xref: /openbmc/linux/net/core/filter.c (revision ed4543328f7108e1047b83b96ca7f7208747d930)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <linux/un.h>
85 #include <net/xdp_sock_drv.h>
86 
87 static const struct bpf_func_proto *
88 bpf_sk_base_func_proto(enum bpf_func_id func_id);
89 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)90 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
91 {
92 	if (in_compat_syscall()) {
93 		struct compat_sock_fprog f32;
94 
95 		if (len != sizeof(f32))
96 			return -EINVAL;
97 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
98 			return -EFAULT;
99 		memset(dst, 0, sizeof(*dst));
100 		dst->len = f32.len;
101 		dst->filter = compat_ptr(f32.filter);
102 	} else {
103 		if (len != sizeof(*dst))
104 			return -EINVAL;
105 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
106 			return -EFAULT;
107 	}
108 
109 	return 0;
110 }
111 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
112 
113 /**
114  *	sk_filter_trim_cap - run a packet through a socket filter
115  *	@sk: sock associated with &sk_buff
116  *	@skb: buffer to filter
117  *	@cap: limit on how short the eBPF program may trim the packet
118  *
119  * Run the eBPF program and then cut skb->data to correct size returned by
120  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
121  * than pkt_len we keep whole skb->data. This is the socket level
122  * wrapper to bpf_prog_run. It returns 0 if the packet should
123  * be accepted or -EPERM if the packet should be tossed.
124  *
125  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)126 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
127 {
128 	int err;
129 	struct sk_filter *filter;
130 
131 	/*
132 	 * If the skb was allocated from pfmemalloc reserves, only
133 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
134 	 * helping free memory
135 	 */
136 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
137 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
138 		return -ENOMEM;
139 	}
140 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
141 	if (err)
142 		return err;
143 
144 	err = security_sock_rcv_skb(sk, skb);
145 	if (err)
146 		return err;
147 
148 	rcu_read_lock();
149 	filter = rcu_dereference(sk->sk_filter);
150 	if (filter) {
151 		struct sock *save_sk = skb->sk;
152 		unsigned int pkt_len;
153 
154 		skb->sk = sk;
155 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
156 		skb->sk = save_sk;
157 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
158 	}
159 	rcu_read_unlock();
160 
161 	return err;
162 }
163 EXPORT_SYMBOL(sk_filter_trim_cap);
164 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)165 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
166 {
167 	return skb_get_poff(skb);
168 }
169 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)170 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
171 {
172 	struct nlattr *nla;
173 
174 	if (skb_is_nonlinear(skb))
175 		return 0;
176 
177 	if (skb->len < sizeof(struct nlattr))
178 		return 0;
179 
180 	if (a > skb->len - sizeof(struct nlattr))
181 		return 0;
182 
183 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
184 	if (nla)
185 		return (void *) nla - (void *) skb->data;
186 
187 	return 0;
188 }
189 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)190 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
191 {
192 	struct nlattr *nla;
193 
194 	if (skb_is_nonlinear(skb))
195 		return 0;
196 
197 	if (skb->len < sizeof(struct nlattr))
198 		return 0;
199 
200 	if (a > skb->len - sizeof(struct nlattr))
201 		return 0;
202 
203 	nla = (struct nlattr *) &skb->data[a];
204 	if (nla->nla_len > skb->len - a)
205 		return 0;
206 
207 	nla = nla_find_nested(nla, x);
208 	if (nla)
209 		return (void *) nla - (void *) skb->data;
210 
211 	return 0;
212 }
213 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)214 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
215 	   data, int, headlen, int, offset)
216 {
217 	u8 tmp, *ptr;
218 	const int len = sizeof(tmp);
219 
220 	if (offset >= 0) {
221 		if (headlen - offset >= len)
222 			return *(u8 *)(data + offset);
223 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
224 			return tmp;
225 	} else {
226 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
227 		if (likely(ptr))
228 			return *(u8 *)ptr;
229 	}
230 
231 	return -EFAULT;
232 }
233 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)234 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
235 	   int, offset)
236 {
237 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
238 					 offset);
239 }
240 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)241 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
242 	   data, int, headlen, int, offset)
243 {
244 	__be16 tmp, *ptr;
245 	const int len = sizeof(tmp);
246 
247 	if (offset >= 0) {
248 		if (headlen - offset >= len)
249 			return get_unaligned_be16(data + offset);
250 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
251 			return be16_to_cpu(tmp);
252 	} else {
253 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
254 		if (likely(ptr))
255 			return get_unaligned_be16(ptr);
256 	}
257 
258 	return -EFAULT;
259 }
260 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)261 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
262 	   int, offset)
263 {
264 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
265 					  offset);
266 }
267 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)268 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
269 	   data, int, headlen, int, offset)
270 {
271 	__be32 tmp, *ptr;
272 	const int len = sizeof(tmp);
273 
274 	if (likely(offset >= 0)) {
275 		if (headlen - offset >= len)
276 			return get_unaligned_be32(data + offset);
277 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
278 			return be32_to_cpu(tmp);
279 	} else {
280 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
281 		if (likely(ptr))
282 			return get_unaligned_be32(ptr);
283 	}
284 
285 	return -EFAULT;
286 }
287 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)288 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
289 	   int, offset)
290 {
291 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
292 					  offset);
293 }
294 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)295 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
296 			      struct bpf_insn *insn_buf)
297 {
298 	struct bpf_insn *insn = insn_buf;
299 
300 	switch (skb_field) {
301 	case SKF_AD_MARK:
302 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
303 
304 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
305 				      offsetof(struct sk_buff, mark));
306 		break;
307 
308 	case SKF_AD_PKTTYPE:
309 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
310 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
311 #ifdef __BIG_ENDIAN_BITFIELD
312 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
313 #endif
314 		break;
315 
316 	case SKF_AD_QUEUE:
317 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
318 
319 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
320 				      offsetof(struct sk_buff, queue_mapping));
321 		break;
322 
323 	case SKF_AD_VLAN_TAG:
324 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
325 
326 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
327 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
328 				      offsetof(struct sk_buff, vlan_tci));
329 		break;
330 	case SKF_AD_VLAN_TAG_PRESENT:
331 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
332 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
333 				      offsetof(struct sk_buff, vlan_all));
334 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
335 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
336 		break;
337 	}
338 
339 	return insn - insn_buf;
340 }
341 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)342 static bool convert_bpf_extensions(struct sock_filter *fp,
343 				   struct bpf_insn **insnp)
344 {
345 	struct bpf_insn *insn = *insnp;
346 	u32 cnt;
347 
348 	switch (fp->k) {
349 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
350 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
351 
352 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
353 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
354 				      offsetof(struct sk_buff, protocol));
355 		/* A = ntohs(A) [emitting a nop or swap16] */
356 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
357 		break;
358 
359 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
360 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
361 		insn += cnt - 1;
362 		break;
363 
364 	case SKF_AD_OFF + SKF_AD_IFINDEX:
365 	case SKF_AD_OFF + SKF_AD_HATYPE:
366 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
367 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
368 
369 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
370 				      BPF_REG_TMP, BPF_REG_CTX,
371 				      offsetof(struct sk_buff, dev));
372 		/* if (tmp != 0) goto pc + 1 */
373 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
374 		*insn++ = BPF_EXIT_INSN();
375 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
376 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
377 					    offsetof(struct net_device, ifindex));
378 		else
379 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
380 					    offsetof(struct net_device, type));
381 		break;
382 
383 	case SKF_AD_OFF + SKF_AD_MARK:
384 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
385 		insn += cnt - 1;
386 		break;
387 
388 	case SKF_AD_OFF + SKF_AD_RXHASH:
389 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
390 
391 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
392 				    offsetof(struct sk_buff, hash));
393 		break;
394 
395 	case SKF_AD_OFF + SKF_AD_QUEUE:
396 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
397 		insn += cnt - 1;
398 		break;
399 
400 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
401 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
402 					 BPF_REG_A, BPF_REG_CTX, insn);
403 		insn += cnt - 1;
404 		break;
405 
406 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
407 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
408 					 BPF_REG_A, BPF_REG_CTX, insn);
409 		insn += cnt - 1;
410 		break;
411 
412 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
413 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
414 
415 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
416 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
417 				      offsetof(struct sk_buff, vlan_proto));
418 		/* A = ntohs(A) [emitting a nop or swap16] */
419 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
420 		break;
421 
422 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
423 	case SKF_AD_OFF + SKF_AD_NLATTR:
424 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
425 	case SKF_AD_OFF + SKF_AD_CPU:
426 	case SKF_AD_OFF + SKF_AD_RANDOM:
427 		/* arg1 = CTX */
428 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
429 		/* arg2 = A */
430 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
431 		/* arg3 = X */
432 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
433 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
434 		switch (fp->k) {
435 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
436 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
437 			break;
438 		case SKF_AD_OFF + SKF_AD_NLATTR:
439 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
440 			break;
441 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
442 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
443 			break;
444 		case SKF_AD_OFF + SKF_AD_CPU:
445 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
446 			break;
447 		case SKF_AD_OFF + SKF_AD_RANDOM:
448 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
449 			bpf_user_rnd_init_once();
450 			break;
451 		}
452 		break;
453 
454 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
455 		/* A ^= X */
456 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
457 		break;
458 
459 	default:
460 		/* This is just a dummy call to avoid letting the compiler
461 		 * evict __bpf_call_base() as an optimization. Placed here
462 		 * where no-one bothers.
463 		 */
464 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
465 		return false;
466 	}
467 
468 	*insnp = insn;
469 	return true;
470 }
471 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)472 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
473 {
474 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
475 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
476 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
477 		      BPF_SIZE(fp->code) == BPF_W;
478 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
479 	const int ip_align = NET_IP_ALIGN;
480 	struct bpf_insn *insn = *insnp;
481 	int offset = fp->k;
482 
483 	if (!indirect &&
484 	    ((unaligned_ok && offset >= 0) ||
485 	     (!unaligned_ok && offset >= 0 &&
486 	      offset + ip_align >= 0 &&
487 	      offset + ip_align % size == 0))) {
488 		bool ldx_off_ok = offset <= S16_MAX;
489 
490 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
491 		if (offset)
492 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
493 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
494 				      size, 2 + endian + (!ldx_off_ok * 2));
495 		if (ldx_off_ok) {
496 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497 					      BPF_REG_D, offset);
498 		} else {
499 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
500 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
501 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
502 					      BPF_REG_TMP, 0);
503 		}
504 		if (endian)
505 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
506 		*insn++ = BPF_JMP_A(8);
507 	}
508 
509 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
510 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
511 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
512 	if (!indirect) {
513 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
514 	} else {
515 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
516 		if (fp->k)
517 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
518 	}
519 
520 	switch (BPF_SIZE(fp->code)) {
521 	case BPF_B:
522 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
523 		break;
524 	case BPF_H:
525 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
526 		break;
527 	case BPF_W:
528 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
529 		break;
530 	default:
531 		return false;
532 	}
533 
534 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
535 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
536 	*insn   = BPF_EXIT_INSN();
537 
538 	*insnp = insn;
539 	return true;
540 }
541 
542 /**
543  *	bpf_convert_filter - convert filter program
544  *	@prog: the user passed filter program
545  *	@len: the length of the user passed filter program
546  *	@new_prog: allocated 'struct bpf_prog' or NULL
547  *	@new_len: pointer to store length of converted program
548  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
549  *
550  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
551  * style extended BPF (eBPF).
552  * Conversion workflow:
553  *
554  * 1) First pass for calculating the new program length:
555  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
556  *
557  * 2) 2nd pass to remap in two passes: 1st pass finds new
558  *    jump offsets, 2nd pass remapping:
559  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
560  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)561 static int bpf_convert_filter(struct sock_filter *prog, int len,
562 			      struct bpf_prog *new_prog, int *new_len,
563 			      bool *seen_ld_abs)
564 {
565 	int new_flen = 0, pass = 0, target, i, stack_off;
566 	struct bpf_insn *new_insn, *first_insn = NULL;
567 	struct sock_filter *fp;
568 	int *addrs = NULL;
569 	u8 bpf_src;
570 
571 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
572 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
573 
574 	if (len <= 0 || len > BPF_MAXINSNS)
575 		return -EINVAL;
576 
577 	if (new_prog) {
578 		first_insn = new_prog->insnsi;
579 		addrs = kcalloc(len, sizeof(*addrs),
580 				GFP_KERNEL | __GFP_NOWARN);
581 		if (!addrs)
582 			return -ENOMEM;
583 	}
584 
585 do_pass:
586 	new_insn = first_insn;
587 	fp = prog;
588 
589 	/* Classic BPF related prologue emission. */
590 	if (new_prog) {
591 		/* Classic BPF expects A and X to be reset first. These need
592 		 * to be guaranteed to be the first two instructions.
593 		 */
594 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
595 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
596 
597 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
598 		 * In eBPF case it's done by the compiler, here we need to
599 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
600 		 */
601 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
602 		if (*seen_ld_abs) {
603 			/* For packet access in classic BPF, cache skb->data
604 			 * in callee-saved BPF R8 and skb->len - skb->data_len
605 			 * (headlen) in BPF R9. Since classic BPF is read-only
606 			 * on CTX, we only need to cache it once.
607 			 */
608 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
609 						  BPF_REG_D, BPF_REG_CTX,
610 						  offsetof(struct sk_buff, data));
611 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
612 						  offsetof(struct sk_buff, len));
613 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
614 						  offsetof(struct sk_buff, data_len));
615 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
616 		}
617 	} else {
618 		new_insn += 3;
619 	}
620 
621 	for (i = 0; i < len; fp++, i++) {
622 		struct bpf_insn tmp_insns[32] = { };
623 		struct bpf_insn *insn = tmp_insns;
624 
625 		if (addrs)
626 			addrs[i] = new_insn - first_insn;
627 
628 		switch (fp->code) {
629 		/* All arithmetic insns and skb loads map as-is. */
630 		case BPF_ALU | BPF_ADD | BPF_X:
631 		case BPF_ALU | BPF_ADD | BPF_K:
632 		case BPF_ALU | BPF_SUB | BPF_X:
633 		case BPF_ALU | BPF_SUB | BPF_K:
634 		case BPF_ALU | BPF_AND | BPF_X:
635 		case BPF_ALU | BPF_AND | BPF_K:
636 		case BPF_ALU | BPF_OR | BPF_X:
637 		case BPF_ALU | BPF_OR | BPF_K:
638 		case BPF_ALU | BPF_LSH | BPF_X:
639 		case BPF_ALU | BPF_LSH | BPF_K:
640 		case BPF_ALU | BPF_RSH | BPF_X:
641 		case BPF_ALU | BPF_RSH | BPF_K:
642 		case BPF_ALU | BPF_XOR | BPF_X:
643 		case BPF_ALU | BPF_XOR | BPF_K:
644 		case BPF_ALU | BPF_MUL | BPF_X:
645 		case BPF_ALU | BPF_MUL | BPF_K:
646 		case BPF_ALU | BPF_DIV | BPF_X:
647 		case BPF_ALU | BPF_DIV | BPF_K:
648 		case BPF_ALU | BPF_MOD | BPF_X:
649 		case BPF_ALU | BPF_MOD | BPF_K:
650 		case BPF_ALU | BPF_NEG:
651 		case BPF_LD | BPF_ABS | BPF_W:
652 		case BPF_LD | BPF_ABS | BPF_H:
653 		case BPF_LD | BPF_ABS | BPF_B:
654 		case BPF_LD | BPF_IND | BPF_W:
655 		case BPF_LD | BPF_IND | BPF_H:
656 		case BPF_LD | BPF_IND | BPF_B:
657 			/* Check for overloaded BPF extension and
658 			 * directly convert it if found, otherwise
659 			 * just move on with mapping.
660 			 */
661 			if (BPF_CLASS(fp->code) == BPF_LD &&
662 			    BPF_MODE(fp->code) == BPF_ABS &&
663 			    convert_bpf_extensions(fp, &insn))
664 				break;
665 			if (BPF_CLASS(fp->code) == BPF_LD &&
666 			    convert_bpf_ld_abs(fp, &insn)) {
667 				*seen_ld_abs = true;
668 				break;
669 			}
670 
671 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
672 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
673 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
674 				/* Error with exception code on div/mod by 0.
675 				 * For cBPF programs, this was always return 0.
676 				 */
677 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
678 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
679 				*insn++ = BPF_EXIT_INSN();
680 			}
681 
682 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
683 			break;
684 
685 		/* Jump transformation cannot use BPF block macros
686 		 * everywhere as offset calculation and target updates
687 		 * require a bit more work than the rest, i.e. jump
688 		 * opcodes map as-is, but offsets need adjustment.
689 		 */
690 
691 #define BPF_EMIT_JMP							\
692 	do {								\
693 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
694 		s32 off;						\
695 									\
696 		if (target >= len || target < 0)			\
697 			goto err;					\
698 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
699 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
700 		off -= insn - tmp_insns;				\
701 		/* Reject anything not fitting into insn->off. */	\
702 		if (off < off_min || off > off_max)			\
703 			goto err;					\
704 		insn->off = off;					\
705 	} while (0)
706 
707 		case BPF_JMP | BPF_JA:
708 			target = i + fp->k + 1;
709 			insn->code = fp->code;
710 			BPF_EMIT_JMP;
711 			break;
712 
713 		case BPF_JMP | BPF_JEQ | BPF_K:
714 		case BPF_JMP | BPF_JEQ | BPF_X:
715 		case BPF_JMP | BPF_JSET | BPF_K:
716 		case BPF_JMP | BPF_JSET | BPF_X:
717 		case BPF_JMP | BPF_JGT | BPF_K:
718 		case BPF_JMP | BPF_JGT | BPF_X:
719 		case BPF_JMP | BPF_JGE | BPF_K:
720 		case BPF_JMP | BPF_JGE | BPF_X:
721 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
722 				/* BPF immediates are signed, zero extend
723 				 * immediate into tmp register and use it
724 				 * in compare insn.
725 				 */
726 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
727 
728 				insn->dst_reg = BPF_REG_A;
729 				insn->src_reg = BPF_REG_TMP;
730 				bpf_src = BPF_X;
731 			} else {
732 				insn->dst_reg = BPF_REG_A;
733 				insn->imm = fp->k;
734 				bpf_src = BPF_SRC(fp->code);
735 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
736 			}
737 
738 			/* Common case where 'jump_false' is next insn. */
739 			if (fp->jf == 0) {
740 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
741 				target = i + fp->jt + 1;
742 				BPF_EMIT_JMP;
743 				break;
744 			}
745 
746 			/* Convert some jumps when 'jump_true' is next insn. */
747 			if (fp->jt == 0) {
748 				switch (BPF_OP(fp->code)) {
749 				case BPF_JEQ:
750 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
751 					break;
752 				case BPF_JGT:
753 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
754 					break;
755 				case BPF_JGE:
756 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
757 					break;
758 				default:
759 					goto jmp_rest;
760 				}
761 
762 				target = i + fp->jf + 1;
763 				BPF_EMIT_JMP;
764 				break;
765 			}
766 jmp_rest:
767 			/* Other jumps are mapped into two insns: Jxx and JA. */
768 			target = i + fp->jt + 1;
769 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
770 			BPF_EMIT_JMP;
771 			insn++;
772 
773 			insn->code = BPF_JMP | BPF_JA;
774 			target = i + fp->jf + 1;
775 			BPF_EMIT_JMP;
776 			break;
777 
778 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
779 		case BPF_LDX | BPF_MSH | BPF_B: {
780 			struct sock_filter tmp = {
781 				.code	= BPF_LD | BPF_ABS | BPF_B,
782 				.k	= fp->k,
783 			};
784 
785 			*seen_ld_abs = true;
786 
787 			/* X = A */
788 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
789 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
790 			convert_bpf_ld_abs(&tmp, &insn);
791 			insn++;
792 			/* A &= 0xf */
793 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
794 			/* A <<= 2 */
795 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
796 			/* tmp = X */
797 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
798 			/* X = A */
799 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
800 			/* A = tmp */
801 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
802 			break;
803 		}
804 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
805 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
806 		 */
807 		case BPF_RET | BPF_A:
808 		case BPF_RET | BPF_K:
809 			if (BPF_RVAL(fp->code) == BPF_K)
810 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
811 							0, fp->k);
812 			*insn = BPF_EXIT_INSN();
813 			break;
814 
815 		/* Store to stack. */
816 		case BPF_ST:
817 		case BPF_STX:
818 			stack_off = fp->k * 4  + 4;
819 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
820 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
821 					    -stack_off);
822 			/* check_load_and_stores() verifies that classic BPF can
823 			 * load from stack only after write, so tracking
824 			 * stack_depth for ST|STX insns is enough
825 			 */
826 			if (new_prog && new_prog->aux->stack_depth < stack_off)
827 				new_prog->aux->stack_depth = stack_off;
828 			break;
829 
830 		/* Load from stack. */
831 		case BPF_LD | BPF_MEM:
832 		case BPF_LDX | BPF_MEM:
833 			stack_off = fp->k * 4  + 4;
834 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
835 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
836 					    -stack_off);
837 			break;
838 
839 		/* A = K or X = K */
840 		case BPF_LD | BPF_IMM:
841 		case BPF_LDX | BPF_IMM:
842 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
843 					      BPF_REG_A : BPF_REG_X, fp->k);
844 			break;
845 
846 		/* X = A */
847 		case BPF_MISC | BPF_TAX:
848 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
849 			break;
850 
851 		/* A = X */
852 		case BPF_MISC | BPF_TXA:
853 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
854 			break;
855 
856 		/* A = skb->len or X = skb->len */
857 		case BPF_LD | BPF_W | BPF_LEN:
858 		case BPF_LDX | BPF_W | BPF_LEN:
859 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
860 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
861 					    offsetof(struct sk_buff, len));
862 			break;
863 
864 		/* Access seccomp_data fields. */
865 		case BPF_LDX | BPF_ABS | BPF_W:
866 			/* A = *(u32 *) (ctx + K) */
867 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
868 			break;
869 
870 		/* Unknown instruction. */
871 		default:
872 			goto err;
873 		}
874 
875 		insn++;
876 		if (new_prog)
877 			memcpy(new_insn, tmp_insns,
878 			       sizeof(*insn) * (insn - tmp_insns));
879 		new_insn += insn - tmp_insns;
880 	}
881 
882 	if (!new_prog) {
883 		/* Only calculating new length. */
884 		*new_len = new_insn - first_insn;
885 		if (*seen_ld_abs)
886 			*new_len += 4; /* Prologue bits. */
887 		return 0;
888 	}
889 
890 	pass++;
891 	if (new_flen != new_insn - first_insn) {
892 		new_flen = new_insn - first_insn;
893 		if (pass > 2)
894 			goto err;
895 		goto do_pass;
896 	}
897 
898 	kfree(addrs);
899 	BUG_ON(*new_len != new_flen);
900 	return 0;
901 err:
902 	kfree(addrs);
903 	return -EINVAL;
904 }
905 
906 /* Security:
907  *
908  * As we dont want to clear mem[] array for each packet going through
909  * __bpf_prog_run(), we check that filter loaded by user never try to read
910  * a cell if not previously written, and we check all branches to be sure
911  * a malicious user doesn't try to abuse us.
912  */
check_load_and_stores(const struct sock_filter * filter,int flen)913 static int check_load_and_stores(const struct sock_filter *filter, int flen)
914 {
915 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
916 	int pc, ret = 0;
917 
918 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
919 
920 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
921 	if (!masks)
922 		return -ENOMEM;
923 
924 	memset(masks, 0xff, flen * sizeof(*masks));
925 
926 	for (pc = 0; pc < flen; pc++) {
927 		memvalid &= masks[pc];
928 
929 		switch (filter[pc].code) {
930 		case BPF_ST:
931 		case BPF_STX:
932 			memvalid |= (1 << filter[pc].k);
933 			break;
934 		case BPF_LD | BPF_MEM:
935 		case BPF_LDX | BPF_MEM:
936 			if (!(memvalid & (1 << filter[pc].k))) {
937 				ret = -EINVAL;
938 				goto error;
939 			}
940 			break;
941 		case BPF_JMP | BPF_JA:
942 			/* A jump must set masks on target */
943 			masks[pc + 1 + filter[pc].k] &= memvalid;
944 			memvalid = ~0;
945 			break;
946 		case BPF_JMP | BPF_JEQ | BPF_K:
947 		case BPF_JMP | BPF_JEQ | BPF_X:
948 		case BPF_JMP | BPF_JGE | BPF_K:
949 		case BPF_JMP | BPF_JGE | BPF_X:
950 		case BPF_JMP | BPF_JGT | BPF_K:
951 		case BPF_JMP | BPF_JGT | BPF_X:
952 		case BPF_JMP | BPF_JSET | BPF_K:
953 		case BPF_JMP | BPF_JSET | BPF_X:
954 			/* A jump must set masks on targets */
955 			masks[pc + 1 + filter[pc].jt] &= memvalid;
956 			masks[pc + 1 + filter[pc].jf] &= memvalid;
957 			memvalid = ~0;
958 			break;
959 		}
960 	}
961 error:
962 	kfree(masks);
963 	return ret;
964 }
965 
chk_code_allowed(u16 code_to_probe)966 static bool chk_code_allowed(u16 code_to_probe)
967 {
968 	static const bool codes[] = {
969 		/* 32 bit ALU operations */
970 		[BPF_ALU | BPF_ADD | BPF_K] = true,
971 		[BPF_ALU | BPF_ADD | BPF_X] = true,
972 		[BPF_ALU | BPF_SUB | BPF_K] = true,
973 		[BPF_ALU | BPF_SUB | BPF_X] = true,
974 		[BPF_ALU | BPF_MUL | BPF_K] = true,
975 		[BPF_ALU | BPF_MUL | BPF_X] = true,
976 		[BPF_ALU | BPF_DIV | BPF_K] = true,
977 		[BPF_ALU | BPF_DIV | BPF_X] = true,
978 		[BPF_ALU | BPF_MOD | BPF_K] = true,
979 		[BPF_ALU | BPF_MOD | BPF_X] = true,
980 		[BPF_ALU | BPF_AND | BPF_K] = true,
981 		[BPF_ALU | BPF_AND | BPF_X] = true,
982 		[BPF_ALU | BPF_OR | BPF_K] = true,
983 		[BPF_ALU | BPF_OR | BPF_X] = true,
984 		[BPF_ALU | BPF_XOR | BPF_K] = true,
985 		[BPF_ALU | BPF_XOR | BPF_X] = true,
986 		[BPF_ALU | BPF_LSH | BPF_K] = true,
987 		[BPF_ALU | BPF_LSH | BPF_X] = true,
988 		[BPF_ALU | BPF_RSH | BPF_K] = true,
989 		[BPF_ALU | BPF_RSH | BPF_X] = true,
990 		[BPF_ALU | BPF_NEG] = true,
991 		/* Load instructions */
992 		[BPF_LD | BPF_W | BPF_ABS] = true,
993 		[BPF_LD | BPF_H | BPF_ABS] = true,
994 		[BPF_LD | BPF_B | BPF_ABS] = true,
995 		[BPF_LD | BPF_W | BPF_LEN] = true,
996 		[BPF_LD | BPF_W | BPF_IND] = true,
997 		[BPF_LD | BPF_H | BPF_IND] = true,
998 		[BPF_LD | BPF_B | BPF_IND] = true,
999 		[BPF_LD | BPF_IMM] = true,
1000 		[BPF_LD | BPF_MEM] = true,
1001 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1002 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1003 		[BPF_LDX | BPF_IMM] = true,
1004 		[BPF_LDX | BPF_MEM] = true,
1005 		/* Store instructions */
1006 		[BPF_ST] = true,
1007 		[BPF_STX] = true,
1008 		/* Misc instructions */
1009 		[BPF_MISC | BPF_TAX] = true,
1010 		[BPF_MISC | BPF_TXA] = true,
1011 		/* Return instructions */
1012 		[BPF_RET | BPF_K] = true,
1013 		[BPF_RET | BPF_A] = true,
1014 		/* Jump instructions */
1015 		[BPF_JMP | BPF_JA] = true,
1016 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1017 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1018 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1019 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1020 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1021 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1022 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1023 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1024 	};
1025 
1026 	if (code_to_probe >= ARRAY_SIZE(codes))
1027 		return false;
1028 
1029 	return codes[code_to_probe];
1030 }
1031 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1032 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1033 				unsigned int flen)
1034 {
1035 	if (filter == NULL)
1036 		return false;
1037 	if (flen == 0 || flen > BPF_MAXINSNS)
1038 		return false;
1039 
1040 	return true;
1041 }
1042 
1043 /**
1044  *	bpf_check_classic - verify socket filter code
1045  *	@filter: filter to verify
1046  *	@flen: length of filter
1047  *
1048  * Check the user's filter code. If we let some ugly
1049  * filter code slip through kaboom! The filter must contain
1050  * no references or jumps that are out of range, no illegal
1051  * instructions, and must end with a RET instruction.
1052  *
1053  * All jumps are forward as they are not signed.
1054  *
1055  * Returns 0 if the rule set is legal or -EINVAL if not.
1056  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1057 static int bpf_check_classic(const struct sock_filter *filter,
1058 			     unsigned int flen)
1059 {
1060 	bool anc_found;
1061 	int pc;
1062 
1063 	/* Check the filter code now */
1064 	for (pc = 0; pc < flen; pc++) {
1065 		const struct sock_filter *ftest = &filter[pc];
1066 
1067 		/* May we actually operate on this code? */
1068 		if (!chk_code_allowed(ftest->code))
1069 			return -EINVAL;
1070 
1071 		/* Some instructions need special checks */
1072 		switch (ftest->code) {
1073 		case BPF_ALU | BPF_DIV | BPF_K:
1074 		case BPF_ALU | BPF_MOD | BPF_K:
1075 			/* Check for division by zero */
1076 			if (ftest->k == 0)
1077 				return -EINVAL;
1078 			break;
1079 		case BPF_ALU | BPF_LSH | BPF_K:
1080 		case BPF_ALU | BPF_RSH | BPF_K:
1081 			if (ftest->k >= 32)
1082 				return -EINVAL;
1083 			break;
1084 		case BPF_LD | BPF_MEM:
1085 		case BPF_LDX | BPF_MEM:
1086 		case BPF_ST:
1087 		case BPF_STX:
1088 			/* Check for invalid memory addresses */
1089 			if (ftest->k >= BPF_MEMWORDS)
1090 				return -EINVAL;
1091 			break;
1092 		case BPF_JMP | BPF_JA:
1093 			/* Note, the large ftest->k might cause loops.
1094 			 * Compare this with conditional jumps below,
1095 			 * where offsets are limited. --ANK (981016)
1096 			 */
1097 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1098 				return -EINVAL;
1099 			break;
1100 		case BPF_JMP | BPF_JEQ | BPF_K:
1101 		case BPF_JMP | BPF_JEQ | BPF_X:
1102 		case BPF_JMP | BPF_JGE | BPF_K:
1103 		case BPF_JMP | BPF_JGE | BPF_X:
1104 		case BPF_JMP | BPF_JGT | BPF_K:
1105 		case BPF_JMP | BPF_JGT | BPF_X:
1106 		case BPF_JMP | BPF_JSET | BPF_K:
1107 		case BPF_JMP | BPF_JSET | BPF_X:
1108 			/* Both conditionals must be safe */
1109 			if (pc + ftest->jt + 1 >= flen ||
1110 			    pc + ftest->jf + 1 >= flen)
1111 				return -EINVAL;
1112 			break;
1113 		case BPF_LD | BPF_W | BPF_ABS:
1114 		case BPF_LD | BPF_H | BPF_ABS:
1115 		case BPF_LD | BPF_B | BPF_ABS:
1116 			anc_found = false;
1117 			if (bpf_anc_helper(ftest) & BPF_ANC)
1118 				anc_found = true;
1119 			/* Ancillary operation unknown or unsupported */
1120 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1121 				return -EINVAL;
1122 		}
1123 	}
1124 
1125 	/* Last instruction must be a RET code */
1126 	switch (filter[flen - 1].code) {
1127 	case BPF_RET | BPF_K:
1128 	case BPF_RET | BPF_A:
1129 		return check_load_and_stores(filter, flen);
1130 	}
1131 
1132 	return -EINVAL;
1133 }
1134 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1135 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1136 				      const struct sock_fprog *fprog)
1137 {
1138 	unsigned int fsize = bpf_classic_proglen(fprog);
1139 	struct sock_fprog_kern *fkprog;
1140 
1141 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1142 	if (!fp->orig_prog)
1143 		return -ENOMEM;
1144 
1145 	fkprog = fp->orig_prog;
1146 	fkprog->len = fprog->len;
1147 
1148 	fkprog->filter = kmemdup(fp->insns, fsize,
1149 				 GFP_KERNEL | __GFP_NOWARN);
1150 	if (!fkprog->filter) {
1151 		kfree(fp->orig_prog);
1152 		return -ENOMEM;
1153 	}
1154 
1155 	return 0;
1156 }
1157 
bpf_release_orig_filter(struct bpf_prog * fp)1158 static void bpf_release_orig_filter(struct bpf_prog *fp)
1159 {
1160 	struct sock_fprog_kern *fprog = fp->orig_prog;
1161 
1162 	if (fprog) {
1163 		kfree(fprog->filter);
1164 		kfree(fprog);
1165 	}
1166 }
1167 
__bpf_prog_release(struct bpf_prog * prog)1168 static void __bpf_prog_release(struct bpf_prog *prog)
1169 {
1170 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1171 		bpf_prog_put(prog);
1172 	} else {
1173 		bpf_release_orig_filter(prog);
1174 		bpf_prog_free(prog);
1175 	}
1176 }
1177 
__sk_filter_release(struct sk_filter * fp)1178 static void __sk_filter_release(struct sk_filter *fp)
1179 {
1180 	__bpf_prog_release(fp->prog);
1181 	kfree(fp);
1182 }
1183 
1184 /**
1185  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1186  *	@rcu: rcu_head that contains the sk_filter to free
1187  */
sk_filter_release_rcu(struct rcu_head * rcu)1188 static void sk_filter_release_rcu(struct rcu_head *rcu)
1189 {
1190 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1191 
1192 	__sk_filter_release(fp);
1193 }
1194 
1195 /**
1196  *	sk_filter_release - release a socket filter
1197  *	@fp: filter to remove
1198  *
1199  *	Remove a filter from a socket and release its resources.
1200  */
sk_filter_release(struct sk_filter * fp)1201 static void sk_filter_release(struct sk_filter *fp)
1202 {
1203 	if (refcount_dec_and_test(&fp->refcnt))
1204 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1205 }
1206 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1207 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1208 {
1209 	u32 filter_size = bpf_prog_size(fp->prog->len);
1210 
1211 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1212 	sk_filter_release(fp);
1213 }
1214 
1215 /* try to charge the socket memory if there is space available
1216  * return true on success
1217  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1218 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1219 {
1220 	u32 filter_size = bpf_prog_size(fp->prog->len);
1221 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1222 
1223 	/* same check as in sock_kmalloc() */
1224 	if (filter_size <= optmem_max &&
1225 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1226 		atomic_add(filter_size, &sk->sk_omem_alloc);
1227 		return true;
1228 	}
1229 	return false;
1230 }
1231 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1232 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1233 {
1234 	if (!refcount_inc_not_zero(&fp->refcnt))
1235 		return false;
1236 
1237 	if (!__sk_filter_charge(sk, fp)) {
1238 		sk_filter_release(fp);
1239 		return false;
1240 	}
1241 	return true;
1242 }
1243 
bpf_migrate_filter(struct bpf_prog * fp)1244 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1245 {
1246 	struct sock_filter *old_prog;
1247 	struct bpf_prog *old_fp;
1248 	int err, new_len, old_len = fp->len;
1249 	bool seen_ld_abs = false;
1250 
1251 	/* We are free to overwrite insns et al right here as it won't be used at
1252 	 * this point in time anymore internally after the migration to the eBPF
1253 	 * instruction representation.
1254 	 */
1255 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1256 		     sizeof(struct bpf_insn));
1257 
1258 	/* Conversion cannot happen on overlapping memory areas,
1259 	 * so we need to keep the user BPF around until the 2nd
1260 	 * pass. At this time, the user BPF is stored in fp->insns.
1261 	 */
1262 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1263 			   GFP_KERNEL | __GFP_NOWARN);
1264 	if (!old_prog) {
1265 		err = -ENOMEM;
1266 		goto out_err;
1267 	}
1268 
1269 	/* 1st pass: calculate the new program length. */
1270 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1271 				 &seen_ld_abs);
1272 	if (err)
1273 		goto out_err_free;
1274 
1275 	/* Expand fp for appending the new filter representation. */
1276 	old_fp = fp;
1277 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1278 	if (!fp) {
1279 		/* The old_fp is still around in case we couldn't
1280 		 * allocate new memory, so uncharge on that one.
1281 		 */
1282 		fp = old_fp;
1283 		err = -ENOMEM;
1284 		goto out_err_free;
1285 	}
1286 
1287 	fp->len = new_len;
1288 
1289 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1290 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1291 				 &seen_ld_abs);
1292 	if (err)
1293 		/* 2nd bpf_convert_filter() can fail only if it fails
1294 		 * to allocate memory, remapping must succeed. Note,
1295 		 * that at this time old_fp has already been released
1296 		 * by krealloc().
1297 		 */
1298 		goto out_err_free;
1299 
1300 	fp = bpf_prog_select_runtime(fp, &err);
1301 	if (err)
1302 		goto out_err_free;
1303 
1304 	kfree(old_prog);
1305 	return fp;
1306 
1307 out_err_free:
1308 	kfree(old_prog);
1309 out_err:
1310 	__bpf_prog_release(fp);
1311 	return ERR_PTR(err);
1312 }
1313 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1314 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1315 					   bpf_aux_classic_check_t trans)
1316 {
1317 	int err;
1318 
1319 	fp->bpf_func = NULL;
1320 	fp->jited = 0;
1321 
1322 	err = bpf_check_classic(fp->insns, fp->len);
1323 	if (err) {
1324 		__bpf_prog_release(fp);
1325 		return ERR_PTR(err);
1326 	}
1327 
1328 	/* There might be additional checks and transformations
1329 	 * needed on classic filters, f.e. in case of seccomp.
1330 	 */
1331 	if (trans) {
1332 		err = trans(fp->insns, fp->len);
1333 		if (err) {
1334 			__bpf_prog_release(fp);
1335 			return ERR_PTR(err);
1336 		}
1337 	}
1338 
1339 	/* Probe if we can JIT compile the filter and if so, do
1340 	 * the compilation of the filter.
1341 	 */
1342 	bpf_jit_compile(fp);
1343 
1344 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1345 	 * for the optimized interpreter.
1346 	 */
1347 	if (!fp->jited)
1348 		fp = bpf_migrate_filter(fp);
1349 
1350 	return fp;
1351 }
1352 
1353 /**
1354  *	bpf_prog_create - create an unattached filter
1355  *	@pfp: the unattached filter that is created
1356  *	@fprog: the filter program
1357  *
1358  * Create a filter independent of any socket. We first run some
1359  * sanity checks on it to make sure it does not explode on us later.
1360  * If an error occurs or there is insufficient memory for the filter
1361  * a negative errno code is returned. On success the return is zero.
1362  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1363 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1364 {
1365 	unsigned int fsize = bpf_classic_proglen(fprog);
1366 	struct bpf_prog *fp;
1367 
1368 	/* Make sure new filter is there and in the right amounts. */
1369 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1370 		return -EINVAL;
1371 
1372 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1373 	if (!fp)
1374 		return -ENOMEM;
1375 
1376 	memcpy(fp->insns, fprog->filter, fsize);
1377 
1378 	fp->len = fprog->len;
1379 	/* Since unattached filters are not copied back to user
1380 	 * space through sk_get_filter(), we do not need to hold
1381 	 * a copy here, and can spare us the work.
1382 	 */
1383 	fp->orig_prog = NULL;
1384 
1385 	/* bpf_prepare_filter() already takes care of freeing
1386 	 * memory in case something goes wrong.
1387 	 */
1388 	fp = bpf_prepare_filter(fp, NULL);
1389 	if (IS_ERR(fp))
1390 		return PTR_ERR(fp);
1391 
1392 	*pfp = fp;
1393 	return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(bpf_prog_create);
1396 
1397 /**
1398  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1399  *	@pfp: the unattached filter that is created
1400  *	@fprog: the filter program
1401  *	@trans: post-classic verifier transformation handler
1402  *	@save_orig: save classic BPF program
1403  *
1404  * This function effectively does the same as bpf_prog_create(), only
1405  * that it builds up its insns buffer from user space provided buffer.
1406  * It also allows for passing a bpf_aux_classic_check_t handler.
1407  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1408 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1409 			      bpf_aux_classic_check_t trans, bool save_orig)
1410 {
1411 	unsigned int fsize = bpf_classic_proglen(fprog);
1412 	struct bpf_prog *fp;
1413 	int err;
1414 
1415 	/* Make sure new filter is there and in the right amounts. */
1416 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1417 		return -EINVAL;
1418 
1419 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1420 	if (!fp)
1421 		return -ENOMEM;
1422 
1423 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1424 		__bpf_prog_free(fp);
1425 		return -EFAULT;
1426 	}
1427 
1428 	fp->len = fprog->len;
1429 	fp->orig_prog = NULL;
1430 
1431 	if (save_orig) {
1432 		err = bpf_prog_store_orig_filter(fp, fprog);
1433 		if (err) {
1434 			__bpf_prog_free(fp);
1435 			return -ENOMEM;
1436 		}
1437 	}
1438 
1439 	/* bpf_prepare_filter() already takes care of freeing
1440 	 * memory in case something goes wrong.
1441 	 */
1442 	fp = bpf_prepare_filter(fp, trans);
1443 	if (IS_ERR(fp))
1444 		return PTR_ERR(fp);
1445 
1446 	*pfp = fp;
1447 	return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1450 
bpf_prog_destroy(struct bpf_prog * fp)1451 void bpf_prog_destroy(struct bpf_prog *fp)
1452 {
1453 	__bpf_prog_release(fp);
1454 }
1455 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1456 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1457 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1458 {
1459 	struct sk_filter *fp, *old_fp;
1460 
1461 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1462 	if (!fp)
1463 		return -ENOMEM;
1464 
1465 	fp->prog = prog;
1466 
1467 	if (!__sk_filter_charge(sk, fp)) {
1468 		kfree(fp);
1469 		return -ENOMEM;
1470 	}
1471 	refcount_set(&fp->refcnt, 1);
1472 
1473 	old_fp = rcu_dereference_protected(sk->sk_filter,
1474 					   lockdep_sock_is_held(sk));
1475 	rcu_assign_pointer(sk->sk_filter, fp);
1476 
1477 	if (old_fp)
1478 		sk_filter_uncharge(sk, old_fp);
1479 
1480 	return 0;
1481 }
1482 
1483 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1484 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1485 {
1486 	unsigned int fsize = bpf_classic_proglen(fprog);
1487 	struct bpf_prog *prog;
1488 	int err;
1489 
1490 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1491 		return ERR_PTR(-EPERM);
1492 
1493 	/* Make sure new filter is there and in the right amounts. */
1494 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1495 		return ERR_PTR(-EINVAL);
1496 
1497 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1498 	if (!prog)
1499 		return ERR_PTR(-ENOMEM);
1500 
1501 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1502 		__bpf_prog_free(prog);
1503 		return ERR_PTR(-EFAULT);
1504 	}
1505 
1506 	prog->len = fprog->len;
1507 
1508 	err = bpf_prog_store_orig_filter(prog, fprog);
1509 	if (err) {
1510 		__bpf_prog_free(prog);
1511 		return ERR_PTR(-ENOMEM);
1512 	}
1513 
1514 	/* bpf_prepare_filter() already takes care of freeing
1515 	 * memory in case something goes wrong.
1516 	 */
1517 	return bpf_prepare_filter(prog, NULL);
1518 }
1519 
1520 /**
1521  *	sk_attach_filter - attach a socket filter
1522  *	@fprog: the filter program
1523  *	@sk: the socket to use
1524  *
1525  * Attach the user's filter code. We first run some sanity checks on
1526  * it to make sure it does not explode on us later. If an error
1527  * occurs or there is insufficient memory for the filter a negative
1528  * errno code is returned. On success the return is zero.
1529  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1530 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1531 {
1532 	struct bpf_prog *prog = __get_filter(fprog, sk);
1533 	int err;
1534 
1535 	if (IS_ERR(prog))
1536 		return PTR_ERR(prog);
1537 
1538 	err = __sk_attach_prog(prog, sk);
1539 	if (err < 0) {
1540 		__bpf_prog_release(prog);
1541 		return err;
1542 	}
1543 
1544 	return 0;
1545 }
1546 EXPORT_SYMBOL_GPL(sk_attach_filter);
1547 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1548 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1549 {
1550 	struct bpf_prog *prog = __get_filter(fprog, sk);
1551 	int err;
1552 
1553 	if (IS_ERR(prog))
1554 		return PTR_ERR(prog);
1555 
1556 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1557 		err = -ENOMEM;
1558 	else
1559 		err = reuseport_attach_prog(sk, prog);
1560 
1561 	if (err)
1562 		__bpf_prog_release(prog);
1563 
1564 	return err;
1565 }
1566 
__get_bpf(u32 ufd,struct sock * sk)1567 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1568 {
1569 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1570 		return ERR_PTR(-EPERM);
1571 
1572 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1573 }
1574 
sk_attach_bpf(u32 ufd,struct sock * sk)1575 int sk_attach_bpf(u32 ufd, struct sock *sk)
1576 {
1577 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1578 	int err;
1579 
1580 	if (IS_ERR(prog))
1581 		return PTR_ERR(prog);
1582 
1583 	err = __sk_attach_prog(prog, sk);
1584 	if (err < 0) {
1585 		bpf_prog_put(prog);
1586 		return err;
1587 	}
1588 
1589 	return 0;
1590 }
1591 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1592 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1593 {
1594 	struct bpf_prog *prog;
1595 	int err;
1596 
1597 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1598 		return -EPERM;
1599 
1600 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1601 	if (PTR_ERR(prog) == -EINVAL)
1602 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1603 	if (IS_ERR(prog))
1604 		return PTR_ERR(prog);
1605 
1606 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1607 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1608 		 * bpf prog (e.g. sockmap).  It depends on the
1609 		 * limitation imposed by bpf_prog_load().
