xref: /openbmc/linux/fs/btrfs/ctree.c (revision ecc23d0a422a3118fcf6e4f0a46e17a6c2047b02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26 
27 static struct kmem_cache *btrfs_path_cachep;
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
33 		      int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct extent_buffer *dst,
36 			  struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 
41 static const struct btrfs_csums {
42 	u16		size;
43 	const char	name[10];
44 	const char	driver[12];
45 } btrfs_csums[] = {
46 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50 				     .driver = "blake2b-256" },
51 };
52 
53 /*
54  * The leaf data grows from end-to-front in the node.  this returns the address
55  * of the start of the last item, which is the stop of the leaf data stack.
56  */
leaf_data_end(const struct extent_buffer * leaf)57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58 {
59 	u32 nr = btrfs_header_nritems(leaf);
60 
61 	if (nr == 0)
62 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63 	return btrfs_item_offset(leaf, nr - 1);
64 }
65 
66 /*
67  * Move data in a @leaf (using memmove, safe for overlapping ranges).
68  *
69  * @leaf:	leaf that we're doing a memmove on
70  * @dst_offset:	item data offset we're moving to
71  * @src_offset:	item data offset were' moving from
72  * @len:	length of the data we're moving
73  *
74  * Wrapper around memmove_extent_buffer() that takes into account the header on
75  * the leaf.  The btrfs_item offset's start directly after the header, so we
76  * have to adjust any offsets to account for the header in the leaf.  This
77  * handles that math to simplify the callers.
78  */
memmove_leaf_data(const struct extent_buffer * leaf,unsigned long dst_offset,unsigned long src_offset,unsigned long len)79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80 				     unsigned long dst_offset,
81 				     unsigned long src_offset,
82 				     unsigned long len)
83 {
84 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85 			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86 }
87 
88 /*
89  * Copy item data from @src into @dst at the given @offset.
90  *
91  * @dst:	destination leaf that we're copying into
92  * @src:	source leaf that we're copying from
93  * @dst_offset:	item data offset we're copying to
94  * @src_offset:	item data offset were' copying from
95  * @len:	length of the data we're copying
96  *
97  * Wrapper around copy_extent_buffer() that takes into account the header on
98  * the leaf.  The btrfs_item offset's start directly after the header, so we
99  * have to adjust any offsets to account for the header in the leaf.  This
100  * handles that math to simplify the callers.
101  */
copy_leaf_data(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103 				  const struct extent_buffer *src,
104 				  unsigned long dst_offset,
105 				  unsigned long src_offset, unsigned long len)
106 {
107 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108 			   btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110 
111 /*
112  * Move items in a @leaf (using memmove).
113  *
114  * @dst:	destination leaf for the items
115  * @dst_item:	the item nr we're copying into
116  * @src_item:	the item nr we're copying from
117  * @nr_items:	the number of items to copy
118  *
119  * Wrapper around memmove_extent_buffer() that does the math to get the
120  * appropriate offsets into the leaf from the item numbers.
121  */
memmove_leaf_items(const struct extent_buffer * leaf,int dst_item,int src_item,int nr_items)122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123 				      int dst_item, int src_item, int nr_items)
124 {
125 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126 			      btrfs_item_nr_offset(leaf, src_item),
127 			      nr_items * sizeof(struct btrfs_item));
128 }
129 
130 /*
131  * Copy items from @src into @dst at the given @offset.
132  *
133  * @dst:	destination leaf for the items
134  * @src:	source leaf for the items
135  * @dst_item:	the item nr we're copying into
136  * @src_item:	the item nr we're copying from
137  * @nr_items:	the number of items to copy
138  *
139  * Wrapper around copy_extent_buffer() that does the math to get the
140  * appropriate offsets into the leaf from the item numbers.
141  */
copy_leaf_items(const struct extent_buffer * dst,const struct extent_buffer * src,int dst_item,int src_item,int nr_items)142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143 				   const struct extent_buffer *src,
144 				   int dst_item, int src_item, int nr_items)
145 {
146 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147 			      btrfs_item_nr_offset(src, src_item),
148 			      nr_items * sizeof(struct btrfs_item));
149 }
150 
151 /* This exists for btrfs-progs usages. */
btrfs_csum_type_size(u16 type)152 u16 btrfs_csum_type_size(u16 type)
153 {
154 	return btrfs_csums[type].size;
155 }
156 
btrfs_super_csum_size(const struct btrfs_super_block * s)157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159 	u16 t = btrfs_super_csum_type(s);
160 	/*
161 	 * csum type is validated at mount time
162 	 */
163 	return btrfs_csum_type_size(t);
164 }
165 
btrfs_super_csum_name(u16 csum_type)166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168 	/* csum type is validated at mount time */
169 	return btrfs_csums[csum_type].name;
170 }
171 
172 /*
173  * Return driver name if defined, otherwise the name that's also a valid driver
174  * name
175  */
btrfs_super_csum_driver(u16 csum_type)176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178 	/* csum type is validated at mount time */
179 	return btrfs_csums[csum_type].driver[0] ?
180 		btrfs_csums[csum_type].driver :
181 		btrfs_csums[csum_type].name;
182 }
183 
btrfs_get_num_csums(void)184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186 	return ARRAY_SIZE(btrfs_csums);
187 }
188 
btrfs_alloc_path(void)189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191 	might_sleep();
192 
193 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195 
196 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)197 void btrfs_free_path(struct btrfs_path *p)
198 {
199 	if (!p)
200 		return;
201 	btrfs_release_path(p);
202 	kmem_cache_free(btrfs_path_cachep, p);
203 }
204 
205 /*
206  * path release drops references on the extent buffers in the path
207  * and it drops any locks held by this path
208  *
209  * It is safe to call this on paths that no locks or extent buffers held.
210  */
btrfs_release_path(struct btrfs_path * p)211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213 	int i;
214 
215 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216 		p->slots[i] = 0;
217 		if (!p->nodes[i])
218 			continue;
219 		if (p->locks[i]) {
220 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221 			p->locks[i] = 0;
222 		}
223 		free_extent_buffer(p->nodes[i]);
224 		p->nodes[i] = NULL;
225 	}
226 }
227 
228 /*
229  * We want the transaction abort to print stack trace only for errors where the
230  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231  * caused by external factors.
232  */
abort_should_print_stack(int errno)233 bool __cold abort_should_print_stack(int errno)
234 {
235 	switch (errno) {
236 	case -EIO:
237 	case -EROFS:
238 	case -ENOMEM:
239 		return false;
240 	}
241 	return true;
242 }
243 
244 /*
245  * safely gets a reference on the root node of a tree.  A lock
246  * is not taken, so a concurrent writer may put a different node
247  * at the root of the tree.  See btrfs_lock_root_node for the
248  * looping required.
249  *
250  * The extent buffer returned by this has a reference taken, so
251  * it won't disappear.  It may stop being the root of the tree
252  * at any time because there are no locks held.
253  */
btrfs_root_node(struct btrfs_root * root)254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256 	struct extent_buffer *eb;
257 
258 	while (1) {
259 		rcu_read_lock();
260 		eb = rcu_dereference(root->node);
261 
262 		/*
263 		 * RCU really hurts here, we could free up the root node because
264 		 * it was COWed but we may not get the new root node yet so do
265 		 * the inc_not_zero dance and if it doesn't work then
266 		 * synchronize_rcu and try again.
267 		 */
268 		if (atomic_inc_not_zero(&eb->refs)) {
269 			rcu_read_unlock();
270 			break;
271 		}
272 		rcu_read_unlock();
273 		synchronize_rcu();
274 	}
275 	return eb;
276 }
277 
278 /*
279  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280  * just get put onto a simple dirty list.  Transaction walks this list to make
281  * sure they get properly updated on disk.
282  */
add_root_to_dirty_list(struct btrfs_root * root)283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285 	struct btrfs_fs_info *fs_info = root->fs_info;
286 
287 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289 		return;
290 
291 	spin_lock(&fs_info->trans_lock);
292 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293 		/* Want the extent tree to be the last on the list */
294 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
295 			list_move_tail(&root->dirty_list,
296 				       &fs_info->dirty_cowonly_roots);
297 		else
298 			list_move(&root->dirty_list,
299 				  &fs_info->dirty_cowonly_roots);
300 	}
301 	spin_unlock(&fs_info->trans_lock);
302 }
303 
304 /*
305  * used by snapshot creation to make a copy of a root for a tree with
306  * a given objectid.  The buffer with the new root node is returned in
307  * cow_ret, and this func returns zero on success or a negative error code.
308  */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310 		      struct btrfs_root *root,
311 		      struct extent_buffer *buf,
312 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314 	struct btrfs_fs_info *fs_info = root->fs_info;
315 	struct extent_buffer *cow;
316 	int ret = 0;
317 	int level;
318 	struct btrfs_disk_key disk_key;
319 
320 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
321 		trans->transid != fs_info->running_transaction->transid);
322 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
323 		trans->transid != root->last_trans);
324 
325 	level = btrfs_header_level(buf);
326 	if (level == 0)
327 		btrfs_item_key(buf, &disk_key, 0);
328 	else
329 		btrfs_node_key(buf, &disk_key, 0);
330 
331 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
332 				     &disk_key, level, buf->start, 0,
333 				     BTRFS_NESTING_NEW_ROOT);
334 	if (IS_ERR(cow))
335 		return PTR_ERR(cow);
336 
337 	copy_extent_buffer_full(cow, buf);
338 	btrfs_set_header_bytenr(cow, cow->start);
339 	btrfs_set_header_generation(cow, trans->transid);
340 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
341 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
342 				     BTRFS_HEADER_FLAG_RELOC);
343 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
344 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
345 	else
346 		btrfs_set_header_owner(cow, new_root_objectid);
347 
348 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
349 
350 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
351 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
352 		ret = btrfs_inc_ref(trans, root, cow, 1);
353 	else
354 		ret = btrfs_inc_ref(trans, root, cow, 0);
355 	if (ret) {
356 		btrfs_tree_unlock(cow);
357 		free_extent_buffer(cow);
358 		btrfs_abort_transaction(trans, ret);
359 		return ret;
360 	}
361 
362 	btrfs_mark_buffer_dirty(trans, cow);
363 	*cow_ret = cow;
364 	return 0;
365 }
366 
367 /*
368  * check if the tree block can be shared by multiple trees
369  */
btrfs_block_can_be_shared(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)370 int btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
371 			      struct btrfs_root *root,
372 			      struct extent_buffer *buf)
373 {
374 	/*
375 	 * Tree blocks not in shareable trees and tree roots are never shared.
376 	 * If a block was allocated after the last snapshot and the block was
377 	 * not allocated by tree relocation, we know the block is not shared.
378 	 */
379 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
380 	    buf != root->node &&
381 	    (btrfs_header_generation(buf) <=
382 	     btrfs_root_last_snapshot(&root->root_item) ||
383 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) {
384 		if (buf != root->commit_root)
385 			return 1;
386 		/*
387 		 * An extent buffer that used to be the commit root may still be
388 		 * shared because the tree height may have increased and it
389 		 * became a child of a higher level root. This can happen when
390 		 * snapshotting a subvolume created in the current transaction.
391 		 */
392 		if (btrfs_header_generation(buf) == trans->transid)
393 			return 1;
394 	}
395 
396 	return 0;
397 }
398 
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)399 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
400 				       struct btrfs_root *root,
401 				       struct extent_buffer *buf,
402 				       struct extent_buffer *cow,
403 				       int *last_ref)
404 {
405 	struct btrfs_fs_info *fs_info = root->fs_info;
406 	u64 refs;
407 	u64 owner;
408 	u64 flags;
409 	u64 new_flags = 0;
410 	int ret;
411 
412 	/*
413 	 * Backrefs update rules:
414 	 *
415 	 * Always use full backrefs for extent pointers in tree block
416 	 * allocated by tree relocation.
417 	 *
418 	 * If a shared tree block is no longer referenced by its owner
419 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
420 	 * use full backrefs for extent pointers in tree block.
421 	 *
422 	 * If a tree block is been relocating
423 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
424 	 * use full backrefs for extent pointers in tree block.
425 	 * The reason for this is some operations (such as drop tree)
426 	 * are only allowed for blocks use full backrefs.
427 	 */
428 
429 	if (btrfs_block_can_be_shared(trans, root, buf)) {
430 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
431 					       btrfs_header_level(buf), 1,
432 					       &refs, &flags);
433 		if (ret)
434 			return ret;
435 		if (unlikely(refs == 0)) {
436 			btrfs_crit(fs_info,
437 		"found 0 references for tree block at bytenr %llu level %d root %llu",
438 				   buf->start, btrfs_header_level(buf),
439 				   btrfs_root_id(root));
440 			ret = -EUCLEAN;
441 			btrfs_abort_transaction(trans, ret);
442 			return ret;
443 		}
444 	} else {
445 		refs = 1;
446 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
447 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
448 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
449 		else
450 			flags = 0;
451 	}
452 
453 	owner = btrfs_header_owner(buf);
454 	if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
455 		     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
456 		btrfs_crit(fs_info,
457 "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
458 			   buf->start, btrfs_header_level(buf),
459 			   btrfs_root_id(root), refs, flags);
460 		ret = -EUCLEAN;
461 		btrfs_abort_transaction(trans, ret);
462 		return ret;
463 	}
464 
465 	if (refs > 1) {
466 		if ((owner == root->root_key.objectid ||
467 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
468 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
469 			ret = btrfs_inc_ref(trans, root, buf, 1);
470 			if (ret)
471 				return ret;
472 
473 			if (root->root_key.objectid ==
474 			    BTRFS_TREE_RELOC_OBJECTID) {
475 				ret = btrfs_dec_ref(trans, root, buf, 0);
476 				if (ret)
477 					return ret;
478 				ret = btrfs_inc_ref(trans, root, cow, 1);
479 				if (ret)
480 					return ret;
481 			}
482 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
483 		} else {
484 
485 			if (root->root_key.objectid ==
486 			    BTRFS_TREE_RELOC_OBJECTID)
487 				ret = btrfs_inc_ref(trans, root, cow, 1);
488 			else
489 				ret = btrfs_inc_ref(trans, root, cow, 0);
490 			if (ret)
491 				return ret;
492 		}
493 		if (new_flags != 0) {
494 			ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
495 			if (ret)
496 				return ret;
497 		}
498 	} else {
499 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
500 			if (root->root_key.objectid ==
501 			    BTRFS_TREE_RELOC_OBJECTID)
502 				ret = btrfs_inc_ref(trans, root, cow, 1);
503 			else
504 				ret = btrfs_inc_ref(trans, root, cow, 0);
505 			if (ret)
506 				return ret;
507 			ret = btrfs_dec_ref(trans, root, buf, 1);
508 			if (ret)
509 				return ret;
510 		}
511 		btrfs_clear_buffer_dirty(trans, buf);
512 		*last_ref = 1;
513 	}
514 	return 0;
515 }
516 
517 /*
518  * does the dirty work in cow of a single block.  The parent block (if
519  * supplied) is updated to point to the new cow copy.  The new buffer is marked
520  * dirty and returned locked.  If you modify the block it needs to be marked
521  * dirty again.
522  *
523  * search_start -- an allocation hint for the new block
524  *
525  * empty_size -- a hint that you plan on doing more cow.  This is the size in
526  * bytes the allocator should try to find free next to the block it returns.
527  * This is just a hint and may be ignored by the allocator.
528  */
__btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size,enum btrfs_lock_nesting nest)529 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
530 			     struct btrfs_root *root,
531 			     struct extent_buffer *buf,
532 			     struct extent_buffer *parent, int parent_slot,
533 			     struct extent_buffer **cow_ret,
534 			     u64 search_start, u64 empty_size,
535 			     enum btrfs_lock_nesting nest)
536 {
537 	struct btrfs_fs_info *fs_info = root->fs_info;
538 	struct btrfs_disk_key disk_key;
539 	struct extent_buffer *cow;
540 	int level, ret;
541 	int last_ref = 0;
542 	int unlock_orig = 0;
543 	u64 parent_start = 0;
544 
545 	if (*cow_ret == buf)
546 		unlock_orig = 1;
547 
548 	btrfs_assert_tree_write_locked(buf);
549 
550 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
551 		trans->transid != fs_info->running_transaction->transid);
552 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
553 		trans->transid != root->last_trans);
554 
555 	level = btrfs_header_level(buf);
556 
557 	if (level == 0)
558 		btrfs_item_key(buf, &disk_key, 0);
559 	else
560 		btrfs_node_key(buf, &disk_key, 0);
561 
562 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
563 		parent_start = parent->start;
564 
565 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
566 				     root->root_key.objectid, &disk_key, level,
567 				     search_start, empty_size, nest);
568 	if (IS_ERR(cow))
569 		return PTR_ERR(cow);
570 
571 	/* cow is set to blocking by btrfs_init_new_buffer */
572 
573 	copy_extent_buffer_full(cow, buf);
574 	btrfs_set_header_bytenr(cow, cow->start);
575 	btrfs_set_header_generation(cow, trans->transid);
576 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
577 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
578 				     BTRFS_HEADER_FLAG_RELOC);
579 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
580 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
581 	else
582 		btrfs_set_header_owner(cow, root->root_key.objectid);
583 
584 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
585 
586 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
587 	if (ret) {
588 		btrfs_tree_unlock(cow);
589 		free_extent_buffer(cow);
590 		btrfs_abort_transaction(trans, ret);
591 		return ret;
592 	}
593 
594 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
595 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
596 		if (ret) {
597 			btrfs_tree_unlock(cow);
598 			free_extent_buffer(cow);
599 			btrfs_abort_transaction(trans, ret);
600 			return ret;
601 		}
602 	}
603 
604 	if (buf == root->node) {
605 		WARN_ON(parent && parent != buf);
606 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
607 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
608 			parent_start = buf->start;
609 
610 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
611 		if (ret < 0) {
612 			btrfs_tree_unlock(cow);
613 			free_extent_buffer(cow);
614 			btrfs_abort_transaction(trans, ret);
615 			return ret;
616 		}
617 		atomic_inc(&cow->refs);
618 		rcu_assign_pointer(root->node, cow);
619 
620 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
621 					    parent_start, last_ref);
622 		free_extent_buffer(buf);
623 		add_root_to_dirty_list(root);
624 		if (ret < 0) {
625 			btrfs_tree_unlock(cow);
626 			free_extent_buffer(cow);
627 			btrfs_abort_transaction(trans, ret);
628 			return ret;
629 		}
630 	} else {
631 		WARN_ON(trans->transid != btrfs_header_generation(parent));
632 		ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
633 						    BTRFS_MOD_LOG_KEY_REPLACE);
634 		if (ret) {
635 			btrfs_tree_unlock(cow);
636 			free_extent_buffer(cow);
637 			btrfs_abort_transaction(trans, ret);
638 			return ret;
639 		}
640 		btrfs_set_node_blockptr(parent, parent_slot,
641 					cow->start);
642 		btrfs_set_node_ptr_generation(parent, parent_slot,
643 					      trans->transid);
644 		btrfs_mark_buffer_dirty(trans, parent);
645 		if (last_ref) {
646 			ret = btrfs_tree_mod_log_free_eb(buf);
647 			if (ret) {
648 				btrfs_tree_unlock(cow);
649 				free_extent_buffer(cow);
650 				btrfs_abort_transaction(trans, ret);
651 				return ret;
652 			}
653 		}
654 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
655 					    parent_start, last_ref);
656 		if (ret < 0) {
657 			btrfs_tree_unlock(cow);
658 			free_extent_buffer(cow);
659 			btrfs_abort_transaction(trans, ret);
660 			return ret;
661 		}
662 	}
663 	if (unlock_orig)
664 		btrfs_tree_unlock(buf);
665 	free_extent_buffer_stale(buf);
666 	btrfs_mark_buffer_dirty(trans, cow);
667 	*cow_ret = cow;
668 	return 0;
669 }
670 
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)671 static inline int should_cow_block(struct btrfs_trans_handle *trans,
672 				   struct btrfs_root *root,
673 				   struct extent_buffer *buf)
674 {
675 	if (btrfs_is_testing(root->fs_info))
676 		return 0;
677 
678 	/* Ensure we can see the FORCE_COW bit */
679 	smp_mb__before_atomic();
680 
681 	/*
682 	 * We do not need to cow a block if
683 	 * 1) this block is not created or changed in this transaction;
684 	 * 2) this block does not belong to TREE_RELOC tree;
685 	 * 3) the root is not forced COW.
686 	 *
687 	 * What is forced COW:
688 	 *    when we create snapshot during committing the transaction,
689 	 *    after we've finished copying src root, we must COW the shared
690 	 *    block to ensure the metadata consistency.
691 	 */
692 	if (btrfs_header_generation(buf) == trans->transid &&
693 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
694 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
695 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
696 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
697 		return 0;
698 	return 1;
699 }
700 
701 /*
702  * cows a single block, see __btrfs_cow_block for the real work.
703  * This version of it has extra checks so that a block isn't COWed more than
704  * once per transaction, as long as it hasn't been written yet
705  */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,enum btrfs_lock_nesting nest)706 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
707 		    struct btrfs_root *root, struct extent_buffer *buf,
708 		    struct extent_buffer *parent, int parent_slot,
709 		    struct extent_buffer **cow_ret,
710 		    enum btrfs_lock_nesting nest)
711 {
712 	struct btrfs_fs_info *fs_info = root->fs_info;
713 	u64 search_start;
714 	int ret;
715 
716 	if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
717 		btrfs_abort_transaction(trans, -EUCLEAN);
718 		btrfs_crit(fs_info,
719 		   "attempt to COW block %llu on root %llu that is being deleted",
720 			   buf->start, btrfs_root_id(root));
721 		return -EUCLEAN;
722 	}
723 
724 	/*
725 	 * COWing must happen through a running transaction, which always
726 	 * matches the current fs generation (it's a transaction with a state
727 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
728 	 * into error state to prevent the commit of any transaction.
