xref: /openbmc/linux/kernel/bpf/helpers.c (revision af9b2ff010f593d81e2f5fb04155e9fc25b9dfd0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25 
26 #include "../../lib/kstrtox.h"
27 
28 /* If kernel subsystem is allowing eBPF programs to call this function,
29  * inside its own verifier_ops->get_func_proto() callback it should return
30  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
31  *
32  * Different map implementations will rely on rcu in map methods
33  * lookup/update/delete, therefore eBPF programs must run under rcu lock
34  * if program is allowed to access maps, so check rcu_read_lock_held() or
35  * rcu_read_lock_trace_held() in all three functions.
36  */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)37 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
38 {
39 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
40 		     !rcu_read_lock_bh_held());
41 	return (unsigned long) map->ops->map_lookup_elem(map, key);
42 }
43 
44 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
45 	.func		= bpf_map_lookup_elem,
46 	.gpl_only	= false,
47 	.pkt_access	= true,
48 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
49 	.arg1_type	= ARG_CONST_MAP_PTR,
50 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
51 };
52 
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)53 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
54 	   void *, value, u64, flags)
55 {
56 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
57 		     !rcu_read_lock_bh_held());
58 	return map->ops->map_update_elem(map, key, value, flags);
59 }
60 
61 const struct bpf_func_proto bpf_map_update_elem_proto = {
62 	.func		= bpf_map_update_elem,
63 	.gpl_only	= false,
64 	.pkt_access	= true,
65 	.ret_type	= RET_INTEGER,
66 	.arg1_type	= ARG_CONST_MAP_PTR,
67 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
68 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
69 	.arg4_type	= ARG_ANYTHING,
70 };
71 
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)72 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
73 {
74 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
75 		     !rcu_read_lock_bh_held());
76 	return map->ops->map_delete_elem(map, key);
77 }
78 
79 const struct bpf_func_proto bpf_map_delete_elem_proto = {
80 	.func		= bpf_map_delete_elem,
81 	.gpl_only	= false,
82 	.pkt_access	= true,
83 	.ret_type	= RET_INTEGER,
84 	.arg1_type	= ARG_CONST_MAP_PTR,
85 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
86 };
87 
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)88 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
89 {
90 	return map->ops->map_push_elem(map, value, flags);
91 }
92 
93 const struct bpf_func_proto bpf_map_push_elem_proto = {
94 	.func		= bpf_map_push_elem,
95 	.gpl_only	= false,
96 	.pkt_access	= true,
97 	.ret_type	= RET_INTEGER,
98 	.arg1_type	= ARG_CONST_MAP_PTR,
99 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
100 	.arg3_type	= ARG_ANYTHING,
101 };
102 
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)103 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
104 {
105 	return map->ops->map_pop_elem(map, value);
106 }
107 
108 const struct bpf_func_proto bpf_map_pop_elem_proto = {
109 	.func		= bpf_map_pop_elem,
110 	.gpl_only	= false,
111 	.ret_type	= RET_INTEGER,
112 	.arg1_type	= ARG_CONST_MAP_PTR,
113 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
114 };
115 
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)116 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
117 {
118 	return map->ops->map_peek_elem(map, value);
119 }
120 
121 const struct bpf_func_proto bpf_map_peek_elem_proto = {
122 	.func		= bpf_map_peek_elem,
123 	.gpl_only	= false,
124 	.ret_type	= RET_INTEGER,
125 	.arg1_type	= ARG_CONST_MAP_PTR,
126 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
127 };
128 
BPF_CALL_3(bpf_map_lookup_percpu_elem,struct bpf_map *,map,void *,key,u32,cpu)129 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
130 {
131 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
132 		     !rcu_read_lock_bh_held());
133 	return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
134 }
135 
136 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
137 	.func		= bpf_map_lookup_percpu_elem,
138 	.gpl_only	= false,
139 	.pkt_access	= true,
140 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
141 	.arg1_type	= ARG_CONST_MAP_PTR,
142 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
143 	.arg3_type	= ARG_ANYTHING,
144 };
145 
146 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
147 	.func		= bpf_user_rnd_u32,
148 	.gpl_only	= false,
149 	.ret_type	= RET_INTEGER,
150 };
151 
BPF_CALL_0(bpf_get_smp_processor_id)152 BPF_CALL_0(bpf_get_smp_processor_id)
153 {
154 	return smp_processor_id();
155 }
156 
157 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
158 	.func		= bpf_get_smp_processor_id,
159 	.gpl_only	= false,
160 	.ret_type	= RET_INTEGER,
161 };
162 
BPF_CALL_0(bpf_get_numa_node_id)163 BPF_CALL_0(bpf_get_numa_node_id)
164 {
165 	return numa_node_id();
166 }
167 
168 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
169 	.func		= bpf_get_numa_node_id,
170 	.gpl_only	= false,
171 	.ret_type	= RET_INTEGER,
172 };
173 
BPF_CALL_0(bpf_ktime_get_ns)174 BPF_CALL_0(bpf_ktime_get_ns)
175 {
176 	/* NMI safe access to clock monotonic */
177 	return ktime_get_mono_fast_ns();
178 }
179 
180 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
181 	.func		= bpf_ktime_get_ns,
182 	.gpl_only	= false,
183 	.ret_type	= RET_INTEGER,
184 };
185 
BPF_CALL_0(bpf_ktime_get_boot_ns)186 BPF_CALL_0(bpf_ktime_get_boot_ns)
187 {
188 	/* NMI safe access to clock boottime */
189 	return ktime_get_boot_fast_ns();
190 }
191 
192 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
193 	.func		= bpf_ktime_get_boot_ns,
194 	.gpl_only	= false,
195 	.ret_type	= RET_INTEGER,
196 };
197 
BPF_CALL_0(bpf_ktime_get_coarse_ns)198 BPF_CALL_0(bpf_ktime_get_coarse_ns)
199 {
200 	return ktime_get_coarse_ns();
201 }
202 
203 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
204 	.func		= bpf_ktime_get_coarse_ns,
205 	.gpl_only	= false,
206 	.ret_type	= RET_INTEGER,
207 };
208 
BPF_CALL_0(bpf_ktime_get_tai_ns)209 BPF_CALL_0(bpf_ktime_get_tai_ns)
210 {
211 	/* NMI safe access to clock tai */
212 	return ktime_get_tai_fast_ns();
213 }
214 
215 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
216 	.func		= bpf_ktime_get_tai_ns,
217 	.gpl_only	= false,
218 	.ret_type	= RET_INTEGER,
219 };
220 
BPF_CALL_0(bpf_get_current_pid_tgid)221 BPF_CALL_0(bpf_get_current_pid_tgid)
222 {
223 	struct task_struct *task = current;
224 
225 	if (unlikely(!task))
226 		return -EINVAL;
227 
228 	return (u64) task->tgid << 32 | task->pid;
229 }
230 
231 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
232 	.func		= bpf_get_current_pid_tgid,
233 	.gpl_only	= false,
234 	.ret_type	= RET_INTEGER,
235 };
236 
BPF_CALL_0(bpf_get_current_uid_gid)237 BPF_CALL_0(bpf_get_current_uid_gid)
238 {
239 	struct task_struct *task = current;
240 	kuid_t uid;
241 	kgid_t gid;
242 
243 	if (unlikely(!task))
244 		return -EINVAL;
245 
246 	current_uid_gid(&uid, &gid);
247 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
248 		     from_kuid(&init_user_ns, uid);
249 }
250 
251 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
252 	.func		= bpf_get_current_uid_gid,
253 	.gpl_only	= false,
254 	.ret_type	= RET_INTEGER,
255 };
256 
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)257 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
258 {
259 	struct task_struct *task = current;
260 
261 	if (unlikely(!task))
262 		goto err_clear;
263 
264 	/* Verifier guarantees that size > 0 */
265 	strscpy_pad(buf, task->comm, size);
266 	return 0;
267 err_clear:
268 	memset(buf, 0, size);
269 	return -EINVAL;
270 }
271 
272 const struct bpf_func_proto bpf_get_current_comm_proto = {
273 	.func		= bpf_get_current_comm,
274 	.gpl_only	= false,
275 	.ret_type	= RET_INTEGER,
276 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
277 	.arg2_type	= ARG_CONST_SIZE,
278 };
279 
280 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
281 
__bpf_spin_lock(struct bpf_spin_lock * lock)282 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
283 {
284 	arch_spinlock_t *l = (void *)lock;
285 	union {
286 		__u32 val;
287 		arch_spinlock_t lock;
288 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
289 
290 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
291 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
292 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
293 	preempt_disable();
294 	arch_spin_lock(l);
295 }
296 
__bpf_spin_unlock(struct bpf_spin_lock * lock)297 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
298 {
299 	arch_spinlock_t *l = (void *)lock;
300 
301 	arch_spin_unlock(l);
302 	preempt_enable();
303 }
304 
305 #else
306 
__bpf_spin_lock(struct bpf_spin_lock * lock)307 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
308 {
309 	atomic_t *l = (void *)lock;
310 
311 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
312 	do {
313 		atomic_cond_read_relaxed(l, !VAL);
314 	} while (atomic_xchg(l, 1));
315 }
316 
__bpf_spin_unlock(struct bpf_spin_lock * lock)317 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
318 {
319 	atomic_t *l = (void *)lock;
320 
321 	atomic_set_release(l, 0);
322 }
323 
324 #endif
325 
326 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
327 
__bpf_spin_lock_irqsave(struct bpf_spin_lock * lock)328 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
329 {
330 	unsigned long flags;
331 
332 	local_irq_save(flags);
333 	__bpf_spin_lock(lock);
334 	__this_cpu_write(irqsave_flags, flags);
335 }
336 
NOTRACE_BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)337 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
338 {
339 	__bpf_spin_lock_irqsave(lock);
340 	return 0;
341 }
342 
343 const struct bpf_func_proto bpf_spin_lock_proto = {
344 	.func		= bpf_spin_lock,
345 	.gpl_only	= false,
346 	.ret_type	= RET_VOID,
347 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
348 	.arg1_btf_id    = BPF_PTR_POISON,
349 };
350 
__bpf_spin_unlock_irqrestore(struct bpf_spin_lock * lock)351 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
352 {
353 	unsigned long flags;
354 
355 	flags = __this_cpu_read(irqsave_flags);
356 	__bpf_spin_unlock(lock);
357 	local_irq_restore(flags);
358 }
359 
NOTRACE_BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)360 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
361 {
362 	__bpf_spin_unlock_irqrestore(lock);
363 	return 0;
364 }
365 
366 const struct bpf_func_proto bpf_spin_unlock_proto = {
367 	.func		= bpf_spin_unlock,
368 	.gpl_only	= false,
369 	.ret_type	= RET_VOID,
370 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
371 	.arg1_btf_id    = BPF_PTR_POISON,
372 };
373 
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)374 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
375 			   bool lock_src)
376 {
377 	struct bpf_spin_lock *lock;
378 
379 	if (lock_src)
380 		lock = src + map->record->spin_lock_off;
381 	else
382 		lock = dst + map->record->spin_lock_off;