1610 		 * Hence, sysctl_optmem_max is not checked.
1611 		 */
1612 		if ((sk->sk_type != SOCK_STREAM &&
1613 		     sk->sk_type != SOCK_DGRAM) ||
1614 		    (sk->sk_protocol != IPPROTO_UDP &&
1615 		     sk->sk_protocol != IPPROTO_TCP) ||
1616 		    (sk->sk_family != AF_INET &&
1617 		     sk->sk_family != AF_INET6)) {
1618 			err = -ENOTSUPP;
1619 			goto err_prog_put;
1620 		}
1621 	} else {
1622 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1623 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1624 			err = -ENOMEM;
1625 			goto err_prog_put;
1626 		}
1627 	}
1628 
1629 	err = reuseport_attach_prog(sk, prog);
1630 err_prog_put:
1631 	if (err)
1632 		bpf_prog_put(prog);
1633 
1634 	return err;
1635 }
1636 
sk_reuseport_prog_free(struct bpf_prog * prog)1637 void sk_reuseport_prog_free(struct bpf_prog *prog)
1638 {
1639 	if (!prog)
1640 		return;
1641 
1642 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1643 		bpf_prog_put(prog);
1644 	else
1645 		bpf_prog_destroy(prog);
1646 }
1647 
1648 struct bpf_scratchpad {
1649 	union {
1650 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1651 		u8     buff[MAX_BPF_STACK];
1652 	};
1653 };
1654 
1655 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1656 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1657 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1658 					  unsigned int write_len)
1659 {
1660 #ifdef CONFIG_DEBUG_NET
1661 	/* Avoid a splat in pskb_may_pull_reason() */
1662 	if (write_len > INT_MAX)
1663 		return -EINVAL;
1664 #endif
1665 	return skb_ensure_writable(skb, write_len);
1666 }
1667 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1668 static inline int bpf_try_make_writable(struct sk_buff *skb,
1669 					unsigned int write_len)
1670 {
1671 	int err = __bpf_try_make_writable(skb, write_len);
1672 
1673 	bpf_compute_data_pointers(skb);
1674 	return err;
1675 }
1676 
bpf_try_make_head_writable(struct sk_buff * skb)1677 static int bpf_try_make_head_writable(struct sk_buff *skb)
1678 {
1679 	return bpf_try_make_writable(skb, skb_headlen(skb));
1680 }
1681 
bpf_push_mac_rcsum(struct sk_buff * skb)1682 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1683 {
1684 	if (skb_at_tc_ingress(skb))
1685 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1686 }
1687 
bpf_pull_mac_rcsum(struct sk_buff * skb)1688 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1689 {
1690 	if (skb_at_tc_ingress(skb))
1691 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1692 }
1693 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1694 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1695 	   const void *, from, u32, len, u64, flags)
1696 {
1697 	void *ptr;
1698 
1699 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1700 		return -EINVAL;
1701 	if (unlikely(offset > INT_MAX))
1702 		return -EFAULT;
1703 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1704 		return -EFAULT;
1705 
1706 	ptr = skb->data + offset;
1707 	if (flags & BPF_F_RECOMPUTE_CSUM)
1708 		__skb_postpull_rcsum(skb, ptr, len, offset);
1709 
1710 	memcpy(ptr, from, len);
1711 
1712 	if (flags & BPF_F_RECOMPUTE_CSUM)
1713 		__skb_postpush_rcsum(skb, ptr, len, offset);
1714 	if (flags & BPF_F_INVALIDATE_HASH)
1715 		skb_clear_hash(skb);
1716 
1717 	return 0;
1718 }
1719 
1720 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1721 	.func		= bpf_skb_store_bytes,
1722 	.gpl_only	= false,
1723 	.ret_type	= RET_INTEGER,
1724 	.arg1_type	= ARG_PTR_TO_CTX,
1725 	.arg2_type	= ARG_ANYTHING,
1726 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1727 	.arg4_type	= ARG_CONST_SIZE,
1728 	.arg5_type	= ARG_ANYTHING,
1729 };
1730 
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1731 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1732 			  u32 len, u64 flags)
1733 {
1734 	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1735 }
1736 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1737 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1738 	   void *, to, u32, len)
1739 {
1740 	void *ptr;
1741 
1742 	if (unlikely(offset > INT_MAX))
1743 		goto err_clear;
1744 
1745 	ptr = skb_header_pointer(skb, offset, len, to);
1746 	if (unlikely(!ptr))
1747 		goto err_clear;
1748 	if (ptr != to)
1749 		memcpy(to, ptr, len);
1750 
1751 	return 0;
1752 err_clear:
1753 	memset(to, 0, len);
1754 	return -EFAULT;
1755 }
1756 
1757 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1758 	.func		= bpf_skb_load_bytes,
1759 	.gpl_only	= false,
1760 	.ret_type	= RET_INTEGER,
1761 	.arg1_type	= ARG_PTR_TO_CTX,
1762 	.arg2_type	= ARG_ANYTHING,
1763 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1764 	.arg4_type	= ARG_CONST_SIZE,
1765 };
1766 
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1767 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1768 {
1769 	return ____bpf_skb_load_bytes(skb, offset, to, len);
1770 }
1771 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1772 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1773 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1774 	   void *, to, u32, len)
1775 {
1776 	void *ptr;
1777 
1778 	if (unlikely(offset > 0xffff))
1779 		goto err_clear;
1780 
1781 	if (unlikely(!ctx->skb))
1782 		goto err_clear;
1783 
1784 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1785 	if (unlikely(!ptr))
1786 		goto err_clear;
1787 	if (ptr != to)
1788 		memcpy(to, ptr, len);
1789 
1790 	return 0;
1791 err_clear:
1792 	memset(to, 0, len);
1793 	return -EFAULT;
1794 }
1795 
1796 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1797 	.func		= bpf_flow_dissector_load_bytes,
1798 	.gpl_only	= false,
1799 	.ret_type	= RET_INTEGER,
1800 	.arg1_type	= ARG_PTR_TO_CTX,
1801 	.arg2_type	= ARG_ANYTHING,
1802 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1803 	.arg4_type	= ARG_CONST_SIZE,
1804 };
1805 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1806 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1807 	   u32, offset, void *, to, u32, len, u32, start_header)
1808 {
1809 	u8 *end = skb_tail_pointer(skb);
1810 	u8 *start, *ptr;
1811 
1812 	if (unlikely(offset > 0xffff))
1813 		goto err_clear;
1814 
1815 	switch (start_header) {
1816 	case BPF_HDR_START_MAC:
1817 		if (unlikely(!skb_mac_header_was_set(skb)))
1818 			goto err_clear;
1819 		start = skb_mac_header(skb);
1820 		break;
1821 	case BPF_HDR_START_NET:
1822 		start = skb_network_header(skb);
1823 		break;
1824 	default:
1825 		goto err_clear;
1826 	}
1827 
1828 	ptr = start + offset;
1829 
1830 	if (likely(ptr + len <= end)) {
1831 		memcpy(to, ptr, len);
1832 		return 0;
1833 	}
1834 
1835 err_clear:
1836 	memset(to, 0, len);
1837 	return -EFAULT;
1838 }
1839 
1840 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1841 	.func		= bpf_skb_load_bytes_relative,
1842 	.gpl_only	= false,
1843 	.ret_type	= RET_INTEGER,
1844 	.arg1_type	= ARG_PTR_TO_CTX,
1845 	.arg2_type	= ARG_ANYTHING,
1846 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1847 	.arg4_type	= ARG_CONST_SIZE,
1848 	.arg5_type	= ARG_ANYTHING,
1849 };
1850 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1851 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1852 {
1853 	/* Idea is the following: should the needed direct read/write
1854 	 * test fail during runtime, we can pull in more data and redo
1855 	 * again, since implicitly, we invalidate previous checks here.
1856 	 *
1857 	 * Or, since we know how much we need to make read/writeable,
1858 	 * this can be done once at the program beginning for direct
1859 	 * access case. By this we overcome limitations of only current
1860 	 * headroom being accessible.
1861 	 */
1862 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1863 }
1864 
1865 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1866 	.func		= bpf_skb_pull_data,
1867 	.gpl_only	= false,
1868 	.ret_type	= RET_INTEGER,
1869 	.arg1_type	= ARG_PTR_TO_CTX,
1870 	.arg2_type	= ARG_ANYTHING,
1871 };
1872 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1873 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1874 {
1875 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1876 }
1877 
1878 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1879 	.func		= bpf_sk_fullsock,
1880 	.gpl_only	= false,
1881 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1882 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1883 };
1884 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1885 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1886 					   unsigned int write_len)
1887 {
1888 	return __bpf_try_make_writable(skb, write_len);
1889 }
1890 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1891 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1892 {
1893 	/* Idea is the following: should the needed direct read/write
1894 	 * test fail during runtime, we can pull in more data and redo
1895 	 * again, since implicitly, we invalidate previous checks here.
1896 	 *
1897 	 * Or, since we know how much we need to make read/writeable,
1898 	 * this can be done once at the program beginning for direct
1899 	 * access case. By this we overcome limitations of only current
1900 	 * headroom being accessible.
1901 	 */
1902 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1903 }
1904 
1905 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1906 	.func		= sk_skb_pull_data,
1907 	.gpl_only	= false,
1908 	.ret_type	= RET_INTEGER,
1909 	.arg1_type	= ARG_PTR_TO_CTX,
1910 	.arg2_type	= ARG_ANYTHING,
1911 };
1912 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1913 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1914 	   u64, from, u64, to, u64, flags)
1915 {
1916 	__sum16 *ptr;
1917 
1918 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1919 		return -EINVAL;
1920 	if (unlikely(offset > 0xffff || offset & 1))
1921 		return -EFAULT;
1922 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1923 		return -EFAULT;
1924 
1925 	ptr = (__sum16 *)(skb->data + offset);
1926 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1927 	case 0:
1928 		if (unlikely(from != 0))
1929 			return -EINVAL;
1930 
1931 		csum_replace_by_diff(ptr, to);
1932 		break;
1933 	case 2:
1934 		csum_replace2(ptr, from, to);
1935 		break;
1936 	case 4:
1937 		csum_replace4(ptr, from, to);
1938 		break;
1939 	default:
1940 		return -EINVAL;
1941 	}
1942 
1943 	return 0;
1944 }
1945 
1946 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1947 	.func		= bpf_l3_csum_replace,
1948 	.gpl_only	= false,
1949 	.ret_type	= RET_INTEGER,
1950 	.arg1_type	= ARG_PTR_TO_CTX,
1951 	.arg2_type	= ARG_ANYTHING,
1952 	.arg3_type	= ARG_ANYTHING,
1953 	.arg4_type	= ARG_ANYTHING,
1954 	.arg5_type	= ARG_ANYTHING,
1955 };
1956 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1957 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1958 	   u64, from, u64, to, u64, flags)
1959 {
1960 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1961 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1962 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1963 	__sum16 *ptr;
1964 
1965 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1966 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1967 		return -EINVAL;
1968 	if (unlikely(offset > 0xffff || offset & 1))
1969 		return -EFAULT;
1970 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1971 		return -EFAULT;
1972 
1973 	ptr = (__sum16 *)(skb->data + offset);
1974 	if (is_mmzero && !do_mforce && !*ptr)
1975 		return 0;
1976 
1977 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1978 	case 0:
1979 		if (unlikely(from != 0))
1980 			return -EINVAL;
1981 
1982 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1983 		break;
1984 	case 2:
1985 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1986 		break;
1987 	case 4:
1988 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1989 		break;
1990 	default:
1991 		return -EINVAL;
1992 	}
1993 
1994 	if (is_mmzero && !*ptr)
1995 		*ptr = CSUM_MANGLED_0;
1996 	return 0;
1997 }
1998 
1999 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2000 	.func		= bpf_l4_csum_replace,
2001 	.gpl_only	= false,
2002 	.ret_type	= RET_INTEGER,
2003 	.arg1_type	= ARG_PTR_TO_CTX,
2004 	.arg2_type	= ARG_ANYTHING,
2005 	.arg3_type	= ARG_ANYTHING,
2006 	.arg4_type	= ARG_ANYTHING,
2007 	.arg5_type	= ARG_ANYTHING,
2008 };
2009 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2010 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2011 	   __be32 *, to, u32, to_size, __wsum, seed)
2012 {
2013 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
2014 	u32 diff_size = from_size + to_size;
2015 	int i, j = 0;
2016 
2017 	/* This is quite flexible, some examples:
2018 	 *
2019 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2020 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2021 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2022 	 *
2023 	 * Even for diffing, from_size and to_size don't need to be equal.
2024 	 */
2025 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2026 		     diff_size > sizeof(sp->diff)))
2027 		return -EINVAL;
2028 
2029 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2030 		sp->diff[j] = ~from[i];
2031 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2032 		sp->diff[j] = to[i];
2033 
2034 	return csum_partial(sp->diff, diff_size, seed);
2035 }
2036 
2037 static const struct bpf_func_proto bpf_csum_diff_proto = {
2038 	.func		= bpf_csum_diff,
2039 	.gpl_only	= false,
2040 	.pkt_access	= true,
2041 	.ret_type	= RET_INTEGER,
2042 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2043 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2044 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2045 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2046 	.arg5_type	= ARG_ANYTHING,
2047 };
2048 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2049 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2050 {
2051 	/* The interface is to be used in combination with bpf_csum_diff()
2052 	 * for direct packet writes. csum rotation for alignment as well
2053 	 * as emulating csum_sub() can be done from the eBPF program.
2054 	 */
2055 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2056 		return (skb->csum = csum_add(skb->csum, csum));
2057 
2058 	return -ENOTSUPP;
2059 }
2060 
2061 static const struct bpf_func_proto bpf_csum_update_proto = {
2062 	.func		= bpf_csum_update,
2063 	.gpl_only	= false,
2064 	.ret_type	= RET_INTEGER,
2065 	.arg1_type	= ARG_PTR_TO_CTX,
2066 	.arg2_type	= ARG_ANYTHING,
2067 };
2068 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2069 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2070 {
2071 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2072 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2073 	 * is passed as flags, for example.
2074 	 */
2075 	switch (level) {
2076 	case BPF_CSUM_LEVEL_INC:
2077 		__skb_incr_checksum_unnecessary(skb);
2078 		break;
2079 	case BPF_CSUM_LEVEL_DEC:
2080 		__skb_decr_checksum_unnecessary(skb);
2081 		break;
2082 	case BPF_CSUM_LEVEL_RESET:
2083 		__skb_reset_checksum_unnecessary(skb);
2084 		break;
2085 	case BPF_CSUM_LEVEL_QUERY:
2086 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2087 		       skb->csum_level : -EACCES;
2088 	default:
2089 		return -EINVAL;
2090 	}
2091 
2092 	return 0;
2093 }
2094 
2095 static const struct bpf_func_proto bpf_csum_level_proto = {
2096 	.func		= bpf_csum_level,
2097 	.gpl_only	= false,
2098 	.ret_type	= RET_INTEGER,
2099 	.arg1_type	= ARG_PTR_TO_CTX,
2100 	.arg2_type	= ARG_ANYTHING,
2101 };
2102 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2103 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2104 {
2105 	return dev_forward_skb_nomtu(dev, skb);
2106 }
2107 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2108 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2109 				      struct sk_buff *skb)
2110 {
2111 	int ret = ____dev_forward_skb(dev, skb, false);
2112 
2113 	if (likely(!ret)) {
2114 		skb->dev = dev;
2115 		ret = netif_rx(skb);
2116 	}
2117 
2118 	return ret;
2119 }
2120 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2121 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2122 {
2123 	int ret;
2124 
2125 	if (dev_xmit_recursion()) {
2126 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2127 		kfree_skb(skb);
2128 		return -ENETDOWN;
2129 	}
2130 
2131 	skb->dev = dev;
2132 	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2133 	skb_clear_tstamp(skb);
2134 
2135 	dev_xmit_recursion_inc();
2136 	ret = dev_queue_xmit(skb);
2137 	dev_xmit_recursion_dec();
2138 
2139 	return ret;
2140 }
2141 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2142 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2143 				 u32 flags)
2144 {
2145 	unsigned int mlen = skb_network_offset(skb);
2146 
2147 	if (unlikely(skb->len <= mlen)) {
2148 		kfree_skb(skb);
2149 		return -ERANGE;
2150 	}
2151 
2152 	if (mlen) {
2153 		__skb_pull(skb, mlen);
2154 
2155 		/* At ingress, the mac header has already been pulled once.
2156 		 * At egress, skb_pospull_rcsum has to be done in case that
2157 		 * the skb is originated from ingress (i.e. a forwarded skb)
2158 		 * to ensure that rcsum starts at net header.
2159 		 */
2160 		if (!skb_at_tc_ingress(skb))
2161 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2162 	}
2163 	skb_pop_mac_header(skb);
2164 	skb_reset_mac_len(skb);
2165 	return flags & BPF_F_INGRESS ?
2166 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2167 }
2168 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2169 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2170 				 u32 flags)
2171 {
2172 	/* Verify that a link layer header is carried */
2173 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2174 		kfree_skb(skb);
2175 		return -ERANGE;
2176 	}
2177 
2178 	bpf_push_mac_rcsum(skb);
2179 	return flags & BPF_F_INGRESS ?
2180 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2181 }
2182 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2183 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2184 			  u32 flags)
2185 {
2186 	if (dev_is_mac_header_xmit(dev))
2187 		return __bpf_redirect_common(skb, dev, flags);
2188 	else
2189 		return __bpf_redirect_no_mac(skb, dev, flags);
2190 }
2191 
2192 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2193 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2194 			    struct net_device *dev, struct bpf_nh_params *nh)
2195 {
2196 	u32 hh_len = LL_RESERVED_SPACE(dev);
2197 	const struct in6_addr *nexthop;
2198 	struct dst_entry *dst = NULL;
2199 	struct neighbour *neigh;
2200 
2201 	if (dev_xmit_recursion()) {
2202 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2203 		goto out_drop;
2204 	}
2205 
2206 	skb->dev = dev;
2207 	skb_clear_tstamp(skb);
2208 
2209 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2210 		skb = skb_expand_head(skb, hh_len);
2211 		if (!skb)
2212 			return -ENOMEM;
2213 	}
2214 
2215 	rcu_read_lock();
2216 	if (!nh) {
2217 		dst = skb_dst(skb);
2218 		nexthop = rt6_nexthop(dst_rt6_info(dst),
2219 				      &ipv6_hdr(skb)->daddr);
2220 	} else {
2221 		nexthop = &nh->ipv6_nh;
2222 	}
2223 	neigh = ip_neigh_gw6(dev, nexthop);
2224 	if (likely(!IS_ERR(neigh))) {
2225 		int ret;
2226 
2227 		sock_confirm_neigh(skb, neigh);
2228 		local_bh_disable();
2229 		dev_xmit_recursion_inc();
2230 		ret = neigh_output(neigh, skb, false);
2231 		dev_xmit_recursion_dec();
2232 		local_bh_enable();
2233 		rcu_read_unlock();
2234 		return ret;
2235 	}
2236 	rcu_read_unlock();
2237 	if (dst)
2238 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2239 out_drop:
2240 	kfree_skb(skb);
2241 	return -ENETDOWN;
2242 }
2243 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2244 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2245 				   struct bpf_nh_params *nh)
2246 {
2247 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2248 	struct net *net = dev_net(dev);
2249 	int err, ret = NET_XMIT_DROP;
2250 
2251 	if (!nh) {
2252 		struct dst_entry *dst;
2253 		struct flowi6 fl6 = {
2254 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2255 			.flowi6_mark  = skb->mark,
2256 			.flowlabel    = ip6_flowinfo(ip6h),
2257 			.flowi6_oif   = dev->ifindex,
2258 			.flowi6_proto = ip6h->nexthdr,
2259 			.daddr	      = ip6h->daddr,
2260 			.saddr	      = ip6h->saddr,
2261 		};
2262 
2263 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2264 		if (IS_ERR(dst))
2265 			goto out_drop;
2266 
2267 		skb_dst_set(skb, dst);
2268 	} else if (nh->nh_family != AF_INET6) {
2269 		goto out_drop;
2270 	}
2271 
2272 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2273 	if (unlikely(net_xmit_eval(err)))
2274 		DEV_STATS_INC(dev, tx_errors);
2275 	else
2276 		ret = NET_XMIT_SUCCESS;
2277 	goto out_xmit;
2278 out_drop:
2279 	DEV_STATS_INC(dev, tx_errors);
2280 	kfree_skb(skb);
2281 out_xmit:
2282 	return ret;
2283 }
2284 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2285 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2286 				   struct bpf_nh_params *nh)
2287 {
2288 	kfree_skb(skb);
2289 	return NET_XMIT_DROP;
2290 }
2291 #endif /* CONFIG_IPV6 */
2292 
2293 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2294 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2295 			    struct net_device *dev, struct bpf_nh_params *nh)
2296 {
2297 	u32 hh_len = LL_RESERVED_SPACE(dev);
2298 	struct neighbour *neigh;
2299 	bool is_v6gw = false;
2300 
2301 	if (dev_xmit_recursion()) {
2302 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2303 		goto out_drop;
2304 	}
2305 
2306 	skb->dev = dev;
2307 	skb_clear_tstamp(skb);
2308 
2309 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2310 		skb = skb_expand_head(skb, hh_len);
2311 		if (!skb)
2312 			return -ENOMEM;
2313 	}
2314 
2315 	rcu_read_lock();
2316 	if (!nh) {
2317 		struct dst_entry *dst = skb_dst(skb);
2318 		struct rtable *rt = container_of(dst, struct rtable, dst);
2319 
2320 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2321 	} else if (nh->nh_family == AF_INET6) {
2322 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2323 		is_v6gw = true;
2324 	} else if (nh->nh_family == AF_INET) {
2325 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2326 	} else {
2327 		rcu_read_unlock();
2328 		goto out_drop;
2329 	}
2330 
2331 	if (likely(!IS_ERR(neigh))) {
2332 		int ret;
2333 
2334 		sock_confirm_neigh(skb, neigh);
2335 		local_bh_disable();
2336 		dev_xmit_recursion_inc();
2337 		ret = neigh_output(neigh, skb, is_v6gw);
2338 		dev_xmit_recursion_dec();
2339 		local_bh_enable();
2340 		rcu_read_unlock();
2341 		return ret;
2342 	}
2343 	rcu_read_unlock();
2344 out_drop:
2345 	kfree_skb(skb);
2346 	return -ENETDOWN;
2347 }
2348 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2349 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2350 				   struct bpf_nh_params *nh)
2351 {
2352 	const struct iphdr *ip4h = ip_hdr(skb);
2353 	struct net *net = dev_net(dev);
2354 	int err, ret = NET_XMIT_DROP;
2355 
2356 	if (!nh) {
2357 		struct flowi4 fl4 = {
2358 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2359 			.flowi4_mark  = skb->mark,
2360 			.flowi4_tos   = RT_TOS(ip4h->tos),
2361 			.flowi4_oif   = dev->ifindex,
2362 			.flowi4_proto = ip4h->protocol,
2363 			.daddr	      = ip4h->daddr,
2364 			.saddr	      = ip4h->saddr,
2365 		};
2366 		struct rtable *rt;
2367 
2368 		rt = ip_route_output_flow(net, &fl4, NULL);
2369 		if (IS_ERR(rt))
2370 			goto out_drop;
2371 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2372 			ip_rt_put(rt);
2373 			goto out_drop;
2374 		}
2375 
2376 		skb_dst_set(skb, &rt->dst);
2377 	}
2378 
2379 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2380 	if (unlikely(net_xmit_eval(err)))
2381 		DEV_STATS_INC(dev, tx_errors);
2382 	else
2383 		ret = NET_XMIT_SUCCESS;
2384 	goto out_xmit;
2385 out_drop:
2386 	DEV_STATS_INC(dev, tx_errors);
2387 	kfree_skb(skb);
2388 out_xmit:
2389 	return ret;
2390 }
2391 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2392 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2393 				   struct bpf_nh_params *nh)
2394 {
2395 	kfree_skb(skb);
2396 	return NET_XMIT_DROP;
2397 }
2398 #endif /* CONFIG_INET */
2399 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2400 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2401 				struct bpf_nh_params *nh)
2402 {
2403 	struct ethhdr *ethh = eth_hdr(skb);
2404 
2405 	if (unlikely(skb->mac_header >= skb->network_header))
2406 		goto out;
2407 	bpf_push_mac_rcsum(skb);
2408 	if (is_multicast_ether_addr(ethh->h_dest))
2409 		goto out;
2410 
2411 	skb_pull(skb, sizeof(*ethh));
2412 	skb_unset_mac_header(skb);
2413 	skb_reset_network_header(skb);
2414 
2415 	if (skb->protocol == htons(ETH_P_IP))
2416 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2417 	else if (skb->protocol == htons(ETH_P_IPV6))
2418 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2419 out:
2420 	kfree_skb(skb);
2421 	return -ENOTSUPP;
2422 }
2423 
2424 /* Internal, non-exposed redirect flags. */
2425 enum {
2426 	BPF_F_NEIGH	= (1ULL << 16),
2427 	BPF_F_PEER	= (1ULL << 17),
2428 	BPF_F_NEXTHOP	= (1ULL << 18),
2429 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2430 };
2431 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2432 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2433 {
2434 	struct net_device *dev;
2435 	struct sk_buff *clone;
2436 	int ret;
2437 
2438 	BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2439 
2440 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2441 		return -EINVAL;
2442 
2443 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2444 	if (unlikely(!dev))
2445 		return -EINVAL;
2446 
2447 	clone = skb_clone(skb, GFP_ATOMIC);
2448 	if (unlikely(!clone))
2449 		return -ENOMEM;
2450 
2451 	/* For direct write, we need to keep the invariant that the skbs
2452 	 * we're dealing with need to be uncloned. Should uncloning fail
2453 	 * here, we need to free the just generated clone to unclone once
2454 	 * again.
2455 	 */
2456 	ret = bpf_try_make_head_writable(skb);
2457 	if (unlikely(ret)) {
2458 		kfree_skb(clone);
2459 		return -ENOMEM;
2460 	}
2461 
2462 	return __bpf_redirect(clone, dev, flags);
2463 }
2464 
2465 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2466 	.func           = bpf_clone_redirect,
2467 	.gpl_only       = false,
2468 	.ret_type       = RET_INTEGER,
2469 	.arg1_type      = ARG_PTR_TO_CTX,
2470 	.arg2_type      = ARG_ANYTHING,
2471 	.arg3_type      = ARG_ANYTHING,
2472 };
2473 
2474 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2475 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2476 
skb_do_redirect(struct sk_buff * skb)2477 int skb_do_redirect(struct sk_buff *skb)
2478 {
2479 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2480 	struct net *net = dev_net(skb->dev);
2481 	struct net_device *dev;
2482 	u32 flags = ri->flags;
2483 
2484 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2485 	ri->tgt_index = 0;
2486 	ri->flags = 0;
2487 	if (unlikely(!dev))
2488 		goto out_drop;
2489 	if (flags & BPF_F_PEER) {
2490 		const struct net_device_ops *ops = dev->netdev_ops;
2491 
2492 		if (unlikely(!ops->ndo_get_peer_dev ||
2493 			     !skb_at_tc_ingress(skb)))
2494 			goto out_drop;
2495 		dev = ops->ndo_get_peer_dev(dev);
2496 		if (unlikely(!dev ||
2497 			     !(dev->flags & IFF_UP) ||
2498 			     net_eq(net, dev_net(dev))))
2499 			goto out_drop;
2500 		skb->dev = dev;
2501 		dev_sw_netstats_rx_add(dev, skb->len);
2502 		return -EAGAIN;
2503 	}
2504 	return flags & BPF_F_NEIGH ?
2505 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2506 				    &ri->nh : NULL) :
2507 	       __bpf_redirect(skb, dev, flags);
2508 out_drop:
2509 	kfree_skb(skb);
2510 	return -EINVAL;
2511 }
2512 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2513 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2514 {
2515 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2516 
2517 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2518 		return TC_ACT_SHOT;
2519 
2520 	ri->flags = flags;
2521 	ri->tgt_index = ifindex;
2522 
2523 	return TC_ACT_REDIRECT;
2524 }
2525 
2526 static const struct bpf_func_proto bpf_redirect_proto = {
2527 	.func           = bpf_redirect,
2528 	.gpl_only       = false,
2529 	.ret_type       = RET_INTEGER,
2530 	.arg1_type      = ARG_ANYTHING,
2531 	.arg2_type      = ARG_ANYTHING,
2532 };
2533 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2534 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2535 {
2536 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2537 
2538 	if (unlikely(flags))
2539 		return TC_ACT_SHOT;
2540 
2541 	ri->flags = BPF_F_PEER;
2542 	ri->tgt_index = ifindex;
2543 
2544 	return TC_ACT_REDIRECT;
2545 }
2546 
2547 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2548 	.func           = bpf_redirect_peer,
2549 	.gpl_only       = false,
2550 	.ret_type       = RET_INTEGER,
2551 	.arg1_type      = ARG_ANYTHING,
2552 	.arg2_type      = ARG_ANYTHING,
2553 };
2554 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2555 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2556 	   int, plen, u64, flags)
2557 {
2558 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2559 
2560 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2561 		return TC_ACT_SHOT;
2562 
2563 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2564 	ri->tgt_index = ifindex;
2565 
2566 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2567 	if (plen)
2568 		memcpy(&ri->nh, params, sizeof(ri->nh));
2569 
2570 	return TC_ACT_REDIRECT;
2571 }
2572 
2573 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2574 	.func		= bpf_redirect_neigh,
2575 	.gpl_only	= false,
2576 	.ret_type	= RET_INTEGER,
2577 	.arg1_type	= ARG_ANYTHING,
2578 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2579 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2580 	.arg4_type	= ARG_ANYTHING,
2581 };
2582 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2583 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2584 {
2585 	msg->apply_bytes = bytes;
2586 	return 0;
2587 }
2588 
2589 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2590 	.func           = bpf_msg_apply_bytes,
2591 	.gpl_only       = false,
2592 	.ret_type       = RET_INTEGER,
2593 	.arg1_type	= ARG_PTR_TO_CTX,
2594 	.arg2_type      = ARG_ANYTHING,
2595 };
2596 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2597 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2598 {
2599 	msg->cork_bytes = bytes;
2600 	return 0;
2601 }
2602 
sk_msg_reset_curr(struct sk_msg * msg)2603 static void sk_msg_reset_curr(struct sk_msg *msg)
2604 {
2605 	if (!msg->sg.size) {
2606 		msg->sg.curr = msg->sg.start;
2607 		msg->sg.copybreak = 0;
2608 	} else {
2609 		u32 i = msg->sg.end;
2610 
2611 		sk_msg_iter_var_prev(i);
2612 		msg->sg.curr = i;
2613 		msg->sg.copybreak = msg->sg.data[i].length;
2614 	}
2615 }
2616 
2617 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2618 	.func           = bpf_msg_cork_bytes,
2619 	.gpl_only       = false,
2620 	.ret_type       = RET_INTEGER,
2621 	.arg1_type	= ARG_PTR_TO_CTX,
2622 	.arg2_type      = ARG_ANYTHING,
2623 };
2624 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2625 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2626 	   u32, end, u64, flags)
2627 {
2628 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2629 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2630 	struct scatterlist *sge;
2631 	u8 *raw, *to, *from;
2632 	struct page *page;
2633 
2634 	if (unlikely(flags || end <= start))
2635 		return -EINVAL;
2636 
2637 	/* First find the starting scatterlist element */
2638 	i = msg->sg.start;
2639 	do {
2640 		offset += len;
2641 		len = sk_msg_elem(msg, i)->length;
2642 		if (start < offset + len)
2643 			break;
2644 		sk_msg_iter_var_next(i);
2645 	} while (i != msg->sg.end);
2646 
2647 	if (unlikely(start >= offset + len))
2648 		return -EINVAL;
2649 
2650 	first_sge = i;
2651 	/* The start may point into the sg element so we need to also
2652 	 * account for the headroom.
2653 	 */
2654 	bytes_sg_total = start - offset + bytes;
2655 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2656 		goto out;
2657 
2658 	/* At this point we need to linearize multiple scatterlist
2659 	 * elements or a single shared page. Either way we need to
2660 	 * copy into a linear buffer exclusively owned by BPF. Then
2661 	 * place the buffer in the scatterlist and fixup the original
2662 	 * entries by removing the entries now in the linear buffer
2663 	 * and shifting the remaining entries. For now we do not try
2664 	 * to copy partial entries to avoid complexity of running out
2665 	 * of sg_entry slots. The downside is reading a single byte
2666 	 * will copy the entire sg entry.
2667 	 */
2668 	do {
2669 		copy += sk_msg_elem(msg, i)->length;
2670 		sk_msg_iter_var_next(i);
2671 		if (bytes_sg_total <= copy)
2672 			break;
2673 	} while (i != msg->sg.end);
2674 	last_sge = i;
2675 
2676 	if (unlikely(bytes_sg_total > copy))
2677 		return -EINVAL;
2678 
2679 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2680 			   get_order(copy));
2681 	if (unlikely(!page))
2682 		return -ENOMEM;
2683 
2684 	raw = page_address(page);
2685 	i = first_sge;
2686 	do {
2687 		sge = sk_msg_elem(msg, i);
2688 		from = sg_virt(sge);
2689 		len = sge->length;
2690 		to = raw + poffset;
2691 
2692 		memcpy(to, from, len);
2693 		poffset += len;
2694 		sge->length = 0;
2695 		put_page(sg_page(sge));
2696 
2697 		sk_msg_iter_var_next(i);
2698 	} while (i != last_sge);
2699 
2700 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2701 
2702 	/* To repair sg ring we need to shift entries. If we only
2703 	 * had a single entry though we can just replace it and
2704 	 * be done. Otherwise walk the ring and shift the entries.
2705 	 */
2706 	WARN_ON_ONCE(last_sge == first_sge);
2707 	shift = last_sge > first_sge ?
2708 		last_sge - first_sge - 1 :
2709 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2710 	if (!shift)
2711 		goto out;
2712 
2713 	i = first_sge;
2714 	sk_msg_iter_var_next(i);
2715 	do {
2716 		u32 move_from;
2717 
2718 		if (i + shift >= NR_MSG_FRAG_IDS)
2719 			move_from = i + shift - NR_MSG_FRAG_IDS;
2720 		else
2721 			move_from = i + shift;
2722 		if (move_from == msg->sg.end)
2723 			break;
2724 
2725 		msg->sg.data[i] = msg->sg.data[move_from];
2726 		msg->sg.data[move_from].length = 0;
2727 		msg->sg.data[move_from].page_link = 0;
2728 		msg->sg.data[move_from].offset = 0;
2729 		sk_msg_iter_var_next(i);
2730 	} while (1);
2731 
2732 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2733 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2734 		      msg->sg.end - shift;
2735 out:
2736 	sk_msg_reset_curr(msg);
2737 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2738 	msg->data_end = msg->data + bytes;
2739 	return 0;
2740 }
2741 
2742 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2743 	.func		= bpf_msg_pull_data,
2744 	.gpl_only	= false,
2745 	.ret_type	= RET_INTEGER,
2746 	.arg1_type	= ARG_PTR_TO_CTX,
2747 	.arg2_type	= ARG_ANYTHING,
2748 	.arg3_type	= ARG_ANYTHING,
2749 	.arg4_type	= ARG_ANYTHING,
2750 };
2751 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2752 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2753 	   u32, len, u64, flags)
2754 {
2755 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2756 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2757 	u8 *raw, *to, *from;
2758 	struct page *page;
2759 
2760 	if (unlikely(flags))
2761 		return -EINVAL;
2762 
2763 	if (unlikely(len == 0))
2764 		return 0;
2765 
2766 	/* First find the starting scatterlist element */
2767 	i = msg->sg.start;
2768 	do {
2769 		offset += l;
2770 		l = sk_msg_elem(msg, i)->length;
2771 
2772 		if (start < offset + l)
2773 			break;
2774 		sk_msg_iter_var_next(i);
2775 	} while (i != msg->sg.end);
2776 
2777 	if (start > offset + l)
2778 		return -EINVAL;
2779 
2780 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2781 
2782 	/* If no space available will fallback to copy, we need at
2783 	 * least one scatterlist elem available to push data into
2784 	 * when start aligns to the beginning of an element or two
2785 	 * when it falls inside an element. We handle the start equals
2786 	 * offset case because its the common case for inserting a
2787 	 * header.
2788 	 */
2789 	if (!space || (space == 1 && start != offset))
2790 		copy = msg->sg.data[i].length;
2791 
2792 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2793 			   get_order(copy + len));
2794 	if (unlikely(!page))
2795 		return -ENOMEM;
2796 
2797 	if (copy) {
2798 		int front, back;
2799 
2800 		raw = page_address(page);
2801 
2802 		if (i == msg->sg.end)
2803 			sk_msg_iter_var_prev(i);
2804 		psge = sk_msg_elem(msg, i);
2805 		front = start - offset;
2806 		back = psge->length - front;
2807 		from = sg_virt(psge);
2808 
2809 		if (front)
2810 			memcpy(raw, from, front);
2811 
2812 		if (back) {
2813 			from += front;
2814 			to = raw + front + len;
2815 
2816 			memcpy(to, from, back);
2817 		}
2818 
2819 		put_page(sg_page(psge));
2820 		new = i;
2821 		goto place_new;
2822 	}
2823 
2824 	if (start - offset) {
2825 		if (i == msg->sg.end)
2826 			sk_msg_iter_var_prev(i);
2827 		psge = sk_msg_elem(msg, i);
2828 		rsge = sk_msg_elem_cpy(msg, i);
2829 
2830 		psge->length = start - offset;
2831 		rsge.length -= psge->length;
2832 		rsge.offset += start;
2833 
2834 		sk_msg_iter_var_next(i);
2835 		sg_unmark_end(psge);
2836 		sg_unmark_end(&rsge);
2837 	}
2838 
2839 	/* Slot(s) to place newly allocated data */
2840 	sk_msg_iter_next(msg, end);
2841 	new = i;
2842 	sk_msg_iter_var_next(i);
2843 
2844 	if (i == msg->sg.end) {
2845 		if (!rsge.length)
2846 			goto place_new;
2847 		sk_msg_iter_next(msg, end);
2848 		goto place_new;
2849 	}
2850 
2851 	/* Shift one or two slots as needed */
2852 	sge = sk_msg_elem_cpy(msg, new);
2853 	sg_unmark_end(&sge);
2854 
2855 	nsge = sk_msg_elem_cpy(msg, i);
2856 	if (rsge.length) {
2857 		sk_msg_iter_var_next(i);
2858 		nnsge = sk_msg_elem_cpy(msg, i);
2859 		sk_msg_iter_next(msg, end);
2860 	}
2861 
2862 	while (i != msg->sg.end) {
2863 		msg->sg.data[i] = sge;
2864 		sge = nsge;
2865 		sk_msg_iter_var_next(i);
2866 		if (rsge.length) {
2867 			nsge = nnsge;
2868 			nnsge = sk_msg_elem_cpy(msg, i);
2869 		} else {
2870 			nsge = sk_msg_elem_cpy(msg, i);
2871 		}
2872 	}
2873 
2874 place_new:
2875 	/* Place newly allocated data buffer */
2876 	sk_mem_charge(msg->sk, len);
2877 	msg->sg.size += len;
2878 	__clear_bit(new, msg->sg.copy);
2879 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2880 	if (rsge.length) {
2881 		get_page(sg_page(&rsge));
2882 		sk_msg_iter_var_next(new);
2883 		msg->sg.data[new] = rsge;
2884 	}
2885 
2886 	sk_msg_reset_curr(msg);
2887 	sk_msg_compute_data_pointers(msg);
2888 	return 0;
2889 }
2890 
2891 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2892 	.func		= bpf_msg_push_data,
2893 	.gpl_only	= false,
2894 	.ret_type	= RET_INTEGER,
2895 	.arg1_type	= ARG_PTR_TO_CTX,
2896 	.arg2_type	= ARG_ANYTHING,
2897 	.arg3_type	= ARG_ANYTHING,
2898 	.arg4_type	= ARG_ANYTHING,
2899 };
2900 
sk_msg_shift_left(struct sk_msg * msg,int i)2901 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2902 {
2903 	struct scatterlist *sge = sk_msg_elem(msg, i);
2904 	int prev;
2905 
2906 	put_page(sg_page(sge));
2907 	do {
2908 		prev = i;
2909 		sk_msg_iter_var_next(i);
2910 		msg->sg.data[prev] = msg->sg.data[i];
2911 	} while (i != msg->sg.end);
2912 
2913 	sk_msg_iter_prev(msg, end);
2914 }
2915 
sk_msg_shift_right(struct sk_msg * msg,int i)2916 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2917 {
2918 	struct scatterlist tmp, sge;
2919 
2920 	sk_msg_iter_next(msg, end);
2921 	sge = sk_msg_elem_cpy(msg, i);
2922 	sk_msg_iter_var_next(i);
2923 	tmp = sk_msg_elem_cpy(msg, i);
2924 
2925 	while (i != msg->sg.end) {
2926 		msg->sg.data[i] = sge;
2927 		sk_msg_iter_var_next(i);
2928 		sge = tmp;
2929 		tmp = sk_msg_elem_cpy(msg, i);
2930 	}
2931 }
2932 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2933 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2934 	   u32, len, u64, flags)
2935 {
2936 	u32 i = 0, l = 0, space, offset = 0;
2937 	u64 last = start + len;
2938 	int pop;
2939 
2940 	if (unlikely(flags))
2941 		return -EINVAL;
2942 
2943 	if (unlikely(len == 0))
2944 		return 0;
2945 
2946 	/* First find the starting scatterlist element */
2947 	i = msg->sg.start;
2948 	do {
2949 		offset += l;
2950 		l = sk_msg_elem(msg, i)->length;
2951 
2952 		if (start < offset + l)
2953 			break;
2954 		sk_msg_iter_var_next(i);
2955 	} while (i != msg->sg.end);
2956 
2957 	/* Bounds checks: start and pop must be inside message */
2958 	if (start >= offset + l || last > msg->sg.size)
2959 		return -EINVAL;
2960 
2961 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2962 
2963 	pop = len;
2964 	/* --------------| offset
2965 	 * -| start      |-------- len -------|
2966 	 *
2967 	 *  |----- a ----|-------- pop -------|----- b ----|
2968 	 *  |______________________________________________| length
2969 	 *
2970 	 *
2971 	 * a:   region at front of scatter element to save
2972 	 * b:   region at back of scatter element to save when length > A + pop
2973 	 * pop: region to pop from element, same as input 'pop' here will be
2974 	 *      decremented below per iteration.
2975 	 *
2976 	 * Two top-level cases to handle when start != offset, first B is non
2977 	 * zero and second B is zero corresponding to when a pop includes more
2978 	 * than one element.
2979 	 *
2980 	 * Then if B is non-zero AND there is no space allocate space and
2981 	 * compact A, B regions into page. If there is space shift ring to
2982 	 * the rigth free'ing the next element in ring to place B, leaving
2983 	 * A untouched except to reduce length.
2984 	 */
2985 	if (start != offset) {
2986 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2987 		int a = start - offset;
2988 		int b = sge->length - pop - a;
2989 
2990 		sk_msg_iter_var_next(i);
2991 
2992 		if (b > 0) {
2993 			if (space) {
2994 				sge->length = a;
2995 				sk_msg_shift_right(msg, i);
2996 				nsge = sk_msg_elem(msg, i);
2997 				get_page(sg_page(sge));
2998 				sg_set_page(nsge,
2999 					    sg_page(sge),
3000 					    b, sge->offset + pop + a);
3001 			} else {
3002 				struct page *page, *orig;
3003 				u8 *to, *from;
3004 
3005 				page = alloc_pages(__GFP_NOWARN |
3006 						   __GFP_COMP   | GFP_ATOMIC,
3007 						   get_order(a + b));
3008 				if (unlikely(!page))
3009 					return -ENOMEM;
3010 
3011 				orig = sg_page(sge);
3012 				from = sg_virt(sge);
3013 				to = page_address(page);
3014 				memcpy(to, from, a);
3015 				memcpy(to + a, from + a + pop, b);
3016 				sg_set_page(sge, page, a + b, 0);
3017 				put_page(orig);
3018 			}
3019 			pop = 0;
3020 		} else {
3021 			pop -= (sge->length - a);
3022 			sge->length = a;
3023 		}
3024 	}
3025 
3026 	/* From above the current layout _must_ be as follows,
3027 	 *
3028 	 * -| offset
3029 	 * -| start
3030 	 *
3031 	 *  |---- pop ---|---------------- b ------------|
3032 	 *  |____________________________________________| length
3033 	 *
3034 	 * Offset and start of the current msg elem are equal because in the
3035 	 * previous case we handled offset != start and either consumed the
3036 	 * entire element and advanced to the next element OR pop == 0.
3037 	 *
3038 	 * Two cases to handle here are first pop is less than the length
3039 	 * leaving some remainder b above. Simply adjust the element's layout
3040 	 * in this case. Or pop >= length of the element so that b = 0. In this
3041 	 * case advance to next element decrementing pop.
