
6340 ret = __alloc_contig_pages(pfn, nr_pages,
6341 gfp_mask);
6342 if (!ret)
6343 return pfn_to_page(pfn);
6344 spin_lock_irqsave(&zone->lock, flags);
6345 }
6346 pfn += nr_pages;
6347 }
6348 spin_unlock_irqrestore(&zone->lock, flags);
6349 }
6350 return NULL;
6351 }
6352 #endif /* CONFIG_CONTIG_ALLOC */
6353
free_contig_range(unsigned long pfn,unsigned long nr_pages)6354 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6355 {
6356 unsigned long count = 0;
6357
6358 for (; nr_pages--; pfn++) {
6359 struct page *page = pfn_to_page(pfn);
6360
6361 count += page_count(page) != 1;
6362 __free_page(page);
6363 }
6364 WARN(count != 0, "%lu pages are still in use!\n", count);
6365 }
6366 EXPORT_SYMBOL(free_contig_range);
6367
6368 /*
6369 * Effectively disable pcplists for the zone by setting the high limit to 0
6370 * and draining all cpus. A concurrent page freeing on another CPU that's about
6371 * to put the page on pcplist will either finish before the drain and the page
6372 * will be drained, or observe the new high limit and skip the pcplist.
6373 *
6374 * Must be paired with a call to zone_pcp_enable().
6375 */
zone_pcp_disable(struct zone * zone)6376 void zone_pcp_disable(struct zone *zone)
6377 {
6378 mutex_lock(&pcp_batch_high_lock);
6379 __zone_set_pageset_high_and_batch(zone, 0, 1);
6380 __drain_all_pages(zone, true);
6381 }
6382
zone_pcp_enable(struct zone * zone)6383 void zone_pcp_enable(struct zone *zone)
6384 {
6385 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6386 mutex_unlock(&pcp_batch_high_lock);
6387 }
6388
zone_pcp_reset(struct zone * zone)6389 void zone_pcp_reset(struct zone *zone)
6390 {
6391 int cpu;
6392 struct per_cpu_zonestat *pzstats;
6393
6394 if (zone->per_cpu_pageset != &boot_pageset) {
6395 for_each_online_cpu(cpu) {
6396 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6397 drain_zonestat(zone, pzstats);
6398 }
6399 free_percpu(zone->per_cpu_pageset);
6400 zone->per_cpu_pageset = &boot_pageset;
6401 if (zone->per_cpu_zonestats != &boot_zonestats) {
6402 free_percpu(zone->per_cpu_zonestats);
6403 zone->per_cpu_zonestats = &boot_zonestats;
6404 }
6405 }
6406 }
6407
6408 #ifdef CONFIG_MEMORY_HOTREMOVE
6409 /*
6410 * All pages in the range must be in a single zone, must not contain holes,
6411 * must span full sections, and must be isolated before calling this function.
6412 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6413 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6414 {
6415 unsigned long pfn = start_pfn;
6416 struct page *page;
6417 struct zone *zone;
6418 unsigned int order;
6419 unsigned long flags;
6420
6421 offline_mem_sections(pfn, end_pfn);
6422 zone = page_zone(pfn_to_page(pfn));
6423 spin_lock_irqsave(&zone->lock, flags);
6424 while (pfn < end_pfn) {
6425 page = pfn_to_page(pfn);
6426 /*
6427 * The HWPoisoned page may be not in buddy system, and
6428 * page_count() is not 0.
6429 */
6430 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6431 pfn++;
6432 continue;
6433 }
6434 /*
6435 * At this point all remaining PageOffline() pages have a
6436 * reference count of 0 and can simply be skipped.
6437 */
6438 if (PageOffline(page)) {
6439 BUG_ON(page_count(page));
6440 BUG_ON(PageBuddy(page));
6441 pfn++;
6442 continue;
6443 }
6444
6445 BUG_ON(page_count(page));
6446 BUG_ON(!PageBuddy(page));
6447 order = buddy_order(page);
6448 del_page_from_free_list(page, zone, order);
6449 pfn += (1 << order);
6450 }
6451 spin_unlock_irqrestore(&zone->lock, flags);
6452 }
6453 #endif
6454
6455 /*
6456 * This function returns a stable result only if called under zone lock.