383 	preempt_disable();
384 	__bpf_spin_lock_irqsave(lock);
385 	copy_map_value(map, dst, src);
386 	__bpf_spin_unlock_irqrestore(lock);
387 	preempt_enable();
388 }
389 
BPF_CALL_0(bpf_jiffies64)390 BPF_CALL_0(bpf_jiffies64)
391 {
392 	return get_jiffies_64();
393 }
394 
395 const struct bpf_func_proto bpf_jiffies64_proto = {
396 	.func		= bpf_jiffies64,
397 	.gpl_only	= false,
398 	.ret_type	= RET_INTEGER,
399 };
400 
401 #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)402 BPF_CALL_0(bpf_get_current_cgroup_id)
403 {
404 	struct cgroup *cgrp;
405 	u64 cgrp_id;
406 
407 	rcu_read_lock();
408 	cgrp = task_dfl_cgroup(current);
409 	cgrp_id = cgroup_id(cgrp);
410 	rcu_read_unlock();
411 
412 	return cgrp_id;
413 }
414 
415 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
416 	.func		= bpf_get_current_cgroup_id,
417 	.gpl_only	= false,
418 	.ret_type	= RET_INTEGER,
419 };
420 
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)421 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
422 {
423 	struct cgroup *cgrp;
424 	struct cgroup *ancestor;
425 	u64 cgrp_id;
426 
427 	rcu_read_lock();
428 	cgrp = task_dfl_cgroup(current);
429 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
430 	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
431 	rcu_read_unlock();
432 
433 	return cgrp_id;
434 }
435 
436 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
437 	.func		= bpf_get_current_ancestor_cgroup_id,
438 	.gpl_only	= false,
439 	.ret_type	= RET_INTEGER,
440 	.arg1_type	= ARG_ANYTHING,
441 };
442 #endif /* CONFIG_CGROUPS */
443 
444 #define BPF_STRTOX_BASE_MASK 0x1F
445 
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)446 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
447 			  unsigned long long *res, bool *is_negative)
448 {
449 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
450 	const char *cur_buf = buf;
451 	size_t cur_len = buf_len;
452 	unsigned int consumed;
453 	size_t val_len;
454 	char str[64];
455 
456 	if (!buf || !buf_len || !res || !is_negative)
457 		return -EINVAL;
458 
459 	if (base != 0 && base != 8 && base != 10 && base != 16)
460 		return -EINVAL;
461 
462 	if (flags & ~BPF_STRTOX_BASE_MASK)
463 		return -EINVAL;
464 
465 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
466 		++cur_buf;
467 
468 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
469 	if (*is_negative)
470 		++cur_buf;
471 
472 	consumed = cur_buf - buf;
473 	cur_len -= consumed;
474 	if (!cur_len)
475 		return -EINVAL;
476 
477 	cur_len = min(cur_len, sizeof(str) - 1);
478 	memcpy(str, cur_buf, cur_len);
479 	str[cur_len] = '\0';
480 	cur_buf = str;
481 
482 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
483 	val_len = _parse_integer(cur_buf, base, res);
484 
485 	if (val_len & KSTRTOX_OVERFLOW)
486 		return -ERANGE;
487 
488 	if (val_len == 0)
489 		return -EINVAL;
490 
491 	cur_buf += val_len;
492 	consumed += cur_buf - str;
493 
494 	return consumed;
495 }
496 
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)497 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
498 			 long long *res)
499 {
500 	unsigned long long _res;
501 	bool is_negative;
502 	int err;
503 
504 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
505 	if (err < 0)
506 		return err;
507 	if (is_negative) {
508 		if ((long long)-_res > 0)
509 			return -ERANGE;
510 		*res = -_res;
511 	} else {
512 		if ((long long)_res < 0)
513 			return -ERANGE;
514 		*res = _res;
515 	}
516 	return err;
517 }
518 
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,s64 *,res)519 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
520 	   s64 *, res)
521 {
522 	long long _res;
523 	int err;
524 
525 	*res = 0;
526 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
527 	if (err < 0)
528 		return err;
529 	if (_res != (long)_res)
530 		return -ERANGE;
531 	*res = _res;
532 	return err;
533 }
534 
535 const struct bpf_func_proto bpf_strtol_proto = {
536 	.func		= bpf_strtol,
537 	.gpl_only	= false,
538 	.ret_type	= RET_INTEGER,
539 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
540 	.arg2_type	= ARG_CONST_SIZE,
541 	.arg3_type	= ARG_ANYTHING,
542 	.arg4_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
543 	.arg4_size	= sizeof(s64),
544 };
545 
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,u64 *,res)546 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
547 	   u64 *, res)
548 {
549 	unsigned long long _res;
550 	bool is_negative;
551 	int err;
552 
553 	*res = 0;
554 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
555 	if (err < 0)
556 		return err;
557 	if (is_negative)
558 		return -EINVAL;
559 	if (_res != (unsigned long)_res)
560 		return -ERANGE;
561 	*res = _res;
562 	return err;
563 }
564 
565 const struct bpf_func_proto bpf_strtoul_proto = {
566 	.func		= bpf_strtoul,
567 	.gpl_only	= false,
568 	.ret_type	= RET_INTEGER,
569 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
570 	.arg2_type	= ARG_CONST_SIZE,
571 	.arg3_type	= ARG_ANYTHING,
572 	.arg4_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
573 	.arg4_size	= sizeof(u64),
574 };
575 
BPF_CALL_3(bpf_strncmp,const char *,s1,u32,s1_sz,const char *,s2)576 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
577 {
578 	return strncmp(s1, s2, s1_sz);
579 }
580 
581 static const struct bpf_func_proto bpf_strncmp_proto = {
582 	.func		= bpf_strncmp,
583 	.gpl_only	= false,
584 	.ret_type	= RET_INTEGER,
585 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
586 	.arg2_type	= ARG_CONST_SIZE,
587 	.arg3_type	= ARG_PTR_TO_CONST_STR,
588 };
589 
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)590 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
591 	   struct bpf_pidns_info *, nsdata, u32, size)
592 {
593 	struct task_struct *task = current;
594 	struct pid_namespace *pidns;
595 	int err = -EINVAL;
596 
597 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
598 		goto clear;
599 
600 	if (unlikely((u64)(dev_t)dev != dev))
601 		goto clear;
602 
603 	if (unlikely(!task))
604 		goto clear;
605 
606 	pidns = task_active_pid_ns(task);
607 	if (unlikely(!pidns)) {
608 		err = -ENOENT;
609 		goto clear;
610 	}
611 
612 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
613 		goto clear;
614 
615 	nsdata->pid = task_pid_nr_ns(task, pidns);
616 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
617 	return 0;
618 clear:
619 	memset((void *)nsdata, 0, (size_t) size);
620 	return err;
621 }
622 
623 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
624 	.func		= bpf_get_ns_current_pid_tgid,
625 	.gpl_only	= false,
626 	.ret_type	= RET_INTEGER,
627 	.arg1_type	= ARG_ANYTHING,
628 	.arg2_type	= ARG_ANYTHING,
629 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
630 	.arg4_type      = ARG_CONST_SIZE,
631 };
632 
633 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
634 	.func		= bpf_get_raw_cpu_id,
635 	.gpl_only	= false,
636 	.ret_type	= RET_INTEGER,
637 };
638 
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)639 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
640 	   u64, flags, void *, data, u64, size)
641 {
642 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
643 		return -EINVAL;
644 
645 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
646 }
647 
648 const struct bpf_func_proto bpf_event_output_data_proto =  {
649 	.func		= bpf_event_output_data,
650 	.gpl_only       = true,
651 	.ret_type       = RET_INTEGER,
652 	.arg1_type      = ARG_PTR_TO_CTX,
653 	.arg2_type      = ARG_CONST_MAP_PTR,
654 	.arg3_type      = ARG_ANYTHING,
655 	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
656 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
657 };
658 
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)659 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
660 	   const void __user *, user_ptr)
661 {
662 	int ret = copy_from_user(dst, user_ptr, size);
663 
664 	if (unlikely(ret)) {
665 		memset(dst, 0, size);
666 		ret = -EFAULT;
667 	}
668 
669 	return ret;
670 }
671 
672 const struct bpf_func_proto bpf_copy_from_user_proto = {
673 	.func		= bpf_copy_from_user,
674 	.gpl_only	= false,
675 	.might_sleep	= true,
676 	.ret_type	= RET_INTEGER,
677 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
678 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
679 	.arg3_type	= ARG_ANYTHING,
680 };
681 
BPF_CALL_5(bpf_copy_from_user_task,void *,dst,u32,size,const void __user *,user_ptr,struct task_struct *,tsk,u64,flags)682 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
683 	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
684 {
685 	int ret;
686 
687 	/* flags is not used yet */
688 	if (unlikely(flags))
689 		return -EINVAL;
690 
691 	if (unlikely(!size))
692 		return 0;
693 
694 	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
695 	if (ret == size)
696 		return 0;
697 
698 	memset(dst, 0, size);
699 	/* Return -EFAULT for partial read */
700 	return ret < 0 ? ret : -EFAULT;
701 }
702 
703 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
704 	.func		= bpf_copy_from_user_task,
705 	.gpl_only	= true,
706 	.might_sleep	= true,
707 	.ret_type	= RET_INTEGER,
708 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
709 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
710 	.arg3_type	= ARG_ANYTHING,
711 	.arg4_type	= ARG_PTR_TO_BTF_ID,
712 	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
713 	.arg5_type	= ARG_ANYTHING
714 };
715 
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)716 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
717 {
718 	if (cpu >= nr_cpu_ids)
719 		return (unsigned long)NULL;
720 
721 	return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
722 }
723 
724 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
725 	.func		= bpf_per_cpu_ptr,
726 	.gpl_only	= false,
727 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
728 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
729 	.arg2_type	= ARG_ANYTHING,
730 };
731 
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)732 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
733 {
734 	return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
735 }
736 
737 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
738 	.func		= bpf_this_cpu_ptr,
739 	.gpl_only	= false,
740 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
741 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
742 };
743 
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)744 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
745 		size_t bufsz)
746 {
747 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
748 
749 	buf[0] = 0;
750 
751 	switch (fmt_ptype) {
752 	case 's':
753 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
754 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
755 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
756 		fallthrough;
757 #endif
758 	case 'k':
759 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
760 	case 'u':
761 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
762 	}
763 
764 	return -EINVAL;
765 }
766 
767 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
768  * arguments representation.