3042 	 */
3043 	while (pop) {
3044 		struct scatterlist *sge = sk_msg_elem(msg, i);
3045 
3046 		if (pop < sge->length) {
3047 			sge->length -= pop;
3048 			sge->offset += pop;
3049 			pop = 0;
3050 		} else {
3051 			pop -= sge->length;
3052 			sk_msg_shift_left(msg, i);
3053 		}
3054 	}
3055 
3056 	sk_mem_uncharge(msg->sk, len - pop);
3057 	msg->sg.size -= (len - pop);
3058 	sk_msg_reset_curr(msg);
3059 	sk_msg_compute_data_pointers(msg);
3060 	return 0;
3061 }
3062 
3063 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3064 	.func		= bpf_msg_pop_data,
3065 	.gpl_only	= false,
3066 	.ret_type	= RET_INTEGER,
3067 	.arg1_type	= ARG_PTR_TO_CTX,
3068 	.arg2_type	= ARG_ANYTHING,
3069 	.arg3_type	= ARG_ANYTHING,
3070 	.arg4_type	= ARG_ANYTHING,
3071 };
3072 
3073 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3074 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3075 {
3076 	return __task_get_classid(current);
3077 }
3078 
3079 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3080 	.func		= bpf_get_cgroup_classid_curr,
3081 	.gpl_only	= false,
3082 	.ret_type	= RET_INTEGER,
3083 };
3084 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3085 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3086 {
3087 	struct sock *sk = skb_to_full_sk(skb);
3088 
3089 	if (!sk || !sk_fullsock(sk))
3090 		return 0;
3091 
3092 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3093 }
3094 
3095 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3096 	.func		= bpf_skb_cgroup_classid,
3097 	.gpl_only	= false,
3098 	.ret_type	= RET_INTEGER,
3099 	.arg1_type	= ARG_PTR_TO_CTX,
3100 };
3101 #endif
3102 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3103 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3104 {
3105 	return task_get_classid(skb);
3106 }
3107 
3108 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3109 	.func           = bpf_get_cgroup_classid,
3110 	.gpl_only       = false,
3111 	.ret_type       = RET_INTEGER,
3112 	.arg1_type      = ARG_PTR_TO_CTX,
3113 };
3114 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3115 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3116 {
3117 	return dst_tclassid(skb);
3118 }
3119 
3120 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3121 	.func           = bpf_get_route_realm,
3122 	.gpl_only       = false,
3123 	.ret_type       = RET_INTEGER,
3124 	.arg1_type      = ARG_PTR_TO_CTX,
3125 };
3126 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3127 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3128 {
3129 	/* If skb_clear_hash() was called due to mangling, we can
3130 	 * trigger SW recalculation here. Later access to hash
3131 	 * can then use the inline skb->hash via context directly
3132 	 * instead of calling this helper again.
3133 	 */
3134 	return skb_get_hash(skb);
3135 }
3136 
3137 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3138 	.func		= bpf_get_hash_recalc,
3139 	.gpl_only	= false,
3140 	.ret_type	= RET_INTEGER,
3141 	.arg1_type	= ARG_PTR_TO_CTX,
3142 };
3143 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3144 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3145 {
3146 	/* After all direct packet write, this can be used once for
3147 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3148 	 */
3149 	skb_clear_hash(skb);
3150 	return 0;
3151 }
3152 
3153 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3154 	.func		= bpf_set_hash_invalid,
3155 	.gpl_only	= false,
3156 	.ret_type	= RET_INTEGER,
3157 	.arg1_type	= ARG_PTR_TO_CTX,
3158 };
3159 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3160 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3161 {
3162 	/* Set user specified hash as L4(+), so that it gets returned
3163 	 * on skb_get_hash() call unless BPF prog later on triggers a
3164 	 * skb_clear_hash().
3165 	 */
3166 	__skb_set_sw_hash(skb, hash, true);
3167 	return 0;
3168 }
3169 
3170 static const struct bpf_func_proto bpf_set_hash_proto = {
3171 	.func		= bpf_set_hash,
3172 	.gpl_only	= false,
3173 	.ret_type	= RET_INTEGER,
3174 	.arg1_type	= ARG_PTR_TO_CTX,
3175 	.arg2_type	= ARG_ANYTHING,
3176 };
3177 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3178 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3179 	   u16, vlan_tci)
3180 {
3181 	int ret;
3182 
3183 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3184 		     vlan_proto != htons(ETH_P_8021AD)))
3185 		vlan_proto = htons(ETH_P_8021Q);
3186 
3187 	bpf_push_mac_rcsum(skb);
3188 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3189 	bpf_pull_mac_rcsum(skb);
3190 
3191 	bpf_compute_data_pointers(skb);
3192 	return ret;
3193 }
3194 
3195 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3196 	.func           = bpf_skb_vlan_push,
3197 	.gpl_only       = false,
3198 	.ret_type       = RET_INTEGER,
3199 	.arg1_type      = ARG_PTR_TO_CTX,
3200 	.arg2_type      = ARG_ANYTHING,
3201 	.arg3_type      = ARG_ANYTHING,
3202 };
3203 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3204 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3205 {
3206 	int ret;
3207 
3208 	bpf_push_mac_rcsum(skb);
3209 	ret = skb_vlan_pop(skb);
3210 	bpf_pull_mac_rcsum(skb);
3211 
3212 	bpf_compute_data_pointers(skb);
3213 	return ret;
3214 }
3215 
3216 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3217 	.func           = bpf_skb_vlan_pop,
3218 	.gpl_only       = false,
3219 	.ret_type       = RET_INTEGER,
3220 	.arg1_type      = ARG_PTR_TO_CTX,
3221 };
3222 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3223 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3224 {
3225 	/* Caller already did skb_cow() with len as headroom,
3226 	 * so no need to do it here.
3227 	 */
3228 	skb_push(skb, len);
3229 	memmove(skb->data, skb->data + len, off);
3230 	memset(skb->data + off, 0, len);
3231 
3232 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3233 	 * needed here as it does not change the skb->csum
3234 	 * result for checksum complete when summing over
3235 	 * zeroed blocks.
3236 	 */
3237 	return 0;
3238 }
3239 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3240 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3241 {
3242 	void *old_data;
3243 
3244 	/* skb_ensure_writable() is not needed here, as we're
3245 	 * already working on an uncloned skb.
3246 	 */
3247 	if (unlikely(!pskb_may_pull(skb, off + len)))
3248 		return -ENOMEM;
3249 
3250 	old_data = skb->data;
3251 	__skb_pull(skb, len);
3252 	skb_postpull_rcsum(skb, old_data + off, len);
3253 	memmove(skb->data, old_data, off);
3254 
3255 	return 0;
3256 }
3257 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3258 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3259 {
3260 	bool trans_same = skb->transport_header == skb->network_header;
3261 	int ret;
3262 
3263 	/* There's no need for __skb_push()/__skb_pull() pair to
3264 	 * get to the start of the mac header as we're guaranteed
3265 	 * to always start from here under eBPF.
3266 	 */
3267 	ret = bpf_skb_generic_push(skb, off, len);
3268 	if (likely(!ret)) {
3269 		skb->mac_header -= len;
3270 		skb->network_header -= len;
3271 		if (trans_same)
3272 			skb->transport_header = skb->network_header;
3273 	}
3274 
3275 	return ret;
3276 }
3277 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3278 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3279 {
3280 	bool trans_same = skb->transport_header == skb->network_header;
3281 	int ret;
3282 
3283 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3284 	ret = bpf_skb_generic_pop(skb, off, len);
3285 	if (likely(!ret)) {
3286 		skb->mac_header += len;
3287 		skb->network_header += len;
3288 		if (trans_same)
3289 			skb->transport_header = skb->network_header;
3290 	}
3291 
3292 	return ret;
3293 }
3294 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3295 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3296 {
3297 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3298 	u32 off = skb_mac_header_len(skb);
3299 	int ret;
3300 
3301 	ret = skb_cow(skb, len_diff);
3302 	if (unlikely(ret < 0))
3303 		return ret;
3304 
3305 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3306 	if (unlikely(ret < 0))
3307 		return ret;
3308 
3309 	if (skb_is_gso(skb)) {
3310 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3311 
3312 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3313 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3314 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3315 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3316 		}
3317 	}
3318 
3319 	skb->protocol = htons(ETH_P_IPV6);
3320 	skb_clear_hash(skb);
3321 
3322 	return 0;
3323 }
3324 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3325 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3326 {
3327 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3328 	u32 off = skb_mac_header_len(skb);
3329 	int ret;
3330 
3331 	ret = skb_unclone(skb, GFP_ATOMIC);
3332 	if (unlikely(ret < 0))
3333 		return ret;
3334 
3335 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3336 	if (unlikely(ret < 0))
3337 		return ret;
3338 
3339 	if (skb_is_gso(skb)) {
3340 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3341 
3342 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3343 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3344 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3345 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3346 		}
3347 	}
3348 
3349 	skb->protocol = htons(ETH_P_IP);
3350 	skb_clear_hash(skb);
3351 
3352 	return 0;
3353 }
3354 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3355 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3356 {
3357 	__be16 from_proto = skb->protocol;
3358 
3359 	if (from_proto == htons(ETH_P_IP) &&
3360 	      to_proto == htons(ETH_P_IPV6))
3361 		return bpf_skb_proto_4_to_6(skb);
3362 
3363 	if (from_proto == htons(ETH_P_IPV6) &&
3364 	      to_proto == htons(ETH_P_IP))
3365 		return bpf_skb_proto_6_to_4(skb);
3366 
3367 	return -ENOTSUPP;
3368 }
3369 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3370 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3371 	   u64, flags)
3372 {
3373 	int ret;
3374 
3375 	if (unlikely(flags))
3376 		return -EINVAL;
3377 
3378 	/* General idea is that this helper does the basic groundwork
3379 	 * needed for changing the protocol, and eBPF program fills the
3380 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3381 	 * and other helpers, rather than passing a raw buffer here.
3382 	 *
3383 	 * The rationale is to keep this minimal and without a need to
3384 	 * deal with raw packet data. F.e. even if we would pass buffers
3385 	 * here, the program still needs to call the bpf_lX_csum_replace()
3386 	 * helpers anyway. Plus, this way we keep also separation of
3387 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3388 	 * care of stores.
3389 	 *
3390 	 * Currently, additional options and extension header space are
3391 	 * not supported, but flags register is reserved so we can adapt
3392 	 * that. For offloads, we mark packet as dodgy, so that headers
3393 	 * need to be verified first.
3394 	 */
3395 	ret = bpf_skb_proto_xlat(skb, proto);
3396 	bpf_compute_data_pointers(skb);
3397 	return ret;
3398 }
3399 
3400 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3401 	.func		= bpf_skb_change_proto,
3402 	.gpl_only	= false,
3403 	.ret_type	= RET_INTEGER,
3404 	.arg1_type	= ARG_PTR_TO_CTX,
3405 	.arg2_type	= ARG_ANYTHING,
3406 	.arg3_type	= ARG_ANYTHING,
3407 };
3408 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3409 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3410 {
3411 	/* We only allow a restricted subset to be changed for now. */
3412 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3413 		     !skb_pkt_type_ok(pkt_type)))
3414 		return -EINVAL;
3415 
3416 	skb->pkt_type = pkt_type;
3417 	return 0;
3418 }
3419 
3420 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3421 	.func		= bpf_skb_change_type,
3422 	.gpl_only	= false,
3423 	.ret_type	= RET_INTEGER,
3424 	.arg1_type	= ARG_PTR_TO_CTX,
3425 	.arg2_type	= ARG_ANYTHING,
3426 };
3427 
bpf_skb_net_base_len(const struct sk_buff * skb)3428 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3429 {
3430 	switch (skb->protocol) {
3431 	case htons(ETH_P_IP):
3432 		return sizeof(struct iphdr);
3433 	case htons(ETH_P_IPV6):
3434 		return sizeof(struct ipv6hdr);
3435 	default:
3436 		return ~0U;
3437 	}
3438 }
3439 
3440 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3441 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3442 
3443 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3444 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3445 
3446 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3447 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3448 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3449 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3450 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3451 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3452 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3453 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3454 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3455 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3456 			    u64 flags)
3457 {
3458 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3459 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3460 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3461 	unsigned int gso_type = SKB_GSO_DODGY;
3462 	int ret;
3463 
3464 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3465 		/* udp gso_size delineates datagrams, only allow if fixed */
3466 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3467 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3468 			return -ENOTSUPP;
3469 	}
3470 
3471 	ret = skb_cow_head(skb, len_diff);
3472 	if (unlikely(ret < 0))
3473 		return ret;
3474 
3475 	if (encap) {
3476 		if (skb->protocol != htons(ETH_P_IP) &&
3477 		    skb->protocol != htons(ETH_P_IPV6))
3478 			return -ENOTSUPP;
3479 
3480 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3481 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3482 			return -EINVAL;
3483 
3484 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3485 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3486 			return -EINVAL;
3487 
3488 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3489 		    inner_mac_len < ETH_HLEN)
3490 			return -EINVAL;
3491 
3492 		if (skb->encapsulation)
3493 			return -EALREADY;
3494 
3495 		mac_len = skb->network_header - skb->mac_header;
3496 		inner_net = skb->network_header;
3497 		if (inner_mac_len > len_diff)
3498 			return -EINVAL;
3499 		inner_trans = skb->transport_header;
3500 	}
3501 
3502 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3503 	if (unlikely(ret < 0))
3504 		return ret;
3505 
3506 	if (encap) {
3507 		skb->inner_mac_header = inner_net - inner_mac_len;
3508 		skb->inner_network_header = inner_net;
3509 		skb->inner_transport_header = inner_trans;
3510 
3511 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3512 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3513 		else
3514 			skb_set_inner_protocol(skb, skb->protocol);
3515 
3516 		skb->encapsulation = 1;
3517 		skb_set_network_header(skb, mac_len);
3518 
3519 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3520 			gso_type |= SKB_GSO_UDP_TUNNEL;
3521 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3522 			gso_type |= SKB_GSO_GRE;
3523 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3524 			gso_type |= SKB_GSO_IPXIP6;
3525 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3526 			gso_type |= SKB_GSO_IPXIP4;
3527 
3528 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3529 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3530 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3531 					sizeof(struct ipv6hdr) :
3532 					sizeof(struct iphdr);
3533 
3534 			skb_set_transport_header(skb, mac_len + nh_len);
3535 		}
3536 
3537 		/* Match skb->protocol to new outer l3 protocol */
3538 		if (skb->protocol == htons(ETH_P_IP) &&
3539 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3540 			skb->protocol = htons(ETH_P_IPV6);
3541 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3542 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3543 			skb->protocol = htons(ETH_P_IP);
3544 	}
3545 
3546 	if (skb_is_gso(skb)) {
3547 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3548 
3549 		/* Header must be checked, and gso_segs recomputed. */
3550 		shinfo->gso_type |= gso_type;
3551 		shinfo->gso_segs = 0;
3552 
3553 		/* Due to header growth, MSS needs to be downgraded.
3554 		 * There is a BUG_ON() when segmenting the frag_list with
3555 		 * head_frag true, so linearize the skb after downgrading
3556 		 * the MSS.
3557 		 */
3558 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3559 			skb_decrease_gso_size(shinfo, len_diff);
3560 			if (shinfo->frag_list)
3561 				return skb_linearize(skb);
3562 		}
3563 	}
3564 
3565 	return 0;
3566 }
3567 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3568 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3569 			      u64 flags)
3570 {
3571 	int ret;
3572 
3573 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3574 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3575 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3576 		return -EINVAL;
3577 
3578 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3579 		/* udp gso_size delineates datagrams, only allow if fixed */
3580 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3581 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3582 			return -ENOTSUPP;
3583 	}
3584 
3585 	ret = skb_unclone(skb, GFP_ATOMIC);
3586 	if (unlikely(ret < 0))
3587 		return ret;
3588 
3589 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3590 	if (unlikely(ret < 0))
3591 		return ret;
3592 
3593 	/* Match skb->protocol to new outer l3 protocol */
3594 	if (skb->protocol == htons(ETH_P_IP) &&
3595 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3596 		skb->protocol = htons(ETH_P_IPV6);
3597 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3598 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3599 		skb->protocol = htons(ETH_P_IP);
3600 
3601 	if (skb_is_gso(skb)) {
3602 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3603 
3604 		/* Due to header shrink, MSS can be upgraded. */
3605 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3606 			skb_increase_gso_size(shinfo, len_diff);
3607 
3608 		/* Header must be checked, and gso_segs recomputed. */
3609 		shinfo->gso_type |= SKB_GSO_DODGY;
3610 		shinfo->gso_segs = 0;
3611 	}
3612 
3613 	return 0;
3614 }
3615 
3616 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3617 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3618 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3619 	   u32, mode, u64, flags)
3620 {
3621 	u32 len_diff_abs = abs(len_diff);
3622 	bool shrink = len_diff < 0;
3623 	int ret = 0;
3624 
3625 	if (unlikely(flags || mode))
3626 		return -EINVAL;
3627 	if (unlikely(len_diff_abs > 0xfffU))
3628 		return -EFAULT;
3629 
3630 	if (!shrink) {
3631 		ret = skb_cow(skb, len_diff);
3632 		if (unlikely(ret < 0))
3633 			return ret;
3634 		__skb_push(skb, len_diff_abs);
3635 		memset(skb->data, 0, len_diff_abs);
3636 	} else {
3637 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3638 			return -ENOMEM;
3639 		__skb_pull(skb, len_diff_abs);
3640 	}
3641 	if (tls_sw_has_ctx_rx(skb->sk)) {
3642 		struct strp_msg *rxm = strp_msg(skb);
3643 
3644 		rxm->full_len += len_diff;
3645 	}
3646 	return ret;
3647 }
3648 
3649 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3650 	.func		= sk_skb_adjust_room,
3651 	.gpl_only	= false,
3652 	.ret_type	= RET_INTEGER,
3653 	.arg1_type	= ARG_PTR_TO_CTX,
3654 	.arg2_type	= ARG_ANYTHING,
3655 	.arg3_type	= ARG_ANYTHING,
3656 	.arg4_type	= ARG_ANYTHING,
3657 };
3658 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3659 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3660 	   u32, mode, u64, flags)
3661 {
3662 	u32 len_cur, len_diff_abs = abs(len_diff);
3663 	u32 len_min = bpf_skb_net_base_len(skb);
3664 	u32 len_max = BPF_SKB_MAX_LEN;
3665 	__be16 proto = skb->protocol;
3666 	bool shrink = len_diff < 0;
3667 	u32 off;
3668 	int ret;
3669 
3670 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3671 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3672 		return -EINVAL;
3673 	if (unlikely(len_diff_abs > 0xfffU))
3674 		return -EFAULT;
3675 	if (unlikely(proto != htons(ETH_P_IP) &&
3676 		     proto != htons(ETH_P_IPV6)))
3677 		return -ENOTSUPP;
3678 
3679 	off = skb_mac_header_len(skb);
3680 	switch (mode) {
3681 	case BPF_ADJ_ROOM_NET:
3682 		off += bpf_skb_net_base_len(skb);
3683 		break;
3684 	case BPF_ADJ_ROOM_MAC:
3685 		break;
3686 	default:
3687 		return -ENOTSUPP;
3688 	}
3689 
3690 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3691 		if (!shrink)
3692 			return -EINVAL;
3693 
3694 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3695 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3696 			len_min = sizeof(struct iphdr);
3697 			break;
3698 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3699 			len_min = sizeof(struct ipv6hdr);
3700 			break;
3701 		default:
3702 			return -EINVAL;
3703 		}
3704 	}
3705 
3706 	len_cur = skb->len - skb_network_offset(skb);
3707 	if ((shrink && (len_diff_abs >= len_cur ||
3708 			len_cur - len_diff_abs < len_min)) ||
3709 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3710 			 !skb_is_gso(skb))))
3711 		return -ENOTSUPP;
3712 
3713 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3714 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3715 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3716 		__skb_reset_checksum_unnecessary(skb);
3717 
3718 	bpf_compute_data_pointers(skb);
3719 	return ret;
3720 }
3721 
3722 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3723 	.func		= bpf_skb_adjust_room,
3724 	.gpl_only	= false,
3725 	.ret_type	= RET_INTEGER,
3726 	.arg1_type	= ARG_PTR_TO_CTX,
3727 	.arg2_type	= ARG_ANYTHING,
3728 	.arg3_type	= ARG_ANYTHING,
3729 	.arg4_type	= ARG_ANYTHING,
3730 };
3731 
__bpf_skb_min_len(const struct sk_buff * skb)3732 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3733 {
3734 	int offset = skb_network_offset(skb);
3735 	u32 min_len = 0;
3736 
3737 	if (offset > 0)
3738 		min_len = offset;
3739 	if (skb_transport_header_was_set(skb)) {
3740 		offset = skb_transport_offset(skb);
3741 		if (offset > 0)
3742 			min_len = offset;
3743 	}
3744 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3745 		offset = skb_checksum_start_offset(skb) +
3746 			 skb->csum_offset + sizeof(__sum16);
3747 		if (offset > 0)
3748 			min_len = offset;
3749 	}
3750 	return min_len;
3751 }
3752 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3753 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3754 {
3755 	unsigned int old_len = skb->len;
3756 	int ret;
3757 
3758 	ret = __skb_grow_rcsum(skb, new_len);
3759 	if (!ret)
3760 		memset(skb->data + old_len, 0, new_len - old_len);
3761 	return ret;
3762 }
3763 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3764 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3765 {
3766 	return __skb_trim_rcsum(skb, new_len);
3767 }
3768 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3769 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3770 					u64 flags)
3771 {
3772 	u32 max_len = BPF_SKB_MAX_LEN;
3773 	u32 min_len = __bpf_skb_min_len(skb);
3774 	int ret;
3775 
3776 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3777 		return -EINVAL;
3778 	if (skb->encapsulation)
3779 		return -ENOTSUPP;
3780 
3781 	/* The basic idea of this helper is that it's performing the
3782 	 * needed work to either grow or trim an skb, and eBPF program
3783 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3784 	 * bpf_lX_csum_replace() and others rather than passing a raw
3785 	 * buffer here. This one is a slow path helper and intended
3786 	 * for replies with control messages.
3787 	 *
3788 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3789 	 * minimal and without protocol specifics so that we are able
3790 	 * to separate concerns as in bpf_skb_store_bytes() should only
3791 	 * be the one responsible for writing buffers.
3792 	 *
3793 	 * It's really expected to be a slow path operation here for
3794 	 * control message replies, so we're implicitly linearizing,
3795 	 * uncloning and drop offloads from the skb by this.
3796 	 */
3797 	ret = __bpf_try_make_writable(skb, skb->len);
3798 	if (!ret) {
3799 		if (new_len > skb->len)
3800 			ret = bpf_skb_grow_rcsum(skb, new_len);
3801 		else if (new_len < skb->len)
3802 			ret = bpf_skb_trim_rcsum(skb, new_len);
3803 		if (!ret && skb_is_gso(skb))
3804 			skb_gso_reset(skb);
3805 	}
3806 	return ret;
3807 }
3808 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3809 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3810 	   u64, flags)
3811 {
3812 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3813 
3814 	bpf_compute_data_pointers(skb);
3815 	return ret;
3816 }
3817 
3818 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3819 	.func		= bpf_skb_change_tail,
3820 	.gpl_only	= false,
3821 	.ret_type	= RET_INTEGER,
3822 	.arg1_type	= ARG_PTR_TO_CTX,
3823 	.arg2_type	= ARG_ANYTHING,
3824 	.arg3_type	= ARG_ANYTHING,
3825 };
3826 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3827 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3828 	   u64, flags)
3829 {
3830 	return __bpf_skb_change_tail(skb, new_len, flags);
3831 }
3832 
3833 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3834 	.func		= sk_skb_change_tail,
3835 	.gpl_only	= false,
3836 	.ret_type	= RET_INTEGER,
3837 	.arg1_type	= ARG_PTR_TO_CTX,
3838 	.arg2_type	= ARG_ANYTHING,
3839 	.arg3_type	= ARG_ANYTHING,
3840 };
3841 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3842 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3843 					u64 flags)
3844 {
3845 	u32 max_len = BPF_SKB_MAX_LEN;
3846 	u32 new_len = skb->len + head_room;
3847 	int ret;
3848 
3849 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3850 		     new_len < skb->len))
3851 		return -EINVAL;
3852 
3853 	ret = skb_cow(skb, head_room);
3854 	if (likely(!ret)) {
3855 		/* Idea for this helper is that we currently only
3856 		 * allow to expand on mac header. This means that
3857 		 * skb->protocol network header, etc, stay as is.
3858 		 * Compared to bpf_skb_change_tail(), we're more
3859 		 * flexible due to not needing to linearize or
3860 		 * reset GSO. Intention for this helper is to be
3861 		 * used by an L3 skb that needs to push mac header
3862 		 * for redirection into L2 device.
3863 		 */
3864 		__skb_push(skb, head_room);
3865 		memset(skb->data, 0, head_room);
3866 		skb_reset_mac_header(skb);
3867 		skb_reset_mac_len(skb);
3868 	}
3869 
3870 	return ret;
3871 }
3872 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3873 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3874 	   u64, flags)
3875 {
3876 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3877 
3878 	bpf_compute_data_pointers(skb);
3879 	return ret;
3880 }
3881 
3882 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3883 	.func		= bpf_skb_change_head,
3884 	.gpl_only	= false,
3885 	.ret_type	= RET_INTEGER,
3886 	.arg1_type	= ARG_PTR_TO_CTX,
3887 	.arg2_type	= ARG_ANYTHING,
3888 	.arg3_type	= ARG_ANYTHING,
3889 };
3890 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3891 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3892 	   u64, flags)
3893 {
3894 	return __bpf_skb_change_head(skb, head_room, flags);
3895 }
3896 
3897 static const struct bpf_func_proto sk_skb_change_head_proto = {
3898 	.func		= sk_skb_change_head,
3899 	.gpl_only	= false,
3900 	.ret_type	= RET_INTEGER,
3901 	.arg1_type	= ARG_PTR_TO_CTX,
3902 	.arg2_type	= ARG_ANYTHING,
3903 	.arg3_type	= ARG_ANYTHING,
3904 };
3905 
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3906 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3907 {
3908 	return xdp_get_buff_len(xdp);
3909 }
3910 
3911 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3912 	.func		= bpf_xdp_get_buff_len,
3913 	.gpl_only	= false,
3914 	.ret_type	= RET_INTEGER,
3915 	.arg1_type	= ARG_PTR_TO_CTX,
3916 };
3917 
3918 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3919 
3920 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3921 	.func		= bpf_xdp_get_buff_len,
3922 	.gpl_only	= false,
3923 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3924 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3925 };
3926 
xdp_get_metalen(const struct xdp_buff * xdp)3927 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3928 {
3929 	return xdp_data_meta_unsupported(xdp) ? 0 :
3930 	       xdp->data - xdp->data_meta;
3931 }
3932 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3933 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3934 {
3935 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3936 	unsigned long metalen = xdp_get_metalen(xdp);
3937 	void *data_start = xdp_frame_end + metalen;
3938 	void *data = xdp->data + offset;
3939 
3940 	if (unlikely(data < data_start ||
3941 		     data > xdp->data_end - ETH_HLEN))
3942 		return -EINVAL;
3943 
3944 	if (metalen)
3945 		memmove(xdp->data_meta + offset,
3946 			xdp->data_meta, metalen);
3947 	xdp->data_meta += offset;
3948 	xdp->data = data;
3949 
3950 	return 0;
3951 }
3952 
3953 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3954 	.func		= bpf_xdp_adjust_head,
3955 	.gpl_only	= false,
3956 	.ret_type	= RET_INTEGER,
3957 	.arg1_type	= ARG_PTR_TO_CTX,
3958 	.arg2_type	= ARG_ANYTHING,
3959 };
3960 
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3961 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3962 		      void *buf, unsigned long len, bool flush)
3963 {
3964 	unsigned long ptr_len, ptr_off = 0;
3965 	skb_frag_t *next_frag, *end_frag;
3966 	struct skb_shared_info *sinfo;
3967 	void *src, *dst;
3968 	u8 *ptr_buf;
3969 
3970 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3971 		src = flush ? buf : xdp->data + off;
3972 		dst = flush ? xdp->data + off : buf;
3973 		memcpy(dst, src, len);
3974 		return;
3975 	}
3976 
3977 	sinfo = xdp_get_shared_info_from_buff(xdp);
3978 	end_frag = &sinfo->frags[sinfo->nr_frags];
3979 	next_frag = &sinfo->frags[0];
3980 
3981 	ptr_len = xdp->data_end - xdp->data;
3982 	ptr_buf = xdp->data;
3983 
3984 	while (true) {
3985 		if (off < ptr_off + ptr_len) {
3986 			unsigned long copy_off = off - ptr_off;
3987 			unsigned long copy_len = min(len, ptr_len - copy_off);
3988 
3989 			src = flush ? buf : ptr_buf + copy_off;
3990 			dst = flush ? ptr_buf + copy_off : buf;
3991 			memcpy(dst, src, copy_len);
3992 
3993 			off += copy_len;
3994 			len -= copy_len;
3995 			buf += copy_len;
3996 		}
3997 
3998 		if (!len || next_frag == end_frag)
3999 			break;
4000 
4001 		ptr_off += ptr_len;
4002 		ptr_buf = skb_frag_address(next_frag);
4003 		ptr_len = skb_frag_size(next_frag);
4004 		next_frag++;
4005 	}
4006 }
4007 
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)4008 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4009 {
4010 	u32 size = xdp->data_end - xdp->data;
4011 	struct skb_shared_info *sinfo;
4012 	void *addr = xdp->data;
4013 	int i;
4014 
4015 	if (unlikely(offset > 0xffff || len > 0xffff))
4016 		return ERR_PTR(-EFAULT);
4017 
4018 	if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4019 		return ERR_PTR(-EINVAL);
4020 
4021 	if (likely(offset < size)) /* linear area */
4022 		goto out;
4023 
4024 	sinfo = xdp_get_shared_info_from_buff(xdp);
4025 	offset -= size;
4026 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4027 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4028 
4029 		if  (offset < frag_size) {
4030 			addr = skb_frag_address(&sinfo->frags[i]);
4031 			size = frag_size;
4032 			break;
4033 		}
4034 		offset -= frag_size;
4035 	}
4036 out:
4037 	return offset + len <= size ? addr + offset : NULL;
4038 }
4039 
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4040 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4041 	   void *, buf, u32, len)
4042 {
4043 	void *ptr;
4044 
4045 	ptr = bpf_xdp_pointer(xdp, offset, len);
4046 	if (IS_ERR(ptr))
4047 		return PTR_ERR(ptr);
4048 
4049 	if (!ptr)
4050 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4051 	else
4052 		memcpy(buf, ptr, len);
4053 
4054 	return 0;
4055 }
4056 
4057 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4058 	.func		= bpf_xdp_load_bytes,
4059 	.gpl_only	= false,
4060 	.ret_type	= RET_INTEGER,
4061 	.arg1_type	= ARG_PTR_TO_CTX,
4062 	.arg2_type	= ARG_ANYTHING,
4063 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4064 	.arg4_type	= ARG_CONST_SIZE,
4065 };
4066 
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4067 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4068 {
4069 	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4070 }
4071 
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4072 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4073 	   void *, buf, u32, len)
4074 {
4075 	void *ptr;
4076 
4077 	ptr = bpf_xdp_pointer(xdp, offset, len);
4078 	if (IS_ERR(ptr))
4079 		return PTR_ERR(ptr);
4080 
4081 	if (!ptr)
4082 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4083 	else
4084 		memcpy(ptr, buf, len);
4085 
4086 	return 0;
4087 }
4088 
4089 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4090 	.func		= bpf_xdp_store_bytes,
4091 	.gpl_only	= false,
4092 	.ret_type	= RET_INTEGER,
4093 	.arg1_type	= ARG_PTR_TO_CTX,
4094 	.arg2_type	= ARG_ANYTHING,
4095 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4096 	.arg4_type	= ARG_CONST_SIZE,
4097 };
4098 
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4099 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4100 {
4101 	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4102 }
4103 
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4104 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4105 {
4106 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4107 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4108 	struct xdp_rxq_info *rxq = xdp->rxq;
4109 	unsigned int tailroom;
4110 
4111 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4112 		return -EOPNOTSUPP;
4113 
4114 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4115 	if (unlikely(offset > tailroom))
4116 		return -EINVAL;
4117 
4118 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4119 	skb_frag_size_add(frag, offset);
4120 	sinfo->xdp_frags_size += offset;
4121 	if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4122 		xsk_buff_get_tail(xdp)->data_end += offset;
4123 
4124 	return 0;
4125 }
4126 
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,struct xdp_mem_info * mem_info,bool release)4127 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4128 				   struct xdp_mem_info *mem_info, bool release)
4129 {
4130 	struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4131 
4132 	if (release) {
4133 		xsk_buff_del_tail(zc_frag);
4134 		__xdp_return(NULL, mem_info, false, zc_frag);
4135 	} else {
4136 		zc_frag->data_end -= shrink;
4137 	}
4138 }
4139 
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink)4140 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4141 				int shrink)
4142 {
4143 	struct xdp_mem_info *mem_info = &xdp->rxq->mem;
4144 	bool release = skb_frag_size(frag) == shrink;
4145 
4146 	if (mem_info->type == MEM_TYPE_XSK_BUFF_POOL) {
4147 		bpf_xdp_shrink_data_zc(xdp, shrink, mem_info, release);
4148 		goto out;
4149 	}
4150 
4151 	if (release) {
4152 		struct page *page = skb_frag_page(frag);
4153 
4154 		__xdp_return(page_address(page), mem_info, false, NULL);
4155 	}
4156 
4157 out:
4158 	return release;
4159 }
4160 
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4161 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4162 {
4163 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4164 	int i, n_frags_free = 0, len_free = 0;
4165 
4166 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4167 		return -EINVAL;
4168 
4169 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4170 		skb_frag_t *frag = &sinfo->frags[i];
4171 		int shrink = min_t(int, offset, skb_frag_size(frag));
4172 
4173 		len_free += shrink;
4174 		offset -= shrink;
4175 		if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4176 			n_frags_free++;
4177 		} else {
4178 			skb_frag_size_sub(frag, shrink);
4179 			break;
4180 		}
4181 	}
4182 	sinfo->nr_frags -= n_frags_free;
4183 	sinfo->xdp_frags_size -= len_free;
4184 
4185 	if (unlikely(!sinfo->nr_frags)) {
4186 		xdp_buff_clear_frags_flag(xdp);
4187 		xdp->data_end -= offset;
4188 	}
4189 
4190 	return 0;
4191 }
4192 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4193 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4194 {
4195 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4196 	void *data_end = xdp->data_end + offset;
4197 
4198 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4199 		if (offset < 0)
4200 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4201 
4202 		return bpf_xdp_frags_increase_tail(xdp, offset);
4203 	}
4204 
4205 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4206 	if (unlikely(data_end > data_hard_end))
4207 		return -EINVAL;
4208 
4209 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4210 		return -EINVAL;
4211 
4212 	/* Clear memory area on grow, can contain uninit kernel memory */
4213 	if (offset > 0)
4214 		memset(xdp->data_end, 0, offset);
4215 
4216 	xdp->data_end = data_end;
4217 
4218 	return 0;
4219 }
4220 
4221 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4222 	.func		= bpf_xdp_adjust_tail,
4223 	.gpl_only	= false,
4224 	.ret_type	= RET_INTEGER,
4225 	.arg1_type	= ARG_PTR_TO_CTX,
4226 	.arg2_type	= ARG_ANYTHING,
4227 };
4228 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4229 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4230 {
4231 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4232 	void *meta = xdp->data_meta + offset;
4233 	unsigned long metalen = xdp->data - meta;
4234 
4235 	if (xdp_data_meta_unsupported(xdp))
4236 		return -ENOTSUPP;
4237 	if (unlikely(meta < xdp_frame_end ||
4238 		     meta > xdp->data))
4239 		return -EINVAL;
4240 	if (unlikely(xdp_metalen_invalid(metalen)))
4241 		return -EACCES;
4242 
4243 	xdp->data_meta = meta;
4244 
4245 	return 0;
4246 }
4247 
4248 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4249 	.func		= bpf_xdp_adjust_meta,
4250 	.gpl_only	= false,
4251 	.ret_type	= RET_INTEGER,
4252 	.arg1_type	= ARG_PTR_TO_CTX,
4253 	.arg2_type	= ARG_ANYTHING,
4254 };
4255 
4256 /**
4257  * DOC: xdp redirect
4258  *
4259  * XDP_REDIRECT works by a three-step process, implemented in the functions
4260  * below:
4261  *
4262  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4263  *    of the redirect and store it (along with some other metadata) in a per-CPU
4264  *    struct bpf_redirect_info.
4265  *
4266  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4267  *    call xdp_do_redirect() which will use the information in struct
4268  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4269  *    bulk queue structure.
4270  *
4271  * 3. Before exiting its NAPI poll loop, the driver will call
4272  *    xdp_do_flush(), which will flush all the different bulk queues,
4273  *    thus completing the redirect. Note that xdp_do_flush() must be
4274  *    called before napi_complete_done() in the driver, as the
4275  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4276  *    through to the xdp_do_flush() call for RCU protection of all
4277  *    in-kernel data structures.
4278  */
4279 /*
4280  * Pointers to the map entries will be kept around for this whole sequence of
4281  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4282  * the core code; instead, the RCU protection relies on everything happening
4283  * inside a single NAPI poll sequence, which means it's between a pair of calls
4284  * to local_bh_disable()/local_bh_enable().
4285  *
4286  * The map entries are marked as __rcu and the map code makes sure to
4287  * dereference those pointers with rcu_dereference_check() in a way that works
4288  * for both sections that to hold an rcu_read_lock() and sections that are
4289  * called from NAPI without a separate rcu_read_lock(). The code below does not
4290  * use RCU annotations, but relies on those in the map code.
4291  */
xdp_do_flush(void)4292 void xdp_do_flush(void)
4293 {
4294 	__dev_flush();
4295 	__cpu_map_flush();
4296 	__xsk_map_flush();
4297 }
4298 EXPORT_SYMBOL_GPL(xdp_do_flush);
4299 
bpf_clear_redirect_map(struct bpf_map * map)4300 void bpf_clear_redirect_map(struct bpf_map *map)
4301 {
4302 	struct bpf_redirect_info *ri;
4303 	int cpu;
4304 
4305 	for_each_possible_cpu(cpu) {
4306 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4307 		/* Avoid polluting remote cacheline due to writes if
4308 		 * not needed. Once we pass this test, we need the
4309 		 * cmpxchg() to make sure it hasn't been changed in
4310 		 * the meantime by remote CPU.
4311 		 */
4312 		if (unlikely(READ_ONCE(ri->map) == map))
4313 			cmpxchg(&ri->map, map, NULL);
4314 	}
4315 }
4316 
4317 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4318 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4319 
xdp_master_redirect(struct xdp_buff * xdp)4320 u32 xdp_master_redirect(struct xdp_buff *xdp)
4321 {
4322 	struct net_device *master, *slave;
4323 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4324 
4325 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4326 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4327 	if (slave && slave != xdp->rxq->dev) {
4328 		/* The target device is different from the receiving device, so
4329 		 * redirect it to the new device.
4330 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4331 		 * drivers to unmap the packet from their rx ring.
4332 		 */
4333 		ri->tgt_index = slave->ifindex;
4334 		ri->map_id = INT_MAX;
4335 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4336 		return XDP_REDIRECT;
4337 	}
4338 	return XDP_TX;
4339 }
4340 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4341 
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4342 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4343 					struct net_device *dev,
4344 					struct xdp_buff *xdp,
4345 					struct bpf_prog *xdp_prog)
4346 {
4347 	enum bpf_map_type map_type = ri->map_type;
4348 	void *fwd = ri->tgt_value;
4349 	u32 map_id = ri->map_id;
4350 	int err;
4351 
4352 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4353 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4354 
4355 	err = __xsk_map_redirect(fwd, xdp);
4356 	if (unlikely(err))
4357 		goto err;
4358 
4359 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4360 	return 0;
4361 err:
4362 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4363 	return err;
4364 }
4365 
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4366 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4367 						   struct net_device *dev,
4368 						   struct xdp_frame *xdpf,
4369 						   struct bpf_prog *xdp_prog)
4370 {
4371 	enum bpf_map_type map_type = ri->map_type;
4372 	void *fwd = ri->tgt_value;
4373 	u32 map_id = ri->map_id;
4374 	u32 flags = ri->flags;
4375 	struct bpf_map *map;
4376 	int err;
4377 
4378 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4379 	ri->flags = 0;
4380 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4381 
4382 	if (unlikely(!xdpf)) {
4383 		err = -EOVERFLOW;
4384 		goto err;
4385 	}
4386 
4387 	switch (map_type) {
4388 	case BPF_MAP_TYPE_DEVMAP:
4389 		fallthrough;
4390 	case BPF_MAP_TYPE_DEVMAP_HASH:
4391 		if (unlikely(flags & BPF_F_BROADCAST)) {
4392 			map = READ_ONCE(ri->map);
4393 
4394 			/* The map pointer is cleared when the map is being torn
4395 			 * down by bpf_clear_redirect_map()
4396 			 */
4397 			if (unlikely(!map)) {
4398 				err = -ENOENT;
4399 				break;
4400 			}
4401 
4402 			WRITE_ONCE(ri->map, NULL);
4403 			err = dev_map_enqueue_multi(xdpf, dev, map,
4404 						    flags & BPF_F_EXCLUDE_INGRESS);
4405 		} else {
4406 			err = dev_map_enqueue(fwd, xdpf, dev);
4407 		}
4408 		break;
4409 	case BPF_MAP_TYPE_CPUMAP:
4410 		err = cpu_map_enqueue(fwd, xdpf, dev);
4411 		break;
4412 	case BPF_MAP_TYPE_UNSPEC:
4413 		if (map_id == INT_MAX) {
4414 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4415 			if (unlikely(!fwd)) {
4416 				err = -EINVAL;
4417 				break;
4418 			}
4419 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4420 			break;
4421 		}
4422 		fallthrough;
4423 	default:
4424 		err = -EBADRQC;
4425 	}
4426 
4427 	if (unlikely(err))
4428 		goto err;
4429 
4430 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4431 	return 0;
4432 err:
4433 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4434 	return err;
4435 }
4436 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4437 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4438 		    struct bpf_prog *xdp_prog)
4439 {
4440 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4441 	enum bpf_map_type map_type = ri->map_type;
4442 
4443 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4444 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4445 
4446 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4447 				       xdp_prog);
4448 }
4449 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4450 
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4451 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4452 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4453 {
4454 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4455 	enum bpf_map_type map_type = ri->map_type;
4456 
4457 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4458 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4459 
4460 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4461 }
4462 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4463 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4464 static int xdp_do_generic_redirect_map(struct net_device *dev,
4465 				       struct sk_buff *skb,
4466 				       struct xdp_buff *xdp,
4467 				       struct bpf_prog *xdp_prog, void *fwd,
4468 				       enum bpf_map_type map_type, u32 map_id,
4469 				       u32 flags)
4470 {
4471 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4472 	struct bpf_map *map;
4473 	int err;
4474 
4475 	switch (map_type) {
4476 	case BPF_MAP_TYPE_DEVMAP:
4477 		fallthrough;
4478 	case BPF_MAP_TYPE_DEVMAP_HASH:
4479 		if (unlikely(flags & BPF_F_BROADCAST)) {
4480 			map = READ_ONCE(ri->map);
4481 
4482 			/* The map pointer is cleared when the map is being torn
4483 			 * down by bpf_clear_redirect_map()
4484 			 */
4485 			if (unlikely(!map)) {
4486 				err = -ENOENT;
4487 				break;
4488 			}
4489 
4490 			WRITE_ONCE(ri->map, NULL);
4491 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4492 						     flags & BPF_F_EXCLUDE_INGRESS);
4493 		} else {
4494 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4495 		}
4496 		if (unlikely(err))
4497 			goto err;
4498 		break;
4499 	case BPF_MAP_TYPE_XSKMAP:
4500 		err = xsk_generic_rcv(fwd, xdp);
4501 		if (err)
4502 			goto err;
4503 		consume_skb(skb);
4504 		break;
4505 	case BPF_MAP_TYPE_CPUMAP:
4506 		err = cpu_map_generic_redirect(fwd, skb);
4507 		if (unlikely(err))
4508 			goto err;
4509 		break;
4510 	default:
4511 		err = -EBADRQC;
4512 		goto err;
4513 	}
4514 
4515 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4516 	return 0;
4517 err:
4518 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4519 	return err;
4520 }
4521 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4522 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4523 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4524 {
4525 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4526 	enum bpf_map_type map_type = ri->map_type;
4527 	void *fwd = ri->tgt_value;
4528 	u32 map_id = ri->map_id;
4529 	u32 flags = ri->flags;
4530 	int err;
4531 
4532 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4533 	ri->flags = 0;
4534 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4535 
4536 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4537 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4538 		if (unlikely(!fwd)) {
4539 			err = -EINVAL;
4540 			goto err;
4541 		}
4542 
4543 		err = xdp_ok_fwd_dev(fwd, skb->len);
4544 		if (unlikely(err))
4545 			goto err;
4546 
4547 		skb->dev = fwd;
4548 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4549 		generic_xdp_tx(skb, xdp_prog);
4550 		return 0;
4551 	}
4552 
4553 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4554 err:
4555 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4556 	return err;
4557 }
4558 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4559 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4560 {
4561 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4562 
4563 	if (unlikely(flags))
4564 		return XDP_ABORTED;
4565 
4566 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4567 	 * by map_idr) is used for ifindex based XDP redirect.
4568 	 */
4569 	ri->tgt_index = ifindex;
4570 	ri->map_id = INT_MAX;
4571 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4572 
4573 	return XDP_REDIRECT;
4574 }
4575 
4576 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4577 	.func           = bpf_xdp_redirect,
4578 	.gpl_only       = false,
4579 	.ret_type       = RET_INTEGER,
4580 	.arg1_type      = ARG_ANYTHING,
4581 	.arg2_type      = ARG_ANYTHING,
4582 };
4583 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4584 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4585 	   u64, flags)
4586 {
4587 	return map->ops->map_redirect(map, key, flags);
4588 }
4589 
4590 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4591 	.func           = bpf_xdp_redirect_map,
4592 	.gpl_only       = false,
4593 	.ret_type       = RET_INTEGER,
4594 	.arg1_type      = ARG_CONST_MAP_PTR,
4595 	.arg2_type      = ARG_ANYTHING,
4596 	.arg3_type      = ARG_ANYTHING,
4597 };
4598 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4599 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4600 				  unsigned long off, unsigned long len)
4601 {
4602 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4603 
4604 	if (unlikely(!ptr))
4605 		return len;
4606 	if (ptr != dst_buff)
4607 		memcpy(dst_buff, ptr, len);
4608 
4609 	return 0;
4610 }
4611 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4612 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4613 	   u64, flags, void *, meta, u64, meta_size)
4614 {
4615 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4616 
4617 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4618 		return -EINVAL;
4619 	if (unlikely(!skb || skb_size > skb->len))
4620 		return -EFAULT;
4621 
4622 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4623 				bpf_skb_copy);
4624 }
4625 
4626 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4627 	.func		= bpf_skb_event_output,
4628 	.gpl_only	= true,
4629 	.ret_type	= RET_INTEGER,
4630 	.arg1_type	= ARG_PTR_TO_CTX,
4631 	.arg2_type	= ARG_CONST_MAP_PTR,
4632 	.arg3_type	= ARG_ANYTHING,
4633 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4634 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4635 };
4636 
4637 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4638 
4639 const struct bpf_func_proto bpf_skb_output_proto = {
4640 	.func		= bpf_skb_event_output,
4641 	.gpl_only	= true,
4642 	.ret_type	= RET_INTEGER,
4643 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4644 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4645 	.arg2_type	= ARG_CONST_MAP_PTR,
4646 	.arg3_type	= ARG_ANYTHING,
4647 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4648 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4649 };
4650 
bpf_tunnel_key_af(u64 flags)4651 static unsigned short bpf_tunnel_key_af(u64 flags)
4652 {
4653 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4654 }
4655 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4656 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4657 	   u32, size, u64, flags)
4658 {
4659 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4660 	u8 compat[sizeof(struct bpf_tunnel_key)];
4661 	void *to_orig = to;
4662 	int err;
4663 
4664 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4665 					 BPF_F_TUNINFO_FLAGS)))) {
4666 		err = -EINVAL;
4667 		goto err_clear;
4668 	}
4669 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4670 		err = -EPROTO;
4671 		goto err_clear;
4672 	}
4673 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4674 		err = -EINVAL;
4675 		switch (size) {
4676 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4677 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4678 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4679 			goto set_compat;
4680 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4681 			/* Fixup deprecated structure layouts here, so we have
4682 			 * a common path later on.