729 	 */
730 	if (unlikely(trans->transaction != fs_info->running_transaction ||
731 		     trans->transid != fs_info->generation)) {
732 		btrfs_abort_transaction(trans, -EUCLEAN);
733 		btrfs_crit(fs_info,
734 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
735 			   buf->start, btrfs_root_id(root), trans->transid,
736 			   fs_info->running_transaction->transid,
737 			   fs_info->generation);
738 		return -EUCLEAN;
739 	}
740 
741 	if (!should_cow_block(trans, root, buf)) {
742 		*cow_ret = buf;
743 		return 0;
744 	}
745 
746 	search_start = buf->start & ~((u64)SZ_1G - 1);
747 
748 	/*
749 	 * Before CoWing this block for later modification, check if it's
750 	 * the subtree root and do the delayed subtree trace if needed.
751 	 *
752 	 * Also We don't care about the error, as it's handled internally.
753 	 */
754 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
755 	ret = __btrfs_cow_block(trans, root, buf, parent,
756 				 parent_slot, cow_ret, search_start, 0, nest);
757 
758 	trace_btrfs_cow_block(root, buf, *cow_ret);
759 
760 	return ret;
761 }
762 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
763 
764 /*
765  * helper function for defrag to decide if two blocks pointed to by a
766  * node are actually close by
767  */
close_blocks(u64 blocknr,u64 other,u32 blocksize)768 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
769 {
770 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
771 		return 1;
772 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
773 		return 1;
774 	return 0;
775 }
776 
777 #ifdef __LITTLE_ENDIAN
778 
779 /*
780  * Compare two keys, on little-endian the disk order is same as CPU order and
781  * we can avoid the conversion.
782  */
comp_keys(const struct btrfs_disk_key * disk_key,const struct btrfs_key * k2)783 static int comp_keys(const struct btrfs_disk_key *disk_key,
784 		     const struct btrfs_key *k2)
785 {
786 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
787 
788 	return btrfs_comp_cpu_keys(k1, k2);
789 }
790 
791 #else
792 
793 /*
794  * compare two keys in a memcmp fashion
795  */
comp_keys(const struct btrfs_disk_key * disk,const struct btrfs_key * k2)796 static int comp_keys(const struct btrfs_disk_key *disk,
797 		     const struct btrfs_key *k2)
798 {
799 	struct btrfs_key k1;
800 
801 	btrfs_disk_key_to_cpu(&k1, disk);
802 
803 	return btrfs_comp_cpu_keys(&k1, k2);
804 }
805 #endif
806 
807 /*
808  * same as comp_keys only with two btrfs_key's
809  */
btrfs_comp_cpu_keys(const struct btrfs_key * k1,const struct btrfs_key * k2)810 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
811 {
812 	if (k1->objectid > k2->objectid)
813 		return 1;
814 	if (k1->objectid < k2->objectid)
815 		return -1;
816 	if (k1->type > k2->type)
817 		return 1;
818 	if (k1->type < k2->type)
819 		return -1;
820 	if (k1->offset > k2->offset)
821 		return 1;
822 	if (k1->offset < k2->offset)
823 		return -1;
824 	return 0;
825 }
826 
827 /*
828  * this is used by the defrag code to go through all the
829  * leaves pointed to by a node and reallocate them so that
830  * disk order is close to key order
831  */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,u64 * last_ret,struct btrfs_key * progress)832 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
833 		       struct btrfs_root *root, struct extent_buffer *parent,
834 		       int start_slot, u64 *last_ret,
835 		       struct btrfs_key *progress)
836 {
837 	struct btrfs_fs_info *fs_info = root->fs_info;
838 	struct extent_buffer *cur;
839 	u64 blocknr;
840 	u64 search_start = *last_ret;
841 	u64 last_block = 0;
842 	u64 other;
843 	u32 parent_nritems;
844 	int end_slot;
845 	int i;
846 	int err = 0;
847 	u32 blocksize;
848 	int progress_passed = 0;
849 	struct btrfs_disk_key disk_key;
850 
851 	/*
852 	 * COWing must happen through a running transaction, which always
853 	 * matches the current fs generation (it's a transaction with a state
854 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
855 	 * into error state to prevent the commit of any transaction.
856 	 */
857 	if (unlikely(trans->transaction != fs_info->running_transaction ||
858 		     trans->transid != fs_info->generation)) {
859 		btrfs_abort_transaction(trans, -EUCLEAN);
860 		btrfs_crit(fs_info,
861 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
862 			   parent->start, btrfs_root_id(root), trans->transid,
863 			   fs_info->running_transaction->transid,
864 			   fs_info->generation);
865 		return -EUCLEAN;
866 	}
867 
868 	parent_nritems = btrfs_header_nritems(parent);
869 	blocksize = fs_info->nodesize;
870 	end_slot = parent_nritems - 1;
871 
872 	if (parent_nritems <= 1)
873 		return 0;
874 
875 	for (i = start_slot; i <= end_slot; i++) {
876 		int close = 1;
877 
878 		btrfs_node_key(parent, &disk_key, i);
879 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
880 			continue;
881 
882 		progress_passed = 1;
883 		blocknr = btrfs_node_blockptr(parent, i);
884 		if (last_block == 0)
885 			last_block = blocknr;
886 
887 		if (i > 0) {
888 			other = btrfs_node_blockptr(parent, i - 1);
889 			close = close_blocks(blocknr, other, blocksize);
890 		}
891 		if (!close && i < end_slot) {
892 			other = btrfs_node_blockptr(parent, i + 1);
893 			close = close_blocks(blocknr, other, blocksize);
894 		}
895 		if (close) {
896 			last_block = blocknr;
897 			continue;
898 		}
899 
900 		cur = btrfs_read_node_slot(parent, i);
901 		if (IS_ERR(cur))
902 			return PTR_ERR(cur);
903 		if (search_start == 0)
904 			search_start = last_block;
905 
906 		btrfs_tree_lock(cur);
907 		err = __btrfs_cow_block(trans, root, cur, parent, i,
908 					&cur, search_start,
909 					min(16 * blocksize,
910 					    (end_slot - i) * blocksize),
911 					BTRFS_NESTING_COW);
912 		if (err) {
913 			btrfs_tree_unlock(cur);
914 			free_extent_buffer(cur);
915 			break;
916 		}
917 		search_start = cur->start;
918 		last_block = cur->start;
919 		*last_ret = search_start;
920 		btrfs_tree_unlock(cur);
921 		free_extent_buffer(cur);
922 	}
923 	return err;
924 }
925 
926 /*
927  * Search for a key in the given extent_buffer.
928  *
929  * The lower boundary for the search is specified by the slot number @first_slot.
930  * Use a value of 0 to search over the whole extent buffer. Works for both
931  * leaves and nodes.
932  *
933  * The slot in the extent buffer is returned via @slot. If the key exists in the
934  * extent buffer, then @slot will point to the slot where the key is, otherwise
935  * it points to the slot where you would insert the key.
936  *
937  * Slot may point to the total number of items (i.e. one position beyond the last
938  * key) if the key is bigger than the last key in the extent buffer.
939  */
btrfs_bin_search(struct extent_buffer * eb,int first_slot,const struct btrfs_key * key,int * slot)940 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
941 		     const struct btrfs_key *key, int *slot)
942 {
943 	unsigned long p;
944 	int item_size;
945 	/*
946 	 * Use unsigned types for the low and high slots, so that we get a more
947 	 * efficient division in the search loop below.
948 	 */
949 	u32 low = first_slot;
950 	u32 high = btrfs_header_nritems(eb);
951 	int ret;
952 	const int key_size = sizeof(struct btrfs_disk_key);
953 
954 	if (unlikely(low > high)) {
955 		btrfs_err(eb->fs_info,
956 		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
957 			  __func__, low, high, eb->start,
958 			  btrfs_header_owner(eb), btrfs_header_level(eb));
959 		return -EINVAL;
960 	}
961 
962 	if (btrfs_header_level(eb) == 0) {
963 		p = offsetof(struct btrfs_leaf, items);
964 		item_size = sizeof(struct btrfs_item);
965 	} else {
966 		p = offsetof(struct btrfs_node, ptrs);
967 		item_size = sizeof(struct btrfs_key_ptr);
968 	}
969 
970 	while (low < high) {
971 		unsigned long oip;
972 		unsigned long offset;
973 		struct btrfs_disk_key *tmp;
974 		struct btrfs_disk_key unaligned;
975 		int mid;
976 
977 		mid = (low + high) / 2;
978 		offset = p + mid * item_size;
979 		oip = offset_in_page(offset);
980 
981 		if (oip + key_size <= PAGE_SIZE) {
982 			const unsigned long idx = get_eb_page_index(offset);
983 			char *kaddr = page_address(eb->pages[idx]);
984 
985 			oip = get_eb_offset_in_page(eb, offset);
986 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
987 		} else {
988 			read_extent_buffer(eb, &unaligned, offset, key_size);
989 			tmp = &unaligned;
990 		}
991 
992 		ret = comp_keys(tmp, key);
993 
994 		if (ret < 0)
995 			low = mid + 1;
996 		else if (ret > 0)
997 			high = mid;
998 		else {
999 			*slot = mid;
1000 			return 0;
1001 		}
1002 	}
1003 	*slot = low;
1004 	return 1;
1005 }
1006 
root_add_used(struct btrfs_root * root,u32 size)1007 static void root_add_used(struct btrfs_root *root, u32 size)
1008 {
1009 	spin_lock(&root->accounting_lock);
1010 	btrfs_set_root_used(&root->root_item,
1011 			    btrfs_root_used(&root->root_item) + size);
1012 	spin_unlock(&root->accounting_lock);
1013 }
1014 
root_sub_used(struct btrfs_root * root,u32 size)1015 static void root_sub_used(struct btrfs_root *root, u32 size)
1016 {
1017 	spin_lock(&root->accounting_lock);
1018 	btrfs_set_root_used(&root->root_item,
1019 			    btrfs_root_used(&root->root_item) - size);
1020 	spin_unlock(&root->accounting_lock);
1021 }
1022 
1023 /* given a node and slot number, this reads the blocks it points to.  The
1024  * extent buffer is returned with a reference taken (but unlocked).
1025  */
btrfs_read_node_slot(struct extent_buffer * parent,int slot)1026 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1027 					   int slot)
1028 {
1029 	int level = btrfs_header_level(parent);
1030 	struct btrfs_tree_parent_check check = { 0 };
1031 	struct extent_buffer *eb;
1032 
1033 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1034 		return ERR_PTR(-ENOENT);
1035 
1036 	ASSERT(level);
1037 
1038 	check.level = level - 1;
1039 	check.transid = btrfs_node_ptr_generation(parent, slot);
1040 	check.owner_root = btrfs_header_owner(parent);
1041 	check.has_first_key = true;
1042 	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
1043 
1044 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1045 			     &check);
1046 	if (IS_ERR(eb))
1047 		return eb;
1048 	if (!extent_buffer_uptodate(eb)) {
1049 		free_extent_buffer(eb);
1050 		return ERR_PTR(-EIO);
1051 	}
1052 
1053 	return eb;
1054 }
1055 
1056 /*
1057  * node level balancing, used to make sure nodes are in proper order for
1058  * item deletion.  We balance from the top down, so we have to make sure
1059  * that a deletion won't leave an node completely empty later on.
1060  */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1061 static noinline int balance_level(struct btrfs_trans_handle *trans,
1062 			 struct btrfs_root *root,
1063 			 struct btrfs_path *path, int level)
1064 {
1065 	struct btrfs_fs_info *fs_info = root->fs_info;
1066 	struct extent_buffer *right = NULL;
1067 	struct extent_buffer *mid;
1068 	struct extent_buffer *left = NULL;
1069 	struct extent_buffer *parent = NULL;
1070 	int ret = 0;
1071 	int wret;
1072 	int pslot;
1073 	int orig_slot = path->slots[level];
1074 	u64 orig_ptr;
1075 
1076 	ASSERT(level > 0);
1077 
1078 	mid = path->nodes[level];
1079 
1080 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1081 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1082 
1083 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1084 
1085 	if (level < BTRFS_MAX_LEVEL - 1) {
1086 		parent = path->nodes[level + 1];
1087 		pslot = path->slots[level + 1];
1088 	}
1089 
1090 	/*
1091 	 * deal with the case where there is only one pointer in the root
1092 	 * by promoting the node below to a root
1093 	 */
1094 	if (!parent) {
1095 		struct extent_buffer *child;
1096 
1097 		if (btrfs_header_nritems(mid) != 1)
1098 			return 0;
1099 
1100 		/* promote the child to a root */
1101 		child = btrfs_read_node_slot(mid, 0);
1102 		if (IS_ERR(child)) {
1103 			ret = PTR_ERR(child);
1104 			goto out;
1105 		}
1106 
1107 		btrfs_tree_lock(child);
1108 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1109 				      BTRFS_NESTING_COW);
1110 		if (ret) {
1111 			btrfs_tree_unlock(child);
1112 			free_extent_buffer(child);
1113 			goto out;
1114 		}
1115 
1116 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1117 		if (ret < 0) {
1118 			btrfs_tree_unlock(child);
1119 			free_extent_buffer(child);
1120 			btrfs_abort_transaction(trans, ret);
1121 			goto out;
1122 		}
1123 		rcu_assign_pointer(root->node, child);
1124 
1125 		add_root_to_dirty_list(root);
1126 		btrfs_tree_unlock(child);
1127 
1128 		path->locks[level] = 0;
1129 		path->nodes[level] = NULL;
1130 		btrfs_clear_buffer_dirty(trans, mid);
1131 		btrfs_tree_unlock(mid);
1132 		/* once for the path */
1133 		free_extent_buffer(mid);
1134 
1135 		root_sub_used(root, mid->len);
1136 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1137 		/* once for the root ptr */
1138 		free_extent_buffer_stale(mid);
1139 		if (ret < 0) {
1140 			btrfs_abort_transaction(trans, ret);
1141 			goto out;
1142 		}
1143 		return 0;
1144 	}
1145 	if (btrfs_header_nritems(mid) >
1146 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1147 		return 0;
1148 
1149 	if (pslot) {
1150 		left = btrfs_read_node_slot(parent, pslot - 1);
1151 		if (IS_ERR(left)) {
1152 			ret = PTR_ERR(left);
1153 			left = NULL;
1154 			goto out;
1155 		}
1156 
1157 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1158 		wret = btrfs_cow_block(trans, root, left,
1159 				       parent, pslot - 1, &left,
1160 				       BTRFS_NESTING_LEFT_COW);
1161 		if (wret) {
1162 			ret = wret;
1163 			goto out;
1164 		}
1165 	}
1166 
1167 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1168 		right = btrfs_read_node_slot(parent, pslot + 1);
1169 		if (IS_ERR(right)) {
1170 			ret = PTR_ERR(right);
1171 			right = NULL;
1172 			goto out;
1173 		}
1174 
1175 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1176 		wret = btrfs_cow_block(trans, root, right,
1177 				       parent, pslot + 1, &right,
1178 				       BTRFS_NESTING_RIGHT_COW);
1179 		if (wret) {
1180 			ret = wret;
1181 			goto out;
1182 		}
1183 	}
1184 
1185 	/* first, try to make some room in the middle buffer */
1186 	if (left) {
1187 		orig_slot += btrfs_header_nritems(left);
1188 		wret = push_node_left(trans, left, mid, 1);
1189 		if (wret < 0)
1190 			ret = wret;
1191 	}
1192 
1193 	/*
1194 	 * then try to empty the right most buffer into the middle
1195 	 */
1196 	if (right) {
1197 		wret = push_node_left(trans, mid, right, 1);
1198 		if (wret < 0 && wret != -ENOSPC)
1199 			ret = wret;
1200 		if (btrfs_header_nritems(right) == 0) {
1201 			btrfs_clear_buffer_dirty(trans, right);
1202 			btrfs_tree_unlock(right);
1203 			ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1204 			if (ret < 0) {
1205 				free_extent_buffer_stale(right);
1206 				right = NULL;
1207 				goto out;
1208 			}
1209 			root_sub_used(root, right->len);
1210 			ret = btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1211 					      0, 1);
1212 			free_extent_buffer_stale(right);
1213 			right = NULL;
1214 			if (ret < 0) {
1215 				btrfs_abort_transaction(trans, ret);
1216 				goto out;
1217 			}
1218 		} else {
1219 			struct btrfs_disk_key right_key;
1220 			btrfs_node_key(right, &right_key, 0);
1221 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1222 					BTRFS_MOD_LOG_KEY_REPLACE);
1223 			if (ret < 0) {
1224 				btrfs_abort_transaction(trans, ret);
1225 				goto out;
1226 			}
1227 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1228 			btrfs_mark_buffer_dirty(trans, parent);
1229 		}
1230 	}
1231 	if (btrfs_header_nritems(mid) == 1) {
1232 		/*
1233 		 * we're not allowed to leave a node with one item in the
1234 		 * tree during a delete.  A deletion from lower in the tree
1235 		 * could try to delete the only pointer in this node.
1236 		 * So, pull some keys from the left.
1237 		 * There has to be a left pointer at this point because
1238 		 * otherwise we would have pulled some pointers from the
1239 		 * right
1240 		 */
1241 		if (unlikely(!left)) {
1242 			btrfs_crit(fs_info,
1243 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1244 				   parent->start, btrfs_header_level(parent),
1245 				   mid->start, btrfs_root_id(root));
1246 			ret = -EUCLEAN;
1247 			btrfs_abort_transaction(trans, ret);
1248 			goto out;
1249 		}
1250 		wret = balance_node_right(trans, mid, left);
1251 		if (wret < 0) {
1252 			ret = wret;
1253 			goto out;
1254 		}
1255 		if (wret == 1) {
1256 			wret = push_node_left(trans, left, mid, 1);
1257 			if (wret < 0)
1258 				ret = wret;
1259 		}
1260 		BUG_ON(wret == 1);
1261 	}
1262 	if (btrfs_header_nritems(mid) == 0) {
1263 		btrfs_clear_buffer_dirty(trans, mid);
1264 		btrfs_tree_unlock(mid);
1265 		ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1266 		if (ret < 0) {
1267 			free_extent_buffer_stale(mid);
1268 			mid = NULL;
1269 			goto out;
1270 		}
1271 		root_sub_used(root, mid->len);
1272 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1273 		free_extent_buffer_stale(mid);
1274 		mid = NULL;
1275 		if (ret < 0) {
1276 			btrfs_abort_transaction(trans, ret);
1277 			goto out;
1278 		}
1279 	} else {
1280 		/* update the parent key to reflect our changes */
1281 		struct btrfs_disk_key mid_key;
1282 		btrfs_node_key(mid, &mid_key, 0);
1283 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1284 						    BTRFS_MOD_LOG_KEY_REPLACE);
1285 		if (ret < 0) {
1286 			btrfs_abort_transaction(trans, ret);
1287 			goto out;
1288 		}
1289 		btrfs_set_node_key(parent, &mid_key, pslot);
1290 		btrfs_mark_buffer_dirty(trans, parent);
1291 	}
1292 
1293 	/* update the path */
1294 	if (left) {
1295 		if (btrfs_header_nritems(left) > orig_slot) {
1296 			atomic_inc(&left->refs);
1297 			/* left was locked after cow */
1298 			path->nodes[level] = left;
1299 			path->slots[level + 1] -= 1;
1300 			path->slots[level] = orig_slot;
1301 			if (mid) {
1302 				btrfs_tree_unlock(mid);
1303 				free_extent_buffer(mid);
1304 			}
1305 		} else {
1306 			orig_slot -= btrfs_header_nritems(left);
1307 			path->slots[level] = orig_slot;
1308 		}
1309 	}
1310 	/* double check we haven't messed things up */
1311 	if (orig_ptr !=
1312 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1313 		BUG();
1314 out:
1315 	if (right) {
1316 		btrfs_tree_unlock(right);
1317 		free_extent_buffer(right);
1318 	}
1319 	if (left) {
1320 		if (path->nodes[level] != left)
1321 			btrfs_tree_unlock(left);
1322 		free_extent_buffer(left);
1323 	}
1324 	return ret;
1325 }
1326 
1327 /* Node balancing for insertion.  Here we only split or push nodes around
1328  * when they are completely full.  This is also done top down, so we
1329  * have to be pessimistic.
