1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <linux/un.h>
85 #include <net/xdp_sock_drv.h>
86
87 static const struct bpf_func_proto *
88 bpf_sk_base_func_proto(enum bpf_func_id func_id);
89
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)90 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
91 {
92 if (in_compat_syscall()) {
93 struct compat_sock_fprog f32;
94
95 if (len != sizeof(f32))
96 return -EINVAL;
97 if (copy_from_sockptr(&f32, src, sizeof(f32)))
98 return -EFAULT;
99 memset(dst, 0, sizeof(*dst));
100 dst->len = f32.len;
101 dst->filter = compat_ptr(f32.filter);
102 } else {
103 if (len != sizeof(*dst))
104 return -EINVAL;
105 if (copy_from_sockptr(dst, src, sizeof(*dst)))
106 return -EFAULT;
107 }
108
109 return 0;
110 }
111 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
112
113 /**
114 * sk_filter_trim_cap - run a packet through a socket filter
115 * @sk: sock associated with &sk_buff
116 * @skb: buffer to filter
117 * @cap: limit on how short the eBPF program may trim the packet
118 *
119 * Run the eBPF program and then cut skb->data to correct size returned by
120 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
121 * than pkt_len we keep whole skb->data. This is the socket level
122 * wrapper to bpf_prog_run. It returns 0 if the packet should
123 * be accepted or -EPERM if the packet should be tossed.
124 *
125 */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)126 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
127 {
128 int err;
129 struct sk_filter *filter;
130
131 /*
132 * If the skb was allocated from pfmemalloc reserves, only
133 * allow SOCK_MEMALLOC sockets to use it as this socket is
134 * helping free memory
135 */
136 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
137 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
138 return -ENOMEM;
139 }
140 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
141 if (err)
142 return err;
143
144 err = security_sock_rcv_skb(sk, skb);
145 if (err)
146 return err;
147
148 rcu_read_lock();
149 filter = rcu_dereference(sk->sk_filter);
150 if (filter) {
151 struct sock *save_sk = skb->sk;
152 unsigned int pkt_len;
153
154 skb->sk = sk;
155 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
156 skb->sk = save_sk;
157 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
158 }
159 rcu_read_unlock();
160
161 return err;
162 }
163 EXPORT_SYMBOL(sk_filter_trim_cap);
164
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)165 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
166 {
167 return skb_get_poff(skb);
168 }
169
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)170 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
171 {
172 struct nlattr *nla;
173
174 if (skb_is_nonlinear(skb))
175 return 0;
176
177 if (skb->len < sizeof(struct nlattr))
178 return 0;
179
180 if (a > skb->len - sizeof(struct nlattr))
181 return 0;
182
183 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
184 if (nla)
185 return (void *) nla - (void *) skb->data;
186
187 return 0;
188 }
189
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)190 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
191 {
192 struct nlattr *nla;
193
194 if (skb_is_nonlinear(skb))
195 return 0;
196
197 if (skb->len < sizeof(struct nlattr))
198 return 0;
199
200 if (a > skb->len - sizeof(struct nlattr))
201 return 0;
202
203 nla = (struct nlattr *) &skb->data[a];
204 if (nla->nla_len > skb->len - a)
205 return 0;
206
207 nla = nla_find_nested(nla, x);
208 if (nla)
209 return (void *) nla - (void *) skb->data;
210
211 return 0;
212 }
213
bpf_skb_load_helper_convert_offset(const struct sk_buff * skb,int offset)214 static int bpf_skb_load_helper_convert_offset(const struct sk_buff *skb, int offset)
215 {
216 if (likely(offset >= 0))
217 return offset;
218
219 if (offset >= SKF_NET_OFF)
220 return offset - SKF_NET_OFF + skb_network_offset(skb);
221
222 if (offset >= SKF_LL_OFF && skb_mac_header_was_set(skb))
223 return offset - SKF_LL_OFF + skb_mac_offset(skb);
224
225 return INT_MIN;
226 }
227
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)228 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
229 data, int, headlen, int, offset)
230 {
231 u8 tmp;
232 const int len = sizeof(tmp);
233
234 offset = bpf_skb_load_helper_convert_offset(skb, offset);
235 if (offset == INT_MIN)
236 return -EFAULT;
237
238 if (headlen - offset >= len)
239 return *(u8 *)(data + offset);
240 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
241 return tmp;
242 else
243 return -EFAULT;
244 }
245
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)246 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
247 int, offset)
248 {
249 return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
250 offset);
251 }
252
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)253 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
254 data, int, headlen, int, offset)
255 {
256 __be16 tmp;
257 const int len = sizeof(tmp);
258
259 offset = bpf_skb_load_helper_convert_offset(skb, offset);
260 if (offset == INT_MIN)
261 return -EFAULT;
262
263 if (headlen - offset >= len)
264 return get_unaligned_be16(data + offset);
265 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
266 return be16_to_cpu(tmp);
267 else
268 return -EFAULT;
269 }
270
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)271 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
272 int, offset)
273 {
274 return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
275 offset);
276 }
277
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)278 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
279 data, int, headlen, int, offset)
280 {
281 __be32 tmp;
282 const int len = sizeof(tmp);
283
284 offset = bpf_skb_load_helper_convert_offset(skb, offset);
285 if (offset == INT_MIN)
286 return -EFAULT;
287
288 if (headlen - offset >= len)
289 return get_unaligned_be32(data + offset);
290 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
291 return be32_to_cpu(tmp);
292 else
293 return -EFAULT;
294 }
295
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)296 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
297 int, offset)
298 {
299 return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
300 offset);
301 }
302
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)303 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
304 struct bpf_insn *insn_buf)
305 {
306 struct bpf_insn *insn = insn_buf;
307
308 switch (skb_field) {
309 case SKF_AD_MARK:
310 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
311
312 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
313 offsetof(struct sk_buff, mark));
314 break;
315
316 case SKF_AD_PKTTYPE:
317 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
318 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
319 #ifdef __BIG_ENDIAN_BITFIELD
320 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
321 #endif
322 break;
323
324 case SKF_AD_QUEUE:
325 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
326
327 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
328 offsetof(struct sk_buff, queue_mapping));
329 break;
330
331 case SKF_AD_VLAN_TAG:
332 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
333
334 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
335 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
336 offsetof(struct sk_buff, vlan_tci));
337 break;
338 case SKF_AD_VLAN_TAG_PRESENT:
339 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
340 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
341 offsetof(struct sk_buff, vlan_all));
342 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
343 *insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
344 break;
345 }
346
347 return insn - insn_buf;
348 }
349
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)350 static bool convert_bpf_extensions(struct sock_filter *fp,
351 struct bpf_insn **insnp)
352 {
353 struct bpf_insn *insn = *insnp;
354 u32 cnt;
355
356 switch (fp->k) {
357 case SKF_AD_OFF + SKF_AD_PROTOCOL:
358 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
359
360 /* A = *(u16 *) (CTX + offsetof(protocol)) */
361 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
362 offsetof(struct sk_buff, protocol));
363 /* A = ntohs(A) [emitting a nop or swap16] */
364 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
365 break;
366
367 case SKF_AD_OFF + SKF_AD_PKTTYPE:
368 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
369 insn += cnt - 1;
370 break;
371
372 case SKF_AD_OFF + SKF_AD_IFINDEX:
373 case SKF_AD_OFF + SKF_AD_HATYPE:
374 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
375 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
376
377 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
378 BPF_REG_TMP, BPF_REG_CTX,
379 offsetof(struct sk_buff, dev));
380 /* if (tmp != 0) goto pc + 1 */
381 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
382 *insn++ = BPF_EXIT_INSN();
383 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
384 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
385 offsetof(struct net_device, ifindex));
386 else
387 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
388 offsetof(struct net_device, type));
389 break;
390
391 case SKF_AD_OFF + SKF_AD_MARK:
392 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
393 insn += cnt - 1;
394 break;
395
396 case SKF_AD_OFF + SKF_AD_RXHASH:
397 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
398
399 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
400 offsetof(struct sk_buff, hash));
401 break;
402
403 case SKF_AD_OFF + SKF_AD_QUEUE:
404 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
405 insn += cnt - 1;
406 break;
407
408 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
409 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
410 BPF_REG_A, BPF_REG_CTX, insn);
411 insn += cnt - 1;
412 break;
413
414 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
415 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
416 BPF_REG_A, BPF_REG_CTX, insn);
417 insn += cnt - 1;
418 break;
419
420 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
421 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
422
423 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
424 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
425 offsetof(struct sk_buff, vlan_proto));
426 /* A = ntohs(A) [emitting a nop or swap16] */
427 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
428 break;
429
430 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
431 case SKF_AD_OFF + SKF_AD_NLATTR:
432 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
433 case SKF_AD_OFF + SKF_AD_CPU:
434 case SKF_AD_OFF + SKF_AD_RANDOM:
435 /* arg1 = CTX */
436 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
437 /* arg2 = A */
438 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
439 /* arg3 = X */
440 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
441 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
442 switch (fp->k) {
443 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
444 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
445 break;
446 case SKF_AD_OFF + SKF_AD_NLATTR:
447 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
448 break;
449 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
450 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
451 break;
452 case SKF_AD_OFF + SKF_AD_CPU:
453 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
454 break;
455 case SKF_AD_OFF + SKF_AD_RANDOM:
456 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
457 bpf_user_rnd_init_once();
458 break;
459 }
460 break;
461
462 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
463 /* A ^= X */
464 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
465 break;
466
467 default:
468 /* This is just a dummy call to avoid letting the compiler
469 * evict __bpf_call_base() as an optimization. Placed here
470 * where no-one bothers.
471 */
472 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
473 return false;
474 }
475
476 *insnp = insn;
477 return true;
478 }
479
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)480 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
481 {
482 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
483 int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
484 bool endian = BPF_SIZE(fp->code) == BPF_H ||
485 BPF_SIZE(fp->code) == BPF_W;
486 bool indirect = BPF_MODE(fp->code) == BPF_IND;
487 const int ip_align = NET_IP_ALIGN;
488 struct bpf_insn *insn = *insnp;
489 int offset = fp->k;
490
491 if (!indirect &&
492 ((unaligned_ok && offset >= 0) ||
493 (!unaligned_ok && offset >= 0 &&
494 offset + ip_align >= 0 &&
495 offset + ip_align % size == 0))) {
496 bool ldx_off_ok = offset <= S16_MAX;
497
498 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
499 if (offset)
500 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
501 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
502 size, 2 + endian + (!ldx_off_ok * 2));
503 if (ldx_off_ok) {
504 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
505 BPF_REG_D, offset);
506 } else {
507 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
508 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
509 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
510 BPF_REG_TMP, 0);
511 }
512 if (endian)
513 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
514 *insn++ = BPF_JMP_A(8);
515 }
516
517 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
518 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
519 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
520 if (!indirect) {
521 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
522 } else {
523 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
524 if (fp->k)
525 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
526 }
527
528 switch (BPF_SIZE(fp->code)) {
529 case BPF_B:
530 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
531 break;
532 case BPF_H:
533 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
534 break;
535 case BPF_W:
536 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
537 break;
538 default:
539 return false;
540 }
541
542 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
543 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
544 *insn = BPF_EXIT_INSN();
545
546 *insnp = insn;
547 return true;
548 }
549
550 /**
551 * bpf_convert_filter - convert filter program
552 * @prog: the user passed filter program
553 * @len: the length of the user passed filter program
554 * @new_prog: allocated 'struct bpf_prog' or NULL
555 * @new_len: pointer to store length of converted program
556 * @seen_ld_abs: bool whether we've seen ld_abs/ind
557 *
558 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
559 * style extended BPF (eBPF).
560 * Conversion workflow:
561 *
562 * 1) First pass for calculating the new program length:
563 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
564 *
565 * 2) 2nd pass to remap in two passes: 1st pass finds new
566 * jump offsets, 2nd pass remapping:
567 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
568 */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)569 static int bpf_convert_filter(struct sock_filter *prog, int len,
570 struct bpf_prog *new_prog, int *new_len,
571 bool *seen_ld_abs)
572 {
573 int new_flen = 0, pass = 0, target, i, stack_off;
574 struct bpf_insn *new_insn, *first_insn = NULL;
575 struct sock_filter *fp;
576 int *addrs = NULL;
577 u8 bpf_src;
578
579 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
580 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
581
582 if (len <= 0 || len > BPF_MAXINSNS)
583 return -EINVAL;
584
585 if (new_prog) {
586 first_insn = new_prog->insnsi;
587 addrs = kcalloc(len, sizeof(*addrs),
588 GFP_KERNEL | __GFP_NOWARN);
589 if (!addrs)
590 return -ENOMEM;
591 }
592
593 do_pass:
594 new_insn = first_insn;
595 fp = prog;
596
597 /* Classic BPF related prologue emission. */
598 if (new_prog) {
599 /* Classic BPF expects A and X to be reset first. These need
600 * to be guaranteed to be the first two instructions.
601 */
602 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
603 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
604
605 /* All programs must keep CTX in callee saved BPF_REG_CTX.
606 * In eBPF case it's done by the compiler, here we need to
607 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
608 */
609 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
610 if (*seen_ld_abs) {
611 /* For packet access in classic BPF, cache skb->data
612 * in callee-saved BPF R8 and skb->len - skb->data_len
613 * (headlen) in BPF R9. Since classic BPF is read-only
614 * on CTX, we only need to cache it once.
615 */
616 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
617 BPF_REG_D, BPF_REG_CTX,
618 offsetof(struct sk_buff, data));
619 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
620 offsetof(struct sk_buff, len));
621 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
622 offsetof(struct sk_buff, data_len));
623 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
624 }
625 } else {
626 new_insn += 3;
627 }
628
629 for (i = 0; i < len; fp++, i++) {
630 struct bpf_insn tmp_insns[32] = { };
631 struct bpf_insn *insn = tmp_insns;
632
633 if (addrs)
634 addrs[i] = new_insn - first_insn;
635
636 switch (fp->code) {
637 /* All arithmetic insns and skb loads map as-is. */
638 case BPF_ALU | BPF_ADD | BPF_X:
639 case BPF_ALU | BPF_ADD | BPF_K:
640 case BPF_ALU | BPF_SUB | BPF_X:
641 case BPF_ALU | BPF_SUB | BPF_K:
642 case BPF_ALU | BPF_AND | BPF_X:
643 case BPF_ALU | BPF_AND | BPF_K:
644 case BPF_ALU | BPF_OR | BPF_X:
645 case BPF_ALU | BPF_OR | BPF_K:
646 case BPF_ALU | BPF_LSH | BPF_X:
647 case BPF_ALU | BPF_LSH | BPF_K:
648 case BPF_ALU | BPF_RSH | BPF_X:
649 case BPF_ALU | BPF_RSH | BPF_K:
650 case BPF_ALU | BPF_XOR | BPF_X:
651 case BPF_ALU | BPF_XOR | BPF_K:
652 case BPF_ALU | BPF_MUL | BPF_X:
653 case BPF_ALU | BPF_MUL | BPF_K:
654 case BPF_ALU | BPF_DIV | BPF_X:
655 case BPF_ALU | BPF_DIV | BPF_K:
656 case BPF_ALU | BPF_MOD | BPF_X:
657 case BPF_ALU | BPF_MOD | BPF_K:
658 case BPF_ALU | BPF_NEG:
659 case BPF_LD | BPF_ABS | BPF_W:
660 case BPF_LD | BPF_ABS | BPF_H:
661 case BPF_LD | BPF_ABS | BPF_B:
662 case BPF_LD | BPF_IND | BPF_W:
663 case BPF_LD | BPF_IND | BPF_H:
664 case BPF_LD | BPF_IND | BPF_B:
665 /* Check for overloaded BPF extension and
666 * directly convert it if found, otherwise
667 * just move on with mapping.
668 */
669 if (BPF_CLASS(fp->code) == BPF_LD &&
670 BPF_MODE(fp->code) == BPF_ABS &&
671 convert_bpf_extensions(fp, &insn))
672 break;
673 if (BPF_CLASS(fp->code) == BPF_LD &&
674 convert_bpf_ld_abs(fp, &insn)) {
675 *seen_ld_abs = true;
676 break;
677 }
678
679 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
680 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
681 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
682 /* Error with exception code on div/mod by 0.
683 * For cBPF programs, this was always return 0.
684 */
685 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
686 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
687 *insn++ = BPF_EXIT_INSN();
688 }
689
690 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
691 break;
692
693 /* Jump transformation cannot use BPF block macros
694 * everywhere as offset calculation and target updates
695 * require a bit more work than the rest, i.e. jump
696 * opcodes map as-is, but offsets need adjustment.
697 */
698
699 #define BPF_EMIT_JMP \
700 do { \
701 const s32 off_min = S16_MIN, off_max = S16_MAX; \
702 s32 off; \
703 \
704 if (target >= len || target < 0) \
705 goto err; \
706 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
707 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
708 off -= insn - tmp_insns; \
709 /* Reject anything not fitting into insn->off. */ \
710 if (off < off_min || off > off_max) \
711 goto err; \
712 insn->off = off; \
713 } while (0)
714
715 case BPF_JMP | BPF_JA:
716 target = i + fp->k + 1;
717 insn->code = fp->code;
718 BPF_EMIT_JMP;
719 break;
720
721 case BPF_JMP | BPF_JEQ | BPF_K:
722 case BPF_JMP | BPF_JEQ | BPF_X:
723 case BPF_JMP | BPF_JSET | BPF_K:
724 case BPF_JMP | BPF_JSET | BPF_X:
725 case BPF_JMP | BPF_JGT | BPF_K:
726 case BPF_JMP | BPF_JGT | BPF_X:
727 case BPF_JMP | BPF_JGE | BPF_K:
728 case BPF_JMP | BPF_JGE | BPF_X:
729 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
730 /* BPF immediates are signed, zero extend
731 * immediate into tmp register and use it
732 * in compare insn.