769  */
770 #define MAX_BPRINTF_BIN_ARGS	512
771 
772 /* Support executing three nested bprintf helper calls on a given CPU */
773 #define MAX_BPRINTF_NEST_LEVEL	3
774 struct bpf_bprintf_buffers {
775 	char bin_args[MAX_BPRINTF_BIN_ARGS];
776 	char buf[MAX_BPRINTF_BUF];
777 };
778 
779 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
780 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
781 
try_get_buffers(struct bpf_bprintf_buffers ** bufs)782 static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
783 {
784 	int nest_level;
785 
786 	preempt_disable();
787 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
788 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
789 		this_cpu_dec(bpf_bprintf_nest_level);
790 		preempt_enable();
791 		return -EBUSY;
792 	}
793 	*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
794 
795 	return 0;
796 }
797 
bpf_bprintf_cleanup(struct bpf_bprintf_data * data)798 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
799 {
800 	if (!data->bin_args && !data->buf)
801 		return;
802 	if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
803 		return;
804 	this_cpu_dec(bpf_bprintf_nest_level);
805 	preempt_enable();
806 }
807 
808 /*
809  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
810  *
811  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
812  *
813  * This can be used in two ways:
814  * - Format string verification only: when data->get_bin_args is false
815  * - Arguments preparation: in addition to the above verification, it writes in
816  *   data->bin_args a binary representation of arguments usable by bstr_printf
817  *   where pointers from BPF have been sanitized.
818  *
819  * In argument preparation mode, if 0 is returned, safe temporary buffers are
820  * allocated and bpf_bprintf_cleanup should be called to free them after use.
821  */
bpf_bprintf_prepare(char * fmt,u32 fmt_size,const u64 * raw_args,u32 num_args,struct bpf_bprintf_data * data)822 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
823 			u32 num_args, struct bpf_bprintf_data *data)
824 {
825 	bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
826 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
827 	struct bpf_bprintf_buffers *buffers = NULL;
828 	size_t sizeof_cur_arg, sizeof_cur_ip;
829 	int err, i, num_spec = 0;
830 	u64 cur_arg;
831 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
832 
833 	fmt_end = strnchr(fmt, fmt_size, 0);
834 	if (!fmt_end)
835 		return -EINVAL;
836 	fmt_size = fmt_end - fmt;
837 
838 	if (get_buffers && try_get_buffers(&buffers))
839 		return -EBUSY;
840 
841 	if (data->get_bin_args) {
842 		if (num_args)
843 			tmp_buf = buffers->bin_args;
844 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
845 		data->bin_args = (u32 *)tmp_buf;
846 	}
847 
848 	if (data->get_buf)
849 		data->buf = buffers->buf;
850 
851 	for (i = 0; i < fmt_size; i++) {
852 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
853 			err = -EINVAL;
854 			goto out;
855 		}
856 
857 		if (fmt[i] != '%')
858 			continue;
859 
860 		if (fmt[i + 1] == '%') {
861 			i++;
862 			continue;
863 		}
864 
865 		if (num_spec >= num_args) {
866 			err = -EINVAL;
867 			goto out;
868 		}
869 
870 		/* The string is zero-terminated so if fmt[i] != 0, we can
871 		 * always access fmt[i + 1], in the worst case it will be a 0
872 		 */
873 		i++;
874 
875 		/* skip optional "[0 +-][num]" width formatting field */
876 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
877 		       fmt[i] == ' ')
878 			i++;
879 		if (fmt[i] >= '1' && fmt[i] <= '9') {
880 			i++;
881 			while (fmt[i] >= '0' && fmt[i] <= '9')
882 				i++;
883 		}
884 
885 		if (fmt[i] == 'p') {
886 			sizeof_cur_arg = sizeof(long);
887 
888 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
889 			    fmt[i + 2] == 's') {
890 				fmt_ptype = fmt[i + 1];
891 				i += 2;
892 				goto fmt_str;
893 			}
894 
895 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
896 			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
897 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
898 			    fmt[i + 1] == 'S') {
899 				/* just kernel pointers */
900 				if (tmp_buf)
901 					cur_arg = raw_args[num_spec];
902 				i++;
903 				goto nocopy_fmt;
904 			}
905 
906 			if (fmt[i + 1] == 'B') {
907 				if (tmp_buf)  {
908 					err = snprintf(tmp_buf,
909 						       (tmp_buf_end - tmp_buf),
910 						       "%pB",
911 						       (void *)(long)raw_args[num_spec]);
912 					tmp_buf += (err + 1);
913 				}
914 
915 				i++;
916 				num_spec++;
917 				continue;
918 			}
919 
920 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
921 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
922 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
923 				err = -EINVAL;
924 				goto out;
925 			}
926 
927 			i += 2;
928 			if (!tmp_buf)
929 				goto nocopy_fmt;
930 
931 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
932 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
933 				err = -ENOSPC;
934 				goto out;
935 			}
936 
937 			unsafe_ptr = (char *)(long)raw_args[num_spec];
938 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
939 						       sizeof_cur_ip);
940 			if (err < 0)
941 				memset(cur_ip, 0, sizeof_cur_ip);
942 
943 			/* hack: bstr_printf expects IP addresses to be
944 			 * pre-formatted as strings, ironically, the easiest way
945 			 * to do that is to call snprintf.
946 			 */
947 			ip_spec[2] = fmt[i - 1];
948 			ip_spec[3] = fmt[i];
949 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
950 				       ip_spec, &cur_ip);
951 
952 			tmp_buf += err + 1;
953 			num_spec++;
954 
955 			continue;
956 		} else if (fmt[i] == 's') {
957 			fmt_ptype = fmt[i];
958 fmt_str:
959 			if (fmt[i + 1] != 0 &&
960 			    !isspace(fmt[i + 1]) &&
961 			    !ispunct(fmt[i + 1])) {
962 				err = -EINVAL;
963 				goto out;
964 			}
965 
966 			if (!tmp_buf)
967 				goto nocopy_fmt;
968 
969 			if (tmp_buf_end == tmp_buf) {
970 				err = -ENOSPC;
971 				goto out;
972 			}
973 
974 			unsafe_ptr = (char *)(long)raw_args[num_spec];
975 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
976 						    fmt_ptype,
977 						    tmp_buf_end - tmp_buf);
978 			if (err < 0) {
979 				tmp_buf[0] = '\0';
980 				err = 1;
981 			}
982 
983 			tmp_buf += err;
984 			num_spec++;
985 
986 			continue;
987 		} else if (fmt[i] == 'c') {
988 			if (!tmp_buf)
989 				goto nocopy_fmt;
990 
991 			if (tmp_buf_end == tmp_buf) {
992 				err = -ENOSPC;
993 				goto out;
994 			}
995 
996 			*tmp_buf = raw_args[num_spec];
997 			tmp_buf++;
998 			num_spec++;
999 
1000 			continue;
1001 		}
1002 
1003 		sizeof_cur_arg = sizeof(int);
1004 
1005 		if (fmt[i] == 'l') {
1006 			sizeof_cur_arg = sizeof(long);
1007 			i++;
1008 		}
1009 		if (fmt[i] == 'l') {
1010 			sizeof_cur_arg = sizeof(long long);
1011 			i++;
1012 		}
1013 
1014 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1015 		    fmt[i] != 'x' && fmt[i] != 'X') {
1016 			err = -EINVAL;
1017 			goto out;
1018 		}
1019 
1020 		if (tmp_buf)
1021 			cur_arg = raw_args[num_spec];
1022 nocopy_fmt:
1023 		if (tmp_buf) {
1024 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1025 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1026 				err = -ENOSPC;
1027 				goto out;
1028 			}
1029 
1030 			if (sizeof_cur_arg == 8) {
1031 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1032 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1033 			} else {
1034 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1035 			}
1036 			tmp_buf += sizeof_cur_arg;
1037 		}
1038 		num_spec++;
1039 	}
1040 
1041 	err = 0;
1042 out:
1043 	if (err)
1044 		bpf_bprintf_cleanup(data);
1045 	return err;
1046 }
1047 
BPF_CALL_5(bpf_snprintf,char *,str,u32,str_size,char *,fmt,const void *,args,u32,data_len)1048 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1049 	   const void *, args, u32, data_len)
1050 {
1051 	struct bpf_bprintf_data data = {
1052 		.get_bin_args	= true,
1053 	};
1054 	int err, num_args;
1055 
1056 	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1057 	    (data_len && !args))
1058 		return -EINVAL;
1059 	num_args = data_len / 8;
1060 
1061 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1062 	 * can safely give an unbounded size.
1063 	 */
1064 	err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1065 	if (err < 0)
1066 		return err;
1067 
1068 	err = bstr_printf(str, str_size, fmt, data.bin_args);
1069 
1070 	bpf_bprintf_cleanup(&data);
1071 
1072 	return err + 1;
1073 }
1074 
1075 const struct bpf_func_proto bpf_snprintf_proto = {
1076 	.func		= bpf_snprintf,
1077 	.gpl_only	= true,
1078 	.ret_type	= RET_INTEGER,
1079 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1080 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1081 	.arg3_type	= ARG_PTR_TO_CONST_STR,
1082 	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1083 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1084 };
1085 
1086 struct bpf_async_cb {
1087 	struct bpf_map *map;
1088 	struct bpf_prog *prog;
1089 	void __rcu *callback_fn;
1090 	void *value;
1091 	struct rcu_head rcu;
1092 	u64 flags;
1093 };
1094 
1095 /* BPF map elements can contain 'struct bpf_timer'.
1096  * Such map owns all of its BPF timers.
1097  * 'struct bpf_timer' is allocated as part of map element allocation
1098  * and it's zero initialized.
1099  * That space is used to keep 'struct bpf_async_kern'.
1100  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1101  * remembers 'struct bpf_map *' pointer it's part of.
1102  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1103  * bpf_timer_start() arms the timer.
1104  * If user space reference to a map goes to zero at this point
1105  * ops->map_release_uref callback is responsible for cancelling the timers,
1106  * freeing their memory, and decrementing prog's refcnts.
1107  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1108  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1109  * freeing the timers when inner map is replaced or deleted by user space.
1110  */
1111 struct bpf_hrtimer {
1112 	struct bpf_async_cb cb;
1113 	struct hrtimer timer;
1114 	atomic_t cancelling;
1115 };
1116 
1117 /* the actual struct hidden inside uapi struct bpf_timer */
1118 struct bpf_async_kern {
1119 	union {
1120 		struct bpf_async_cb *cb;
1121 		struct bpf_hrtimer *timer;
1122 	};
1123 	/* bpf_spin_lock is used here instead of spinlock_t to make
1124 	 * sure that it always fits into space reserved by struct bpf_timer
1125 	 * regardless of LOCKDEP and spinlock debug flags.