1330  */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1331 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1332 					  struct btrfs_root *root,
1333 					  struct btrfs_path *path, int level)
1334 {
1335 	struct btrfs_fs_info *fs_info = root->fs_info;
1336 	struct extent_buffer *right = NULL;
1337 	struct extent_buffer *mid;
1338 	struct extent_buffer *left = NULL;
1339 	struct extent_buffer *parent = NULL;
1340 	int ret = 0;
1341 	int wret;
1342 	int pslot;
1343 	int orig_slot = path->slots[level];
1344 
1345 	if (level == 0)
1346 		return 1;
1347 
1348 	mid = path->nodes[level];
1349 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1350 
1351 	if (level < BTRFS_MAX_LEVEL - 1) {
1352 		parent = path->nodes[level + 1];
1353 		pslot = path->slots[level + 1];
1354 	}
1355 
1356 	if (!parent)
1357 		return 1;
1358 
1359 	/* first, try to make some room in the middle buffer */
1360 	if (pslot) {
1361 		u32 left_nr;
1362 
1363 		left = btrfs_read_node_slot(parent, pslot - 1);
1364 		if (IS_ERR(left))
1365 			return PTR_ERR(left);
1366 
1367 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1368 
1369 		left_nr = btrfs_header_nritems(left);
1370 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1371 			wret = 1;
1372 		} else {
1373 			ret = btrfs_cow_block(trans, root, left, parent,
1374 					      pslot - 1, &left,
1375 					      BTRFS_NESTING_LEFT_COW);
1376 			if (ret)
1377 				wret = 1;
1378 			else {
1379 				wret = push_node_left(trans, left, mid, 0);
1380 			}
1381 		}
1382 		if (wret < 0)
1383 			ret = wret;
1384 		if (wret == 0) {
1385 			struct btrfs_disk_key disk_key;
1386 			orig_slot += left_nr;
1387 			btrfs_node_key(mid, &disk_key, 0);
1388 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1389 					BTRFS_MOD_LOG_KEY_REPLACE);
1390 			if (ret < 0) {
1391 				btrfs_tree_unlock(left);
1392 				free_extent_buffer(left);
1393 				btrfs_abort_transaction(trans, ret);
1394 				return ret;
1395 			}
1396 			btrfs_set_node_key(parent, &disk_key, pslot);
1397 			btrfs_mark_buffer_dirty(trans, parent);
1398 			if (btrfs_header_nritems(left) > orig_slot) {
1399 				path->nodes[level] = left;
1400 				path->slots[level + 1] -= 1;
1401 				path->slots[level] = orig_slot;
1402 				btrfs_tree_unlock(mid);
1403 				free_extent_buffer(mid);
1404 			} else {
1405 				orig_slot -=
1406 					btrfs_header_nritems(left);
1407 				path->slots[level] = orig_slot;
1408 				btrfs_tree_unlock(left);
1409 				free_extent_buffer(left);
1410 			}
1411 			return 0;
1412 		}
1413 		btrfs_tree_unlock(left);
1414 		free_extent_buffer(left);
1415 	}
1416 
1417 	/*
1418 	 * then try to empty the right most buffer into the middle
1419 	 */
1420 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1421 		u32 right_nr;
1422 
1423 		right = btrfs_read_node_slot(parent, pslot + 1);
1424 		if (IS_ERR(right))
1425 			return PTR_ERR(right);
1426 
1427 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1428 
1429 		right_nr = btrfs_header_nritems(right);
1430 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1431 			wret = 1;
1432 		} else {
1433 			ret = btrfs_cow_block(trans, root, right,
1434 					      parent, pslot + 1,
1435 					      &right, BTRFS_NESTING_RIGHT_COW);
1436 			if (ret)
1437 				wret = 1;
1438 			else {
1439 				wret = balance_node_right(trans, right, mid);
1440 			}
1441 		}
1442 		if (wret < 0)
1443 			ret = wret;
1444 		if (wret == 0) {
1445 			struct btrfs_disk_key disk_key;
1446 
1447 			btrfs_node_key(right, &disk_key, 0);
1448 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1449 					BTRFS_MOD_LOG_KEY_REPLACE);
1450 			if (ret < 0) {
1451 				btrfs_tree_unlock(right);
1452 				free_extent_buffer(right);
1453 				btrfs_abort_transaction(trans, ret);
1454 				return ret;
1455 			}
1456 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1457 			btrfs_mark_buffer_dirty(trans, parent);
1458 
1459 			if (btrfs_header_nritems(mid) <= orig_slot) {
1460 				path->nodes[level] = right;
1461 				path->slots[level + 1] += 1;
1462 				path->slots[level] = orig_slot -
1463 					btrfs_header_nritems(mid);
1464 				btrfs_tree_unlock(mid);
1465 				free_extent_buffer(mid);
1466 			} else {
1467 				btrfs_tree_unlock(right);
1468 				free_extent_buffer(right);
1469 			}
1470 			return 0;
1471 		}
1472 		btrfs_tree_unlock(right);
1473 		free_extent_buffer(right);
1474 	}
1475 	return 1;
1476 }
1477 
1478 /*
1479  * readahead one full node of leaves, finding things that are close
1480  * to the block in 'slot', and triggering ra on them.
1481  */
reada_for_search(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level,int slot,u64 objectid)1482 static void reada_for_search(struct btrfs_fs_info *fs_info,
1483 			     struct btrfs_path *path,
1484 			     int level, int slot, u64 objectid)
1485 {
1486 	struct extent_buffer *node;
1487 	struct btrfs_disk_key disk_key;
1488 	u32 nritems;
1489 	u64 search;
1490 	u64 target;
1491 	u64 nread = 0;
1492 	u64 nread_max;
1493 	u32 nr;
1494 	u32 blocksize;
1495 	u32 nscan = 0;
1496 
1497 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1498 		return;
1499 
1500 	if (!path->nodes[level])
1501 		return;
1502 
1503 	node = path->nodes[level];
1504 
1505 	/*
1506 	 * Since the time between visiting leaves is much shorter than the time
1507 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1508 	 * much IO at once (possibly random).
1509 	 */
1510 	if (path->reada == READA_FORWARD_ALWAYS) {
1511 		if (level > 1)
1512 			nread_max = node->fs_info->nodesize;
1513 		else
1514 			nread_max = SZ_128K;
1515 	} else {
1516 		nread_max = SZ_64K;
1517 	}
1518 
1519 	search = btrfs_node_blockptr(node, slot);
1520 	blocksize = fs_info->nodesize;
1521 	if (path->reada != READA_FORWARD_ALWAYS) {
1522 		struct extent_buffer *eb;
1523 
1524 		eb = find_extent_buffer(fs_info, search);
1525 		if (eb) {
1526 			free_extent_buffer(eb);
1527 			return;
1528 		}
1529 	}
1530 
1531 	target = search;
1532 
1533 	nritems = btrfs_header_nritems(node);
1534 	nr = slot;
1535 
1536 	while (1) {
1537 		if (path->reada == READA_BACK) {
1538 			if (nr == 0)
1539 				break;
1540 			nr--;
1541 		} else if (path->reada == READA_FORWARD ||
1542 			   path->reada == READA_FORWARD_ALWAYS) {
1543 			nr++;
1544 			if (nr >= nritems)
1545 				break;
1546 		}
1547 		if (path->reada == READA_BACK && objectid) {
1548 			btrfs_node_key(node, &disk_key, nr);
1549 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1550 				break;
1551 		}
1552 		search = btrfs_node_blockptr(node, nr);
1553 		if (path->reada == READA_FORWARD_ALWAYS ||
1554 		    (search <= target && target - search <= 65536) ||
1555 		    (search > target && search - target <= 65536)) {
1556 			btrfs_readahead_node_child(node, nr);
1557 			nread += blocksize;
1558 		}
1559 		nscan++;
1560 		if (nread > nread_max || nscan > 32)
1561 			break;
1562 	}
1563 }
1564 
reada_for_balance(struct btrfs_path * path,int level)1565 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1566 {
1567 	struct extent_buffer *parent;
1568 	int slot;
1569 	int nritems;
1570 
1571 	parent = path->nodes[level + 1];
1572 	if (!parent)
1573 		return;
1574 
1575 	nritems = btrfs_header_nritems(parent);
1576 	slot = path->slots[level + 1];
1577 
1578 	if (slot > 0)
1579 		btrfs_readahead_node_child(parent, slot - 1);
1580 	if (slot + 1 < nritems)
1581 		btrfs_readahead_node_child(parent, slot + 1);
1582 }
1583 
1584 
1585 /*
1586  * when we walk down the tree, it is usually safe to unlock the higher layers
1587  * in the tree.  The exceptions are when our path goes through slot 0, because
1588  * operations on the tree might require changing key pointers higher up in the
1589  * tree.
1590  *
1591  * callers might also have set path->keep_locks, which tells this code to keep
1592  * the lock if the path points to the last slot in the block.  This is part of
1593  * walking through the tree, and selecting the next slot in the higher block.
1594  *
1595  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1596  * if lowest_unlock is 1, level 0 won't be unlocked
1597  */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)1598 static noinline void unlock_up(struct btrfs_path *path, int level,
1599 			       int lowest_unlock, int min_write_lock_level,
1600 			       int *write_lock_level)
1601 {
1602 	int i;
1603 	int skip_level = level;
1604 	bool check_skip = true;
1605 
1606 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1607 		if (!path->nodes[i])
1608 			break;
1609 		if (!path->locks[i])
1610 			break;
1611 
1612 		if (check_skip) {
1613 			if (path->slots[i] == 0) {
1614 				skip_level = i + 1;
1615 				continue;
1616 			}
1617 
1618 			if (path->keep_locks) {
1619 				u32 nritems;
1620 
1621 				nritems = btrfs_header_nritems(path->nodes[i]);
1622 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1623 					skip_level = i + 1;
1624 					continue;
1625 				}
1626 			}
1627 		}
1628 
1629 		if (i >= lowest_unlock && i > skip_level) {
1630 			check_skip = false;
1631 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1632 			path->locks[i] = 0;
1633 			if (write_lock_level &&
1634 			    i > min_write_lock_level &&
1635 			    i <= *write_lock_level) {
1636 				*write_lock_level = i - 1;
1637 			}
1638 		}
1639 	}
1640 }
1641 
1642 /*
1643  * Helper function for btrfs_search_slot() and other functions that do a search
1644  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1645  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1646  * its pages from disk.
1647  *
1648  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1649  * whole btree search, starting again from the current root node.
1650  */
1651 static int
read_block_for_search(struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,const struct btrfs_key * key)1652 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1653 		      struct extent_buffer **eb_ret, int level, int slot,
1654 		      const struct btrfs_key *key)
1655 {
1656 	struct btrfs_fs_info *fs_info = root->fs_info;
1657 	struct btrfs_tree_parent_check check = { 0 };
1658 	u64 blocknr;
1659 	u64 gen;
1660 	struct extent_buffer *tmp;
1661 	int ret;
1662 	int parent_level;
1663 	bool unlock_up;
1664 
1665 	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1666 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1667 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1668 	parent_level = btrfs_header_level(*eb_ret);
1669 	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1670 	check.has_first_key = true;
1671 	check.level = parent_level - 1;
1672 	check.transid = gen;
1673 	check.owner_root = root->root_key.objectid;
1674 
1675 	/*
1676 	 * If we need to read an extent buffer from disk and we are holding locks
1677 	 * on upper level nodes, we unlock all the upper nodes before reading the
1678 	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1679 	 * restart the search. We don't release the lock on the current level
1680 	 * because we need to walk this node to figure out which blocks to read.
1681 	 */
1682 	tmp = find_extent_buffer(fs_info, blocknr);
1683 	if (tmp) {
1684 		if (p->reada == READA_FORWARD_ALWAYS)
1685 			reada_for_search(fs_info, p, level, slot, key->objectid);
1686 
1687 		/* first we do an atomic uptodate check */
1688 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1689 			/*
1690 			 * Do extra check for first_key, eb can be stale due to
1691 			 * being cached, read from scrub, or have multiple
1692 			 * parents (shared tree blocks).
1693 			 */
1694 			if (btrfs_verify_level_key(tmp,
1695 					parent_level - 1, &check.first_key, gen)) {
1696 				free_extent_buffer(tmp);
1697 				return -EUCLEAN;
1698 			}
1699 			*eb_ret = tmp;
1700 			return 0;
1701 		}
1702 
1703 		if (p->nowait) {
1704 			free_extent_buffer(tmp);
1705 			return -EAGAIN;
1706 		}
1707 
1708 		if (unlock_up)
1709 			btrfs_unlock_up_safe(p, level + 1);
1710 
1711 		/* now we're allowed to do a blocking uptodate check */
1712 		ret = btrfs_read_extent_buffer(tmp, &check);
1713 		if (ret) {
1714 			free_extent_buffer(tmp);
1715 			btrfs_release_path(p);
1716 			return -EIO;
1717 		}
1718 		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1719 			free_extent_buffer(tmp);
1720 			btrfs_release_path(p);
1721 			return -EUCLEAN;
1722 		}
1723 
1724 		if (unlock_up)
1725 			ret = -EAGAIN;
1726 
1727 		goto out;
1728 	} else if (p->nowait) {
1729 		return -EAGAIN;
1730 	}
1731 
1732 	if (unlock_up) {
1733 		btrfs_unlock_up_safe(p, level + 1);
1734 		ret = -EAGAIN;
1735 	} else {
1736 		ret = 0;
1737 	}
1738 
1739 	if (p->reada != READA_NONE)
1740 		reada_for_search(fs_info, p, level, slot, key->objectid);
1741 
1742 	tmp = read_tree_block(fs_info, blocknr, &check);
1743 	if (IS_ERR(tmp)) {
1744 		btrfs_release_path(p);
1745 		return PTR_ERR(tmp);
1746 	}
1747 	/*
1748 	 * If the read above didn't mark this buffer up to date,
1749 	 * it will never end up being up to date.  Set ret to EIO now
1750 	 * and give up so that our caller doesn't loop forever
1751 	 * on our EAGAINs.
1752 	 */
1753 	if (!extent_buffer_uptodate(tmp))
1754 		ret = -EIO;
1755 
1756 out:
1757 	if (ret == 0) {
1758 		*eb_ret = tmp;
1759 	} else {
1760 		free_extent_buffer(tmp);
1761 		btrfs_release_path(p);
1762 	}
1763 
1764 	return ret;
1765 }
1766 
1767 /*
1768  * helper function for btrfs_search_slot.  This does all of the checks
1769  * for node-level blocks and does any balancing required based on
1770  * the ins_len.
1771  *
1772  * If no extra work was required, zero is returned.  If we had to
1773  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1774  * start over
1775  */
1776 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)1777 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1778 		       struct btrfs_root *root, struct btrfs_path *p,
1779 		       struct extent_buffer *b, int level, int ins_len,
1780 		       int *write_lock_level)
1781 {
1782 	struct btrfs_fs_info *fs_info = root->fs_info;
1783 	int ret = 0;
1784 
1785 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1786 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1787 
1788 		if (*write_lock_level < level + 1) {
1789 			*write_lock_level = level + 1;
1790 			btrfs_release_path(p);
1791 			return -EAGAIN;
1792 		}
1793 
1794 		reada_for_balance(p, level);
1795 		ret = split_node(trans, root, p, level);
1796 
1797 		b = p->nodes[level];
1798 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1799 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1800 
1801 		if (*write_lock_level < level + 1) {
1802 			*write_lock_level = level + 1;
1803 			btrfs_release_path(p);
1804 			return -EAGAIN;
1805 		}
1806 
1807 		reada_for_balance(p, level);
1808 		ret = balance_level(trans, root, p, level);
1809 		if (ret)
1810 			return ret;
1811 
1812 		b = p->nodes[level];
1813 		if (!b) {
1814 			btrfs_release_path(p);
1815 			return -EAGAIN;
1816 		}
1817 		BUG_ON(btrfs_header_nritems(b) == 1);
1818 	}
1819 	return ret;
1820 }
1821 
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)1822 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1823 		u64 iobjectid, u64 ioff, u8 key_type,
1824 		struct btrfs_key *found_key)
1825 {
1826 	int ret;
1827 	struct btrfs_key key;
1828 	struct extent_buffer *eb;
1829 
1830 	ASSERT(path);
1831 	ASSERT(found_key);
1832 
1833 	key.type = key_type;
1834 	key.objectid = iobjectid;
1835 	key.offset = ioff;
1836 
1837 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1838 	if (ret < 0)
1839 		return ret;
1840 
1841 	eb = path->nodes[0];
1842 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1843 		ret = btrfs_next_leaf(fs_root, path);
1844 		if (ret)
1845 			return ret;
1846 		eb = path->nodes[0];
1847 	}
1848 
1849 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1850 	if (found_key->type != key.type ||
1851 			found_key->objectid != key.objectid)
1852 		return 1;
1853 
1854 	return 0;
1855 }
1856 
btrfs_search_slot_get_root(struct btrfs_root * root,struct btrfs_path * p,int write_lock_level)1857 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1858 							struct btrfs_path *p,
1859 							int write_lock_level)
1860 {
1861 	struct extent_buffer *b;
1862 	int root_lock = 0;
1863 	int level = 0;
1864 
1865 	if (p->search_commit_root) {
1866 		b = root->commit_root;
1867 		atomic_inc(&b->refs);
1868 		level = btrfs_header_level(b);
1869 		/*
1870 		 * Ensure that all callers have set skip_locking when
1871 		 * p->search_commit_root = 1.
1872 		 */
1873 		ASSERT(p->skip_locking == 1);
1874 
1875 		goto out;
1876 	}
1877 
1878 	if (p->skip_locking) {
1879 		b = btrfs_root_node(root);
1880 		level = btrfs_header_level(b);
1881 		goto out;
1882 	}
1883 
1884 	/* We try very hard to do read locks on the root */
1885 	root_lock = BTRFS_READ_LOCK;
1886 
1887 	/*
1888 	 * If the level is set to maximum, we can skip trying to get the read
1889 	 * lock.
1890 	 */
1891 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1892 		/*
1893 		 * We don't know the level of the root node until we actually
1894 		 * have it read locked
1895 		 */
1896 		if (p->nowait) {
1897 			b = btrfs_try_read_lock_root_node(root);
1898 			if (IS_ERR(b))
1899 				return b;
1900 		} else {
1901 			b = btrfs_read_lock_root_node(root);
1902 		}
1903 		level = btrfs_header_level(b);
1904 		if (level > write_lock_level)
1905 			goto out;
1906 
1907 		/* Whoops, must trade for write lock */
1908 		btrfs_tree_read_unlock(b);
1909 		free_extent_buffer(b);
1910 	}
1911 
1912 	b = btrfs_lock_root_node(root);
1913 	root_lock = BTRFS_WRITE_LOCK;
1914 
1915 	/* The level might have changed, check again */
1916 	level = btrfs_header_level(b);
1917 
1918 out:
1919 	/*
1920 	 * The root may have failed to write out at some point, and thus is no
1921 	 * longer valid, return an error in this case.
1922 	 */
1923 	if (!extent_buffer_uptodate(b)) {
1924 		if (root_lock)
1925 			btrfs_tree_unlock_rw(b, root_lock);
1926 		free_extent_buffer(b);
1927 		return ERR_PTR(-EIO);
1928 	}
1929 
1930 	p->nodes[level] = b;
1931 	if (!p->skip_locking)
1932 		p->locks[level] = root_lock;
1933 	/*
1934 	 * Callers are responsible for dropping b's references.
1935 	 */
1936 	return b;
1937 }
1938 
1939 /*
1940  * Replace the extent buffer at the lowest level of the path with a cloned
1941  * version. The purpose is to be able to use it safely, after releasing the
1942  * commit root semaphore, even if relocation is happening in parallel, the
1943  * transaction used for relocation is committed and the extent buffer is
1944  * reallocated in the next transaction.
1945  *
1946  * This is used in a context where the caller does not prevent transaction
1947  * commits from happening, either by holding a transaction handle or holding
1948  * some lock, while it's doing searches through a commit root.
1949  * At the moment it's only used for send operations.
1950  */
finish_need_commit_sem_search(struct btrfs_path * path)1951 static int finish_need_commit_sem_search(struct btrfs_path *path)
1952 {
1953 	const int i = path->lowest_level;
1954 	const int slot = path->slots[i];
1955 	struct extent_buffer *lowest = path->nodes[i];
1956 	struct extent_buffer *clone;
1957 
1958 	ASSERT(path->need_commit_sem);
1959 
1960 	if (!lowest)
1961 		return 0;
1962 
1963 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1964 
1965 	clone = btrfs_clone_extent_buffer(lowest);
1966 	if (!clone)
1967 		return -ENOMEM;
1968 
1969 	btrfs_release_path(path);
1970 	path->nodes[i] = clone;
1971 	path->slots[i] = slot;
1972 
1973 	return 0;
1974 }
1975 
search_for_key_slot(struct extent_buffer * eb,int search_low_slot,const struct btrfs_key * key,int prev_cmp,int * slot)1976 static inline int search_for_key_slot(struct extent_buffer *eb,
1977 				      int search_low_slot,
1978 				      const struct btrfs_key *key,
1979 				      int prev_cmp,
1980 				      int *slot)
1981 {
1982 	/*
1983 	 * If a previous call to btrfs_bin_search() on a parent node returned an
1984 	 * exact match (prev_cmp == 0), we can safely assume the target key will
1985 	 * always be at slot 0 on lower levels, since each key pointer
1986 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1987 	 * subtree it points to. Thus we can skip searching lower levels.
1988 	 */
1989 	if (prev_cmp == 0) {
1990 		*slot = 0;
1991 		return 0;
1992 	}
1993 
1994 	return btrfs_bin_search(eb, search_low_slot, key, slot);
1995 }
1996 
search_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * path,int ins_len,int prev_cmp)1997 static int search_leaf(struct btrfs_trans_handle *trans,
1998 		       struct btrfs_root *root,
1999 		       const struct btrfs_key *key,
2000 		       struct btrfs_path *path,
2001 		       int ins_len,
2002 		       int prev_cmp)
2003 {
2004 	struct extent_buffer *leaf = path->nodes[0];
2005 	int leaf_free_space = -1;
2006 	int search_low_slot = 0;
2007 	int ret;
2008 	bool do_bin_search = true;
2009 
2010 	/*
2011 	 * If we are doing an insertion, the leaf has enough free space and the
2012 	 * destination slot for the key is not slot 0, then we can unlock our
2013 	 * write lock on the parent, and any other upper nodes, before doing the
2014 	 * binary search on the leaf (with search_for_key_slot()), allowing other
2015 	 * tasks to lock the parent and any other upper nodes.