733 */
734 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
735
736 insn->dst_reg = BPF_REG_A;
737 insn->src_reg = BPF_REG_TMP;
738 bpf_src = BPF_X;
739 } else {
740 insn->dst_reg = BPF_REG_A;
741 insn->imm = fp->k;
742 bpf_src = BPF_SRC(fp->code);
743 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
744 }
745
746 /* Common case where 'jump_false' is next insn. */
747 if (fp->jf == 0) {
748 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
749 target = i + fp->jt + 1;
750 BPF_EMIT_JMP;
751 break;
752 }
753
754 /* Convert some jumps when 'jump_true' is next insn. */
755 if (fp->jt == 0) {
756 switch (BPF_OP(fp->code)) {
757 case BPF_JEQ:
758 insn->code = BPF_JMP | BPF_JNE | bpf_src;
759 break;
760 case BPF_JGT:
761 insn->code = BPF_JMP | BPF_JLE | bpf_src;
762 break;
763 case BPF_JGE:
764 insn->code = BPF_JMP | BPF_JLT | bpf_src;
765 break;
766 default:
767 goto jmp_rest;
768 }
769
770 target = i + fp->jf + 1;
771 BPF_EMIT_JMP;
772 break;
773 }
774 jmp_rest:
775 /* Other jumps are mapped into two insns: Jxx and JA. */
776 target = i + fp->jt + 1;
777 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
778 BPF_EMIT_JMP;
779 insn++;
780
781 insn->code = BPF_JMP | BPF_JA;
782 target = i + fp->jf + 1;
783 BPF_EMIT_JMP;
784 break;
785
786 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
787 case BPF_LDX | BPF_MSH | BPF_B: {
788 struct sock_filter tmp = {
789 .code = BPF_LD | BPF_ABS | BPF_B,
790 .k = fp->k,
791 };
792
793 *seen_ld_abs = true;
794
795 /* X = A */
796 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
797 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
798 convert_bpf_ld_abs(&tmp, &insn);
799 insn++;
800 /* A &= 0xf */
801 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
802 /* A <<= 2 */
803 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
804 /* tmp = X */
805 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
806 /* X = A */
807 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
808 /* A = tmp */
809 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
810 break;
811 }
812 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
813 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
814 */
815 case BPF_RET | BPF_A:
816 case BPF_RET | BPF_K:
817 if (BPF_RVAL(fp->code) == BPF_K)
818 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
819 0, fp->k);
820 *insn = BPF_EXIT_INSN();
821 break;
822
823 /* Store to stack. */
824 case BPF_ST:
825 case BPF_STX:
826 stack_off = fp->k * 4 + 4;
827 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
828 BPF_ST ? BPF_REG_A : BPF_REG_X,
829 -stack_off);
830 /* check_load_and_stores() verifies that classic BPF can
831 * load from stack only after write, so tracking
832 * stack_depth for ST|STX insns is enough
833 */
834 if (new_prog && new_prog->aux->stack_depth < stack_off)
835 new_prog->aux->stack_depth = stack_off;
836 break;
837
838 /* Load from stack. */
839 case BPF_LD | BPF_MEM:
840 case BPF_LDX | BPF_MEM:
841 stack_off = fp->k * 4 + 4;
842 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
843 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
844 -stack_off);
845 break;
846
847 /* A = K or X = K */
848 case BPF_LD | BPF_IMM:
849 case BPF_LDX | BPF_IMM:
850 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
851 BPF_REG_A : BPF_REG_X, fp->k);
852 break;
853
854 /* X = A */
855 case BPF_MISC | BPF_TAX:
856 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
857 break;
858
859 /* A = X */
860 case BPF_MISC | BPF_TXA:
861 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
862 break;
863
864 /* A = skb->len or X = skb->len */
865 case BPF_LD | BPF_W | BPF_LEN:
866 case BPF_LDX | BPF_W | BPF_LEN:
867 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
868 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
869 offsetof(struct sk_buff, len));
870 break;
871
872 /* Access seccomp_data fields. */
873 case BPF_LDX | BPF_ABS | BPF_W:
874 /* A = *(u32 *) (ctx + K) */
875 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
876 break;
877
878 /* Unknown instruction. */
879 default:
880 goto err;
881 }
882
883 insn++;
884 if (new_prog)
885 memcpy(new_insn, tmp_insns,
886 sizeof(*insn) * (insn - tmp_insns));
887 new_insn += insn - tmp_insns;
888 }
889
890 if (!new_prog) {
891 /* Only calculating new length. */
892 *new_len = new_insn - first_insn;
893 if (*seen_ld_abs)
894 *new_len += 4; /* Prologue bits. */
895 return 0;
896 }
897
898 pass++;
899 if (new_flen != new_insn - first_insn) {
900 new_flen = new_insn - first_insn;
901 if (pass > 2)
902 goto err;
903 goto do_pass;
904 }
905
906 kfree(addrs);
907 BUG_ON(*new_len != new_flen);
908 return 0;
909 err:
910 kfree(addrs);
911 return -EINVAL;
912 }
913
914 /* Security:
915 *
916 * As we dont want to clear mem[] array for each packet going through
917 * __bpf_prog_run(), we check that filter loaded by user never try to read
918 * a cell if not previously written, and we check all branches to be sure
919 * a malicious user doesn't try to abuse us.
920 */
check_load_and_stores(const struct sock_filter * filter,int flen)921 static int check_load_and_stores(const struct sock_filter *filter, int flen)
922 {
923 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
924 int pc, ret = 0;
925
926 BUILD_BUG_ON(BPF_MEMWORDS > 16);
927
928 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
929 if (!masks)
930 return -ENOMEM;
931
932 memset(masks, 0xff, flen * sizeof(*masks));
933
934 for (pc = 0; pc < flen; pc++) {
935 memvalid &= masks[pc];
936
937 switch (filter[pc].code) {
938 case BPF_ST:
939 case BPF_STX:
940 memvalid |= (1 << filter[pc].k);
941 break;
942 case BPF_LD | BPF_MEM:
943 case BPF_LDX | BPF_MEM:
944 if (!(memvalid & (1 << filter[pc].k))) {
945 ret = -EINVAL;
946 goto error;
947 }
948 break;
949 case BPF_JMP | BPF_JA:
950 /* A jump must set masks on target */
951 masks[pc + 1 + filter[pc].k] &= memvalid;
952 memvalid = ~0;
953 break;
954 case BPF_JMP | BPF_JEQ | BPF_K:
955 case BPF_JMP | BPF_JEQ | BPF_X:
956 case BPF_JMP | BPF_JGE | BPF_K:
957 case BPF_JMP | BPF_JGE | BPF_X:
958 case BPF_JMP | BPF_JGT | BPF_K:
959 case BPF_JMP | BPF_JGT | BPF_X:
960 case BPF_JMP | BPF_JSET | BPF_K:
961 case BPF_JMP | BPF_JSET | BPF_X:
962 /* A jump must set masks on targets */
963 masks[pc + 1 + filter[pc].jt] &= memvalid;
964 masks[pc + 1 + filter[pc].jf] &= memvalid;
965 memvalid = ~0;
966 break;
967 }
968 }
969 error:
970 kfree(masks);
971 return ret;
972 }
973
chk_code_allowed(u16 code_to_probe)974 static bool chk_code_allowed(u16 code_to_probe)
975 {
976 static const bool codes[] = {
977 /* 32 bit ALU operations */
978 [BPF_ALU | BPF_ADD | BPF_K] = true,
979 [BPF_ALU | BPF_ADD | BPF_X] = true,
980 [BPF_ALU | BPF_SUB | BPF_K] = true,
981 [BPF_ALU | BPF_SUB | BPF_X] = true,
982 [BPF_ALU | BPF_MUL | BPF_K] = true,
983 [BPF_ALU | BPF_MUL | BPF_X] = true,
984 [BPF_ALU | BPF_DIV | BPF_K] = true,
985 [BPF_ALU | BPF_DIV | BPF_X] = true,
986 [BPF_ALU | BPF_MOD | BPF_K] = true,
987 [BPF_ALU | BPF_MOD | BPF_X] = true,
988 [BPF_ALU | BPF_AND | BPF_K] = true,
989 [BPF_ALU | BPF_AND | BPF_X] = true,
990 [BPF_ALU | BPF_OR | BPF_K] = true,
991 [BPF_ALU | BPF_OR | BPF_X] = true,
992 [BPF_ALU | BPF_XOR | BPF_K] = true,
993 [BPF_ALU | BPF_XOR | BPF_X] = true,
994 [BPF_ALU | BPF_LSH | BPF_K] = true,
995 [BPF_ALU | BPF_LSH | BPF_X] = true,
996 [BPF_ALU | BPF_RSH | BPF_K] = true,
997 [BPF_ALU | BPF_RSH | BPF_X] = true,
998 [BPF_ALU | BPF_NEG] = true,
999 /* Load instructions */
1000 [BPF_LD | BPF_W | BPF_ABS] = true,
1001 [BPF_LD | BPF_H | BPF_ABS] = true,
1002 [BPF_LD | BPF_B | BPF_ABS] = true,
1003 [BPF_LD | BPF_W | BPF_LEN] = true,
1004 [BPF_LD | BPF_W | BPF_IND] = true,
1005 [BPF_LD | BPF_H | BPF_IND] = true,
1006 [BPF_LD | BPF_B | BPF_IND] = true,
1007 [BPF_LD | BPF_IMM] = true,
1008 [BPF_LD | BPF_MEM] = true,
1009 [BPF_LDX | BPF_W | BPF_LEN] = true,
1010 [BPF_LDX | BPF_B | BPF_MSH] = true,
1011 [BPF_LDX | BPF_IMM] = true,
1012 [BPF_LDX | BPF_MEM] = true,
1013 /* Store instructions */
1014 [BPF_ST] = true,
1015 [BPF_STX] = true,
1016 /* Misc instructions */
1017 [BPF_MISC | BPF_TAX] = true,
1018 [BPF_MISC | BPF_TXA] = true,
1019 /* Return instructions */
1020 [BPF_RET | BPF_K] = true,
1021 [BPF_RET | BPF_A] = true,
1022 /* Jump instructions */
1023 [BPF_JMP | BPF_JA] = true,
1024 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1025 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1026 [BPF_JMP | BPF_JGE | BPF_K] = true,
1027 [BPF_JMP | BPF_JGE | BPF_X] = true,
1028 [BPF_JMP | BPF_JGT | BPF_K] = true,
1029 [BPF_JMP | BPF_JGT | BPF_X] = true,
1030 [BPF_JMP | BPF_JSET | BPF_K] = true,
1031 [BPF_JMP | BPF_JSET | BPF_X] = true,
1032 };
1033
1034 if (code_to_probe >= ARRAY_SIZE(codes))
1035 return false;
1036
1037 return codes[code_to_probe];
1038 }
1039
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1040 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1041 unsigned int flen)
1042 {
1043 if (filter == NULL)
1044 return false;
1045 if (flen == 0 || flen > BPF_MAXINSNS)
1046 return false;
1047
1048 return true;
1049 }
1050
1051 /**
1052 * bpf_check_classic - verify socket filter code
1053 * @filter: filter to verify
1054 * @flen: length of filter
1055 *
1056 * Check the user's filter code. If we let some ugly
1057 * filter code slip through kaboom! The filter must contain
1058 * no references or jumps that are out of range, no illegal
1059 * instructions, and must end with a RET instruction.
1060 *
1061 * All jumps are forward as they are not signed.
1062 *
1063 * Returns 0 if the rule set is legal or -EINVAL if not.
1064 */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1065 static int bpf_check_classic(const struct sock_filter *filter,
1066 unsigned int flen)
1067 {
1068 bool anc_found;
1069 int pc;
1070
1071 /* Check the filter code now */
1072 for (pc = 0; pc < flen; pc++) {
1073 const struct sock_filter *ftest = &filter[pc];
1074
1075 /* May we actually operate on this code? */
1076 if (!chk_code_allowed(ftest->code))
1077 return -EINVAL;
1078
1079 /* Some instructions need special checks */
1080 switch (ftest->code) {
1081 case BPF_ALU | BPF_DIV | BPF_K:
1082 case BPF_ALU | BPF_MOD | BPF_K:
1083 /* Check for division by zero */
1084 if (ftest->k == 0)
1085 return -EINVAL;
1086 break;
1087 case BPF_ALU | BPF_LSH | BPF_K:
1088 case BPF_ALU | BPF_RSH | BPF_K:
1089 if (ftest->k >= 32)
1090 return -EINVAL;
1091 break;
1092 case BPF_LD | BPF_MEM:
1093 case BPF_LDX | BPF_MEM:
1094 case BPF_ST:
1095 case BPF_STX:
1096 /* Check for invalid memory addresses */
1097 if (ftest->k >= BPF_MEMWORDS)
1098 return -EINVAL;
1099 break;
1100 case BPF_JMP | BPF_JA:
1101 /* Note, the large ftest->k might cause loops.
1102 * Compare this with conditional jumps below,
1103 * where offsets are limited. --ANK (981016)
1104 */
1105 if (ftest->k >= (unsigned int)(flen - pc - 1))
1106 return -EINVAL;
1107 break;
1108 case BPF_JMP | BPF_JEQ | BPF_K:
1109 case BPF_JMP | BPF_JEQ | BPF_X:
1110 case BPF_JMP | BPF_JGE | BPF_K:
1111 case BPF_JMP | BPF_JGE | BPF_X:
1112 case BPF_JMP | BPF_JGT | BPF_K:
1113 case BPF_JMP | BPF_JGT | BPF_X:
1114 case BPF_JMP | BPF_JSET | BPF_K:
1115 case BPF_JMP | BPF_JSET | BPF_X:
1116 /* Both conditionals must be safe */
1117 if (pc + ftest->jt + 1 >= flen ||
1118 pc + ftest->jf + 1 >= flen)
1119 return -EINVAL;
1120 break;
1121 case BPF_LD | BPF_W | BPF_ABS:
1122 case BPF_LD | BPF_H | BPF_ABS:
1123 case BPF_LD | BPF_B | BPF_ABS:
1124 anc_found = false;
1125 if (bpf_anc_helper(ftest) & BPF_ANC)
1126 anc_found = true;
1127 /* Ancillary operation unknown or unsupported */
1128 if (anc_found == false && ftest->k >= SKF_AD_OFF)
1129 return -EINVAL;
1130 }
1131 }
1132
1133 /* Last instruction must be a RET code */
1134 switch (filter[flen - 1].code) {
1135 case BPF_RET | BPF_K:
1136 case BPF_RET | BPF_A:
1137 return check_load_and_stores(filter, flen);
1138 }
1139
1140 return -EINVAL;
1141 }
1142
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1143 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1144 const struct sock_fprog *fprog)
1145 {
1146 unsigned int fsize = bpf_classic_proglen(fprog);
1147 struct sock_fprog_kern *fkprog;
1148
1149 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1150 if (!fp->orig_prog)
1151 return -ENOMEM;
1152
1153 fkprog = fp->orig_prog;
1154 fkprog->len = fprog->len;
1155
1156 fkprog->filter = kmemdup(fp->insns, fsize,
1157 GFP_KERNEL | __GFP_NOWARN);
1158 if (!fkprog->filter) {
1159 kfree(fp->orig_prog);
1160 return -ENOMEM;
1161 }
1162
1163 return 0;
1164 }
1165
bpf_release_orig_filter(struct bpf_prog * fp)1166 static void bpf_release_orig_filter(struct bpf_prog *fp)
1167 {
1168 struct sock_fprog_kern *fprog = fp->orig_prog;
1169
1170 if (fprog) {
1171 kfree(fprog->filter);
1172 kfree(fprog);
1173 }
1174 }
1175
__bpf_prog_release(struct bpf_prog * prog)1176 static void __bpf_prog_release(struct bpf_prog *prog)
1177 {
1178 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1179 bpf_prog_put(prog);
1180 } else {
1181 bpf_release_orig_filter(prog);
1182 bpf_prog_free(prog);
1183 }
1184 }
1185
__sk_filter_release(struct sk_filter * fp)1186 static void __sk_filter_release(struct sk_filter *fp)
1187 {
1188 __bpf_prog_release(fp->prog);
1189 kfree(fp);
1190 }
1191
1192 /**
1193 * sk_filter_release_rcu - Release a socket filter by rcu_head
1194 * @rcu: rcu_head that contains the sk_filter to free
1195 */
sk_filter_release_rcu(struct rcu_head * rcu)1196 static void sk_filter_release_rcu(struct rcu_head *rcu)
1197 {
1198 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1199
1200 __sk_filter_release(fp);
1201 }
1202
1203 /**
1204 * sk_filter_release - release a socket filter
1205 * @fp: filter to remove
1206 *
1207 * Remove a filter from a socket and release its resources.
1208 */
sk_filter_release(struct sk_filter * fp)1209 static void sk_filter_release(struct sk_filter *fp)
1210 {
1211 if (refcount_dec_and_test(&fp->refcnt))
1212 call_rcu(&fp->rcu, sk_filter_release_rcu);
1213 }
1214
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1215 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1216 {
1217 u32 filter_size = bpf_prog_size(fp->prog->len);
1218
1219 atomic_sub(filter_size, &sk->sk_omem_alloc);
1220 sk_filter_release(fp);
1221 }
1222
1223 /* try to charge the socket memory if there is space available
1224 * return true on success
1225 */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1226 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1227 {
1228 u32 filter_size = bpf_prog_size(fp->prog->len);
1229 int optmem_max = READ_ONCE(sysctl_optmem_max);
1230
1231 /* same check as in sock_kmalloc() */
1232 if (filter_size <= optmem_max &&
1233 atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1234 atomic_add(filter_size, &sk->sk_omem_alloc);
1235 return true;
1236 }
1237 return false;
1238 }
1239
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1240 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1241 {
1242 if (!refcount_inc_not_zero(&fp->refcnt))
1243 return false;
1244
1245 if (!__sk_filter_charge(sk, fp)) {
1246 sk_filter_release(fp);
1247 return false;
1248 }
1249 return true;
1250 }
1251
bpf_migrate_filter(struct bpf_prog * fp)1252 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1253 {
1254 struct sock_filter *old_prog;
1255 struct bpf_prog *old_fp;
1256 int err, new_len, old_len = fp->len;
1257 bool seen_ld_abs = false;
1258
1259 /* We are free to overwrite insns et al right here as it won't be used at
1260 * this point in time anymore internally after the migration to the eBPF
1261 * instruction representation.
1262 */
1263 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1264 sizeof(struct bpf_insn));
1265
1266 /* Conversion cannot happen on overlapping memory areas,
1267 * so we need to keep the user BPF around until the 2nd
1268 * pass. At this time, the user BPF is stored in fp->insns.
1269 */
1270 old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1271 GFP_KERNEL | __GFP_NOWARN);
1272 if (!old_prog) {
1273 err = -ENOMEM;
1274 goto out_err;
1275 }
1276
1277 /* 1st pass: calculate the new program length. */
1278 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1279 &seen_ld_abs);
1280 if (err)
1281 goto out_err_free;
1282
1283 /* Expand fp for appending the new filter representation. */
1284 old_fp = fp;
1285 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1286 if (!fp) {
1287 /* The old_fp is still around in case we couldn't
1288 * allocate new memory, so uncharge on that one.
1289 */
1290 fp = old_fp;
1291 err = -ENOMEM;
1292 goto out_err_free;
1293 }
1294
1295 fp->len = new_len;
1296
1297 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1298 err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1299 &seen_ld_abs);
1300 if (err)
1301 /* 2nd bpf_convert_filter() can fail only if it fails
1302 * to allocate memory, remapping must succeed. Note,
1303 * that at this time old_fp has already been released
1304 * by krealloc().
1305 */
1306 goto out_err_free;
1307
1308 fp = bpf_prog_select_runtime(fp, &err);
1309 if (err)
1310 goto out_err_free;
1311
1312 kfree(old_prog);
1313 return fp;
1314
1315 out_err_free:
1316 kfree(old_prog);
1317 out_err:
1318 __bpf_prog_release(fp);
1319 return ERR_PTR(err);
1320 }
1321
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1322 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1323 bpf_aux_classic_check_t trans)
1324 {
1325 int err;
1326
1327 fp->bpf_func = NULL;
1328 fp->jited = 0;
1329
1330 err = bpf_check_classic(fp->insns, fp->len);
1331 if (err) {
1332 __bpf_prog_release(fp);
1333 return ERR_PTR(err);
1334 }
1335
1336 /* There might be additional checks and transformations
1337 * needed on classic filters, f.e. in case of seccomp.
1338 */
1339 if (trans) {
1340 err = trans(fp->insns, fp->len);
1341 if (err) {
1342 __bpf_prog_release(fp);
1343 return ERR_PTR(err);
1344 }
1345 }
1346
1347 /* Probe if we can JIT compile the filter and if so, do
1348 * the compilation of the filter.
1349 */
1350 bpf_jit_compile(fp);
1351
1352 /* JIT compiler couldn't process this filter, so do the eBPF translation
1353 * for the optimized interpreter.