4683 			 */
4684 			if (ip_tunnel_info_af(info) != AF_INET)
4685 				goto err_clear;
4686 set_compat:
4687 			to = (struct bpf_tunnel_key *)compat;
4688 			break;
4689 		default:
4690 			goto err_clear;
4691 		}
4692 	}
4693 
4694 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4695 	to->tunnel_tos = info->key.tos;
4696 	to->tunnel_ttl = info->key.ttl;
4697 	if (flags & BPF_F_TUNINFO_FLAGS)
4698 		to->tunnel_flags = info->key.tun_flags;
4699 	else
4700 		to->tunnel_ext = 0;
4701 
4702 	if (flags & BPF_F_TUNINFO_IPV6) {
4703 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4704 		       sizeof(to->remote_ipv6));
4705 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4706 		       sizeof(to->local_ipv6));
4707 		to->tunnel_label = be32_to_cpu(info->key.label);
4708 	} else {
4709 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4710 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4711 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4712 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4713 		to->tunnel_label = 0;
4714 	}
4715 
4716 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4717 		memcpy(to_orig, to, size);
4718 
4719 	return 0;
4720 err_clear:
4721 	memset(to_orig, 0, size);
4722 	return err;
4723 }
4724 
4725 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4726 	.func		= bpf_skb_get_tunnel_key,
4727 	.gpl_only	= false,
4728 	.ret_type	= RET_INTEGER,
4729 	.arg1_type	= ARG_PTR_TO_CTX,
4730 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4731 	.arg3_type	= ARG_CONST_SIZE,
4732 	.arg4_type	= ARG_ANYTHING,
4733 };
4734 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4735 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4736 {
4737 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4738 	int err;
4739 
4740 	if (unlikely(!info ||
4741 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4742 		err = -ENOENT;
4743 		goto err_clear;
4744 	}
4745 	if (unlikely(size < info->options_len)) {
4746 		err = -ENOMEM;
4747 		goto err_clear;
4748 	}
4749 
4750 	ip_tunnel_info_opts_get(to, info);
4751 	if (size > info->options_len)
4752 		memset(to + info->options_len, 0, size - info->options_len);
4753 
4754 	return info->options_len;
4755 err_clear:
4756 	memset(to, 0, size);
4757 	return err;
4758 }
4759 
4760 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4761 	.func		= bpf_skb_get_tunnel_opt,
4762 	.gpl_only	= false,
4763 	.ret_type	= RET_INTEGER,
4764 	.arg1_type	= ARG_PTR_TO_CTX,
4765 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4766 	.arg3_type	= ARG_CONST_SIZE,
4767 };
4768 
4769 static struct metadata_dst __percpu *md_dst;
4770 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4771 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4772 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4773 {
4774 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4775 	u8 compat[sizeof(struct bpf_tunnel_key)];
4776 	struct ip_tunnel_info *info;
4777 
4778 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4779 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4780 			       BPF_F_NO_TUNNEL_KEY)))
4781 		return -EINVAL;
4782 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4783 		switch (size) {
4784 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4785 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4786 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4787 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4788 			/* Fixup deprecated structure layouts here, so we have
4789 			 * a common path later on.
4790 			 */
4791 			memcpy(compat, from, size);
4792 			memset(compat + size, 0, sizeof(compat) - size);
4793 			from = (const struct bpf_tunnel_key *) compat;
4794 			break;
4795 		default:
4796 			return -EINVAL;
4797 		}
4798 	}
4799 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4800 		     from->tunnel_ext))
4801 		return -EINVAL;
4802 
4803 	skb_dst_drop(skb);
4804 	dst_hold((struct dst_entry *) md);
4805 	skb_dst_set(skb, (struct dst_entry *) md);
4806 
4807 	info = &md->u.tun_info;
4808 	memset(info, 0, sizeof(*info));
4809 	info->mode = IP_TUNNEL_INFO_TX;
4810 
4811 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4812 	if (flags & BPF_F_DONT_FRAGMENT)
4813 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4814 	if (flags & BPF_F_ZERO_CSUM_TX)
4815 		info->key.tun_flags &= ~TUNNEL_CSUM;
4816 	if (flags & BPF_F_SEQ_NUMBER)
4817 		info->key.tun_flags |= TUNNEL_SEQ;
4818 	if (flags & BPF_F_NO_TUNNEL_KEY)
4819 		info->key.tun_flags &= ~TUNNEL_KEY;
4820 
4821 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4822 	info->key.tos = from->tunnel_tos;
4823 	info->key.ttl = from->tunnel_ttl;
4824 
4825 	if (flags & BPF_F_TUNINFO_IPV6) {
4826 		info->mode |= IP_TUNNEL_INFO_IPV6;
4827 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4828 		       sizeof(from->remote_ipv6));
4829 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4830 		       sizeof(from->local_ipv6));
4831 		info->key.label = cpu_to_be32(from->tunnel_label) &
4832 				  IPV6_FLOWLABEL_MASK;
4833 	} else {
4834 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4835 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4836 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4837 	}
4838 
4839 	return 0;
4840 }
4841 
4842 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4843 	.func		= bpf_skb_set_tunnel_key,
4844 	.gpl_only	= false,
4845 	.ret_type	= RET_INTEGER,
4846 	.arg1_type	= ARG_PTR_TO_CTX,
4847 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4848 	.arg3_type	= ARG_CONST_SIZE,
4849 	.arg4_type	= ARG_ANYTHING,
4850 };
4851 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4852 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4853 	   const u8 *, from, u32, size)
4854 {
4855 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4856 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4857 
4858 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4859 		return -EINVAL;
4860 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4861 		return -ENOMEM;
4862 
4863 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4864 
4865 	return 0;
4866 }
4867 
4868 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4869 	.func		= bpf_skb_set_tunnel_opt,
4870 	.gpl_only	= false,
4871 	.ret_type	= RET_INTEGER,
4872 	.arg1_type	= ARG_PTR_TO_CTX,
4873 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4874 	.arg3_type	= ARG_CONST_SIZE,
4875 };
4876 
4877 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4878 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4879 {
4880 	if (!md_dst) {
4881 		struct metadata_dst __percpu *tmp;
4882 
4883 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4884 						METADATA_IP_TUNNEL,
4885 						GFP_KERNEL);
4886 		if (!tmp)
4887 			return NULL;
4888 		if (cmpxchg(&md_dst, NULL, tmp))
4889 			metadata_dst_free_percpu(tmp);
4890 	}
4891 
4892 	switch (which) {
4893 	case BPF_FUNC_skb_set_tunnel_key:
4894 		return &bpf_skb_set_tunnel_key_proto;
4895 	case BPF_FUNC_skb_set_tunnel_opt:
4896 		return &bpf_skb_set_tunnel_opt_proto;
4897 	default:
4898 		return NULL;
4899 	}
4900 }
4901 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4902 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4903 	   u32, idx)
4904 {
4905 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4906 	struct cgroup *cgrp;
4907 	struct sock *sk;
4908 
4909 	sk = skb_to_full_sk(skb);
4910 	if (!sk || !sk_fullsock(sk))
4911 		return -ENOENT;
4912 	if (unlikely(idx >= array->map.max_entries))
4913 		return -E2BIG;
4914 
4915 	cgrp = READ_ONCE(array->ptrs[idx]);
4916 	if (unlikely(!cgrp))
4917 		return -EAGAIN;
4918 
4919 	return sk_under_cgroup_hierarchy(sk, cgrp);
4920 }
4921 
4922 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4923 	.func		= bpf_skb_under_cgroup,
4924 	.gpl_only	= false,
4925 	.ret_type	= RET_INTEGER,
4926 	.arg1_type	= ARG_PTR_TO_CTX,
4927 	.arg2_type	= ARG_CONST_MAP_PTR,
4928 	.arg3_type	= ARG_ANYTHING,
4929 };
4930 
4931 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4932 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4933 {
4934 	struct cgroup *cgrp;
4935 
4936 	sk = sk_to_full_sk(sk);
4937 	if (!sk || !sk_fullsock(sk))
4938 		return 0;
4939 
4940 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4941 	return cgroup_id(cgrp);
4942 }
4943 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4944 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4945 {
4946 	return __bpf_sk_cgroup_id(skb->sk);
4947 }
4948 
4949 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4950 	.func           = bpf_skb_cgroup_id,
4951 	.gpl_only       = false,
4952 	.ret_type       = RET_INTEGER,
4953 	.arg1_type      = ARG_PTR_TO_CTX,
4954 };
4955 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4956 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4957 					      int ancestor_level)
4958 {
4959 	struct cgroup *ancestor;
4960 	struct cgroup *cgrp;
4961 
4962 	sk = sk_to_full_sk(sk);
4963 	if (!sk || !sk_fullsock(sk))
4964 		return 0;
4965 
4966 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4967 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4968 	if (!ancestor)
4969 		return 0;
4970 
4971 	return cgroup_id(ancestor);
4972 }
4973 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4974 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4975 	   ancestor_level)
4976 {
4977 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4978 }
4979 
4980 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4981 	.func           = bpf_skb_ancestor_cgroup_id,
4982 	.gpl_only       = false,
4983 	.ret_type       = RET_INTEGER,
4984 	.arg1_type      = ARG_PTR_TO_CTX,
4985 	.arg2_type      = ARG_ANYTHING,
4986 };
4987 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)4988 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4989 {
4990 	return __bpf_sk_cgroup_id(sk);
4991 }
4992 
4993 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4994 	.func           = bpf_sk_cgroup_id,
4995 	.gpl_only       = false,
4996 	.ret_type       = RET_INTEGER,
4997 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4998 };
4999 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)5000 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5001 {
5002 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5003 }
5004 
5005 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5006 	.func           = bpf_sk_ancestor_cgroup_id,
5007 	.gpl_only       = false,
5008 	.ret_type       = RET_INTEGER,
5009 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5010 	.arg2_type      = ARG_ANYTHING,
5011 };
5012 #endif
5013 
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)5014 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5015 				  unsigned long off, unsigned long len)
5016 {
5017 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5018 
5019 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
5020 	return 0;
5021 }
5022 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5023 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5024 	   u64, flags, void *, meta, u64, meta_size)
5025 {
5026 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5027 
5028 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5029 		return -EINVAL;
5030 
5031 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5032 		return -EFAULT;
5033 
5034 	return bpf_event_output(map, flags, meta, meta_size, xdp,
5035 				xdp_size, bpf_xdp_copy);
5036 }
5037 
5038 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5039 	.func		= bpf_xdp_event_output,
5040 	.gpl_only	= true,
5041 	.ret_type	= RET_INTEGER,
5042 	.arg1_type	= ARG_PTR_TO_CTX,
5043 	.arg2_type	= ARG_CONST_MAP_PTR,
5044 	.arg3_type	= ARG_ANYTHING,
5045 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5046 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5047 };
5048 
5049 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5050 
5051 const struct bpf_func_proto bpf_xdp_output_proto = {
5052 	.func		= bpf_xdp_event_output,
5053 	.gpl_only	= true,
5054 	.ret_type	= RET_INTEGER,
5055 	.arg1_type	= ARG_PTR_TO_BTF_ID,
5056 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
5057 	.arg2_type	= ARG_CONST_MAP_PTR,
5058 	.arg3_type	= ARG_ANYTHING,
5059 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5060 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5061 };
5062 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5063 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5064 {
5065 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5066 }
5067 
5068 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5069 	.func           = bpf_get_socket_cookie,
5070 	.gpl_only       = false,
5071 	.ret_type       = RET_INTEGER,
5072 	.arg1_type      = ARG_PTR_TO_CTX,
5073 };
5074 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5075 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5076 {
5077 	return __sock_gen_cookie(ctx->sk);
5078 }
5079 
5080 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5081 	.func		= bpf_get_socket_cookie_sock_addr,
5082 	.gpl_only	= false,
5083 	.ret_type	= RET_INTEGER,
5084 	.arg1_type	= ARG_PTR_TO_CTX,
5085 };
5086 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5087 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5088 {
5089 	return __sock_gen_cookie(ctx);
5090 }
5091 
5092 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5093 	.func		= bpf_get_socket_cookie_sock,
5094 	.gpl_only	= false,
5095 	.ret_type	= RET_INTEGER,
5096 	.arg1_type	= ARG_PTR_TO_CTX,
5097 };
5098 
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5099 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5100 {
5101 	return sk ? sock_gen_cookie(sk) : 0;
5102 }
5103 
5104 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5105 	.func		= bpf_get_socket_ptr_cookie,
5106 	.gpl_only	= false,
5107 	.ret_type	= RET_INTEGER,
5108 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5109 };
5110 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5111 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5112 {
5113 	return __sock_gen_cookie(ctx->sk);
5114 }
5115 
5116 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5117 	.func		= bpf_get_socket_cookie_sock_ops,
5118 	.gpl_only	= false,
5119 	.ret_type	= RET_INTEGER,
5120 	.arg1_type	= ARG_PTR_TO_CTX,
5121 };
5122 
__bpf_get_netns_cookie(struct sock * sk)5123 static u64 __bpf_get_netns_cookie(struct sock *sk)
5124 {
5125 	const struct net *net = sk ? sock_net(sk) : &init_net;
5126 
5127 	return net->net_cookie;
5128 }
5129 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5130 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5131 {
5132 	return __bpf_get_netns_cookie(ctx);
5133 }
5134 
5135 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5136 	.func		= bpf_get_netns_cookie_sock,
5137 	.gpl_only	= false,
5138 	.ret_type	= RET_INTEGER,
5139 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5140 };
5141 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5142 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5143 {
5144 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5145 }
5146 
5147 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5148 	.func		= bpf_get_netns_cookie_sock_addr,
5149 	.gpl_only	= false,
5150 	.ret_type	= RET_INTEGER,
5151 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5152 };
5153 
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5154 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5155 {
5156 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5157 }
5158 
5159 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5160 	.func		= bpf_get_netns_cookie_sock_ops,
5161 	.gpl_only	= false,
5162 	.ret_type	= RET_INTEGER,
5163 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5164 };
5165 
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5166 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5167 {
5168 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5169 }
5170 
5171 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5172 	.func		= bpf_get_netns_cookie_sk_msg,
5173 	.gpl_only	= false,
5174 	.ret_type	= RET_INTEGER,
5175 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5176 };
5177 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5178 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5179 {
5180 	struct sock *sk = sk_to_full_sk(skb->sk);
5181 	kuid_t kuid;
5182 
5183 	if (!sk || !sk_fullsock(sk))
5184 		return overflowuid;
5185 	kuid = sock_net_uid(sock_net(sk), sk);
5186 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5187 }
5188 
5189 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5190 	.func           = bpf_get_socket_uid,
5191 	.gpl_only       = false,
5192 	.ret_type       = RET_INTEGER,
5193 	.arg1_type      = ARG_PTR_TO_CTX,
5194 };
5195 
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5196 static int sol_socket_sockopt(struct sock *sk, int optname,
5197 			      char *optval, int *optlen,
5198 			      bool getopt)
5199 {
5200 	switch (optname) {
5201 	case SO_REUSEADDR:
5202 	case SO_SNDBUF:
5203 	case SO_RCVBUF:
5204 	case SO_KEEPALIVE:
5205 	case SO_PRIORITY:
5206 	case SO_REUSEPORT:
5207 	case SO_RCVLOWAT:
5208 	case SO_MARK:
5209 	case SO_MAX_PACING_RATE:
5210 	case SO_BINDTOIFINDEX:
5211 	case SO_TXREHASH:
5212 		if (*optlen != sizeof(int))
5213 			return -EINVAL;
5214 		break;
5215 	case SO_BINDTODEVICE:
5216 		break;
5217 	default:
5218 		return -EINVAL;
5219 	}
5220 
5221 	if (getopt) {
5222 		if (optname == SO_BINDTODEVICE)
5223 			return -EINVAL;
5224 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5225 				     KERNEL_SOCKPTR(optval),
5226 				     KERNEL_SOCKPTR(optlen));
5227 	}
5228 
5229 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5230 			     KERNEL_SOCKPTR(optval), *optlen);
5231 }
5232 
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5233 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5234 				  char *optval, int optlen)
5235 {
5236 	struct tcp_sock *tp = tcp_sk(sk);
5237 	unsigned long timeout;
5238 	int val;
5239 
5240 	if (optlen != sizeof(int))
5241 		return -EINVAL;
5242 
5243 	val = *(int *)optval;
5244 
5245 	/* Only some options are supported */
5246 	switch (optname) {
5247 	case TCP_BPF_IW:
5248 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5249 			return -EINVAL;
5250 		tcp_snd_cwnd_set(tp, val);
5251 		break;
5252 	case TCP_BPF_SNDCWND_CLAMP:
5253 		if (val <= 0)
5254 			return -EINVAL;
5255 		tp->snd_cwnd_clamp = val;
5256 		tp->snd_ssthresh = val;
5257 		break;
5258 	case TCP_BPF_DELACK_MAX:
5259 		timeout = usecs_to_jiffies(val);
5260 		if (timeout > TCP_DELACK_MAX ||
5261 		    timeout < TCP_TIMEOUT_MIN)
5262 			return -EINVAL;
5263 		inet_csk(sk)->icsk_delack_max = timeout;
5264 		break;
5265 	case TCP_BPF_RTO_MIN:
5266 		timeout = usecs_to_jiffies(val);
5267 		if (timeout > TCP_RTO_MIN ||
5268 		    timeout < TCP_TIMEOUT_MIN)
5269 			return -EINVAL;
5270 		inet_csk(sk)->icsk_rto_min = timeout;
5271 		break;
5272 	default:
5273 		return -EINVAL;
5274 	}
5275 
5276 	return 0;
5277 }
5278 
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5279 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5280 				      int *optlen, bool getopt)
5281 {
5282 	struct tcp_sock *tp;
5283 	int ret;
5284 
5285 	if (*optlen < 2)
5286 		return -EINVAL;
5287 
5288 	if (getopt) {
5289 		if (!inet_csk(sk)->icsk_ca_ops)
5290 			return -EINVAL;
5291 		/* BPF expects NULL-terminated tcp-cc string */
5292 		optval[--(*optlen)] = '\0';
5293 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5294 					 KERNEL_SOCKPTR(optval),
5295 					 KERNEL_SOCKPTR(optlen));
5296 	}
5297 
5298 	/* "cdg" is the only cc that alloc a ptr
5299 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5300 	 * overwrite this ptr after switching to cdg.
5301 	 */
5302 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5303 		return -ENOTSUPP;
5304 
5305 	/* It stops this looping
5306 	 *
5307 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5308 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5309 	 *
5310 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5311 	 * in order to break the loop when both .init
5312 	 * are the same bpf prog.
5313 	 *
5314 	 * This applies even the second bpf_setsockopt(tcp_cc)
5315 	 * does not cause a loop.  This limits only the first
5316 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5317 	 * pick a fallback cc (eg. peer does not support ECN)
5318 	 * and the second '.init' cannot fallback to
5319 	 * another.
5320 	 */
5321 	tp = tcp_sk(sk);
5322 	if (tp->bpf_chg_cc_inprogress)
5323 		return -EBUSY;
5324 
5325 	tp->bpf_chg_cc_inprogress = 1;
5326 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5327 				KERNEL_SOCKPTR(optval), *optlen);
5328 	tp->bpf_chg_cc_inprogress = 0;
5329 	return ret;
5330 }
5331 
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5332 static int sol_tcp_sockopt(struct sock *sk, int optname,
5333 			   char *optval, int *optlen,
5334 			   bool getopt)
5335 {
5336 	if (sk->sk_protocol != IPPROTO_TCP)
5337 		return -EINVAL;
5338 
5339 	switch (optname) {
5340 	case TCP_NODELAY:
5341 	case TCP_MAXSEG:
5342 	case TCP_KEEPIDLE:
5343 	case TCP_KEEPINTVL:
5344 	case TCP_KEEPCNT:
5345 	case TCP_SYNCNT:
5346 	case TCP_WINDOW_CLAMP:
5347 	case TCP_THIN_LINEAR_TIMEOUTS:
5348 	case TCP_USER_TIMEOUT:
5349 	case TCP_NOTSENT_LOWAT:
5350 	case TCP_SAVE_SYN:
5351 		if (*optlen != sizeof(int))
5352 			return -EINVAL;
5353 		break;
5354 	case TCP_CONGESTION:
5355 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5356 	case TCP_SAVED_SYN:
5357 		if (*optlen < 1)
5358 			return -EINVAL;
5359 		break;
5360 	default:
5361 		if (getopt)
5362 			return -EINVAL;
5363 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5364 	}
5365 
5366 	if (getopt) {
5367 		if (optname == TCP_SAVED_SYN) {
5368 			struct tcp_sock *tp = tcp_sk(sk);
5369 
5370 			if (!tp->saved_syn ||
5371 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5372 				return -EINVAL;
5373 			memcpy(optval, tp->saved_syn->data, *optlen);
5374 			/* It cannot free tp->saved_syn here because it
5375 			 * does not know if the user space still needs it.
5376 			 */
5377 			return 0;
5378 		}
5379 
5380 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5381 					 KERNEL_SOCKPTR(optval),
5382 					 KERNEL_SOCKPTR(optlen));
5383 	}
5384 
5385 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5386 				 KERNEL_SOCKPTR(optval), *optlen);
5387 }
5388 
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5389 static int sol_ip_sockopt(struct sock *sk, int optname,
5390 			  char *optval, int *optlen,
5391 			  bool getopt)
5392 {
5393 	if (sk->sk_family != AF_INET)
5394 		return -EINVAL;
5395 
5396 	switch (optname) {
5397 	case IP_TOS:
5398 		if (*optlen != sizeof(int))
5399 			return -EINVAL;
5400 		break;
5401 	default:
5402 		return -EINVAL;
5403 	}
5404 
5405 	if (getopt)
5406 		return do_ip_getsockopt(sk, SOL_IP, optname,
5407 					KERNEL_SOCKPTR(optval),
5408 					KERNEL_SOCKPTR(optlen));
5409 
5410 	return do_ip_setsockopt(sk, SOL_IP, optname,
5411 				KERNEL_SOCKPTR(optval), *optlen);
5412 }
5413 
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5414 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5415 			    char *optval, int *optlen,
5416 			    bool getopt)
5417 {
5418 	if (sk->sk_family != AF_INET6)
5419 		return -EINVAL;
5420 
5421 	switch (optname) {
5422 	case IPV6_TCLASS:
5423 	case IPV6_AUTOFLOWLABEL:
5424 		if (*optlen != sizeof(int))
5425 			return -EINVAL;
5426 		break;
5427 	default:
5428 		return -EINVAL;
5429 	}
5430 
5431 	if (getopt)
5432 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5433 						      KERNEL_SOCKPTR(optval),
5434 						      KERNEL_SOCKPTR(optlen));
5435 
5436 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5437 					      KERNEL_SOCKPTR(optval), *optlen);
5438 }
5439 
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5440 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5441 			    char *optval, int optlen)
5442 {
5443 	if (!sk_fullsock(sk))
5444 		return -EINVAL;
5445 
5446 	if (level == SOL_SOCKET)
5447 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5448 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5449 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5450 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5451 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5452 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5453 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5454 
5455 	return -EINVAL;
5456 }
5457 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5458 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5459 			   char *optval, int optlen)
5460 {
5461 	if (sk_fullsock(sk))
5462 		sock_owned_by_me(sk);
5463 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5464 }
5465 
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5466 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5467 			    char *optval, int optlen)
5468 {
5469 	int err, saved_optlen = optlen;
5470 
5471 	if (!sk_fullsock(sk)) {
5472 		err = -EINVAL;
5473 		goto done;
5474 	}
5475 
5476 	if (level == SOL_SOCKET)
5477 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5478 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5479 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5480 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5481 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5482 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5483 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5484 	else
5485 		err = -EINVAL;
5486 
5487 done:
5488 	if (err)
5489 		optlen = 0;
5490 	if (optlen < saved_optlen)
5491 		memset(optval + optlen, 0, saved_optlen - optlen);
5492 	return err;
5493 }
5494 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5495 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5496 			   char *optval, int optlen)
5497 {
5498 	if (sk_fullsock(sk))
5499 		sock_owned_by_me(sk);
5500 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5501 }
5502 
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5503 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5504 	   int, optname, char *, optval, int, optlen)
5505 {
5506 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5507 }
5508 
5509 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5510 	.func		= bpf_sk_setsockopt,
5511 	.gpl_only	= false,
5512 	.ret_type	= RET_INTEGER,
5513 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5514 	.arg2_type	= ARG_ANYTHING,
5515 	.arg3_type	= ARG_ANYTHING,
5516 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5517 	.arg5_type	= ARG_CONST_SIZE,
5518 };
5519 
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5520 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5521 	   int, optname, char *, optval, int, optlen)
5522 {
5523 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5524 }
5525 
5526 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5527 	.func		= bpf_sk_getsockopt,
5528 	.gpl_only	= false,
5529 	.ret_type	= RET_INTEGER,
5530 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5531 	.arg2_type	= ARG_ANYTHING,
5532 	.arg3_type	= ARG_ANYTHING,
5533 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5534 	.arg5_type	= ARG_CONST_SIZE,
5535 };
5536 
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5537 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5538 	   int, optname, char *, optval, int, optlen)
5539 {
5540 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5541 }
5542 
5543 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5544 	.func		= bpf_unlocked_sk_setsockopt,
5545 	.gpl_only	= false,
5546 	.ret_type	= RET_INTEGER,
5547 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5548 	.arg2_type	= ARG_ANYTHING,
5549 	.arg3_type	= ARG_ANYTHING,
5550 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5551 	.arg5_type	= ARG_CONST_SIZE,
5552 };
5553 
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5554 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5555 	   int, optname, char *, optval, int, optlen)
5556 {
5557 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5558 }
5559 
5560 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5561 	.func		= bpf_unlocked_sk_getsockopt,
5562 	.gpl_only	= false,
5563 	.ret_type	= RET_INTEGER,
5564 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5565 	.arg2_type	= ARG_ANYTHING,
5566 	.arg3_type	= ARG_ANYTHING,
5567 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5568 	.arg5_type	= ARG_CONST_SIZE,
5569 };
5570 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5571 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5572 	   int, level, int, optname, char *, optval, int, optlen)
5573 {
5574 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5575 }
5576 
5577 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5578 	.func		= bpf_sock_addr_setsockopt,
5579 	.gpl_only	= false,
5580 	.ret_type	= RET_INTEGER,
5581 	.arg1_type	= ARG_PTR_TO_CTX,
5582 	.arg2_type	= ARG_ANYTHING,
5583 	.arg3_type	= ARG_ANYTHING,
5584 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5585 	.arg5_type	= ARG_CONST_SIZE,
5586 };
5587 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5588 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5589 	   int, level, int, optname, char *, optval, int, optlen)
5590 {
5591 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5592 }
5593 
5594 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5595 	.func		= bpf_sock_addr_getsockopt,
5596 	.gpl_only	= false,
5597 	.ret_type	= RET_INTEGER,
5598 	.arg1_type	= ARG_PTR_TO_CTX,
5599 	.arg2_type	= ARG_ANYTHING,
5600 	.arg3_type	= ARG_ANYTHING,
5601 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5602 	.arg5_type	= ARG_CONST_SIZE,
5603 };
5604 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5605 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5606 	   int, level, int, optname, char *, optval, int, optlen)
5607 {
5608 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5609 }
5610 
5611 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5612 	.func		= bpf_sock_ops_setsockopt,
5613 	.gpl_only	= false,
5614 	.ret_type	= RET_INTEGER,
5615 	.arg1_type	= ARG_PTR_TO_CTX,
5616 	.arg2_type	= ARG_ANYTHING,
5617 	.arg3_type	= ARG_ANYTHING,
5618 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5619 	.arg5_type	= ARG_CONST_SIZE,
5620 };
5621 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5622 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5623 				int optname, const u8 **start)
5624 {
5625 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5626 	const u8 *hdr_start;
5627 	int ret;
5628 
5629 	if (syn_skb) {
5630 		/* sk is a request_sock here */
5631 
5632 		if (optname == TCP_BPF_SYN) {
5633 			hdr_start = syn_skb->data;
5634 			ret = tcp_hdrlen(syn_skb);
5635 		} else if (optname == TCP_BPF_SYN_IP) {
5636 			hdr_start = skb_network_header(syn_skb);
5637 			ret = skb_network_header_len(syn_skb) +
5638 				tcp_hdrlen(syn_skb);
5639 		} else {
5640 			/* optname == TCP_BPF_SYN_MAC */
5641 			hdr_start = skb_mac_header(syn_skb);
5642 			ret = skb_mac_header_len(syn_skb) +
5643 				skb_network_header_len(syn_skb) +
5644 				tcp_hdrlen(syn_skb);
5645 		}
5646 	} else {
5647 		struct sock *sk = bpf_sock->sk;
5648 		struct saved_syn *saved_syn;
5649 
5650 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5651 			/* synack retransmit. bpf_sock->syn_skb will
5652 			 * not be available.  It has to resort to
5653 			 * saved_syn (if it is saved).
5654 			 */
5655 			saved_syn = inet_reqsk(sk)->saved_syn;
5656 		else
5657 			saved_syn = tcp_sk(sk)->saved_syn;
5658 
5659 		if (!saved_syn)
5660 			return -ENOENT;
5661 
5662 		if (optname == TCP_BPF_SYN) {
5663 			hdr_start = saved_syn->data +
5664 				saved_syn->mac_hdrlen +
5665 				saved_syn->network_hdrlen;
5666 			ret = saved_syn->tcp_hdrlen;
5667 		} else if (optname == TCP_BPF_SYN_IP) {
5668 			hdr_start = saved_syn->data +
5669 				saved_syn->mac_hdrlen;
5670 			ret = saved_syn->network_hdrlen +
5671 				saved_syn->tcp_hdrlen;
5672 		} else {
5673 			/* optname == TCP_BPF_SYN_MAC */
5674 
5675 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5676 			if (!saved_syn->mac_hdrlen)
5677 				return -ENOENT;
5678 
5679 			hdr_start = saved_syn->data;
5680 			ret = saved_syn->mac_hdrlen +
5681 				saved_syn->network_hdrlen +
5682 				saved_syn->tcp_hdrlen;
5683 		}
5684 	}
5685 
5686 	*start = hdr_start;
5687 	return ret;
5688 }
5689 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5690 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5691 	   int, level, int, optname, char *, optval, int, optlen)
5692 {
5693 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5694 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5695 		int ret, copy_len = 0;
5696 		const u8 *start;
5697 
5698 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5699 		if (ret > 0) {
5700 			copy_len = ret;
5701 			if (optlen < copy_len) {
5702 				copy_len = optlen;
5703 				ret = -ENOSPC;
5704 			}
5705 
5706 			memcpy(optval, start, copy_len);
5707 		}
5708 
5709 		/* Zero out unused buffer at the end */
5710 		memset(optval + copy_len, 0, optlen - copy_len);
5711 
5712 		return ret;
5713 	}
5714 
5715 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5716 }
5717 
5718 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5719 	.func		= bpf_sock_ops_getsockopt,
5720 	.gpl_only	= false,
5721 	.ret_type	= RET_INTEGER,
5722 	.arg1_type	= ARG_PTR_TO_CTX,
5723 	.arg2_type	= ARG_ANYTHING,
5724 	.arg3_type	= ARG_ANYTHING,
5725 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5726 	.arg5_type	= ARG_CONST_SIZE,
5727 };
5728 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5729 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5730 	   int, argval)
5731 {
5732 	struct sock *sk = bpf_sock->sk;
5733 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5734 
5735 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5736 		return -EINVAL;
5737 
5738 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5739 
5740 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5741 }
5742 
5743 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5744 	.func		= bpf_sock_ops_cb_flags_set,
5745 	.gpl_only	= false,
5746 	.ret_type	= RET_INTEGER,
5747 	.arg1_type	= ARG_PTR_TO_CTX,
5748 	.arg2_type	= ARG_ANYTHING,
5749 };
5750 
5751 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5752 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5753 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5754 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5755 	   int, addr_len)
5756 {
5757 #ifdef CONFIG_INET
5758 	struct sock *sk = ctx->sk;
5759 	u32 flags = BIND_FROM_BPF;
5760 	int err;
5761 
5762 	err = -EINVAL;
5763 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5764 		return err;
5765 	if (addr->sa_family == AF_INET) {
5766 		if (addr_len < sizeof(struct sockaddr_in))
5767 			return err;
5768 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5769 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5770 		return __inet_bind(sk, addr, addr_len, flags);
5771 #if IS_ENABLED(CONFIG_IPV6)
5772 	} else if (addr->sa_family == AF_INET6) {
5773 		if (addr_len < SIN6_LEN_RFC2133)
5774 			return err;
5775 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5776 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5777 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5778 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5779 		 */
5780 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5781 #endif /* CONFIG_IPV6 */
5782 	}
5783 #endif /* CONFIG_INET */
5784 
5785 	return -EAFNOSUPPORT;
5786 }
5787 
5788 static const struct bpf_func_proto bpf_bind_proto = {
5789 	.func		= bpf_bind,
5790 	.gpl_only	= false,
5791 	.ret_type	= RET_INTEGER,
5792 	.arg1_type	= ARG_PTR_TO_CTX,
5793 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5794 	.arg3_type	= ARG_CONST_SIZE,
5795 };
5796 
5797 #ifdef CONFIG_XFRM
5798 
5799 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5800     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5801 
5802 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5803 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5804 
5805 #endif
5806 
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5807 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5808 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5809 {
5810 	const struct sec_path *sp = skb_sec_path(skb);
5811 	const struct xfrm_state *x;
5812 
5813 	if (!sp || unlikely(index >= sp->len || flags))
5814 		goto err_clear;
5815 
5816 	x = sp->xvec[index];
5817 
5818 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5819 		goto err_clear;
5820 
5821 	to->reqid = x->props.reqid;
5822 	to->spi = x->id.spi;
5823 	to->family = x->props.family;
5824 	to->ext = 0;
5825 
5826 	if (to->family == AF_INET6) {
5827 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5828 		       sizeof(to->remote_ipv6));
5829 	} else {
5830 		to->remote_ipv4 = x->props.saddr.a4;
5831 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5832 	}
5833 
5834 	return 0;
5835 err_clear:
5836 	memset(to, 0, size);
5837 	return -EINVAL;
5838 }
5839 
5840 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5841 	.func		= bpf_skb_get_xfrm_state,
5842 	.gpl_only	= false,
5843 	.ret_type	= RET_INTEGER,
5844 	.arg1_type	= ARG_PTR_TO_CTX,
5845 	.arg2_type	= ARG_ANYTHING,
5846 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5847 	.arg4_type	= ARG_CONST_SIZE,
5848 	.arg5_type	= ARG_ANYTHING,
5849 };
5850 #endif
5851 
5852 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5853 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5854 {
5855 	params->h_vlan_TCI = 0;
5856 	params->h_vlan_proto = 0;
5857 	if (mtu)
5858 		params->mtu_result = mtu; /* union with tot_len */
5859 
5860 	return 0;
5861 }
5862 #endif
5863 
5864 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5865 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5866 			       u32 flags, bool check_mtu)
5867 {
5868 	struct fib_nh_common *nhc;
5869 	struct in_device *in_dev;
5870 	struct neighbour *neigh;
5871 	struct net_device *dev;
5872 	struct fib_result res;
5873 	struct flowi4 fl4;
5874 	u32 mtu = 0;
5875 	int err;
5876 
5877 	dev = dev_get_by_index_rcu(net, params->ifindex);
5878 	if (unlikely(!dev))
5879 		return -ENODEV;
5880 
5881 	/* verify forwarding is enabled on this interface */
5882 	in_dev = __in_dev_get_rcu(dev);
5883 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5884 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5885 
5886 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5887 		fl4.flowi4_iif = 1;
5888 		fl4.flowi4_oif = params->ifindex;
5889 	} else {
5890 		fl4.flowi4_iif = params->ifindex;
5891 		fl4.flowi4_oif = 0;
5892 	}
5893 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5894 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5895 	fl4.flowi4_flags = 0;
5896 
5897 	fl4.flowi4_proto = params->l4_protocol;
5898 	fl4.daddr = params->ipv4_dst;
5899 	fl4.saddr = params->ipv4_src;
5900 	fl4.fl4_sport = params->sport;
5901 	fl4.fl4_dport = params->dport;
5902 	fl4.flowi4_multipath_hash = 0;
5903 
5904 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5905 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5906 		struct fib_table *tb;
5907 
5908 		if (flags & BPF_FIB_LOOKUP_TBID) {
5909 			tbid = params->tbid;
5910 			/* zero out for vlan output */
5911 			params->tbid = 0;
5912 		}
5913 
5914 		tb = fib_get_table(net, tbid);
5915 		if (unlikely(!tb))
5916 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5917 
5918 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5919 	} else {
5920 		fl4.flowi4_mark = 0;
5921 		fl4.flowi4_secid = 0;
5922 		fl4.flowi4_tun_key.tun_id = 0;
5923 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5924 
5925 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5926 	}
5927 
5928 	if (err) {
5929 		/* map fib lookup errors to RTN_ type */
5930 		if (err == -EINVAL)
5931 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5932 		if (err == -EHOSTUNREACH)
5933 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5934 		if (err == -EACCES)
5935 			return BPF_FIB_LKUP_RET_PROHIBIT;
5936 
5937 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5938 	}
5939 
5940 	if (res.type != RTN_UNICAST)
5941 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5942 
5943 	if (fib_info_num_path(res.fi) > 1)
5944 		fib_select_path(net, &res, &fl4, NULL);
5945 
5946 	if (check_mtu) {
5947 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5948 		if (params->tot_len > mtu) {
5949 			params->mtu_result = mtu; /* union with tot_len */
5950 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5951 		}
5952 	}
5953 
5954 	nhc = res.nhc;
5955 
5956 	/* do not handle lwt encaps right now */
5957 	if (nhc->nhc_lwtstate)
5958 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5959 
5960 	dev = nhc->nhc_dev;
5961 
5962 	params->rt_metric = res.fi->fib_priority;
5963 	params->ifindex = dev->ifindex;
5964 
5965 	if (flags & BPF_FIB_LOOKUP_SRC)
5966 		params->ipv4_src = fib_result_prefsrc(net, &res);
5967 
5968 	/* xdp and cls_bpf programs are run in RCU-bh so
5969 	 * rcu_read_lock_bh is not needed here
5970 	 */
5971 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5972 		if (nhc->nhc_gw_family)
5973 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5974 	} else {
5975 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5976 
5977 		params->family = AF_INET6;
5978 		*dst = nhc->nhc_gw.ipv6;
5979 	}
5980 
5981 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5982 		goto set_fwd_params;
5983 
5984 	if (likely(nhc->nhc_gw_family != AF_INET6))
5985 		neigh = __ipv4_neigh_lookup_noref(dev,
5986 						  (__force u32)params->ipv4_dst);
5987 	else
5988 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5989 
5990 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5991 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5992 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5993 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5994 
5995 set_fwd_params:
5996 	return bpf_fib_set_fwd_params(params, mtu);
5997 }
5998 #endif
5999 
6000 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6001 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6002 			       u32 flags, bool check_mtu)
6003 {
6004 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6005 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6006 	struct fib6_result res = {};
6007 	struct neighbour *neigh;
6008 	struct net_device *dev;
6009 	struct inet6_dev *idev;
6010 	struct flowi6 fl6;
6011 	int strict = 0;
6012 	int oif, err;
6013 	u32 mtu = 0;
6014 
6015 	/* link local addresses are never forwarded */
6016 	if (rt6_need_strict(dst) || rt6_need_strict(src))
6017 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6018 
6019 	dev = dev_get_by_index_rcu(net, params->ifindex);
6020 	if (unlikely(!dev))
6021 		return -ENODEV;
6022 
6023 	idev = __in6_dev_get_safely(dev);
6024 	if (unlikely(!idev || !idev->cnf.forwarding))
6025 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6026 
6027 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6028 		fl6.flowi6_iif = 1;
6029 		oif = fl6.flowi6_oif = params->ifindex;
6030 	} else {
6031 		oif = fl6.flowi6_iif = params->ifindex;
6032 		fl6.flowi6_oif = 0;
6033 		strict = RT6_LOOKUP_F_HAS_SADDR;
6034 	}
6035 	fl6.flowlabel = params->flowinfo;
6036 	fl6.flowi6_scope = 0;
6037 	fl6.flowi6_flags = 0;
6038 	fl6.mp_hash = 0;
6039 
6040 	fl6.flowi6_proto = params->l4_protocol;
6041 	fl6.daddr = *dst;
6042 	fl6.saddr = *src;
6043 	fl6.fl6_sport = params->sport;
6044 	fl6.fl6_dport = params->dport;
6045 
6046 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6047 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6048 		struct fib6_table *tb;
6049 
6050 		if (flags & BPF_FIB_LOOKUP_TBID) {
6051 			tbid = params->tbid;
6052 			/* zero out for vlan output */
6053 			params->tbid = 0;
6054 		}
6055 
6056 		tb = ipv6_stub->fib6_get_table(net, tbid);
6057 		if (unlikely(!tb))
6058 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6059 
6060 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6061 						   strict);
6062 	} else {
6063 		fl6.flowi6_mark = 0;
6064 		fl6.flowi6_secid = 0;
6065 		fl6.flowi6_tun_key.tun_id = 0;
6066 		fl6.flowi6_uid = sock_net_uid(net, NULL);
6067 
6068 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6069 	}
6070 
6071 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6072 		     res.f6i == net->ipv6.fib6_null_entry))
6073 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6074 
6075 	switch (res.fib6_type) {
6076 	/* only unicast is forwarded */
6077 	case RTN_UNICAST:
6078 		break;
6079 	case RTN_BLACKHOLE:
6080 		return BPF_FIB_LKUP_RET_BLACKHOLE;
6081 	case RTN_UNREACHABLE:
6082 		return BPF_FIB_LKUP_RET_UNREACHABLE;
6083 	case RTN_PROHIBIT:
6084 		return BPF_FIB_LKUP_RET_PROHIBIT;
6085 	default:
6086 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6087 	}
6088 
6089 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6090 				    fl6.flowi6_oif != 0, NULL, strict);
6091 
6092 	if (check_mtu) {
6093 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6094 		if (params->tot_len > mtu) {
6095 			params->mtu_result = mtu; /* union with tot_len */
6096 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6097 		}
6098 	}
6099 
6100 	if (res.nh->fib_nh_lws)
6101 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6102 
6103 	if (res.nh->fib_nh_gw_family)
6104 		*dst = res.nh->fib_nh_gw6;
6105 
6106 	dev = res.nh->fib_nh_dev;
6107 	params->rt_metric = res.f6i->fib6_metric;
6108 	params->ifindex = dev->ifindex;
6109 
6110 	if (flags & BPF_FIB_LOOKUP_SRC) {
6111 		if (res.f6i->fib6_prefsrc.plen) {
6112 			*src = res.f6i->fib6_prefsrc.addr;
6113 		} else {
6114 			err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6115 								&fl6.daddr, 0,
6116 								src);
6117 			if (err)
6118 				return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6119 		}
6120 	}
6121 
6122 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6123 		goto set_fwd_params;
6124 
6125 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6126 	 * not needed here.