2016 	 */
2017 	if (ins_len > 0) {
2018 		/*
2019 		 * Cache the leaf free space, since we will need it later and it
2020 		 * will not change until then.
2021 		 */
2022 		leaf_free_space = btrfs_leaf_free_space(leaf);
2023 
2024 		/*
2025 		 * !path->locks[1] means we have a single node tree, the leaf is
2026 		 * the root of the tree.
2027 		 */
2028 		if (path->locks[1] && leaf_free_space >= ins_len) {
2029 			struct btrfs_disk_key first_key;
2030 
2031 			ASSERT(btrfs_header_nritems(leaf) > 0);
2032 			btrfs_item_key(leaf, &first_key, 0);
2033 
2034 			/*
2035 			 * Doing the extra comparison with the first key is cheap,
2036 			 * taking into account that the first key is very likely
2037 			 * already in a cache line because it immediately follows
2038 			 * the extent buffer's header and we have recently accessed
2039 			 * the header's level field.
2040 			 */
2041 			ret = comp_keys(&first_key, key);
2042 			if (ret < 0) {
2043 				/*
2044 				 * The first key is smaller than the key we want
2045 				 * to insert, so we are safe to unlock all upper
2046 				 * nodes and we have to do the binary search.
2047 				 *
2048 				 * We do use btrfs_unlock_up_safe() and not
2049 				 * unlock_up() because the later does not unlock
2050 				 * nodes with a slot of 0 - we can safely unlock
2051 				 * any node even if its slot is 0 since in this
2052 				 * case the key does not end up at slot 0 of the
2053 				 * leaf and there's no need to split the leaf.
2054 				 */
2055 				btrfs_unlock_up_safe(path, 1);
2056 				search_low_slot = 1;
2057 			} else {
2058 				/*
2059 				 * The first key is >= then the key we want to
2060 				 * insert, so we can skip the binary search as
2061 				 * the target key will be at slot 0.
2062 				 *
2063 				 * We can not unlock upper nodes when the key is
2064 				 * less than the first key, because we will need
2065 				 * to update the key at slot 0 of the parent node
2066 				 * and possibly of other upper nodes too.
2067 				 * If the key matches the first key, then we can
2068 				 * unlock all the upper nodes, using
2069 				 * btrfs_unlock_up_safe() instead of unlock_up()
2070 				 * as stated above.
2071 				 */
2072 				if (ret == 0)
2073 					btrfs_unlock_up_safe(path, 1);
2074 				/*
2075 				 * ret is already 0 or 1, matching the result of
2076 				 * a btrfs_bin_search() call, so there is no need
2077 				 * to adjust it.
2078 				 */
2079 				do_bin_search = false;
2080 				path->slots[0] = 0;
2081 			}
2082 		}
2083 	}
2084 
2085 	if (do_bin_search) {
2086 		ret = search_for_key_slot(leaf, search_low_slot, key,
2087 					  prev_cmp, &path->slots[0]);
2088 		if (ret < 0)
2089 			return ret;
2090 	}
2091 
2092 	if (ins_len > 0) {
2093 		/*
2094 		 * Item key already exists. In this case, if we are allowed to
2095 		 * insert the item (for example, in dir_item case, item key
2096 		 * collision is allowed), it will be merged with the original
2097 		 * item. Only the item size grows, no new btrfs item will be
2098 		 * added. If search_for_extension is not set, ins_len already
2099 		 * accounts the size btrfs_item, deduct it here so leaf space
2100 		 * check will be correct.
2101 		 */
2102 		if (ret == 0 && !path->search_for_extension) {
2103 			ASSERT(ins_len >= sizeof(struct btrfs_item));
2104 			ins_len -= sizeof(struct btrfs_item);
2105 		}
2106 
2107 		ASSERT(leaf_free_space >= 0);
2108 
2109 		if (leaf_free_space < ins_len) {
2110 			int err;
2111 
2112 			err = split_leaf(trans, root, key, path, ins_len,
2113 					 (ret == 0));
2114 			ASSERT(err <= 0);
2115 			if (WARN_ON(err > 0))
2116 				err = -EUCLEAN;
2117 			if (err)
2118 				ret = err;
2119 		}
2120 	}
2121 
2122 	return ret;
2123 }
2124 
2125 /*
2126  * btrfs_search_slot - look for a key in a tree and perform necessary
2127  * modifications to preserve tree invariants.
2128  *
2129  * @trans:	Handle of transaction, used when modifying the tree
2130  * @p:		Holds all btree nodes along the search path
2131  * @root:	The root node of the tree
2132  * @key:	The key we are looking for
2133  * @ins_len:	Indicates purpose of search:
2134  *              >0  for inserts it's size of item inserted (*)
2135  *              <0  for deletions
2136  *               0  for plain searches, not modifying the tree
2137  *
2138  *              (*) If size of item inserted doesn't include
2139  *              sizeof(struct btrfs_item), then p->search_for_extension must
2140  *              be set.
2141  * @cow:	boolean should CoW operations be performed. Must always be 1
2142  *		when modifying the tree.
2143  *
2144  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2145  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2146  *
2147  * If @key is found, 0 is returned and you can find the item in the leaf level
2148  * of the path (level 0)
2149  *
2150  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2151  * points to the slot where it should be inserted
2152  *
2153  * If an error is encountered while searching the tree a negative error number
2154  * is returned
2155  */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)2156 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2157 		      const struct btrfs_key *key, struct btrfs_path *p,
2158 		      int ins_len, int cow)
2159 {
2160 	struct btrfs_fs_info *fs_info;
2161 	struct extent_buffer *b;
2162 	int slot;
2163 	int ret;
2164 	int err;
2165 	int level;
2166 	int lowest_unlock = 1;
2167 	/* everything at write_lock_level or lower must be write locked */
2168 	int write_lock_level = 0;
2169 	u8 lowest_level = 0;
2170 	int min_write_lock_level;
2171 	int prev_cmp;
2172 
2173 	if (!root)
2174 		return -EINVAL;
2175 
2176 	fs_info = root->fs_info;
2177 	might_sleep();
2178 
2179 	lowest_level = p->lowest_level;
2180 	WARN_ON(lowest_level && ins_len > 0);
2181 	WARN_ON(p->nodes[0] != NULL);
2182 	BUG_ON(!cow && ins_len);
2183 
2184 	/*
2185 	 * For now only allow nowait for read only operations.  There's no
2186 	 * strict reason why we can't, we just only need it for reads so it's
2187 	 * only implemented for reads.
2188 	 */
2189 	ASSERT(!p->nowait || !cow);
2190 
2191 	if (ins_len < 0) {
2192 		lowest_unlock = 2;
2193 
2194 		/* when we are removing items, we might have to go up to level
2195 		 * two as we update tree pointers  Make sure we keep write
2196 		 * for those levels as well
2197 		 */
2198 		write_lock_level = 2;
2199 	} else if (ins_len > 0) {
2200 		/*
2201 		 * for inserting items, make sure we have a write lock on
2202 		 * level 1 so we can update keys
2203 		 */
2204 		write_lock_level = 1;
2205 	}
2206 
2207 	if (!cow)
2208 		write_lock_level = -1;
2209 
2210 	if (cow && (p->keep_locks || p->lowest_level))
2211 		write_lock_level = BTRFS_MAX_LEVEL;
2212 
2213 	min_write_lock_level = write_lock_level;
2214 
2215 	if (p->need_commit_sem) {
2216 		ASSERT(p->search_commit_root);
2217 		if (p->nowait) {
2218 			if (!down_read_trylock(&fs_info->commit_root_sem))
2219 				return -EAGAIN;
2220 		} else {
2221 			down_read(&fs_info->commit_root_sem);
2222 		}
2223 	}
2224 
2225 again:
2226 	prev_cmp = -1;
2227 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2228 	if (IS_ERR(b)) {
2229 		ret = PTR_ERR(b);
2230 		goto done;
2231 	}
2232 
2233 	while (b) {
2234 		int dec = 0;
2235 
2236 		level = btrfs_header_level(b);
2237 
2238 		if (cow) {
2239 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2240 
2241 			/*
2242 			 * if we don't really need to cow this block
2243 			 * then we don't want to set the path blocking,
2244 			 * so we test it here
2245 			 */
2246 			if (!should_cow_block(trans, root, b))
2247 				goto cow_done;
2248 
2249 			/*
2250 			 * must have write locks on this node and the
2251 			 * parent
2252 			 */
2253 			if (level > write_lock_level ||
2254 			    (level + 1 > write_lock_level &&
2255 			    level + 1 < BTRFS_MAX_LEVEL &&
2256 			    p->nodes[level + 1])) {
2257 				write_lock_level = level + 1;
2258 				btrfs_release_path(p);
2259 				goto again;
2260 			}
2261 
2262 			if (last_level)
2263 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2264 						      &b,
2265 						      BTRFS_NESTING_COW);
2266 			else
2267 				err = btrfs_cow_block(trans, root, b,
2268 						      p->nodes[level + 1],
2269 						      p->slots[level + 1], &b,
2270 						      BTRFS_NESTING_COW);
2271 			if (err) {
2272 				ret = err;
2273 				goto done;
2274 			}
2275 		}
2276 cow_done:
2277 		p->nodes[level] = b;
2278 
2279 		/*
2280 		 * we have a lock on b and as long as we aren't changing
2281 		 * the tree, there is no way to for the items in b to change.
2282 		 * It is safe to drop the lock on our parent before we
2283 		 * go through the expensive btree search on b.
2284 		 *
2285 		 * If we're inserting or deleting (ins_len != 0), then we might
2286 		 * be changing slot zero, which may require changing the parent.
2287 		 * So, we can't drop the lock until after we know which slot
2288 		 * we're operating on.
2289 		 */
2290 		if (!ins_len && !p->keep_locks) {
2291 			int u = level + 1;
2292 
2293 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2294 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2295 				p->locks[u] = 0;
2296 			}
2297 		}
2298 
2299 		if (level == 0) {
2300 			if (ins_len > 0)
2301 				ASSERT(write_lock_level >= 1);
2302 
2303 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2304 			if (!p->search_for_split)
2305 				unlock_up(p, level, lowest_unlock,
2306 					  min_write_lock_level, NULL);
2307 			goto done;
2308 		}
2309 
2310 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2311 		if (ret < 0)
2312 			goto done;
2313 		prev_cmp = ret;
2314 
2315 		if (ret && slot > 0) {
2316 			dec = 1;
2317 			slot--;
2318 		}
2319 		p->slots[level] = slot;
2320 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2321 					     &write_lock_level);
2322 		if (err == -EAGAIN)
2323 			goto again;
2324 		if (err) {
2325 			ret = err;
2326 			goto done;
2327 		}
2328 		b = p->nodes[level];
2329 		slot = p->slots[level];
2330 
2331 		/*
2332 		 * Slot 0 is special, if we change the key we have to update
2333 		 * the parent pointer which means we must have a write lock on
2334 		 * the parent
2335 		 */
2336 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2337 			write_lock_level = level + 1;
2338 			btrfs_release_path(p);
2339 			goto again;
2340 		}
2341 
2342 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2343 			  &write_lock_level);
2344 
2345 		if (level == lowest_level) {
2346 			if (dec)
2347 				p->slots[level]++;
2348 			goto done;
2349 		}
2350 
2351 		err = read_block_for_search(root, p, &b, level, slot, key);
2352 		if (err == -EAGAIN)
2353 			goto again;
2354 		if (err) {
2355 			ret = err;
2356 			goto done;
2357 		}
2358 
2359 		if (!p->skip_locking) {
2360 			level = btrfs_header_level(b);
2361 
2362 			btrfs_maybe_reset_lockdep_class(root, b);
2363 
2364 			if (level <= write_lock_level) {
2365 				btrfs_tree_lock(b);
2366 				p->locks[level] = BTRFS_WRITE_LOCK;
2367 			} else {
2368 				if (p->nowait) {
2369 					if (!btrfs_try_tree_read_lock(b)) {
2370 						free_extent_buffer(b);
2371 						ret = -EAGAIN;
2372 						goto done;
2373 					}
2374 				} else {
2375 					btrfs_tree_read_lock(b);
2376 				}
2377 				p->locks[level] = BTRFS_READ_LOCK;
2378 			}
2379 			p->nodes[level] = b;
2380 		}
2381 	}
2382 	ret = 1;
2383 done:
2384 	if (ret < 0 && !p->skip_release_on_error)
2385 		btrfs_release_path(p);
2386 
2387 	if (p->need_commit_sem) {
2388 		int ret2;
2389 
2390 		ret2 = finish_need_commit_sem_search(p);
2391 		up_read(&fs_info->commit_root_sem);
2392 		if (ret2)
2393 			ret = ret2;
2394 	}
2395 
2396 	return ret;
2397 }
2398 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2399 
2400 /*
2401  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2402  * current state of the tree together with the operations recorded in the tree
2403  * modification log to search for the key in a previous version of this tree, as
2404  * denoted by the time_seq parameter.
2405  *
2406  * Naturally, there is no support for insert, delete or cow operations.
2407  *
2408  * The resulting path and return value will be set up as if we called
2409  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2410  */
btrfs_search_old_slot(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)2411 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2412 			  struct btrfs_path *p, u64 time_seq)
2413 {
2414 	struct btrfs_fs_info *fs_info = root->fs_info;
2415 	struct extent_buffer *b;
2416 	int slot;
2417 	int ret;
2418 	int err;
2419 	int level;
2420 	int lowest_unlock = 1;
2421 	u8 lowest_level = 0;
2422 
2423 	lowest_level = p->lowest_level;
2424 	WARN_ON(p->nodes[0] != NULL);
2425 	ASSERT(!p->nowait);
2426 
2427 	if (p->search_commit_root) {
2428 		BUG_ON(time_seq);
2429 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2430 	}
2431 
2432 again:
2433 	b = btrfs_get_old_root(root, time_seq);
2434 	if (!b) {
2435 		ret = -EIO;
2436 		goto done;
2437 	}
2438 	level = btrfs_header_level(b);
2439 	p->locks[level] = BTRFS_READ_LOCK;
2440 
2441 	while (b) {
2442 		int dec = 0;
2443 
2444 		level = btrfs_header_level(b);
2445 		p->nodes[level] = b;
2446 
2447 		/*
2448 		 * we have a lock on b and as long as we aren't changing
2449 		 * the tree, there is no way to for the items in b to change.
2450 		 * It is safe to drop the lock on our parent before we
2451 		 * go through the expensive btree search on b.
2452 		 */
2453 		btrfs_unlock_up_safe(p, level + 1);
2454 
2455 		ret = btrfs_bin_search(b, 0, key, &slot);
2456 		if (ret < 0)
2457 			goto done;
2458 
2459 		if (level == 0) {
2460 			p->slots[level] = slot;
2461 			unlock_up(p, level, lowest_unlock, 0, NULL);
2462 			goto done;
2463 		}
2464 
2465 		if (ret && slot > 0) {
2466 			dec = 1;
2467 			slot--;
2468 		}
2469 		p->slots[level] = slot;
2470 		unlock_up(p, level, lowest_unlock, 0, NULL);
2471 
2472 		if (level == lowest_level) {
2473 			if (dec)
2474 				p->slots[level]++;
2475 			goto done;
2476 		}
2477 
2478 		err = read_block_for_search(root, p, &b, level, slot, key);
2479 		if (err == -EAGAIN)
2480 			goto again;
2481 		if (err) {
2482 			ret = err;
2483 			goto done;
2484 		}
2485 
2486 		level = btrfs_header_level(b);
2487 		btrfs_tree_read_lock(b);
2488 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2489 		if (!b) {
2490 			ret = -ENOMEM;
2491 			goto done;
2492 		}
2493 		p->locks[level] = BTRFS_READ_LOCK;
2494 		p->nodes[level] = b;
2495 	}
2496 	ret = 1;
2497 done:
2498 	if (ret < 0)
2499 		btrfs_release_path(p);
2500 
2501 	return ret;
2502 }
2503 
2504 /*
2505  * Search the tree again to find a leaf with smaller keys.
2506  * Returns 0 if it found something.
2507  * Returns 1 if there are no smaller keys.
2508  * Returns < 0 on error.
2509  *
2510  * This may release the path, and so you may lose any locks held at the
2511  * time you call it.
2512  */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)2513 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2514 {
2515 	struct btrfs_key key;
2516 	struct btrfs_key orig_key;
2517 	struct btrfs_disk_key found_key;
2518 	int ret;
2519 
2520 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2521 	orig_key = key;
2522 
2523 	if (key.offset > 0) {
2524 		key.offset--;
2525 	} else if (key.type > 0) {
2526 		key.type--;
2527 		key.offset = (u64)-1;
2528 	} else if (key.objectid > 0) {
2529 		key.objectid--;
2530 		key.type = (u8)-1;
2531 		key.offset = (u64)-1;
2532 	} else {
2533 		return 1;
2534 	}
2535 
2536 	btrfs_release_path(path);
2537 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2538 	if (ret <= 0)
2539 		return ret;
2540 
2541 	/*
2542 	 * Previous key not found. Even if we were at slot 0 of the leaf we had
2543 	 * before releasing the path and calling btrfs_search_slot(), we now may
2544 	 * be in a slot pointing to the same original key - this can happen if
2545 	 * after we released the path, one of more items were moved from a
2546 	 * sibling leaf into the front of the leaf we had due to an insertion
2547 	 * (see push_leaf_right()).
2548 	 * If we hit this case and our slot is > 0 and just decrement the slot
2549 	 * so that the caller does not process the same key again, which may or
2550 	 * may not break the caller, depending on its logic.
2551 	 */
2552 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2553 		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2554 		ret = comp_keys(&found_key, &orig_key);
2555 		if (ret == 0) {
2556 			if (path->slots[0] > 0) {
2557 				path->slots[0]--;
2558 				return 0;
2559 			}
2560 			/*
2561 			 * At slot 0, same key as before, it means orig_key is
2562 			 * the lowest, leftmost, key in the tree. We're done.
2563 			 */
2564 			return 1;
2565 		}
2566 	}
2567 
2568 	btrfs_item_key(path->nodes[0], &found_key, 0);
2569 	ret = comp_keys(&found_key, &key);
2570 	/*
2571 	 * We might have had an item with the previous key in the tree right
2572 	 * before we released our path. And after we released our path, that
2573 	 * item might have been pushed to the first slot (0) of the leaf we
2574 	 * were holding due to a tree balance. Alternatively, an item with the
2575 	 * previous key can exist as the only element of a leaf (big fat item).
2576 	 * Therefore account for these 2 cases, so that our callers (like
2577 	 * btrfs_previous_item) don't miss an existing item with a key matching
2578 	 * the previous key we computed above.
2579 	 */
2580 	if (ret <= 0)
2581 		return 0;
2582 	return 1;
2583 }
2584 
2585 /*
2586  * helper to use instead of search slot if no exact match is needed but
2587  * instead the next or previous item should be returned.
2588  * When find_higher is true, the next higher item is returned, the next lower
2589  * otherwise.
2590  * When return_any and find_higher are both true, and no higher item is found,
2591  * return the next lower instead.
2592  * When return_any is true and find_higher is false, and no lower item is found,
2593  * return the next higher instead.
2594  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2595  * < 0 on error
2596  */
btrfs_search_slot_for_read(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)2597 int btrfs_search_slot_for_read(struct btrfs_root *root,
2598 			       const struct btrfs_key *key,
2599 			       struct btrfs_path *p, int find_higher,
2600 			       int return_any)
2601 {
2602 	int ret;
2603 	struct extent_buffer *leaf;
2604 
2605 again:
2606 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2607 	if (ret <= 0)
2608 		return ret;
2609 	/*
2610 	 * a return value of 1 means the path is at the position where the
2611 	 * item should be inserted. Normally this is the next bigger item,
2612 	 * but in case the previous item is the last in a leaf, path points
2613 	 * to the first free slot in the previous leaf, i.e. at an invalid
2614 	 * item.
2615 	 */
2616 	leaf = p->nodes[0];
2617 
2618 	if (find_higher) {
2619 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2620 			ret = btrfs_next_leaf(root, p);
2621 			if (ret <= 0)
2622 				return ret;
2623 			if (!return_any)
2624 				return 1;
2625 			/*
2626 			 * no higher item found, return the next
2627 			 * lower instead
2628 			 */
2629 			return_any = 0;
2630 			find_higher = 0;
2631 			btrfs_release_path(p);
2632 			goto again;
2633 		}
2634 	} else {
2635 		if (p->slots[0] == 0) {
2636 			ret = btrfs_prev_leaf(root, p);
2637 			if (ret < 0)
2638 				return ret;
2639 			if (!ret) {
2640 				leaf = p->nodes[0];
2641 				if (p->slots[0] == btrfs_header_nritems(leaf))
2642 					p->slots[0]--;
2643 				return 0;
2644 			}
2645 			if (!return_any)
2646 				return 1;
2647 			/*
2648 			 * no lower item found, return the next
2649 			 * higher instead
2650 			 */
2651 			return_any = 0;
2652 			find_higher = 1;
2653 			btrfs_release_path(p);
2654 			goto again;
2655 		} else {
2656 			--p->slots[0];
2657 		}
2658 	}
2659 	return 0;
2660 }
2661 
2662 /*
2663  * Execute search and call btrfs_previous_item to traverse backwards if the item
2664  * was not found.