1354 */
1355 if (!fp->jited)
1356 fp = bpf_migrate_filter(fp);
1357
1358 return fp;
1359 }
1360
1361 /**
1362 * bpf_prog_create - create an unattached filter
1363 * @pfp: the unattached filter that is created
1364 * @fprog: the filter program
1365 *
1366 * Create a filter independent of any socket. We first run some
1367 * sanity checks on it to make sure it does not explode on us later.
1368 * If an error occurs or there is insufficient memory for the filter
1369 * a negative errno code is returned. On success the return is zero.
1370 */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1371 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1372 {
1373 unsigned int fsize = bpf_classic_proglen(fprog);
1374 struct bpf_prog *fp;
1375
1376 /* Make sure new filter is there and in the right amounts. */
1377 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1378 return -EINVAL;
1379
1380 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1381 if (!fp)
1382 return -ENOMEM;
1383
1384 memcpy(fp->insns, fprog->filter, fsize);
1385
1386 fp->len = fprog->len;
1387 /* Since unattached filters are not copied back to user
1388 * space through sk_get_filter(), we do not need to hold
1389 * a copy here, and can spare us the work.
1390 */
1391 fp->orig_prog = NULL;
1392
1393 /* bpf_prepare_filter() already takes care of freeing
1394 * memory in case something goes wrong.
1395 */
1396 fp = bpf_prepare_filter(fp, NULL);
1397 if (IS_ERR(fp))
1398 return PTR_ERR(fp);
1399
1400 *pfp = fp;
1401 return 0;
1402 }
1403 EXPORT_SYMBOL_GPL(bpf_prog_create);
1404
1405 /**
1406 * bpf_prog_create_from_user - create an unattached filter from user buffer
1407 * @pfp: the unattached filter that is created
1408 * @fprog: the filter program
1409 * @trans: post-classic verifier transformation handler
1410 * @save_orig: save classic BPF program
1411 *
1412 * This function effectively does the same as bpf_prog_create(), only
1413 * that it builds up its insns buffer from user space provided buffer.
1414 * It also allows for passing a bpf_aux_classic_check_t handler.
1415 */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1416 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1417 bpf_aux_classic_check_t trans, bool save_orig)
1418 {
1419 unsigned int fsize = bpf_classic_proglen(fprog);
1420 struct bpf_prog *fp;
1421 int err;
1422
1423 /* Make sure new filter is there and in the right amounts. */
1424 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1425 return -EINVAL;
1426
1427 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1428 if (!fp)
1429 return -ENOMEM;
1430
1431 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1432 __bpf_prog_free(fp);
1433 return -EFAULT;
1434 }
1435
1436 fp->len = fprog->len;
1437 fp->orig_prog = NULL;
1438
1439 if (save_orig) {
1440 err = bpf_prog_store_orig_filter(fp, fprog);
1441 if (err) {
1442 __bpf_prog_free(fp);
1443 return -ENOMEM;
1444 }
1445 }
1446
1447 /* bpf_prepare_filter() already takes care of freeing
1448 * memory in case something goes wrong.
1449 */
1450 fp = bpf_prepare_filter(fp, trans);
1451 if (IS_ERR(fp))
1452 return PTR_ERR(fp);
1453
1454 *pfp = fp;
1455 return 0;
1456 }
1457 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1458
bpf_prog_destroy(struct bpf_prog * fp)1459 void bpf_prog_destroy(struct bpf_prog *fp)
1460 {
1461 __bpf_prog_release(fp);
1462 }
1463 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1464
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1465 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1466 {
1467 struct sk_filter *fp, *old_fp;
1468
1469 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1470 if (!fp)
1471 return -ENOMEM;
1472
1473 fp->prog = prog;
1474
1475 if (!__sk_filter_charge(sk, fp)) {
1476 kfree(fp);
1477 return -ENOMEM;
1478 }
1479 refcount_set(&fp->refcnt, 1);
1480
1481 old_fp = rcu_dereference_protected(sk->sk_filter,
1482 lockdep_sock_is_held(sk));
1483 rcu_assign_pointer(sk->sk_filter, fp);
1484
1485 if (old_fp)
1486 sk_filter_uncharge(sk, old_fp);
1487
1488 return 0;
1489 }
1490
1491 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1492 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1493 {
1494 unsigned int fsize = bpf_classic_proglen(fprog);
1495 struct bpf_prog *prog;
1496 int err;
1497
1498 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1499 return ERR_PTR(-EPERM);
1500
1501 /* Make sure new filter is there and in the right amounts. */
1502 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1503 return ERR_PTR(-EINVAL);
1504
1505 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1506 if (!prog)
1507 return ERR_PTR(-ENOMEM);
1508
1509 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1510 __bpf_prog_free(prog);
1511 return ERR_PTR(-EFAULT);
1512 }
1513
1514 prog->len = fprog->len;
1515
1516 err = bpf_prog_store_orig_filter(prog, fprog);
1517 if (err) {
1518 __bpf_prog_free(prog);
1519 return ERR_PTR(-ENOMEM);
1520 }
1521
1522 /* bpf_prepare_filter() already takes care of freeing
1523 * memory in case something goes wrong.
1524 */
1525 return bpf_prepare_filter(prog, NULL);
1526 }
1527
1528 /**
1529 * sk_attach_filter - attach a socket filter
1530 * @fprog: the filter program
1531 * @sk: the socket to use
1532 *
1533 * Attach the user's filter code. We first run some sanity checks on
1534 * it to make sure it does not explode on us later. If an error
1535 * occurs or there is insufficient memory for the filter a negative
1536 * errno code is returned. On success the return is zero.
1537 */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1538 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1539 {
1540 struct bpf_prog *prog = __get_filter(fprog, sk);
1541 int err;
1542
1543 if (IS_ERR(prog))
1544 return PTR_ERR(prog);
1545
1546 err = __sk_attach_prog(prog, sk);
1547 if (err < 0) {
1548 __bpf_prog_release(prog);
1549 return err;
1550 }
1551
1552 return 0;
1553 }
1554 EXPORT_SYMBOL_GPL(sk_attach_filter);
1555
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1556 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1557 {
1558 struct bpf_prog *prog = __get_filter(fprog, sk);
1559 int err;
1560
1561 if (IS_ERR(prog))
1562 return PTR_ERR(prog);
1563
1564 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1565 err = -ENOMEM;
1566 else
1567 err = reuseport_attach_prog(sk, prog);
1568
1569 if (err)
1570 __bpf_prog_release(prog);
1571
1572 return err;
1573 }
1574
__get_bpf(u32 ufd,struct sock * sk)1575 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1576 {
1577 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1578 return ERR_PTR(-EPERM);
1579
1580 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1581 }
1582
sk_attach_bpf(u32 ufd,struct sock * sk)1583 int sk_attach_bpf(u32 ufd, struct sock *sk)
1584 {
1585 struct bpf_prog *prog = __get_bpf(ufd, sk);
1586 int err;
1587
1588 if (IS_ERR(prog))
1589 return PTR_ERR(prog);
1590
1591 err = __sk_attach_prog(prog, sk);
1592 if (err < 0) {
1593 bpf_prog_put(prog);
1594 return err;
1595 }
1596
1597 return 0;
1598 }
1599
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1600 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1601 {
1602 struct bpf_prog *prog;
1603 int err;
1604
1605 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1606 return -EPERM;
1607
1608 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1609 if (PTR_ERR(prog) == -EINVAL)
1610 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1611 if (IS_ERR(prog))
1612 return PTR_ERR(prog);
1613
1614 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1615 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1616 * bpf prog (e.g. sockmap). It depends on the
1617 * limitation imposed by bpf_prog_load().
1618 * Hence, sysctl_optmem_max is not checked.
1619 */
1620 if ((sk->sk_type != SOCK_STREAM &&
1621 sk->sk_type != SOCK_DGRAM) ||
1622 (sk->sk_protocol != IPPROTO_UDP &&
1623 sk->sk_protocol != IPPROTO_TCP) ||
1624 (sk->sk_family != AF_INET &&
1625 sk->sk_family != AF_INET6)) {
1626 err = -ENOTSUPP;
1627 goto err_prog_put;
1628 }
1629 } else {
1630 /* BPF_PROG_TYPE_SOCKET_FILTER */
1631 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1632 err = -ENOMEM;
1633 goto err_prog_put;
1634 }
1635 }
1636
1637 err = reuseport_attach_prog(sk, prog);
1638 err_prog_put:
1639 if (err)
1640 bpf_prog_put(prog);
1641
1642 return err;
1643 }
1644
sk_reuseport_prog_free(struct bpf_prog * prog)1645 void sk_reuseport_prog_free(struct bpf_prog *prog)
1646 {
1647 if (!prog)
1648 return;
1649
1650 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1651 bpf_prog_put(prog);
1652 else
1653 bpf_prog_destroy(prog);
1654 }
1655
1656 struct bpf_scratchpad {
1657 union {
1658 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1659 u8 buff[MAX_BPF_STACK];
1660 };
1661 };
1662
1663 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1664
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1665 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1666 unsigned int write_len)
1667 {
1668 #ifdef CONFIG_DEBUG_NET
1669 /* Avoid a splat in pskb_may_pull_reason() */
1670 if (write_len > INT_MAX)
1671 return -EINVAL;
1672 #endif
1673 return skb_ensure_writable(skb, write_len);
1674 }
1675
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1676 static inline int bpf_try_make_writable(struct sk_buff *skb,
1677 unsigned int write_len)
1678 {
1679 int err = __bpf_try_make_writable(skb, write_len);
1680
1681 bpf_compute_data_pointers(skb);
1682 return err;
1683 }
1684
bpf_try_make_head_writable(struct sk_buff * skb)1685 static int bpf_try_make_head_writable(struct sk_buff *skb)
1686 {
1687 return bpf_try_make_writable(skb, skb_headlen(skb));
1688 }
1689
bpf_push_mac_rcsum(struct sk_buff * skb)1690 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1691 {
1692 if (skb_at_tc_ingress(skb))
1693 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1694 }
1695
bpf_pull_mac_rcsum(struct sk_buff * skb)1696 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1697 {
1698 if (skb_at_tc_ingress(skb))
1699 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1700 }
1701
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1702 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1703 const void *, from, u32, len, u64, flags)
1704 {
1705 void *ptr;
1706
1707 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1708 return -EINVAL;
1709 if (unlikely(offset > INT_MAX))
1710 return -EFAULT;
1711 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1712 return -EFAULT;
1713
1714 ptr = skb->data + offset;
1715 if (flags & BPF_F_RECOMPUTE_CSUM)
1716 __skb_postpull_rcsum(skb, ptr, len, offset);
1717
1718 memcpy(ptr, from, len);
1719
1720 if (flags & BPF_F_RECOMPUTE_CSUM)
1721 __skb_postpush_rcsum(skb, ptr, len, offset);
1722 if (flags & BPF_F_INVALIDATE_HASH)
1723 skb_clear_hash(skb);
1724
1725 return 0;
1726 }
1727
1728 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1729 .func = bpf_skb_store_bytes,
1730 .gpl_only = false,
1731 .ret_type = RET_INTEGER,
1732 .arg1_type = ARG_PTR_TO_CTX,
1733 .arg2_type = ARG_ANYTHING,
1734 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1735 .arg4_type = ARG_CONST_SIZE,
1736 .arg5_type = ARG_ANYTHING,
1737 };
1738
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1739 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1740 u32 len, u64 flags)
1741 {
1742 return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1743 }
1744
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1745 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1746 void *, to, u32, len)
1747 {
1748 void *ptr;
1749
1750 if (unlikely(offset > INT_MAX))
1751 goto err_clear;
1752
1753 ptr = skb_header_pointer(skb, offset, len, to);
1754 if (unlikely(!ptr))
1755 goto err_clear;
1756 if (ptr != to)
1757 memcpy(to, ptr, len);
1758
1759 return 0;
1760 err_clear:
1761 memset(to, 0, len);
1762 return -EFAULT;
1763 }
1764
1765 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1766 .func = bpf_skb_load_bytes,
1767 .gpl_only = false,
1768 .ret_type = RET_INTEGER,
1769 .arg1_type = ARG_PTR_TO_CTX,
1770 .arg2_type = ARG_ANYTHING,
1771 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1772 .arg4_type = ARG_CONST_SIZE,
1773 };
1774
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1775 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1776 {
1777 return ____bpf_skb_load_bytes(skb, offset, to, len);
1778 }
1779
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1780 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1781 const struct bpf_flow_dissector *, ctx, u32, offset,
1782 void *, to, u32, len)
1783 {
1784 void *ptr;
1785
1786 if (unlikely(offset > 0xffff))
1787 goto err_clear;
1788
1789 if (unlikely(!ctx->skb))
1790 goto err_clear;
1791
1792 ptr = skb_header_pointer(ctx->skb, offset, len, to);
1793 if (unlikely(!ptr))
1794 goto err_clear;
1795 if (ptr != to)
1796 memcpy(to, ptr, len);
1797
1798 return 0;
1799 err_clear:
1800 memset(to, 0, len);
1801 return -EFAULT;
1802 }
1803
1804 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1805 .func = bpf_flow_dissector_load_bytes,
1806 .gpl_only = false,
1807 .ret_type = RET_INTEGER,
1808 .arg1_type = ARG_PTR_TO_CTX,
1809 .arg2_type = ARG_ANYTHING,
1810 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1811 .arg4_type = ARG_CONST_SIZE,
1812 };
1813
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1814 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1815 u32, offset, void *, to, u32, len, u32, start_header)
1816 {
1817 u8 *end = skb_tail_pointer(skb);
1818 u8 *start, *ptr;
1819
1820 if (unlikely(offset > 0xffff))
1821 goto err_clear;
1822
1823 switch (start_header) {
1824 case BPF_HDR_START_MAC:
1825 if (unlikely(!skb_mac_header_was_set(skb)))
1826 goto err_clear;
1827 start = skb_mac_header(skb);
1828 break;
1829 case BPF_HDR_START_NET:
1830 start = skb_network_header(skb);
1831 break;
1832 default:
1833 goto err_clear;
1834 }
1835
1836 ptr = start + offset;
1837
1838 if (likely(ptr + len <= end)) {
1839 memcpy(to, ptr, len);
1840 return 0;
1841 }
1842
1843 err_clear:
1844 memset(to, 0, len);
1845 return -EFAULT;
1846 }
1847
1848 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1849 .func = bpf_skb_load_bytes_relative,
1850 .gpl_only = false,
1851 .ret_type = RET_INTEGER,
1852 .arg1_type = ARG_PTR_TO_CTX,
1853 .arg2_type = ARG_ANYTHING,
1854 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1855 .arg4_type = ARG_CONST_SIZE,
1856 .arg5_type = ARG_ANYTHING,
1857 };
1858
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1859 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1860 {
1861 /* Idea is the following: should the needed direct read/write
1862 * test fail during runtime, we can pull in more data and redo
1863 * again, since implicitly, we invalidate previous checks here.
1864 *
1865 * Or, since we know how much we need to make read/writeable,
1866 * this can be done once at the program beginning for direct
1867 * access case. By this we overcome limitations of only current
1868 * headroom being accessible.
1869 */
1870 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1871 }
1872
1873 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1874 .func = bpf_skb_pull_data,
1875 .gpl_only = false,
1876 .ret_type = RET_INTEGER,
1877 .arg1_type = ARG_PTR_TO_CTX,
1878 .arg2_type = ARG_ANYTHING,
1879 };
1880
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1881 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1882 {
1883 return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1884 }
1885
1886 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1887 .func = bpf_sk_fullsock,
1888 .gpl_only = false,
1889 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
1890 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
1891 };
1892
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1893 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1894 unsigned int write_len)
1895 {
1896 return __bpf_try_make_writable(skb, write_len);
1897 }
1898
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1899 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1900 {
1901 /* Idea is the following: should the needed direct read/write
1902 * test fail during runtime, we can pull in more data and redo
1903 * again, since implicitly, we invalidate previous checks here.
1904 *
1905 * Or, since we know how much we need to make read/writeable,
1906 * this can be done once at the program beginning for direct
1907 * access case. By this we overcome limitations of only current
1908 * headroom being accessible.
1909 */
1910 return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1911 }
1912
1913 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1914 .func = sk_skb_pull_data,
1915 .gpl_only = false,
1916 .ret_type = RET_INTEGER,
1917 .arg1_type = ARG_PTR_TO_CTX,
1918 .arg2_type = ARG_ANYTHING,
1919 };
1920
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1921 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1922 u64, from, u64, to, u64, flags)
1923 {
1924 __sum16 *ptr;
1925
1926 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1927 return -EINVAL;
1928 if (unlikely(offset > 0xffff || offset & 1))
1929 return -EFAULT;
1930 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1931 return -EFAULT;
1932
1933 ptr = (__sum16 *)(skb->data + offset);
1934 switch (flags & BPF_F_HDR_FIELD_MASK) {
1935 case 0:
1936 if (unlikely(from != 0))
1937 return -EINVAL;
1938
1939 csum_replace_by_diff(ptr, to);
1940 break;
1941 case 2:
1942 csum_replace2(ptr, from, to);
1943 break;
1944 case 4:
1945 csum_replace4(ptr, from, to);
1946 break;
1947 default:
1948 return -EINVAL;
1949 }
1950
1951 return 0;
1952 }
1953
1954 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1955 .func = bpf_l3_csum_replace,
1956 .gpl_only = false,
1957 .ret_type = RET_INTEGER,
1958 .arg1_type = ARG_PTR_TO_CTX,
1959 .arg2_type = ARG_ANYTHING,
1960 .arg3_type = ARG_ANYTHING,
1961 .arg4_type = ARG_ANYTHING,
1962 .arg5_type = ARG_ANYTHING,
1963 };
1964
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1965 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1966 u64, from, u64, to, u64, flags)
1967 {
1968 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1969 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1970 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1971 bool is_ipv6 = flags & BPF_F_IPV6;
1972 __sum16 *ptr;
1973
1974 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1975 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK | BPF_F_IPV6)))
1976 return -EINVAL;
1977 if (unlikely(offset > 0xffff || offset & 1))
1978 return -EFAULT;
1979 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1980 return -EFAULT;
1981
1982 ptr = (__sum16 *)(skb->data + offset);
1983 if (is_mmzero && !do_mforce && !*ptr)
1984 return 0;
1985
1986 switch (flags & BPF_F_HDR_FIELD_MASK) {
1987 case 0:
1988 if (unlikely(from != 0))
1989 return -EINVAL;
1990
1991 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo, is_ipv6);
1992 break;
1993 case 2:
1994 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1995 break;
1996 case 4:
1997 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1998 break;
1999 default:
2000 return -EINVAL;
2001 }
2002
2003 if (is_mmzero && !*ptr)
2004 *ptr = CSUM_MANGLED_0;
2005 return 0;
2006 }
2007
2008 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2009 .func = bpf_l4_csum_replace,
2010 .gpl_only = false,
2011 .ret_type = RET_INTEGER,
2012 .arg1_type = ARG_PTR_TO_CTX,
2013 .arg2_type = ARG_ANYTHING,
2014 .arg3_type = ARG_ANYTHING,
2015 .arg4_type = ARG_ANYTHING,
2016 .arg5_type = ARG_ANYTHING,
2017 };
2018
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2019 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2020 __be32 *, to, u32, to_size, __wsum, seed)
2021 {
2022 struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
2023 u32 diff_size = from_size + to_size;
2024 int i, j = 0;
2025
2026 /* This is quite flexible, some examples:
2027 *
2028 * from_size == 0, to_size > 0, seed := csum --> pushing data
2029 * from_size > 0, to_size == 0, seed := csum --> pulling data
2030 * from_size > 0, to_size > 0, seed := 0 --> diffing data
2031 *
2032 * Even for diffing, from_size and to_size don't need to be equal.