6127 	 */
6128 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6129 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6130 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6131 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6132 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6133 
6134 set_fwd_params:
6135 	return bpf_fib_set_fwd_params(params, mtu);
6136 }
6137 #endif
6138 
6139 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6140 			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6141 			     BPF_FIB_LOOKUP_SRC)
6142 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6143 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6144 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6145 {
6146 	if (plen < sizeof(*params))
6147 		return -EINVAL;
6148 
6149 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6150 		return -EINVAL;
6151 
6152 	switch (params->family) {
6153 #if IS_ENABLED(CONFIG_INET)
6154 	case AF_INET:
6155 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6156 					   flags, true);
6157 #endif
6158 #if IS_ENABLED(CONFIG_IPV6)
6159 	case AF_INET6:
6160 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6161 					   flags, true);
6162 #endif
6163 	}
6164 	return -EAFNOSUPPORT;
6165 }
6166 
6167 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6168 	.func		= bpf_xdp_fib_lookup,
6169 	.gpl_only	= true,
6170 	.ret_type	= RET_INTEGER,
6171 	.arg1_type      = ARG_PTR_TO_CTX,
6172 	.arg2_type      = ARG_PTR_TO_MEM,
6173 	.arg3_type      = ARG_CONST_SIZE,
6174 	.arg4_type	= ARG_ANYTHING,
6175 };
6176 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6177 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6178 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6179 {
6180 	struct net *net = dev_net(skb->dev);
6181 	int rc = -EAFNOSUPPORT;
6182 	bool check_mtu = false;
6183 
6184 	if (plen < sizeof(*params))
6185 		return -EINVAL;
6186 
6187 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6188 		return -EINVAL;
6189 
6190 	if (params->tot_len)
6191 		check_mtu = true;
6192 
6193 	switch (params->family) {
6194 #if IS_ENABLED(CONFIG_INET)
6195 	case AF_INET:
6196 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6197 		break;
6198 #endif
6199 #if IS_ENABLED(CONFIG_IPV6)
6200 	case AF_INET6:
6201 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6202 		break;
6203 #endif
6204 	}
6205 
6206 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6207 		struct net_device *dev;
6208 
6209 		/* When tot_len isn't provided by user, check skb
6210 		 * against MTU of FIB lookup resulting net_device
6211 		 */
6212 		dev = dev_get_by_index_rcu(net, params->ifindex);
6213 		if (!is_skb_forwardable(dev, skb))
6214 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6215 
6216 		params->mtu_result = dev->mtu; /* union with tot_len */
6217 	}
6218 
6219 	return rc;
6220 }
6221 
6222 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6223 	.func		= bpf_skb_fib_lookup,
6224 	.gpl_only	= true,
6225 	.ret_type	= RET_INTEGER,
6226 	.arg1_type      = ARG_PTR_TO_CTX,
6227 	.arg2_type      = ARG_PTR_TO_MEM,
6228 	.arg3_type      = ARG_CONST_SIZE,
6229 	.arg4_type	= ARG_ANYTHING,
6230 };
6231 
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6232 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6233 					    u32 ifindex)
6234 {
6235 	struct net *netns = dev_net(dev_curr);
6236 
6237 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6238 	if (ifindex == 0)
6239 		return dev_curr;
6240 
6241 	return dev_get_by_index_rcu(netns, ifindex);
6242 }
6243 
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6244 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6245 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6246 {
6247 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6248 	struct net_device *dev = skb->dev;
6249 	int mtu, dev_len, skb_len;
6250 
6251 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6252 		return -EINVAL;
6253 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6254 		return -EINVAL;
6255 
6256 	dev = __dev_via_ifindex(dev, ifindex);
6257 	if (unlikely(!dev))
6258 		return -ENODEV;
6259 
6260 	mtu = READ_ONCE(dev->mtu);
6261 	dev_len = mtu + dev->hard_header_len;
6262 
6263 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6264 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6265 
6266 	skb_len += len_diff; /* minus result pass check */
6267 	if (skb_len <= dev_len) {
6268 		ret = BPF_MTU_CHK_RET_SUCCESS;
6269 		goto out;
6270 	}
6271 	/* At this point, skb->len exceed MTU, but as it include length of all
6272 	 * segments, it can still be below MTU.  The SKB can possibly get
6273 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6274 	 * must choose if segs are to be MTU checked.
6275 	 */
6276 	if (skb_is_gso(skb)) {
6277 		ret = BPF_MTU_CHK_RET_SUCCESS;
6278 		if (flags & BPF_MTU_CHK_SEGS &&
6279 		    !skb_gso_validate_network_len(skb, mtu))
6280 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6281 	}
6282 out:
6283 	*mtu_len = mtu;
6284 	return ret;
6285 }
6286 
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6287 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6288 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6289 {
6290 	struct net_device *dev = xdp->rxq->dev;
6291 	int xdp_len = xdp->data_end - xdp->data;
6292 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6293 	int mtu, dev_len;
6294 
6295 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6296 	if (unlikely(flags))
6297 		return -EINVAL;
6298 
6299 	dev = __dev_via_ifindex(dev, ifindex);
6300 	if (unlikely(!dev))
6301 		return -ENODEV;
6302 
6303 	mtu = READ_ONCE(dev->mtu);
6304 	dev_len = mtu + dev->hard_header_len;
6305 
6306 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6307 	if (*mtu_len)
6308 		xdp_len = *mtu_len + dev->hard_header_len;
6309 
6310 	xdp_len += len_diff; /* minus result pass check */
6311 	if (xdp_len > dev_len)
6312 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6313 
6314 	*mtu_len = mtu;
6315 	return ret;
6316 }
6317 
6318 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6319 	.func		= bpf_skb_check_mtu,
6320 	.gpl_only	= true,
6321 	.ret_type	= RET_INTEGER,
6322 	.arg1_type      = ARG_PTR_TO_CTX,
6323 	.arg2_type      = ARG_ANYTHING,
6324 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6325 	.arg3_size	= sizeof(u32),
6326 	.arg4_type      = ARG_ANYTHING,
6327 	.arg5_type      = ARG_ANYTHING,
6328 };
6329 
6330 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6331 	.func		= bpf_xdp_check_mtu,
6332 	.gpl_only	= true,
6333 	.ret_type	= RET_INTEGER,
6334 	.arg1_type      = ARG_PTR_TO_CTX,
6335 	.arg2_type      = ARG_ANYTHING,
6336 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6337 	.arg3_size	= sizeof(u32),
6338 	.arg4_type      = ARG_ANYTHING,
6339 	.arg5_type      = ARG_ANYTHING,
6340 };
6341 
6342 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6343 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6344 {
6345 	int err;
6346 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6347 
6348 	if (!seg6_validate_srh(srh, len, false))
6349 		return -EINVAL;
6350 
6351 	switch (type) {
6352 	case BPF_LWT_ENCAP_SEG6_INLINE:
6353 		if (skb->protocol != htons(ETH_P_IPV6))
6354 			return -EBADMSG;
6355 
6356 		err = seg6_do_srh_inline(skb, srh);
6357 		break;
6358 	case BPF_LWT_ENCAP_SEG6:
6359 		skb_reset_inner_headers(skb);
6360 		skb->encapsulation = 1;
6361 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6362 		break;
6363 	default:
6364 		return -EINVAL;
6365 	}
6366 
6367 	bpf_compute_data_pointers(skb);
6368 	if (err)
6369 		return err;
6370 
6371 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6372 
6373 	return seg6_lookup_nexthop(skb, NULL, 0);
6374 }
6375 #endif /* CONFIG_IPV6_SEG6_BPF */
6376 
6377 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6378 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6379 			     bool ingress)
6380 {
6381 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6382 }
6383 #endif
6384 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6385 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6386 	   u32, len)
6387 {
6388 	switch (type) {
6389 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6390 	case BPF_LWT_ENCAP_SEG6:
6391 	case BPF_LWT_ENCAP_SEG6_INLINE:
6392 		return bpf_push_seg6_encap(skb, type, hdr, len);
6393 #endif
6394 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6395 	case BPF_LWT_ENCAP_IP:
6396 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6397 #endif
6398 	default:
6399 		return -EINVAL;
6400 	}
6401 }
6402 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6403 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6404 	   void *, hdr, u32, len)
6405 {
6406 	switch (type) {
6407 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6408 	case BPF_LWT_ENCAP_IP:
6409 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6410 #endif
6411 	default:
6412 		return -EINVAL;
6413 	}
6414 }
6415 
6416 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6417 	.func		= bpf_lwt_in_push_encap,
6418 	.gpl_only	= false,
6419 	.ret_type	= RET_INTEGER,
6420 	.arg1_type	= ARG_PTR_TO_CTX,
6421 	.arg2_type	= ARG_ANYTHING,
6422 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6423 	.arg4_type	= ARG_CONST_SIZE
6424 };
6425 
6426 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6427 	.func		= bpf_lwt_xmit_push_encap,
6428 	.gpl_only	= false,
6429 	.ret_type	= RET_INTEGER,
6430 	.arg1_type	= ARG_PTR_TO_CTX,
6431 	.arg2_type	= ARG_ANYTHING,
6432 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6433 	.arg4_type	= ARG_CONST_SIZE
6434 };
6435 
6436 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6437 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6438 	   const void *, from, u32, len)
6439 {
6440 	struct seg6_bpf_srh_state *srh_state =
6441 		this_cpu_ptr(&seg6_bpf_srh_states);
6442 	struct ipv6_sr_hdr *srh = srh_state->srh;
6443 	void *srh_tlvs, *srh_end, *ptr;
6444 	int srhoff = 0;
6445 
6446 	if (srh == NULL)
6447 		return -EINVAL;
6448 
6449 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6450 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6451 
6452 	ptr = skb->data + offset;
6453 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6454 		srh_state->valid = false;
6455 	else if (ptr < (void *)&srh->flags ||
6456 		 ptr + len > (void *)&srh->segments)
6457 		return -EFAULT;
6458 
6459 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6460 		return -EFAULT;
6461 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6462 		return -EINVAL;
6463 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6464 
6465 	memcpy(skb->data + offset, from, len);
6466 	return 0;
6467 }
6468 
6469 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6470 	.func		= bpf_lwt_seg6_store_bytes,
6471 	.gpl_only	= false,
6472 	.ret_type	= RET_INTEGER,
6473 	.arg1_type	= ARG_PTR_TO_CTX,
6474 	.arg2_type	= ARG_ANYTHING,
6475 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6476 	.arg4_type	= ARG_CONST_SIZE
6477 };
6478 
bpf_update_srh_state(struct sk_buff * skb)6479 static void bpf_update_srh_state(struct sk_buff *skb)
6480 {
6481 	struct seg6_bpf_srh_state *srh_state =
6482 		this_cpu_ptr(&seg6_bpf_srh_states);
6483 	int srhoff = 0;
6484 
6485 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6486 		srh_state->srh = NULL;
6487 	} else {
6488 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6489 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6490 		srh_state->valid = true;
6491 	}
6492 }
6493 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6494 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6495 	   u32, action, void *, param, u32, param_len)
6496 {
6497 	struct seg6_bpf_srh_state *srh_state =
6498 		this_cpu_ptr(&seg6_bpf_srh_states);
6499 	int hdroff = 0;
6500 	int err;
6501 
6502 	switch (action) {
6503 	case SEG6_LOCAL_ACTION_END_X:
6504 		if (!seg6_bpf_has_valid_srh(skb))
6505 			return -EBADMSG;
6506 		if (param_len != sizeof(struct in6_addr))
6507 			return -EINVAL;
6508 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6509 	case SEG6_LOCAL_ACTION_END_T:
6510 		if (!seg6_bpf_has_valid_srh(skb))
6511 			return -EBADMSG;
6512 		if (param_len != sizeof(int))
6513 			return -EINVAL;
6514 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6515 	case SEG6_LOCAL_ACTION_END_DT6:
6516 		if (!seg6_bpf_has_valid_srh(skb))
6517 			return -EBADMSG;
6518 		if (param_len != sizeof(int))
6519 			return -EINVAL;
6520 
6521 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6522 			return -EBADMSG;
6523 		if (!pskb_pull(skb, hdroff))
6524 			return -EBADMSG;
6525 
6526 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6527 		skb_reset_network_header(skb);
6528 		skb_reset_transport_header(skb);
6529 		skb->encapsulation = 0;
6530 
6531 		bpf_compute_data_pointers(skb);
6532 		bpf_update_srh_state(skb);
6533 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6534 	case SEG6_LOCAL_ACTION_END_B6:
6535 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6536 			return -EBADMSG;
6537 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6538 					  param, param_len);
6539 		if (!err)
6540 			bpf_update_srh_state(skb);
6541 
6542 		return err;
6543 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6544 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6545 			return -EBADMSG;
6546 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6547 					  param, param_len);
6548 		if (!err)
6549 			bpf_update_srh_state(skb);
6550 
6551 		return err;
6552 	default:
6553 		return -EINVAL;
6554 	}
6555 }
6556 
6557 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6558 	.func		= bpf_lwt_seg6_action,
6559 	.gpl_only	= false,
6560 	.ret_type	= RET_INTEGER,
6561 	.arg1_type	= ARG_PTR_TO_CTX,
6562 	.arg2_type	= ARG_ANYTHING,
6563 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6564 	.arg4_type	= ARG_CONST_SIZE
6565 };
6566 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6567 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6568 	   s32, len)
6569 {
6570 	struct seg6_bpf_srh_state *srh_state =
6571 		this_cpu_ptr(&seg6_bpf_srh_states);
6572 	struct ipv6_sr_hdr *srh = srh_state->srh;
6573 	void *srh_end, *srh_tlvs, *ptr;
6574 	struct ipv6hdr *hdr;
6575 	int srhoff = 0;
6576 	int ret;
6577 
6578 	if (unlikely(srh == NULL))
6579 		return -EINVAL;
6580 
6581 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6582 			((srh->first_segment + 1) << 4));
6583 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6584 			srh_state->hdrlen);
6585 	ptr = skb->data + offset;
6586 
6587 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6588 		return -EFAULT;
6589 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6590 		return -EFAULT;
6591 
6592 	if (len > 0) {
6593 		ret = skb_cow_head(skb, len);
6594 		if (unlikely(ret < 0))
6595 			return ret;
6596 
6597 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6598 	} else {
6599 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6600 	}
6601 
6602 	bpf_compute_data_pointers(skb);
6603 	if (unlikely(ret < 0))
6604 		return ret;
6605 
6606 	hdr = (struct ipv6hdr *)skb->data;
6607 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6608 
6609 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6610 		return -EINVAL;
6611 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6612 	srh_state->hdrlen += len;
6613 	srh_state->valid = false;
6614 	return 0;
6615 }
6616 
6617 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6618 	.func		= bpf_lwt_seg6_adjust_srh,
6619 	.gpl_only	= false,
6620 	.ret_type	= RET_INTEGER,
6621 	.arg1_type	= ARG_PTR_TO_CTX,
6622 	.arg2_type	= ARG_ANYTHING,
6623 	.arg3_type	= ARG_ANYTHING,
6624 };
6625 #endif /* CONFIG_IPV6_SEG6_BPF */
6626 
6627 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6628 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6629 			      int dif, int sdif, u8 family, u8 proto)
6630 {
6631 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6632 	bool refcounted = false;
6633 	struct sock *sk = NULL;
6634 
6635 	if (family == AF_INET) {
6636 		__be32 src4 = tuple->ipv4.saddr;
6637 		__be32 dst4 = tuple->ipv4.daddr;
6638 
6639 		if (proto == IPPROTO_TCP)
6640 			sk = __inet_lookup(net, hinfo, NULL, 0,
6641 					   src4, tuple->ipv4.sport,
6642 					   dst4, tuple->ipv4.dport,
6643 					   dif, sdif, &refcounted);
6644 		else
6645 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6646 					       dst4, tuple->ipv4.dport,
6647 					       dif, sdif, net->ipv4.udp_table, NULL);
6648 #if IS_ENABLED(CONFIG_IPV6)
6649 	} else {
6650 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6651 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6652 
6653 		if (proto == IPPROTO_TCP)
6654 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6655 					    src6, tuple->ipv6.sport,
6656 					    dst6, ntohs(tuple->ipv6.dport),
6657 					    dif, sdif, &refcounted);
6658 		else if (likely(ipv6_bpf_stub))
6659 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6660 							    src6, tuple->ipv6.sport,
6661 							    dst6, tuple->ipv6.dport,
6662 							    dif, sdif,
6663 							    net->ipv4.udp_table, NULL);
6664 #endif
6665 	}
6666 
6667 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6668 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6669 		sk = NULL;
6670 	}
6671 	return sk;
6672 }
6673 
6674 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6675  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6676  */
6677 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6678 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6679 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6680 		 u64 flags, int sdif)
6681 {
6682 	struct sock *sk = NULL;
6683 	struct net *net;
6684 	u8 family;
6685 
6686 	if (len == sizeof(tuple->ipv4))
6687 		family = AF_INET;
6688 	else if (len == sizeof(tuple->ipv6))
6689 		family = AF_INET6;
6690 	else
6691 		return NULL;
6692 
6693 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6694 		goto out;
6695 
6696 	if (sdif < 0) {
6697 		if (family == AF_INET)
6698 			sdif = inet_sdif(skb);
6699 		else
6700 			sdif = inet6_sdif(skb);
6701 	}
6702 
6703 	if ((s32)netns_id < 0) {
6704 		net = caller_net;
6705 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6706 	} else {
6707 		net = get_net_ns_by_id(caller_net, netns_id);
6708 		if (unlikely(!net))
6709 			goto out;
6710 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6711 		put_net(net);
6712 	}
6713 
6714 out:
6715 	return sk;
6716 }
6717 
6718 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6719 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6720 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6721 		u64 flags, int sdif)
6722 {
6723 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6724 					   ifindex, proto, netns_id, flags,
6725 					   sdif);
6726 
6727 	if (sk) {
6728 		struct sock *sk2 = sk_to_full_sk(sk);
6729 
6730 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6731 		 * sock refcnt is decremented to prevent a request_sock leak.
6732 		 */
6733 		if (!sk_fullsock(sk2))
6734 			sk2 = NULL;
6735 		if (sk2 != sk) {
6736 			sock_gen_put(sk);
6737 			/* Ensure there is no need to bump sk2 refcnt */
6738 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6739 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6740 				return NULL;
6741 			}
6742 			sk = sk2;
6743 		}
6744 	}
6745 
6746 	return sk;
6747 }
6748 
6749 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6750 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6751 	       u8 proto, u64 netns_id, u64 flags)
6752 {
6753 	struct net *caller_net;
6754 	int ifindex;
6755 
6756 	if (skb->dev) {
6757 		caller_net = dev_net(skb->dev);
6758 		ifindex = skb->dev->ifindex;
6759 	} else {
6760 		caller_net = sock_net(skb->sk);
6761 		ifindex = 0;
6762 	}
6763 
6764 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6765 				netns_id, flags, -1);
6766 }
6767 
6768 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6769 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6770 	      u8 proto, u64 netns_id, u64 flags)
6771 {
6772 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6773 					 flags);
6774 
6775 	if (sk) {
6776 		struct sock *sk2 = sk_to_full_sk(sk);
6777 
6778 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6779 		 * sock refcnt is decremented to prevent a request_sock leak.
6780 		 */
6781 		if (!sk_fullsock(sk2))
6782 			sk2 = NULL;
6783 		if (sk2 != sk) {
6784 			sock_gen_put(sk);
6785 			/* Ensure there is no need to bump sk2 refcnt */
6786 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6787 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6788 				return NULL;
6789 			}
6790 			sk = sk2;
6791 		}
6792 	}
6793 
6794 	return sk;
6795 }
6796 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6797 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6798 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6799 {
6800 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6801 					     netns_id, flags);
6802 }
6803 
6804 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6805 	.func		= bpf_skc_lookup_tcp,
6806 	.gpl_only	= false,
6807 	.pkt_access	= true,
6808 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6809 	.arg1_type	= ARG_PTR_TO_CTX,
6810 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6811 	.arg3_type	= ARG_CONST_SIZE,
6812 	.arg4_type	= ARG_ANYTHING,
6813 	.arg5_type	= ARG_ANYTHING,
6814 };
6815 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6816 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6817 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6818 {
6819 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6820 					    netns_id, flags);
6821 }
6822 
6823 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6824 	.func		= bpf_sk_lookup_tcp,
6825 	.gpl_only	= false,
6826 	.pkt_access	= true,
6827 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6828 	.arg1_type	= ARG_PTR_TO_CTX,
6829 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6830 	.arg3_type	= ARG_CONST_SIZE,
6831 	.arg4_type	= ARG_ANYTHING,
6832 	.arg5_type	= ARG_ANYTHING,
6833 };
6834 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6835 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6836 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6837 {
6838 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6839 					    netns_id, flags);
6840 }
6841 
6842 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6843 	.func		= bpf_sk_lookup_udp,
6844 	.gpl_only	= false,
6845 	.pkt_access	= true,
6846 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6847 	.arg1_type	= ARG_PTR_TO_CTX,
6848 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6849 	.arg3_type	= ARG_CONST_SIZE,
6850 	.arg4_type	= ARG_ANYTHING,
6851 	.arg5_type	= ARG_ANYTHING,
6852 };
6853 
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6854 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6855 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6856 {
6857 	struct net_device *dev = skb->dev;
6858 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6859 	struct net *caller_net = dev_net(dev);
6860 
6861 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6862 					       ifindex, IPPROTO_TCP, netns_id,
6863 					       flags, sdif);
6864 }
6865 
6866 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6867 	.func		= bpf_tc_skc_lookup_tcp,
6868 	.gpl_only	= false,
6869 	.pkt_access	= true,
6870 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6871 	.arg1_type	= ARG_PTR_TO_CTX,
6872 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6873 	.arg3_type	= ARG_CONST_SIZE,
6874 	.arg4_type	= ARG_ANYTHING,
6875 	.arg5_type	= ARG_ANYTHING,
6876 };
6877 
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6878 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6879 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6880 {
6881 	struct net_device *dev = skb->dev;
6882 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6883 	struct net *caller_net = dev_net(dev);
6884 
6885 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6886 					      ifindex, IPPROTO_TCP, netns_id,
6887 					      flags, sdif);
6888 }
6889 
6890 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6891 	.func		= bpf_tc_sk_lookup_tcp,
6892 	.gpl_only	= false,
6893 	.pkt_access	= true,
6894 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6895 	.arg1_type	= ARG_PTR_TO_CTX,
6896 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6897 	.arg3_type	= ARG_CONST_SIZE,
6898 	.arg4_type	= ARG_ANYTHING,
6899 	.arg5_type	= ARG_ANYTHING,
6900 };
6901 
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6902 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6903 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6904 {
6905 	struct net_device *dev = skb->dev;
6906 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6907 	struct net *caller_net = dev_net(dev);
6908 
6909 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6910 					      ifindex, IPPROTO_UDP, netns_id,
6911 					      flags, sdif);
6912 }
6913 
6914 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6915 	.func		= bpf_tc_sk_lookup_udp,
6916 	.gpl_only	= false,
6917 	.pkt_access	= true,
6918 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6919 	.arg1_type	= ARG_PTR_TO_CTX,
6920 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6921 	.arg3_type	= ARG_CONST_SIZE,
6922 	.arg4_type	= ARG_ANYTHING,
6923 	.arg5_type	= ARG_ANYTHING,
6924 };
6925 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6926 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6927 {
6928 	if (sk && sk_is_refcounted(sk))
6929 		sock_gen_put(sk);
6930 	return 0;
6931 }
6932 
6933 static const struct bpf_func_proto bpf_sk_release_proto = {
6934 	.func		= bpf_sk_release,
6935 	.gpl_only	= false,
6936 	.ret_type	= RET_INTEGER,
6937 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6938 };
6939 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6940 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6941 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6942 {
6943 	struct net_device *dev = ctx->rxq->dev;
6944 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6945 	struct net *caller_net = dev_net(dev);
6946 
6947 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6948 					      ifindex, IPPROTO_UDP, netns_id,
6949 					      flags, sdif);
6950 }
6951 
6952 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6953 	.func           = bpf_xdp_sk_lookup_udp,
6954 	.gpl_only       = false,
6955 	.pkt_access     = true,
6956 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6957 	.arg1_type      = ARG_PTR_TO_CTX,
6958 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6959 	.arg3_type      = ARG_CONST_SIZE,
6960 	.arg4_type      = ARG_ANYTHING,
6961 	.arg5_type      = ARG_ANYTHING,
6962 };
6963 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6964 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6965 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6966 {
6967 	struct net_device *dev = ctx->rxq->dev;
6968 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6969 	struct net *caller_net = dev_net(dev);
6970 
6971 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6972 					       ifindex, IPPROTO_TCP, netns_id,
6973 					       flags, sdif);
6974 }
6975 
6976 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6977 	.func           = bpf_xdp_skc_lookup_tcp,
6978 	.gpl_only       = false,
6979 	.pkt_access     = true,
6980 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6981 	.arg1_type      = ARG_PTR_TO_CTX,
6982 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6983 	.arg3_type      = ARG_CONST_SIZE,
6984 	.arg4_type      = ARG_ANYTHING,
6985 	.arg5_type      = ARG_ANYTHING,
6986 };
6987 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6988 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6989 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6990 {
6991 	struct net_device *dev = ctx->rxq->dev;
6992 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6993 	struct net *caller_net = dev_net(dev);
6994 
6995 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6996 					      ifindex, IPPROTO_TCP, netns_id,
6997 					      flags, sdif);
6998 }
6999 
7000 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7001 	.func           = bpf_xdp_sk_lookup_tcp,
7002 	.gpl_only       = false,
7003 	.pkt_access     = true,
7004 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7005 	.arg1_type      = ARG_PTR_TO_CTX,
7006 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7007 	.arg3_type      = ARG_CONST_SIZE,
7008 	.arg4_type      = ARG_ANYTHING,
7009 	.arg5_type      = ARG_ANYTHING,
7010 };
7011 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7012 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7013 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7014 {
7015 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7016 					       sock_net(ctx->sk), 0,
7017 					       IPPROTO_TCP, netns_id, flags,
7018 					       -1);
7019 }
7020 
7021 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7022 	.func		= bpf_sock_addr_skc_lookup_tcp,
7023 	.gpl_only	= false,
7024 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7025 	.arg1_type	= ARG_PTR_TO_CTX,
7026 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7027 	.arg3_type	= ARG_CONST_SIZE,
7028 	.arg4_type	= ARG_ANYTHING,
7029 	.arg5_type	= ARG_ANYTHING,
7030 };
7031 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7032 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7033 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7034 {
7035 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7036 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
7037 					      netns_id, flags, -1);
7038 }
7039 
7040 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7041 	.func		= bpf_sock_addr_sk_lookup_tcp,
7042 	.gpl_only	= false,
7043 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7044 	.arg1_type	= ARG_PTR_TO_CTX,
7045 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7046 	.arg3_type	= ARG_CONST_SIZE,
7047 	.arg4_type	= ARG_ANYTHING,
7048 	.arg5_type	= ARG_ANYTHING,
7049 };
7050 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7051 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7052 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7053 {
7054 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7055 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
7056 					      netns_id, flags, -1);
7057 }
7058 
7059 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7060 	.func		= bpf_sock_addr_sk_lookup_udp,
7061 	.gpl_only	= false,
7062 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7063 	.arg1_type	= ARG_PTR_TO_CTX,
7064 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7065 	.arg3_type	= ARG_CONST_SIZE,
7066 	.arg4_type	= ARG_ANYTHING,
7067 	.arg5_type	= ARG_ANYTHING,
7068 };
7069 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7070 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7071 				  struct bpf_insn_access_aux *info)
7072 {
7073 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7074 					  icsk_retransmits))
7075 		return false;
7076 
7077 	if (off % size != 0)
7078 		return false;
7079 
7080 	switch (off) {
7081 	case offsetof(struct bpf_tcp_sock, bytes_received):
7082 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7083 		return size == sizeof(__u64);
7084 	default:
7085 		return size == sizeof(__u32);
7086 	}
7087 }
7088 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7089 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7090 				    const struct bpf_insn *si,
7091 				    struct bpf_insn *insn_buf,
7092 				    struct bpf_prog *prog, u32 *target_size)
7093 {
7094 	struct bpf_insn *insn = insn_buf;
7095 
7096 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
7097 	do {								\
7098 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
7099 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7100 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7101 				      si->dst_reg, si->src_reg,		\
7102 				      offsetof(struct tcp_sock, FIELD)); \
7103 	} while (0)
7104 
7105 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
7106 	do {								\
7107 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
7108 					  FIELD) >			\
7109 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7110 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
7111 					struct inet_connection_sock,	\
7112 					FIELD),				\
7113 				      si->dst_reg, si->src_reg,		\
7114 				      offsetof(				\
7115 					struct inet_connection_sock,	\
7116 					FIELD));			\
7117 	} while (0)
7118 
7119 	BTF_TYPE_EMIT(struct bpf_tcp_sock);
7120 
7121 	switch (si->off) {
7122 	case offsetof(struct bpf_tcp_sock, rtt_min):
7123 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7124 			     sizeof(struct minmax));
7125 		BUILD_BUG_ON(sizeof(struct minmax) <
7126 			     sizeof(struct minmax_sample));
7127 
7128 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7129 				      offsetof(struct tcp_sock, rtt_min) +
7130 				      offsetof(struct minmax_sample, v));
7131 		break;
7132 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
7133 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7134 		break;
7135 	case offsetof(struct bpf_tcp_sock, srtt_us):
7136 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
7137 		break;
7138 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7139 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7140 		break;
7141 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
7142 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7143 		break;
7144 	case offsetof(struct bpf_tcp_sock, snd_nxt):
7145 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7146 		break;
7147 	case offsetof(struct bpf_tcp_sock, snd_una):
7148 		BPF_TCP_SOCK_GET_COMMON(snd_una);
7149 		break;
7150 	case offsetof(struct bpf_tcp_sock, mss_cache):
7151 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
7152 		break;
7153 	case offsetof(struct bpf_tcp_sock, ecn_flags):
7154 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7155 		break;
7156 	case offsetof(struct bpf_tcp_sock, rate_delivered):
7157 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7158 		break;
7159 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
7160 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7161 		break;
7162 	case offsetof(struct bpf_tcp_sock, packets_out):
7163 		BPF_TCP_SOCK_GET_COMMON(packets_out);
7164 		break;
7165 	case offsetof(struct bpf_tcp_sock, retrans_out):
7166 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
7167 		break;
7168 	case offsetof(struct bpf_tcp_sock, total_retrans):
7169 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
7170 		break;
7171 	case offsetof(struct bpf_tcp_sock, segs_in):
7172 		BPF_TCP_SOCK_GET_COMMON(segs_in);
7173 		break;
7174 	case offsetof(struct bpf_tcp_sock, data_segs_in):
7175 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7176 		break;
7177 	case offsetof(struct bpf_tcp_sock, segs_out):
7178 		BPF_TCP_SOCK_GET_COMMON(segs_out);
7179 		break;
7180 	case offsetof(struct bpf_tcp_sock, data_segs_out):
7181 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7182 		break;
7183 	case offsetof(struct bpf_tcp_sock, lost_out):
7184 		BPF_TCP_SOCK_GET_COMMON(lost_out);
7185 		break;
7186 	case offsetof(struct bpf_tcp_sock, sacked_out):
7187 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7188 		break;
7189 	case offsetof(struct bpf_tcp_sock, bytes_received):
7190 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7191 		break;
7192 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7193 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7194 		break;
7195 	case offsetof(struct bpf_tcp_sock, dsack_dups):
7196 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7197 		break;
7198 	case offsetof(struct bpf_tcp_sock, delivered):
7199 		BPF_TCP_SOCK_GET_COMMON(delivered);
7200 		break;
7201 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7202 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7203 		break;
7204 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7205 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7206 		break;
7207 	}
7208 
7209 	return insn - insn_buf;
7210 }
7211 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7212 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7213 {
7214 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7215 		return (unsigned long)sk;
7216 
7217 	return (unsigned long)NULL;
7218 }
7219 
7220 const struct bpf_func_proto bpf_tcp_sock_proto = {
7221 	.func		= bpf_tcp_sock,
7222 	.gpl_only	= false,
7223 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7224 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7225 };
7226 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7227 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7228 {
7229 	sk = sk_to_full_sk(sk);
7230 
7231 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7232 		return (unsigned long)sk;
7233 
7234 	return (unsigned long)NULL;
7235 }
7236 
7237 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7238 	.func		= bpf_get_listener_sock,
7239 	.gpl_only	= false,
7240 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7241 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7242 };
7243 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7244 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7245 {
7246 	unsigned int iphdr_len;
7247 
7248 	switch (skb_protocol(skb, true)) {
7249 	case cpu_to_be16(ETH_P_IP):
7250 		iphdr_len = sizeof(struct iphdr);
7251 		break;
7252 	case cpu_to_be16(ETH_P_IPV6):
7253 		iphdr_len = sizeof(struct ipv6hdr);
7254 		break;
7255 	default:
7256 		return 0;
7257 	}
7258 
7259 	if (skb_headlen(skb) < iphdr_len)
7260 		return 0;
7261 
7262 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7263 		return 0;
7264 
7265 	return INET_ECN_set_ce(skb);
7266 }
7267 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7268 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7269 				  struct bpf_insn_access_aux *info)
7270 {
7271 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7272 		return false;
7273 
7274 	if (off % size != 0)
7275 		return false;
7276 
7277 	switch (off) {
7278 	default:
7279 		return size == sizeof(__u32);
7280 	}
7281 }
7282 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7283 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7284 				    const struct bpf_insn *si,
7285 				    struct bpf_insn *insn_buf,
7286 				    struct bpf_prog *prog, u32 *target_size)
7287 {
7288 	struct bpf_insn *insn = insn_buf;
7289 
7290 #define BPF_XDP_SOCK_GET(FIELD)						\
7291 	do {								\
7292 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7293 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7294 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7295 				      si->dst_reg, si->src_reg,		\
7296 				      offsetof(struct xdp_sock, FIELD)); \
7297 	} while (0)
7298 
7299 	switch (si->off) {
7300 	case offsetof(struct bpf_xdp_sock, queue_id):
7301 		BPF_XDP_SOCK_GET(queue_id);
7302 		break;
7303 	}
7304 
7305 	return insn - insn_buf;
7306 }
7307 
7308 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7309 	.func           = bpf_skb_ecn_set_ce,
7310 	.gpl_only       = false,
7311 	.ret_type       = RET_INTEGER,
7312 	.arg1_type      = ARG_PTR_TO_CTX,
7313 };
7314 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7315 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7316 	   struct tcphdr *, th, u32, th_len)
7317 {
7318 #ifdef CONFIG_SYN_COOKIES
7319 	u32 cookie;
7320 	int ret;
7321 
7322 	if (unlikely(!sk || th_len < sizeof(*th)))
7323 		return -EINVAL;
7324 
7325 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7326 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7327 		return -EINVAL;
7328 
7329 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7330 		return -EINVAL;
7331 
7332 	if (!th->ack || th->rst || th->syn)
7333 		return -ENOENT;
7334 
7335 	if (unlikely(iph_len < sizeof(struct iphdr)))
7336 		return -EINVAL;
7337 
7338 	if (tcp_synq_no_recent_overflow(sk))
7339 		return -ENOENT;
7340 
7341 	cookie = ntohl(th->ack_seq) - 1;
7342 
7343 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7344 	 * same offset so we can cast to the shorter header (struct iphdr).
7345 	 */
7346 	switch (((struct iphdr *)iph)->version) {
7347 	case 4:
7348 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7349 			return -EINVAL;
7350 
7351 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7352 		break;
7353 
7354 #if IS_BUILTIN(CONFIG_IPV6)
7355 	case 6:
7356 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7357 			return -EINVAL;
7358 
7359 		if (sk->sk_family != AF_INET6)
7360 			return -EINVAL;
7361 
7362 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7363 		break;
7364 #endif /* CONFIG_IPV6 */
7365 
7366 	default:
7367 		return -EPROTONOSUPPORT;
7368 	}
7369 
7370 	if (ret > 0)
7371 		return 0;
7372 
7373 	return -ENOENT;
7374 #else
7375 	return -ENOTSUPP;
7376 #endif
7377 }
7378 
7379 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7380 	.func		= bpf_tcp_check_syncookie,
7381 	.gpl_only	= true,
7382 	.pkt_access	= true,
7383 	.ret_type	= RET_INTEGER,
7384 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7385 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7386 	.arg3_type	= ARG_CONST_SIZE,
7387 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7388 	.arg5_type	= ARG_CONST_SIZE,
7389 };
7390 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7391 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7392 	   struct tcphdr *, th, u32, th_len)
7393 {
7394 #ifdef CONFIG_SYN_COOKIES
7395 	u32 cookie;
7396 	u16 mss;
7397 
7398 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7399 		return -EINVAL;
7400 
7401 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7402 		return -EINVAL;
7403 
7404 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7405 		return -ENOENT;
7406 
7407 	if (!th->syn || th->ack || th->fin || th->rst)
7408 		return -EINVAL;
7409 
7410 	if (unlikely(iph_len < sizeof(struct iphdr)))
7411 		return -EINVAL;
7412 
7413 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7414 	 * same offset so we can cast to the shorter header (struct iphdr).
7415 	 */
7416 	switch (((struct iphdr *)iph)->version) {
7417 	case 4:
7418 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7419 			return -EINVAL;
7420 
7421 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7422 		break;
7423 
7424 #if IS_BUILTIN(CONFIG_IPV6)
7425 	case 6:
7426 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7427 			return -EINVAL;
7428 
7429 		if (sk->sk_family != AF_INET6)
7430 			return -EINVAL;
7431 
7432 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7433 		break;
7434 #endif /* CONFIG_IPV6 */
7435 
7436 	default:
7437 		return -EPROTONOSUPPORT;
7438 	}
7439 	if (mss == 0)
7440 		return -ENOENT;
7441 
7442 	return cookie | ((u64)mss << 32);
7443 #else
7444 	return -EOPNOTSUPP;
7445 #endif /* CONFIG_SYN_COOKIES */
7446 }
7447 
7448 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7449 	.func		= bpf_tcp_gen_syncookie,
7450 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7451 	.pkt_access	= true,
7452 	.ret_type	= RET_INTEGER,
7453 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7454 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7455 	.arg3_type	= ARG_CONST_SIZE,
7456 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7457 	.arg5_type	= ARG_CONST_SIZE,
7458 };
7459 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7460 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7461 {
7462 	if (!sk || flags != 0)
7463 		return -EINVAL;
7464 	if (!skb_at_tc_ingress(skb))
7465 		return -EOPNOTSUPP;
7466 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7467 		return -ENETUNREACH;
7468 	if (sk_unhashed(sk))
7469 		return -EOPNOTSUPP;
7470 	if (sk_is_refcounted(sk) &&
7471 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7472 		return -ENOENT;
7473 
7474 	skb_orphan(skb);
7475 	skb->sk = sk;
7476 	skb->destructor = sock_pfree;
7477 
7478 	return 0;
7479 }
7480 
7481 static const struct bpf_func_proto bpf_sk_assign_proto = {
7482 	.func		= bpf_sk_assign,
7483 	.gpl_only	= false,
7484 	.ret_type	= RET_INTEGER,
7485 	.arg1_type      = ARG_PTR_TO_CTX,
7486 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7487 	.arg3_type	= ARG_ANYTHING,
7488 };
7489 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7490 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7491 				    u8 search_kind, const u8 *magic,
7492 				    u8 magic_len, bool *eol)
7493 {
7494 	u8 kind, kind_len;
7495 
7496 	*eol = false;
7497 
7498 	while (op < opend) {
7499 		kind = op[0];
7500 
7501 		if (kind == TCPOPT_EOL) {
7502 			*eol = true;
7503 			return ERR_PTR(-ENOMSG);
7504 		} else if (kind == TCPOPT_NOP) {
7505 			op++;
7506 			continue;
7507 		}
7508 
7509 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7510 			/* Something is wrong in the received header.
7511 			 * Follow the TCP stack's tcp_parse_options()
7512 			 * and just bail here.
7513 			 */
7514 			return ERR_PTR(-EFAULT);
7515 
7516 		kind_len = op[1];
7517 		if (search_kind == kind) {
7518 			if (!magic_len)
7519 				return op;
7520 
7521 			if (magic_len > kind_len - 2)
7522 				return ERR_PTR(-ENOMSG);
7523 
7524 			if (!memcmp(&op[2], magic, magic_len))
7525 				return op;
7526 		}
7527 
7528 		op += kind_len;
7529 	}
7530 
7531 	return ERR_PTR(-ENOMSG);
7532 }
7533 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7534 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7535 	   void *, search_res, u32, len, u64, flags)
7536 {
7537 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7538 	const u8 *op, *opend, *magic, *search = search_res;
7539 	u8 search_kind, search_len, copy_len, magic_len;
7540 	int ret;
7541 
7542 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7543 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7544 	 * and this helper disallow loading them also.
7545 	 */
7546 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7547 		return -EINVAL;
7548 
7549 	search_kind = search[0];
7550 	search_len = search[1];
7551 
7552 	if (search_len > len || search_kind == TCPOPT_NOP ||
7553 	    search_kind == TCPOPT_EOL)
7554 		return -EINVAL;
7555 
7556 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7557 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7558 		if (search_len != 4 && search_len != 6)
7559 			return -EINVAL;
7560 		magic = &search[2];
7561 		magic_len = search_len - 2;
7562 	} else {
7563 		if (search_len)
7564 			return -EINVAL;
7565 		magic = NULL;
7566 		magic_len = 0;
7567 	}
7568 
7569 	if (load_syn) {
7570 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7571 		if (ret < 0)
7572 			return ret;
7573 
7574 		opend = op + ret;
7575 		op += sizeof(struct tcphdr);
7576 	} else {
7577 		if (!bpf_sock->skb ||
7578 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7579 			/* This bpf_sock->op cannot call this helper */
7580 			return -EPERM;
7581 
7582 		opend = bpf_sock->skb_data_end;
7583 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7584 	}
7585 
7586 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7587 				&eol);
7588 	if (IS_ERR(op))
7589 		return PTR_ERR(op);
7590 
7591 	copy_len = op[1];
7592 	ret = copy_len;
7593 	if (copy_len > len) {
7594 		ret = -ENOSPC;
7595 		copy_len = len;
7596 	}
7597 
7598 	memcpy(search_res, op, copy_len);
7599 	return ret;
7600 }
7601 
7602 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7603 	.func		= bpf_sock_ops_load_hdr_opt,
7604 	.gpl_only	= false,
7605 	.ret_type	= RET_INTEGER,
7606 	.arg1_type	= ARG_PTR_TO_CTX,
7607 	.arg2_type	= ARG_PTR_TO_MEM,
7608 	.arg3_type	= ARG_CONST_SIZE,
7609 	.arg4_type	= ARG_ANYTHING,
7610 };
7611 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7612 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7613 	   const void *, from, u32, len, u64, flags)
7614 {
7615 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7616 	const u8 *op, *new_op, *magic = NULL;
7617 	struct sk_buff *skb;
7618 	bool eol;
7619 
7620 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7621 		return -EPERM;
7622 
7623 	if (len < 2 || flags)
7624 		return -EINVAL;
7625 
7626 	new_op = from;
7627 	new_kind = new_op[0];
7628 	new_kind_len = new_op[1];
7629 
7630 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7631 	    new_kind == TCPOPT_EOL)
7632 		return -EINVAL;
7633 
7634 	if (new_kind_len > bpf_sock->remaining_opt_len)
7635 		return -ENOSPC;
7636 
7637 	/* 253 is another experimental kind */
7638 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7639 		if (new_kind_len < 4)
7640 			return -EINVAL;
7641 		/* Match for the 2 byte magic also.
7642 		 * RFC 6994: the magic could be 2 or 4 bytes.
7643 		 * Hence, matching by 2 byte only is on the
7644 		 * conservative side but it is the right
7645 		 * thing to do for the 'search-for-duplication'
7646 		 * purpose.
7647 		 */
7648 		magic = &new_op[2];
7649 		magic_len = 2;
7650 	}
7651 
7652 	/* Check for duplication */
7653 	skb = bpf_sock->skb;
7654 	op = skb->data + sizeof(struct tcphdr);
7655 	opend = bpf_sock->skb_data_end;
7656 
7657 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7658 				&eol);
7659 	if (!IS_ERR(op))
7660 		return -EEXIST;
7661 
7662 	if (PTR_ERR(op) != -ENOMSG)
7663 		return PTR_ERR(op);
7664 
7665 	if (eol)
7666 		/* The option has been ended.  Treat it as no more
7667 		 * header option can be written.