2665  *
2666  * Return 0 if found, 1 if not found and < 0 if error.
2667  */
btrfs_search_backwards(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2668 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2669 			   struct btrfs_path *path)
2670 {
2671 	int ret;
2672 
2673 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2674 	if (ret > 0)
2675 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2676 
2677 	if (ret == 0)
2678 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2679 
2680 	return ret;
2681 }
2682 
2683 /*
2684  * Search for a valid slot for the given path.
2685  *
2686  * @root:	The root node of the tree.
2687  * @key:	Will contain a valid item if found.
2688  * @path:	The starting point to validate the slot.
2689  *
2690  * Return: 0  if the item is valid
2691  *         1  if not found
2692  *         <0 if error.
2693  */
btrfs_get_next_valid_item(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2694 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2695 			      struct btrfs_path *path)
2696 {
2697 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2698 		int ret;
2699 
2700 		ret = btrfs_next_leaf(root, path);
2701 		if (ret)
2702 			return ret;
2703 	}
2704 
2705 	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2706 	return 0;
2707 }
2708 
2709 /*
2710  * adjust the pointers going up the tree, starting at level
2711  * making sure the right key of each node is points to 'key'.
2712  * This is used after shifting pointers to the left, so it stops
2713  * fixing up pointers when a given leaf/node is not in slot 0 of the
2714  * higher levels
2715  *
2716  */
fixup_low_keys(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_disk_key * key,int level)2717 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2718 			   struct btrfs_path *path,
2719 			   struct btrfs_disk_key *key, int level)
2720 {
2721 	int i;
2722 	struct extent_buffer *t;
2723 	int ret;
2724 
2725 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2726 		int tslot = path->slots[i];
2727 
2728 		if (!path->nodes[i])
2729 			break;
2730 		t = path->nodes[i];
2731 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2732 						    BTRFS_MOD_LOG_KEY_REPLACE);
2733 		BUG_ON(ret < 0);
2734 		btrfs_set_node_key(t, key, tslot);
2735 		btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2736 		if (tslot != 0)
2737 			break;
2738 	}
2739 }
2740 
2741 /*
2742  * update item key.
2743  *
2744  * This function isn't completely safe. It's the caller's responsibility
2745  * that the new key won't break the order
2746  */
btrfs_set_item_key_safe(struct btrfs_trans_handle * trans,struct btrfs_path * path,const struct btrfs_key * new_key)2747 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2748 			     struct btrfs_path *path,
2749 			     const struct btrfs_key *new_key)
2750 {
2751 	struct btrfs_fs_info *fs_info = trans->fs_info;
2752 	struct btrfs_disk_key disk_key;
2753 	struct extent_buffer *eb;
2754 	int slot;
2755 
2756 	eb = path->nodes[0];
2757 	slot = path->slots[0];
2758 	if (slot > 0) {
2759 		btrfs_item_key(eb, &disk_key, slot - 1);
2760 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2761 			btrfs_print_leaf(eb);
2762 			btrfs_crit(fs_info,
2763 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2764 				   slot, btrfs_disk_key_objectid(&disk_key),
2765 				   btrfs_disk_key_type(&disk_key),
2766 				   btrfs_disk_key_offset(&disk_key),
2767 				   new_key->objectid, new_key->type,
2768 				   new_key->offset);
2769 			BUG();
2770 		}
2771 	}
2772 	if (slot < btrfs_header_nritems(eb) - 1) {
2773 		btrfs_item_key(eb, &disk_key, slot + 1);
2774 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2775 			btrfs_print_leaf(eb);
2776 			btrfs_crit(fs_info,
2777 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2778 				   slot, btrfs_disk_key_objectid(&disk_key),
2779 				   btrfs_disk_key_type(&disk_key),
2780 				   btrfs_disk_key_offset(&disk_key),
2781 				   new_key->objectid, new_key->type,
2782 				   new_key->offset);
2783 			BUG();
2784 		}
2785 	}
2786 
2787 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2788 	btrfs_set_item_key(eb, &disk_key, slot);
2789 	btrfs_mark_buffer_dirty(trans, eb);
2790 	if (slot == 0)
2791 		fixup_low_keys(trans, path, &disk_key, 1);
2792 }
2793 
2794 /*
2795  * Check key order of two sibling extent buffers.
2796  *
2797  * Return true if something is wrong.
2798  * Return false if everything is fine.
2799  *
2800  * Tree-checker only works inside one tree block, thus the following
2801  * corruption can not be detected by tree-checker:
2802  *
2803  * Leaf @left			| Leaf @right
2804  * --------------------------------------------------------------
2805  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2806  *
2807  * Key f6 in leaf @left itself is valid, but not valid when the next
2808  * key in leaf @right is 7.
2809  * This can only be checked at tree block merge time.
2810  * And since tree checker has ensured all key order in each tree block
2811  * is correct, we only need to bother the last key of @left and the first
2812  * key of @right.
2813  */
check_sibling_keys(struct extent_buffer * left,struct extent_buffer * right)2814 static bool check_sibling_keys(struct extent_buffer *left,
2815 			       struct extent_buffer *right)
2816 {
2817 	struct btrfs_key left_last;
2818 	struct btrfs_key right_first;
2819 	int level = btrfs_header_level(left);
2820 	int nr_left = btrfs_header_nritems(left);
2821 	int nr_right = btrfs_header_nritems(right);
2822 
2823 	/* No key to check in one of the tree blocks */
2824 	if (!nr_left || !nr_right)
2825 		return false;
2826 
2827 	if (level) {
2828 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2829 		btrfs_node_key_to_cpu(right, &right_first, 0);
2830 	} else {
2831 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2832 		btrfs_item_key_to_cpu(right, &right_first, 0);
2833 	}
2834 
2835 	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2836 		btrfs_crit(left->fs_info, "left extent buffer:");
2837 		btrfs_print_tree(left, false);
2838 		btrfs_crit(left->fs_info, "right extent buffer:");
2839 		btrfs_print_tree(right, false);
2840 		btrfs_crit(left->fs_info,
2841 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2842 			   left_last.objectid, left_last.type,
2843 			   left_last.offset, right_first.objectid,
2844 			   right_first.type, right_first.offset);
2845 		return true;
2846 	}
2847 	return false;
2848 }
2849 
2850 /*
2851  * try to push data from one node into the next node left in the
2852  * tree.
2853  *
2854  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2855  * error, and > 0 if there was no room in the left hand block.
2856  */
push_node_left(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src,int empty)2857 static int push_node_left(struct btrfs_trans_handle *trans,
2858 			  struct extent_buffer *dst,
2859 			  struct extent_buffer *src, int empty)
2860 {
2861 	struct btrfs_fs_info *fs_info = trans->fs_info;
2862 	int push_items = 0;
2863 	int src_nritems;
2864 	int dst_nritems;
2865 	int ret = 0;
2866 
2867 	src_nritems = btrfs_header_nritems(src);
2868 	dst_nritems = btrfs_header_nritems(dst);
2869 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2870 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2871 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2872 
2873 	if (!empty && src_nritems <= 8)
2874 		return 1;
2875 
2876 	if (push_items <= 0)
2877 		return 1;
2878 
2879 	if (empty) {
2880 		push_items = min(src_nritems, push_items);
2881 		if (push_items < src_nritems) {
2882 			/* leave at least 8 pointers in the node if
2883 			 * we aren't going to empty it
2884 			 */
2885 			if (src_nritems - push_items < 8) {
2886 				if (push_items <= 8)
2887 					return 1;
2888 				push_items -= 8;
2889 			}
2890 		}
2891 	} else
2892 		push_items = min(src_nritems - 8, push_items);
2893 
2894 	/* dst is the left eb, src is the middle eb */
2895 	if (check_sibling_keys(dst, src)) {
2896 		ret = -EUCLEAN;
2897 		btrfs_abort_transaction(trans, ret);
2898 		return ret;
2899 	}
2900 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2901 	if (ret) {
2902 		btrfs_abort_transaction(trans, ret);
2903 		return ret;
2904 	}
2905 	copy_extent_buffer(dst, src,
2906 			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2907 			   btrfs_node_key_ptr_offset(src, 0),
2908 			   push_items * sizeof(struct btrfs_key_ptr));
2909 
2910 	if (push_items < src_nritems) {
2911 		/*
2912 		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2913 		 * don't need to do an explicit tree mod log operation for it.
2914 		 */
2915 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2916 				      btrfs_node_key_ptr_offset(src, push_items),
2917 				      (src_nritems - push_items) *
2918 				      sizeof(struct btrfs_key_ptr));
2919 	}
2920 	btrfs_set_header_nritems(src, src_nritems - push_items);
2921 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2922 	btrfs_mark_buffer_dirty(trans, src);
2923 	btrfs_mark_buffer_dirty(trans, dst);
2924 
2925 	return ret;
2926 }
2927 
2928 /*
2929  * try to push data from one node into the next node right in the
2930  * tree.
2931  *
2932  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2933  * error, and > 0 if there was no room in the right hand block.
2934  *
2935  * this will  only push up to 1/2 the contents of the left node over
2936  */
balance_node_right(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src)2937 static int balance_node_right(struct btrfs_trans_handle *trans,
2938 			      struct extent_buffer *dst,
2939 			      struct extent_buffer *src)
2940 {
2941 	struct btrfs_fs_info *fs_info = trans->fs_info;
2942 	int push_items = 0;
2943 	int max_push;
2944 	int src_nritems;
2945 	int dst_nritems;
2946 	int ret = 0;
2947 
2948 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2949 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2950 
2951 	src_nritems = btrfs_header_nritems(src);
2952 	dst_nritems = btrfs_header_nritems(dst);
2953 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2954 	if (push_items <= 0)
2955 		return 1;
2956 
2957 	if (src_nritems < 4)
2958 		return 1;
2959 
2960 	max_push = src_nritems / 2 + 1;
2961 	/* don't try to empty the node */
2962 	if (max_push >= src_nritems)
2963 		return 1;
2964 
2965 	if (max_push < push_items)
2966 		push_items = max_push;
2967 
2968 	/* dst is the right eb, src is the middle eb */
2969 	if (check_sibling_keys(src, dst)) {
2970 		ret = -EUCLEAN;
2971 		btrfs_abort_transaction(trans, ret);
2972 		return ret;
2973 	}
2974 
2975 	/*
2976 	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2977 	 * need to do an explicit tree mod log operation for it.
2978 	 */
2979 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2980 				      btrfs_node_key_ptr_offset(dst, 0),
2981 				      (dst_nritems) *
2982 				      sizeof(struct btrfs_key_ptr));
2983 
2984 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2985 					 push_items);
2986 	if (ret) {
2987 		btrfs_abort_transaction(trans, ret);
2988 		return ret;
2989 	}
2990 	copy_extent_buffer(dst, src,
2991 			   btrfs_node_key_ptr_offset(dst, 0),
2992 			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2993 			   push_items * sizeof(struct btrfs_key_ptr));
2994 
2995 	btrfs_set_header_nritems(src, src_nritems - push_items);
2996 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2997 
2998 	btrfs_mark_buffer_dirty(trans, src);
2999 	btrfs_mark_buffer_dirty(trans, dst);
3000 
3001 	return ret;
3002 }
3003 
3004 /*
3005  * helper function to insert a new root level in the tree.
3006  * A new node is allocated, and a single item is inserted to
3007  * point to the existing root
3008  *
3009  * returns zero on success or < 0 on failure.
3010  */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3011 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3012 			   struct btrfs_root *root,
3013 			   struct btrfs_path *path, int level)
3014 {
3015 	struct btrfs_fs_info *fs_info = root->fs_info;
3016 	u64 lower_gen;
3017 	struct extent_buffer *lower;
3018 	struct extent_buffer *c;
3019 	struct extent_buffer *old;
3020 	struct btrfs_disk_key lower_key;
3021 	int ret;
3022 
3023 	BUG_ON(path->nodes[level]);
3024 	BUG_ON(path->nodes[level-1] != root->node);
3025 
3026 	lower = path->nodes[level-1];
3027 	if (level == 1)
3028 		btrfs_item_key(lower, &lower_key, 0);
3029 	else
3030 		btrfs_node_key(lower, &lower_key, 0);
3031 
3032 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3033 				   &lower_key, level, root->node->start, 0,
3034 				   BTRFS_NESTING_NEW_ROOT);
3035 	if (IS_ERR(c))
3036 		return PTR_ERR(c);
3037 
3038 	root_add_used(root, fs_info->nodesize);
3039 
3040 	btrfs_set_header_nritems(c, 1);
3041 	btrfs_set_node_key(c, &lower_key, 0);
3042 	btrfs_set_node_blockptr(c, 0, lower->start);
3043 	lower_gen = btrfs_header_generation(lower);
3044 	WARN_ON(lower_gen != trans->transid);
3045 
3046 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3047 
3048 	btrfs_mark_buffer_dirty(trans, c);
3049 
3050 	old = root->node;
3051 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
3052 	if (ret < 0) {
3053 		int ret2;
3054 
3055 		ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
3056 		if (ret2 < 0)
3057 			btrfs_abort_transaction(trans, ret2);
3058 		btrfs_tree_unlock(c);
3059 		free_extent_buffer(c);
3060 		return ret;
3061 	}
3062 	rcu_assign_pointer(root->node, c);
3063 
3064 	/* the super has an extra ref to root->node */
3065 	free_extent_buffer(old);
3066 
3067 	add_root_to_dirty_list(root);
3068 	atomic_inc(&c->refs);
3069 	path->nodes[level] = c;
3070 	path->locks[level] = BTRFS_WRITE_LOCK;
3071 	path->slots[level] = 0;
3072 	return 0;
3073 }
3074 
3075 /*
3076  * worker function to insert a single pointer in a node.
3077  * the node should have enough room for the pointer already
3078  *
3079  * slot and level indicate where you want the key to go, and
3080  * blocknr is the block the key points to.
3081  */
insert_ptr(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_disk_key * key,u64 bytenr,int slot,int level)3082 static int insert_ptr(struct btrfs_trans_handle *trans,
3083 		      struct btrfs_path *path,
3084 		      struct btrfs_disk_key *key, u64 bytenr,
3085 		      int slot, int level)
3086 {
3087 	struct extent_buffer *lower;
3088 	int nritems;
3089 	int ret;
3090 
3091 	BUG_ON(!path->nodes[level]);
3092 	btrfs_assert_tree_write_locked(path->nodes[level]);
3093 	lower = path->nodes[level];
3094 	nritems = btrfs_header_nritems(lower);
3095 	BUG_ON(slot > nritems);
3096 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3097 	if (slot != nritems) {
3098 		if (level) {
3099 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
3100 					slot, nritems - slot);
3101 			if (ret < 0) {
3102 				btrfs_abort_transaction(trans, ret);
3103 				return ret;
3104 			}
3105 		}
3106 		memmove_extent_buffer(lower,
3107 			      btrfs_node_key_ptr_offset(lower, slot + 1),
3108 			      btrfs_node_key_ptr_offset(lower, slot),
3109 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3110 	}
3111 	if (level) {
3112 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
3113 						    BTRFS_MOD_LOG_KEY_ADD);
3114 		if (ret < 0) {
3115 			btrfs_abort_transaction(trans, ret);
3116 			return ret;
3117 		}
3118 	}
3119 	btrfs_set_node_key(lower, key, slot);
3120 	btrfs_set_node_blockptr(lower, slot, bytenr);
3121 	WARN_ON(trans->transid == 0);
3122 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3123 	btrfs_set_header_nritems(lower, nritems + 1);
3124 	btrfs_mark_buffer_dirty(trans, lower);
3125 
3126 	return 0;
3127 }
3128 
3129 /*
3130  * split the node at the specified level in path in two.
3131  * The path is corrected to point to the appropriate node after the split
3132  *
3133  * Before splitting this tries to make some room in the node by pushing
3134  * left and right, if either one works, it returns right away.
3135  *
3136  * returns 0 on success and < 0 on failure
3137  */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3138 static noinline int split_node(struct btrfs_trans_handle *trans,
3139 			       struct btrfs_root *root,
3140 			       struct btrfs_path *path, int level)
3141 {
3142 	struct btrfs_fs_info *fs_info = root->fs_info;
3143 	struct extent_buffer *c;
3144 	struct extent_buffer *split;
3145 	struct btrfs_disk_key disk_key;
3146 	int mid;
3147 	int ret;
3148 	u32 c_nritems;
3149 
3150 	c = path->nodes[level];
3151 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3152 	if (c == root->node) {
3153 		/*
3154 		 * trying to split the root, lets make a new one
3155 		 *
3156 		 * tree mod log: We don't log_removal old root in
3157 		 * insert_new_root, because that root buffer will be kept as a
3158 		 * normal node. We are going to log removal of half of the
3159 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3160 		 * holding a tree lock on the buffer, which is why we cannot
3161 		 * race with other tree_mod_log users.
3162 		 */
3163 		ret = insert_new_root(trans, root, path, level + 1);
3164 		if (ret)
3165 			return ret;
3166 	} else {
3167 		ret = push_nodes_for_insert(trans, root, path, level);
3168 		c = path->nodes[level];
3169 		if (!ret && btrfs_header_nritems(c) <
3170 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3171 			return 0;
3172 		if (ret < 0)
3173 			return ret;
3174 	}
3175 
3176 	c_nritems = btrfs_header_nritems(c);
3177 	mid = (c_nritems + 1) / 2;
3178 	btrfs_node_key(c, &disk_key, mid);
3179 
3180 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3181 				       &disk_key, level, c->start, 0,
3182 				       BTRFS_NESTING_SPLIT);
3183 	if (IS_ERR(split))
3184 		return PTR_ERR(split);
3185 
3186 	root_add_used(root, fs_info->nodesize);
3187 	ASSERT(btrfs_header_level(c) == level);
3188 
3189 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3190 	if (ret) {
3191 		btrfs_tree_unlock(split);
3192 		free_extent_buffer(split);
3193 		btrfs_abort_transaction(trans, ret);
3194 		return ret;
3195 	}
3196 	copy_extent_buffer(split, c,
3197 			   btrfs_node_key_ptr_offset(split, 0),
3198 			   btrfs_node_key_ptr_offset(c, mid),
3199 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3200 	btrfs_set_header_nritems(split, c_nritems - mid);
3201 	btrfs_set_header_nritems(c, mid);
3202 
3203 	btrfs_mark_buffer_dirty(trans, c);
3204 	btrfs_mark_buffer_dirty(trans, split);
3205 
3206 	ret = insert_ptr(trans, path, &disk_key, split->start,
3207 			 path->slots[level + 1] + 1, level + 1);
3208 	if (ret < 0) {
3209 		btrfs_tree_unlock(split);
3210 		free_extent_buffer(split);
3211 		return ret;
3212 	}
3213 
3214 	if (path->slots[level] >= mid) {
3215 		path->slots[level] -= mid;
3216 		btrfs_tree_unlock(c);
3217 		free_extent_buffer(c);
3218 		path->nodes[level] = split;
3219 		path->slots[level + 1] += 1;
3220 	} else {
3221 		btrfs_tree_unlock(split);
3222 		free_extent_buffer(split);
3223 	}
3224 	return 0;
3225 }
3226 
3227 /*
3228  * how many bytes are required to store the items in a leaf.  start
3229  * and nr indicate which items in the leaf to check.  This totals up the
3230  * space used both by the item structs and the item data
3231  */
leaf_space_used(const struct extent_buffer * l,int start,int nr)3232 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3233 {
3234 	int data_len;
3235 	int nritems = btrfs_header_nritems(l);
3236 	int end = min(nritems, start + nr) - 1;
3237 
3238 	if (!nr)
3239 		return 0;
3240 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3241 	data_len = data_len - btrfs_item_offset(l, end);
3242 	data_len += sizeof(struct btrfs_item) * nr;
3243 	WARN_ON(data_len < 0);
3244 	return data_len;
3245 }
3246 
3247 /*
3248  * The space between the end of the leaf items and
3249  * the start of the leaf data.  IOW, how much room
3250  * the leaf has left for both items and data
3251  */
btrfs_leaf_free_space(const struct extent_buffer * leaf)3252 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3253 {
3254 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3255 	int nritems = btrfs_header_nritems(leaf);
3256 	int ret;
3257 
3258 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3259 	if (ret < 0) {
3260 		btrfs_crit(fs_info,
3261 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3262 			   ret,
3263 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3264 			   leaf_space_used(leaf, 0, nritems), nritems);
3265 	}
3266 	return ret;
3267 }
3268 
3269 /*
3270  * min slot controls the lowest index we're willing to push to the
3271  * right.  We'll push up to and including min_slot, but no lower
3272  */
__push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)3273 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3274 				      struct btrfs_path *path,
3275 				      int data_size, int empty,
3276 				      struct extent_buffer *right,
3277 				      int free_space, u32 left_nritems,
3278 				      u32 min_slot)
3279 {
3280 	struct btrfs_fs_info *fs_info = right->fs_info;
3281 	struct extent_buffer *left = path->nodes[0];
3282 	struct extent_buffer *upper = path->nodes[1];
3283 	struct btrfs_map_token token;
3284 	struct btrfs_disk_key disk_key;
3285 	int slot;
3286 	u32 i;
3287 	int push_space = 0;
3288 	int push_items = 0;
3289 	u32 nr;
3290 	u32 right_nritems;
3291 	u32 data_end;
3292 	u32 this_item_size;
3293 
3294 	if (empty)
3295 		nr = 0;
3296 	else
3297 		nr = max_t(u32, 1, min_slot);
3298 
3299 	if (path->slots[0] >= left_nritems)
3300 		push_space += data_size;
3301 
3302 	slot = path->slots[1];
3303 	i = left_nritems - 1;
3304 	while (i >= nr) {
3305 		if (!empty && push_items > 0) {
3306 			if (path->slots[0] > i)
3307 				break;
3308 			if (path->slots[0] == i) {
3309 				int space = btrfs_leaf_free_space(left);
3310 
3311 				if (space + push_space * 2 > free_space)
3312 					break;
3313 			}
3314 		}
3315 
3316 		if (path->slots[0] == i)
3317 			push_space += data_size;
3318 
3319 		this_item_size = btrfs_item_size(left, i);
3320 		if (this_item_size + sizeof(struct btrfs_item) +
3321 		    push_space > free_space)
3322 			break;
3323 
3324 		push_items++;
3325 		push_space += this_item_size + sizeof(struct btrfs_item);
3326 		if (i == 0)
3327 			break;
3328 		i--;
3329 	}
3330 
3331 	if (push_items == 0)
3332 		goto out_unlock;
3333 
3334 	WARN_ON(!empty && push_items == left_nritems);
3335 
3336 	/* push left to right */
3337 	right_nritems = btrfs_header_nritems(right);
3338 
3339 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3340 	push_space -= leaf_data_end(left);
3341 
3342 	/* make room in the right data area */
3343 	data_end = leaf_data_end(right);
3344 	memmove_leaf_data(right, data_end - push_space, data_end,
3345 			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3346 
3347 	/* copy from the left data area */
3348 	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3349 		       leaf_data_end(left), push_space);
3350 
3351 	memmove_leaf_items(right, push_items, 0, right_nritems);
3352 
3353 	/* copy the items from left to right */
3354 	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3355 
3356 	/* update the item pointers */
3357 	btrfs_init_map_token(&token, right);
3358 	right_nritems += push_items;
3359 	btrfs_set_header_nritems(right, right_nritems);
3360 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3361 	for (i = 0; i < right_nritems; i++) {
3362 		push_space -= btrfs_token_item_size(&token, i);
3363 		btrfs_set_token_item_offset(&token, i, push_space);
3364 	}
3365 
3366 	left_nritems -= push_items;
3367 	btrfs_set_header_nritems(left, left_nritems);
3368 
3369 	if (left_nritems)
3370 		btrfs_mark_buffer_dirty(trans, left);
3371 	else
3372 		btrfs_clear_buffer_dirty(trans, left);
3373 
3374 	btrfs_mark_buffer_dirty(trans, right);
3375 
3376 	btrfs_item_key(right, &disk_key, 0);
3377 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3378 	btrfs_mark_buffer_dirty(trans, upper);
3379 
3380 	/* then fixup the leaf pointer in the path */
3381 	if (path->slots[0] >= left_nritems) {
3382 		path->slots[0] -= left_nritems;
3383 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3384 			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3385 		btrfs_tree_unlock(path->nodes[0]);
3386 		free_extent_buffer(path->nodes[0]);
3387 		path->nodes[0] = right;
3388 		path->slots[1] += 1;
3389 	} else {
3390 		btrfs_tree_unlock(right);
3391 		free_extent_buffer(right);
3392 	}
3393 	return 0;
3394 
3395 out_unlock:
3396 	btrfs_tree_unlock(right);
3397 	free_extent_buffer(right);
3398 	return 1;
3399 }
3400 
3401 /*
3402  * push some data in the path leaf to the right, trying to free up at
3403  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3404  *
3405  * returns 1 if the push failed because the other node didn't have enough
3406  * room, 0 if everything worked out and < 0 if there were major errors.