2033 */
2034 if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2035 diff_size > sizeof(sp->diff)))
2036 return -EINVAL;
2037
2038 for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2039 sp->diff[j] = ~from[i];
2040 for (i = 0; i < to_size / sizeof(__be32); i++, j++)
2041 sp->diff[j] = to[i];
2042
2043 return csum_partial(sp->diff, diff_size, seed);
2044 }
2045
2046 static const struct bpf_func_proto bpf_csum_diff_proto = {
2047 .func = bpf_csum_diff,
2048 .gpl_only = false,
2049 .pkt_access = true,
2050 .ret_type = RET_INTEGER,
2051 .arg1_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2052 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
2053 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2054 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
2055 .arg5_type = ARG_ANYTHING,
2056 };
2057
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2058 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2059 {
2060 /* The interface is to be used in combination with bpf_csum_diff()
2061 * for direct packet writes. csum rotation for alignment as well
2062 * as emulating csum_sub() can be done from the eBPF program.
2063 */
2064 if (skb->ip_summed == CHECKSUM_COMPLETE)
2065 return (skb->csum = csum_add(skb->csum, csum));
2066
2067 return -ENOTSUPP;
2068 }
2069
2070 static const struct bpf_func_proto bpf_csum_update_proto = {
2071 .func = bpf_csum_update,
2072 .gpl_only = false,
2073 .ret_type = RET_INTEGER,
2074 .arg1_type = ARG_PTR_TO_CTX,
2075 .arg2_type = ARG_ANYTHING,
2076 };
2077
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2078 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2079 {
2080 /* The interface is to be used in combination with bpf_skb_adjust_room()
2081 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2082 * is passed as flags, for example.
2083 */
2084 switch (level) {
2085 case BPF_CSUM_LEVEL_INC:
2086 __skb_incr_checksum_unnecessary(skb);
2087 break;
2088 case BPF_CSUM_LEVEL_DEC:
2089 __skb_decr_checksum_unnecessary(skb);
2090 break;
2091 case BPF_CSUM_LEVEL_RESET:
2092 __skb_reset_checksum_unnecessary(skb);
2093 break;
2094 case BPF_CSUM_LEVEL_QUERY:
2095 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2096 skb->csum_level : -EACCES;
2097 default:
2098 return -EINVAL;
2099 }
2100
2101 return 0;
2102 }
2103
2104 static const struct bpf_func_proto bpf_csum_level_proto = {
2105 .func = bpf_csum_level,
2106 .gpl_only = false,
2107 .ret_type = RET_INTEGER,
2108 .arg1_type = ARG_PTR_TO_CTX,
2109 .arg2_type = ARG_ANYTHING,
2110 };
2111
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2112 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2113 {
2114 return dev_forward_skb_nomtu(dev, skb);
2115 }
2116
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2117 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2118 struct sk_buff *skb)
2119 {
2120 int ret = ____dev_forward_skb(dev, skb, false);
2121
2122 if (likely(!ret)) {
2123 skb->dev = dev;
2124 ret = netif_rx(skb);
2125 }
2126
2127 return ret;
2128 }
2129
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2130 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2131 {
2132 int ret;
2133
2134 if (dev_xmit_recursion()) {
2135 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2136 kfree_skb(skb);
2137 return -ENETDOWN;
2138 }
2139
2140 skb->dev = dev;
2141 skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2142 skb_clear_tstamp(skb);
2143
2144 dev_xmit_recursion_inc();
2145 ret = dev_queue_xmit(skb);
2146 dev_xmit_recursion_dec();
2147
2148 return ret;
2149 }
2150
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2151 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2152 u32 flags)
2153 {
2154 unsigned int mlen = skb_network_offset(skb);
2155
2156 if (unlikely(skb->len <= mlen)) {
2157 kfree_skb(skb);
2158 return -ERANGE;
2159 }
2160
2161 if (mlen) {
2162 __skb_pull(skb, mlen);
2163
2164 /* At ingress, the mac header has already been pulled once.
2165 * At egress, skb_pospull_rcsum has to be done in case that
2166 * the skb is originated from ingress (i.e. a forwarded skb)
2167 * to ensure that rcsum starts at net header.
2168 */
2169 if (!skb_at_tc_ingress(skb))
2170 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2171 }
2172 skb_pop_mac_header(skb);
2173 skb_reset_mac_len(skb);
2174 return flags & BPF_F_INGRESS ?
2175 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2176 }
2177
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2178 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2179 u32 flags)
2180 {
2181 /* Verify that a link layer header is carried */
2182 if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2183 kfree_skb(skb);
2184 return -ERANGE;
2185 }
2186
2187 bpf_push_mac_rcsum(skb);
2188 return flags & BPF_F_INGRESS ?
2189 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2190 }
2191
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2192 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2193 u32 flags)
2194 {
2195 if (dev_is_mac_header_xmit(dev))
2196 return __bpf_redirect_common(skb, dev, flags);
2197 else
2198 return __bpf_redirect_no_mac(skb, dev, flags);
2199 }
2200
2201 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2202 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2203 struct net_device *dev, struct bpf_nh_params *nh)
2204 {
2205 u32 hh_len = LL_RESERVED_SPACE(dev);
2206 const struct in6_addr *nexthop;
2207 struct dst_entry *dst = NULL;
2208 struct neighbour *neigh;
2209
2210 if (dev_xmit_recursion()) {
2211 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2212 goto out_drop;
2213 }
2214
2215 skb->dev = dev;
2216 skb_clear_tstamp(skb);
2217
2218 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2219 skb = skb_expand_head(skb, hh_len);
2220 if (!skb)
2221 return -ENOMEM;
2222 }
2223
2224 rcu_read_lock();
2225 if (!nh) {
2226 dst = skb_dst(skb);
2227 nexthop = rt6_nexthop(dst_rt6_info(dst),
2228 &ipv6_hdr(skb)->daddr);
2229 } else {
2230 nexthop = &nh->ipv6_nh;
2231 }
2232 neigh = ip_neigh_gw6(dev, nexthop);
2233 if (likely(!IS_ERR(neigh))) {
2234 int ret;
2235
2236 sock_confirm_neigh(skb, neigh);
2237 local_bh_disable();
2238 dev_xmit_recursion_inc();
2239 ret = neigh_output(neigh, skb, false);
2240 dev_xmit_recursion_dec();
2241 local_bh_enable();
2242 rcu_read_unlock();
2243 return ret;
2244 }
2245 rcu_read_unlock();
2246 if (dst)
2247 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2248 out_drop:
2249 kfree_skb(skb);
2250 return -ENETDOWN;
2251 }
2252
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2253 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2254 struct bpf_nh_params *nh)
2255 {
2256 const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2257 struct net *net = dev_net(dev);
2258 int err, ret = NET_XMIT_DROP;
2259
2260 if (!nh) {
2261 struct dst_entry *dst;
2262 struct flowi6 fl6 = {
2263 .flowi6_flags = FLOWI_FLAG_ANYSRC,
2264 .flowi6_mark = skb->mark,
2265 .flowlabel = ip6_flowinfo(ip6h),
2266 .flowi6_oif = dev->ifindex,
2267 .flowi6_proto = ip6h->nexthdr,
2268 .daddr = ip6h->daddr,
2269 .saddr = ip6h->saddr,
2270 };
2271
2272 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2273 if (IS_ERR(dst))
2274 goto out_drop;
2275
2276 skb_dst_set(skb, dst);
2277 } else if (nh->nh_family != AF_INET6) {
2278 goto out_drop;
2279 }
2280
2281 err = bpf_out_neigh_v6(net, skb, dev, nh);
2282 if (unlikely(net_xmit_eval(err)))
2283 DEV_STATS_INC(dev, tx_errors);
2284 else
2285 ret = NET_XMIT_SUCCESS;
2286 goto out_xmit;
2287 out_drop:
2288 DEV_STATS_INC(dev, tx_errors);
2289 kfree_skb(skb);
2290 out_xmit:
2291 return ret;
2292 }
2293 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2294 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2295 struct bpf_nh_params *nh)
2296 {
2297 kfree_skb(skb);
2298 return NET_XMIT_DROP;
2299 }
2300 #endif /* CONFIG_IPV6 */
2301
2302 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2303 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2304 struct net_device *dev, struct bpf_nh_params *nh)
2305 {
2306 u32 hh_len = LL_RESERVED_SPACE(dev);
2307 struct neighbour *neigh;
2308 bool is_v6gw = false;
2309
2310 if (dev_xmit_recursion()) {
2311 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2312 goto out_drop;
2313 }
2314
2315 skb->dev = dev;
2316 skb_clear_tstamp(skb);
2317
2318 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2319 skb = skb_expand_head(skb, hh_len);
2320 if (!skb)
2321 return -ENOMEM;
2322 }
2323
2324 rcu_read_lock();
2325 if (!nh) {
2326 struct dst_entry *dst = skb_dst(skb);
2327 struct rtable *rt = container_of(dst, struct rtable, dst);
2328
2329 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2330 } else if (nh->nh_family == AF_INET6) {
2331 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2332 is_v6gw = true;
2333 } else if (nh->nh_family == AF_INET) {
2334 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2335 } else {
2336 rcu_read_unlock();
2337 goto out_drop;
2338 }
2339
2340 if (likely(!IS_ERR(neigh))) {
2341 int ret;
2342
2343 sock_confirm_neigh(skb, neigh);
2344 local_bh_disable();
2345 dev_xmit_recursion_inc();
2346 ret = neigh_output(neigh, skb, is_v6gw);
2347 dev_xmit_recursion_dec();
2348 local_bh_enable();
2349 rcu_read_unlock();
2350 return ret;
2351 }
2352 rcu_read_unlock();
2353 out_drop:
2354 kfree_skb(skb);
2355 return -ENETDOWN;
2356 }
2357
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2358 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2359 struct bpf_nh_params *nh)
2360 {
2361 const struct iphdr *ip4h = ip_hdr(skb);
2362 struct net *net = dev_net(dev);
2363 int err, ret = NET_XMIT_DROP;
2364
2365 if (!nh) {
2366 struct flowi4 fl4 = {
2367 .flowi4_flags = FLOWI_FLAG_ANYSRC,
2368 .flowi4_mark = skb->mark,
2369 .flowi4_tos = RT_TOS(ip4h->tos),
2370 .flowi4_oif = dev->ifindex,
2371 .flowi4_proto = ip4h->protocol,
2372 .daddr = ip4h->daddr,
2373 .saddr = ip4h->saddr,
2374 };
2375 struct rtable *rt;
2376
2377 rt = ip_route_output_flow(net, &fl4, NULL);
2378 if (IS_ERR(rt))
2379 goto out_drop;
2380 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2381 ip_rt_put(rt);
2382 goto out_drop;
2383 }
2384
2385 skb_dst_set(skb, &rt->dst);
2386 }
2387
2388 err = bpf_out_neigh_v4(net, skb, dev, nh);
2389 if (unlikely(net_xmit_eval(err)))
2390 DEV_STATS_INC(dev, tx_errors);
2391 else
2392 ret = NET_XMIT_SUCCESS;
2393 goto out_xmit;
2394 out_drop:
2395 DEV_STATS_INC(dev, tx_errors);
2396 kfree_skb(skb);
2397 out_xmit:
2398 return ret;
2399 }
2400 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2401 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2402 struct bpf_nh_params *nh)
2403 {
2404 kfree_skb(skb);
2405 return NET_XMIT_DROP;
2406 }
2407 #endif /* CONFIG_INET */
2408
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2409 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2410 struct bpf_nh_params *nh)
2411 {
2412 struct ethhdr *ethh = eth_hdr(skb);
2413
2414 if (unlikely(skb->mac_header >= skb->network_header))
2415 goto out;
2416 bpf_push_mac_rcsum(skb);
2417 if (is_multicast_ether_addr(ethh->h_dest))
2418 goto out;
2419
2420 skb_pull(skb, sizeof(*ethh));
2421 skb_unset_mac_header(skb);
2422 skb_reset_network_header(skb);
2423
2424 if (skb->protocol == htons(ETH_P_IP))
2425 return __bpf_redirect_neigh_v4(skb, dev, nh);
2426 else if (skb->protocol == htons(ETH_P_IPV6))
2427 return __bpf_redirect_neigh_v6(skb, dev, nh);
2428 out:
2429 kfree_skb(skb);
2430 return -ENOTSUPP;
2431 }
2432
2433 /* Internal, non-exposed redirect flags. */
2434 enum {
2435 BPF_F_NEIGH = (1ULL << 16),
2436 BPF_F_PEER = (1ULL << 17),
2437 BPF_F_NEXTHOP = (1ULL << 18),
2438 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2439 };
2440
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2441 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2442 {
2443 struct net_device *dev;
2444 struct sk_buff *clone;
2445 int ret;
2446
2447 BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2448
2449 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2450 return -EINVAL;
2451
2452 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2453 if (unlikely(!dev))
2454 return -EINVAL;
2455
2456 clone = skb_clone(skb, GFP_ATOMIC);
2457 if (unlikely(!clone))
2458 return -ENOMEM;
2459
2460 /* For direct write, we need to keep the invariant that the skbs
2461 * we're dealing with need to be uncloned. Should uncloning fail
2462 * here, we need to free the just generated clone to unclone once
2463 * again.
2464 */
2465 ret = bpf_try_make_head_writable(skb);
2466 if (unlikely(ret)) {
2467 kfree_skb(clone);
2468 return -ENOMEM;
2469 }
2470
2471 return __bpf_redirect(clone, dev, flags);
2472 }
2473
2474 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2475 .func = bpf_clone_redirect,
2476 .gpl_only = false,
2477 .ret_type = RET_INTEGER,
2478 .arg1_type = ARG_PTR_TO_CTX,
2479 .arg2_type = ARG_ANYTHING,
2480 .arg3_type = ARG_ANYTHING,
2481 };
2482
2483 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2484 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2485
skb_do_redirect(struct sk_buff * skb)2486 int skb_do_redirect(struct sk_buff *skb)
2487 {
2488 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2489 struct net *net = dev_net(skb->dev);
2490 struct net_device *dev;
2491 u32 flags = ri->flags;
2492
2493 dev = dev_get_by_index_rcu(net, ri->tgt_index);
2494 ri->tgt_index = 0;
2495 ri->flags = 0;
2496 if (unlikely(!dev))
2497 goto out_drop;
2498 if (flags & BPF_F_PEER) {
2499 const struct net_device_ops *ops = dev->netdev_ops;
2500
2501 if (unlikely(!ops->ndo_get_peer_dev ||
2502 !skb_at_tc_ingress(skb)))
2503 goto out_drop;
2504 dev = ops->ndo_get_peer_dev(dev);
2505 if (unlikely(!dev ||
2506 !(dev->flags & IFF_UP) ||
2507 net_eq(net, dev_net(dev))))
2508 goto out_drop;
2509 skb->dev = dev;
2510 dev_sw_netstats_rx_add(dev, skb->len);
2511 skb_scrub_packet(skb, false);
2512 return -EAGAIN;
2513 }
2514 return flags & BPF_F_NEIGH ?
2515 __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2516 &ri->nh : NULL) :
2517 __bpf_redirect(skb, dev, flags);
2518 out_drop:
2519 kfree_skb(skb);
2520 return -EINVAL;
2521 }
2522
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2523 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2524 {
2525 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2526
2527 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2528 return TC_ACT_SHOT;
2529
2530 ri->flags = flags;
2531 ri->tgt_index = ifindex;
2532
2533 return TC_ACT_REDIRECT;
2534 }
2535
2536 static const struct bpf_func_proto bpf_redirect_proto = {
2537 .func = bpf_redirect,
2538 .gpl_only = false,
2539 .ret_type = RET_INTEGER,
2540 .arg1_type = ARG_ANYTHING,
2541 .arg2_type = ARG_ANYTHING,
2542 };
2543
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2544 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2545 {
2546 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2547
2548 if (unlikely(flags))
2549 return TC_ACT_SHOT;
2550
2551 ri->flags = BPF_F_PEER;
2552 ri->tgt_index = ifindex;
2553
2554 return TC_ACT_REDIRECT;
2555 }
2556
2557 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2558 .func = bpf_redirect_peer,
2559 .gpl_only = false,
2560 .ret_type = RET_INTEGER,
2561 .arg1_type = ARG_ANYTHING,
2562 .arg2_type = ARG_ANYTHING,
2563 };
2564
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2565 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2566 int, plen, u64, flags)
2567 {
2568 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2569
2570 if (unlikely((plen && plen < sizeof(*params)) || flags))
2571 return TC_ACT_SHOT;
2572
2573 ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2574 ri->tgt_index = ifindex;
2575
2576 BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2577 if (plen)
2578 memcpy(&ri->nh, params, sizeof(ri->nh));
2579
2580 return TC_ACT_REDIRECT;
2581 }
2582
2583 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2584 .func = bpf_redirect_neigh,
2585 .gpl_only = false,
2586 .ret_type = RET_INTEGER,
2587 .arg1_type = ARG_ANYTHING,
2588 .arg2_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2589 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
2590 .arg4_type = ARG_ANYTHING,
2591 };
2592
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2593 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2594 {
2595 msg->apply_bytes = bytes;
2596 return 0;
2597 }
2598
2599 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2600 .func = bpf_msg_apply_bytes,
2601 .gpl_only = false,
2602 .ret_type = RET_INTEGER,
2603 .arg1_type = ARG_PTR_TO_CTX,
2604 .arg2_type = ARG_ANYTHING,
2605 };
2606
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2607 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2608 {
2609 msg->cork_bytes = bytes;
2610 return 0;
2611 }
2612
sk_msg_reset_curr(struct sk_msg * msg)2613 static void sk_msg_reset_curr(struct sk_msg *msg)
2614 {
2615 if (!msg->sg.size) {
2616 msg->sg.curr = msg->sg.start;
2617 msg->sg.copybreak = 0;
2618 } else {
2619 u32 i = msg->sg.end;
2620
2621 sk_msg_iter_var_prev(i);
2622 msg->sg.curr = i;
2623 msg->sg.copybreak = msg->sg.data[i].length;
2624 }
2625 }
2626
2627 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2628 .func = bpf_msg_cork_bytes,
2629 .gpl_only = false,
2630 .ret_type = RET_INTEGER,
2631 .arg1_type = ARG_PTR_TO_CTX,
2632 .arg2_type = ARG_ANYTHING,
2633 };
2634
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2635 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2636 u32, end, u64, flags)
2637 {
2638 u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2639 u32 first_sge, last_sge, i, shift, bytes_sg_total;
2640 struct scatterlist *sge;
2641 u8 *raw, *to, *from;
2642 struct page *page;
2643
2644 if (unlikely(flags || end <= start))
2645 return -EINVAL;
2646
2647 /* First find the starting scatterlist element */
2648 i = msg->sg.start;
2649 do {
2650 offset += len;
2651 len = sk_msg_elem(msg, i)->length;
2652 if (start < offset + len)
2653 break;
2654 sk_msg_iter_var_next(i);
2655 } while (i != msg->sg.end);
2656
2657 if (unlikely(start >= offset + len))
2658 return -EINVAL;
2659
2660 first_sge = i;
2661 /* The start may point into the sg element so we need to also
2662 * account for the headroom.