1126 	 */
1127 	struct bpf_spin_lock lock;
1128 } __attribute__((aligned(8)));
1129 
1130 enum bpf_async_type {
1131 	BPF_ASYNC_TYPE_TIMER = 0,
1132 };
1133 
1134 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1135 
bpf_timer_cb(struct hrtimer * hrtimer)1136 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1137 {
1138 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1139 	struct bpf_map *map = t->cb.map;
1140 	void *value = t->cb.value;
1141 	bpf_callback_t callback_fn;
1142 	void *key;
1143 	u32 idx;
1144 
1145 	BTF_TYPE_EMIT(struct bpf_timer);
1146 	callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1147 	if (!callback_fn)
1148 		goto out;
1149 
1150 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1151 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1152 	 * Remember the timer this callback is servicing to prevent
1153 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1154 	 * bpf_map_delete_elem() on the same timer.
1155 	 */
1156 	this_cpu_write(hrtimer_running, t);
1157 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1158 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1159 
1160 		/* compute the key */
1161 		idx = ((char *)value - array->value) / array->elem_size;
1162 		key = &idx;
1163 	} else { /* hash or lru */
1164 		key = value - round_up(map->key_size, 8);
1165 	}
1166 
1167 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1168 	/* The verifier checked that return value is zero. */
1169 
1170 	this_cpu_write(hrtimer_running, NULL);
1171 out:
1172 	return HRTIMER_NORESTART;
1173 }
1174 
__bpf_async_init(struct bpf_async_kern * async,struct bpf_map * map,u64 flags,enum bpf_async_type type)1175 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1176 			    enum bpf_async_type type)
1177 {
1178 	struct bpf_async_cb *cb;
1179 	struct bpf_hrtimer *t;
1180 	clockid_t clockid;
1181 	size_t size;
1182 	int ret = 0;
1183 
1184 	if (in_nmi())
1185 		return -EOPNOTSUPP;
1186 
1187 	switch (type) {
1188 	case BPF_ASYNC_TYPE_TIMER:
1189 		size = sizeof(struct bpf_hrtimer);
1190 		break;
1191 	default:
1192 		return -EINVAL;
1193 	}
1194 
1195 	__bpf_spin_lock_irqsave(&async->lock);
1196 	t = async->timer;
1197 	if (t) {
1198 		ret = -EBUSY;
1199 		goto out;
1200 	}
1201 
1202 	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1203 	cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node);
1204 	if (!cb) {
1205 		ret = -ENOMEM;
1206 		goto out;
1207 	}
1208 
1209 	if (type == BPF_ASYNC_TYPE_TIMER) {
1210 		clockid = flags & (MAX_CLOCKS - 1);
1211 		t = (struct bpf_hrtimer *)cb;
1212 
1213 		atomic_set(&t->cancelling, 0);
1214 		hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1215 		t->timer.function = bpf_timer_cb;
1216 		cb->value = (void *)async - map->record->timer_off;
1217 	}
1218 	cb->map = map;
1219 	cb->prog = NULL;
1220 	cb->flags = flags;
1221 	rcu_assign_pointer(cb->callback_fn, NULL);
1222 
1223 	WRITE_ONCE(async->cb, cb);
1224 	/* Guarantee the order between async->cb and map->usercnt. So
1225 	 * when there are concurrent uref release and bpf timer init, either
1226 	 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1227 	 * timer or atomic64_read() below returns a zero usercnt.
1228 	 */
1229 	smp_mb();
1230 	if (!atomic64_read(&map->usercnt)) {
1231 		/* maps with timers must be either held by user space
1232 		 * or pinned in bpffs.
1233 		 */
1234 		WRITE_ONCE(async->cb, NULL);
1235 		kfree(cb);
1236 		ret = -EPERM;
1237 	}
1238 out:
1239 	__bpf_spin_unlock_irqrestore(&async->lock);
1240 	return ret;
1241 }
1242 
BPF_CALL_3(bpf_timer_init,struct bpf_async_kern *,timer,struct bpf_map *,map,u64,flags)1243 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1244 	   u64, flags)
1245 {
1246 	clock_t clockid = flags & (MAX_CLOCKS - 1);
1247 
1248 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1249 	BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1250 	BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1251 
1252 	if (flags >= MAX_CLOCKS ||
1253 	    /* similar to timerfd except _ALARM variants are not supported */
1254 	    (clockid != CLOCK_MONOTONIC &&
1255 	     clockid != CLOCK_REALTIME &&
1256 	     clockid != CLOCK_BOOTTIME))
1257 		return -EINVAL;
1258 
1259 	return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1260 }
1261 
1262 static const struct bpf_func_proto bpf_timer_init_proto = {
1263 	.func		= bpf_timer_init,
1264 	.gpl_only	= true,
1265 	.ret_type	= RET_INTEGER,
1266 	.arg1_type	= ARG_PTR_TO_TIMER,
1267 	.arg2_type	= ARG_CONST_MAP_PTR,
1268 	.arg3_type	= ARG_ANYTHING,
1269 };
1270 
BPF_CALL_3(bpf_timer_set_callback,struct bpf_async_kern *,timer,void *,callback_fn,struct bpf_prog_aux *,aux)1271 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1272 	   struct bpf_prog_aux *, aux)
1273 {
1274 	struct bpf_prog *prev, *prog = aux->prog;
1275 	struct bpf_hrtimer *t;
1276 	int ret = 0;
1277 
1278 	if (in_nmi())
1279 		return -EOPNOTSUPP;
1280 	__bpf_spin_lock_irqsave(&timer->lock);
1281 	t = timer->timer;
1282 	if (!t) {
1283 		ret = -EINVAL;
1284 		goto out;
1285 	}
1286 	if (!atomic64_read(&t->cb.map->usercnt)) {
1287 		/* maps with timers must be either held by user space
1288 		 * or pinned in bpffs. Otherwise timer might still be
1289 		 * running even when bpf prog is detached and user space
1290 		 * is gone, since map_release_uref won't ever be called.
1291 		 */
1292 		ret = -EPERM;
1293 		goto out;
1294 	}
1295 	prev = t->cb.prog;
1296 	if (prev != prog) {
1297 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1298 		 * can pick different callback_fn-s within the same prog.
1299 		 */
1300 		prog = bpf_prog_inc_not_zero(prog);
1301 		if (IS_ERR(prog)) {
1302 			ret = PTR_ERR(prog);
1303 			goto out;
1304 		}
1305 		if (prev)
1306 			/* Drop prev prog refcnt when swapping with new prog */
1307 			bpf_prog_put(prev);
1308 		t->cb.prog = prog;
1309 	}
1310 	rcu_assign_pointer(t->cb.callback_fn, callback_fn);
1311 out:
1312 	__bpf_spin_unlock_irqrestore(&timer->lock);
1313 	return ret;
1314 }
1315 
1316 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1317 	.func		= bpf_timer_set_callback,
1318 	.gpl_only	= true,
1319 	.ret_type	= RET_INTEGER,
1320 	.arg1_type	= ARG_PTR_TO_TIMER,
1321 	.arg2_type	= ARG_PTR_TO_FUNC,
1322 };
1323 
BPF_CALL_3(bpf_timer_start,struct bpf_async_kern *,timer,u64,nsecs,u64,flags)1324 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1325 {
1326 	struct bpf_hrtimer *t;
1327 	int ret = 0;
1328 	enum hrtimer_mode mode;
1329 
1330 	if (in_nmi())
1331 		return -EOPNOTSUPP;
1332 	if (flags > BPF_F_TIMER_ABS)
1333 		return -EINVAL;
1334 	__bpf_spin_lock_irqsave(&timer->lock);
1335 	t = timer->timer;
1336 	if (!t || !t->cb.prog) {
1337 		ret = -EINVAL;
1338 		goto out;
1339 	}
1340 
1341 	if (flags & BPF_F_TIMER_ABS)
1342 		mode = HRTIMER_MODE_ABS_SOFT;
1343 	else
1344 		mode = HRTIMER_MODE_REL_SOFT;
1345 
1346 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1347 out:
1348 	__bpf_spin_unlock_irqrestore(&timer->lock);
1349 	return ret;
1350 }
1351 
1352 static const struct bpf_func_proto bpf_timer_start_proto = {
1353 	.func		= bpf_timer_start,
1354 	.gpl_only	= true,
1355 	.ret_type	= RET_INTEGER,
1356 	.arg1_type	= ARG_PTR_TO_TIMER,
1357 	.arg2_type	= ARG_ANYTHING,
1358 	.arg3_type	= ARG_ANYTHING,
1359 };
1360 
drop_prog_refcnt(struct bpf_async_cb * async)1361 static void drop_prog_refcnt(struct bpf_async_cb *async)
1362 {
1363 	struct bpf_prog *prog = async->prog;
1364 
1365 	if (prog) {
1366 		bpf_prog_put(prog);
1367 		async->prog = NULL;
1368 		rcu_assign_pointer(async->callback_fn, NULL);
1369 	}
1370 }
1371 
BPF_CALL_1(bpf_timer_cancel,struct bpf_async_kern *,timer)1372 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1373 {
1374 	struct bpf_hrtimer *t, *cur_t;
1375 	bool inc = false;
1376 	int ret = 0;
1377 
1378 	if (in_nmi())
1379 		return -EOPNOTSUPP;
1380 	rcu_read_lock();
1381 	__bpf_spin_lock_irqsave(&timer->lock);
1382 	t = timer->timer;
1383 	if (!t) {
1384 		ret = -EINVAL;
1385 		goto out;
1386 	}
1387 
1388 	cur_t = this_cpu_read(hrtimer_running);
1389 	if (cur_t == t) {
1390 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1391 		 * its own timer the hrtimer_cancel() will deadlock
1392 		 * since it waits for callback_fn to finish.
1393 		 */
1394 		ret = -EDEADLK;
1395 		goto out;
1396 	}
1397 
1398 	/* Only account in-flight cancellations when invoked from a timer
1399 	 * callback, since we want to avoid waiting only if other _callbacks_
1400 	 * are waiting on us, to avoid introducing lockups. Non-callback paths
1401 	 * are ok, since nobody would synchronously wait for their completion.
1402 	 */
1403 	if (!cur_t)
1404 		goto drop;
1405 	atomic_inc(&t->cancelling);
1406 	/* Need full barrier after relaxed atomic_inc */
1407 	smp_mb__after_atomic();
1408 	inc = true;
1409 	if (atomic_read(&cur_t->cancelling)) {
1410 		/* We're cancelling timer t, while some other timer callback is
1411 		 * attempting to cancel us. In such a case, it might be possible
1412 		 * that timer t belongs to the other callback, or some other
1413 		 * callback waiting upon it (creating transitive dependencies
1414 		 * upon us), and we will enter a deadlock if we continue
1415 		 * cancelling and waiting for it synchronously, since it might
1416 		 * do the same. Bail!