3407  *
3408  * this will push starting from min_slot to the end of the leaf.  It won't
3409  * push any slot lower than min_slot
3410  */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)3411 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3412 			   *root, struct btrfs_path *path,
3413 			   int min_data_size, int data_size,
3414 			   int empty, u32 min_slot)
3415 {
3416 	struct extent_buffer *left = path->nodes[0];
3417 	struct extent_buffer *right;
3418 	struct extent_buffer *upper;
3419 	int slot;
3420 	int free_space;
3421 	u32 left_nritems;
3422 	int ret;
3423 
3424 	if (!path->nodes[1])
3425 		return 1;
3426 
3427 	slot = path->slots[1];
3428 	upper = path->nodes[1];
3429 	if (slot >= btrfs_header_nritems(upper) - 1)
3430 		return 1;
3431 
3432 	btrfs_assert_tree_write_locked(path->nodes[1]);
3433 
3434 	right = btrfs_read_node_slot(upper, slot + 1);
3435 	if (IS_ERR(right))
3436 		return PTR_ERR(right);
3437 
3438 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3439 
3440 	free_space = btrfs_leaf_free_space(right);
3441 	if (free_space < data_size)
3442 		goto out_unlock;
3443 
3444 	ret = btrfs_cow_block(trans, root, right, upper,
3445 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3446 	if (ret)
3447 		goto out_unlock;
3448 
3449 	left_nritems = btrfs_header_nritems(left);
3450 	if (left_nritems == 0)
3451 		goto out_unlock;
3452 
3453 	if (check_sibling_keys(left, right)) {
3454 		ret = -EUCLEAN;
3455 		btrfs_abort_transaction(trans, ret);
3456 		btrfs_tree_unlock(right);
3457 		free_extent_buffer(right);
3458 		return ret;
3459 	}
3460 	if (path->slots[0] == left_nritems && !empty) {
3461 		/* Key greater than all keys in the leaf, right neighbor has
3462 		 * enough room for it and we're not emptying our leaf to delete
3463 		 * it, therefore use right neighbor to insert the new item and
3464 		 * no need to touch/dirty our left leaf. */
3465 		btrfs_tree_unlock(left);
3466 		free_extent_buffer(left);
3467 		path->nodes[0] = right;
3468 		path->slots[0] = 0;
3469 		path->slots[1]++;
3470 		return 0;
3471 	}
3472 
3473 	return __push_leaf_right(trans, path, min_data_size, empty, right,
3474 				 free_space, left_nritems, min_slot);
3475 out_unlock:
3476 	btrfs_tree_unlock(right);
3477 	free_extent_buffer(right);
3478 	return 1;
3479 }
3480 
3481 /*
3482  * push some data in the path leaf to the left, trying to free up at
3483  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3484  *
3485  * max_slot can put a limit on how far into the leaf we'll push items.  The
3486  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3487  * items
3488  */
__push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3489 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3490 				     struct btrfs_path *path, int data_size,
3491 				     int empty, struct extent_buffer *left,
3492 				     int free_space, u32 right_nritems,
3493 				     u32 max_slot)
3494 {
3495 	struct btrfs_fs_info *fs_info = left->fs_info;
3496 	struct btrfs_disk_key disk_key;
3497 	struct extent_buffer *right = path->nodes[0];
3498 	int i;
3499 	int push_space = 0;
3500 	int push_items = 0;
3501 	u32 old_left_nritems;
3502 	u32 nr;
3503 	int ret = 0;
3504 	u32 this_item_size;
3505 	u32 old_left_item_size;
3506 	struct btrfs_map_token token;
3507 
3508 	if (empty)
3509 		nr = min(right_nritems, max_slot);
3510 	else
3511 		nr = min(right_nritems - 1, max_slot);
3512 
3513 	for (i = 0; i < nr; i++) {
3514 		if (!empty && push_items > 0) {
3515 			if (path->slots[0] < i)
3516 				break;
3517 			if (path->slots[0] == i) {
3518 				int space = btrfs_leaf_free_space(right);
3519 
3520 				if (space + push_space * 2 > free_space)
3521 					break;
3522 			}
3523 		}
3524 
3525 		if (path->slots[0] == i)
3526 			push_space += data_size;
3527 
3528 		this_item_size = btrfs_item_size(right, i);
3529 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3530 		    free_space)
3531 			break;
3532 
3533 		push_items++;
3534 		push_space += this_item_size + sizeof(struct btrfs_item);
3535 	}
3536 
3537 	if (push_items == 0) {
3538 		ret = 1;
3539 		goto out;
3540 	}
3541 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3542 
3543 	/* push data from right to left */
3544 	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3545 
3546 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3547 		     btrfs_item_offset(right, push_items - 1);
3548 
3549 	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3550 		       btrfs_item_offset(right, push_items - 1), push_space);
3551 	old_left_nritems = btrfs_header_nritems(left);
3552 	BUG_ON(old_left_nritems <= 0);
3553 
3554 	btrfs_init_map_token(&token, left);
3555 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3556 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3557 		u32 ioff;
3558 
3559 		ioff = btrfs_token_item_offset(&token, i);
3560 		btrfs_set_token_item_offset(&token, i,
3561 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3562 	}
3563 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3564 
3565 	/* fixup right node */
3566 	if (push_items > right_nritems)
3567 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3568 		       right_nritems);
3569 
3570 	if (push_items < right_nritems) {
3571 		push_space = btrfs_item_offset(right, push_items - 1) -
3572 						  leaf_data_end(right);
3573 		memmove_leaf_data(right,
3574 				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3575 				  leaf_data_end(right), push_space);
3576 
3577 		memmove_leaf_items(right, 0, push_items,
3578 				   btrfs_header_nritems(right) - push_items);
3579 	}
3580 
3581 	btrfs_init_map_token(&token, right);
3582 	right_nritems -= push_items;
3583 	btrfs_set_header_nritems(right, right_nritems);
3584 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3585 	for (i = 0; i < right_nritems; i++) {
3586 		push_space = push_space - btrfs_token_item_size(&token, i);
3587 		btrfs_set_token_item_offset(&token, i, push_space);
3588 	}
3589 
3590 	btrfs_mark_buffer_dirty(trans, left);
3591 	if (right_nritems)
3592 		btrfs_mark_buffer_dirty(trans, right);
3593 	else
3594 		btrfs_clear_buffer_dirty(trans, right);
3595 
3596 	btrfs_item_key(right, &disk_key, 0);
3597 	fixup_low_keys(trans, path, &disk_key, 1);
3598 
3599 	/* then fixup the leaf pointer in the path */
3600 	if (path->slots[0] < push_items) {
3601 		path->slots[0] += old_left_nritems;
3602 		btrfs_tree_unlock(path->nodes[0]);
3603 		free_extent_buffer(path->nodes[0]);
3604 		path->nodes[0] = left;
3605 		path->slots[1] -= 1;
3606 	} else {
3607 		btrfs_tree_unlock(left);
3608 		free_extent_buffer(left);
3609 		path->slots[0] -= push_items;
3610 	}
3611 	BUG_ON(path->slots[0] < 0);
3612 	return ret;
3613 out:
3614 	btrfs_tree_unlock(left);
3615 	free_extent_buffer(left);
3616 	return ret;
3617 }
3618 
3619 /*
3620  * push some data in the path leaf to the left, trying to free up at
3621  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3622  *
3623  * max_slot can put a limit on how far into the leaf we'll push items.  The
3624  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3625  * items
3626  */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3627 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3628 			  *root, struct btrfs_path *path, int min_data_size,
3629 			  int data_size, int empty, u32 max_slot)
3630 {
3631 	struct extent_buffer *right = path->nodes[0];
3632 	struct extent_buffer *left;
3633 	int slot;
3634 	int free_space;
3635 	u32 right_nritems;
3636 	int ret = 0;
3637 
3638 	slot = path->slots[1];
3639 	if (slot == 0)
3640 		return 1;
3641 	if (!path->nodes[1])
3642 		return 1;
3643 
3644 	right_nritems = btrfs_header_nritems(right);
3645 	if (right_nritems == 0)
3646 		return 1;
3647 
3648 	btrfs_assert_tree_write_locked(path->nodes[1]);
3649 
3650 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3651 	if (IS_ERR(left))
3652 		return PTR_ERR(left);
3653 
3654 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3655 
3656 	free_space = btrfs_leaf_free_space(left);
3657 	if (free_space < data_size) {
3658 		ret = 1;
3659 		goto out;
3660 	}
3661 
3662 	ret = btrfs_cow_block(trans, root, left,
3663 			      path->nodes[1], slot - 1, &left,
3664 			      BTRFS_NESTING_LEFT_COW);
3665 	if (ret) {
3666 		/* we hit -ENOSPC, but it isn't fatal here */
3667 		if (ret == -ENOSPC)
3668 			ret = 1;
3669 		goto out;
3670 	}
3671 
3672 	if (check_sibling_keys(left, right)) {
3673 		ret = -EUCLEAN;
3674 		btrfs_abort_transaction(trans, ret);
3675 		goto out;
3676 	}
3677 	return __push_leaf_left(trans, path, min_data_size, empty, left,
3678 				free_space, right_nritems, max_slot);
3679 out:
3680 	btrfs_tree_unlock(left);
3681 	free_extent_buffer(left);
3682 	return ret;
3683 }
3684 
3685 /*
3686  * split the path's leaf in two, making sure there is at least data_size
3687  * available for the resulting leaf level of the path.
3688  */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)3689 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3690 				   struct btrfs_path *path,
3691 				   struct extent_buffer *l,
3692 				   struct extent_buffer *right,
3693 				   int slot, int mid, int nritems)
3694 {
3695 	struct btrfs_fs_info *fs_info = trans->fs_info;
3696 	int data_copy_size;
3697 	int rt_data_off;
3698 	int i;
3699 	int ret;
3700 	struct btrfs_disk_key disk_key;
3701 	struct btrfs_map_token token;
3702 
3703 	nritems = nritems - mid;
3704 	btrfs_set_header_nritems(right, nritems);
3705 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3706 
3707 	copy_leaf_items(right, l, 0, mid, nritems);
3708 
3709 	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3710 		       leaf_data_end(l), data_copy_size);
3711 
3712 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3713 
3714 	btrfs_init_map_token(&token, right);
3715 	for (i = 0; i < nritems; i++) {
3716 		u32 ioff;
3717 
3718 		ioff = btrfs_token_item_offset(&token, i);
3719 		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3720 	}
3721 
3722 	btrfs_set_header_nritems(l, mid);
3723 	btrfs_item_key(right, &disk_key, 0);
3724 	ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3725 	if (ret < 0)
3726 		return ret;
3727 
3728 	btrfs_mark_buffer_dirty(trans, right);
3729 	btrfs_mark_buffer_dirty(trans, l);
3730 	BUG_ON(path->slots[0] != slot);
3731 
3732 	if (mid <= slot) {
3733 		btrfs_tree_unlock(path->nodes[0]);
3734 		free_extent_buffer(path->nodes[0]);
3735 		path->nodes[0] = right;
3736 		path->slots[0] -= mid;
3737 		path->slots[1] += 1;
3738 	} else {
3739 		btrfs_tree_unlock(right);
3740 		free_extent_buffer(right);
3741 	}
3742 
3743 	BUG_ON(path->slots[0] < 0);
3744 
3745 	return 0;
3746 }
3747 
3748 /*
3749  * double splits happen when we need to insert a big item in the middle
3750  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3751  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3752  *          A                 B                 C
3753  *
3754  * We avoid this by trying to push the items on either side of our target
3755  * into the adjacent leaves.  If all goes well we can avoid the double split
3756  * completely.
3757  */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)3758 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3759 					  struct btrfs_root *root,
3760 					  struct btrfs_path *path,
3761 					  int data_size)
3762 {
3763 	int ret;
3764 	int progress = 0;
3765 	int slot;
3766 	u32 nritems;
3767 	int space_needed = data_size;
3768 
3769 	slot = path->slots[0];
3770 	if (slot < btrfs_header_nritems(path->nodes[0]))
3771 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3772 
3773 	/*
3774 	 * try to push all the items after our slot into the
3775 	 * right leaf
3776 	 */
3777 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3778 	if (ret < 0)
3779 		return ret;
3780 
3781 	if (ret == 0)
3782 		progress++;
3783 
3784 	nritems = btrfs_header_nritems(path->nodes[0]);
3785 	/*
3786 	 * our goal is to get our slot at the start or end of a leaf.  If
3787 	 * we've done so we're done
3788 	 */
3789 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3790 		return 0;
3791 
3792 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3793 		return 0;
3794 
3795 	/* try to push all the items before our slot into the next leaf */
3796 	slot = path->slots[0];
3797 	space_needed = data_size;
3798 	if (slot > 0)
3799 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3800 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3801 	if (ret < 0)
3802 		return ret;
3803 
3804 	if (ret == 0)
3805 		progress++;
3806 
3807 	if (progress)
3808 		return 0;
3809 	return 1;
3810 }
3811 
3812 /*
3813  * split the path's leaf in two, making sure there is at least data_size
3814  * available for the resulting leaf level of the path.
3815  *
3816  * returns 0 if all went well and < 0 on failure.
3817  */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)3818 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3819 			       struct btrfs_root *root,
3820 			       const struct btrfs_key *ins_key,
3821 			       struct btrfs_path *path, int data_size,
3822 			       int extend)
3823 {
3824 	struct btrfs_disk_key disk_key;
3825 	struct extent_buffer *l;
3826 	u32 nritems;
3827 	int mid;
3828 	int slot;
3829 	struct extent_buffer *right;
3830 	struct btrfs_fs_info *fs_info = root->fs_info;
3831 	int ret = 0;
3832 	int wret;
3833 	int split;
3834 	int num_doubles = 0;
3835 	int tried_avoid_double = 0;
3836 
3837 	l = path->nodes[0];
3838 	slot = path->slots[0];
3839 	if (extend && data_size + btrfs_item_size(l, slot) +
3840 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3841 		return -EOVERFLOW;
3842 
3843 	/* first try to make some room by pushing left and right */
3844 	if (data_size && path->nodes[1]) {
3845 		int space_needed = data_size;
3846 
3847 		if (slot < btrfs_header_nritems(l))
3848 			space_needed -= btrfs_leaf_free_space(l);
3849 
3850 		wret = push_leaf_right(trans, root, path, space_needed,
3851 				       space_needed, 0, 0);
3852 		if (wret < 0)
3853 			return wret;
3854 		if (wret) {
3855 			space_needed = data_size;
3856 			if (slot > 0)
3857 				space_needed -= btrfs_leaf_free_space(l);
3858 			wret = push_leaf_left(trans, root, path, space_needed,
3859 					      space_needed, 0, (u32)-1);
3860 			if (wret < 0)
3861 				return wret;
3862 		}
3863 		l = path->nodes[0];
3864 
3865 		/* did the pushes work? */
3866 		if (btrfs_leaf_free_space(l) >= data_size)
3867 			return 0;
3868 	}
3869 
3870 	if (!path->nodes[1]) {
3871 		ret = insert_new_root(trans, root, path, 1);
3872 		if (ret)
3873 			return ret;
3874 	}
3875 again:
3876 	split = 1;
3877 	l = path->nodes[0];
3878 	slot = path->slots[0];
3879 	nritems = btrfs_header_nritems(l);
3880 	mid = (nritems + 1) / 2;
3881 
3882 	if (mid <= slot) {
3883 		if (nritems == 1 ||
3884 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3885 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3886 			if (slot >= nritems) {
3887 				split = 0;
3888 			} else {
3889 				mid = slot;
3890 				if (mid != nritems &&
3891 				    leaf_space_used(l, mid, nritems - mid) +
3892 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3893 					if (data_size && !tried_avoid_double)
3894 						goto push_for_double;
3895 					split = 2;
3896 				}
3897 			}
3898 		}
3899 	} else {
3900 		if (leaf_space_used(l, 0, mid) + data_size >
3901 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3902 			if (!extend && data_size && slot == 0) {
3903 				split = 0;
3904 			} else if ((extend || !data_size) && slot == 0) {
3905 				mid = 1;
3906 			} else {
3907 				mid = slot;
3908 				if (mid != nritems &&
3909 				    leaf_space_used(l, mid, nritems - mid) +
3910 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3911 					if (data_size && !tried_avoid_double)
3912 						goto push_for_double;
3913 					split = 2;
3914 				}
3915 			}
3916 		}
3917 	}
3918 
3919 	if (split == 0)
3920 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3921 	else
3922 		btrfs_item_key(l, &disk_key, mid);
3923 
3924 	/*
3925 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3926 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3927 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3928 	 * out.  In the future we could add a
3929 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3930 	 * use BTRFS_NESTING_NEW_ROOT.