2663 */
2664 bytes_sg_total = start - offset + bytes;
2665 if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2666 goto out;
2667
2668 /* At this point we need to linearize multiple scatterlist
2669 * elements or a single shared page. Either way we need to
2670 * copy into a linear buffer exclusively owned by BPF. Then
2671 * place the buffer in the scatterlist and fixup the original
2672 * entries by removing the entries now in the linear buffer
2673 * and shifting the remaining entries. For now we do not try
2674 * to copy partial entries to avoid complexity of running out
2675 * of sg_entry slots. The downside is reading a single byte
2676 * will copy the entire sg entry.
2677 */
2678 do {
2679 copy += sk_msg_elem(msg, i)->length;
2680 sk_msg_iter_var_next(i);
2681 if (bytes_sg_total <= copy)
2682 break;
2683 } while (i != msg->sg.end);
2684 last_sge = i;
2685
2686 if (unlikely(bytes_sg_total > copy))
2687 return -EINVAL;
2688
2689 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2690 get_order(copy));
2691 if (unlikely(!page))
2692 return -ENOMEM;
2693
2694 raw = page_address(page);
2695 i = first_sge;
2696 do {
2697 sge = sk_msg_elem(msg, i);
2698 from = sg_virt(sge);
2699 len = sge->length;
2700 to = raw + poffset;
2701
2702 memcpy(to, from, len);
2703 poffset += len;
2704 sge->length = 0;
2705 put_page(sg_page(sge));
2706
2707 sk_msg_iter_var_next(i);
2708 } while (i != last_sge);
2709
2710 sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2711
2712 /* To repair sg ring we need to shift entries. If we only
2713 * had a single entry though we can just replace it and
2714 * be done. Otherwise walk the ring and shift the entries.
2715 */
2716 WARN_ON_ONCE(last_sge == first_sge);
2717 shift = last_sge > first_sge ?
2718 last_sge - first_sge - 1 :
2719 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2720 if (!shift)
2721 goto out;
2722
2723 i = first_sge;
2724 sk_msg_iter_var_next(i);
2725 do {
2726 u32 move_from;
2727
2728 if (i + shift >= NR_MSG_FRAG_IDS)
2729 move_from = i + shift - NR_MSG_FRAG_IDS;
2730 else
2731 move_from = i + shift;
2732 if (move_from == msg->sg.end)
2733 break;
2734
2735 msg->sg.data[i] = msg->sg.data[move_from];
2736 msg->sg.data[move_from].length = 0;
2737 msg->sg.data[move_from].page_link = 0;
2738 msg->sg.data[move_from].offset = 0;
2739 sk_msg_iter_var_next(i);
2740 } while (1);
2741
2742 msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2743 msg->sg.end - shift + NR_MSG_FRAG_IDS :
2744 msg->sg.end - shift;
2745 out:
2746 sk_msg_reset_curr(msg);
2747 msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2748 msg->data_end = msg->data + bytes;
2749 return 0;
2750 }
2751
2752 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2753 .func = bpf_msg_pull_data,
2754 .gpl_only = false,
2755 .ret_type = RET_INTEGER,
2756 .arg1_type = ARG_PTR_TO_CTX,
2757 .arg2_type = ARG_ANYTHING,
2758 .arg3_type = ARG_ANYTHING,
2759 .arg4_type = ARG_ANYTHING,
2760 };
2761
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2762 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2763 u32, len, u64, flags)
2764 {
2765 struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2766 u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2767 u8 *raw, *to, *from;
2768 struct page *page;
2769
2770 if (unlikely(flags))
2771 return -EINVAL;
2772
2773 if (unlikely(len == 0))
2774 return 0;
2775
2776 /* First find the starting scatterlist element */
2777 i = msg->sg.start;
2778 do {
2779 offset += l;
2780 l = sk_msg_elem(msg, i)->length;
2781
2782 if (start < offset + l)
2783 break;
2784 sk_msg_iter_var_next(i);
2785 } while (i != msg->sg.end);
2786
2787 if (start > offset + l)
2788 return -EINVAL;
2789
2790 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2791
2792 /* If no space available will fallback to copy, we need at
2793 * least one scatterlist elem available to push data into
2794 * when start aligns to the beginning of an element or two
2795 * when it falls inside an element. We handle the start equals
2796 * offset case because its the common case for inserting a
2797 * header.
2798 */
2799 if (!space || (space == 1 && start != offset))
2800 copy = msg->sg.data[i].length;
2801
2802 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2803 get_order(copy + len));
2804 if (unlikely(!page))
2805 return -ENOMEM;
2806
2807 if (copy) {
2808 int front, back;
2809
2810 raw = page_address(page);
2811
2812 if (i == msg->sg.end)
2813 sk_msg_iter_var_prev(i);
2814 psge = sk_msg_elem(msg, i);
2815 front = start - offset;
2816 back = psge->length - front;
2817 from = sg_virt(psge);
2818
2819 if (front)
2820 memcpy(raw, from, front);
2821
2822 if (back) {
2823 from += front;
2824 to = raw + front + len;
2825
2826 memcpy(to, from, back);
2827 }
2828
2829 put_page(sg_page(psge));
2830 new = i;
2831 goto place_new;
2832 }
2833
2834 if (start - offset) {
2835 if (i == msg->sg.end)
2836 sk_msg_iter_var_prev(i);
2837 psge = sk_msg_elem(msg, i);
2838 rsge = sk_msg_elem_cpy(msg, i);
2839
2840 psge->length = start - offset;
2841 rsge.length -= psge->length;
2842 rsge.offset += start;
2843
2844 sk_msg_iter_var_next(i);
2845 sg_unmark_end(psge);
2846 sg_unmark_end(&rsge);
2847 }
2848
2849 /* Slot(s) to place newly allocated data */
2850 sk_msg_iter_next(msg, end);
2851 new = i;
2852 sk_msg_iter_var_next(i);
2853
2854 if (i == msg->sg.end) {
2855 if (!rsge.length)
2856 goto place_new;
2857 sk_msg_iter_next(msg, end);
2858 goto place_new;
2859 }
2860
2861 /* Shift one or two slots as needed */
2862 sge = sk_msg_elem_cpy(msg, new);
2863 sg_unmark_end(&sge);
2864
2865 nsge = sk_msg_elem_cpy(msg, i);
2866 if (rsge.length) {
2867 sk_msg_iter_var_next(i);
2868 nnsge = sk_msg_elem_cpy(msg, i);
2869 sk_msg_iter_next(msg, end);
2870 }
2871
2872 while (i != msg->sg.end) {
2873 msg->sg.data[i] = sge;
2874 sge = nsge;
2875 sk_msg_iter_var_next(i);
2876 if (rsge.length) {
2877 nsge = nnsge;
2878 nnsge = sk_msg_elem_cpy(msg, i);
2879 } else {
2880 nsge = sk_msg_elem_cpy(msg, i);
2881 }
2882 }
2883
2884 place_new:
2885 /* Place newly allocated data buffer */
2886 sk_mem_charge(msg->sk, len);
2887 msg->sg.size += len;
2888 __clear_bit(new, msg->sg.copy);
2889 sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2890 if (rsge.length) {
2891 get_page(sg_page(&rsge));
2892 sk_msg_iter_var_next(new);
2893 msg->sg.data[new] = rsge;
2894 }
2895
2896 sk_msg_reset_curr(msg);
2897 sk_msg_compute_data_pointers(msg);
2898 return 0;
2899 }
2900
2901 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2902 .func = bpf_msg_push_data,
2903 .gpl_only = false,
2904 .ret_type = RET_INTEGER,
2905 .arg1_type = ARG_PTR_TO_CTX,
2906 .arg2_type = ARG_ANYTHING,
2907 .arg3_type = ARG_ANYTHING,
2908 .arg4_type = ARG_ANYTHING,
2909 };
2910
sk_msg_shift_left(struct sk_msg * msg,int i)2911 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2912 {
2913 struct scatterlist *sge = sk_msg_elem(msg, i);
2914 int prev;
2915
2916 put_page(sg_page(sge));
2917 do {
2918 prev = i;
2919 sk_msg_iter_var_next(i);
2920 msg->sg.data[prev] = msg->sg.data[i];
2921 } while (i != msg->sg.end);
2922
2923 sk_msg_iter_prev(msg, end);
2924 }
2925
sk_msg_shift_right(struct sk_msg * msg,int i)2926 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2927 {
2928 struct scatterlist tmp, sge;
2929
2930 sk_msg_iter_next(msg, end);
2931 sge = sk_msg_elem_cpy(msg, i);
2932 sk_msg_iter_var_next(i);
2933 tmp = sk_msg_elem_cpy(msg, i);
2934
2935 while (i != msg->sg.end) {
2936 msg->sg.data[i] = sge;
2937 sk_msg_iter_var_next(i);
2938 sge = tmp;
2939 tmp = sk_msg_elem_cpy(msg, i);
2940 }
2941 }
2942
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2943 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2944 u32, len, u64, flags)
2945 {
2946 u32 i = 0, l = 0, space, offset = 0;
2947 u64 last = start + len;
2948 int pop;
2949
2950 if (unlikely(flags))
2951 return -EINVAL;
2952
2953 if (unlikely(len == 0))
2954 return 0;
2955
2956 /* First find the starting scatterlist element */
2957 i = msg->sg.start;
2958 do {
2959 offset += l;
2960 l = sk_msg_elem(msg, i)->length;
2961
2962 if (start < offset + l)
2963 break;
2964 sk_msg_iter_var_next(i);
2965 } while (i != msg->sg.end);
2966
2967 /* Bounds checks: start and pop must be inside message */
2968 if (start >= offset + l || last > msg->sg.size)
2969 return -EINVAL;
2970
2971 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2972
2973 pop = len;
2974 /* --------------| offset
2975 * -| start |-------- len -------|
2976 *
2977 * |----- a ----|-------- pop -------|----- b ----|
2978 * |______________________________________________| length
2979 *
2980 *
2981 * a: region at front of scatter element to save
2982 * b: region at back of scatter element to save when length > A + pop
2983 * pop: region to pop from element, same as input 'pop' here will be
2984 * decremented below per iteration.
2985 *
2986 * Two top-level cases to handle when start != offset, first B is non
2987 * zero and second B is zero corresponding to when a pop includes more
2988 * than one element.
2989 *
2990 * Then if B is non-zero AND there is no space allocate space and
2991 * compact A, B regions into page. If there is space shift ring to
2992 * the rigth free'ing the next element in ring to place B, leaving
2993 * A untouched except to reduce length.
2994 */
2995 if (start != offset) {
2996 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2997 int a = start - offset;
2998 int b = sge->length - pop - a;
2999
3000 sk_msg_iter_var_next(i);
3001
3002 if (b > 0) {
3003 if (space) {
3004 sge->length = a;
3005 sk_msg_shift_right(msg, i);
3006 nsge = sk_msg_elem(msg, i);
3007 get_page(sg_page(sge));
3008 sg_set_page(nsge,
3009 sg_page(sge),
3010 b, sge->offset + pop + a);
3011 } else {
3012 struct page *page, *orig;
3013 u8 *to, *from;
3014
3015 page = alloc_pages(__GFP_NOWARN |
3016 __GFP_COMP | GFP_ATOMIC,
3017 get_order(a + b));
3018 if (unlikely(!page))
3019 return -ENOMEM;
3020
3021 orig = sg_page(sge);
3022 from = sg_virt(sge);
3023 to = page_address(page);
3024 memcpy(to, from, a);
3025 memcpy(to + a, from + a + pop, b);
3026 sg_set_page(sge, page, a + b, 0);
3027 put_page(orig);
3028 }
3029 pop = 0;
3030 } else {
3031 pop -= (sge->length - a);
3032 sge->length = a;
3033 }
3034 }
3035
3036 /* From above the current layout _must_ be as follows,
3037 *
3038 * -| offset
3039 * -| start
3040 *
3041 * |---- pop ---|---------------- b ------------|
3042 * |____________________________________________| length
3043 *
3044 * Offset and start of the current msg elem are equal because in the
3045 * previous case we handled offset != start and either consumed the
3046 * entire element and advanced to the next element OR pop == 0.
3047 *
3048 * Two cases to handle here are first pop is less than the length
3049 * leaving some remainder b above. Simply adjust the element's layout
3050 * in this case. Or pop >= length of the element so that b = 0. In this
3051 * case advance to next element decrementing pop.
3052 */
3053 while (pop) {
3054 struct scatterlist *sge = sk_msg_elem(msg, i);
3055
3056 if (pop < sge->length) {
3057 sge->length -= pop;
3058 sge->offset += pop;
3059 pop = 0;
3060 } else {
3061 pop -= sge->length;
3062 sk_msg_shift_left(msg, i);
3063 }
3064 }
3065
3066 sk_mem_uncharge(msg->sk, len - pop);
3067 msg->sg.size -= (len - pop);
3068 sk_msg_reset_curr(msg);
3069 sk_msg_compute_data_pointers(msg);
3070 return 0;
3071 }
3072
3073 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3074 .func = bpf_msg_pop_data,
3075 .gpl_only = false,
3076 .ret_type = RET_INTEGER,
3077 .arg1_type = ARG_PTR_TO_CTX,
3078 .arg2_type = ARG_ANYTHING,
3079 .arg3_type = ARG_ANYTHING,
3080 .arg4_type = ARG_ANYTHING,
3081 };
3082
3083 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3084 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3085 {
3086 return __task_get_classid(current);
3087 }
3088
3089 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3090 .func = bpf_get_cgroup_classid_curr,
3091 .gpl_only = false,
3092 .ret_type = RET_INTEGER,
3093 };
3094
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3095 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3096 {
3097 struct sock *sk = skb_to_full_sk(skb);
3098
3099 if (!sk || !sk_fullsock(sk))
3100 return 0;
3101
3102 return sock_cgroup_classid(&sk->sk_cgrp_data);
3103 }
3104
3105 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3106 .func = bpf_skb_cgroup_classid,
3107 .gpl_only = false,
3108 .ret_type = RET_INTEGER,
3109 .arg1_type = ARG_PTR_TO_CTX,
3110 };
3111 #endif
3112
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3113 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3114 {
3115 return task_get_classid(skb);
3116 }
3117
3118 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3119 .func = bpf_get_cgroup_classid,
3120 .gpl_only = false,
3121 .ret_type = RET_INTEGER,
3122 .arg1_type = ARG_PTR_TO_CTX,
3123 };
3124
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3125 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3126 {
3127 return dst_tclassid(skb);
3128 }
3129
3130 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3131 .func = bpf_get_route_realm,
3132 .gpl_only = false,
3133 .ret_type = RET_INTEGER,
3134 .arg1_type = ARG_PTR_TO_CTX,
3135 };
3136
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3137 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3138 {
3139 /* If skb_clear_hash() was called due to mangling, we can
3140 * trigger SW recalculation here. Later access to hash
3141 * can then use the inline skb->hash via context directly
3142 * instead of calling this helper again.
3143 */
3144 return skb_get_hash(skb);
3145 }
3146
3147 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3148 .func = bpf_get_hash_recalc,
3149 .gpl_only = false,
3150 .ret_type = RET_INTEGER,
3151 .arg1_type = ARG_PTR_TO_CTX,
3152 };
3153
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3154 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3155 {
3156 /* After all direct packet write, this can be used once for
3157 * triggering a lazy recalc on next skb_get_hash() invocation.
3158 */
3159 skb_clear_hash(skb);
3160 return 0;
3161 }
3162
3163 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3164 .func = bpf_set_hash_invalid,
3165 .gpl_only = false,
3166 .ret_type = RET_INTEGER,
3167 .arg1_type = ARG_PTR_TO_CTX,
3168 };
3169
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3170 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3171 {
3172 /* Set user specified hash as L4(+), so that it gets returned
3173 * on skb_get_hash() call unless BPF prog later on triggers a
3174 * skb_clear_hash().
3175 */
3176 __skb_set_sw_hash(skb, hash, true);
3177 return 0;
3178 }
3179
3180 static const struct bpf_func_proto bpf_set_hash_proto = {
3181 .func = bpf_set_hash,
3182 .gpl_only = false,
3183 .ret_type = RET_INTEGER,
3184 .arg1_type = ARG_PTR_TO_CTX,
3185 .arg2_type = ARG_ANYTHING,
3186 };
3187
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3188 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3189 u16, vlan_tci)
3190 {
3191 int ret;
3192
3193 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3194 vlan_proto != htons(ETH_P_8021AD)))
3195 vlan_proto = htons(ETH_P_8021Q);
3196
3197 bpf_push_mac_rcsum(skb);
3198 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3199 bpf_pull_mac_rcsum(skb);
3200
3201 bpf_compute_data_pointers(skb);
3202 return ret;
3203 }
3204
3205 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3206 .func = bpf_skb_vlan_push,
3207 .gpl_only = false,
3208 .ret_type = RET_INTEGER,
3209 .arg1_type = ARG_PTR_TO_CTX,
3210 .arg2_type = ARG_ANYTHING,
3211 .arg3_type = ARG_ANYTHING,
3212 };
3213
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3214 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3215 {
3216 int ret;
3217
3218 bpf_push_mac_rcsum(skb);
3219 ret = skb_vlan_pop(skb);
3220 bpf_pull_mac_rcsum(skb);
3221
3222 bpf_compute_data_pointers(skb);
3223 return ret;
3224 }
3225
3226 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3227 .func = bpf_skb_vlan_pop,
3228 .gpl_only = false,
3229 .ret_type = RET_INTEGER,
3230 .arg1_type = ARG_PTR_TO_CTX,
3231 };
3232
bpf_skb_change_protocol(struct sk_buff * skb,u16 proto)3233 static void bpf_skb_change_protocol(struct sk_buff *skb, u16 proto)
3234 {
3235 skb->protocol = htons(proto);
3236 if (skb_valid_dst(skb))
3237 skb_dst_drop(skb);
3238 }
3239
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3240 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3241 {
3242 /* Caller already did skb_cow() with len as headroom,
3243 * so no need to do it here.
3244 */
3245 skb_push(skb, len);
3246 memmove(skb->data, skb->data + len, off);
3247 memset(skb->data + off, 0, len);
3248
3249 /* No skb_postpush_rcsum(skb, skb->data + off, len)
3250 * needed here as it does not change the skb->csum
3251 * result for checksum complete when summing over
3252 * zeroed blocks.
3253 */
3254 return 0;
3255 }
3256
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3257 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3258 {
3259 void *old_data;
3260
3261 /* skb_ensure_writable() is not needed here, as we're
3262 * already working on an uncloned skb.
3263 */
3264 if (unlikely(!pskb_may_pull(skb, off + len)))
3265 return -ENOMEM;
3266
3267 old_data = skb->data;
3268 __skb_pull(skb, len);
3269 skb_postpull_rcsum(skb, old_data + off, len);
3270 memmove(skb->data, old_data, off);
3271
3272 return 0;
3273 }
3274
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3275 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3276 {
3277 bool trans_same = skb->transport_header == skb->network_header;
3278 int ret;
3279
3280 /* There's no need for __skb_push()/__skb_pull() pair to
3281 * get to the start of the mac header as we're guaranteed
3282 * to always start from here under eBPF.