1417 		 */
1418 		ret = -EDEADLK;
1419 		goto out;
1420 	}
1421 drop:
1422 	drop_prog_refcnt(&t->cb);
1423 out:
1424 	__bpf_spin_unlock_irqrestore(&timer->lock);
1425 	/* Cancel the timer and wait for associated callback to finish
1426 	 * if it was running.
1427 	 */
1428 	ret = ret ?: hrtimer_cancel(&t->timer);
1429 	if (inc)
1430 		atomic_dec(&t->cancelling);
1431 	rcu_read_unlock();
1432 	return ret;
1433 }
1434 
1435 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1436 	.func		= bpf_timer_cancel,
1437 	.gpl_only	= true,
1438 	.ret_type	= RET_INTEGER,
1439 	.arg1_type	= ARG_PTR_TO_TIMER,
1440 };
1441 
1442 /* This function is called by map_delete/update_elem for individual element and
1443  * by ops->map_release_uref when the user space reference to a map reaches zero.
1444  */
bpf_timer_cancel_and_free(void * val)1445 void bpf_timer_cancel_and_free(void *val)
1446 {
1447 	struct bpf_async_kern *timer = val;
1448 	struct bpf_hrtimer *t;
1449 
1450 	/* Performance optimization: read timer->timer without lock first. */
1451 	if (!READ_ONCE(timer->timer))
1452 		return;
1453 
1454 	__bpf_spin_lock_irqsave(&timer->lock);
1455 	/* re-read it under lock */
1456 	t = timer->timer;
1457 	if (!t)
1458 		goto out;
1459 	drop_prog_refcnt(&t->cb);
1460 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1461 	 * this timer, since it won't be initialized.
1462 	 */
1463 	WRITE_ONCE(timer->timer, NULL);
1464 out:
1465 	__bpf_spin_unlock_irqrestore(&timer->lock);
1466 	if (!t)
1467 		return;
1468 	/* Cancel the timer and wait for callback to complete if it was running.
1469 	 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1470 	 * right after for both preallocated and non-preallocated maps.
1471 	 * The timer->timer = NULL was already done and no code path can
1472 	 * see address 't' anymore.
1473 	 *
1474 	 * Check that bpf_map_delete/update_elem() wasn't called from timer
1475 	 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1476 	 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1477 	 * return -1). Though callback_fn is still running on this cpu it's
1478 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1479 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1480 	 * since timer->timer = NULL was already done. The timer will be
1481 	 * effectively cancelled because bpf_timer_cb() will return
1482 	 * HRTIMER_NORESTART.
1483 	 */
1484 	if (this_cpu_read(hrtimer_running) != t)
1485 		hrtimer_cancel(&t->timer);
1486 	kfree_rcu(t, cb.rcu);
1487 }
1488 
BPF_CALL_2(bpf_kptr_xchg,void *,map_value,void *,ptr)1489 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1490 {
1491 	unsigned long *kptr = map_value;
1492 
1493 	return xchg(kptr, (unsigned long)ptr);
1494 }
1495 
1496 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1497  * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1498  * denote type that verifier will determine.
1499  */
1500 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1501 	.func         = bpf_kptr_xchg,
1502 	.gpl_only     = false,
1503 	.ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1504 	.ret_btf_id   = BPF_PTR_POISON,
1505 	.arg1_type    = ARG_PTR_TO_KPTR,
1506 	.arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1507 	.arg2_btf_id  = BPF_PTR_POISON,
1508 };
1509 
1510 /* Since the upper 8 bits of dynptr->size is reserved, the
1511  * maximum supported size is 2^24 - 1.
1512  */
1513 #define DYNPTR_MAX_SIZE	((1UL << 24) - 1)
1514 #define DYNPTR_TYPE_SHIFT	28
1515 #define DYNPTR_SIZE_MASK	0xFFFFFF
1516 #define DYNPTR_RDONLY_BIT	BIT(31)
1517 
__bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern * ptr)1518 static bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1519 {
1520 	return ptr->size & DYNPTR_RDONLY_BIT;
1521 }
1522 
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)1523 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1524 {
1525 	ptr->size |= DYNPTR_RDONLY_BIT;
1526 }
1527 
bpf_dynptr_set_type(struct bpf_dynptr_kern * ptr,enum bpf_dynptr_type type)1528 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1529 {
1530 	ptr->size |= type << DYNPTR_TYPE_SHIFT;
1531 }
1532 
bpf_dynptr_get_type(const struct bpf_dynptr_kern * ptr)1533 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1534 {
1535 	return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1536 }
1537 
__bpf_dynptr_size(const struct bpf_dynptr_kern * ptr)1538 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1539 {
1540 	return ptr->size & DYNPTR_SIZE_MASK;
1541 }
1542 
bpf_dynptr_set_size(struct bpf_dynptr_kern * ptr,u32 new_size)1543 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1544 {
1545 	u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1546 
1547 	ptr->size = new_size | metadata;
1548 }
1549 
bpf_dynptr_check_size(u32 size)1550 int bpf_dynptr_check_size(u32 size)
1551 {
1552 	return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1553 }
1554 
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)1555 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1556 		     enum bpf_dynptr_type type, u32 offset, u32 size)
1557 {
1558 	ptr->data = data;
1559 	ptr->offset = offset;
1560 	ptr->size = size;
1561 	bpf_dynptr_set_type(ptr, type);
1562 }
1563 
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)1564 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1565 {
1566 	memset(ptr, 0, sizeof(*ptr));
1567 }
1568 
bpf_dynptr_check_off_len(const struct bpf_dynptr_kern * ptr,u32 offset,u32 len)1569 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1570 {
1571 	u32 size = __bpf_dynptr_size(ptr);
1572 
1573 	if (len > size || offset > size - len)
1574 		return -E2BIG;
1575 
1576 	return 0;
1577 }
1578 
BPF_CALL_4(bpf_dynptr_from_mem,void *,data,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)1579 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1580 {
1581 	int err;
1582 
1583 	BTF_TYPE_EMIT(struct bpf_dynptr);
1584 
1585 	err = bpf_dynptr_check_size(size);
1586 	if (err)
1587 		goto error;
1588 
1589 	/* flags is currently unsupported */
1590 	if (flags) {
1591 		err = -EINVAL;
1592 		goto error;
1593 	}
1594 
1595 	bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1596 
1597 	return 0;
1598 
1599 error:
1600 	bpf_dynptr_set_null(ptr);
1601 	return err;
1602 }
1603 
1604 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1605 	.func		= bpf_dynptr_from_mem,
1606 	.gpl_only	= false,
1607 	.ret_type	= RET_INTEGER,
1608 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1609 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1610 	.arg3_type	= ARG_ANYTHING,
1611 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE,
1612 };
1613 
BPF_CALL_5(bpf_dynptr_read,void *,dst,u32,len,const struct bpf_dynptr_kern *,src,u32,offset,u64,flags)1614 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1615 	   u32, offset, u64, flags)
1616 {
1617 	enum bpf_dynptr_type type;
1618 	int err;
1619 
1620 	if (!src->data || flags)
1621 		return -EINVAL;
1622 
1623 	err = bpf_dynptr_check_off_len(src, offset, len);
1624 	if (err)
1625 		return err;
1626 
1627 	type = bpf_dynptr_get_type(src);
1628 
1629 	switch (type) {
1630 	case BPF_DYNPTR_TYPE_LOCAL:
1631 	case BPF_DYNPTR_TYPE_RINGBUF:
1632 		/* Source and destination may possibly overlap, hence use memmove to
1633 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1634 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1635 		 */
1636 		memmove(dst, src->data + src->offset + offset, len);
1637 		return 0;
1638 	case BPF_DYNPTR_TYPE_SKB:
1639 		return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1640 	case BPF_DYNPTR_TYPE_XDP:
1641 		return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1642 	default:
1643 		WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1644 		return -EFAULT;
1645 	}
1646 }
1647 
1648 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1649 	.func		= bpf_dynptr_read,
1650 	.gpl_only	= false,
1651 	.ret_type	= RET_INTEGER,
1652 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1653 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1654 	.arg3_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1655 	.arg4_type	= ARG_ANYTHING,
1656 	.arg5_type	= ARG_ANYTHING,
1657 };
1658 
BPF_CALL_5(bpf_dynptr_write,const struct bpf_dynptr_kern *,dst,u32,offset,void *,src,u32,len,u64,flags)1659 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1660 	   u32, len, u64, flags)
1661 {
1662 	enum bpf_dynptr_type type;
1663 	int err;
1664 
1665 	if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1666 		return -EINVAL;
1667 
1668 	err = bpf_dynptr_check_off_len(dst, offset, len);
1669 	if (err)
1670 		return err;
1671 
1672 	type = bpf_dynptr_get_type(dst);
1673 
1674 	switch (type) {
1675 	case BPF_DYNPTR_TYPE_LOCAL:
1676 	case BPF_DYNPTR_TYPE_RINGBUF:
1677 		if (flags)
1678 			return -EINVAL;
1679 		/* Source and destination may possibly overlap, hence use memmove to
1680 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1681 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1682 		 */
1683 		memmove(dst->data + dst->offset + offset, src, len);