3931 	 */
3932 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3933 				       &disk_key, 0, l->start, 0,
3934 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3935 				       BTRFS_NESTING_SPLIT);
3936 	if (IS_ERR(right))
3937 		return PTR_ERR(right);
3938 
3939 	root_add_used(root, fs_info->nodesize);
3940 
3941 	if (split == 0) {
3942 		if (mid <= slot) {
3943 			btrfs_set_header_nritems(right, 0);
3944 			ret = insert_ptr(trans, path, &disk_key,
3945 					 right->start, path->slots[1] + 1, 1);
3946 			if (ret < 0) {
3947 				btrfs_tree_unlock(right);
3948 				free_extent_buffer(right);
3949 				return ret;
3950 			}
3951 			btrfs_tree_unlock(path->nodes[0]);
3952 			free_extent_buffer(path->nodes[0]);
3953 			path->nodes[0] = right;
3954 			path->slots[0] = 0;
3955 			path->slots[1] += 1;
3956 		} else {
3957 			btrfs_set_header_nritems(right, 0);
3958 			ret = insert_ptr(trans, path, &disk_key,
3959 					 right->start, path->slots[1], 1);
3960 			if (ret < 0) {
3961 				btrfs_tree_unlock(right);
3962 				free_extent_buffer(right);
3963 				return ret;
3964 			}
3965 			btrfs_tree_unlock(path->nodes[0]);
3966 			free_extent_buffer(path->nodes[0]);
3967 			path->nodes[0] = right;
3968 			path->slots[0] = 0;
3969 			if (path->slots[1] == 0)
3970 				fixup_low_keys(trans, path, &disk_key, 1);
3971 		}
3972 		/*
3973 		 * We create a new leaf 'right' for the required ins_len and
3974 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3975 		 * the content of ins_len to 'right'.
3976 		 */
3977 		return ret;
3978 	}
3979 
3980 	ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3981 	if (ret < 0) {
3982 		btrfs_tree_unlock(right);
3983 		free_extent_buffer(right);
3984 		return ret;
3985 	}
3986 
3987 	if (split == 2) {
3988 		BUG_ON(num_doubles != 0);
3989 		num_doubles++;
3990 		goto again;
3991 	}
3992 
3993 	return 0;
3994 
3995 push_for_double:
3996 	push_for_double_split(trans, root, path, data_size);
3997 	tried_avoid_double = 1;
3998 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3999 		return 0;
4000 	goto again;
4001 }
4002 
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)4003 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4004 					 struct btrfs_root *root,
4005 					 struct btrfs_path *path, int ins_len)
4006 {
4007 	struct btrfs_key key;
4008 	struct extent_buffer *leaf;
4009 	struct btrfs_file_extent_item *fi;
4010 	u64 extent_len = 0;
4011 	u32 item_size;
4012 	int ret;
4013 
4014 	leaf = path->nodes[0];
4015 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4016 
4017 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4018 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4019 
4020 	if (btrfs_leaf_free_space(leaf) >= ins_len)
4021 		return 0;
4022 
4023 	item_size = btrfs_item_size(leaf, path->slots[0]);
4024 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4025 		fi = btrfs_item_ptr(leaf, path->slots[0],
4026 				    struct btrfs_file_extent_item);
4027 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4028 	}
4029 	btrfs_release_path(path);
4030 
4031 	path->keep_locks = 1;
4032 	path->search_for_split = 1;
4033 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4034 	path->search_for_split = 0;
4035 	if (ret > 0)
4036 		ret = -EAGAIN;
4037 	if (ret < 0)
4038 		goto err;
4039 
4040 	ret = -EAGAIN;
4041 	leaf = path->nodes[0];
4042 	/* if our item isn't there, return now */
4043 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
4044 		goto err;
4045 
4046 	/* the leaf has  changed, it now has room.  return now */
4047 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4048 		goto err;
4049 
4050 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4051 		fi = btrfs_item_ptr(leaf, path->slots[0],
4052 				    struct btrfs_file_extent_item);
4053 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4054 			goto err;
4055 	}
4056 
4057 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4058 	if (ret)
4059 		goto err;
4060 
4061 	path->keep_locks = 0;
4062 	btrfs_unlock_up_safe(path, 1);
4063 	return 0;
4064 err:
4065 	path->keep_locks = 0;
4066 	return ret;
4067 }
4068 
split_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)4069 static noinline int split_item(struct btrfs_trans_handle *trans,
4070 			       struct btrfs_path *path,
4071 			       const struct btrfs_key *new_key,
4072 			       unsigned long split_offset)
4073 {
4074 	struct extent_buffer *leaf;
4075 	int orig_slot, slot;
4076 	char *buf;
4077 	u32 nritems;
4078 	u32 item_size;
4079 	u32 orig_offset;
4080 	struct btrfs_disk_key disk_key;
4081 
4082 	leaf = path->nodes[0];
4083 	/*
4084 	 * Shouldn't happen because the caller must have previously called
4085 	 * setup_leaf_for_split() to make room for the new item in the leaf.
4086 	 */
4087 	if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
4088 		return -ENOSPC;
4089 
4090 	orig_slot = path->slots[0];
4091 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
4092 	item_size = btrfs_item_size(leaf, path->slots[0]);
4093 
4094 	buf = kmalloc(item_size, GFP_NOFS);
4095 	if (!buf)
4096 		return -ENOMEM;
4097 
4098 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4099 			    path->slots[0]), item_size);
4100 
4101 	slot = path->slots[0] + 1;
4102 	nritems = btrfs_header_nritems(leaf);
4103 	if (slot != nritems) {
4104 		/* shift the items */
4105 		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
4106 	}
4107 
4108 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4109 	btrfs_set_item_key(leaf, &disk_key, slot);
4110 
4111 	btrfs_set_item_offset(leaf, slot, orig_offset);
4112 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
4113 
4114 	btrfs_set_item_offset(leaf, orig_slot,
4115 				 orig_offset + item_size - split_offset);
4116 	btrfs_set_item_size(leaf, orig_slot, split_offset);
4117 
4118 	btrfs_set_header_nritems(leaf, nritems + 1);
4119 
4120 	/* write the data for the start of the original item */
4121 	write_extent_buffer(leaf, buf,
4122 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4123 			    split_offset);
4124 
4125 	/* write the data for the new item */
4126 	write_extent_buffer(leaf, buf + split_offset,
4127 			    btrfs_item_ptr_offset(leaf, slot),
4128 			    item_size - split_offset);
4129 	btrfs_mark_buffer_dirty(trans, leaf);
4130 
4131 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4132 	kfree(buf);
4133 	return 0;
4134 }
4135 
4136 /*
4137  * This function splits a single item into two items,
4138  * giving 'new_key' to the new item and splitting the
4139  * old one at split_offset (from the start of the item).
4140  *
4141  * The path may be released by this operation.  After
4142  * the split, the path is pointing to the old item.  The
4143  * new item is going to be in the same node as the old one.
4144  *
4145  * Note, the item being split must be smaller enough to live alone on
4146  * a tree block with room for one extra struct btrfs_item
4147  *
4148  * This allows us to split the item in place, keeping a lock on the
4149  * leaf the entire time.
4150  */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)4151 int btrfs_split_item(struct btrfs_trans_handle *trans,
4152 		     struct btrfs_root *root,
4153 		     struct btrfs_path *path,
4154 		     const struct btrfs_key *new_key,
4155 		     unsigned long split_offset)
4156 {
4157 	int ret;
4158 	ret = setup_leaf_for_split(trans, root, path,
4159 				   sizeof(struct btrfs_item));
4160 	if (ret)
4161 		return ret;
4162 
4163 	ret = split_item(trans, path, new_key, split_offset);
4164 	return ret;
4165 }
4166 
4167 /*
4168  * make the item pointed to by the path smaller.  new_size indicates
4169  * how small to make it, and from_end tells us if we just chop bytes
4170  * off the end of the item or if we shift the item to chop bytes off
4171  * the front.
4172  */
btrfs_truncate_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,u32 new_size,int from_end)4173 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4174 			 struct btrfs_path *path, u32 new_size, int from_end)
4175 {
4176 	int slot;
4177 	struct extent_buffer *leaf;
4178 	u32 nritems;
4179 	unsigned int data_end;
4180 	unsigned int old_data_start;
4181 	unsigned int old_size;
4182 	unsigned int size_diff;
4183 	int i;
4184 	struct btrfs_map_token token;
4185 
4186 	leaf = path->nodes[0];
4187 	slot = path->slots[0];
4188 
4189 	old_size = btrfs_item_size(leaf, slot);
4190 	if (old_size == new_size)
4191 		return;
4192 
4193 	nritems = btrfs_header_nritems(leaf);
4194 	data_end = leaf_data_end(leaf);
4195 
4196 	old_data_start = btrfs_item_offset(leaf, slot);
4197 
4198 	size_diff = old_size - new_size;
4199 
4200 	BUG_ON(slot < 0);
4201 	BUG_ON(slot >= nritems);
4202 
4203 	/*
4204 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4205 	 */
4206 	/* first correct the data pointers */
4207 	btrfs_init_map_token(&token, leaf);
4208 	for (i = slot; i < nritems; i++) {
4209 		u32 ioff;
4210 
4211 		ioff = btrfs_token_item_offset(&token, i);
4212 		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4213 	}
4214 
4215 	/* shift the data */
4216 	if (from_end) {
4217 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4218 				  old_data_start + new_size - data_end);
4219 	} else {
4220 		struct btrfs_disk_key disk_key;
4221 		u64 offset;
4222 
4223 		btrfs_item_key(leaf, &disk_key, slot);
4224 
4225 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4226 			unsigned long ptr;
4227 			struct btrfs_file_extent_item *fi;
4228 
4229 			fi = btrfs_item_ptr(leaf, slot,
4230 					    struct btrfs_file_extent_item);
4231 			fi = (struct btrfs_file_extent_item *)(
4232 			     (unsigned long)fi - size_diff);
4233 
4234 			if (btrfs_file_extent_type(leaf, fi) ==
4235 			    BTRFS_FILE_EXTENT_INLINE) {
4236 				ptr = btrfs_item_ptr_offset(leaf, slot);
4237 				memmove_extent_buffer(leaf, ptr,
4238 				      (unsigned long)fi,
4239 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4240 			}
4241 		}
4242 
4243 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4244 				  old_data_start - data_end);
4245 
4246 		offset = btrfs_disk_key_offset(&disk_key);
4247 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4248 		btrfs_set_item_key(leaf, &disk_key, slot);
4249 		if (slot == 0)
4250 			fixup_low_keys(trans, path, &disk_key, 1);
4251 	}
4252 
4253 	btrfs_set_item_size(leaf, slot, new_size);
4254 	btrfs_mark_buffer_dirty(trans, leaf);
4255 
4256 	if (btrfs_leaf_free_space(leaf) < 0) {
4257 		btrfs_print_leaf(leaf);
4258 		BUG();
4259 	}
4260 }
4261 
4262 /*
4263  * make the item pointed to by the path bigger, data_size is the added size.
4264  */
btrfs_extend_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,u32 data_size)4265 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4266 		       struct btrfs_path *path, u32 data_size)
4267 {
4268 	int slot;
4269 	struct extent_buffer *leaf;
4270 	u32 nritems;
4271 	unsigned int data_end;
4272 	unsigned int old_data;
4273 	unsigned int old_size;
4274 	int i;
4275 	struct btrfs_map_token token;
4276 
4277 	leaf = path->nodes[0];
4278 
4279 	nritems = btrfs_header_nritems(leaf);
4280 	data_end = leaf_data_end(leaf);
4281 
4282 	if (btrfs_leaf_free_space(leaf) < data_size) {
4283 		btrfs_print_leaf(leaf);
4284 		BUG();
4285 	}
4286 	slot = path->slots[0];
4287 	old_data = btrfs_item_data_end(leaf, slot);
4288 
4289 	BUG_ON(slot < 0);
4290 	if (slot >= nritems) {
4291 		btrfs_print_leaf(leaf);
4292 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4293 			   slot, nritems);
4294 		BUG();
4295 	}
4296 
4297 	/*
4298 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4299 	 */
4300 	/* first correct the data pointers */
4301 	btrfs_init_map_token(&token, leaf);
4302 	for (i = slot; i < nritems; i++) {
4303 		u32 ioff;
4304 
4305 		ioff = btrfs_token_item_offset(&token, i);
4306 		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4307 	}
4308 
4309 	/* shift the data */
4310 	memmove_leaf_data(leaf, data_end - data_size, data_end,
4311 			  old_data - data_end);
4312 
4313 	data_end = old_data;
4314 	old_size = btrfs_item_size(leaf, slot);
4315 	btrfs_set_item_size(leaf, slot, old_size + data_size);
4316 	btrfs_mark_buffer_dirty(trans, leaf);
4317 
4318 	if (btrfs_leaf_free_space(leaf) < 0) {
4319 		btrfs_print_leaf(leaf);
4320 		BUG();
4321 	}
4322 }
4323 
4324 /*
4325  * Make space in the node before inserting one or more items.
4326  *
4327  * @trans:	transaction handle
4328  * @root:	root we are inserting items to
4329  * @path:	points to the leaf/slot where we are going to insert new items
4330  * @batch:      information about the batch of items to insert
4331  *
4332  * Main purpose is to save stack depth by doing the bulk of the work in a
4333  * function that doesn't call btrfs_search_slot
4334  */
setup_items_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4335 static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4336 				   struct btrfs_root *root, struct btrfs_path *path,
4337 				   const struct btrfs_item_batch *batch)
4338 {
4339 	struct btrfs_fs_info *fs_info = root->fs_info;
4340 	int i;
4341 	u32 nritems;
4342 	unsigned int data_end;
4343 	struct btrfs_disk_key disk_key;
4344 	struct extent_buffer *leaf;
4345 	int slot;
4346 	struct btrfs_map_token token;
4347 	u32 total_size;
4348 
4349 	/*
4350 	 * Before anything else, update keys in the parent and other ancestors
4351 	 * if needed, then release the write locks on them, so that other tasks
4352 	 * can use them while we modify the leaf.
4353 	 */
4354 	if (path->slots[0] == 0) {
4355 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4356 		fixup_low_keys(trans, path, &disk_key, 1);
4357 	}
4358 	btrfs_unlock_up_safe(path, 1);
4359 
4360 	leaf = path->nodes[0];
4361 	slot = path->slots[0];
4362 
4363 	nritems = btrfs_header_nritems(leaf);
4364 	data_end = leaf_data_end(leaf);
4365 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4366 
4367 	if (btrfs_leaf_free_space(leaf) < total_size) {
4368 		btrfs_print_leaf(leaf);
4369 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4370 			   total_size, btrfs_leaf_free_space(leaf));
4371 		BUG();
4372 	}
4373 
4374 	btrfs_init_map_token(&token, leaf);
4375 	if (slot != nritems) {
4376 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4377 
4378 		if (old_data < data_end) {
4379 			btrfs_print_leaf(leaf);
4380 			btrfs_crit(fs_info,
4381 		"item at slot %d with data offset %u beyond data end of leaf %u",
4382 				   slot, old_data, data_end);
4383 			BUG();
4384 		}
4385 		/*
4386 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4387 		 */
4388 		/* first correct the data pointers */
4389 		for (i = slot; i < nritems; i++) {
4390 			u32 ioff;
4391 
4392 			ioff = btrfs_token_item_offset(&token, i);
4393 			btrfs_set_token_item_offset(&token, i,
4394 						       ioff - batch->total_data_size);
4395 		}
4396 		/* shift the items */
4397 		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4398 
4399 		/* shift the data */
4400 		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4401 				  data_end, old_data - data_end);
4402 		data_end = old_data;
4403 	}
4404 
4405 	/* setup the item for the new data */
4406 	for (i = 0; i < batch->nr; i++) {
4407 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4408 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4409 		data_end -= batch->data_sizes[i];
4410 		btrfs_set_token_item_offset(&token, slot + i, data_end);
4411 		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4412 	}
4413 
4414 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4415 	btrfs_mark_buffer_dirty(trans, leaf);
4416 
4417 	if (btrfs_leaf_free_space(leaf) < 0) {
4418 		btrfs_print_leaf(leaf);
4419 		BUG();
4420 	}
4421 }
4422 
4423 /*
4424  * Insert a new item into a leaf.
4425  *
4426  * @trans:     Transaction handle.
4427  * @root:      The root of the btree.
4428  * @path:      A path pointing to the target leaf and slot.
4429  * @key:       The key of the new item.
4430  * @data_size: The size of the data associated with the new key.
4431  */
btrfs_setup_item_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)4432 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4433 				 struct btrfs_root *root,
4434 				 struct btrfs_path *path,
4435 				 const struct btrfs_key *key,
4436 				 u32 data_size)
4437 {
4438 	struct btrfs_item_batch batch;
4439 
4440 	batch.keys = key;
4441 	batch.data_sizes = &data_size;
4442 	batch.total_data_size = data_size;
4443 	batch.nr = 1;
4444 
4445 	setup_items_for_insert(trans, root, path, &batch);
4446 }
4447 
4448 /*
4449  * Given a key and some data, insert items into the tree.
4450  * This does all the path init required, making room in the tree if needed.
4451  */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4452 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4453 			    struct btrfs_root *root,
4454 			    struct btrfs_path *path,
4455 			    const struct btrfs_item_batch *batch)
4456 {
4457 	int ret = 0;
4458 	int slot;
4459 	u32 total_size;
4460 
4461 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4462 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4463 	if (ret == 0)
4464 		return -EEXIST;
4465 	if (ret < 0)
4466 		return ret;
4467 
4468 	slot = path->slots[0];
4469 	BUG_ON(slot < 0);
4470 
4471 	setup_items_for_insert(trans, root, path, batch);
4472 	return 0;
4473 }
4474 
4475 /*
4476  * Given a key and some data, insert an item into the tree.
4477  * This does all the path init required, making room in the tree if needed.
4478  */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * cpu_key,void * data,u32 data_size)4479 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4480 		      const struct btrfs_key *cpu_key, void *data,
4481 		      u32 data_size)
4482 {
4483 	int ret = 0;
4484 	struct btrfs_path *path;
4485 	struct extent_buffer *leaf;
4486 	unsigned long ptr;
4487 
4488 	path = btrfs_alloc_path();
4489 	if (!path)
4490 		return -ENOMEM;
4491 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4492 	if (!ret) {
4493 		leaf = path->nodes[0];
4494 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4495 		write_extent_buffer(leaf, data, ptr, data_size);
4496 		btrfs_mark_buffer_dirty(trans, leaf);
4497 	}
4498 	btrfs_free_path(path);
4499 	return ret;
4500 }
4501 
4502 /*
4503  * This function duplicates an item, giving 'new_key' to the new item.
4504  * It guarantees both items live in the same tree leaf and the new item is
4505  * contiguous with the original item.
4506  *
4507  * This allows us to split a file extent in place, keeping a lock on the leaf
4508  * the entire time.
4509  */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key)4510 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4511 			 struct btrfs_root *root,
4512 			 struct btrfs_path *path,
4513 			 const struct btrfs_key *new_key)
4514 {
4515 	struct extent_buffer *leaf;
4516 	int ret;
4517 	u32 item_size;
4518 
4519 	leaf = path->nodes[0];
4520 	item_size = btrfs_item_size(leaf, path->slots[0]);
4521 	ret = setup_leaf_for_split(trans, root, path,
4522 				   item_size + sizeof(struct btrfs_item));
4523 	if (ret)
4524 		return ret;
4525 
4526 	path->slots[0]++;
4527 	btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4528 	leaf = path->nodes[0];
4529 	memcpy_extent_buffer(leaf,
4530 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4531 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4532 			     item_size);
4533 	return 0;
4534 }
4535 
4536 /*
4537  * delete the pointer from a given node.
4538  *
4539  * the tree should have been previously balanced so the deletion does not
4540  * empty a node.
4541  *
4542  * This is exported for use inside btrfs-progs, don't un-export it.
4543  */
btrfs_del_ptr(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4544 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4545 		  struct btrfs_path *path, int level, int slot)
4546 {
4547 	struct extent_buffer *parent = path->nodes[level];
4548 	u32 nritems;
4549 	int ret;
4550 
4551 	nritems = btrfs_header_nritems(parent);
4552 	if (slot != nritems - 1) {
4553 		if (level) {
4554 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4555 					slot + 1, nritems - slot - 1);
4556 			if (ret < 0) {
4557 				btrfs_abort_transaction(trans, ret);
4558 				return ret;
4559 			}
4560 		}
4561 		memmove_extent_buffer(parent,
4562 			      btrfs_node_key_ptr_offset(parent, slot),
4563 			      btrfs_node_key_ptr_offset(parent, slot + 1),
4564 			      sizeof(struct btrfs_key_ptr) *
4565 			      (nritems - slot - 1));
4566 	} else if (level) {
4567 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4568 						    BTRFS_MOD_LOG_KEY_REMOVE);
4569 		if (ret < 0) {
4570 			btrfs_abort_transaction(trans, ret);
4571 			return ret;
4572 		}
4573 	}
4574 
4575 	nritems--;
4576 	btrfs_set_header_nritems(parent, nritems);
4577 	if (nritems == 0 && parent == root->node) {
4578 		BUG_ON(btrfs_header_level(root->node) != 1);
4579 		/* just turn the root into a leaf and break */
4580 		btrfs_set_header_level(root->node, 0);
4581 	} else if (slot == 0) {
4582 		struct btrfs_disk_key disk_key;
4583 
4584 		btrfs_node_key(parent, &disk_key, 0);
4585 		fixup_low_keys(trans, path, &disk_key, level + 1);
4586 	}
4587 	btrfs_mark_buffer_dirty(trans, parent);
4588 	return 0;
4589 }
4590 
4591 /*
4592  * a helper function to delete the leaf pointed to by path->slots[1] and
4593  * path->nodes[1].
4594  *
4595  * This deletes the pointer in path->nodes[1] and frees the leaf
4596  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4597  *
4598  * The path must have already been setup for deleting the leaf, including
4599  * all the proper balancing.  path->nodes[1] must be locked.