6457 */
is_free_buddy_page(struct page * page)6458 bool is_free_buddy_page(struct page *page)
6459 {
6460 unsigned long pfn = page_to_pfn(page);
6461 unsigned int order;
6462
6463 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6464 struct page *page_head = page - (pfn & ((1 << order) - 1));
6465
6466 if (PageBuddy(page_head) &&
6467 buddy_order_unsafe(page_head) >= order)
6468 break;
6469 }
6470
6471 return order <= MAX_ORDER;
6472 }
6473 EXPORT_SYMBOL(is_free_buddy_page);
6474
6475 #ifdef CONFIG_MEMORY_FAILURE
6476 /*
6477 * Break down a higher-order page in sub-pages, and keep our target out of
6478 * buddy allocator.
6479 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6480 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6481 struct page *target, int low, int high,
6482 int migratetype)
6483 {
6484 unsigned long size = 1 << high;
6485 struct page *current_buddy, *next_page;
6486
6487 while (high > low) {
6488 high--;
6489 size >>= 1;
6490
6491 if (target >= &page[size]) {
6492 next_page = page + size;
6493 current_buddy = page;
6494 } else {
6495 next_page = page;
6496 current_buddy = page + size;
6497 }
6498 page = next_page;
6499
6500 if (set_page_guard(zone, current_buddy, high, migratetype))
6501 continue;
6502
6503 if (current_buddy != target) {
6504 add_to_free_list(current_buddy, zone, high, migratetype);
6505 set_buddy_order(current_buddy, high);
6506 }
6507 }
6508 }
6509
6510 /*
6511 * Take a page that will be marked as poisoned off the buddy allocator.
6512 */
take_page_off_buddy(struct page * page)6513 bool take_page_off_buddy(struct page *page)
6514 {
6515 struct zone *zone = page_zone(page);
6516 unsigned long pfn = page_to_pfn(page);
6517 unsigned long flags;
6518 unsigned int order;
6519 bool ret = false;
6520
6521 spin_lock_irqsave(&zone->lock, flags);
6522 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6523 struct page *page_head = page - (pfn & ((1 << order) - 1));
6524 int page_order = buddy_order(page_head);
6525
6526 if (PageBuddy(page_head) && page_order >= order) {
6527 unsigned long pfn_head = page_to_pfn(page_head);
6528 int migratetype = get_pfnblock_migratetype(page_head,
6529 pfn_head);
6530
6531 del_page_from_free_list(page_head, zone, page_order);
6532 break_down_buddy_pages(zone, page_head, page, 0,
6533 page_order, migratetype);
6534 SetPageHWPoisonTakenOff(page);
6535 if (!is_migrate_isolate(migratetype))
6536 __mod_zone_freepage_state(zone, -1, migratetype);
6537 ret = true;
6538 break;
6539 }
6540 if (page_count(page_head) > 0)
6541 break;
6542 }
6543 spin_unlock_irqrestore(&zone->lock, flags);
6544 return ret;
6545 }
6546
6547 /*
6548 * Cancel takeoff done by take_page_off_buddy().
6549 */
put_page_back_buddy(struct page * page)6550 bool put_page_back_buddy(struct page *page)
6551 {
6552 struct zone *zone = page_zone(page);
6553 unsigned long pfn = page_to_pfn(page);
6554 unsigned long flags;
6555 int migratetype = get_pfnblock_migratetype(page, pfn);
6556 bool ret = false;
6557
6558 spin_lock_irqsave(&zone->lock, flags);
6559 if (put_page_testzero(page)) {
6560 ClearPageHWPoisonTakenOff(page);
6561 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6562 if (TestClearPageHWPoison(page)) {
6563 ret = true;
6564 }
6565 }
6566 spin_unlock_irqrestore(&zone->lock, flags);
6567
6568 return ret;
6569 }
6570 #endif
6571
6572 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6573 bool has_managed_dma(void)
6574 {
6575 struct pglist_data *pgdat;
6576
6577 for_each_online_pgdat(pgdat) {
6578 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6579
6580 if (managed_zone(zone))
6581 return true;
6582 }
6583 return false;
6584 }
6585 #endif /* CONFIG_ZONE_DMA */
6586
6587 #ifdef CONFIG_UNACCEPTED_MEMORY
6588
6589 /* Counts number of zones with unaccepted pages. */
6590 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6591
6592 static bool lazy_accept = true;
6593
accept_memory_parse(char * p)6594 static int __init accept_memory_parse(char *p)
6595 {