1684 		return 0;
1685 	case BPF_DYNPTR_TYPE_SKB:
1686 		return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1687 					     flags);
1688 	case BPF_DYNPTR_TYPE_XDP:
1689 		if (flags)
1690 			return -EINVAL;
1691 		return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1692 	default:
1693 		WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1694 		return -EFAULT;
1695 	}
1696 }
1697 
1698 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1699 	.func		= bpf_dynptr_write,
1700 	.gpl_only	= false,
1701 	.ret_type	= RET_INTEGER,
1702 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1703 	.arg2_type	= ARG_ANYTHING,
1704 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1705 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1706 	.arg5_type	= ARG_ANYTHING,
1707 };
1708 
BPF_CALL_3(bpf_dynptr_data,const struct bpf_dynptr_kern *,ptr,u32,offset,u32,len)1709 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1710 {
1711 	enum bpf_dynptr_type type;
1712 	int err;
1713 
1714 	if (!ptr->data)
1715 		return 0;
1716 
1717 	err = bpf_dynptr_check_off_len(ptr, offset, len);
1718 	if (err)
1719 		return 0;
1720 
1721 	if (__bpf_dynptr_is_rdonly(ptr))
1722 		return 0;
1723 
1724 	type = bpf_dynptr_get_type(ptr);
1725 
1726 	switch (type) {
1727 	case BPF_DYNPTR_TYPE_LOCAL:
1728 	case BPF_DYNPTR_TYPE_RINGBUF:
1729 		return (unsigned long)(ptr->data + ptr->offset + offset);
1730 	case BPF_DYNPTR_TYPE_SKB:
1731 	case BPF_DYNPTR_TYPE_XDP:
1732 		/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1733 		return 0;
1734 	default:
1735 		WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1736 		return 0;
1737 	}
1738 }
1739 
1740 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1741 	.func		= bpf_dynptr_data,
1742 	.gpl_only	= false,
1743 	.ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1744 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1745 	.arg2_type	= ARG_ANYTHING,
1746 	.arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
1747 };
1748 
1749 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1750 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1751 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1752 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1753 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1754 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1755 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1756 
1757 const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)1758 bpf_base_func_proto(enum bpf_func_id func_id)
1759 {
1760 	switch (func_id) {
1761 	case BPF_FUNC_map_lookup_elem:
1762 		return &bpf_map_lookup_elem_proto;
1763 	case BPF_FUNC_map_update_elem:
1764 		return &bpf_map_update_elem_proto;
1765 	case BPF_FUNC_map_delete_elem:
1766 		return &bpf_map_delete_elem_proto;
1767 	case BPF_FUNC_map_push_elem:
1768 		return &bpf_map_push_elem_proto;
1769 	case BPF_FUNC_map_pop_elem:
1770 		return &bpf_map_pop_elem_proto;
1771 	case BPF_FUNC_map_peek_elem:
1772 		return &bpf_map_peek_elem_proto;
1773 	case BPF_FUNC_map_lookup_percpu_elem:
1774 		return &bpf_map_lookup_percpu_elem_proto;
1775 	case BPF_FUNC_get_prandom_u32:
1776 		return &bpf_get_prandom_u32_proto;
1777 	case BPF_FUNC_get_smp_processor_id:
1778 		return &bpf_get_raw_smp_processor_id_proto;
1779 	case BPF_FUNC_get_numa_node_id:
1780 		return &bpf_get_numa_node_id_proto;
1781 	case BPF_FUNC_tail_call:
1782 		return &bpf_tail_call_proto;
1783 	case BPF_FUNC_ktime_get_ns:
1784 		return &bpf_ktime_get_ns_proto;
1785 	case BPF_FUNC_ktime_get_boot_ns:
1786 		return &bpf_ktime_get_boot_ns_proto;
1787 	case BPF_FUNC_ktime_get_tai_ns:
1788 		return &bpf_ktime_get_tai_ns_proto;
1789 	case BPF_FUNC_ringbuf_output:
1790 		return &bpf_ringbuf_output_proto;
1791 	case BPF_FUNC_ringbuf_reserve:
1792 		return &bpf_ringbuf_reserve_proto;
1793 	case BPF_FUNC_ringbuf_submit:
1794 		return &bpf_ringbuf_submit_proto;
1795 	case BPF_FUNC_ringbuf_discard:
1796 		return &bpf_ringbuf_discard_proto;
1797 	case BPF_FUNC_ringbuf_query:
1798 		return &bpf_ringbuf_query_proto;
1799 	case BPF_FUNC_strncmp:
1800 		return &bpf_strncmp_proto;
1801 	case BPF_FUNC_strtol:
1802 		return &bpf_strtol_proto;
1803 	case BPF_FUNC_strtoul:
1804 		return &bpf_strtoul_proto;
1805 	default:
1806 		break;
1807 	}
1808 
1809 	if (!bpf_capable())
1810 		return NULL;
1811 
1812 	switch (func_id) {
1813 	case BPF_FUNC_spin_lock:
1814 		return &bpf_spin_lock_proto;
1815 	case BPF_FUNC_spin_unlock:
1816 		return &bpf_spin_unlock_proto;
1817 	case BPF_FUNC_jiffies64:
1818 		return &bpf_jiffies64_proto;
1819 	case BPF_FUNC_per_cpu_ptr:
1820 		return &bpf_per_cpu_ptr_proto;
1821 	case BPF_FUNC_this_cpu_ptr:
1822 		return &bpf_this_cpu_ptr_proto;
1823 	case BPF_FUNC_timer_init:
1824 		return &bpf_timer_init_proto;
1825 	case BPF_FUNC_timer_set_callback:
1826 		return &bpf_timer_set_callback_proto;
1827 	case BPF_FUNC_timer_start:
1828 		return &bpf_timer_start_proto;
1829 	case BPF_FUNC_timer_cancel:
1830 		return &bpf_timer_cancel_proto;
1831 	case BPF_FUNC_kptr_xchg:
1832 		return &bpf_kptr_xchg_proto;
1833 	case BPF_FUNC_for_each_map_elem:
1834 		return &bpf_for_each_map_elem_proto;
1835 	case BPF_FUNC_loop:
1836 		return &bpf_loop_proto;
1837 	case BPF_FUNC_user_ringbuf_drain:
1838 		return &bpf_user_ringbuf_drain_proto;
1839 	case BPF_FUNC_ringbuf_reserve_dynptr:
1840 		return &bpf_ringbuf_reserve_dynptr_proto;
1841 	case BPF_FUNC_ringbuf_submit_dynptr:
1842 		return &bpf_ringbuf_submit_dynptr_proto;
1843 	case BPF_FUNC_ringbuf_discard_dynptr:
1844 		return &bpf_ringbuf_discard_dynptr_proto;
1845 	case BPF_FUNC_dynptr_from_mem:
1846 		return &bpf_dynptr_from_mem_proto;
1847 	case BPF_FUNC_dynptr_read:
1848 		return &bpf_dynptr_read_proto;
1849 	case BPF_FUNC_dynptr_write:
1850 		return &bpf_dynptr_write_proto;
1851 	case BPF_FUNC_dynptr_data:
1852 		return &bpf_dynptr_data_proto;
1853 #ifdef CONFIG_CGROUPS
1854 	case BPF_FUNC_cgrp_storage_get:
1855 		return &bpf_cgrp_storage_get_proto;
1856 	case BPF_FUNC_cgrp_storage_delete:
1857 		return &bpf_cgrp_storage_delete_proto;
1858 	case BPF_FUNC_get_current_cgroup_id:
1859 		return &bpf_get_current_cgroup_id_proto;
1860 	case BPF_FUNC_get_current_ancestor_cgroup_id:
1861 		return &bpf_get_current_ancestor_cgroup_id_proto;
1862 #endif
1863 	default:
1864 		break;
1865 	}
1866 
1867 	if (!perfmon_capable())
1868 		return NULL;
1869 
1870 	switch (func_id) {
1871 	case BPF_FUNC_trace_printk:
1872 		return bpf_get_trace_printk_proto();
1873 	case BPF_FUNC_get_current_task:
1874 		return &bpf_get_current_task_proto;
1875 	case BPF_FUNC_get_current_task_btf:
1876 		return &bpf_get_current_task_btf_proto;
1877 	case BPF_FUNC_probe_read_user:
1878 		return &bpf_probe_read_user_proto;
1879 	case BPF_FUNC_probe_read_kernel:
1880 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1881 		       NULL : &bpf_probe_read_kernel_proto;
1882 	case BPF_FUNC_probe_read_user_str:
1883 		return &bpf_probe_read_user_str_proto;
1884 	case BPF_FUNC_probe_read_kernel_str:
1885 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1886 		       NULL : &bpf_probe_read_kernel_str_proto;
1887 	case BPF_FUNC_snprintf_btf:
1888 		return &bpf_snprintf_btf_proto;
1889 	case BPF_FUNC_snprintf:
1890 		return &bpf_snprintf_proto;
1891 	case BPF_FUNC_task_pt_regs:
1892 		return &bpf_task_pt_regs_proto;
1893 	case BPF_FUNC_trace_vprintk:
1894 		return bpf_get_trace_vprintk_proto();
1895 	default:
1896 		return NULL;
1897 	}
1898 }
1899 
1900 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec);
1901 
bpf_list_head_free(const struct btf_field * field,void * list_head,struct bpf_spin_lock * spin_lock)1902 void bpf_list_head_free(const struct btf_field *field, void *list_head,
1903 			struct bpf_spin_lock *spin_lock)
1904 {
1905 	struct list_head *head = list_head, *orig_head = list_head;
1906 
1907 	BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
1908 	BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
1909 
1910 	/* Do the actual list draining outside the lock to not hold the lock for
1911 	 * too long, and also prevent deadlocks if tracing programs end up
1912 	 * executing on entry/exit of functions called inside the critical
1913 	 * section, and end up doing map ops that call bpf_list_head_free for
1914 	 * the same map value again.
1915 	 */
1916 	__bpf_spin_lock_irqsave(spin_lock);
1917 	if (!head->next || list_empty(head))
1918 		goto unlock;
1919 	head = head->next;
1920 unlock:
1921 	INIT_LIST_HEAD(orig_head);
1922 	__bpf_spin_unlock_irqrestore(spin_lock);
1923 
1924 	while (head != orig_head) {
1925 		void *obj = head;
1926 
1927 		obj -= field->graph_root.node_offset;
1928 		head = head->next;
1929 		/* The contained type can also have resources, including a
1930 		 * bpf_list_head which needs to be freed.
1931 		 */
1932 		migrate_disable();
1933 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec);
1934 		migrate_enable();
1935 	}
1936 }
1937 
1938 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
1939  * 'rb_node *', so field name of rb_node within containing struct is not
1940  * needed.