4600  */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4601 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4602 				   struct btrfs_root *root,
4603 				   struct btrfs_path *path,
4604 				   struct extent_buffer *leaf)
4605 {
4606 	int ret;
4607 
4608 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4609 	ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4610 	if (ret < 0)
4611 		return ret;
4612 
4613 	/*
4614 	 * btrfs_free_extent is expensive, we want to make sure we
4615 	 * aren't holding any locks when we call it
4616 	 */
4617 	btrfs_unlock_up_safe(path, 0);
4618 
4619 	root_sub_used(root, leaf->len);
4620 
4621 	atomic_inc(&leaf->refs);
4622 	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4623 	free_extent_buffer_stale(leaf);
4624 	if (ret < 0)
4625 		btrfs_abort_transaction(trans, ret);
4626 
4627 	return ret;
4628 }
4629 /*
4630  * delete the item at the leaf level in path.  If that empties
4631  * the leaf, remove it from the tree
4632  */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4633 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4634 		    struct btrfs_path *path, int slot, int nr)
4635 {
4636 	struct btrfs_fs_info *fs_info = root->fs_info;
4637 	struct extent_buffer *leaf;
4638 	int ret = 0;
4639 	int wret;
4640 	u32 nritems;
4641 
4642 	leaf = path->nodes[0];
4643 	nritems = btrfs_header_nritems(leaf);
4644 
4645 	if (slot + nr != nritems) {
4646 		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4647 		const int data_end = leaf_data_end(leaf);
4648 		struct btrfs_map_token token;
4649 		u32 dsize = 0;
4650 		int i;
4651 
4652 		for (i = 0; i < nr; i++)
4653 			dsize += btrfs_item_size(leaf, slot + i);
4654 
4655 		memmove_leaf_data(leaf, data_end + dsize, data_end,
4656 				  last_off - data_end);
4657 
4658 		btrfs_init_map_token(&token, leaf);
4659 		for (i = slot + nr; i < nritems; i++) {
4660 			u32 ioff;
4661 
4662 			ioff = btrfs_token_item_offset(&token, i);
4663 			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4664 		}
4665 
4666 		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4667 	}
4668 	btrfs_set_header_nritems(leaf, nritems - nr);
4669 	nritems -= nr;
4670 
4671 	/* delete the leaf if we've emptied it */
4672 	if (nritems == 0) {
4673 		if (leaf == root->node) {
4674 			btrfs_set_header_level(leaf, 0);
4675 		} else {
4676 			btrfs_clear_buffer_dirty(trans, leaf);
4677 			ret = btrfs_del_leaf(trans, root, path, leaf);
4678 			if (ret < 0)
4679 				return ret;
4680 		}
4681 	} else {
4682 		int used = leaf_space_used(leaf, 0, nritems);
4683 		if (slot == 0) {
4684 			struct btrfs_disk_key disk_key;
4685 
4686 			btrfs_item_key(leaf, &disk_key, 0);
4687 			fixup_low_keys(trans, path, &disk_key, 1);
4688 		}
4689 
4690 		/*
4691 		 * Try to delete the leaf if it is mostly empty. We do this by
4692 		 * trying to move all its items into its left and right neighbours.
4693 		 * If we can't move all the items, then we don't delete it - it's
4694 		 * not ideal, but future insertions might fill the leaf with more
4695 		 * items, or items from other leaves might be moved later into our
4696 		 * leaf due to deletions on those leaves.
4697 		 */
4698 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4699 			u32 min_push_space;
4700 
4701 			/* push_leaf_left fixes the path.
4702 			 * make sure the path still points to our leaf
4703 			 * for possible call to btrfs_del_ptr below
4704 			 */
4705 			slot = path->slots[1];
4706 			atomic_inc(&leaf->refs);
4707 			/*
4708 			 * We want to be able to at least push one item to the
4709 			 * left neighbour leaf, and that's the first item.
4710 			 */
4711 			min_push_space = sizeof(struct btrfs_item) +
4712 				btrfs_item_size(leaf, 0);
4713 			wret = push_leaf_left(trans, root, path, 0,
4714 					      min_push_space, 1, (u32)-1);
4715 			if (wret < 0 && wret != -ENOSPC)
4716 				ret = wret;
4717 
4718 			if (path->nodes[0] == leaf &&
4719 			    btrfs_header_nritems(leaf)) {
4720 				/*
4721 				 * If we were not able to push all items from our
4722 				 * leaf to its left neighbour, then attempt to
4723 				 * either push all the remaining items to the
4724 				 * right neighbour or none. There's no advantage
4725 				 * in pushing only some items, instead of all, as
4726 				 * it's pointless to end up with a leaf having
4727 				 * too few items while the neighbours can be full
4728 				 * or nearly full.
4729 				 */
4730 				nritems = btrfs_header_nritems(leaf);
4731 				min_push_space = leaf_space_used(leaf, 0, nritems);
4732 				wret = push_leaf_right(trans, root, path, 0,
4733 						       min_push_space, 1, 0);
4734 				if (wret < 0 && wret != -ENOSPC)
4735 					ret = wret;
4736 			}
4737 
4738 			if (btrfs_header_nritems(leaf) == 0) {
4739 				path->slots[1] = slot;
4740 				ret = btrfs_del_leaf(trans, root, path, leaf);
4741 				if (ret < 0)
4742 					return ret;
4743 				free_extent_buffer(leaf);
4744 				ret = 0;
4745 			} else {
4746 				/* if we're still in the path, make sure
4747 				 * we're dirty.  Otherwise, one of the
4748 				 * push_leaf functions must have already
4749 				 * dirtied this buffer
4750 				 */
4751 				if (path->nodes[0] == leaf)
4752 					btrfs_mark_buffer_dirty(trans, leaf);
4753 				free_extent_buffer(leaf);
4754 			}
4755 		} else {
4756 			btrfs_mark_buffer_dirty(trans, leaf);
4757 		}
4758 	}
4759 	return ret;
4760 }
4761 
4762 /*
4763  * A helper function to walk down the tree starting at min_key, and looking
4764  * for nodes or leaves that are have a minimum transaction id.
4765  * This is used by the btree defrag code, and tree logging
4766  *
4767  * This does not cow, but it does stuff the starting key it finds back
4768  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4769  * key and get a writable path.
4770  *
4771  * This honors path->lowest_level to prevent descent past a given level
4772  * of the tree.
4773  *
4774  * min_trans indicates the oldest transaction that you are interested
4775  * in walking through.  Any nodes or leaves older than min_trans are
4776  * skipped over (without reading them).
4777  *
4778  * returns zero if something useful was found, < 0 on error and 1 if there
4779  * was nothing in the tree that matched the search criteria.
4780  */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)4781 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4782 			 struct btrfs_path *path,
4783 			 u64 min_trans)
4784 {
4785 	struct extent_buffer *cur;
4786 	struct btrfs_key found_key;
4787 	int slot;
4788 	int sret;
4789 	u32 nritems;
4790 	int level;
4791 	int ret = 1;
4792 	int keep_locks = path->keep_locks;
4793 
4794 	ASSERT(!path->nowait);
4795 	path->keep_locks = 1;
4796 again:
4797 	cur = btrfs_read_lock_root_node(root);
4798 	level = btrfs_header_level(cur);
4799 	WARN_ON(path->nodes[level]);
4800 	path->nodes[level] = cur;
4801 	path->locks[level] = BTRFS_READ_LOCK;
4802 
4803 	if (btrfs_header_generation(cur) < min_trans) {
4804 		ret = 1;
4805 		goto out;
4806 	}
4807 	while (1) {
4808 		nritems = btrfs_header_nritems(cur);
4809 		level = btrfs_header_level(cur);
4810 		sret = btrfs_bin_search(cur, 0, min_key, &slot);
4811 		if (sret < 0) {
4812 			ret = sret;
4813 			goto out;
4814 		}
4815 
4816 		/* at the lowest level, we're done, setup the path and exit */
4817 		if (level == path->lowest_level) {
4818 			if (slot >= nritems)
4819 				goto find_next_key;
4820 			ret = 0;
4821 			path->slots[level] = slot;
4822 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4823 			goto out;
4824 		}
4825 		if (sret && slot > 0)
4826 			slot--;
4827 		/*
4828 		 * check this node pointer against the min_trans parameters.
4829 		 * If it is too old, skip to the next one.
4830 		 */
4831 		while (slot < nritems) {
4832 			u64 gen;
4833 
4834 			gen = btrfs_node_ptr_generation(cur, slot);
4835 			if (gen < min_trans) {
4836 				slot++;
4837 				continue;
4838 			}
4839 			break;
4840 		}
4841 find_next_key:
4842 		/*
4843 		 * we didn't find a candidate key in this node, walk forward
4844 		 * and find another one
4845 		 */
4846 		if (slot >= nritems) {
4847 			path->slots[level] = slot;
4848 			sret = btrfs_find_next_key(root, path, min_key, level,
4849 						  min_trans);
4850 			if (sret == 0) {
4851 				btrfs_release_path(path);
4852 				goto again;
4853 			} else {
4854 				goto out;
4855 			}
4856 		}
4857 		/* save our key for returning back */
4858 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4859 		path->slots[level] = slot;
4860 		if (level == path->lowest_level) {
4861 			ret = 0;
4862 			goto out;
4863 		}
4864 		cur = btrfs_read_node_slot(cur, slot);
4865 		if (IS_ERR(cur)) {
4866 			ret = PTR_ERR(cur);
4867 			goto out;
4868 		}
4869 
4870 		btrfs_tree_read_lock(cur);
4871 
4872 		path->locks[level - 1] = BTRFS_READ_LOCK;
4873 		path->nodes[level - 1] = cur;
4874 		unlock_up(path, level, 1, 0, NULL);
4875 	}
4876 out:
4877 	path->keep_locks = keep_locks;
4878 	if (ret == 0) {
4879 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4880 		memcpy(min_key, &found_key, sizeof(found_key));
4881 	}
4882 	return ret;
4883 }
4884 
4885 /*
4886  * this is similar to btrfs_next_leaf, but does not try to preserve
4887  * and fixup the path.  It looks for and returns the next key in the
4888  * tree based on the current path and the min_trans parameters.
4889  *
4890  * 0 is returned if another key is found, < 0 if there are any errors
4891  * and 1 is returned if there are no higher keys in the tree
4892  *
4893  * path->keep_locks should be set to 1 on the search made before
4894  * calling this function.
4895  */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)4896 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4897 			struct btrfs_key *key, int level, u64 min_trans)
4898 {
4899 	int slot;
4900 	struct extent_buffer *c;
4901 
4902 	WARN_ON(!path->keep_locks && !path->skip_locking);
4903 	while (level < BTRFS_MAX_LEVEL) {
4904 		if (!path->nodes[level])
4905 			return 1;
4906 
4907 		slot = path->slots[level] + 1;
4908 		c = path->nodes[level];
4909 next:
4910 		if (slot >= btrfs_header_nritems(c)) {
4911 			int ret;
4912 			int orig_lowest;
4913 			struct btrfs_key cur_key;
4914 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4915 			    !path->nodes[level + 1])
4916 				return 1;
4917 
4918 			if (path->locks[level + 1] || path->skip_locking) {
4919 				level++;
4920 				continue;
4921 			}
4922 
4923 			slot = btrfs_header_nritems(c) - 1;
4924 			if (level == 0)
4925 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4926 			else
4927 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4928 
4929 			orig_lowest = path->lowest_level;
4930 			btrfs_release_path(path);
4931 			path->lowest_level = level;
4932 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4933 						0, 0);
4934 			path->lowest_level = orig_lowest;
4935 			if (ret < 0)
4936 				return ret;
4937 
4938 			c = path->nodes[level];
4939 			slot = path->slots[level];
4940 			if (ret == 0)
4941 				slot++;
4942 			goto next;
4943 		}
4944 
4945 		if (level == 0)
4946 			btrfs_item_key_to_cpu(c, key, slot);
4947 		else {
4948 			u64 gen = btrfs_node_ptr_generation(c, slot);
4949 
4950 			if (gen < min_trans) {
4951 				slot++;
4952 				goto next;
4953 			}
4954 			btrfs_node_key_to_cpu(c, key, slot);
4955 		}
4956 		return 0;
4957 	}
4958 	return 1;
4959 }
4960 
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)4961 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4962 			u64 time_seq)
4963 {
4964 	int slot;
4965 	int level;
4966 	struct extent_buffer *c;
4967 	struct extent_buffer *next;
4968 	struct btrfs_fs_info *fs_info = root->fs_info;
4969 	struct btrfs_key key;
4970 	bool need_commit_sem = false;
4971 	u32 nritems;
4972 	int ret;
4973 	int i;
4974 
4975 	/*
4976 	 * The nowait semantics are used only for write paths, where we don't
4977 	 * use the tree mod log and sequence numbers.
4978 	 */
4979 	if (time_seq)
4980 		ASSERT(!path->nowait);
4981 
4982 	nritems = btrfs_header_nritems(path->nodes[0]);
4983 	if (nritems == 0)
4984 		return 1;
4985 
4986 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4987 again:
4988 	level = 1;
4989 	next = NULL;
4990 	btrfs_release_path(path);
4991 
4992 	path->keep_locks = 1;
4993 
4994 	if (time_seq) {
4995 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4996 	} else {
4997 		if (path->need_commit_sem) {
4998 			path->need_commit_sem = 0;
4999 			need_commit_sem = true;
5000 			if (path->nowait) {
5001 				if (!down_read_trylock(&fs_info->commit_root_sem)) {
5002 					ret = -EAGAIN;
5003 					goto done;
5004 				}
5005 			} else {
5006 				down_read(&fs_info->commit_root_sem);
5007 			}
5008 		}
5009 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5010 	}
5011 	path->keep_locks = 0;
5012 
5013 	if (ret < 0)
5014 		goto done;
5015 
5016 	nritems = btrfs_header_nritems(path->nodes[0]);
5017 	/*
5018 	 * by releasing the path above we dropped all our locks.  A balance
5019 	 * could have added more items next to the key that used to be
5020 	 * at the very end of the block.  So, check again here and
5021 	 * advance the path if there are now more items available.
5022 	 */
5023 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5024 		if (ret == 0)
5025 			path->slots[0]++;
5026 		ret = 0;
5027 		goto done;
5028 	}
5029 	/*
5030 	 * So the above check misses one case:
5031 	 * - after releasing the path above, someone has removed the item that
5032 	 *   used to be at the very end of the block, and balance between leafs
5033 	 *   gets another one with bigger key.offset to replace it.
5034 	 *
5035 	 * This one should be returned as well, or we can get leaf corruption
5036 	 * later(esp. in __btrfs_drop_extents()).
5037 	 *
5038 	 * And a bit more explanation about this check,
5039 	 * with ret > 0, the key isn't found, the path points to the slot
5040 	 * where it should be inserted, so the path->slots[0] item must be the
5041 	 * bigger one.
5042 	 */
5043 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5044 		ret = 0;
5045 		goto done;
5046 	}
5047 
5048 	while (level < BTRFS_MAX_LEVEL) {
5049 		if (!path->nodes[level]) {
5050 			ret = 1;
5051 			goto done;
5052 		}
5053 
5054 		slot = path->slots[level] + 1;
5055 		c = path->nodes[level];
5056 		if (slot >= btrfs_header_nritems(c)) {
5057 			level++;
5058 			if (level == BTRFS_MAX_LEVEL) {
5059 				ret = 1;
5060 				goto done;
5061 			}
5062 			continue;
5063 		}
5064 
5065 
5066 		/*
5067 		 * Our current level is where we're going to start from, and to
5068 		 * make sure lockdep doesn't complain we need to drop our locks
5069 		 * and nodes from 0 to our current level.
5070 		 */
5071 		for (i = 0; i < level; i++) {
5072 			if (path->locks[level]) {
5073 				btrfs_tree_read_unlock(path->nodes[i]);
5074 				path->locks[i] = 0;
5075 			}
5076 			free_extent_buffer(path->nodes[i]);
5077 			path->nodes[i] = NULL;
5078 		}
5079 
5080 		next = c;
5081 		ret = read_block_for_search(root, path, &next, level,
5082 					    slot, &key);
5083 		if (ret == -EAGAIN && !path->nowait)
5084 			goto again;
5085 
5086 		if (ret < 0) {
5087 			btrfs_release_path(path);
5088 			goto done;
5089 		}
5090 
5091 		if (!path->skip_locking) {
5092 			ret = btrfs_try_tree_read_lock(next);
5093 			if (!ret && path->nowait) {
5094 				ret = -EAGAIN;
5095 				goto done;
5096 			}
5097 			if (!ret && time_seq) {
5098 				/*
5099 				 * If we don't get the lock, we may be racing
5100 				 * with push_leaf_left, holding that lock while
5101 				 * itself waiting for the leaf we've currently
5102 				 * locked. To solve this situation, we give up
5103 				 * on our lock and cycle.
5104 				 */
5105 				free_extent_buffer(next);
5106 				btrfs_release_path(path);
5107 				cond_resched();
5108 				goto again;
5109 			}
5110 			if (!ret)
5111 				btrfs_tree_read_lock(next);
5112 		}
5113 		break;
5114 	}
5115 	path->slots[level] = slot;
5116 	while (1) {
5117 		level--;
5118 		path->nodes[level] = next;
5119 		path->slots[level] = 0;
5120 		if (!path->skip_locking)
5121 			path->locks[level] = BTRFS_READ_LOCK;
5122 		if (!level)
5123 			break;
5124 
5125 		ret = read_block_for_search(root, path, &next, level,
5126 					    0, &key);
5127 		if (ret == -EAGAIN && !path->nowait)
5128 			goto again;
5129 
5130 		if (ret < 0) {
5131 			btrfs_release_path(path);
5132 			goto done;
5133 		}
5134 
5135 		if (!path->skip_locking) {
5136 			if (path->nowait) {
5137 				if (!btrfs_try_tree_read_lock(next)) {
5138 					ret = -EAGAIN;
5139 					goto done;
5140 				}
5141 			} else {
5142 				btrfs_tree_read_lock(next);
5143 			}
5144 		}
5145 	}
5146 	ret = 0;
5147 done:
5148 	unlock_up(path, 0, 1, 0, NULL);
5149 	if (need_commit_sem) {
5150 		int ret2;
5151 
5152 		path->need_commit_sem = 1;
5153 		ret2 = finish_need_commit_sem_search(path);
5154 		up_read(&fs_info->commit_root_sem);
5155 		if (ret2)
5156 			ret = ret2;
5157 	}
5158 
5159 	return ret;
5160 }
5161 
btrfs_next_old_item(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)5162 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5163 {
5164 	path->slots[0]++;
5165 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5166 		return btrfs_next_old_leaf(root, path, time_seq);
5167 	return 0;
5168 }
5169 
5170 /*
5171  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5172  * searching until it gets past min_objectid or finds an item of 'type'
5173  *
5174  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5175  */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)5176 int btrfs_previous_item(struct btrfs_root *root,
5177 			struct btrfs_path *path, u64 min_objectid,
5178 			int type)
5179 {
5180 	struct btrfs_key found_key;
5181 	struct extent_buffer *leaf;
5182 	u32 nritems;
5183 	int ret;
5184 
5185 	while (1) {
5186 		if (path->slots[0] == 0) {
5187 			ret = btrfs_prev_leaf(root, path);
5188 			if (ret != 0)
5189 				return ret;
5190 		} else {
5191 			path->slots[0]--;
5192 		}
5193 		leaf = path->nodes[0];
5194 		nritems = btrfs_header_nritems(leaf);
5195 		if (nritems == 0)
5196 			return 1;
5197 		if (path->slots[0] == nritems)
5198 			path->slots[0]--;
5199 
5200 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5201 		if (found_key.objectid < min_objectid)
5202 			break;
5203 		if (found_key.type == type)
5204 			return 0;
5205 		if (found_key.objectid == min_objectid &&
5206 		    found_key.type < type)
5207 			break;
5208 	}
5209 	return 1;
5210 }
5211 
5212 /*
5213  * search in extent tree to find a previous Metadata/Data extent item with
5214  * min objecitd.
5215  *
5216  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5217  */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)5218 int btrfs_previous_extent_item(struct btrfs_root *root,
5219 			struct btrfs_path *path, u64 min_objectid)
5220 {
5221 	struct btrfs_key found_key;
5222 	struct extent_buffer *leaf;
5223 	u32 nritems;
5224 	int ret;
5225 
5226 	while (1) {
5227 		if (path->slots[0] == 0) {
5228 			ret = btrfs_prev_leaf(root, path);
5229 			if (ret != 0)
5230 				return ret;
5231 		} else {
5232 			path->slots[0]--;
5233 		}
5234 		leaf = path->nodes[0];
5235 		nritems = btrfs_header_nritems(leaf);
5236 		if (nritems == 0)
5237 			return 1;
5238 		if (path->slots[0] == nritems)
5239 			path->slots[0]--;
5240 
5241 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5242 		if (found_key.objectid < min_objectid)
5243 			break;
5244 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5245 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5246 			return 0;
5247 		if (found_key.objectid == min_objectid &&
5248 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5249 			break;
5250 	}
5251 	return 1;
5252 }
5253 
btrfs_ctree_init(void)5254 int __init btrfs_ctree_init(void)
5255 {
5256 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
5257 			sizeof(struct btrfs_path), 0,
5258 			SLAB_MEM_SPREAD, NULL);
5259 	if (!btrfs_path_cachep)
5260 		return -ENOMEM;
5261 	return 0;
5262 }
5263 
btrfs_ctree_exit(void)5264 void __cold btrfs_ctree_exit(void)
5265 {
5266 	kmem_cache_destroy(btrfs_path_cachep);
5267 }
5268