7668 		 */
7669 		return -ENOSPC;
7670 
7671 	/* No duplication found.  Store the header option. */
7672 	memcpy(opend, from, new_kind_len);
7673 
7674 	bpf_sock->remaining_opt_len -= new_kind_len;
7675 	bpf_sock->skb_data_end += new_kind_len;
7676 
7677 	return 0;
7678 }
7679 
7680 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7681 	.func		= bpf_sock_ops_store_hdr_opt,
7682 	.gpl_only	= false,
7683 	.ret_type	= RET_INTEGER,
7684 	.arg1_type	= ARG_PTR_TO_CTX,
7685 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7686 	.arg3_type	= ARG_CONST_SIZE,
7687 	.arg4_type	= ARG_ANYTHING,
7688 };
7689 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7690 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7691 	   u32, len, u64, flags)
7692 {
7693 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7694 		return -EPERM;
7695 
7696 	if (flags || len < 2)
7697 		return -EINVAL;
7698 
7699 	if (len > bpf_sock->remaining_opt_len)
7700 		return -ENOSPC;
7701 
7702 	bpf_sock->remaining_opt_len -= len;
7703 
7704 	return 0;
7705 }
7706 
7707 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7708 	.func		= bpf_sock_ops_reserve_hdr_opt,
7709 	.gpl_only	= false,
7710 	.ret_type	= RET_INTEGER,
7711 	.arg1_type	= ARG_PTR_TO_CTX,
7712 	.arg2_type	= ARG_ANYTHING,
7713 	.arg3_type	= ARG_ANYTHING,
7714 };
7715 
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7716 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7717 	   u64, tstamp, u32, tstamp_type)
7718 {
7719 	/* skb_clear_delivery_time() is done for inet protocol */
7720 	if (skb->protocol != htons(ETH_P_IP) &&
7721 	    skb->protocol != htons(ETH_P_IPV6))
7722 		return -EOPNOTSUPP;
7723 
7724 	switch (tstamp_type) {
7725 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7726 		if (!tstamp)
7727 			return -EINVAL;
7728 		skb->tstamp = tstamp;
7729 		skb->mono_delivery_time = 1;
7730 		break;
7731 	case BPF_SKB_TSTAMP_UNSPEC:
7732 		if (tstamp)
7733 			return -EINVAL;
7734 		skb->tstamp = 0;
7735 		skb->mono_delivery_time = 0;
7736 		break;
7737 	default:
7738 		return -EINVAL;
7739 	}
7740 
7741 	return 0;
7742 }
7743 
7744 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7745 	.func           = bpf_skb_set_tstamp,
7746 	.gpl_only       = false,
7747 	.ret_type       = RET_INTEGER,
7748 	.arg1_type      = ARG_PTR_TO_CTX,
7749 	.arg2_type      = ARG_ANYTHING,
7750 	.arg3_type      = ARG_ANYTHING,
7751 };
7752 
7753 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7754 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7755 	   struct tcphdr *, th, u32, th_len)
7756 {
7757 	u32 cookie;
7758 	u16 mss;
7759 
7760 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7761 		return -EINVAL;
7762 
7763 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7764 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7765 
7766 	return cookie | ((u64)mss << 32);
7767 }
7768 
7769 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7770 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7771 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7772 	.pkt_access	= true,
7773 	.ret_type	= RET_INTEGER,
7774 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7775 	.arg1_size	= sizeof(struct iphdr),
7776 	.arg2_type	= ARG_PTR_TO_MEM,
7777 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7778 };
7779 
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7780 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7781 	   struct tcphdr *, th, u32, th_len)
7782 {
7783 #if IS_BUILTIN(CONFIG_IPV6)
7784 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7785 		sizeof(struct ipv6hdr);
7786 	u32 cookie;
7787 	u16 mss;
7788 
7789 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7790 		return -EINVAL;
7791 
7792 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7793 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7794 
7795 	return cookie | ((u64)mss << 32);
7796 #else
7797 	return -EPROTONOSUPPORT;
7798 #endif
7799 }
7800 
7801 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7802 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7803 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7804 	.pkt_access	= true,
7805 	.ret_type	= RET_INTEGER,
7806 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7807 	.arg1_size	= sizeof(struct ipv6hdr),
7808 	.arg2_type	= ARG_PTR_TO_MEM,
7809 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7810 };
7811 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7812 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7813 	   struct tcphdr *, th)
7814 {
7815 	u32 cookie = ntohl(th->ack_seq) - 1;
7816 
7817 	if (__cookie_v4_check(iph, th, cookie) > 0)
7818 		return 0;
7819 
7820 	return -EACCES;
7821 }
7822 
7823 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7824 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7825 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7826 	.pkt_access	= true,
7827 	.ret_type	= RET_INTEGER,
7828 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7829 	.arg1_size	= sizeof(struct iphdr),
7830 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7831 	.arg2_size	= sizeof(struct tcphdr),
7832 };
7833 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7834 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7835 	   struct tcphdr *, th)
7836 {
7837 #if IS_BUILTIN(CONFIG_IPV6)
7838 	u32 cookie = ntohl(th->ack_seq) - 1;
7839 
7840 	if (__cookie_v6_check(iph, th, cookie) > 0)
7841 		return 0;
7842 
7843 	return -EACCES;
7844 #else
7845 	return -EPROTONOSUPPORT;
7846 #endif
7847 }
7848 
7849 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7850 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7851 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7852 	.pkt_access	= true,
7853 	.ret_type	= RET_INTEGER,
7854 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7855 	.arg1_size	= sizeof(struct ipv6hdr),
7856 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7857 	.arg2_size	= sizeof(struct tcphdr),
7858 };
7859 #endif /* CONFIG_SYN_COOKIES */
7860 
7861 #endif /* CONFIG_INET */
7862 
bpf_helper_changes_pkt_data(void * func)7863 bool bpf_helper_changes_pkt_data(void *func)
7864 {
7865 	if (func == bpf_skb_vlan_push ||
7866 	    func == bpf_skb_vlan_pop ||
7867 	    func == bpf_skb_store_bytes ||
7868 	    func == bpf_skb_change_proto ||
7869 	    func == bpf_skb_change_head ||
7870 	    func == sk_skb_change_head ||
7871 	    func == bpf_skb_change_tail ||
7872 	    func == sk_skb_change_tail ||
7873 	    func == bpf_skb_adjust_room ||
7874 	    func == sk_skb_adjust_room ||
7875 	    func == bpf_skb_pull_data ||
7876 	    func == sk_skb_pull_data ||
7877 	    func == bpf_clone_redirect ||
7878 	    func == bpf_l3_csum_replace ||
7879 	    func == bpf_l4_csum_replace ||
7880 	    func == bpf_xdp_adjust_head ||
7881 	    func == bpf_xdp_adjust_meta ||
7882 	    func == bpf_msg_pull_data ||
7883 	    func == bpf_msg_push_data ||
7884 	    func == bpf_msg_pop_data ||
7885 	    func == bpf_xdp_adjust_tail ||
7886 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7887 	    func == bpf_lwt_seg6_store_bytes ||
7888 	    func == bpf_lwt_seg6_adjust_srh ||
7889 	    func == bpf_lwt_seg6_action ||
7890 #endif
7891 #ifdef CONFIG_INET
7892 	    func == bpf_sock_ops_store_hdr_opt ||
7893 #endif
7894 	    func == bpf_lwt_in_push_encap ||
7895 	    func == bpf_lwt_xmit_push_encap)
7896 		return true;
7897 
7898 	return false;
7899 }
7900 
7901 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7902 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7903 
7904 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7905 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7906 {
7907 	const struct bpf_func_proto *func_proto;
7908 
7909 	func_proto = cgroup_common_func_proto(func_id, prog);
7910 	if (func_proto)
7911 		return func_proto;
7912 
7913 	func_proto = cgroup_current_func_proto(func_id, prog);
7914 	if (func_proto)
7915 		return func_proto;
7916 
7917 	switch (func_id) {
7918 	case BPF_FUNC_get_socket_cookie:
7919 		return &bpf_get_socket_cookie_sock_proto;
7920 	case BPF_FUNC_get_netns_cookie:
7921 		return &bpf_get_netns_cookie_sock_proto;
7922 	case BPF_FUNC_perf_event_output:
7923 		return &bpf_event_output_data_proto;
7924 	case BPF_FUNC_sk_storage_get:
7925 		return &bpf_sk_storage_get_cg_sock_proto;
7926 	case BPF_FUNC_ktime_get_coarse_ns:
7927 		return &bpf_ktime_get_coarse_ns_proto;
7928 	default:
7929 		return bpf_base_func_proto(func_id);
7930 	}
7931 }
7932 
7933 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7934 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7935 {
7936 	const struct bpf_func_proto *func_proto;
7937 
7938 	func_proto = cgroup_common_func_proto(func_id, prog);
7939 	if (func_proto)
7940 		return func_proto;
7941 
7942 	func_proto = cgroup_current_func_proto(func_id, prog);
7943 	if (func_proto)
7944 		return func_proto;
7945 
7946 	switch (func_id) {
7947 	case BPF_FUNC_bind:
7948 		switch (prog->expected_attach_type) {
7949 		case BPF_CGROUP_INET4_CONNECT:
7950 		case BPF_CGROUP_INET6_CONNECT:
7951 			return &bpf_bind_proto;
7952 		default:
7953 			return NULL;
7954 		}
7955 	case BPF_FUNC_get_socket_cookie:
7956 		return &bpf_get_socket_cookie_sock_addr_proto;
7957 	case BPF_FUNC_get_netns_cookie:
7958 		return &bpf_get_netns_cookie_sock_addr_proto;
7959 	case BPF_FUNC_perf_event_output:
7960 		return &bpf_event_output_data_proto;
7961 #ifdef CONFIG_INET
7962 	case BPF_FUNC_sk_lookup_tcp:
7963 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7964 	case BPF_FUNC_sk_lookup_udp:
7965 		return &bpf_sock_addr_sk_lookup_udp_proto;
7966 	case BPF_FUNC_sk_release:
7967 		return &bpf_sk_release_proto;
7968 	case BPF_FUNC_skc_lookup_tcp:
7969 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7970 #endif /* CONFIG_INET */
7971 	case BPF_FUNC_sk_storage_get:
7972 		return &bpf_sk_storage_get_proto;
7973 	case BPF_FUNC_sk_storage_delete:
7974 		return &bpf_sk_storage_delete_proto;
7975 	case BPF_FUNC_setsockopt:
7976 		switch (prog->expected_attach_type) {
7977 		case BPF_CGROUP_INET4_BIND:
7978 		case BPF_CGROUP_INET6_BIND:
7979 		case BPF_CGROUP_INET4_CONNECT:
7980 		case BPF_CGROUP_INET6_CONNECT:
7981 		case BPF_CGROUP_UDP4_RECVMSG:
7982 		case BPF_CGROUP_UDP6_RECVMSG:
7983 		case BPF_CGROUP_UDP4_SENDMSG:
7984 		case BPF_CGROUP_UDP6_SENDMSG:
7985 		case BPF_CGROUP_INET4_GETPEERNAME:
7986 		case BPF_CGROUP_INET6_GETPEERNAME:
7987 		case BPF_CGROUP_INET4_GETSOCKNAME:
7988 		case BPF_CGROUP_INET6_GETSOCKNAME:
7989 			return &bpf_sock_addr_setsockopt_proto;
7990 		default:
7991 			return NULL;
7992 		}
7993 	case BPF_FUNC_getsockopt:
7994 		switch (prog->expected_attach_type) {
7995 		case BPF_CGROUP_INET4_BIND:
7996 		case BPF_CGROUP_INET6_BIND:
7997 		case BPF_CGROUP_INET4_CONNECT:
7998 		case BPF_CGROUP_INET6_CONNECT:
7999 		case BPF_CGROUP_UDP4_RECVMSG:
8000 		case BPF_CGROUP_UDP6_RECVMSG:
8001 		case BPF_CGROUP_UDP4_SENDMSG:
8002 		case BPF_CGROUP_UDP6_SENDMSG:
8003 		case BPF_CGROUP_INET4_GETPEERNAME:
8004 		case BPF_CGROUP_INET6_GETPEERNAME:
8005 		case BPF_CGROUP_INET4_GETSOCKNAME:
8006 		case BPF_CGROUP_INET6_GETSOCKNAME:
8007 			return &bpf_sock_addr_getsockopt_proto;
8008 		default:
8009 			return NULL;
8010 		}
8011 	default:
8012 		return bpf_sk_base_func_proto(func_id);
8013 	}
8014 }
8015 
8016 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8017 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8018 {
8019 	switch (func_id) {
8020 	case BPF_FUNC_skb_load_bytes:
8021 		return &bpf_skb_load_bytes_proto;
8022 	case BPF_FUNC_skb_load_bytes_relative:
8023 		return &bpf_skb_load_bytes_relative_proto;
8024 	case BPF_FUNC_get_socket_cookie:
8025 		return &bpf_get_socket_cookie_proto;
8026 	case BPF_FUNC_get_socket_uid:
8027 		return &bpf_get_socket_uid_proto;
8028 	case BPF_FUNC_perf_event_output:
8029 		return &bpf_skb_event_output_proto;
8030 	default:
8031 		return bpf_sk_base_func_proto(func_id);
8032 	}
8033 }
8034 
8035 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8036 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8037 
8038 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8039 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8040 {
8041 	const struct bpf_func_proto *func_proto;
8042 
8043 	func_proto = cgroup_common_func_proto(func_id, prog);
8044 	if (func_proto)
8045 		return func_proto;
8046 
8047 	switch (func_id) {
8048 	case BPF_FUNC_sk_fullsock:
8049 		return &bpf_sk_fullsock_proto;
8050 	case BPF_FUNC_sk_storage_get:
8051 		return &bpf_sk_storage_get_proto;
8052 	case BPF_FUNC_sk_storage_delete:
8053 		return &bpf_sk_storage_delete_proto;
8054 	case BPF_FUNC_perf_event_output:
8055 		return &bpf_skb_event_output_proto;
8056 #ifdef CONFIG_SOCK_CGROUP_DATA
8057 	case BPF_FUNC_skb_cgroup_id:
8058 		return &bpf_skb_cgroup_id_proto;
8059 	case BPF_FUNC_skb_ancestor_cgroup_id:
8060 		return &bpf_skb_ancestor_cgroup_id_proto;
8061 	case BPF_FUNC_sk_cgroup_id:
8062 		return &bpf_sk_cgroup_id_proto;
8063 	case BPF_FUNC_sk_ancestor_cgroup_id:
8064 		return &bpf_sk_ancestor_cgroup_id_proto;
8065 #endif
8066 #ifdef CONFIG_INET
8067 	case BPF_FUNC_sk_lookup_tcp:
8068 		return &bpf_sk_lookup_tcp_proto;
8069 	case BPF_FUNC_sk_lookup_udp:
8070 		return &bpf_sk_lookup_udp_proto;
8071 	case BPF_FUNC_sk_release:
8072 		return &bpf_sk_release_proto;
8073 	case BPF_FUNC_skc_lookup_tcp:
8074 		return &bpf_skc_lookup_tcp_proto;
8075 	case BPF_FUNC_tcp_sock:
8076 		return &bpf_tcp_sock_proto;
8077 	case BPF_FUNC_get_listener_sock:
8078 		return &bpf_get_listener_sock_proto;
8079 	case BPF_FUNC_skb_ecn_set_ce:
8080 		return &bpf_skb_ecn_set_ce_proto;
8081 #endif
8082 	default:
8083 		return sk_filter_func_proto(func_id, prog);
8084 	}
8085 }
8086 
8087 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8088 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8089 {
8090 	switch (func_id) {
8091 	case BPF_FUNC_skb_store_bytes:
8092 		return &bpf_skb_store_bytes_proto;
8093 	case BPF_FUNC_skb_load_bytes:
8094 		return &bpf_skb_load_bytes_proto;
8095 	case BPF_FUNC_skb_load_bytes_relative:
8096 		return &bpf_skb_load_bytes_relative_proto;
8097 	case BPF_FUNC_skb_pull_data:
8098 		return &bpf_skb_pull_data_proto;
8099 	case BPF_FUNC_csum_diff:
8100 		return &bpf_csum_diff_proto;
8101 	case BPF_FUNC_csum_update:
8102 		return &bpf_csum_update_proto;
8103 	case BPF_FUNC_csum_level:
8104 		return &bpf_csum_level_proto;
8105 	case BPF_FUNC_l3_csum_replace:
8106 		return &bpf_l3_csum_replace_proto;
8107 	case BPF_FUNC_l4_csum_replace:
8108 		return &bpf_l4_csum_replace_proto;
8109 	case BPF_FUNC_clone_redirect:
8110 		return &bpf_clone_redirect_proto;
8111 	case BPF_FUNC_get_cgroup_classid:
8112 		return &bpf_get_cgroup_classid_proto;
8113 	case BPF_FUNC_skb_vlan_push:
8114 		return &bpf_skb_vlan_push_proto;
8115 	case BPF_FUNC_skb_vlan_pop:
8116 		return &bpf_skb_vlan_pop_proto;
8117 	case BPF_FUNC_skb_change_proto:
8118 		return &bpf_skb_change_proto_proto;
8119 	case BPF_FUNC_skb_change_type:
8120 		return &bpf_skb_change_type_proto;
8121 	case BPF_FUNC_skb_adjust_room:
8122 		return &bpf_skb_adjust_room_proto;
8123 	case BPF_FUNC_skb_change_tail:
8124 		return &bpf_skb_change_tail_proto;
8125 	case BPF_FUNC_skb_change_head:
8126 		return &bpf_skb_change_head_proto;
8127 	case BPF_FUNC_skb_get_tunnel_key:
8128 		return &bpf_skb_get_tunnel_key_proto;
8129 	case BPF_FUNC_skb_set_tunnel_key:
8130 		return bpf_get_skb_set_tunnel_proto(func_id);
8131 	case BPF_FUNC_skb_get_tunnel_opt:
8132 		return &bpf_skb_get_tunnel_opt_proto;
8133 	case BPF_FUNC_skb_set_tunnel_opt:
8134 		return bpf_get_skb_set_tunnel_proto(func_id);
8135 	case BPF_FUNC_redirect:
8136 		return &bpf_redirect_proto;
8137 	case BPF_FUNC_redirect_neigh:
8138 		return &bpf_redirect_neigh_proto;
8139 	case BPF_FUNC_redirect_peer:
8140 		return &bpf_redirect_peer_proto;
8141 	case BPF_FUNC_get_route_realm:
8142 		return &bpf_get_route_realm_proto;
8143 	case BPF_FUNC_get_hash_recalc:
8144 		return &bpf_get_hash_recalc_proto;
8145 	case BPF_FUNC_set_hash_invalid:
8146 		return &bpf_set_hash_invalid_proto;
8147 	case BPF_FUNC_set_hash:
8148 		return &bpf_set_hash_proto;
8149 	case BPF_FUNC_perf_event_output:
8150 		return &bpf_skb_event_output_proto;
8151 	case BPF_FUNC_get_smp_processor_id:
8152 		return &bpf_get_smp_processor_id_proto;
8153 	case BPF_FUNC_skb_under_cgroup:
8154 		return &bpf_skb_under_cgroup_proto;
8155 	case BPF_FUNC_get_socket_cookie:
8156 		return &bpf_get_socket_cookie_proto;
8157 	case BPF_FUNC_get_socket_uid:
8158 		return &bpf_get_socket_uid_proto;
8159 	case BPF_FUNC_fib_lookup:
8160 		return &bpf_skb_fib_lookup_proto;
8161 	case BPF_FUNC_check_mtu:
8162 		return &bpf_skb_check_mtu_proto;
8163 	case BPF_FUNC_sk_fullsock:
8164 		return &bpf_sk_fullsock_proto;
8165 	case BPF_FUNC_sk_storage_get:
8166 		return &bpf_sk_storage_get_proto;
8167 	case BPF_FUNC_sk_storage_delete:
8168 		return &bpf_sk_storage_delete_proto;
8169 #ifdef CONFIG_XFRM
8170 	case BPF_FUNC_skb_get_xfrm_state:
8171 		return &bpf_skb_get_xfrm_state_proto;
8172 #endif
8173 #ifdef CONFIG_CGROUP_NET_CLASSID
8174 	case BPF_FUNC_skb_cgroup_classid:
8175 		return &bpf_skb_cgroup_classid_proto;
8176 #endif
8177 #ifdef CONFIG_SOCK_CGROUP_DATA
8178 	case BPF_FUNC_skb_cgroup_id:
8179 		return &bpf_skb_cgroup_id_proto;
8180 	case BPF_FUNC_skb_ancestor_cgroup_id:
8181 		return &bpf_skb_ancestor_cgroup_id_proto;
8182 #endif
8183 #ifdef CONFIG_INET
8184 	case BPF_FUNC_sk_lookup_tcp:
8185 		return &bpf_tc_sk_lookup_tcp_proto;
8186 	case BPF_FUNC_sk_lookup_udp:
8187 		return &bpf_tc_sk_lookup_udp_proto;
8188 	case BPF_FUNC_sk_release:
8189 		return &bpf_sk_release_proto;
8190 	case BPF_FUNC_tcp_sock:
8191 		return &bpf_tcp_sock_proto;
8192 	case BPF_FUNC_get_listener_sock:
8193 		return &bpf_get_listener_sock_proto;
8194 	case BPF_FUNC_skc_lookup_tcp:
8195 		return &bpf_tc_skc_lookup_tcp_proto;
8196 	case BPF_FUNC_tcp_check_syncookie:
8197 		return &bpf_tcp_check_syncookie_proto;
8198 	case BPF_FUNC_skb_ecn_set_ce:
8199 		return &bpf_skb_ecn_set_ce_proto;
8200 	case BPF_FUNC_tcp_gen_syncookie:
8201 		return &bpf_tcp_gen_syncookie_proto;
8202 	case BPF_FUNC_sk_assign:
8203 		return &bpf_sk_assign_proto;
8204 	case BPF_FUNC_skb_set_tstamp:
8205 		return &bpf_skb_set_tstamp_proto;
8206 #ifdef CONFIG_SYN_COOKIES
8207 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8208 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8209 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8210 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8211 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8212 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8213 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8214 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8215 #endif
8216 #endif
8217 	default:
8218 		return bpf_sk_base_func_proto(func_id);
8219 	}
8220 }
8221 
8222 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8223 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8224 {
8225 	switch (func_id) {
8226 	case BPF_FUNC_perf_event_output:
8227 		return &bpf_xdp_event_output_proto;
8228 	case BPF_FUNC_get_smp_processor_id:
8229 		return &bpf_get_smp_processor_id_proto;
8230 	case BPF_FUNC_csum_diff:
8231 		return &bpf_csum_diff_proto;
8232 	case BPF_FUNC_xdp_adjust_head:
8233 		return &bpf_xdp_adjust_head_proto;
8234 	case BPF_FUNC_xdp_adjust_meta:
8235 		return &bpf_xdp_adjust_meta_proto;
8236 	case BPF_FUNC_redirect:
8237 		return &bpf_xdp_redirect_proto;
8238 	case BPF_FUNC_redirect_map:
8239 		return &bpf_xdp_redirect_map_proto;
8240 	case BPF_FUNC_xdp_adjust_tail:
8241 		return &bpf_xdp_adjust_tail_proto;
8242 	case BPF_FUNC_xdp_get_buff_len:
8243 		return &bpf_xdp_get_buff_len_proto;
8244 	case BPF_FUNC_xdp_load_bytes:
8245 		return &bpf_xdp_load_bytes_proto;
8246 	case BPF_FUNC_xdp_store_bytes:
8247 		return &bpf_xdp_store_bytes_proto;
8248 	case BPF_FUNC_fib_lookup:
8249 		return &bpf_xdp_fib_lookup_proto;
8250 	case BPF_FUNC_check_mtu:
8251 		return &bpf_xdp_check_mtu_proto;
8252 #ifdef CONFIG_INET
8253 	case BPF_FUNC_sk_lookup_udp:
8254 		return &bpf_xdp_sk_lookup_udp_proto;
8255 	case BPF_FUNC_sk_lookup_tcp:
8256 		return &bpf_xdp_sk_lookup_tcp_proto;
8257 	case BPF_FUNC_sk_release:
8258 		return &bpf_sk_release_proto;
8259 	case BPF_FUNC_skc_lookup_tcp:
8260 		return &bpf_xdp_skc_lookup_tcp_proto;
8261 	case BPF_FUNC_tcp_check_syncookie:
8262 		return &bpf_tcp_check_syncookie_proto;
8263 	case BPF_FUNC_tcp_gen_syncookie:
8264 		return &bpf_tcp_gen_syncookie_proto;
8265 #ifdef CONFIG_SYN_COOKIES
8266 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8267 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8268 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8269 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8270 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8271 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8272 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8273 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8274 #endif
8275 #endif
8276 	default:
8277 		return bpf_sk_base_func_proto(func_id);
8278 	}
8279 
8280 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8281 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8282 	 * kfuncs are defined in two different modules, and we want to be able
8283 	 * to use them interchangably with the same BTF type ID. Because modules
8284 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8285 	 * referenced in the vmlinux BTF or the verifier will get confused about
8286 	 * the different types. So we add this dummy type reference which will
8287 	 * be included in vmlinux BTF, allowing both modules to refer to the
8288 	 * same type ID.
8289 	 */
8290 	BTF_TYPE_EMIT(struct nf_conn___init);
8291 #endif
8292 }
8293 
8294 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8295 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8296 
8297 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8298 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8299 {
8300 	const struct bpf_func_proto *func_proto;
8301 
8302 	func_proto = cgroup_common_func_proto(func_id, prog);
8303 	if (func_proto)
8304 		return func_proto;
8305 
8306 	switch (func_id) {
8307 	case BPF_FUNC_setsockopt:
8308 		return &bpf_sock_ops_setsockopt_proto;
8309 	case BPF_FUNC_getsockopt:
8310 		return &bpf_sock_ops_getsockopt_proto;
8311 	case BPF_FUNC_sock_ops_cb_flags_set:
8312 		return &bpf_sock_ops_cb_flags_set_proto;
8313 	case BPF_FUNC_sock_map_update:
8314 		return &bpf_sock_map_update_proto;
8315 	case BPF_FUNC_sock_hash_update:
8316 		return &bpf_sock_hash_update_proto;
8317 	case BPF_FUNC_get_socket_cookie:
8318 		return &bpf_get_socket_cookie_sock_ops_proto;
8319 	case BPF_FUNC_perf_event_output:
8320 		return &bpf_event_output_data_proto;
8321 	case BPF_FUNC_sk_storage_get:
8322 		return &bpf_sk_storage_get_proto;
8323 	case BPF_FUNC_sk_storage_delete:
8324 		return &bpf_sk_storage_delete_proto;
8325 	case BPF_FUNC_get_netns_cookie:
8326 		return &bpf_get_netns_cookie_sock_ops_proto;
8327 #ifdef CONFIG_INET
8328 	case BPF_FUNC_load_hdr_opt:
8329 		return &bpf_sock_ops_load_hdr_opt_proto;
8330 	case BPF_FUNC_store_hdr_opt:
8331 		return &bpf_sock_ops_store_hdr_opt_proto;
8332 	case BPF_FUNC_reserve_hdr_opt:
8333 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8334 	case BPF_FUNC_tcp_sock:
8335 		return &bpf_tcp_sock_proto;
8336 #endif /* CONFIG_INET */
8337 	default:
8338 		return bpf_sk_base_func_proto(func_id);
8339 	}
8340 }
8341 
8342 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8343 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8344 
8345 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8346 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8347 {
8348 	switch (func_id) {
8349 	case BPF_FUNC_msg_redirect_map:
8350 		return &bpf_msg_redirect_map_proto;
8351 	case BPF_FUNC_msg_redirect_hash:
8352 		return &bpf_msg_redirect_hash_proto;
8353 	case BPF_FUNC_msg_apply_bytes:
8354 		return &bpf_msg_apply_bytes_proto;
8355 	case BPF_FUNC_msg_cork_bytes:
8356 		return &bpf_msg_cork_bytes_proto;
8357 	case BPF_FUNC_msg_pull_data:
8358 		return &bpf_msg_pull_data_proto;
8359 	case BPF_FUNC_msg_push_data:
8360 		return &bpf_msg_push_data_proto;
8361 	case BPF_FUNC_msg_pop_data:
8362 		return &bpf_msg_pop_data_proto;
8363 	case BPF_FUNC_perf_event_output:
8364 		return &bpf_event_output_data_proto;
8365 	case BPF_FUNC_get_current_uid_gid:
8366 		return &bpf_get_current_uid_gid_proto;
8367 	case BPF_FUNC_get_current_pid_tgid:
8368 		return &bpf_get_current_pid_tgid_proto;
8369 	case BPF_FUNC_sk_storage_get:
8370 		return &bpf_sk_storage_get_proto;
8371 	case BPF_FUNC_sk_storage_delete:
8372 		return &bpf_sk_storage_delete_proto;
8373 	case BPF_FUNC_get_netns_cookie:
8374 		return &bpf_get_netns_cookie_sk_msg_proto;
8375 #ifdef CONFIG_CGROUP_NET_CLASSID
8376 	case BPF_FUNC_get_cgroup_classid:
8377 		return &bpf_get_cgroup_classid_curr_proto;
8378 #endif
8379 	default:
8380 		return bpf_sk_base_func_proto(func_id);
8381 	}
8382 }
8383 
8384 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8385 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8386 
8387 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8388 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8389 {
8390 	switch (func_id) {
8391 	case BPF_FUNC_skb_store_bytes:
8392 		return &bpf_skb_store_bytes_proto;
8393 	case BPF_FUNC_skb_load_bytes:
8394 		return &bpf_skb_load_bytes_proto;
8395 	case BPF_FUNC_skb_pull_data:
8396 		return &sk_skb_pull_data_proto;
8397 	case BPF_FUNC_skb_change_tail:
8398 		return &sk_skb_change_tail_proto;
8399 	case BPF_FUNC_skb_change_head:
8400 		return &sk_skb_change_head_proto;
8401 	case BPF_FUNC_skb_adjust_room:
8402 		return &sk_skb_adjust_room_proto;
8403 	case BPF_FUNC_get_socket_cookie:
8404 		return &bpf_get_socket_cookie_proto;
8405 	case BPF_FUNC_get_socket_uid:
8406 		return &bpf_get_socket_uid_proto;
8407 	case BPF_FUNC_sk_redirect_map:
8408 		return &bpf_sk_redirect_map_proto;
8409 	case BPF_FUNC_sk_redirect_hash:
8410 		return &bpf_sk_redirect_hash_proto;
8411 	case BPF_FUNC_perf_event_output:
8412 		return &bpf_skb_event_output_proto;
8413 #ifdef CONFIG_INET
8414 	case BPF_FUNC_sk_lookup_tcp:
8415 		return &bpf_sk_lookup_tcp_proto;
8416 	case BPF_FUNC_sk_lookup_udp:
8417 		return &bpf_sk_lookup_udp_proto;
8418 	case BPF_FUNC_sk_release:
8419 		return &bpf_sk_release_proto;
8420 	case BPF_FUNC_skc_lookup_tcp:
8421 		return &bpf_skc_lookup_tcp_proto;
8422 #endif
8423 	default:
8424 		return bpf_sk_base_func_proto(func_id);
8425 	}
8426 }
8427 
8428 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8429 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8430 {
8431 	switch (func_id) {
8432 	case BPF_FUNC_skb_load_bytes:
8433 		return &bpf_flow_dissector_load_bytes_proto;
8434 	default:
8435 		return bpf_sk_base_func_proto(func_id);
8436 	}
8437 }
8438 
8439 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8440 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8441 {
8442 	switch (func_id) {
8443 	case BPF_FUNC_skb_load_bytes:
8444 		return &bpf_skb_load_bytes_proto;
8445 	case BPF_FUNC_skb_pull_data:
8446 		return &bpf_skb_pull_data_proto;
8447 	case BPF_FUNC_csum_diff:
8448 		return &bpf_csum_diff_proto;
8449 	case BPF_FUNC_get_cgroup_classid:
8450 		return &bpf_get_cgroup_classid_proto;
8451 	case BPF_FUNC_get_route_realm:
8452 		return &bpf_get_route_realm_proto;
8453 	case BPF_FUNC_get_hash_recalc:
8454 		return &bpf_get_hash_recalc_proto;
8455 	case BPF_FUNC_perf_event_output:
8456 		return &bpf_skb_event_output_proto;
8457 	case BPF_FUNC_get_smp_processor_id:
8458 		return &bpf_get_smp_processor_id_proto;
8459 	case BPF_FUNC_skb_under_cgroup:
8460 		return &bpf_skb_under_cgroup_proto;
8461 	default:
8462 		return bpf_sk_base_func_proto(func_id);
8463 	}
8464 }
8465 
8466 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8467 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8468 {
8469 	switch (func_id) {
8470 	case BPF_FUNC_lwt_push_encap:
8471 		return &bpf_lwt_in_push_encap_proto;
8472 	default:
8473 		return lwt_out_func_proto(func_id, prog);
8474 	}
8475 }
8476 
8477 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8478 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8479 {
8480 	switch (func_id) {
8481 	case BPF_FUNC_skb_get_tunnel_key:
8482 		return &bpf_skb_get_tunnel_key_proto;
8483 	case BPF_FUNC_skb_set_tunnel_key:
8484 		return bpf_get_skb_set_tunnel_proto(func_id);
8485 	case BPF_FUNC_skb_get_tunnel_opt:
8486 		return &bpf_skb_get_tunnel_opt_proto;
8487 	case BPF_FUNC_skb_set_tunnel_opt:
8488 		return bpf_get_skb_set_tunnel_proto(func_id);
8489 	case BPF_FUNC_redirect:
8490 		return &bpf_redirect_proto;
8491 	case BPF_FUNC_clone_redirect:
8492 		return &bpf_clone_redirect_proto;
8493 	case BPF_FUNC_skb_change_tail:
8494 		return &bpf_skb_change_tail_proto;
8495 	case BPF_FUNC_skb_change_head:
8496 		return &bpf_skb_change_head_proto;
8497 	case BPF_FUNC_skb_store_bytes:
8498 		return &bpf_skb_store_bytes_proto;
8499 	case BPF_FUNC_csum_update:
8500 		return &bpf_csum_update_proto;
8501 	case BPF_FUNC_csum_level:
8502 		return &bpf_csum_level_proto;
8503 	case BPF_FUNC_l3_csum_replace:
8504 		return &bpf_l3_csum_replace_proto;
8505 	case BPF_FUNC_l4_csum_replace:
8506 		return &bpf_l4_csum_replace_proto;
8507 	case BPF_FUNC_set_hash_invalid:
8508 		return &bpf_set_hash_invalid_proto;
8509 	case BPF_FUNC_lwt_push_encap:
8510 		return &bpf_lwt_xmit_push_encap_proto;
8511 	default:
8512 		return lwt_out_func_proto(func_id, prog);
8513 	}
8514 }
8515 
8516 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8517 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8518 {
8519 	switch (func_id) {
8520 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8521 	case BPF_FUNC_lwt_seg6_store_bytes:
8522 		return &bpf_lwt_seg6_store_bytes_proto;
8523 	case BPF_FUNC_lwt_seg6_action:
8524 		return &bpf_lwt_seg6_action_proto;
8525 	case BPF_FUNC_lwt_seg6_adjust_srh:
8526 		return &bpf_lwt_seg6_adjust_srh_proto;
8527 #endif
8528 	default:
8529 		return lwt_out_func_proto(func_id, prog);
8530 	}
8531 }
8532 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8533 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8534 				    const struct bpf_prog *prog,
8535 				    struct bpf_insn_access_aux *info)
8536 {
8537 	const int size_default = sizeof(__u32);
8538 
8539 	if (off < 0 || off >= sizeof(struct __sk_buff))
8540 		return false;
8541 
8542 	/* The verifier guarantees that size > 0. */
8543 	if (off % size != 0)
8544 		return false;
8545 
8546 	switch (off) {
8547 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8548 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8549 			return false;
8550 		break;
8551 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8552 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8553 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8554 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8555 	case bpf_ctx_range(struct __sk_buff, data):
8556 	case bpf_ctx_range(struct __sk_buff, data_meta):
8557 	case bpf_ctx_range(struct __sk_buff, data_end):
8558 		if (size != size_default)
8559 			return false;
8560 		break;
8561 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8562 		return false;
8563 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8564 		if (type == BPF_WRITE || size != sizeof(__u64))
8565 			return false;
8566 		break;
8567 	case bpf_ctx_range(struct __sk_buff, tstamp):
8568 		if (size != sizeof(__u64))
8569 			return false;
8570 		break;
8571 	case offsetof(struct __sk_buff, sk):
8572 		if (type == BPF_WRITE || size != sizeof(__u64))
8573 			return false;
8574 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8575 		break;
8576 	case offsetof(struct __sk_buff, tstamp_type):
8577 		return false;
8578 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8579 		/* Explicitly prohibit access to padding in __sk_buff. */
8580 		return false;
8581 	default:
8582 		/* Only narrow read access allowed for now. */
8583 		if (type == BPF_WRITE) {
8584 			if (size != size_default)
8585 				return false;
8586 		} else {
8587 			bpf_ctx_record_field_size(info, size_default);
8588 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8589 				return false;
8590 		}
8591 	}
8592 
8593 	return true;
8594 }
8595 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8596 static bool sk_filter_is_valid_access(int off, int size,
8597 				      enum bpf_access_type type,
8598 				      const struct bpf_prog *prog,
8599 				      struct bpf_insn_access_aux *info)
8600 {
8601 	switch (off) {
8602 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8603 	case bpf_ctx_range(struct __sk_buff, data):
8604 	case bpf_ctx_range(struct __sk_buff, data_meta):
8605 	case bpf_ctx_range(struct __sk_buff, data_end):
8606 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8607 	case bpf_ctx_range(struct __sk_buff, tstamp):
8608 	case bpf_ctx_range(struct __sk_buff, wire_len):
8609 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8610 		return false;
8611 	}
8612 
8613 	if (type == BPF_WRITE) {
8614 		switch (off) {
8615 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8616 			break;
8617 		default:
8618 			return false;
8619 		}
8620 	}
8621 
8622 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8623 }
8624 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8625 static bool cg_skb_is_valid_access(int off, int size,
8626 				   enum bpf_access_type type,
8627 				   const struct bpf_prog *prog,
8628 				   struct bpf_insn_access_aux *info)
8629 {
8630 	switch (off) {
8631 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8632 	case bpf_ctx_range(struct __sk_buff, data_meta):
8633 	case bpf_ctx_range(struct __sk_buff, wire_len):
8634 		return false;
8635 	case bpf_ctx_range(struct __sk_buff, data):
8636 	case bpf_ctx_range(struct __sk_buff, data_end):
8637 		if (!bpf_capable())
8638 			return false;
8639 		break;
8640 	}
8641 
8642 	if (type == BPF_WRITE) {
8643 		switch (off) {
8644 		case bpf_ctx_range(struct __sk_buff, mark):
8645 		case bpf_ctx_range(struct __sk_buff, priority):
8646 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8647 			break;
8648 		case bpf_ctx_range(struct __sk_buff, tstamp):
8649 			if (!bpf_capable())
8650 				return false;
8651 			break;
8652 		default:
8653 			return false;
8654 		}
8655 	}
8656 
8657 	switch (off) {
8658 	case bpf_ctx_range(struct __sk_buff, data):
8659 		info->reg_type = PTR_TO_PACKET;
8660 		break;
8661 	case bpf_ctx_range(struct __sk_buff, data_end):
8662 		info->reg_type = PTR_TO_PACKET_END;
8663 		break;
8664 	}
8665 
8666 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8667 }
8668 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8669 static bool lwt_is_valid_access(int off, int size,
8670 				enum bpf_access_type type,
8671 				const struct bpf_prog *prog,
8672 				struct bpf_insn_access_aux *info)
8673 {
8674 	switch (off) {
8675 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8676 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8677 	case bpf_ctx_range(struct __sk_buff, data_meta):
8678 	case bpf_ctx_range(struct __sk_buff, tstamp):
8679 	case bpf_ctx_range(struct __sk_buff, wire_len):
8680 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8681 		return false;
8682 	}
8683 
8684 	if (type == BPF_WRITE) {
8685 		switch (off) {
8686 		case bpf_ctx_range(struct __sk_buff, mark):
8687 		case bpf_ctx_range(struct __sk_buff, priority):
8688 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8689 			break;
8690 		default:
8691 			return false;
8692 		}
8693 	}
8694 
8695 	switch (off) {
8696 	case bpf_ctx_range(struct __sk_buff, data):
8697 		info->reg_type = PTR_TO_PACKET;
8698 		break;
8699 	case bpf_ctx_range(struct __sk_buff, data_end):
8700 		info->reg_type = PTR_TO_PACKET_END;
8701 		break;
8702 	}
8703 
8704 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8705 }
8706 
8707 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8708 static bool __sock_filter_check_attach_type(int off,
8709 					    enum bpf_access_type access_type,
8710 					    enum bpf_attach_type attach_type)
8711 {
8712 	switch (off) {
8713 	case offsetof(struct bpf_sock, bound_dev_if):
8714 	case offsetof(struct bpf_sock, mark):
8715 	case offsetof(struct bpf_sock, priority):
8716 		switch (attach_type) {
8717 		case BPF_CGROUP_INET_SOCK_CREATE:
8718 		case BPF_CGROUP_INET_SOCK_RELEASE:
8719 			goto full_access;
8720 		default:
8721 			return false;
8722 		}
8723 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8724 		switch (attach_type) {
8725 		case BPF_CGROUP_INET4_POST_BIND:
8726 			goto read_only;
8727 		default:
8728 			return false;
8729 		}
8730 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8731 		switch (attach_type) {
8732 		case BPF_CGROUP_INET6_POST_BIND:
8733 			goto read_only;
8734 		default:
8735 			return false;
8736 		}
8737 	case bpf_ctx_range(struct bpf_sock, src_port):
8738 		switch (attach_type) {
8739 		case BPF_CGROUP_INET4_POST_BIND:
8740 		case BPF_CGROUP_INET6_POST_BIND:
8741 			goto read_only;
8742 		default:
8743 			return false;
8744 		}
8745 	}
8746 read_only:
8747 	return access_type == BPF_READ;
8748 full_access:
8749 	return true;
8750 }
8751 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8752 bool bpf_sock_common_is_valid_access(int off, int size,
8753 				     enum bpf_access_type type,
8754 				     struct bpf_insn_access_aux *info)
8755 {
8756 	switch (off) {
8757 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8758 		return false;
8759 	default:
8760 		return bpf_sock_is_valid_access(off, size, type, info);
8761 	}
8762 }
8763 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8764 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8765 			      struct bpf_insn_access_aux *info)
8766 {
8767 	const int size_default = sizeof(__u32);
8768 	int field_size;
8769 
8770 	if (off < 0 || off >= sizeof(struct bpf_sock))
8771 		return false;
8772 	if (off % size != 0)
8773 		return false;
8774 
8775 	switch (off) {
8776 	case offsetof(struct bpf_sock, state):
8777 	case offsetof(struct bpf_sock, family):
8778 	case offsetof(struct bpf_sock, type):
8779 	case offsetof(struct bpf_sock, protocol):
8780 	case offsetof(struct bpf_sock, src_port):
8781 	case offsetof(struct bpf_sock, rx_queue_mapping):
8782 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8783 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8784 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8785 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8786 		bpf_ctx_record_field_size(info, size_default);
8787 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8788 	case bpf_ctx_range(struct bpf_sock, dst_port):
8789 		field_size = size == size_default ?
8790 			size_default : sizeof_field(struct bpf_sock, dst_port);
8791 		bpf_ctx_record_field_size(info, field_size);
8792 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8793 	case offsetofend(struct bpf_sock, dst_port) ...
8794 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8795 		return false;
8796 	}
8797 
8798 	return size == size_default;
8799 }
8800 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8801 static bool sock_filter_is_valid_access(int off, int size,
8802 					enum bpf_access_type type,
8803 					const struct bpf_prog *prog,
8804 					struct bpf_insn_access_aux *info)
8805 {
8806 	if (!bpf_sock_is_valid_access(off, size, type, info))
8807 		return false;
8808 	return __sock_filter_check_attach_type(off, type,
8809 					       prog->expected_attach_type);
8810 }
8811 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8812 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8813 			     const struct bpf_prog *prog)
8814 {
8815 	/* Neither direct read nor direct write requires any preliminary
8816 	 * action.
8817 	 */
8818 	return 0;
8819 }
8820 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8821 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8822 				const struct bpf_prog *prog, int drop_verdict)
8823 {
8824 	struct bpf_insn *insn = insn_buf;
8825 
8826 	if (!direct_write)
8827 		return 0;
8828 
8829 	/* if (!skb->cloned)
8830 	 *       goto start;
8831 	 *
8832 	 * (Fast-path, otherwise approximation that we might be
8833 	 *  a clone, do the rest in helper.)
8834 	 */
8835 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8836 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8837 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8838 
8839 	/* ret = bpf_skb_pull_data(skb, 0); */
8840 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8841 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8842 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8843 			       BPF_FUNC_skb_pull_data);
8844 	/* if (!ret)
8845 	 *      goto restore;
8846 	 * return TC_ACT_SHOT;
8847 	 */
8848 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8849 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8850 	*insn++ = BPF_EXIT_INSN();
8851 
8852 	/* restore: */
8853 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8854 	/* start: */
8855 	*insn++ = prog->insnsi[0];
8856 
8857 	return insn - insn_buf;
8858 }
8859 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8860 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8861 			  struct bpf_insn *insn_buf)
8862 {
8863 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8864 	struct bpf_insn *insn = insn_buf;
8865 
8866 	if (!indirect) {
8867 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8868 	} else {
8869 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8870 		if (orig->imm)
8871 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8872 	}
8873 	/* We're guaranteed here that CTX is in R6. */
8874 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8875 
8876 	switch (BPF_SIZE(orig->code)) {
8877 	case BPF_B:
8878 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8879 		break;
8880 	case BPF_H:
8881 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8882 		break;
8883 	case BPF_W:
8884 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8885 		break;
8886 	}
8887 
8888 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8889 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8890 	*insn++ = BPF_EXIT_INSN();
8891 
8892 	return insn - insn_buf;
8893 }
8894 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8895 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8896 			       const struct bpf_prog *prog)
8897 {
8898 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8899 }
8900 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8901 static bool tc_cls_act_is_valid_access(int off, int size,
8902 				       enum bpf_access_type type,
8903 				       const struct bpf_prog *prog,
8904 				       struct bpf_insn_access_aux *info)
8905 {
8906 	if (type == BPF_WRITE) {
8907 		switch (off) {
8908 		case bpf_ctx_range(struct __sk_buff, mark):
8909 		case bpf_ctx_range(struct __sk_buff, tc_index):
8910 		case bpf_ctx_range(struct __sk_buff, priority):
8911 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8912 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8913 		case bpf_ctx_range(struct __sk_buff, tstamp):
8914 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8915 			break;
8916 		default:
8917 			return false;
8918 		}
8919 	}
8920 
8921 	switch (off) {
8922 	case bpf_ctx_range(struct __sk_buff, data):
8923 		info->reg_type = PTR_TO_PACKET;
8924 		break;
8925 	case bpf_ctx_range(struct __sk_buff, data_meta):
8926 		info->reg_type = PTR_TO_PACKET_META;
8927 		break;
8928 	case bpf_ctx_range(struct __sk_buff, data_end):
8929 		info->reg_type = PTR_TO_PACKET_END;
8930 		break;
8931 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8932 		return false;
8933 	case offsetof(struct __sk_buff, tstamp_type):
8934 		/* The convert_ctx_access() on reading and writing
8935 		 * __sk_buff->tstamp depends on whether the bpf prog
8936 		 * has used __sk_buff->tstamp_type or not.
8937 		 * Thus, we need to set prog->tstamp_type_access
8938 		 * earlier during is_valid_access() here.