6596 if (!strcmp(p, "lazy")) {
6597 lazy_accept = true;
6598 return 0;
6599 } else if (!strcmp(p, "eager")) {
6600 lazy_accept = false;
6601 return 0;
6602 } else {
6603 return -EINVAL;
6604 }
6605 }
6606 early_param("accept_memory", accept_memory_parse);
6607
page_contains_unaccepted(struct page * page,unsigned int order)6608 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6609 {
6610 phys_addr_t start = page_to_phys(page);
6611 phys_addr_t end = start + (PAGE_SIZE << order);
6612
6613 return range_contains_unaccepted_memory(start, end);
6614 }
6615
accept_page(struct page * page,unsigned int order)6616 static void accept_page(struct page *page, unsigned int order)
6617 {
6618 phys_addr_t start = page_to_phys(page);
6619
6620 accept_memory(start, start + (PAGE_SIZE << order));
6621 }
6622
try_to_accept_memory_one(struct zone * zone)6623 static bool try_to_accept_memory_one(struct zone *zone)
6624 {
6625 unsigned long flags;
6626 struct page *page;
6627 bool last;
6628
6629 spin_lock_irqsave(&zone->lock, flags);
6630 page = list_first_entry_or_null(&zone->unaccepted_pages,
6631 struct page, lru);
6632 if (!page) {
6633 spin_unlock_irqrestore(&zone->lock, flags);
6634 return false;
6635 }
6636
6637 list_del(&page->lru);
6638 last = list_empty(&zone->unaccepted_pages);
6639
6640 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6641 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6642 spin_unlock_irqrestore(&zone->lock, flags);
6643
6644 accept_page(page, MAX_ORDER);
6645
6646 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6647
6648 if (last)
6649 static_branch_dec(&zones_with_unaccepted_pages);
6650
6651 return true;
6652 }
6653
cond_accept_memory(struct zone * zone,unsigned int order)6654 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6655 {
6656 long to_accept;
6657 bool ret = false;
6658
6659 if (!has_unaccepted_memory())
6660 return false;
6661
6662 if (list_empty(&zone->unaccepted_pages))
6663 return false;
6664
6665 /* How much to accept to get to high watermark? */
6666 to_accept = high_wmark_pages(zone) -
6667 (zone_page_state(zone, NR_FREE_PAGES) -
6668 __zone_watermark_unusable_free(zone, order, 0) -
6669 zone_page_state(zone, NR_UNACCEPTED));
6670
6671 while (to_accept > 0) {
6672 if (!try_to_accept_memory_one(zone))
6673 break;
6674 ret = true;
6675 to_accept -= MAX_ORDER_NR_PAGES;
6676 }
6677
6678 return ret;
6679 }
6680
has_unaccepted_memory(void)6681 static inline bool has_unaccepted_memory(void)
6682 {
6683 return static_branch_unlikely(&zones_with_unaccepted_pages);
6684 }
6685
__free_unaccepted(struct page * page)6686 static bool __free_unaccepted(struct page *page)
6687 {
6688 struct zone *zone = page_zone(page);
6689 unsigned long flags;
6690 bool first = false;
6691
6692 if (!lazy_accept)
6693 return false;
6694
6695 spin_lock_irqsave(&zone->lock, flags);
6696 first = list_empty(&zone->unaccepted_pages);
6697 list_add_tail(&page->lru, &zone->unaccepted_pages);
6698 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6699 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6700 spin_unlock_irqrestore(&zone->lock, flags);
6701
6702 if (first)
6703 static_branch_inc(&zones_with_unaccepted_pages);
6704
6705 return true;
6706 }
6707
6708 #else
6709
page_contains_unaccepted(struct page * page,unsigned int order)6710 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6711 {
6712 return false;
6713 }
6714
accept_page(struct page * page,unsigned int order)6715 static void accept_page(struct page *page, unsigned int order)
6716 {
6717 }
6718
cond_accept_memory(struct zone * zone,unsigned int order)6719 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6720 {
6721 return false;
6722 }
6723
has_unaccepted_memory(void)6724 static inline bool has_unaccepted_memory(void)
6725 {
6726 return false;
6727 }
6728
__free_unaccepted(struct page * page)6729 static bool __free_unaccepted(struct page *page)
6730 {
6731 BUILD_BUG();
6732 return false;
6733 }
6734
6735 #endif /* CONFIG_UNACCEPTED_MEMORY */
6736