3283 */
3284 ret = bpf_skb_generic_push(skb, off, len);
3285 if (likely(!ret)) {
3286 skb->mac_header -= len;
3287 skb->network_header -= len;
3288 if (trans_same)
3289 skb->transport_header = skb->network_header;
3290 }
3291
3292 return ret;
3293 }
3294
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3295 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3296 {
3297 bool trans_same = skb->transport_header == skb->network_header;
3298 int ret;
3299
3300 /* Same here, __skb_push()/__skb_pull() pair not needed. */
3301 ret = bpf_skb_generic_pop(skb, off, len);
3302 if (likely(!ret)) {
3303 skb->mac_header += len;
3304 skb->network_header += len;
3305 if (trans_same)
3306 skb->transport_header = skb->network_header;
3307 }
3308
3309 return ret;
3310 }
3311
bpf_skb_proto_4_to_6(struct sk_buff * skb)3312 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3313 {
3314 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3315 u32 off = skb_mac_header_len(skb);
3316 int ret;
3317
3318 ret = skb_cow(skb, len_diff);
3319 if (unlikely(ret < 0))
3320 return ret;
3321
3322 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3323 if (unlikely(ret < 0))
3324 return ret;
3325
3326 if (skb_is_gso(skb)) {
3327 struct skb_shared_info *shinfo = skb_shinfo(skb);
3328
3329 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3330 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3331 shinfo->gso_type &= ~SKB_GSO_TCPV4;
3332 shinfo->gso_type |= SKB_GSO_TCPV6;
3333 }
3334 }
3335
3336 bpf_skb_change_protocol(skb, ETH_P_IPV6);
3337 skb_clear_hash(skb);
3338
3339 return 0;
3340 }
3341
bpf_skb_proto_6_to_4(struct sk_buff * skb)3342 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3343 {
3344 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3345 u32 off = skb_mac_header_len(skb);
3346 int ret;
3347
3348 ret = skb_unclone(skb, GFP_ATOMIC);
3349 if (unlikely(ret < 0))
3350 return ret;
3351
3352 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3353 if (unlikely(ret < 0))
3354 return ret;
3355
3356 if (skb_is_gso(skb)) {
3357 struct skb_shared_info *shinfo = skb_shinfo(skb);
3358
3359 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3360 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3361 shinfo->gso_type &= ~SKB_GSO_TCPV6;
3362 shinfo->gso_type |= SKB_GSO_TCPV4;
3363 }
3364 }
3365
3366 bpf_skb_change_protocol(skb, ETH_P_IP);
3367 skb_clear_hash(skb);
3368
3369 return 0;
3370 }
3371
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3372 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3373 {
3374 __be16 from_proto = skb->protocol;
3375
3376 if (from_proto == htons(ETH_P_IP) &&
3377 to_proto == htons(ETH_P_IPV6))
3378 return bpf_skb_proto_4_to_6(skb);
3379
3380 if (from_proto == htons(ETH_P_IPV6) &&
3381 to_proto == htons(ETH_P_IP))
3382 return bpf_skb_proto_6_to_4(skb);
3383
3384 return -ENOTSUPP;
3385 }
3386
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3387 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3388 u64, flags)
3389 {
3390 int ret;
3391
3392 if (unlikely(flags))
3393 return -EINVAL;
3394
3395 /* General idea is that this helper does the basic groundwork
3396 * needed for changing the protocol, and eBPF program fills the
3397 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3398 * and other helpers, rather than passing a raw buffer here.
3399 *
3400 * The rationale is to keep this minimal and without a need to
3401 * deal with raw packet data. F.e. even if we would pass buffers
3402 * here, the program still needs to call the bpf_lX_csum_replace()
3403 * helpers anyway. Plus, this way we keep also separation of
3404 * concerns, since f.e. bpf_skb_store_bytes() should only take
3405 * care of stores.
3406 *
3407 * Currently, additional options and extension header space are
3408 * not supported, but flags register is reserved so we can adapt
3409 * that. For offloads, we mark packet as dodgy, so that headers
3410 * need to be verified first.
3411 */
3412 ret = bpf_skb_proto_xlat(skb, proto);
3413 bpf_compute_data_pointers(skb);
3414 return ret;
3415 }
3416
3417 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3418 .func = bpf_skb_change_proto,
3419 .gpl_only = false,
3420 .ret_type = RET_INTEGER,
3421 .arg1_type = ARG_PTR_TO_CTX,
3422 .arg2_type = ARG_ANYTHING,
3423 .arg3_type = ARG_ANYTHING,
3424 };
3425
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3426 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3427 {
3428 /* We only allow a restricted subset to be changed for now. */
3429 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3430 !skb_pkt_type_ok(pkt_type)))
3431 return -EINVAL;
3432
3433 skb->pkt_type = pkt_type;
3434 return 0;
3435 }
3436
3437 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3438 .func = bpf_skb_change_type,
3439 .gpl_only = false,
3440 .ret_type = RET_INTEGER,
3441 .arg1_type = ARG_PTR_TO_CTX,
3442 .arg2_type = ARG_ANYTHING,
3443 };
3444
bpf_skb_net_base_len(const struct sk_buff * skb)3445 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3446 {
3447 switch (skb->protocol) {
3448 case htons(ETH_P_IP):
3449 return sizeof(struct iphdr);
3450 case htons(ETH_P_IPV6):
3451 return sizeof(struct ipv6hdr);
3452 default:
3453 return ~0U;
3454 }
3455 }
3456
3457 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3458 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3459
3460 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK (BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3461 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3462
3463 #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \
3464 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3465 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3466 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3467 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3468 BPF_F_ADJ_ROOM_ENCAP_L2( \
3469 BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3470 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3471
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3472 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3473 u64 flags)
3474 {
3475 u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3476 bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3477 u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3478 unsigned int gso_type = SKB_GSO_DODGY;
3479 int ret;
3480
3481 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3482 /* udp gso_size delineates datagrams, only allow if fixed */
3483 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3484 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3485 return -ENOTSUPP;
3486 }
3487
3488 ret = skb_cow_head(skb, len_diff);
3489 if (unlikely(ret < 0))
3490 return ret;
3491
3492 if (encap) {
3493 if (skb->protocol != htons(ETH_P_IP) &&
3494 skb->protocol != htons(ETH_P_IPV6))
3495 return -ENOTSUPP;
3496
3497 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3498 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3499 return -EINVAL;
3500
3501 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3502 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3503 return -EINVAL;
3504
3505 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3506 inner_mac_len < ETH_HLEN)
3507 return -EINVAL;
3508
3509 if (skb->encapsulation)
3510 return -EALREADY;
3511
3512 mac_len = skb->network_header - skb->mac_header;
3513 inner_net = skb->network_header;
3514 if (inner_mac_len > len_diff)
3515 return -EINVAL;
3516 inner_trans = skb->transport_header;
3517 }
3518
3519 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3520 if (unlikely(ret < 0))
3521 return ret;
3522
3523 if (encap) {
3524 skb->inner_mac_header = inner_net - inner_mac_len;
3525 skb->inner_network_header = inner_net;
3526 skb->inner_transport_header = inner_trans;
3527
3528 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3529 skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3530 else
3531 skb_set_inner_protocol(skb, skb->protocol);
3532
3533 skb->encapsulation = 1;
3534 skb_set_network_header(skb, mac_len);
3535
3536 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3537 gso_type |= SKB_GSO_UDP_TUNNEL;
3538 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3539 gso_type |= SKB_GSO_GRE;
3540 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3541 gso_type |= SKB_GSO_IPXIP6;
3542 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3543 gso_type |= SKB_GSO_IPXIP4;
3544
3545 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3546 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3547 int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3548 sizeof(struct ipv6hdr) :
3549 sizeof(struct iphdr);
3550
3551 skb_set_transport_header(skb, mac_len + nh_len);
3552 }
3553
3554 /* Match skb->protocol to new outer l3 protocol */
3555 if (skb->protocol == htons(ETH_P_IP) &&
3556 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3557 bpf_skb_change_protocol(skb, ETH_P_IPV6);
3558 else if (skb->protocol == htons(ETH_P_IPV6) &&
3559 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3560 bpf_skb_change_protocol(skb, ETH_P_IP);
3561 }
3562
3563 if (skb_is_gso(skb)) {
3564 struct skb_shared_info *shinfo = skb_shinfo(skb);
3565
3566 /* Header must be checked, and gso_segs recomputed. */
3567 shinfo->gso_type |= gso_type;
3568 shinfo->gso_segs = 0;
3569
3570 /* Due to header growth, MSS needs to be downgraded.
3571 * There is a BUG_ON() when segmenting the frag_list with
3572 * head_frag true, so linearize the skb after downgrading
3573 * the MSS.
3574 */
3575 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3576 skb_decrease_gso_size(shinfo, len_diff);
3577 if (shinfo->frag_list)
3578 return skb_linearize(skb);
3579 }
3580 }
3581
3582 return 0;
3583 }
3584
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3585 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3586 u64 flags)
3587 {
3588 int ret;
3589
3590 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3591 BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3592 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3593 return -EINVAL;
3594
3595 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3596 /* udp gso_size delineates datagrams, only allow if fixed */
3597 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3598 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3599 return -ENOTSUPP;
3600 }
3601
3602 ret = skb_unclone(skb, GFP_ATOMIC);
3603 if (unlikely(ret < 0))
3604 return ret;
3605
3606 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3607 if (unlikely(ret < 0))
3608 return ret;
3609
3610 /* Match skb->protocol to new outer l3 protocol */
3611 if (skb->protocol == htons(ETH_P_IP) &&
3612 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3613 bpf_skb_change_protocol(skb, ETH_P_IPV6);
3614 else if (skb->protocol == htons(ETH_P_IPV6) &&
3615 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3616 bpf_skb_change_protocol(skb, ETH_P_IP);
3617
3618 if (skb_is_gso(skb)) {
3619 struct skb_shared_info *shinfo = skb_shinfo(skb);
3620
3621 /* Due to header shrink, MSS can be upgraded. */
3622 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3623 skb_increase_gso_size(shinfo, len_diff);
3624
3625 /* Header must be checked, and gso_segs recomputed. */
3626 shinfo->gso_type |= SKB_GSO_DODGY;
3627 shinfo->gso_segs = 0;
3628 }
3629
3630 return 0;
3631 }
3632
3633 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3634
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3635 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3636 u32, mode, u64, flags)
3637 {
3638 u32 len_diff_abs = abs(len_diff);
3639 bool shrink = len_diff < 0;
3640 int ret = 0;
3641
3642 if (unlikely(flags || mode))
3643 return -EINVAL;
3644 if (unlikely(len_diff_abs > 0xfffU))
3645 return -EFAULT;
3646
3647 if (!shrink) {
3648 ret = skb_cow(skb, len_diff);
3649 if (unlikely(ret < 0))
3650 return ret;
3651 __skb_push(skb, len_diff_abs);
3652 memset(skb->data, 0, len_diff_abs);
3653 } else {
3654 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3655 return -ENOMEM;
3656 __skb_pull(skb, len_diff_abs);
3657 }
3658 if (tls_sw_has_ctx_rx(skb->sk)) {
3659 struct strp_msg *rxm = strp_msg(skb);
3660
3661 rxm->full_len += len_diff;
3662 }
3663 return ret;
3664 }
3665
3666 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3667 .func = sk_skb_adjust_room,
3668 .gpl_only = false,
3669 .ret_type = RET_INTEGER,
3670 .arg1_type = ARG_PTR_TO_CTX,
3671 .arg2_type = ARG_ANYTHING,
3672 .arg3_type = ARG_ANYTHING,
3673 .arg4_type = ARG_ANYTHING,
3674 };
3675
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3676 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3677 u32, mode, u64, flags)
3678 {
3679 u32 len_cur, len_diff_abs = abs(len_diff);
3680 u32 len_min = bpf_skb_net_base_len(skb);
3681 u32 len_max = BPF_SKB_MAX_LEN;
3682 __be16 proto = skb->protocol;
3683 bool shrink = len_diff < 0;
3684 u32 off;
3685 int ret;
3686
3687 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3688 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3689 return -EINVAL;
3690 if (unlikely(len_diff_abs > 0xfffU))
3691 return -EFAULT;
3692 if (unlikely(proto != htons(ETH_P_IP) &&
3693 proto != htons(ETH_P_IPV6)))
3694 return -ENOTSUPP;
3695
3696 off = skb_mac_header_len(skb);
3697 switch (mode) {
3698 case BPF_ADJ_ROOM_NET:
3699 off += bpf_skb_net_base_len(skb);
3700 break;
3701 case BPF_ADJ_ROOM_MAC:
3702 break;
3703 default:
3704 return -ENOTSUPP;
3705 }
3706
3707 if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3708 if (!shrink)
3709 return -EINVAL;
3710
3711 switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3712 case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3713 len_min = sizeof(struct iphdr);
3714 break;
3715 case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3716 len_min = sizeof(struct ipv6hdr);
3717 break;
3718 default:
3719 return -EINVAL;
3720 }
3721 }
3722
3723 len_cur = skb->len - skb_network_offset(skb);
3724 if ((shrink && (len_diff_abs >= len_cur ||
3725 len_cur - len_diff_abs < len_min)) ||
3726 (!shrink && (skb->len + len_diff_abs > len_max &&
3727 !skb_is_gso(skb))))
3728 return -ENOTSUPP;
3729
3730 ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3731 bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3732 if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3733 __skb_reset_checksum_unnecessary(skb);
3734
3735 bpf_compute_data_pointers(skb);
3736 return ret;
3737 }
3738
3739 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3740 .func = bpf_skb_adjust_room,
3741 .gpl_only = false,
3742 .ret_type = RET_INTEGER,
3743 .arg1_type = ARG_PTR_TO_CTX,
3744 .arg2_type = ARG_ANYTHING,
3745 .arg3_type = ARG_ANYTHING,
3746 .arg4_type = ARG_ANYTHING,
3747 };
3748
__bpf_skb_min_len(const struct sk_buff * skb)3749 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3750 {
3751 int offset = skb_network_offset(skb);
3752 u32 min_len = 0;
3753
3754 if (offset > 0)
3755 min_len = offset;
3756 if (skb_transport_header_was_set(skb)) {
3757 offset = skb_transport_offset(skb);
3758 if (offset > 0)
3759 min_len = offset;
3760 }
3761 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3762 offset = skb_checksum_start_offset(skb) +
3763 skb->csum_offset + sizeof(__sum16);
3764 if (offset > 0)
3765 min_len = offset;
3766 }
3767 return min_len;
3768 }
3769
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3770 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3771 {
3772 unsigned int old_len = skb->len;
3773 int ret;
3774
3775 ret = __skb_grow_rcsum(skb, new_len);
3776 if (!ret)
3777 memset(skb->data + old_len, 0, new_len - old_len);
3778 return ret;
3779 }
3780
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3781 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3782 {
3783 return __skb_trim_rcsum(skb, new_len);
3784 }
3785
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3786 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3787 u64 flags)
3788 {
3789 u32 max_len = BPF_SKB_MAX_LEN;
3790 u32 min_len = __bpf_skb_min_len(skb);
3791 int ret;
3792
3793 if (unlikely(flags || new_len > max_len || new_len < min_len))
3794 return -EINVAL;
3795 if (skb->encapsulation)
3796 return -ENOTSUPP;
3797
3798 /* The basic idea of this helper is that it's performing the
3799 * needed work to either grow or trim an skb, and eBPF program
3800 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3801 * bpf_lX_csum_replace() and others rather than passing a raw
3802 * buffer here. This one is a slow path helper and intended
3803 * for replies with control messages.
3804 *
3805 * Like in bpf_skb_change_proto(), we want to keep this rather
3806 * minimal and without protocol specifics so that we are able
3807 * to separate concerns as in bpf_skb_store_bytes() should only
3808 * be the one responsible for writing buffers.
3809 *
3810 * It's really expected to be a slow path operation here for
3811 * control message replies, so we're implicitly linearizing,
3812 * uncloning and drop offloads from the skb by this.
3813 */
3814 ret = __bpf_try_make_writable(skb, skb->len);
3815 if (!ret) {
3816 if (new_len > skb->len)
3817 ret = bpf_skb_grow_rcsum(skb, new_len);
3818 else if (new_len < skb->len)
3819 ret = bpf_skb_trim_rcsum(skb, new_len);
3820 if (!ret && skb_is_gso(skb))
3821 skb_gso_reset(skb);
3822 }
3823 return ret;
3824 }
3825
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3826 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3827 u64, flags)
3828 {
3829 int ret = __bpf_skb_change_tail(skb, new_len, flags);
3830
3831 bpf_compute_data_pointers(skb);
3832 return ret;
3833 }
3834
3835 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3836 .func = bpf_skb_change_tail,
3837 .gpl_only = false,
3838 .ret_type = RET_INTEGER,
3839 .arg1_type = ARG_PTR_TO_CTX,
3840 .arg2_type = ARG_ANYTHING,
3841 .arg3_type = ARG_ANYTHING,
3842 };
3843
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3844 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3845 u64, flags)
3846 {
3847 return __bpf_skb_change_tail(skb, new_len, flags);
3848 }
3849
3850 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3851 .func = sk_skb_change_tail,
3852 .gpl_only = false,
3853 .ret_type = RET_INTEGER,
3854 .arg1_type = ARG_PTR_TO_CTX,
3855 .arg2_type = ARG_ANYTHING,
3856 .arg3_type = ARG_ANYTHING,
3857 };
3858
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3859 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3860 u64 flags)
3861 {
3862 u32 max_len = BPF_SKB_MAX_LEN;
3863 u32 new_len = skb->len + head_room;
3864 int ret;
3865
3866 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3867 new_len < skb->len))
3868 return -EINVAL;
3869
3870 ret = skb_cow(skb, head_room);
3871 if (likely(!ret)) {
3872 /* Idea for this helper is that we currently only
3873 * allow to expand on mac header. This means that
3874 * skb->protocol network header, etc, stay as is.
3875 * Compared to bpf_skb_change_tail(), we're more
3876 * flexible due to not needing to linearize or
3877 * reset GSO. Intention for this helper is to be
3878 * used by an L3 skb that needs to push mac header
3879 * for redirection into L2 device.