8939 		 */
8940 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8941 		return size == sizeof(__u8);
8942 	}
8943 
8944 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8945 }
8946 
8947 DEFINE_MUTEX(nf_conn_btf_access_lock);
8948 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8949 
8950 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8951 			      const struct bpf_reg_state *reg,
8952 			      int off, int size);
8953 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8954 
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)8955 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8956 					const struct bpf_reg_state *reg,
8957 					int off, int size)
8958 {
8959 	int ret = -EACCES;
8960 
8961 	mutex_lock(&nf_conn_btf_access_lock);
8962 	if (nfct_btf_struct_access)
8963 		ret = nfct_btf_struct_access(log, reg, off, size);
8964 	mutex_unlock(&nf_conn_btf_access_lock);
8965 
8966 	return ret;
8967 }
8968 
__is_valid_xdp_access(int off,int size)8969 static bool __is_valid_xdp_access(int off, int size)
8970 {
8971 	if (off < 0 || off >= sizeof(struct xdp_md))
8972 		return false;
8973 	if (off % size != 0)
8974 		return false;
8975 	if (size != sizeof(__u32))
8976 		return false;
8977 
8978 	return true;
8979 }
8980 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8981 static bool xdp_is_valid_access(int off, int size,
8982 				enum bpf_access_type type,
8983 				const struct bpf_prog *prog,
8984 				struct bpf_insn_access_aux *info)
8985 {
8986 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8987 		switch (off) {
8988 		case offsetof(struct xdp_md, egress_ifindex):
8989 			return false;
8990 		}
8991 	}
8992 
8993 	if (type == BPF_WRITE) {
8994 		if (bpf_prog_is_offloaded(prog->aux)) {
8995 			switch (off) {
8996 			case offsetof(struct xdp_md, rx_queue_index):
8997 				return __is_valid_xdp_access(off, size);
8998 			}
8999 		}
9000 		return false;
9001 	}
9002 
9003 	switch (off) {
9004 	case offsetof(struct xdp_md, data):
9005 		info->reg_type = PTR_TO_PACKET;
9006 		break;
9007 	case offsetof(struct xdp_md, data_meta):
9008 		info->reg_type = PTR_TO_PACKET_META;
9009 		break;
9010 	case offsetof(struct xdp_md, data_end):
9011 		info->reg_type = PTR_TO_PACKET_END;
9012 		break;
9013 	}
9014 
9015 	return __is_valid_xdp_access(off, size);
9016 }
9017 
bpf_warn_invalid_xdp_action(struct net_device * dev,struct bpf_prog * prog,u32 act)9018 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
9019 {
9020 	const u32 act_max = XDP_REDIRECT;
9021 
9022 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9023 		     act > act_max ? "Illegal" : "Driver unsupported",
9024 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9025 }
9026 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9027 
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9028 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9029 				 const struct bpf_reg_state *reg,
9030 				 int off, int size)
9031 {
9032 	int ret = -EACCES;
9033 
9034 	mutex_lock(&nf_conn_btf_access_lock);
9035 	if (nfct_btf_struct_access)
9036 		ret = nfct_btf_struct_access(log, reg, off, size);
9037 	mutex_unlock(&nf_conn_btf_access_lock);
9038 
9039 	return ret;
9040 }
9041 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9042 static bool sock_addr_is_valid_access(int off, int size,
9043 				      enum bpf_access_type type,
9044 				      const struct bpf_prog *prog,
9045 				      struct bpf_insn_access_aux *info)
9046 {
9047 	const int size_default = sizeof(__u32);
9048 
9049 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9050 		return false;
9051 	if (off % size != 0)
9052 		return false;
9053 
9054 	/* Disallow access to IPv6 fields from IPv4 contex and vise
9055 	 * versa.
9056 	 */
9057 	switch (off) {
9058 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9059 		switch (prog->expected_attach_type) {
9060 		case BPF_CGROUP_INET4_BIND:
9061 		case BPF_CGROUP_INET4_CONNECT:
9062 		case BPF_CGROUP_INET4_GETPEERNAME:
9063 		case BPF_CGROUP_INET4_GETSOCKNAME:
9064 		case BPF_CGROUP_UDP4_SENDMSG:
9065 		case BPF_CGROUP_UDP4_RECVMSG:
9066 			break;
9067 		default:
9068 			return false;
9069 		}
9070 		break;
9071 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9072 		switch (prog->expected_attach_type) {
9073 		case BPF_CGROUP_INET6_BIND:
9074 		case BPF_CGROUP_INET6_CONNECT:
9075 		case BPF_CGROUP_INET6_GETPEERNAME:
9076 		case BPF_CGROUP_INET6_GETSOCKNAME:
9077 		case BPF_CGROUP_UDP6_SENDMSG:
9078 		case BPF_CGROUP_UDP6_RECVMSG:
9079 			break;
9080 		default:
9081 			return false;
9082 		}
9083 		break;
9084 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9085 		switch (prog->expected_attach_type) {
9086 		case BPF_CGROUP_UDP4_SENDMSG:
9087 			break;
9088 		default:
9089 			return false;
9090 		}
9091 		break;
9092 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9093 				msg_src_ip6[3]):
9094 		switch (prog->expected_attach_type) {
9095 		case BPF_CGROUP_UDP6_SENDMSG:
9096 			break;
9097 		default:
9098 			return false;
9099 		}
9100 		break;
9101 	}
9102 
9103 	switch (off) {
9104 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9105 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9106 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9107 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9108 				msg_src_ip6[3]):
9109 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
9110 		if (type == BPF_READ) {
9111 			bpf_ctx_record_field_size(info, size_default);
9112 
9113 			if (bpf_ctx_wide_access_ok(off, size,
9114 						   struct bpf_sock_addr,
9115 						   user_ip6))
9116 				return true;
9117 
9118 			if (bpf_ctx_wide_access_ok(off, size,
9119 						   struct bpf_sock_addr,
9120 						   msg_src_ip6))
9121 				return true;
9122 
9123 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9124 				return false;
9125 		} else {
9126 			if (bpf_ctx_wide_access_ok(off, size,
9127 						   struct bpf_sock_addr,
9128 						   user_ip6))
9129 				return true;
9130 
9131 			if (bpf_ctx_wide_access_ok(off, size,
9132 						   struct bpf_sock_addr,
9133 						   msg_src_ip6))
9134 				return true;
9135 
9136 			if (size != size_default)
9137 				return false;
9138 		}
9139 		break;
9140 	case offsetof(struct bpf_sock_addr, sk):
9141 		if (type != BPF_READ)
9142 			return false;
9143 		if (size != sizeof(__u64))
9144 			return false;
9145 		info->reg_type = PTR_TO_SOCKET;
9146 		break;
9147 	default:
9148 		if (type == BPF_READ) {
9149 			if (size != size_default)
9150 				return false;
9151 		} else {
9152 			return false;
9153 		}
9154 	}
9155 
9156 	return true;
9157 }
9158 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9159 static bool sock_ops_is_valid_access(int off, int size,
9160 				     enum bpf_access_type type,
9161 				     const struct bpf_prog *prog,
9162 				     struct bpf_insn_access_aux *info)
9163 {
9164 	const int size_default = sizeof(__u32);
9165 
9166 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9167 		return false;
9168 
9169 	/* The verifier guarantees that size > 0. */
9170 	if (off % size != 0)
9171 		return false;
9172 
9173 	if (type == BPF_WRITE) {
9174 		switch (off) {
9175 		case offsetof(struct bpf_sock_ops, reply):
9176 		case offsetof(struct bpf_sock_ops, sk_txhash):
9177 			if (size != size_default)
9178 				return false;
9179 			break;
9180 		default:
9181 			return false;
9182 		}
9183 	} else {
9184 		switch (off) {
9185 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9186 					bytes_acked):
9187 			if (size != sizeof(__u64))
9188 				return false;
9189 			break;
9190 		case offsetof(struct bpf_sock_ops, sk):
9191 			if (size != sizeof(__u64))
9192 				return false;
9193 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9194 			break;
9195 		case offsetof(struct bpf_sock_ops, skb_data):
9196 			if (size != sizeof(__u64))
9197 				return false;
9198 			info->reg_type = PTR_TO_PACKET;
9199 			break;
9200 		case offsetof(struct bpf_sock_ops, skb_data_end):
9201 			if (size != sizeof(__u64))
9202 				return false;
9203 			info->reg_type = PTR_TO_PACKET_END;
9204 			break;
9205 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9206 			bpf_ctx_record_field_size(info, size_default);
9207 			return bpf_ctx_narrow_access_ok(off, size,
9208 							size_default);
9209 		case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9210 			if (size != sizeof(__u64))
9211 				return false;
9212 			break;
9213 		default:
9214 			if (size != size_default)
9215 				return false;
9216 			break;
9217 		}
9218 	}
9219 
9220 	return true;
9221 }
9222 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9223 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9224 			   const struct bpf_prog *prog)
9225 {
9226 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9227 }
9228 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9229 static bool sk_skb_is_valid_access(int off, int size,
9230 				   enum bpf_access_type type,
9231 				   const struct bpf_prog *prog,
9232 				   struct bpf_insn_access_aux *info)
9233 {
9234 	switch (off) {
9235 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9236 	case bpf_ctx_range(struct __sk_buff, data_meta):
9237 	case bpf_ctx_range(struct __sk_buff, tstamp):
9238 	case bpf_ctx_range(struct __sk_buff, wire_len):
9239 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9240 		return false;
9241 	}
9242 
9243 	if (type == BPF_WRITE) {
9244 		switch (off) {
9245 		case bpf_ctx_range(struct __sk_buff, tc_index):
9246 		case bpf_ctx_range(struct __sk_buff, priority):
9247 			break;
9248 		default:
9249 			return false;
9250 		}
9251 	}
9252 
9253 	switch (off) {
9254 	case bpf_ctx_range(struct __sk_buff, mark):
9255 		return false;
9256 	case bpf_ctx_range(struct __sk_buff, data):
9257 		info->reg_type = PTR_TO_PACKET;
9258 		break;
9259 	case bpf_ctx_range(struct __sk_buff, data_end):
9260 		info->reg_type = PTR_TO_PACKET_END;
9261 		break;
9262 	}
9263 
9264 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9265 }
9266 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9267 static bool sk_msg_is_valid_access(int off, int size,
9268 				   enum bpf_access_type type,
9269 				   const struct bpf_prog *prog,
9270 				   struct bpf_insn_access_aux *info)
9271 {
9272 	if (type == BPF_WRITE)
9273 		return false;
9274 
9275 	if (off % size != 0)
9276 		return false;
9277 
9278 	switch (off) {
9279 	case offsetof(struct sk_msg_md, data):
9280 		info->reg_type = PTR_TO_PACKET;
9281 		if (size != sizeof(__u64))
9282 			return false;
9283 		break;
9284 	case offsetof(struct sk_msg_md, data_end):
9285 		info->reg_type = PTR_TO_PACKET_END;
9286 		if (size != sizeof(__u64))
9287 			return false;
9288 		break;
9289 	case offsetof(struct sk_msg_md, sk):
9290 		if (size != sizeof(__u64))
9291 			return false;
9292 		info->reg_type = PTR_TO_SOCKET;
9293 		break;
9294 	case bpf_ctx_range(struct sk_msg_md, family):
9295 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9296 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9297 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9298 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9299 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9300 	case bpf_ctx_range(struct sk_msg_md, local_port):
9301 	case bpf_ctx_range(struct sk_msg_md, size):
9302 		if (size != sizeof(__u32))
9303 			return false;
9304 		break;
9305 	default:
9306 		return false;
9307 	}
9308 	return true;
9309 }
9310 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9311 static bool flow_dissector_is_valid_access(int off, int size,
9312 					   enum bpf_access_type type,
9313 					   const struct bpf_prog *prog,
9314 					   struct bpf_insn_access_aux *info)
9315 {
9316 	const int size_default = sizeof(__u32);
9317 
9318 	if (off < 0 || off >= sizeof(struct __sk_buff))
9319 		return false;
9320 
9321 	if (type == BPF_WRITE)
9322 		return false;
9323 
9324 	switch (off) {
9325 	case bpf_ctx_range(struct __sk_buff, data):
9326 		if (size != size_default)
9327 			return false;
9328 		info->reg_type = PTR_TO_PACKET;
9329 		return true;
9330 	case bpf_ctx_range(struct __sk_buff, data_end):
9331 		if (size != size_default)
9332 			return false;
9333 		info->reg_type = PTR_TO_PACKET_END;
9334 		return true;
9335 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9336 		if (size != sizeof(__u64))
9337 			return false;
9338 		info->reg_type = PTR_TO_FLOW_KEYS;
9339 		return true;
9340 	default:
9341 		return false;
9342 	}
9343 }
9344 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9345 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9346 					     const struct bpf_insn *si,
9347 					     struct bpf_insn *insn_buf,
9348 					     struct bpf_prog *prog,
9349 					     u32 *target_size)
9350 
9351 {
9352 	struct bpf_insn *insn = insn_buf;
9353 
9354 	switch (si->off) {
9355 	case offsetof(struct __sk_buff, data):
9356 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9357 				      si->dst_reg, si->src_reg,
9358 				      offsetof(struct bpf_flow_dissector, data));
9359 		break;
9360 
9361 	case offsetof(struct __sk_buff, data_end):
9362 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9363 				      si->dst_reg, si->src_reg,
9364 				      offsetof(struct bpf_flow_dissector, data_end));
9365 		break;
9366 
9367 	case offsetof(struct __sk_buff, flow_keys):
9368 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9369 				      si->dst_reg, si->src_reg,
9370 				      offsetof(struct bpf_flow_dissector, flow_keys));
9371 		break;
9372 	}
9373 
9374 	return insn - insn_buf;
9375 }
9376 
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9377 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9378 						     struct bpf_insn *insn)
9379 {
9380 	__u8 value_reg = si->dst_reg;
9381 	__u8 skb_reg = si->src_reg;
9382 	/* AX is needed because src_reg and dst_reg could be the same */
9383 	__u8 tmp_reg = BPF_REG_AX;
9384 
9385 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9386 			      SKB_BF_MONO_TC_OFFSET);
9387 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9388 				SKB_MONO_DELIVERY_TIME_MASK, 2);
9389 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9390 	*insn++ = BPF_JMP_A(1);
9391 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9392 
9393 	return insn;
9394 }
9395 
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9396 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9397 						  struct bpf_insn *insn)
9398 {
9399 	/* si->dst_reg = skb_shinfo(SKB); */
9400 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9401 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9402 			      BPF_REG_AX, skb_reg,
9403 			      offsetof(struct sk_buff, end));
9404 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9405 			      dst_reg, skb_reg,
9406 			      offsetof(struct sk_buff, head));
9407 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9408 #else
9409 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9410 			      dst_reg, skb_reg,
9411 			      offsetof(struct sk_buff, end));
9412 #endif
9413 
9414 	return insn;
9415 }
9416 
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9417 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9418 						const struct bpf_insn *si,
9419 						struct bpf_insn *insn)
9420 {
9421 	__u8 value_reg = si->dst_reg;
9422 	__u8 skb_reg = si->src_reg;
9423 
9424 #ifdef CONFIG_NET_XGRESS
9425 	/* If the tstamp_type is read,
9426 	 * the bpf prog is aware the tstamp could have delivery time.
9427 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9428 	 */
9429 	if (!prog->tstamp_type_access) {
9430 		/* AX is needed because src_reg and dst_reg could be the same */
9431 		__u8 tmp_reg = BPF_REG_AX;
9432 
9433 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9434 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9435 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9436 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9437 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9438 		/* skb->tc_at_ingress && skb->mono_delivery_time,
9439 		 * read 0 as the (rcv) timestamp.
9440 		 */
9441 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9442 		*insn++ = BPF_JMP_A(1);
9443 	}
9444 #endif
9445 
9446 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9447 			      offsetof(struct sk_buff, tstamp));
9448 	return insn;
9449 }
9450 
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9451 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9452 						 const struct bpf_insn *si,
9453 						 struct bpf_insn *insn)
9454 {
9455 	__u8 value_reg = si->src_reg;
9456 	__u8 skb_reg = si->dst_reg;
9457 
9458 #ifdef CONFIG_NET_XGRESS
9459 	/* If the tstamp_type is read,
9460 	 * the bpf prog is aware the tstamp could have delivery time.
9461 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9462 	 * Otherwise, writing at ingress will have to clear the
9463 	 * mono_delivery_time bit also.
9464 	 */
9465 	if (!prog->tstamp_type_access) {
9466 		__u8 tmp_reg = BPF_REG_AX;
9467 
9468 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9469 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9470 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9471 		/* goto <store> */
9472 		*insn++ = BPF_JMP_A(2);
9473 		/* <clear>: mono_delivery_time */
9474 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9475 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9476 	}
9477 #endif
9478 
9479 	/* <store>: skb->tstamp = tstamp */
9480 	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9481 			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9482 	return insn;
9483 }
9484 
9485 #define BPF_EMIT_STORE(size, si, off)					\
9486 	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9487 		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9488 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9489 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9490 				  const struct bpf_insn *si,
9491 				  struct bpf_insn *insn_buf,
9492 				  struct bpf_prog *prog, u32 *target_size)
9493 {
9494 	struct bpf_insn *insn = insn_buf;
9495 	int off;
9496 
9497 	switch (si->off) {
9498 	case offsetof(struct __sk_buff, len):
9499 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9500 				      bpf_target_off(struct sk_buff, len, 4,
9501 						     target_size));
9502 		break;
9503 
9504 	case offsetof(struct __sk_buff, protocol):
9505 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9506 				      bpf_target_off(struct sk_buff, protocol, 2,
9507 						     target_size));
9508 		break;
9509 
9510 	case offsetof(struct __sk_buff, vlan_proto):
9511 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9512 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9513 						     target_size));
9514 		break;
9515 
9516 	case offsetof(struct __sk_buff, priority):
9517 		if (type == BPF_WRITE)
9518 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9519 						 bpf_target_off(struct sk_buff, priority, 4,
9520 								target_size));
9521 		else
9522 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9523 					      bpf_target_off(struct sk_buff, priority, 4,
9524 							     target_size));
9525 		break;
9526 
9527 	case offsetof(struct __sk_buff, ingress_ifindex):
9528 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9529 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9530 						     target_size));
9531 		break;
9532 
9533 	case offsetof(struct __sk_buff, ifindex):
9534 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9535 				      si->dst_reg, si->src_reg,
9536 				      offsetof(struct sk_buff, dev));
9537 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9538 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9539 				      bpf_target_off(struct net_device, ifindex, 4,
9540 						     target_size));
9541 		break;
9542 
9543 	case offsetof(struct __sk_buff, hash):
9544 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9545 				      bpf_target_off(struct sk_buff, hash, 4,
9546 						     target_size));
9547 		break;
9548 
9549 	case offsetof(struct __sk_buff, mark):
9550 		if (type == BPF_WRITE)
9551 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9552 						 bpf_target_off(struct sk_buff, mark, 4,
9553 								target_size));
9554 		else
9555 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9556 					      bpf_target_off(struct sk_buff, mark, 4,
9557 							     target_size));
9558 		break;
9559 
9560 	case offsetof(struct __sk_buff, pkt_type):
9561 		*target_size = 1;
9562 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9563 				      PKT_TYPE_OFFSET);
9564 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9565 #ifdef __BIG_ENDIAN_BITFIELD
9566 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9567 #endif
9568 		break;
9569 
9570 	case offsetof(struct __sk_buff, queue_mapping):
9571 		if (type == BPF_WRITE) {
9572 			u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9573 
9574 			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9575 				*insn++ = BPF_JMP_A(0); /* noop */
9576 				break;
9577 			}
9578 
9579 			if (BPF_CLASS(si->code) == BPF_STX)
9580 				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9581 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9582 		} else {
9583 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9584 					      bpf_target_off(struct sk_buff,
9585 							     queue_mapping,
9586 							     2, target_size));
9587 		}
9588 		break;
9589 
9590 	case offsetof(struct __sk_buff, vlan_present):
9591 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9592 				      bpf_target_off(struct sk_buff,
9593 						     vlan_all, 4, target_size));
9594 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9595 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9596 		break;
9597 
9598 	case offsetof(struct __sk_buff, vlan_tci):
9599 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9600 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9601 						     target_size));
9602 		break;
9603 
9604 	case offsetof(struct __sk_buff, cb[0]) ...
9605 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9606 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9607 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9608 			      offsetof(struct qdisc_skb_cb, data)) %
9609 			     sizeof(__u64));
9610 
9611 		prog->cb_access = 1;
9612 		off  = si->off;
9613 		off -= offsetof(struct __sk_buff, cb[0]);
9614 		off += offsetof(struct sk_buff, cb);
9615 		off += offsetof(struct qdisc_skb_cb, data);
9616 		if (type == BPF_WRITE)
9617 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9618 		else
9619 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9620 					      si->src_reg, off);
9621 		break;
9622 
9623 	case offsetof(struct __sk_buff, tc_classid):
9624 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9625 
9626 		off  = si->off;
9627 		off -= offsetof(struct __sk_buff, tc_classid);
9628 		off += offsetof(struct sk_buff, cb);
9629 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9630 		*target_size = 2;
9631 		if (type == BPF_WRITE)
9632 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9633 		else
9634 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9635 					      si->src_reg, off);
9636 		break;
9637 
9638 	case offsetof(struct __sk_buff, data):
9639 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9640 				      si->dst_reg, si->src_reg,
9641 				      offsetof(struct sk_buff, data));
9642 		break;
9643 
9644 	case offsetof(struct __sk_buff, data_meta):
9645 		off  = si->off;
9646 		off -= offsetof(struct __sk_buff, data_meta);
9647 		off += offsetof(struct sk_buff, cb);
9648 		off += offsetof(struct bpf_skb_data_end, data_meta);
9649 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9650 				      si->src_reg, off);
9651 		break;
9652 
9653 	case offsetof(struct __sk_buff, data_end):
9654 		off  = si->off;
9655 		off -= offsetof(struct __sk_buff, data_end);
9656 		off += offsetof(struct sk_buff, cb);
9657 		off += offsetof(struct bpf_skb_data_end, data_end);
9658 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9659 				      si->src_reg, off);
9660 		break;
9661 
9662 	case offsetof(struct __sk_buff, tc_index):
9663 #ifdef CONFIG_NET_SCHED
9664 		if (type == BPF_WRITE)
9665 			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9666 						 bpf_target_off(struct sk_buff, tc_index, 2,
9667 								target_size));
9668 		else
9669 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9670 					      bpf_target_off(struct sk_buff, tc_index, 2,
9671 							     target_size));
9672 #else
9673 		*target_size = 2;
9674 		if (type == BPF_WRITE)
9675 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9676 		else
9677 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9678 #endif
9679 		break;
9680 
9681 	case offsetof(struct __sk_buff, napi_id):
9682 #if defined(CONFIG_NET_RX_BUSY_POLL)
9683 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9684 				      bpf_target_off(struct sk_buff, napi_id, 4,
9685 						     target_size));
9686 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9687 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9688 #else
9689 		*target_size = 4;
9690 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9691 #endif
9692 		break;
9693 	case offsetof(struct __sk_buff, family):
9694 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9695 
9696 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9697 				      si->dst_reg, si->src_reg,
9698 				      offsetof(struct sk_buff, sk));
9699 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9700 				      bpf_target_off(struct sock_common,
9701 						     skc_family,
9702 						     2, target_size));
9703 		break;
9704 	case offsetof(struct __sk_buff, remote_ip4):
9705 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9706 
9707 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9708 				      si->dst_reg, si->src_reg,
9709 				      offsetof(struct sk_buff, sk));
9710 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9711 				      bpf_target_off(struct sock_common,
9712 						     skc_daddr,
9713 						     4, target_size));
9714 		break;
9715 	case offsetof(struct __sk_buff, local_ip4):
9716 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9717 					  skc_rcv_saddr) != 4);
9718 
9719 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9720 				      si->dst_reg, si->src_reg,
9721 				      offsetof(struct sk_buff, sk));
9722 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9723 				      bpf_target_off(struct sock_common,
9724 						     skc_rcv_saddr,
9725 						     4, target_size));
9726 		break;
9727 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9728 	     offsetof(struct __sk_buff, remote_ip6[3]):
9729 #if IS_ENABLED(CONFIG_IPV6)
9730 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9731 					  skc_v6_daddr.s6_addr32[0]) != 4);
9732 
9733 		off = si->off;
9734 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9735 
9736 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9737 				      si->dst_reg, si->src_reg,
9738 				      offsetof(struct sk_buff, sk));
9739 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9740 				      offsetof(struct sock_common,
9741 					       skc_v6_daddr.s6_addr32[0]) +
9742 				      off);
9743 #else
9744 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9745 #endif
9746 		break;
9747 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9748 	     offsetof(struct __sk_buff, local_ip6[3]):
9749 #if IS_ENABLED(CONFIG_IPV6)
9750 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9751 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9752 
9753 		off = si->off;
9754 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9755 
9756 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9757 				      si->dst_reg, si->src_reg,
9758 				      offsetof(struct sk_buff, sk));
9759 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9760 				      offsetof(struct sock_common,
9761 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9762 				      off);
9763 #else
9764 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9765 #endif
9766 		break;
9767 
9768 	case offsetof(struct __sk_buff, remote_port):
9769 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9770 
9771 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9772 				      si->dst_reg, si->src_reg,
9773 				      offsetof(struct sk_buff, sk));
9774 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9775 				      bpf_target_off(struct sock_common,
9776 						     skc_dport,
9777 						     2, target_size));
9778 #ifndef __BIG_ENDIAN_BITFIELD
9779 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9780 #endif
9781 		break;
9782 
9783 	case offsetof(struct __sk_buff, local_port):
9784 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9785 
9786 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9787 				      si->dst_reg, si->src_reg,
9788 				      offsetof(struct sk_buff, sk));
9789 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9790 				      bpf_target_off(struct sock_common,
9791 						     skc_num, 2, target_size));
9792 		break;
9793 
9794 	case offsetof(struct __sk_buff, tstamp):
9795 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9796 
9797 		if (type == BPF_WRITE)
9798 			insn = bpf_convert_tstamp_write(prog, si, insn);
9799 		else
9800 			insn = bpf_convert_tstamp_read(prog, si, insn);
9801 		break;
9802 
9803 	case offsetof(struct __sk_buff, tstamp_type):
9804 		insn = bpf_convert_tstamp_type_read(si, insn);
9805 		break;
9806 
9807 	case offsetof(struct __sk_buff, gso_segs):
9808 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9809 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9810 				      si->dst_reg, si->dst_reg,
9811 				      bpf_target_off(struct skb_shared_info,
9812 						     gso_segs, 2,
9813 						     target_size));
9814 		break;
9815 	case offsetof(struct __sk_buff, gso_size):
9816 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9817 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9818 				      si->dst_reg, si->dst_reg,
9819 				      bpf_target_off(struct skb_shared_info,
9820 						     gso_size, 2,
9821 						     target_size));
9822 		break;
9823 	case offsetof(struct __sk_buff, wire_len):
9824 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9825 
9826 		off = si->off;
9827 		off -= offsetof(struct __sk_buff, wire_len);
9828 		off += offsetof(struct sk_buff, cb);
9829 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9830 		*target_size = 4;
9831 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9832 		break;
9833 
9834 	case offsetof(struct __sk_buff, sk):
9835 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9836 				      si->dst_reg, si->src_reg,
9837 				      offsetof(struct sk_buff, sk));
9838 		break;
9839 	case offsetof(struct __sk_buff, hwtstamp):
9840 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9841 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9842 
9843 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9844 		*insn++ = BPF_LDX_MEM(BPF_DW,
9845 				      si->dst_reg, si->dst_reg,
9846 				      bpf_target_off(struct skb_shared_info,
9847 						     hwtstamps, 8,
9848 						     target_size));
9849 		break;
9850 	}
9851 
9852 	return insn - insn_buf;
9853 }
9854 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9855 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9856 				const struct bpf_insn *si,
9857 				struct bpf_insn *insn_buf,
9858 				struct bpf_prog *prog, u32 *target_size)
9859 {
9860 	struct bpf_insn *insn = insn_buf;
9861 	int off;
9862 
9863 	switch (si->off) {
9864 	case offsetof(struct bpf_sock, bound_dev_if):
9865 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9866 
9867 		if (type == BPF_WRITE)
9868 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9869 						 offsetof(struct sock, sk_bound_dev_if));
9870 		else
9871 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9872 				      offsetof(struct sock, sk_bound_dev_if));
9873 		break;
9874 
9875 	case offsetof(struct bpf_sock, mark):
9876 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9877 
9878 		if (type == BPF_WRITE)
9879 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9880 						 offsetof(struct sock, sk_mark));
9881 		else
9882 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9883 				      offsetof(struct sock, sk_mark));
9884 		break;
9885 
9886 	case offsetof(struct bpf_sock, priority):
9887 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9888 
9889 		if (type == BPF_WRITE)
9890 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9891 						 offsetof(struct sock, sk_priority));
9892 		else
9893 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9894 				      offsetof(struct sock, sk_priority));
9895 		break;
9896 
9897 	case offsetof(struct bpf_sock, family):
9898 		*insn++ = BPF_LDX_MEM(
9899 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9900 			si->dst_reg, si->src_reg,
9901 			bpf_target_off(struct sock_common,
9902 				       skc_family,
9903 				       sizeof_field(struct sock_common,
9904 						    skc_family),
9905 				       target_size));
9906 		break;
9907 
9908 	case offsetof(struct bpf_sock, type):
9909 		*insn++ = BPF_LDX_MEM(
9910 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9911 			si->dst_reg, si->src_reg,
9912 			bpf_target_off(struct sock, sk_type,
9913 				       sizeof_field(struct sock, sk_type),
9914 				       target_size));
9915 		break;
9916 
9917 	case offsetof(struct bpf_sock, protocol):
9918 		*insn++ = BPF_LDX_MEM(
9919 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9920 			si->dst_reg, si->src_reg,
9921 			bpf_target_off(struct sock, sk_protocol,
9922 				       sizeof_field(struct sock, sk_protocol),
9923 				       target_size));
9924 		break;
9925 
9926 	case offsetof(struct bpf_sock, src_ip4):
9927 		*insn++ = BPF_LDX_MEM(
9928 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9929 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9930 				       sizeof_field(struct sock_common,
9931 						    skc_rcv_saddr),
9932 				       target_size));
9933 		break;
9934 
9935 	case offsetof(struct bpf_sock, dst_ip4):
9936 		*insn++ = BPF_LDX_MEM(
9937 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9938 			bpf_target_off(struct sock_common, skc_daddr,
9939 				       sizeof_field(struct sock_common,
9940 						    skc_daddr),
9941 				       target_size));
9942 		break;
9943 
9944 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9945 #if IS_ENABLED(CONFIG_IPV6)
9946 		off = si->off;
9947 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9948 		*insn++ = BPF_LDX_MEM(
9949 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9950 			bpf_target_off(
9951 				struct sock_common,
9952 				skc_v6_rcv_saddr.s6_addr32[0],
9953 				sizeof_field(struct sock_common,
9954 					     skc_v6_rcv_saddr.s6_addr32[0]),
9955 				target_size) + off);
9956 #else
9957 		(void)off;
9958 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9959 #endif
9960 		break;
9961 
9962 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9963 #if IS_ENABLED(CONFIG_IPV6)
9964 		off = si->off;
9965 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9966 		*insn++ = BPF_LDX_MEM(
9967 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9968 			bpf_target_off(struct sock_common,
9969 				       skc_v6_daddr.s6_addr32[0],
9970 				       sizeof_field(struct sock_common,
9971 						    skc_v6_daddr.s6_addr32[0]),
9972 				       target_size) + off);
9973 #else
9974 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9975 		*target_size = 4;
9976 #endif
9977 		break;
9978 
9979 	case offsetof(struct bpf_sock, src_port):
9980 		*insn++ = BPF_LDX_MEM(
9981 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9982 			si->dst_reg, si->src_reg,
9983 			bpf_target_off(struct sock_common, skc_num,
9984 				       sizeof_field(struct sock_common,
9985 						    skc_num),
9986 				       target_size));
9987 		break;
9988 
9989 	case offsetof(struct bpf_sock, dst_port):
9990 		*insn++ = BPF_LDX_MEM(
9991 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9992 			si->dst_reg, si->src_reg,
9993 			bpf_target_off(struct sock_common, skc_dport,
9994 				       sizeof_field(struct sock_common,
9995 						    skc_dport),
9996 				       target_size));
9997 		break;
9998 
9999 	case offsetof(struct bpf_sock, state):
10000 		*insn++ = BPF_LDX_MEM(
10001 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10002 			si->dst_reg, si->src_reg,
10003 			bpf_target_off(struct sock_common, skc_state,
10004 				       sizeof_field(struct sock_common,
10005 						    skc_state),
10006 				       target_size));
10007 		break;
10008 	case offsetof(struct bpf_sock, rx_queue_mapping):
10009 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10010 		*insn++ = BPF_LDX_MEM(
10011 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10012 			si->dst_reg, si->src_reg,
10013 			bpf_target_off(struct sock, sk_rx_queue_mapping,
10014 				       sizeof_field(struct sock,
10015 						    sk_rx_queue_mapping),
10016 				       target_size));
10017 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10018 				      1);
10019 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10020 #else
10021 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10022 		*target_size = 2;
10023 #endif
10024 		break;
10025 	}
10026 
10027 	return insn - insn_buf;
10028 }
10029 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10030 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10031 					 const struct bpf_insn *si,
10032 					 struct bpf_insn *insn_buf,
10033 					 struct bpf_prog *prog, u32 *target_size)
10034 {
10035 	struct bpf_insn *insn = insn_buf;
10036 
10037 	switch (si->off) {
10038 	case offsetof(struct __sk_buff, ifindex):
10039 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10040 				      si->dst_reg, si->src_reg,
10041 				      offsetof(struct sk_buff, dev));
10042 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10043 				      bpf_target_off(struct net_device, ifindex, 4,
10044 						     target_size));
10045 		break;
10046 	default:
10047 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10048 					      target_size);
10049 	}
10050 
10051 	return insn - insn_buf;
10052 }
10053 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10054 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10055 				  const struct bpf_insn *si,
10056 				  struct bpf_insn *insn_buf,
10057 				  struct bpf_prog *prog, u32 *target_size)
10058 {
10059 	struct bpf_insn *insn = insn_buf;
10060 
10061 	switch (si->off) {
10062 	case offsetof(struct xdp_md, data):
10063 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10064 				      si->dst_reg, si->src_reg,
10065 				      offsetof(struct xdp_buff, data));
10066 		break;
10067 	case offsetof(struct xdp_md, data_meta):
10068 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10069 				      si->dst_reg, si->src_reg,
10070 				      offsetof(struct xdp_buff, data_meta));
10071 		break;
10072 	case offsetof(struct xdp_md, data_end):
10073 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10074 				      si->dst_reg, si->src_reg,
10075 				      offsetof(struct xdp_buff, data_end));
10076 		break;
10077 	case offsetof(struct xdp_md, ingress_ifindex):
10078 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10079 				      si->dst_reg, si->src_reg,
10080 				      offsetof(struct xdp_buff, rxq));
10081 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10082 				      si->dst_reg, si->dst_reg,
10083 				      offsetof(struct xdp_rxq_info, dev));
10084 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10085 				      offsetof(struct net_device, ifindex));
10086 		break;
10087 	case offsetof(struct xdp_md, rx_queue_index):
10088 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10089 				      si->dst_reg, si->src_reg,
10090 				      offsetof(struct xdp_buff, rxq));
10091 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10092 				      offsetof(struct xdp_rxq_info,
10093 					       queue_index));
10094 		break;
10095 	case offsetof(struct xdp_md, egress_ifindex):
10096 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10097 				      si->dst_reg, si->src_reg,
10098 				      offsetof(struct xdp_buff, txq));
10099 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10100 				      si->dst_reg, si->dst_reg,
10101 				      offsetof(struct xdp_txq_info, dev));
10102 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10103 				      offsetof(struct net_device, ifindex));
10104 		break;
10105 	}
10106 
10107 	return insn - insn_buf;
10108 }
10109 
10110 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10111  * context Structure, F is Field in context structure that contains a pointer
10112  * to Nested Structure of type NS that has the field NF.
10113  *
10114  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10115  * sure that SIZE is not greater than actual size of S.F.NF.
10116  *
10117  * If offset OFF is provided, the load happens from that offset relative to
10118  * offset of NF.
10119  */
10120 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
10121 	do {								       \
10122 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10123 				      si->src_reg, offsetof(S, F));	       \
10124 		*insn++ = BPF_LDX_MEM(					       \
10125 			SIZE, si->dst_reg, si->dst_reg,			       \
10126 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10127 				       target_size)			       \
10128 				+ OFF);					       \
10129 	} while (0)
10130 
10131 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
10132 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
10133 					     BPF_FIELD_SIZEOF(NS, NF), 0)
10134 
10135 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10136  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10137  *
10138  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10139  * "register" since two registers available in convert_ctx_access are not
10140  * enough: we can't override neither SRC, since it contains value to store, nor
10141  * DST since it contains pointer to context that may be used by later
10142  * instructions. But we need a temporary place to save pointer to nested
10143  * structure whose field we want to store to.
10144  */
10145 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
10146 	do {								       \
10147 		int tmp_reg = BPF_REG_9;				       \
10148 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10149 			--tmp_reg;					       \
10150 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10151 			--tmp_reg;					       \
10152 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
10153 				      offsetof(S, TF));			       \
10154 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
10155 				      si->dst_reg, offsetof(S, F));	       \
10156 		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10157 				       tmp_reg, si->src_reg,		       \
10158 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10159 				       target_size)			       \
10160 				       + OFF,				       \
10161 				       si->imm);			       \
10162 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10163 				      offsetof(S, TF));			       \
10164 	} while (0)
10165 
10166 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10167 						      TF)		       \
10168 	do {								       \
10169 		if (type == BPF_WRITE) {				       \
10170 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10171 							 OFF, TF);	       \
10172 		} else {						       \
10173 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10174 				S, NS, F, NF, SIZE, OFF);  \
10175 		}							       \
10176 	} while (0)
10177 
10178 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
10179 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
10180 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10181 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10182 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10183 					const struct bpf_insn *si,
10184 					struct bpf_insn *insn_buf,
10185 					struct bpf_prog *prog, u32 *target_size)
10186 {
10187 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10188 	struct bpf_insn *insn = insn_buf;
10189 
10190 	switch (si->off) {
10191 	case offsetof(struct bpf_sock_addr, user_family):
10192 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10193 					    struct sockaddr, uaddr, sa_family);
10194 		break;
10195 
10196 	case offsetof(struct bpf_sock_addr, user_ip4):
10197 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10198 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10199 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10200 		break;
10201 
10202 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10203 		off = si->off;
10204 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10205 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10206 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10207 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10208 			tmp_reg);
10209 		break;
10210 
10211 	case offsetof(struct bpf_sock_addr, user_port):
10212 		/* To get port we need to know sa_family first and then treat
10213 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10214 		 * Though we can simplify since port field has same offset and
10215 		 * size in both structures.
10216 		 * Here we check this invariant and use just one of the
10217 		 * structures if it's true.
10218 		 */
10219 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10220 			     offsetof(struct sockaddr_in6, sin6_port));
10221 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10222 			     sizeof_field(struct sockaddr_in6, sin6_port));
10223 		/* Account for sin6_port being smaller than user_port. */
10224 		port_size = min(port_size, BPF_LDST_BYTES(si));
10225 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10226 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10227 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10228 		break;
10229 
10230 	case offsetof(struct bpf_sock_addr, family):
10231 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10232 					    struct sock, sk, sk_family);
10233 		break;
10234 
10235 	case offsetof(struct bpf_sock_addr, type):
10236 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10237 					    struct sock, sk, sk_type);
10238 		break;
10239 
10240 	case offsetof(struct bpf_sock_addr, protocol):
10241 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10242 					    struct sock, sk, sk_protocol);
10243 		break;
10244 
10245 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10246 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10247 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10248 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10249 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10250 		break;
10251 
10252 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10253 				msg_src_ip6[3]):
10254 		off = si->off;
10255 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10256 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10257 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10258 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10259 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10260 		break;
10261 	case offsetof(struct bpf_sock_addr, sk):
10262 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10263 				      si->dst_reg, si->src_reg,
10264 				      offsetof(struct bpf_sock_addr_kern, sk));
10265 		break;
10266 	}
10267 
10268 	return insn - insn_buf;
10269 }
10270 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10271 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10272 				       const struct bpf_insn *si,
10273 				       struct bpf_insn *insn_buf,
10274 				       struct bpf_prog *prog,
10275 				       u32 *target_size)
10276 {
10277 	struct bpf_insn *insn = insn_buf;
10278 	int off;
10279 
10280 /* Helper macro for adding read access to tcp_sock or sock fields. */
10281 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10282 	do {								      \
10283 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10284 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10285 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10286 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10287 			reg--;						      \
10288 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10289 			reg--;						      \
10290 		if (si->dst_reg == si->src_reg) {			      \
10291 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10292 					  offsetof(struct bpf_sock_ops_kern,  \
10293 					  temp));			      \
10294 			fullsock_reg = reg;				      \
10295 			jmp += 2;					      \
10296 		}							      \
10297 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10298 						struct bpf_sock_ops_kern,     \
10299 						is_fullsock),		      \
10300 				      fullsock_reg, si->src_reg,	      \
10301 				      offsetof(struct bpf_sock_ops_kern,      \
10302 					       is_fullsock));		      \
10303 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10304 		if (si->dst_reg == si->src_reg)				      \
10305 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10306 				      offsetof(struct bpf_sock_ops_kern,      \
10307 				      temp));				      \
10308 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10309 						struct bpf_sock_ops_kern, sk),\
10310 				      si->dst_reg, si->src_reg,		      \
10311 				      offsetof(struct bpf_sock_ops_kern, sk));\
10312 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10313 						       OBJ_FIELD),	      \
10314 				      si->dst_reg, si->dst_reg,		      \
10315 				      offsetof(OBJ, OBJ_FIELD));	      \
10316 		if (si->dst_reg == si->src_reg)	{			      \
10317 			*insn++ = BPF_JMP_A(1);				      \
10318 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10319 				      offsetof(struct bpf_sock_ops_kern,      \
10320 				      temp));				      \
10321 		}							      \
10322 	} while (0)
10323 
10324 #define SOCK_OPS_GET_SK()							      \
10325 	do {								      \
10326 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10327 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10328 			reg--;						      \
10329 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10330 			reg--;						      \
10331 		if (si->dst_reg == si->src_reg) {			      \
10332 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10333 					  offsetof(struct bpf_sock_ops_kern,  \
10334 					  temp));			      \
10335 			fullsock_reg = reg;				      \
10336 			jmp += 2;					      \
10337 		}							      \
10338 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10339 						struct bpf_sock_ops_kern,     \
10340 						is_fullsock),		      \
10341 				      fullsock_reg, si->src_reg,	      \
10342 				      offsetof(struct bpf_sock_ops_kern,      \
10343 					       is_fullsock));		      \
10344 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10345 		if (si->dst_reg == si->src_reg)				      \
10346 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10347 				      offsetof(struct bpf_sock_ops_kern,      \
10348 				      temp));				      \
10349 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10350 						struct bpf_sock_ops_kern, sk),\
10351 				      si->dst_reg, si->src_reg,		      \
10352 				      offsetof(struct bpf_sock_ops_kern, sk));\
10353 		if (si->dst_reg == si->src_reg)	{			      \
10354 			*insn++ = BPF_JMP_A(1);				      \
10355 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10356 				      offsetof(struct bpf_sock_ops_kern,      \
10357 				      temp));				      \
10358 		}							      \
10359 	} while (0)
10360 
10361 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10362 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10363 
10364 /* Helper macro for adding write access to tcp_sock or sock fields.
10365  * The macro is called with two registers, dst_reg which contains a pointer
10366  * to ctx (context) and src_reg which contains the value that should be
10367  * stored. However, we need an additional register since we cannot overwrite
10368  * dst_reg because it may be used later in the program.
10369  * Instead we "borrow" one of the other register. We first save its value
10370  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10371  * it at the end of the macro.