1941  *
1942  * Since bpf_rb_tree's node type has a corresponding struct btf_field with
1943  * graph_root.node_offset, it's not necessary to know field name
1944  * or type of node struct
1945  */
1946 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
1947 	for (pos = rb_first_postorder(root); \
1948 	    pos && ({ n = rb_next_postorder(pos); 1; }); \
1949 	    pos = n)
1950 
bpf_rb_root_free(const struct btf_field * field,void * rb_root,struct bpf_spin_lock * spin_lock)1951 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
1952 		      struct bpf_spin_lock *spin_lock)
1953 {
1954 	struct rb_root_cached orig_root, *root = rb_root;
1955 	struct rb_node *pos, *n;
1956 	void *obj;
1957 
1958 	BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
1959 	BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
1960 
1961 	__bpf_spin_lock_irqsave(spin_lock);
1962 	orig_root = *root;
1963 	*root = RB_ROOT_CACHED;
1964 	__bpf_spin_unlock_irqrestore(spin_lock);
1965 
1966 	bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
1967 		obj = pos;
1968 		obj -= field->graph_root.node_offset;
1969 
1970 
1971 		migrate_disable();
1972 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec);
1973 		migrate_enable();
1974 	}
1975 }
1976 
1977 __diag_push();
1978 __diag_ignore_all("-Wmissing-prototypes",
1979 		  "Global functions as their definitions will be in vmlinux BTF");
1980 
bpf_obj_new_impl(u64 local_type_id__k,void * meta__ign)1981 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
1982 {
1983 	struct btf_struct_meta *meta = meta__ign;
1984 	u64 size = local_type_id__k;
1985 	void *p;
1986 
1987 	p = bpf_mem_alloc(&bpf_global_ma, size);
1988 	if (!p)
1989 		return NULL;
1990 	if (meta)
1991 		bpf_obj_init(meta->record, p);
1992 	return p;
1993 }
1994 
1995 /* Must be called under migrate_disable(), as required by bpf_mem_free */
__bpf_obj_drop_impl(void * p,const struct btf_record * rec)1996 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec)
1997 {
1998 	if (rec && rec->refcount_off >= 0 &&
1999 	    !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
2000 		/* Object is refcounted and refcount_dec didn't result in 0
2001 		 * refcount. Return without freeing the object
2002 		 */
2003 		return;
2004 	}
2005 
2006 	if (rec)
2007 		bpf_obj_free_fields(rec, p);
2008 
2009 	if (rec && rec->refcount_off >= 0)
2010 		bpf_mem_free_rcu(&bpf_global_ma, p);
2011 	else
2012 		bpf_mem_free(&bpf_global_ma, p);
2013 }
2014 
bpf_obj_drop_impl(void * p__alloc,void * meta__ign)2015 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2016 {
2017 	struct btf_struct_meta *meta = meta__ign;
2018 	void *p = p__alloc;
2019 
2020 	__bpf_obj_drop_impl(p, meta ? meta->record : NULL);
2021 }
2022 
bpf_refcount_acquire_impl(void * p__refcounted_kptr,void * meta__ign)2023 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2024 {
2025 	struct btf_struct_meta *meta = meta__ign;
2026 	struct bpf_refcount *ref;
2027 
2028 	/* Could just cast directly to refcount_t *, but need some code using
2029 	 * bpf_refcount type so that it is emitted in vmlinux BTF
2030 	 */
2031 	ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2032 	if (!refcount_inc_not_zero((refcount_t *)ref))
2033 		return NULL;
2034 
2035 	/* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2036 	 * in verifier.c
2037 	 */
2038 	return (void *)p__refcounted_kptr;
2039 }
2040 
__bpf_list_add(struct bpf_list_node_kern * node,struct bpf_list_head * head,bool tail,struct btf_record * rec,u64 off)2041 static int __bpf_list_add(struct bpf_list_node_kern *node,
2042 			  struct bpf_list_head *head,
2043 			  bool tail, struct btf_record *rec, u64 off)
2044 {
2045 	struct list_head *n = &node->list_head, *h = (void *)head;
2046 
2047 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2048 	 * called on its fields, so init here
2049 	 */
2050 	if (unlikely(!h->next))
2051 		INIT_LIST_HEAD(h);
2052 
2053 	/* node->owner != NULL implies !list_empty(n), no need to separately
2054 	 * check the latter
2055 	 */
2056 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2057 		/* Only called from BPF prog, no need to migrate_disable */
2058 		__bpf_obj_drop_impl((void *)n - off, rec);
2059 		return -EINVAL;
2060 	}
2061 
2062 	tail ? list_add_tail(n, h) : list_add(n, h);
2063 	WRITE_ONCE(node->owner, head);
2064 
2065 	return 0;
2066 }
2067 
bpf_list_push_front_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2068 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2069 					 struct bpf_list_node *node,
2070 					 void *meta__ign, u64 off)
2071 {
2072 	struct bpf_list_node_kern *n = (void *)node;
2073 	struct btf_struct_meta *meta = meta__ign;
2074 
2075 	return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2076 }
2077 
bpf_list_push_back_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2078 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2079 					struct bpf_list_node *node,
2080 					void *meta__ign, u64 off)
2081 {
2082 	struct bpf_list_node_kern *n = (void *)node;
2083 	struct btf_struct_meta *meta = meta__ign;
2084 
2085 	return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2086 }
2087 
__bpf_list_del(struct bpf_list_head * head,bool tail)2088 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2089 {
2090 	struct list_head *n, *h = (void *)head;
2091 	struct bpf_list_node_kern *node;
2092 
2093 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2094 	 * called on its fields, so init here
2095 	 */
2096 	if (unlikely(!h->next))
2097 		INIT_LIST_HEAD(h);
2098 	if (list_empty(h))
2099 		return NULL;
2100 
2101 	n = tail ? h->prev : h->next;
2102 	node = container_of(n, struct bpf_list_node_kern, list_head);
2103 	if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2104 		return NULL;
2105 
2106 	list_del_init(n);
2107 	WRITE_ONCE(node->owner, NULL);
2108 	return (struct bpf_list_node *)n;
2109 }
2110 
bpf_list_pop_front(struct bpf_list_head * head)2111 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2112 {
2113 	return __bpf_list_del(head, false);
2114 }
2115 
bpf_list_pop_back(struct bpf_list_head * head)2116 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2117 {
2118 	return __bpf_list_del(head, true);
2119 }
2120 
bpf_rbtree_remove(struct bpf_rb_root * root,struct bpf_rb_node * node)2121 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2122 						  struct bpf_rb_node *node)
2123 {
2124 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2125 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2126 	struct rb_node *n = &node_internal->rb_node;
2127 
2128 	/* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2129 	 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2130 	 */
2131 	if (READ_ONCE(node_internal->owner) != root)
2132 		return NULL;
2133 
2134 	rb_erase_cached(n, r);
2135 	RB_CLEAR_NODE(n);
2136 	WRITE_ONCE(node_internal->owner, NULL);
2137 	return (struct bpf_rb_node *)n;
2138 }
2139 
2140 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2141  * program
2142  */
__bpf_rbtree_add(struct bpf_rb_root * root,struct bpf_rb_node_kern * node,void * less,struct btf_record * rec,u64 off)2143 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2144 			    struct bpf_rb_node_kern *node,
2145 			    void *less, struct btf_record *rec, u64 off)
2146 {
2147 	struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2148 	struct rb_node *parent = NULL, *n = &node->rb_node;
2149 	bpf_callback_t cb = (bpf_callback_t)less;
2150 	bool leftmost = true;
2151 
2152 	/* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2153 	 * check the latter
2154 	 */
2155 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2156 		/* Only called from BPF prog, no need to migrate_disable */
2157 		__bpf_obj_drop_impl((void *)n - off, rec);
2158 		return -EINVAL;
2159 	}
2160 
2161 	while (*link) {
2162 		parent = *link;
2163 		if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2164 			link = &parent->rb_left;
2165 		} else {
2166 			link = &parent->rb_right;
2167 			leftmost = false;
2168 		}
2169 	}
2170 
2171 	rb_link_node(n, parent, link);
2172 	rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2173 	WRITE_ONCE(node->owner, root);
2174 	return 0;
2175 }
2176 
bpf_rbtree_add_impl(struct bpf_rb_root * root,struct bpf_rb_node * node,bool (less)(struct bpf_rb_node * a,const struct bpf_rb_node * b),void * meta__ign,u64 off)2177 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2178 				    bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2179 				    void *meta__ign, u64 off)
2180 {
2181 	struct btf_struct_meta *meta = meta__ign;
2182 	struct bpf_rb_node_kern *n = (void *)node;
2183 
2184 	return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2185 }
2186 
bpf_rbtree_first(struct bpf_rb_root * root)2187 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2188 {
2189 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2190 
2191 	return (struct bpf_rb_node *)rb_first_cached(r);
2192 }
2193 
2194 /**
2195  * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2196  * kfunc which is not stored in a map as a kptr, must be released by calling
2197  * bpf_task_release().
2198  * @p: The task on which a reference is being acquired.
2199  */
bpf_task_acquire(struct task_struct * p)2200 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2201 {
2202 	if (refcount_inc_not_zero(&p->rcu_users))
2203 		return p;
2204 	return NULL;
2205 }
2206 
2207 /**
2208  * bpf_task_release - Release the reference acquired on a task.
2209  * @p: The task on which a reference is being released.
2210  */
bpf_task_release(struct task_struct * p)2211 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2212 {
2213 	put_task_struct_rcu_user(p);
2214 }
2215 
2216 #ifdef CONFIG_CGROUPS
2217 /**
2218  * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2219  * this kfunc which is not stored in a map as a kptr, must be released by
2220  * calling bpf_cgroup_release().
2221  * @cgrp: The cgroup on which a reference is being acquired.
2222  */
bpf_cgroup_acquire(struct cgroup * cgrp)2223 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2224 {
2225 	return cgroup_tryget(cgrp) ? cgrp : NULL;
2226 }
2227 
2228 /**
2229  * bpf_cgroup_release - Release the reference acquired on a cgroup.
2230  * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2231  * not be freed until the current grace period has ended, even if its refcount
2232  * drops to 0.
2233  * @cgrp: The cgroup on which a reference is being released.
2234  */
bpf_cgroup_release(struct cgroup * cgrp)2235 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2236 {
2237 	cgroup_put(cgrp);
2238 }
2239 
2240 /**
2241  * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2242  * array. A cgroup returned by this kfunc which is not subsequently stored in a
2243  * map, must be released by calling bpf_cgroup_release().
2244  * @cgrp: The cgroup for which we're performing a lookup.
2245  * @level: The level of ancestor to look up.
2246  */
bpf_cgroup_ancestor(struct cgroup * cgrp,int level)2247 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2248 {
2249 	struct cgroup *ancestor;
2250 
2251 	if (level > cgrp->level || level < 0)
2252 		return NULL;
2253 
2254 	/* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2255 	ancestor = cgrp->ancestors[level];
2256 	if (!cgroup_tryget(ancestor))
2257 		return NULL;
2258 	return ancestor;
2259 }
2260 
2261 /**
2262  * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2263  * kfunc which is not subsequently stored in a map, must be released by calling
2264  * bpf_cgroup_release().
2265  * @cgid: cgroup id.
2266  */
bpf_cgroup_from_id(u64 cgid)2267 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2268 {
2269 	struct cgroup *cgrp;
2270 
2271 	cgrp = cgroup_get_from_id(cgid);
2272 	if (IS_ERR(cgrp))
2273 		return NULL;
2274 	return cgrp;
2275 }
2276 
2277 /**
2278  * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2279  * task's membership of cgroup ancestry.
2280  * @task: the task to be tested
2281  * @ancestor: possible ancestor of @task's cgroup
2282  *
2283  * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2284  * It follows all the same rules as cgroup_is_descendant, and only applies
2285  * to the default hierarchy.
2286  */
bpf_task_under_cgroup(struct task_struct * task,struct cgroup * ancestor)2287 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2288 				       struct cgroup *ancestor)
2289 {
2290 	long ret;
2291 
2292 	rcu_read_lock();
2293 	ret = task_under_cgroup_hierarchy(task, ancestor);
2294 	rcu_read_unlock();
2295 	return ret;
2296 }
2297 #endif /* CONFIG_CGROUPS */
2298 
2299 /**
2300  * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2301  * in the root pid namespace idr. If a task is returned, it must either be
2302  * stored in a map, or released with bpf_task_release().