3880 */
3881 __skb_push(skb, head_room);
3882 memset(skb->data, 0, head_room);
3883 skb_reset_mac_header(skb);
3884 skb_reset_mac_len(skb);
3885 }
3886
3887 return ret;
3888 }
3889
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3890 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3891 u64, flags)
3892 {
3893 int ret = __bpf_skb_change_head(skb, head_room, flags);
3894
3895 bpf_compute_data_pointers(skb);
3896 return ret;
3897 }
3898
3899 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3900 .func = bpf_skb_change_head,
3901 .gpl_only = false,
3902 .ret_type = RET_INTEGER,
3903 .arg1_type = ARG_PTR_TO_CTX,
3904 .arg2_type = ARG_ANYTHING,
3905 .arg3_type = ARG_ANYTHING,
3906 };
3907
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3908 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3909 u64, flags)
3910 {
3911 return __bpf_skb_change_head(skb, head_room, flags);
3912 }
3913
3914 static const struct bpf_func_proto sk_skb_change_head_proto = {
3915 .func = sk_skb_change_head,
3916 .gpl_only = false,
3917 .ret_type = RET_INTEGER,
3918 .arg1_type = ARG_PTR_TO_CTX,
3919 .arg2_type = ARG_ANYTHING,
3920 .arg3_type = ARG_ANYTHING,
3921 };
3922
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3923 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3924 {
3925 return xdp_get_buff_len(xdp);
3926 }
3927
3928 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3929 .func = bpf_xdp_get_buff_len,
3930 .gpl_only = false,
3931 .ret_type = RET_INTEGER,
3932 .arg1_type = ARG_PTR_TO_CTX,
3933 };
3934
3935 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3936
3937 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3938 .func = bpf_xdp_get_buff_len,
3939 .gpl_only = false,
3940 .arg1_type = ARG_PTR_TO_BTF_ID,
3941 .arg1_btf_id = &bpf_xdp_get_buff_len_bpf_ids[0],
3942 };
3943
xdp_get_metalen(const struct xdp_buff * xdp)3944 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3945 {
3946 return xdp_data_meta_unsupported(xdp) ? 0 :
3947 xdp->data - xdp->data_meta;
3948 }
3949
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3950 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3951 {
3952 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3953 unsigned long metalen = xdp_get_metalen(xdp);
3954 void *data_start = xdp_frame_end + metalen;
3955 void *data = xdp->data + offset;
3956
3957 if (unlikely(data < data_start ||
3958 data > xdp->data_end - ETH_HLEN))
3959 return -EINVAL;
3960
3961 if (metalen)
3962 memmove(xdp->data_meta + offset,
3963 xdp->data_meta, metalen);
3964 xdp->data_meta += offset;
3965 xdp->data = data;
3966
3967 return 0;
3968 }
3969
3970 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3971 .func = bpf_xdp_adjust_head,
3972 .gpl_only = false,
3973 .ret_type = RET_INTEGER,
3974 .arg1_type = ARG_PTR_TO_CTX,
3975 .arg2_type = ARG_ANYTHING,
3976 };
3977
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3978 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3979 void *buf, unsigned long len, bool flush)
3980 {
3981 unsigned long ptr_len, ptr_off = 0;
3982 skb_frag_t *next_frag, *end_frag;
3983 struct skb_shared_info *sinfo;
3984 void *src, *dst;
3985 u8 *ptr_buf;
3986
3987 if (likely(xdp->data_end - xdp->data >= off + len)) {
3988 src = flush ? buf : xdp->data + off;
3989 dst = flush ? xdp->data + off : buf;
3990 memcpy(dst, src, len);
3991 return;
3992 }
3993
3994 sinfo = xdp_get_shared_info_from_buff(xdp);
3995 end_frag = &sinfo->frags[sinfo->nr_frags];
3996 next_frag = &sinfo->frags[0];
3997
3998 ptr_len = xdp->data_end - xdp->data;
3999 ptr_buf = xdp->data;
4000
4001 while (true) {
4002 if (off < ptr_off + ptr_len) {
4003 unsigned long copy_off = off - ptr_off;
4004 unsigned long copy_len = min(len, ptr_len - copy_off);
4005
4006 src = flush ? buf : ptr_buf + copy_off;
4007 dst = flush ? ptr_buf + copy_off : buf;
4008 memcpy(dst, src, copy_len);
4009
4010 off += copy_len;
4011 len -= copy_len;
4012 buf += copy_len;
4013 }
4014
4015 if (!len || next_frag == end_frag)
4016 break;
4017
4018 ptr_off += ptr_len;
4019 ptr_buf = skb_frag_address(next_frag);
4020 ptr_len = skb_frag_size(next_frag);
4021 next_frag++;
4022 }
4023 }
4024
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)4025 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4026 {
4027 u32 size = xdp->data_end - xdp->data;
4028 struct skb_shared_info *sinfo;
4029 void *addr = xdp->data;
4030 int i;
4031
4032 if (unlikely(offset > 0xffff || len > 0xffff))
4033 return ERR_PTR(-EFAULT);
4034
4035 if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4036 return ERR_PTR(-EINVAL);
4037
4038 if (likely(offset < size)) /* linear area */
4039 goto out;
4040
4041 sinfo = xdp_get_shared_info_from_buff(xdp);
4042 offset -= size;
4043 for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4044 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4045
4046 if (offset < frag_size) {
4047 addr = skb_frag_address(&sinfo->frags[i]);
4048 size = frag_size;
4049 break;
4050 }
4051 offset -= frag_size;
4052 }
4053 out:
4054 return offset + len <= size ? addr + offset : NULL;
4055 }
4056
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4057 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4058 void *, buf, u32, len)
4059 {
4060 void *ptr;
4061
4062 ptr = bpf_xdp_pointer(xdp, offset, len);
4063 if (IS_ERR(ptr))
4064 return PTR_ERR(ptr);
4065
4066 if (!ptr)
4067 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4068 else
4069 memcpy(buf, ptr, len);
4070
4071 return 0;
4072 }
4073
4074 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4075 .func = bpf_xdp_load_bytes,
4076 .gpl_only = false,
4077 .ret_type = RET_INTEGER,
4078 .arg1_type = ARG_PTR_TO_CTX,
4079 .arg2_type = ARG_ANYTHING,
4080 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4081 .arg4_type = ARG_CONST_SIZE,
4082 };
4083
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4084 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4085 {
4086 return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4087 }
4088
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4089 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4090 void *, buf, u32, len)
4091 {
4092 void *ptr;
4093
4094 ptr = bpf_xdp_pointer(xdp, offset, len);
4095 if (IS_ERR(ptr))
4096 return PTR_ERR(ptr);
4097
4098 if (!ptr)
4099 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4100 else
4101 memcpy(ptr, buf, len);
4102
4103 return 0;
4104 }
4105
4106 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4107 .func = bpf_xdp_store_bytes,
4108 .gpl_only = false,
4109 .ret_type = RET_INTEGER,
4110 .arg1_type = ARG_PTR_TO_CTX,
4111 .arg2_type = ARG_ANYTHING,
4112 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4113 .arg4_type = ARG_CONST_SIZE,
4114 };
4115
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4116 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4117 {
4118 return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4119 }
4120
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4121 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4122 {
4123 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4124 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4125 struct xdp_rxq_info *rxq = xdp->rxq;
4126 unsigned int tailroom;
4127
4128 if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4129 return -EOPNOTSUPP;
4130
4131 tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4132 if (unlikely(offset > tailroom))
4133 return -EINVAL;
4134
4135 memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4136 skb_frag_size_add(frag, offset);
4137 sinfo->xdp_frags_size += offset;
4138 if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4139 xsk_buff_get_tail(xdp)->data_end += offset;
4140
4141 return 0;
4142 }
4143
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,struct xdp_mem_info * mem_info,bool release)4144 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4145 struct xdp_mem_info *mem_info, bool release)
4146 {
4147 struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4148
4149 if (release) {
4150 xsk_buff_del_tail(zc_frag);
4151 __xdp_return(NULL, mem_info, false, zc_frag);
4152 } else {
4153 zc_frag->data_end -= shrink;
4154 }
4155 }
4156
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink)4157 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4158 int shrink)
4159 {
4160 struct xdp_mem_info *mem_info = &xdp->rxq->mem;
4161 bool release = skb_frag_size(frag) == shrink;
4162
4163 if (mem_info->type == MEM_TYPE_XSK_BUFF_POOL) {
4164 bpf_xdp_shrink_data_zc(xdp, shrink, mem_info, release);
4165 goto out;
4166 }
4167
4168 if (release) {
4169 struct page *page = skb_frag_page(frag);
4170
4171 __xdp_return(page_address(page), mem_info, false, NULL);
4172 }
4173
4174 out:
4175 return release;
4176 }
4177
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4178 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4179 {
4180 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4181 int i, n_frags_free = 0, len_free = 0;
4182
4183 if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4184 return -EINVAL;
4185
4186 for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4187 skb_frag_t *frag = &sinfo->frags[i];
4188 int shrink = min_t(int, offset, skb_frag_size(frag));
4189
4190 len_free += shrink;
4191 offset -= shrink;
4192 if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4193 n_frags_free++;
4194 } else {
4195 skb_frag_size_sub(frag, shrink);
4196 break;
4197 }
4198 }
4199 sinfo->nr_frags -= n_frags_free;
4200 sinfo->xdp_frags_size -= len_free;
4201
4202 if (unlikely(!sinfo->nr_frags)) {
4203 xdp_buff_clear_frags_flag(xdp);
4204 xdp->data_end -= offset;
4205 }
4206
4207 return 0;
4208 }
4209
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4210 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4211 {
4212 void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4213 void *data_end = xdp->data_end + offset;
4214
4215 if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4216 if (offset < 0)
4217 return bpf_xdp_frags_shrink_tail(xdp, -offset);
4218
4219 return bpf_xdp_frags_increase_tail(xdp, offset);
4220 }
4221
4222 /* Notice that xdp_data_hard_end have reserved some tailroom */
4223 if (unlikely(data_end > data_hard_end))
4224 return -EINVAL;
4225
4226 if (unlikely(data_end < xdp->data + ETH_HLEN))
4227 return -EINVAL;
4228
4229 /* Clear memory area on grow, can contain uninit kernel memory */
4230 if (offset > 0)
4231 memset(xdp->data_end, 0, offset);
4232
4233 xdp->data_end = data_end;
4234
4235 return 0;
4236 }
4237
4238 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4239 .func = bpf_xdp_adjust_tail,
4240 .gpl_only = false,
4241 .ret_type = RET_INTEGER,
4242 .arg1_type = ARG_PTR_TO_CTX,
4243 .arg2_type = ARG_ANYTHING,
4244 };
4245
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4246 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4247 {
4248 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4249 void *meta = xdp->data_meta + offset;
4250 unsigned long metalen = xdp->data - meta;
4251
4252 if (xdp_data_meta_unsupported(xdp))
4253 return -ENOTSUPP;
4254 if (unlikely(meta < xdp_frame_end ||
4255 meta > xdp->data))
4256 return -EINVAL;
4257 if (unlikely(xdp_metalen_invalid(metalen)))
4258 return -EACCES;
4259
4260 xdp->data_meta = meta;
4261
4262 return 0;
4263 }
4264
4265 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4266 .func = bpf_xdp_adjust_meta,
4267 .gpl_only = false,
4268 .ret_type = RET_INTEGER,
4269 .arg1_type = ARG_PTR_TO_CTX,
4270 .arg2_type = ARG_ANYTHING,
4271 };
4272
4273 /**
4274 * DOC: xdp redirect
4275 *
4276 * XDP_REDIRECT works by a three-step process, implemented in the functions
4277 * below:
4278 *
4279 * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4280 * of the redirect and store it (along with some other metadata) in a per-CPU
4281 * struct bpf_redirect_info.
4282 *
4283 * 2. When the program returns the XDP_REDIRECT return code, the driver will
4284 * call xdp_do_redirect() which will use the information in struct
4285 * bpf_redirect_info to actually enqueue the frame into a map type-specific
4286 * bulk queue structure.
4287 *
4288 * 3. Before exiting its NAPI poll loop, the driver will call
4289 * xdp_do_flush(), which will flush all the different bulk queues,
4290 * thus completing the redirect. Note that xdp_do_flush() must be
4291 * called before napi_complete_done() in the driver, as the
4292 * XDP_REDIRECT logic relies on being inside a single NAPI instance
4293 * through to the xdp_do_flush() call for RCU protection of all
4294 * in-kernel data structures.
4295 */
4296 /*
4297 * Pointers to the map entries will be kept around for this whole sequence of
4298 * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4299 * the core code; instead, the RCU protection relies on everything happening
4300 * inside a single NAPI poll sequence, which means it's between a pair of calls
4301 * to local_bh_disable()/local_bh_enable().
4302 *
4303 * The map entries are marked as __rcu and the map code makes sure to
4304 * dereference those pointers with rcu_dereference_check() in a way that works
4305 * for both sections that to hold an rcu_read_lock() and sections that are
4306 * called from NAPI without a separate rcu_read_lock(). The code below does not
4307 * use RCU annotations, but relies on those in the map code.
4308 */
xdp_do_flush(void)4309 void xdp_do_flush(void)
4310 {
4311 __dev_flush();
4312 __cpu_map_flush();
4313 __xsk_map_flush();
4314 }
4315 EXPORT_SYMBOL_GPL(xdp_do_flush);
4316
bpf_clear_redirect_map(struct bpf_map * map)4317 void bpf_clear_redirect_map(struct bpf_map *map)
4318 {
4319 struct bpf_redirect_info *ri;
4320 int cpu;
4321
4322 for_each_possible_cpu(cpu) {
4323 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4324 /* Avoid polluting remote cacheline due to writes if
4325 * not needed. Once we pass this test, we need the
4326 * cmpxchg() to make sure it hasn't been changed in
4327 * the meantime by remote CPU.
4328 */
4329 if (unlikely(READ_ONCE(ri->map) == map))
4330 cmpxchg(&ri->map, map, NULL);
4331 }
4332 }
4333
4334 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4335 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4336
xdp_master_redirect(struct xdp_buff * xdp)4337 u32 xdp_master_redirect(struct xdp_buff *xdp)
4338 {
4339 struct net_device *master, *slave;
4340 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4341
4342 master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4343 slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4344 if (slave && slave != xdp->rxq->dev) {
4345 /* The target device is different from the receiving device, so
4346 * redirect it to the new device.
4347 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4348 * drivers to unmap the packet from their rx ring.
4349 */
4350 ri->tgt_index = slave->ifindex;
4351 ri->map_id = INT_MAX;
4352 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4353 return XDP_REDIRECT;
4354 }
4355 return XDP_TX;
4356 }
4357 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4358
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4359 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4360 struct net_device *dev,
4361 struct xdp_buff *xdp,
4362 struct bpf_prog *xdp_prog)
4363 {
4364 enum bpf_map_type map_type = ri->map_type;
4365 void *fwd = ri->tgt_value;
4366 u32 map_id = ri->map_id;
4367 int err;
4368
4369 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4370 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4371
4372 err = __xsk_map_redirect(fwd, xdp);
4373 if (unlikely(err))
4374 goto err;
4375
4376 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4377 return 0;
4378 err:
4379 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4380 return err;
4381 }
4382
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4383 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4384 struct net_device *dev,
4385 struct xdp_frame *xdpf,
4386 struct bpf_prog *xdp_prog)
4387 {
4388 enum bpf_map_type map_type = ri->map_type;
4389 void *fwd = ri->tgt_value;
4390 u32 map_id = ri->map_id;
4391 u32 flags = ri->flags;
4392 struct bpf_map *map;
4393 int err;
4394
4395 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4396 ri->flags = 0;
4397 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4398
4399 if (unlikely(!xdpf)) {
4400 err = -EOVERFLOW;
4401 goto err;
4402 }
4403
4404 switch (map_type) {
4405 case BPF_MAP_TYPE_DEVMAP:
4406 fallthrough;
4407 case BPF_MAP_TYPE_DEVMAP_HASH:
4408 if (unlikely(flags & BPF_F_BROADCAST)) {
4409 map = READ_ONCE(ri->map);
4410
4411 /* The map pointer is cleared when the map is being torn
4412 * down by bpf_clear_redirect_map()
4413 */
4414 if (unlikely(!map)) {
4415 err = -ENOENT;
4416 break;
4417 }
4418
4419 WRITE_ONCE(ri->map, NULL);
4420 err = dev_map_enqueue_multi(xdpf, dev, map,
4421 flags & BPF_F_EXCLUDE_INGRESS);
4422 } else {
4423 err = dev_map_enqueue(fwd, xdpf, dev);
4424 }
4425 break;
4426 case BPF_MAP_TYPE_CPUMAP:
4427 err = cpu_map_enqueue(fwd, xdpf, dev);
4428 break;
4429 case BPF_MAP_TYPE_UNSPEC:
4430 if (map_id == INT_MAX) {
4431 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4432 if (unlikely(!fwd)) {
4433 err = -EINVAL;
4434 break;
4435 }
4436 err = dev_xdp_enqueue(fwd, xdpf, dev);
4437 break;
4438 }
4439 fallthrough;
4440 default:
4441 err = -EBADRQC;
4442 }
4443
4444 if (unlikely(err))
4445 goto err;
4446
4447 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4448 return 0;
4449 err:
4450 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4451 return err;
4452 }
4453
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4454 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4455 struct bpf_prog *xdp_prog)
4456 {
4457 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4458 enum bpf_map_type map_type = ri->map_type;
4459
4460 if (map_type == BPF_MAP_TYPE_XSKMAP)
4461 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4462
4463 return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4464 xdp_prog);
4465 }
4466 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4467
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4468 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4469 struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4470 {
4471 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4472 enum bpf_map_type map_type = ri->map_type;
4473
4474 if (map_type == BPF_MAP_TYPE_XSKMAP)
4475 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4476
4477 return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4478 }
4479 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4480
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4481 static int xdp_do_generic_redirect_map(struct net_device *dev,
4482 struct sk_buff *skb,
4483 struct xdp_buff *xdp,
4484 struct bpf_prog *xdp_prog, void *fwd,
4485 enum bpf_map_type map_type, u32 map_id,
4486 u32 flags)
4487 {
4488 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4489 struct bpf_map *map;
4490 int err;
4491
4492 switch (map_type) {
4493 case BPF_MAP_TYPE_DEVMAP:
4494 fallthrough;
4495 case BPF_MAP_TYPE_DEVMAP_HASH:
4496 if (unlikely(flags & BPF_F_BROADCAST)) {
4497 map = READ_ONCE(ri->map);
4498
4499 /* The map pointer is cleared when the map is being torn
4500 * down by bpf_clear_redirect_map()
4501 */
4502 if (unlikely(!map)) {
4503 err = -ENOENT;
4504 break;
4505 }
4506
4507 WRITE_ONCE(ri->map, NULL);
4508 err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4509 flags & BPF_F_EXCLUDE_INGRESS);
4510 } else {
4511 err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4512 }
4513 if (unlikely(err))
4514 goto err;
4515 break;
4516 case BPF_MAP_TYPE_XSKMAP:
4517 err = xsk_generic_rcv(fwd, xdp);
4518 if (err)
4519 goto err;
4520 consume_skb(skb);
4521 break;
4522 case BPF_MAP_TYPE_CPUMAP:
4523 err = cpu_map_generic_redirect(fwd, skb);
4524 if (unlikely(err))
4525 goto err;
4526 break;
4527 default:
4528 err = -EBADRQC;
4529 goto err;
4530 }
4531
4532 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4533 return 0;
4534 err:
4535 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4536 return err;
4537 }
4538
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4539 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4540 struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4541 {
4542 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4543 enum bpf_map_type map_type = ri->map_type;
4544 void *fwd = ri->tgt_value;
4545 u32 map_id = ri->map_id;
4546 u32 flags = ri->flags;
4547 int err;
4548
4549 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4550 ri->flags = 0;
4551 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4552
4553 if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4554 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4555 if (unlikely(!fwd)) {
4556 err = -EINVAL;
4557 goto err;
4558 }
4559
4560 err = xdp_ok_fwd_dev(fwd, skb->len);
4561 if (unlikely(err))
4562 goto err;
4563
4564 skb->dev = fwd;
4565 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4566 generic_xdp_tx(skb, xdp_prog);
4567 return 0;
4568 }
4569
4570 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4571 err:
4572 _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4573 return err;
4574 }
4575
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4576 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4577 {
4578 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4579
4580 if (unlikely(flags))
4581 return XDP_ABORTED;
4582
4583 /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4584 * by map_idr) is used for ifindex based XDP redirect.