10372  */
10373 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10374 	do {								      \
10375 		int reg = BPF_REG_9;					      \
10376 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10377 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10378 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10379 			reg--;						      \
10380 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10381 			reg--;						      \
10382 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10383 				      offsetof(struct bpf_sock_ops_kern,      \
10384 					       temp));			      \
10385 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10386 						struct bpf_sock_ops_kern,     \
10387 						is_fullsock),		      \
10388 				      reg, si->dst_reg,			      \
10389 				      offsetof(struct bpf_sock_ops_kern,      \
10390 					       is_fullsock));		      \
10391 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10392 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10393 						struct bpf_sock_ops_kern, sk),\
10394 				      reg, si->dst_reg,			      \
10395 				      offsetof(struct bpf_sock_ops_kern, sk));\
10396 		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10397 				       BPF_MEM | BPF_CLASS(si->code),	      \
10398 				       reg, si->src_reg,		      \
10399 				       offsetof(OBJ, OBJ_FIELD),	      \
10400 				       si->imm);			      \
10401 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10402 				      offsetof(struct bpf_sock_ops_kern,      \
10403 					       temp));			      \
10404 	} while (0)
10405 
10406 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10407 	do {								      \
10408 		if (TYPE == BPF_WRITE)					      \
10409 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10410 		else							      \
10411 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10412 	} while (0)
10413 
10414 	switch (si->off) {
10415 	case offsetof(struct bpf_sock_ops, op):
10416 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10417 						       op),
10418 				      si->dst_reg, si->src_reg,
10419 				      offsetof(struct bpf_sock_ops_kern, op));
10420 		break;
10421 
10422 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10423 	     offsetof(struct bpf_sock_ops, replylong[3]):
10424 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10425 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10426 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10427 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10428 		off = si->off;
10429 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10430 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10431 		if (type == BPF_WRITE)
10432 			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10433 		else
10434 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10435 					      off);
10436 		break;
10437 
10438 	case offsetof(struct bpf_sock_ops, family):
10439 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10440 
10441 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10442 					      struct bpf_sock_ops_kern, sk),
10443 				      si->dst_reg, si->src_reg,
10444 				      offsetof(struct bpf_sock_ops_kern, sk));
10445 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10446 				      offsetof(struct sock_common, skc_family));
10447 		break;
10448 
10449 	case offsetof(struct bpf_sock_ops, remote_ip4):
10450 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10451 
10452 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10453 						struct bpf_sock_ops_kern, sk),
10454 				      si->dst_reg, si->src_reg,
10455 				      offsetof(struct bpf_sock_ops_kern, sk));
10456 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10457 				      offsetof(struct sock_common, skc_daddr));
10458 		break;
10459 
10460 	case offsetof(struct bpf_sock_ops, local_ip4):
10461 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10462 					  skc_rcv_saddr) != 4);
10463 
10464 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10465 					      struct bpf_sock_ops_kern, sk),
10466 				      si->dst_reg, si->src_reg,
10467 				      offsetof(struct bpf_sock_ops_kern, sk));
10468 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10469 				      offsetof(struct sock_common,
10470 					       skc_rcv_saddr));
10471 		break;
10472 
10473 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10474 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10475 #if IS_ENABLED(CONFIG_IPV6)
10476 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10477 					  skc_v6_daddr.s6_addr32[0]) != 4);
10478 
10479 		off = si->off;
10480 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10481 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10482 						struct bpf_sock_ops_kern, sk),
10483 				      si->dst_reg, si->src_reg,
10484 				      offsetof(struct bpf_sock_ops_kern, sk));
10485 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10486 				      offsetof(struct sock_common,
10487 					       skc_v6_daddr.s6_addr32[0]) +
10488 				      off);
10489 #else
10490 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10491 #endif
10492 		break;
10493 
10494 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10495 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10496 #if IS_ENABLED(CONFIG_IPV6)
10497 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10498 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10499 
10500 		off = si->off;
10501 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10502 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10503 						struct bpf_sock_ops_kern, sk),
10504 				      si->dst_reg, si->src_reg,
10505 				      offsetof(struct bpf_sock_ops_kern, sk));
10506 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10507 				      offsetof(struct sock_common,
10508 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10509 				      off);
10510 #else
10511 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10512 #endif
10513 		break;
10514 
10515 	case offsetof(struct bpf_sock_ops, remote_port):
10516 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10517 
10518 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10519 						struct bpf_sock_ops_kern, sk),
10520 				      si->dst_reg, si->src_reg,
10521 				      offsetof(struct bpf_sock_ops_kern, sk));
10522 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10523 				      offsetof(struct sock_common, skc_dport));
10524 #ifndef __BIG_ENDIAN_BITFIELD
10525 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10526 #endif
10527 		break;
10528 
10529 	case offsetof(struct bpf_sock_ops, local_port):
10530 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10531 
10532 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10533 						struct bpf_sock_ops_kern, sk),
10534 				      si->dst_reg, si->src_reg,
10535 				      offsetof(struct bpf_sock_ops_kern, sk));
10536 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10537 				      offsetof(struct sock_common, skc_num));
10538 		break;
10539 
10540 	case offsetof(struct bpf_sock_ops, is_fullsock):
10541 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10542 						struct bpf_sock_ops_kern,
10543 						is_fullsock),
10544 				      si->dst_reg, si->src_reg,
10545 				      offsetof(struct bpf_sock_ops_kern,
10546 					       is_fullsock));
10547 		break;
10548 
10549 	case offsetof(struct bpf_sock_ops, state):
10550 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10551 
10552 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10553 						struct bpf_sock_ops_kern, sk),
10554 				      si->dst_reg, si->src_reg,
10555 				      offsetof(struct bpf_sock_ops_kern, sk));
10556 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10557 				      offsetof(struct sock_common, skc_state));
10558 		break;
10559 
10560 	case offsetof(struct bpf_sock_ops, rtt_min):
10561 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10562 			     sizeof(struct minmax));
10563 		BUILD_BUG_ON(sizeof(struct minmax) <
10564 			     sizeof(struct minmax_sample));
10565 
10566 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10567 						struct bpf_sock_ops_kern, sk),
10568 				      si->dst_reg, si->src_reg,
10569 				      offsetof(struct bpf_sock_ops_kern, sk));
10570 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10571 				      offsetof(struct tcp_sock, rtt_min) +
10572 				      sizeof_field(struct minmax_sample, t));
10573 		break;
10574 
10575 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10576 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10577 				   struct tcp_sock);
10578 		break;
10579 
10580 	case offsetof(struct bpf_sock_ops, sk_txhash):
10581 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10582 					  struct sock, type);
10583 		break;
10584 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10585 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10586 		break;
10587 	case offsetof(struct bpf_sock_ops, srtt_us):
10588 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10589 		break;
10590 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10591 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10592 		break;
10593 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10594 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10595 		break;
10596 	case offsetof(struct bpf_sock_ops, snd_nxt):
10597 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10598 		break;
10599 	case offsetof(struct bpf_sock_ops, snd_una):
10600 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10601 		break;
10602 	case offsetof(struct bpf_sock_ops, mss_cache):
10603 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10604 		break;
10605 	case offsetof(struct bpf_sock_ops, ecn_flags):
10606 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10607 		break;
10608 	case offsetof(struct bpf_sock_ops, rate_delivered):
10609 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10610 		break;
10611 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10612 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10613 		break;
10614 	case offsetof(struct bpf_sock_ops, packets_out):
10615 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10616 		break;
10617 	case offsetof(struct bpf_sock_ops, retrans_out):
10618 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10619 		break;
10620 	case offsetof(struct bpf_sock_ops, total_retrans):
10621 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10622 		break;
10623 	case offsetof(struct bpf_sock_ops, segs_in):
10624 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10625 		break;
10626 	case offsetof(struct bpf_sock_ops, data_segs_in):
10627 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10628 		break;
10629 	case offsetof(struct bpf_sock_ops, segs_out):
10630 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10631 		break;
10632 	case offsetof(struct bpf_sock_ops, data_segs_out):
10633 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10634 		break;
10635 	case offsetof(struct bpf_sock_ops, lost_out):
10636 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10637 		break;
10638 	case offsetof(struct bpf_sock_ops, sacked_out):
10639 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10640 		break;
10641 	case offsetof(struct bpf_sock_ops, bytes_received):
10642 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10643 		break;
10644 	case offsetof(struct bpf_sock_ops, bytes_acked):
10645 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10646 		break;
10647 	case offsetof(struct bpf_sock_ops, sk):
10648 		SOCK_OPS_GET_SK();
10649 		break;
10650 	case offsetof(struct bpf_sock_ops, skb_data_end):
10651 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10652 						       skb_data_end),
10653 				      si->dst_reg, si->src_reg,
10654 				      offsetof(struct bpf_sock_ops_kern,
10655 					       skb_data_end));
10656 		break;
10657 	case offsetof(struct bpf_sock_ops, skb_data):
10658 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10659 						       skb),
10660 				      si->dst_reg, si->src_reg,
10661 				      offsetof(struct bpf_sock_ops_kern,
10662 					       skb));
10663 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10664 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10665 				      si->dst_reg, si->dst_reg,
10666 				      offsetof(struct sk_buff, data));
10667 		break;
10668 	case offsetof(struct bpf_sock_ops, skb_len):
10669 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10670 						       skb),
10671 				      si->dst_reg, si->src_reg,
10672 				      offsetof(struct bpf_sock_ops_kern,
10673 					       skb));
10674 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10675 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10676 				      si->dst_reg, si->dst_reg,
10677 				      offsetof(struct sk_buff, len));
10678 		break;
10679 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10680 		off = offsetof(struct sk_buff, cb);
10681 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10682 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10683 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10684 						       skb),
10685 				      si->dst_reg, si->src_reg,
10686 				      offsetof(struct bpf_sock_ops_kern,
10687 					       skb));
10688 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10689 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10690 						       tcp_flags),
10691 				      si->dst_reg, si->dst_reg, off);
10692 		break;
10693 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10694 		struct bpf_insn *jmp_on_null_skb;
10695 
10696 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10697 						       skb),
10698 				      si->dst_reg, si->src_reg,
10699 				      offsetof(struct bpf_sock_ops_kern,
10700 					       skb));
10701 		/* Reserve one insn to test skb == NULL */
10702 		jmp_on_null_skb = insn++;
10703 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10704 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10705 				      bpf_target_off(struct skb_shared_info,
10706 						     hwtstamps, 8,
10707 						     target_size));
10708 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10709 					       insn - jmp_on_null_skb - 1);
10710 		break;
10711 	}
10712 	}
10713 	return insn - insn_buf;
10714 }
10715 
10716 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10717 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10718 						    struct bpf_insn *insn)
10719 {
10720 	int reg;
10721 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10722 			   offsetof(struct sk_skb_cb, temp_reg);
10723 
10724 	if (si->src_reg == si->dst_reg) {
10725 		/* We need an extra register, choose and save a register. */
10726 		reg = BPF_REG_9;
10727 		if (si->src_reg == reg || si->dst_reg == reg)
10728 			reg--;
10729 		if (si->src_reg == reg || si->dst_reg == reg)
10730 			reg--;
10731 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10732 	} else {
10733 		reg = si->dst_reg;
10734 	}
10735 
10736 	/* reg = skb->data */
10737 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10738 			      reg, si->src_reg,
10739 			      offsetof(struct sk_buff, data));
10740 	/* AX = skb->len */
10741 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10742 			      BPF_REG_AX, si->src_reg,
10743 			      offsetof(struct sk_buff, len));
10744 	/* reg = skb->data + skb->len */
10745 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10746 	/* AX = skb->data_len */
10747 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10748 			      BPF_REG_AX, si->src_reg,
10749 			      offsetof(struct sk_buff, data_len));
10750 
10751 	/* reg = skb->data + skb->len - skb->data_len */
10752 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10753 
10754 	if (si->src_reg == si->dst_reg) {
10755 		/* Restore the saved register */
10756 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10757 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10758 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10759 	}
10760 
10761 	return insn;
10762 }
10763 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10764 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10765 				     const struct bpf_insn *si,
10766 				     struct bpf_insn *insn_buf,
10767 				     struct bpf_prog *prog, u32 *target_size)
10768 {
10769 	struct bpf_insn *insn = insn_buf;
10770 	int off;
10771 
10772 	switch (si->off) {
10773 	case offsetof(struct __sk_buff, data_end):
10774 		insn = bpf_convert_data_end_access(si, insn);
10775 		break;
10776 	case offsetof(struct __sk_buff, cb[0]) ...
10777 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10778 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10779 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10780 			      offsetof(struct sk_skb_cb, data)) %
10781 			     sizeof(__u64));
10782 
10783 		prog->cb_access = 1;
10784 		off  = si->off;
10785 		off -= offsetof(struct __sk_buff, cb[0]);
10786 		off += offsetof(struct sk_buff, cb);
10787 		off += offsetof(struct sk_skb_cb, data);
10788 		if (type == BPF_WRITE)
10789 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10790 		else
10791 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10792 					      si->src_reg, off);
10793 		break;
10794 
10795 
10796 	default:
10797 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10798 					      target_size);
10799 	}
10800 
10801 	return insn - insn_buf;
10802 }
10803 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10804 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10805 				     const struct bpf_insn *si,
10806 				     struct bpf_insn *insn_buf,
10807 				     struct bpf_prog *prog, u32 *target_size)
10808 {
10809 	struct bpf_insn *insn = insn_buf;
10810 #if IS_ENABLED(CONFIG_IPV6)
10811 	int off;
10812 #endif
10813 
10814 	/* convert ctx uses the fact sg element is first in struct */
10815 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10816 
10817 	switch (si->off) {
10818 	case offsetof(struct sk_msg_md, data):
10819 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10820 				      si->dst_reg, si->src_reg,
10821 				      offsetof(struct sk_msg, data));
10822 		break;
10823 	case offsetof(struct sk_msg_md, data_end):
10824 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10825 				      si->dst_reg, si->src_reg,
10826 				      offsetof(struct sk_msg, data_end));
10827 		break;
10828 	case offsetof(struct sk_msg_md, family):
10829 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10830 
10831 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10832 					      struct sk_msg, sk),
10833 				      si->dst_reg, si->src_reg,
10834 				      offsetof(struct sk_msg, sk));
10835 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10836 				      offsetof(struct sock_common, skc_family));
10837 		break;
10838 
10839 	case offsetof(struct sk_msg_md, remote_ip4):
10840 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10841 
10842 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10843 						struct sk_msg, sk),
10844 				      si->dst_reg, si->src_reg,
10845 				      offsetof(struct sk_msg, sk));
10846 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10847 				      offsetof(struct sock_common, skc_daddr));
10848 		break;
10849 
10850 	case offsetof(struct sk_msg_md, local_ip4):
10851 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10852 					  skc_rcv_saddr) != 4);
10853 
10854 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10855 					      struct sk_msg, sk),
10856 				      si->dst_reg, si->src_reg,
10857 				      offsetof(struct sk_msg, sk));
10858 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10859 				      offsetof(struct sock_common,
10860 					       skc_rcv_saddr));
10861 		break;
10862 
10863 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10864 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10865 #if IS_ENABLED(CONFIG_IPV6)
10866 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10867 					  skc_v6_daddr.s6_addr32[0]) != 4);
10868 
10869 		off = si->off;
10870 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10871 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10872 						struct sk_msg, sk),
10873 				      si->dst_reg, si->src_reg,
10874 				      offsetof(struct sk_msg, sk));
10875 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10876 				      offsetof(struct sock_common,
10877 					       skc_v6_daddr.s6_addr32[0]) +
10878 				      off);
10879 #else
10880 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10881 #endif
10882 		break;
10883 
10884 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10885 	     offsetof(struct sk_msg_md, local_ip6[3]):
10886 #if IS_ENABLED(CONFIG_IPV6)
10887 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10888 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10889 
10890 		off = si->off;
10891 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10892 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10893 						struct sk_msg, sk),
10894 				      si->dst_reg, si->src_reg,
10895 				      offsetof(struct sk_msg, sk));
10896 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10897 				      offsetof(struct sock_common,
10898 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10899 				      off);
10900 #else
10901 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10902 #endif
10903 		break;
10904 
10905 	case offsetof(struct sk_msg_md, remote_port):
10906 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10907 
10908 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10909 						struct sk_msg, sk),
10910 				      si->dst_reg, si->src_reg,
10911 				      offsetof(struct sk_msg, sk));
10912 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10913 				      offsetof(struct sock_common, skc_dport));
10914 #ifndef __BIG_ENDIAN_BITFIELD
10915 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10916 #endif
10917 		break;
10918 
10919 	case offsetof(struct sk_msg_md, local_port):
10920 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10921 
10922 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10923 						struct sk_msg, sk),
10924 				      si->dst_reg, si->src_reg,
10925 				      offsetof(struct sk_msg, sk));
10926 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10927 				      offsetof(struct sock_common, skc_num));
10928 		break;
10929 
10930 	case offsetof(struct sk_msg_md, size):
10931 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10932 				      si->dst_reg, si->src_reg,
10933 				      offsetof(struct sk_msg_sg, size));
10934 		break;
10935 
10936 	case offsetof(struct sk_msg_md, sk):
10937 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10938 				      si->dst_reg, si->src_reg,
10939 				      offsetof(struct sk_msg, sk));
10940 		break;
10941 	}
10942 
10943 	return insn - insn_buf;
10944 }
10945 
10946 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10947 	.get_func_proto		= sk_filter_func_proto,
10948 	.is_valid_access	= sk_filter_is_valid_access,
10949 	.convert_ctx_access	= bpf_convert_ctx_access,
10950 	.gen_ld_abs		= bpf_gen_ld_abs,
10951 };
10952 
10953 const struct bpf_prog_ops sk_filter_prog_ops = {
10954 	.test_run		= bpf_prog_test_run_skb,
10955 };
10956 
10957 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10958 	.get_func_proto		= tc_cls_act_func_proto,
10959 	.is_valid_access	= tc_cls_act_is_valid_access,
10960 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10961 	.gen_prologue		= tc_cls_act_prologue,
10962 	.gen_ld_abs		= bpf_gen_ld_abs,
10963 	.btf_struct_access	= tc_cls_act_btf_struct_access,
10964 };
10965 
10966 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10967 	.test_run		= bpf_prog_test_run_skb,
10968 };
10969 
10970 const struct bpf_verifier_ops xdp_verifier_ops = {
10971 	.get_func_proto		= xdp_func_proto,
10972 	.is_valid_access	= xdp_is_valid_access,
10973 	.convert_ctx_access	= xdp_convert_ctx_access,
10974 	.gen_prologue		= bpf_noop_prologue,
10975 	.btf_struct_access	= xdp_btf_struct_access,
10976 };
10977 
10978 const struct bpf_prog_ops xdp_prog_ops = {
10979 	.test_run		= bpf_prog_test_run_xdp,
10980 };
10981 
10982 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10983 	.get_func_proto		= cg_skb_func_proto,
10984 	.is_valid_access	= cg_skb_is_valid_access,
10985 	.convert_ctx_access	= bpf_convert_ctx_access,
10986 };
10987 
10988 const struct bpf_prog_ops cg_skb_prog_ops = {
10989 	.test_run		= bpf_prog_test_run_skb,
10990 };
10991 
10992 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10993 	.get_func_proto		= lwt_in_func_proto,
10994 	.is_valid_access	= lwt_is_valid_access,
10995 	.convert_ctx_access	= bpf_convert_ctx_access,
10996 };
10997 
10998 const struct bpf_prog_ops lwt_in_prog_ops = {
10999 	.test_run		= bpf_prog_test_run_skb,
11000 };
11001 
11002 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11003 	.get_func_proto		= lwt_out_func_proto,
11004 	.is_valid_access	= lwt_is_valid_access,
11005 	.convert_ctx_access	= bpf_convert_ctx_access,
11006 };
11007 
11008 const struct bpf_prog_ops lwt_out_prog_ops = {
11009 	.test_run		= bpf_prog_test_run_skb,
11010 };
11011 
11012 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11013 	.get_func_proto		= lwt_xmit_func_proto,
11014 	.is_valid_access	= lwt_is_valid_access,
11015 	.convert_ctx_access	= bpf_convert_ctx_access,
11016 	.gen_prologue		= tc_cls_act_prologue,
11017 };
11018 
11019 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11020 	.test_run		= bpf_prog_test_run_skb,
11021 };
11022 
11023 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11024 	.get_func_proto		= lwt_seg6local_func_proto,
11025 	.is_valid_access	= lwt_is_valid_access,
11026 	.convert_ctx_access	= bpf_convert_ctx_access,
11027 };
11028 
11029 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11030 	.test_run		= bpf_prog_test_run_skb,
11031 };
11032 
11033 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11034 	.get_func_proto		= sock_filter_func_proto,
11035 	.is_valid_access	= sock_filter_is_valid_access,
11036 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
11037 };
11038 
11039 const struct bpf_prog_ops cg_sock_prog_ops = {
11040 };
11041 
11042 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11043 	.get_func_proto		= sock_addr_func_proto,
11044 	.is_valid_access	= sock_addr_is_valid_access,
11045 	.convert_ctx_access	= sock_addr_convert_ctx_access,
11046 };
11047 
11048 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11049 };
11050 
11051 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11052 	.get_func_proto		= sock_ops_func_proto,
11053 	.is_valid_access	= sock_ops_is_valid_access,
11054 	.convert_ctx_access	= sock_ops_convert_ctx_access,
11055 };
11056 
11057 const struct bpf_prog_ops sock_ops_prog_ops = {
11058 };
11059 
11060 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11061 	.get_func_proto		= sk_skb_func_proto,
11062 	.is_valid_access	= sk_skb_is_valid_access,
11063 	.convert_ctx_access	= sk_skb_convert_ctx_access,
11064 	.gen_prologue		= sk_skb_prologue,
11065 };
11066 
11067 const struct bpf_prog_ops sk_skb_prog_ops = {
11068 };
11069 
11070 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11071 	.get_func_proto		= sk_msg_func_proto,
11072 	.is_valid_access	= sk_msg_is_valid_access,
11073 	.convert_ctx_access	= sk_msg_convert_ctx_access,
11074 	.gen_prologue		= bpf_noop_prologue,
11075 };
11076 
11077 const struct bpf_prog_ops sk_msg_prog_ops = {
11078 };
11079 
11080 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11081 	.get_func_proto		= flow_dissector_func_proto,
11082 	.is_valid_access	= flow_dissector_is_valid_access,
11083 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
11084 };
11085 
11086 const struct bpf_prog_ops flow_dissector_prog_ops = {
11087 	.test_run		= bpf_prog_test_run_flow_dissector,
11088 };
11089 
sk_detach_filter(struct sock * sk)11090 int sk_detach_filter(struct sock *sk)
11091 {
11092 	int ret = -ENOENT;
11093 	struct sk_filter *filter;
11094 
11095 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
11096 		return -EPERM;
11097 
11098 	filter = rcu_dereference_protected(sk->sk_filter,
11099 					   lockdep_sock_is_held(sk));
11100 	if (filter) {
11101 		RCU_INIT_POINTER(sk->sk_filter, NULL);
11102 		sk_filter_uncharge(sk, filter);
11103 		ret = 0;
11104 	}
11105 
11106 	return ret;
11107 }
11108 EXPORT_SYMBOL_GPL(sk_detach_filter);
11109 
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11110 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11111 {
11112 	struct sock_fprog_kern *fprog;
11113 	struct sk_filter *filter;
11114 	int ret = 0;
11115 
11116 	sockopt_lock_sock(sk);
11117 	filter = rcu_dereference_protected(sk->sk_filter,
11118 					   lockdep_sock_is_held(sk));
11119 	if (!filter)
11120 		goto out;
11121 
11122 	/* We're copying the filter that has been originally attached,
11123 	 * so no conversion/decode needed anymore. eBPF programs that
11124 	 * have no original program cannot be dumped through this.
11125 	 */
11126 	ret = -EACCES;
11127 	fprog = filter->prog->orig_prog;
11128 	if (!fprog)
11129 		goto out;
11130 
11131 	ret = fprog->len;
11132 	if (!len)
11133 		/* User space only enquires number of filter blocks. */
11134 		goto out;
11135 
11136 	ret = -EINVAL;
11137 	if (len < fprog->len)
11138 		goto out;
11139 
11140 	ret = -EFAULT;
11141 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11142 		goto out;
11143 
11144 	/* Instead of bytes, the API requests to return the number
11145 	 * of filter blocks.
11146 	 */
11147 	ret = fprog->len;
11148 out:
11149 	sockopt_release_sock(sk);
11150 	return ret;
11151 }
11152 
11153 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11154 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11155 				    struct sock_reuseport *reuse,
11156 				    struct sock *sk, struct sk_buff *skb,
11157 				    struct sock *migrating_sk,
11158 				    u32 hash)
11159 {
11160 	reuse_kern->skb = skb;
11161 	reuse_kern->sk = sk;
11162 	reuse_kern->selected_sk = NULL;
11163 	reuse_kern->migrating_sk = migrating_sk;
11164 	reuse_kern->data_end = skb->data + skb_headlen(skb);
11165 	reuse_kern->hash = hash;
11166 	reuse_kern->reuseport_id = reuse->reuseport_id;
11167 	reuse_kern->bind_inany = reuse->bind_inany;
11168 }
11169 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11170 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11171 				  struct bpf_prog *prog, struct sk_buff *skb,
11172 				  struct sock *migrating_sk,
11173 				  u32 hash)
11174 {
11175 	struct sk_reuseport_kern reuse_kern;
11176 	enum sk_action action;
11177 
11178 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11179 	action = bpf_prog_run(prog, &reuse_kern);
11180 
11181 	if (action == SK_PASS)
11182 		return reuse_kern.selected_sk;
11183 	else
11184 		return ERR_PTR(-ECONNREFUSED);
11185 }
11186 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11187 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11188 	   struct bpf_map *, map, void *, key, u32, flags)
11189 {
11190 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11191 	struct sock_reuseport *reuse;
11192 	struct sock *selected_sk;
11193 
11194 	selected_sk = map->ops->map_lookup_elem(map, key);
11195 	if (!selected_sk)
11196 		return -ENOENT;
11197 
11198 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11199 	if (!reuse) {
11200 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11201 		if (sk_is_refcounted(selected_sk))
11202 			sock_put(selected_sk);
11203 
11204 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11205 		 * The only (!reuse) case here is - the sk has already been
11206 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11207 		 *
11208 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11209 		 * the sk may never be in the reuseport group to begin with.
11210 		 */
11211 		return is_sockarray ? -ENOENT : -EINVAL;
11212 	}
11213 
11214 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11215 		struct sock *sk = reuse_kern->sk;
11216 
11217 		if (sk->sk_protocol != selected_sk->sk_protocol)
11218 			return -EPROTOTYPE;
11219 		else if (sk->sk_family != selected_sk->sk_family)
11220 			return -EAFNOSUPPORT;
11221 
11222 		/* Catch all. Likely bound to a different sockaddr. */
11223 		return -EBADFD;
11224 	}
11225 
11226 	reuse_kern->selected_sk = selected_sk;
11227 
11228 	return 0;
11229 }
11230 
11231 static const struct bpf_func_proto sk_select_reuseport_proto = {
11232 	.func           = sk_select_reuseport,
11233 	.gpl_only       = false,
11234 	.ret_type       = RET_INTEGER,
11235 	.arg1_type	= ARG_PTR_TO_CTX,
11236 	.arg2_type      = ARG_CONST_MAP_PTR,
11237 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11238 	.arg4_type	= ARG_ANYTHING,
11239 };
11240 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11241 BPF_CALL_4(sk_reuseport_load_bytes,
11242 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11243 	   void *, to, u32, len)
11244 {
11245 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11246 }
11247 
11248 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11249 	.func		= sk_reuseport_load_bytes,
11250 	.gpl_only	= false,
11251 	.ret_type	= RET_INTEGER,
11252 	.arg1_type	= ARG_PTR_TO_CTX,
11253 	.arg2_type	= ARG_ANYTHING,
11254 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11255 	.arg4_type	= ARG_CONST_SIZE,
11256 };
11257 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11258 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11259 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11260 	   void *, to, u32, len, u32, start_header)
11261 {
11262 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11263 					       len, start_header);
11264 }
11265 
11266 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11267 	.func		= sk_reuseport_load_bytes_relative,
11268 	.gpl_only	= false,
11269 	.ret_type	= RET_INTEGER,
11270 	.arg1_type	= ARG_PTR_TO_CTX,
11271 	.arg2_type	= ARG_ANYTHING,
11272 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11273 	.arg4_type	= ARG_CONST_SIZE,
11274 	.arg5_type	= ARG_ANYTHING,
11275 };
11276 
11277 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11278 sk_reuseport_func_proto(enum bpf_func_id func_id,
11279 			const struct bpf_prog *prog)
11280 {
11281 	switch (func_id) {
11282 	case BPF_FUNC_sk_select_reuseport:
11283 		return &sk_select_reuseport_proto;
11284 	case BPF_FUNC_skb_load_bytes:
11285 		return &sk_reuseport_load_bytes_proto;
11286 	case BPF_FUNC_skb_load_bytes_relative:
11287 		return &sk_reuseport_load_bytes_relative_proto;
11288 	case BPF_FUNC_get_socket_cookie:
11289 		return &bpf_get_socket_ptr_cookie_proto;
11290 	case BPF_FUNC_ktime_get_coarse_ns:
11291 		return &bpf_ktime_get_coarse_ns_proto;
11292 	default:
11293 		return bpf_base_func_proto(func_id);
11294 	}
11295 }
11296 
11297 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11298 sk_reuseport_is_valid_access(int off, int size,
11299 			     enum bpf_access_type type,
11300 			     const struct bpf_prog *prog,
11301 			     struct bpf_insn_access_aux *info)
11302 {
11303 	const u32 size_default = sizeof(__u32);
11304 
11305 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11306 	    off % size || type != BPF_READ)
11307 		return false;
11308 
11309 	switch (off) {
11310 	case offsetof(struct sk_reuseport_md, data):
11311 		info->reg_type = PTR_TO_PACKET;
11312 		return size == sizeof(__u64);
11313 
11314 	case offsetof(struct sk_reuseport_md, data_end):
11315 		info->reg_type = PTR_TO_PACKET_END;
11316 		return size == sizeof(__u64);
11317 
11318 	case offsetof(struct sk_reuseport_md, hash):
11319 		return size == size_default;
11320 
11321 	case offsetof(struct sk_reuseport_md, sk):
11322 		info->reg_type = PTR_TO_SOCKET;
11323 		return size == sizeof(__u64);
11324 
11325 	case offsetof(struct sk_reuseport_md, migrating_sk):
11326 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11327 		return size == sizeof(__u64);
11328 
11329 	/* Fields that allow narrowing */
11330 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11331 		if (size < sizeof_field(struct sk_buff, protocol))
11332 			return false;
11333 		fallthrough;
11334 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11335 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11336 	case bpf_ctx_range(struct sk_reuseport_md, len):
11337 		bpf_ctx_record_field_size(info, size_default);
11338 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11339 
11340 	default:
11341 		return false;
11342 	}
11343 }
11344 
11345 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11346 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11347 			      si->dst_reg, si->src_reg,			\
11348 			      bpf_target_off(struct sk_reuseport_kern, F, \
11349 					     sizeof_field(struct sk_reuseport_kern, F), \
11350 					     target_size));		\
11351 	})
11352 
11353 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11354 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11355 				    struct sk_buff,			\
11356 				    skb,				\
11357 				    SKB_FIELD)
11358 
11359 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11360 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11361 				    struct sock,			\
11362 				    sk,					\
11363 				    SK_FIELD)
11364 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11365 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11366 					   const struct bpf_insn *si,
11367 					   struct bpf_insn *insn_buf,
11368 					   struct bpf_prog *prog,
11369 					   u32 *target_size)
11370 {
11371 	struct bpf_insn *insn = insn_buf;
11372 
11373 	switch (si->off) {
11374 	case offsetof(struct sk_reuseport_md, data):
11375 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11376 		break;
11377 
11378 	case offsetof(struct sk_reuseport_md, len):
11379 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11380 		break;
11381 
11382 	case offsetof(struct sk_reuseport_md, eth_protocol):
11383 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11384 		break;
11385 
11386 	case offsetof(struct sk_reuseport_md, ip_protocol):
11387 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11388 		break;
11389 
11390 	case offsetof(struct sk_reuseport_md, data_end):
11391 		SK_REUSEPORT_LOAD_FIELD(data_end);
11392 		break;
11393 
11394 	case offsetof(struct sk_reuseport_md, hash):
11395 		SK_REUSEPORT_LOAD_FIELD(hash);
11396 		break;
11397 
11398 	case offsetof(struct sk_reuseport_md, bind_inany):
11399 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11400 		break;
11401 
11402 	case offsetof(struct sk_reuseport_md, sk):
11403 		SK_REUSEPORT_LOAD_FIELD(sk);
11404 		break;
11405 
11406 	case offsetof(struct sk_reuseport_md, migrating_sk):
11407 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11408 		break;
11409 	}
11410 
11411 	return insn - insn_buf;
11412 }
11413 
11414 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11415 	.get_func_proto		= sk_reuseport_func_proto,
11416 	.is_valid_access	= sk_reuseport_is_valid_access,
11417 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11418 };
11419 
11420 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11421 };
11422 
11423 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11424 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11425 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11426 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11427 	   struct sock *, sk, u64, flags)
11428 {
11429 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11430 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11431 		return -EINVAL;
11432 	if (unlikely(sk && sk_is_refcounted(sk)))
11433 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11434 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11435 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11436 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11437 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11438 
11439 	/* Check if socket is suitable for packet L3/L4 protocol */
11440 	if (sk && sk->sk_protocol != ctx->protocol)
11441 		return -EPROTOTYPE;
11442 	if (sk && sk->sk_family != ctx->family &&
11443 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11444 		return -EAFNOSUPPORT;
11445 
11446 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11447 		return -EEXIST;
11448 
11449 	/* Select socket as lookup result */
11450 	ctx->selected_sk = sk;
11451 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11452 	return 0;
11453 }
11454 
11455 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11456 	.func		= bpf_sk_lookup_assign,
11457 	.gpl_only	= false,
11458 	.ret_type	= RET_INTEGER,
11459 	.arg1_type	= ARG_PTR_TO_CTX,
11460 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11461 	.arg3_type	= ARG_ANYTHING,
11462 };
11463 
11464 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11465 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11466 {
11467 	switch (func_id) {
11468 	case BPF_FUNC_perf_event_output:
11469 		return &bpf_event_output_data_proto;
11470 	case BPF_FUNC_sk_assign:
11471 		return &bpf_sk_lookup_assign_proto;
11472 	case BPF_FUNC_sk_release:
11473 		return &bpf_sk_release_proto;
11474 	default:
11475 		return bpf_sk_base_func_proto(func_id);
11476 	}
11477 }
11478 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11479 static bool sk_lookup_is_valid_access(int off, int size,
11480 				      enum bpf_access_type type,
11481 				      const struct bpf_prog *prog,
11482 				      struct bpf_insn_access_aux *info)
11483 {
11484 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11485 		return false;
11486 	if (off % size != 0)
11487 		return false;
11488 	if (type != BPF_READ)
11489 		return false;
11490 
11491 	switch (off) {
11492 	case offsetof(struct bpf_sk_lookup, sk):
11493 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11494 		return size == sizeof(__u64);
11495 
11496 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11497 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11498 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11499 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11500 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11501 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11502 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11503 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11504 		bpf_ctx_record_field_size(info, sizeof(__u32));
11505 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11506 
11507 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11508 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11509 		if (size == sizeof(__u32))
11510 			return true;
11511 		bpf_ctx_record_field_size(info, sizeof(__be16));
11512 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11513 
11514 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11515 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11516 		/* Allow access to zero padding for backward compatibility */
11517 		bpf_ctx_record_field_size(info, sizeof(__u16));
11518 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11519 
11520 	default:
11521 		return false;
11522 	}
11523 }
11524 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11525 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11526 					const struct bpf_insn *si,
11527 					struct bpf_insn *insn_buf,
11528 					struct bpf_prog *prog,
11529 					u32 *target_size)
11530 {
11531 	struct bpf_insn *insn = insn_buf;
11532 
11533 	switch (si->off) {
11534 	case offsetof(struct bpf_sk_lookup, sk):
11535 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11536 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11537 		break;
11538 
11539 	case offsetof(struct bpf_sk_lookup, family):
11540 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11541 				      bpf_target_off(struct bpf_sk_lookup_kern,
11542 						     family, 2, target_size));
11543 		break;
11544 
11545 	case offsetof(struct bpf_sk_lookup, protocol):
11546 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11547 				      bpf_target_off(struct bpf_sk_lookup_kern,
11548 						     protocol, 2, target_size));
11549 		break;
11550 
11551 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11552 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11553 				      bpf_target_off(struct bpf_sk_lookup_kern,
11554 						     v4.saddr, 4, target_size));
11555 		break;
11556 
11557 	case offsetof(struct bpf_sk_lookup, local_ip4):
11558 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11559 				      bpf_target_off(struct bpf_sk_lookup_kern,
11560 						     v4.daddr, 4, target_size));
11561 		break;
11562 
11563 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11564 				remote_ip6[0], remote_ip6[3]): {
11565 #if IS_ENABLED(CONFIG_IPV6)
11566 		int off = si->off;
11567 
11568 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11569 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11570 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11571 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11572 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11573 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11574 #else
11575 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11576 #endif
11577 		break;
11578 	}
11579 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11580 				local_ip6[0], local_ip6[3]): {
11581 #if IS_ENABLED(CONFIG_IPV6)
11582 		int off = si->off;
11583 
11584 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11585 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11586 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11587 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11588 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11589 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11590 #else
11591 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11592 #endif
11593 		break;
11594 	}
11595 	case offsetof(struct bpf_sk_lookup, remote_port):
11596 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11597 				      bpf_target_off(struct bpf_sk_lookup_kern,
11598 						     sport, 2, target_size));
11599 		break;
11600 
11601 	case offsetofend(struct bpf_sk_lookup, remote_port):
11602 		*target_size = 2;
11603 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11604 		break;
11605 
11606 	case offsetof(struct bpf_sk_lookup, local_port):
11607 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11608 				      bpf_target_off(struct bpf_sk_lookup_kern,
11609 						     dport, 2, target_size));
11610 		break;
11611 
11612 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11613 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11614 				      bpf_target_off(struct bpf_sk_lookup_kern,
11615 						     ingress_ifindex, 4, target_size));
11616 		break;
11617 	}
11618 
11619 	return insn - insn_buf;
11620 }
11621 
11622 const struct bpf_prog_ops sk_lookup_prog_ops = {
11623 	.test_run = bpf_prog_test_run_sk_lookup,
11624 };
11625 
11626 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11627 	.get_func_proto		= sk_lookup_func_proto,
11628 	.is_valid_access	= sk_lookup_is_valid_access,
11629 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11630 };
11631 
11632 #endif /* CONFIG_INET */
11633 
DEFINE_BPF_DISPATCHER(xdp)11634 DEFINE_BPF_DISPATCHER(xdp)
11635 
11636 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11637 {
11638 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11639 }
11640 
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11641 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11642 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11643 BTF_SOCK_TYPE_xxx
11644 #undef BTF_SOCK_TYPE
11645 
11646 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11647 {
11648 	/* tcp6_sock type is not generated in dwarf and hence btf,
11649 	 * trigger an explicit type generation here.
11650 	 */
11651 	BTF_TYPE_EMIT(struct tcp6_sock);
11652 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11653 	    sk->sk_family == AF_INET6)
11654 		return (unsigned long)sk;
11655 
11656 	return (unsigned long)NULL;
11657 }
11658 
11659 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11660 	.func			= bpf_skc_to_tcp6_sock,
11661 	.gpl_only		= false,
11662 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11663 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11664 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11665 };
11666 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11667 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11668 {
11669 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11670 		return (unsigned long)sk;
11671 
11672 	return (unsigned long)NULL;
11673 }
11674 
11675 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11676 	.func			= bpf_skc_to_tcp_sock,
11677 	.gpl_only		= false,
11678 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11679 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11680 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11681 };
11682 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11683 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11684 {
11685 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11686 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11687 	 */
11688 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11689 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11690 
11691 #ifdef CONFIG_INET
11692 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11693 		return (unsigned long)sk;
11694 #endif
11695 
11696 #if IS_BUILTIN(CONFIG_IPV6)
11697 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11698 		return (unsigned long)sk;
11699 #endif
11700 
11701 	return (unsigned long)NULL;
11702 }
11703 
11704 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11705 	.func			= bpf_skc_to_tcp_timewait_sock,
11706 	.gpl_only		= false,
11707 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11708 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11709 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11710 };
11711 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11712 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11713 {
11714 #ifdef CONFIG_INET
11715 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11716 		return (unsigned long)sk;
11717 #endif
11718 
11719 #if IS_BUILTIN(CONFIG_IPV6)
11720 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11721 		return (unsigned long)sk;
11722 #endif
11723 
11724 	return (unsigned long)NULL;
11725 }
11726 
11727 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11728 	.func			= bpf_skc_to_tcp_request_sock,
11729 	.gpl_only		= false,
11730 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11731 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11732 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11733 };
11734 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11735 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11736 {
11737 	/* udp6_sock type is not generated in dwarf and hence btf,
11738 	 * trigger an explicit type generation here.
11739 	 */
11740 	BTF_TYPE_EMIT(struct udp6_sock);
11741 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11742 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11743 		return (unsigned long)sk;
11744 
11745 	return (unsigned long)NULL;
11746 }
11747 
11748 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11749 	.func			= bpf_skc_to_udp6_sock,
11750 	.gpl_only		= false,
11751 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11752 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11753 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11754 };
11755 
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11756 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11757 {
11758 	/* unix_sock type is not generated in dwarf and hence btf,
11759 	 * trigger an explicit type generation here.
11760 	 */
11761 	BTF_TYPE_EMIT(struct unix_sock);
11762 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11763 		return (unsigned long)sk;
11764 
11765 	return (unsigned long)NULL;
11766 }
11767 
11768 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11769 	.func			= bpf_skc_to_unix_sock,
11770 	.gpl_only		= false,
11771 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11772 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11773 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11774 };
11775 
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11776 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11777 {
11778 	BTF_TYPE_EMIT(struct mptcp_sock);
11779 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11780 }
11781 
11782 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11783 	.func		= bpf_skc_to_mptcp_sock,
11784 	.gpl_only	= false,
11785 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11786 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11787 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11788 };
11789 
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11790 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11791 {
11792 	return (unsigned long)sock_from_file(file);
11793 }
11794 
11795 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11796 BTF_ID(struct, socket)
11797 BTF_ID(struct, file)
11798 
11799 const struct bpf_func_proto bpf_sock_from_file_proto = {
11800 	.func		= bpf_sock_from_file,
11801 	.gpl_only	= false,
11802 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11803 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11804 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11805 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11806 };
11807 
11808 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id)11809 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11810 {
11811 	const struct bpf_func_proto *func;
11812 
11813 	switch (func_id) {
11814 	case BPF_FUNC_skc_to_tcp6_sock:
11815 		func = &bpf_skc_to_tcp6_sock_proto;
11816 		break;
11817 	case BPF_FUNC_skc_to_tcp_sock:
11818 		func = &bpf_skc_to_tcp_sock_proto;
11819 		break;
11820 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11821 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11822 		break;
11823 	case BPF_FUNC_skc_to_tcp_request_sock:
11824 		func = &bpf_skc_to_tcp_request_sock_proto;
11825 		break;
11826 	case BPF_FUNC_skc_to_udp6_sock:
11827 		func = &bpf_skc_to_udp6_sock_proto;
11828 		break;
11829 	case BPF_FUNC_skc_to_unix_sock:
11830 		func = &bpf_skc_to_unix_sock_proto;
11831 		break;
11832 	case BPF_FUNC_skc_to_mptcp_sock:
11833 		func = &bpf_skc_to_mptcp_sock_proto;
11834 		break;
11835 	case BPF_FUNC_ktime_get_coarse_ns:
11836 		return &bpf_ktime_get_coarse_ns_proto;
11837 	default:
11838 		return bpf_base_func_proto(func_id);
11839 	}
11840 
11841 	if (!perfmon_capable())
11842 		return NULL;
11843 
11844 	return func;
11845 }
11846 
11847 __diag_push();
11848 __diag_ignore_all("-Wmissing-prototypes",
11849 		  "Global functions as their definitions will be in vmlinux BTF");
bpf_dynptr_from_skb(struct sk_buff * skb,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11850 __bpf_kfunc int bpf_dynptr_from_skb(struct sk_buff *skb, u64 flags,
11851 				    struct bpf_dynptr_kern *ptr__uninit)
11852 {
11853 	if (flags) {
11854 		bpf_dynptr_set_null(ptr__uninit);
11855 		return -EINVAL;
11856 	}
11857 
11858 	bpf_dynptr_init(ptr__uninit, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11859 
11860 	return 0;
11861 }
11862 
bpf_dynptr_from_xdp(struct xdp_buff * xdp,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11863 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_buff *xdp, u64 flags,
11864 				    struct bpf_dynptr_kern *ptr__uninit)
11865 {
11866 	if (flags) {
11867 		bpf_dynptr_set_null(ptr__uninit);
11868 		return -EINVAL;
11869 	}
11870 
11871 	bpf_dynptr_init(ptr__uninit, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
11872 
11873 	return 0;
11874 }
11875 
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)11876 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
11877 					   const u8 *sun_path, u32 sun_path__sz)
11878 {
11879 	struct sockaddr_un *un;
11880 
11881 	if (sa_kern->sk->sk_family != AF_UNIX)
11882 		return -EINVAL;
11883 
11884 	/* We do not allow changing the address to unnamed or larger than the
11885 	 * maximum allowed address size for a unix sockaddr.
11886 	 */
11887 	if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
11888 		return -EINVAL;
11889 
11890 	un = (struct sockaddr_un *)sa_kern->uaddr;
11891 	memcpy(un->sun_path, sun_path, sun_path__sz);
11892 	sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
11893 
11894 	return 0;
11895 }
11896 __diag_pop();
11897 
bpf_dynptr_from_skb_rdonly(struct sk_buff * skb,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11898 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
11899 			       struct bpf_dynptr_kern *ptr__uninit)
11900 {
11901 	int err;
11902 
11903 	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
11904 	if (err)
11905 		return err;
11906 
11907 	bpf_dynptr_set_rdonly(ptr__uninit);
11908 
11909 	return 0;
11910 }
11911 
11912 BTF_SET8_START(bpf_kfunc_check_set_skb)
11913 BTF_ID_FLAGS(func, bpf_dynptr_from_skb)
11914 BTF_SET8_END(bpf_kfunc_check_set_skb)
11915 
11916 BTF_SET8_START(bpf_kfunc_check_set_xdp)
11917 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
11918 BTF_SET8_END(bpf_kfunc_check_set_xdp)
11919 
11920 BTF_SET8_START(bpf_kfunc_check_set_sock_addr)
11921 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
11922 BTF_SET8_END(bpf_kfunc_check_set_sock_addr)
11923 
11924 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
11925 	.owner = THIS_MODULE,
11926 	.set = &bpf_kfunc_check_set_skb,
11927 };
11928 
11929 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
11930 	.owner = THIS_MODULE,
11931 	.set = &bpf_kfunc_check_set_xdp,
11932 };
11933 
11934 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
11935 	.owner = THIS_MODULE,
11936 	.set = &bpf_kfunc_check_set_sock_addr,
11937 };
11938 
bpf_kfunc_init(void)11939 static int __init bpf_kfunc_init(void)
11940 {
11941 	int ret;
11942 
11943 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
11944 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
11945 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
11946 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
11947 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
11948 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
11949 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
11950 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
11951 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
11952 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
11953 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
11954 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
11955 						&bpf_kfunc_set_sock_addr);
11956 }
11957 late_initcall(bpf_kfunc_init);
11958 
11959 /* Disables missing prototype warnings */
11960 __diag_push();
11961 __diag_ignore_all("-Wmissing-prototypes",
11962 		  "Global functions as their definitions will be in vmlinux BTF");
11963 
11964 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
11965  *
11966  * The function expects a non-NULL pointer to a socket, and invokes the
11967  * protocol specific socket destroy handlers.
11968  *
11969  * The helper can only be called from BPF contexts that have acquired the socket
11970  * locks.
11971  *
11972  * Parameters:
11973  * @sock: Pointer to socket to be destroyed
11974  *
11975  * Return:
11976  * On error, may return EPROTONOSUPPORT, EINVAL.
11977  * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
11978  * 0 otherwise
11979  */
bpf_sock_destroy(struct sock_common * sock)11980 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
11981 {
11982 	struct sock *sk = (struct sock *)sock;
11983 
11984 	/* The locking semantics that allow for synchronous execution of the
11985 	 * destroy handlers are only supported for TCP and UDP.
11986 	 * Supporting protocols will need to acquire sock lock in the BPF context
11987 	 * prior to invoking this kfunc.
11988 	 */
11989 	if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
11990 					   sk->sk_protocol != IPPROTO_UDP))
11991 		return -EOPNOTSUPP;
11992 
11993 	return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
11994 }
11995 
11996 __diag_pop()
11997 
BTF_SET8_START(bpf_sk_iter_kfunc_ids)11998 BTF_SET8_START(bpf_sk_iter_kfunc_ids)
11999 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12000 BTF_SET8_END(bpf_sk_iter_kfunc_ids)
12001 
12002 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12003 {
12004 	if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12005 	    prog->expected_attach_type != BPF_TRACE_ITER)
12006 		return -EACCES;
12007 	return 0;
12008 }
12009 
12010 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12011 	.owner = THIS_MODULE,
12012 	.set   = &bpf_sk_iter_kfunc_ids,
12013 	.filter = tracing_iter_filter,
12014 };
12015 
init_subsystem(void)12016 static int init_subsystem(void)
12017 {
12018 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12019 }
12020 late_initcall(init_subsystem);
12021