2303  * @pid: The pid of the task being looked up.
2304  */
bpf_task_from_pid(s32 pid)2305 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2306 {
2307 	struct task_struct *p;
2308 
2309 	rcu_read_lock();
2310 	p = find_task_by_pid_ns(pid, &init_pid_ns);
2311 	if (p)
2312 		p = bpf_task_acquire(p);
2313 	rcu_read_unlock();
2314 
2315 	return p;
2316 }
2317 
2318 /**
2319  * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2320  * @ptr: The dynptr whose data slice to retrieve
2321  * @offset: Offset into the dynptr
2322  * @buffer__opt: User-provided buffer to copy contents into.  May be NULL
2323  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2324  *               length of the requested slice. This must be a constant.
2325  *
2326  * For non-skb and non-xdp type dynptrs, there is no difference between
2327  * bpf_dynptr_slice and bpf_dynptr_data.
2328  *
2329  *  If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2330  *
2331  * If the intention is to write to the data slice, please use
2332  * bpf_dynptr_slice_rdwr.
2333  *
2334  * The user must check that the returned pointer is not null before using it.
2335  *
2336  * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2337  * does not change the underlying packet data pointers, so a call to
2338  * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2339  * the bpf program.
2340  *
2341  * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2342  * data slice (can be either direct pointer to the data or a pointer to the user
2343  * provided buffer, with its contents containing the data, if unable to obtain
2344  * direct pointer)
2345  */
bpf_dynptr_slice(const struct bpf_dynptr_kern * ptr,u32 offset,void * buffer__opt,u32 buffer__szk)2346 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset,
2347 				   void *buffer__opt, u32 buffer__szk)
2348 {
2349 	enum bpf_dynptr_type type;
2350 	u32 len = buffer__szk;
2351 	int err;
2352 
2353 	if (!ptr->data)
2354 		return NULL;
2355 
2356 	err = bpf_dynptr_check_off_len(ptr, offset, len);
2357 	if (err)
2358 		return NULL;
2359 
2360 	type = bpf_dynptr_get_type(ptr);
2361 
2362 	switch (type) {
2363 	case BPF_DYNPTR_TYPE_LOCAL:
2364 	case BPF_DYNPTR_TYPE_RINGBUF:
2365 		return ptr->data + ptr->offset + offset;
2366 	case BPF_DYNPTR_TYPE_SKB:
2367 		if (buffer__opt)
2368 			return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2369 		else
2370 			return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2371 	case BPF_DYNPTR_TYPE_XDP:
2372 	{
2373 		void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2374 		if (!IS_ERR_OR_NULL(xdp_ptr))
2375 			return xdp_ptr;
2376 
2377 		if (!buffer__opt)
2378 			return NULL;
2379 		bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2380 		return buffer__opt;
2381 	}
2382 	default:
2383 		WARN_ONCE(true, "unknown dynptr type %d\n", type);
2384 		return NULL;
2385 	}
2386 }
2387 
2388 /**
2389  * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2390  * @ptr: The dynptr whose data slice to retrieve
2391  * @offset: Offset into the dynptr
2392  * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2393  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2394  *               length of the requested slice. This must be a constant.
2395  *
2396  * For non-skb and non-xdp type dynptrs, there is no difference between
2397  * bpf_dynptr_slice and bpf_dynptr_data.
2398  *
2399  * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2400  *
2401  * The returned pointer is writable and may point to either directly the dynptr
2402  * data at the requested offset or to the buffer if unable to obtain a direct
2403  * data pointer to (example: the requested slice is to the paged area of an skb
2404  * packet). In the case where the returned pointer is to the buffer, the user
2405  * is responsible for persisting writes through calling bpf_dynptr_write(). This
2406  * usually looks something like this pattern:
2407  *
2408  * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2409  * if (!eth)
2410  *	return TC_ACT_SHOT;
2411  *
2412  * // mutate eth header //
2413  *
2414  * if (eth == buffer)
2415  *	bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2416  *
2417  * Please note that, as in the example above, the user must check that the
2418  * returned pointer is not null before using it.
2419  *
2420  * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2421  * does not change the underlying packet data pointers, so a call to
2422  * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2423  * the bpf program.
2424  *
2425  * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2426  * data slice (can be either direct pointer to the data or a pointer to the user
2427  * provided buffer, with its contents containing the data, if unable to obtain
2428  * direct pointer)
2429  */
bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern * ptr,u32 offset,void * buffer__opt,u32 buffer__szk)2430 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset,
2431 					void *buffer__opt, u32 buffer__szk)
2432 {
2433 	if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2434 		return NULL;
2435 
2436 	/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2437 	 *
2438 	 * For skb-type dynptrs, it is safe to write into the returned pointer
2439 	 * if the bpf program allows skb data writes. There are two possiblities
2440 	 * that may occur when calling bpf_dynptr_slice_rdwr:
2441 	 *
2442 	 * 1) The requested slice is in the head of the skb. In this case, the
2443 	 * returned pointer is directly to skb data, and if the skb is cloned, the
2444 	 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2445 	 * The pointer can be directly written into.
2446 	 *
2447 	 * 2) Some portion of the requested slice is in the paged buffer area.
2448 	 * In this case, the requested data will be copied out into the buffer
2449 	 * and the returned pointer will be a pointer to the buffer. The skb
2450 	 * will not be pulled. To persist the write, the user will need to call
2451 	 * bpf_dynptr_write(), which will pull the skb and commit the write.
2452 	 *
2453 	 * Similarly for xdp programs, if the requested slice is not across xdp
2454 	 * fragments, then a direct pointer will be returned, otherwise the data
2455 	 * will be copied out into the buffer and the user will need to call
2456 	 * bpf_dynptr_write() to commit changes.
2457 	 */
2458 	return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk);
2459 }
2460 
bpf_dynptr_adjust(struct bpf_dynptr_kern * ptr,u32 start,u32 end)2461 __bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end)
2462 {
2463 	u32 size;
2464 
2465 	if (!ptr->data || start > end)
2466 		return -EINVAL;
2467 
2468 	size = __bpf_dynptr_size(ptr);
2469 
2470 	if (start > size || end > size)
2471 		return -ERANGE;
2472 
2473 	ptr->offset += start;
2474 	bpf_dynptr_set_size(ptr, end - start);
2475 
2476 	return 0;
2477 }
2478 
bpf_dynptr_is_null(struct bpf_dynptr_kern * ptr)2479 __bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr)
2480 {
2481 	return !ptr->data;
2482 }
2483 
bpf_dynptr_is_rdonly(struct bpf_dynptr_kern * ptr)2484 __bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
2485 {
2486 	if (!ptr->data)
2487 		return false;
2488 
2489 	return __bpf_dynptr_is_rdonly(ptr);
2490 }
2491 
bpf_dynptr_size(const struct bpf_dynptr_kern * ptr)2492 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
2493 {
2494 	if (!ptr->data)
2495 		return -EINVAL;
2496 
2497 	return __bpf_dynptr_size(ptr);
2498 }
2499 
bpf_dynptr_clone(struct bpf_dynptr_kern * ptr,struct bpf_dynptr_kern * clone__uninit)2500 __bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr,
2501 				 struct bpf_dynptr_kern *clone__uninit)
2502 {
2503 	if (!ptr->data) {
2504 		bpf_dynptr_set_null(clone__uninit);
2505 		return -EINVAL;
2506 	}
2507 
2508 	*clone__uninit = *ptr;
2509 
2510 	return 0;
2511 }
2512 
bpf_cast_to_kern_ctx(void * obj)2513 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2514 {
2515 	return obj;
2516 }
2517 
bpf_rdonly_cast(void * obj__ign,u32 btf_id__k)2518 __bpf_kfunc void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k)
2519 {
2520 	return obj__ign;
2521 }
2522 
bpf_rcu_read_lock(void)2523 __bpf_kfunc void bpf_rcu_read_lock(void)
2524 {
2525 	rcu_read_lock();
2526 }
2527 
bpf_rcu_read_unlock(void)2528 __bpf_kfunc void bpf_rcu_read_unlock(void)
2529 {
2530 	rcu_read_unlock();
2531 }
2532 
2533 __diag_pop();
2534 
2535 BTF_SET8_START(generic_btf_ids)
2536 #ifdef CONFIG_KEXEC_CORE
2537 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
2538 #endif
2539 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
2540 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
2541 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL)
2542 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
2543 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
2544 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
2545 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
2546 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2547 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
2548 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
2549 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
2550 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
2551 
2552 #ifdef CONFIG_CGROUPS
2553 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2554 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
2555 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2556 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
2557 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
2558 #endif
2559 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
2560 BTF_SET8_END(generic_btf_ids)
2561 
2562 static const struct btf_kfunc_id_set generic_kfunc_set = {
2563 	.owner = THIS_MODULE,
2564 	.set   = &generic_btf_ids,
2565 };
2566 
2567 
2568 BTF_ID_LIST(generic_dtor_ids)
2569 BTF_ID(struct, task_struct)
2570 BTF_ID(func, bpf_task_release)
2571 #ifdef CONFIG_CGROUPS
2572 BTF_ID(struct, cgroup)
2573 BTF_ID(func, bpf_cgroup_release)
2574 #endif
2575 
2576 BTF_SET8_START(common_btf_ids)
2577 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
2578 BTF_ID_FLAGS(func, bpf_rdonly_cast)
2579 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
2580 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
2581 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
2582 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
2583 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
2584 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
2585 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
2586 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
2587 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
2588 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
2589 BTF_ID_FLAGS(func, bpf_dynptr_size)
2590 BTF_ID_FLAGS(func, bpf_dynptr_clone)
2591 BTF_SET8_END(common_btf_ids)
2592 
2593 static const struct btf_kfunc_id_set common_kfunc_set = {
2594 	.owner = THIS_MODULE,
2595 	.set   = &common_btf_ids,
2596 };
2597 
kfunc_init(void)2598 static int __init kfunc_init(void)
2599 {
2600 	int ret;
2601 	const struct btf_id_dtor_kfunc generic_dtors[] = {
2602 		{
2603 			.btf_id       = generic_dtor_ids[0],
2604 			.kfunc_btf_id = generic_dtor_ids[1]
2605 		},
2606 #ifdef CONFIG_CGROUPS
2607 		{
2608 			.btf_id       = generic_dtor_ids[2],
2609 			.kfunc_btf_id = generic_dtor_ids[3]
2610 		},
2611 #endif
2612 	};
2613 
2614 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
2615 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
2616 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
2617 	ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
2618 						  ARRAY_SIZE(generic_dtors),
2619 						  THIS_MODULE);
2620 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
2621 }
2622 
2623 late_initcall(kfunc_init);
2624