4585 */
4586 ri->tgt_index = ifindex;
4587 ri->map_id = INT_MAX;
4588 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4589
4590 return XDP_REDIRECT;
4591 }
4592
4593 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4594 .func = bpf_xdp_redirect,
4595 .gpl_only = false,
4596 .ret_type = RET_INTEGER,
4597 .arg1_type = ARG_ANYTHING,
4598 .arg2_type = ARG_ANYTHING,
4599 };
4600
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4601 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4602 u64, flags)
4603 {
4604 return map->ops->map_redirect(map, key, flags);
4605 }
4606
4607 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4608 .func = bpf_xdp_redirect_map,
4609 .gpl_only = false,
4610 .ret_type = RET_INTEGER,
4611 .arg1_type = ARG_CONST_MAP_PTR,
4612 .arg2_type = ARG_ANYTHING,
4613 .arg3_type = ARG_ANYTHING,
4614 };
4615
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4616 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4617 unsigned long off, unsigned long len)
4618 {
4619 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4620
4621 if (unlikely(!ptr))
4622 return len;
4623 if (ptr != dst_buff)
4624 memcpy(dst_buff, ptr, len);
4625
4626 return 0;
4627 }
4628
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4629 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4630 u64, flags, void *, meta, u64, meta_size)
4631 {
4632 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4633
4634 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4635 return -EINVAL;
4636 if (unlikely(!skb || skb_size > skb->len))
4637 return -EFAULT;
4638
4639 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4640 bpf_skb_copy);
4641 }
4642
4643 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4644 .func = bpf_skb_event_output,
4645 .gpl_only = true,
4646 .ret_type = RET_INTEGER,
4647 .arg1_type = ARG_PTR_TO_CTX,
4648 .arg2_type = ARG_CONST_MAP_PTR,
4649 .arg3_type = ARG_ANYTHING,
4650 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4651 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4652 };
4653
4654 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4655
4656 const struct bpf_func_proto bpf_skb_output_proto = {
4657 .func = bpf_skb_event_output,
4658 .gpl_only = true,
4659 .ret_type = RET_INTEGER,
4660 .arg1_type = ARG_PTR_TO_BTF_ID,
4661 .arg1_btf_id = &bpf_skb_output_btf_ids[0],
4662 .arg2_type = ARG_CONST_MAP_PTR,
4663 .arg3_type = ARG_ANYTHING,
4664 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4665 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4666 };
4667
bpf_tunnel_key_af(u64 flags)4668 static unsigned short bpf_tunnel_key_af(u64 flags)
4669 {
4670 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4671 }
4672
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4673 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4674 u32, size, u64, flags)
4675 {
4676 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4677 u8 compat[sizeof(struct bpf_tunnel_key)];
4678 void *to_orig = to;
4679 int err;
4680
4681 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4682 BPF_F_TUNINFO_FLAGS)))) {
4683 err = -EINVAL;
4684 goto err_clear;
4685 }
4686 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4687 err = -EPROTO;
4688 goto err_clear;
4689 }
4690 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4691 err = -EINVAL;
4692 switch (size) {
4693 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4694 case offsetof(struct bpf_tunnel_key, tunnel_label):
4695 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4696 goto set_compat;
4697 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4698 /* Fixup deprecated structure layouts here, so we have
4699 * a common path later on.
4700 */
4701 if (ip_tunnel_info_af(info) != AF_INET)
4702 goto err_clear;
4703 set_compat:
4704 to = (struct bpf_tunnel_key *)compat;
4705 break;
4706 default:
4707 goto err_clear;
4708 }
4709 }
4710
4711 to->tunnel_id = be64_to_cpu(info->key.tun_id);
4712 to->tunnel_tos = info->key.tos;
4713 to->tunnel_ttl = info->key.ttl;
4714 if (flags & BPF_F_TUNINFO_FLAGS)
4715 to->tunnel_flags = info->key.tun_flags;
4716 else
4717 to->tunnel_ext = 0;
4718
4719 if (flags & BPF_F_TUNINFO_IPV6) {
4720 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4721 sizeof(to->remote_ipv6));
4722 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4723 sizeof(to->local_ipv6));
4724 to->tunnel_label = be32_to_cpu(info->key.label);
4725 } else {
4726 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4727 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4728 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4729 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4730 to->tunnel_label = 0;
4731 }
4732
4733 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4734 memcpy(to_orig, to, size);
4735
4736 return 0;
4737 err_clear:
4738 memset(to_orig, 0, size);
4739 return err;
4740 }
4741
4742 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4743 .func = bpf_skb_get_tunnel_key,
4744 .gpl_only = false,
4745 .ret_type = RET_INTEGER,
4746 .arg1_type = ARG_PTR_TO_CTX,
4747 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4748 .arg3_type = ARG_CONST_SIZE,
4749 .arg4_type = ARG_ANYTHING,
4750 };
4751
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4752 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4753 {
4754 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4755 int err;
4756
4757 if (unlikely(!info ||
4758 !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4759 err = -ENOENT;
4760 goto err_clear;
4761 }
4762 if (unlikely(size < info->options_len)) {
4763 err = -ENOMEM;
4764 goto err_clear;
4765 }
4766
4767 ip_tunnel_info_opts_get(to, info);
4768 if (size > info->options_len)
4769 memset(to + info->options_len, 0, size - info->options_len);
4770
4771 return info->options_len;
4772 err_clear:
4773 memset(to, 0, size);
4774 return err;
4775 }
4776
4777 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4778 .func = bpf_skb_get_tunnel_opt,
4779 .gpl_only = false,
4780 .ret_type = RET_INTEGER,
4781 .arg1_type = ARG_PTR_TO_CTX,
4782 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4783 .arg3_type = ARG_CONST_SIZE,
4784 };
4785
4786 static struct metadata_dst __percpu *md_dst;
4787
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4788 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4789 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4790 {
4791 struct metadata_dst *md = this_cpu_ptr(md_dst);
4792 u8 compat[sizeof(struct bpf_tunnel_key)];
4793 struct ip_tunnel_info *info;
4794
4795 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4796 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4797 BPF_F_NO_TUNNEL_KEY)))
4798 return -EINVAL;
4799 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4800 switch (size) {
4801 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4802 case offsetof(struct bpf_tunnel_key, tunnel_label):
4803 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4804 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4805 /* Fixup deprecated structure layouts here, so we have
4806 * a common path later on.
4807 */
4808 memcpy(compat, from, size);
4809 memset(compat + size, 0, sizeof(compat) - size);
4810 from = (const struct bpf_tunnel_key *) compat;
4811 break;
4812 default:
4813 return -EINVAL;
4814 }
4815 }
4816 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4817 from->tunnel_ext))
4818 return -EINVAL;
4819
4820 skb_dst_drop(skb);
4821 dst_hold((struct dst_entry *) md);
4822 skb_dst_set(skb, (struct dst_entry *) md);
4823
4824 info = &md->u.tun_info;
4825 memset(info, 0, sizeof(*info));
4826 info->mode = IP_TUNNEL_INFO_TX;
4827
4828 info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4829 if (flags & BPF_F_DONT_FRAGMENT)
4830 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4831 if (flags & BPF_F_ZERO_CSUM_TX)
4832 info->key.tun_flags &= ~TUNNEL_CSUM;
4833 if (flags & BPF_F_SEQ_NUMBER)
4834 info->key.tun_flags |= TUNNEL_SEQ;
4835 if (flags & BPF_F_NO_TUNNEL_KEY)
4836 info->key.tun_flags &= ~TUNNEL_KEY;
4837
4838 info->key.tun_id = cpu_to_be64(from->tunnel_id);
4839 info->key.tos = from->tunnel_tos;
4840 info->key.ttl = from->tunnel_ttl;
4841
4842 if (flags & BPF_F_TUNINFO_IPV6) {
4843 info->mode |= IP_TUNNEL_INFO_IPV6;
4844 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4845 sizeof(from->remote_ipv6));
4846 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4847 sizeof(from->local_ipv6));
4848 info->key.label = cpu_to_be32(from->tunnel_label) &
4849 IPV6_FLOWLABEL_MASK;
4850 } else {
4851 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4852 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4853 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4854 }
4855
4856 return 0;
4857 }
4858
4859 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4860 .func = bpf_skb_set_tunnel_key,
4861 .gpl_only = false,
4862 .ret_type = RET_INTEGER,
4863 .arg1_type = ARG_PTR_TO_CTX,
4864 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4865 .arg3_type = ARG_CONST_SIZE,
4866 .arg4_type = ARG_ANYTHING,
4867 };
4868
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4869 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4870 const u8 *, from, u32, size)
4871 {
4872 struct ip_tunnel_info *info = skb_tunnel_info(skb);
4873 const struct metadata_dst *md = this_cpu_ptr(md_dst);
4874
4875 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4876 return -EINVAL;
4877 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4878 return -ENOMEM;
4879
4880 ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4881
4882 return 0;
4883 }
4884
4885 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4886 .func = bpf_skb_set_tunnel_opt,
4887 .gpl_only = false,
4888 .ret_type = RET_INTEGER,
4889 .arg1_type = ARG_PTR_TO_CTX,
4890 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4891 .arg3_type = ARG_CONST_SIZE,
4892 };
4893
4894 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4895 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4896 {
4897 if (!md_dst) {
4898 struct metadata_dst __percpu *tmp;
4899
4900 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4901 METADATA_IP_TUNNEL,
4902 GFP_KERNEL);
4903 if (!tmp)
4904 return NULL;
4905 if (cmpxchg(&md_dst, NULL, tmp))
4906 metadata_dst_free_percpu(tmp);
4907 }
4908
4909 switch (which) {
4910 case BPF_FUNC_skb_set_tunnel_key:
4911 return &bpf_skb_set_tunnel_key_proto;
4912 case BPF_FUNC_skb_set_tunnel_opt:
4913 return &bpf_skb_set_tunnel_opt_proto;
4914 default:
4915 return NULL;
4916 }
4917 }
4918
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4919 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4920 u32, idx)
4921 {
4922 struct bpf_array *array = container_of(map, struct bpf_array, map);
4923 struct cgroup *cgrp;
4924 struct sock *sk;
4925
4926 sk = skb_to_full_sk(skb);
4927 if (!sk || !sk_fullsock(sk))
4928 return -ENOENT;
4929 if (unlikely(idx >= array->map.max_entries))
4930 return -E2BIG;
4931
4932 cgrp = READ_ONCE(array->ptrs[idx]);
4933 if (unlikely(!cgrp))
4934 return -EAGAIN;
4935
4936 return sk_under_cgroup_hierarchy(sk, cgrp);
4937 }
4938
4939 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4940 .func = bpf_skb_under_cgroup,
4941 .gpl_only = false,
4942 .ret_type = RET_INTEGER,
4943 .arg1_type = ARG_PTR_TO_CTX,
4944 .arg2_type = ARG_CONST_MAP_PTR,
4945 .arg3_type = ARG_ANYTHING,
4946 };
4947
4948 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4949 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4950 {
4951 struct cgroup *cgrp;
4952
4953 sk = sk_to_full_sk(sk);
4954 if (!sk || !sk_fullsock(sk))
4955 return 0;
4956
4957 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4958 return cgroup_id(cgrp);
4959 }
4960
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4961 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4962 {
4963 return __bpf_sk_cgroup_id(skb->sk);
4964 }
4965
4966 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4967 .func = bpf_skb_cgroup_id,
4968 .gpl_only = false,
4969 .ret_type = RET_INTEGER,
4970 .arg1_type = ARG_PTR_TO_CTX,
4971 };
4972
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4973 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4974 int ancestor_level)
4975 {
4976 struct cgroup *ancestor;
4977 struct cgroup *cgrp;
4978
4979 sk = sk_to_full_sk(sk);
4980 if (!sk || !sk_fullsock(sk))
4981 return 0;
4982
4983 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4984 ancestor = cgroup_ancestor(cgrp, ancestor_level);
4985 if (!ancestor)
4986 return 0;
4987
4988 return cgroup_id(ancestor);
4989 }
4990
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4991 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4992 ancestor_level)
4993 {
4994 return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4995 }
4996
4997 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4998 .func = bpf_skb_ancestor_cgroup_id,
4999 .gpl_only = false,
5000 .ret_type = RET_INTEGER,
5001 .arg1_type = ARG_PTR_TO_CTX,
5002 .arg2_type = ARG_ANYTHING,
5003 };
5004
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)5005 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
5006 {
5007 return __bpf_sk_cgroup_id(sk);
5008 }
5009
5010 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
5011 .func = bpf_sk_cgroup_id,
5012 .gpl_only = false,
5013 .ret_type = RET_INTEGER,
5014 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5015 };
5016
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)5017 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5018 {
5019 return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5020 }
5021
5022 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5023 .func = bpf_sk_ancestor_cgroup_id,
5024 .gpl_only = false,
5025 .ret_type = RET_INTEGER,
5026 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5027 .arg2_type = ARG_ANYTHING,
5028 };
5029 #endif
5030
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)5031 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5032 unsigned long off, unsigned long len)
5033 {
5034 struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5035
5036 bpf_xdp_copy_buf(xdp, off, dst, len, false);
5037 return 0;
5038 }
5039
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5040 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5041 u64, flags, void *, meta, u64, meta_size)
5042 {
5043 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5044
5045 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5046 return -EINVAL;
5047
5048 if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5049 return -EFAULT;
5050
5051 return bpf_event_output(map, flags, meta, meta_size, xdp,
5052 xdp_size, bpf_xdp_copy);
5053 }
5054
5055 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5056 .func = bpf_xdp_event_output,
5057 .gpl_only = true,
5058 .ret_type = RET_INTEGER,
5059 .arg1_type = ARG_PTR_TO_CTX,
5060 .arg2_type = ARG_CONST_MAP_PTR,
5061 .arg3_type = ARG_ANYTHING,
5062 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5063 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5064 };
5065
5066 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5067
5068 const struct bpf_func_proto bpf_xdp_output_proto = {
5069 .func = bpf_xdp_event_output,
5070 .gpl_only = true,
5071 .ret_type = RET_INTEGER,
5072 .arg1_type = ARG_PTR_TO_BTF_ID,
5073 .arg1_btf_id = &bpf_xdp_output_btf_ids[0],
5074 .arg2_type = ARG_CONST_MAP_PTR,
5075 .arg3_type = ARG_ANYTHING,
5076 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5077 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5078 };
5079
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5080 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5081 {
5082 return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5083 }
5084
5085 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5086 .func = bpf_get_socket_cookie,
5087 .gpl_only = false,
5088 .ret_type = RET_INTEGER,
5089 .arg1_type = ARG_PTR_TO_CTX,
5090 };
5091
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5092 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5093 {
5094 return __sock_gen_cookie(ctx->sk);
5095 }
5096
5097 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5098 .func = bpf_get_socket_cookie_sock_addr,
5099 .gpl_only = false,
5100 .ret_type = RET_INTEGER,
5101 .arg1_type = ARG_PTR_TO_CTX,
5102 };
5103
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5104 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5105 {
5106 return __sock_gen_cookie(ctx);
5107 }
5108
5109 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5110 .func = bpf_get_socket_cookie_sock,
5111 .gpl_only = false,
5112 .ret_type = RET_INTEGER,
5113 .arg1_type = ARG_PTR_TO_CTX,
5114 };
5115
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5116 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5117 {
5118 return sk ? sock_gen_cookie(sk) : 0;
5119 }
5120
5121 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5122 .func = bpf_get_socket_ptr_cookie,
5123 .gpl_only = false,
5124 .ret_type = RET_INTEGER,
5125 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5126 };
5127
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5128 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5129 {
5130 return __sock_gen_cookie(ctx->sk);
5131 }
5132
5133 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5134 .func = bpf_get_socket_cookie_sock_ops,
5135 .gpl_only = false,
5136 .ret_type = RET_INTEGER,
5137 .arg1_type = ARG_PTR_TO_CTX,
5138 };
5139
__bpf_get_netns_cookie(struct sock * sk)5140 static u64 __bpf_get_netns_cookie(struct sock *sk)
5141 {
5142 const struct net *net = sk ? sock_net(sk) : &init_net;
5143
5144 return net->net_cookie;
5145 }
5146
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5147 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5148 {
5149 return __bpf_get_netns_cookie(ctx);
5150 }
5151
5152 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5153 .func = bpf_get_netns_cookie_sock,
5154 .gpl_only = false,
5155 .ret_type = RET_INTEGER,
5156 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5157 };
5158
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5159 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5160 {
5161 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5162 }
5163
5164 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5165 .func = bpf_get_netns_cookie_sock_addr,
5166 .gpl_only = false,
5167 .ret_type = RET_INTEGER,
5168 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5169 };
5170
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5171 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5172 {
5173 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5174 }
5175
5176 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5177 .func = bpf_get_netns_cookie_sock_ops,
5178 .gpl_only = false,
5179 .ret_type = RET_INTEGER,
5180 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5181 };
5182
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5183 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5184 {
5185 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5186 }
5187
5188 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5189 .func = bpf_get_netns_cookie_sk_msg,
5190 .gpl_only = false,
5191 .ret_type = RET_INTEGER,
5192 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5193 };
5194
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5195 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5196 {
5197 struct sock *sk = sk_to_full_sk(skb->sk);
5198 kuid_t kuid;
5199
5200 if (!sk || !sk_fullsock(sk))
5201 return overflowuid;
5202 kuid = sock_net_uid(sock_net(sk), sk);
5203 return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5204 }
5205
5206 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5207 .func = bpf_get_socket_uid,
5208 .gpl_only = false,
5209 .ret_type = RET_INTEGER,
5210 .arg1_type = ARG_PTR_TO_CTX,
5211 };
5212
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5213 static int sol_socket_sockopt(struct sock *sk, int optname,
5214 char *optval, int *optlen,
5215 bool getopt)
5216 {
5217 switch (optname) {
5218 case SO_REUSEADDR:
5219 case SO_SNDBUF:
5220 case SO_RCVBUF:
5221 case SO_KEEPALIVE:
5222 case SO_PRIORITY:
5223 case SO_REUSEPORT:
5224 case SO_RCVLOWAT:
5225 case SO_MARK:
5226 case SO_MAX_PACING_RATE:
5227 case SO_BINDTOIFINDEX:
5228 case SO_TXREHASH:
5229 if (*optlen != sizeof(int))
5230 return -EINVAL;
5231 break;
5232 case SO_BINDTODEVICE:
5233 break;
5234 default:
5235 return -EINVAL;
5236 }
5237
5238 if (getopt) {
5239 if (optname == SO_BINDTODEVICE)
5240 return -EINVAL;
5241 return sk_getsockopt(sk, SOL_SOCKET, optname,
5242 KERNEL_SOCKPTR(optval),
5243 KERNEL_SOCKPTR(optlen));
5244 }
5245
5246 return sk_setsockopt(sk, SOL_SOCKET, optname,
5247 KERNEL_SOCKPTR(optval), *optlen);
5248 }
5249
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5250 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5251 char *optval, int optlen)
5252 {
5253 struct tcp_sock *tp = tcp_sk(sk);
5254 unsigned long timeout;
5255 int val;
5256
5257 if (optlen != sizeof(int))
5258 return -EINVAL;
5259
5260 val = *(int *)optval;
5261
5262 /* Only some options are supported */
5263 switch (optname) {
5264 case TCP_BPF_IW:
5265 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5266 return -EINVAL;
5267 tcp_snd_cwnd_set(tp, val);
5268 break;
5269 case TCP_BPF_SNDCWND_CLAMP:
5270 if (val <= 0)
5271 return -EINVAL;
5272 tp->snd_cwnd_clamp = val;
5273 tp->snd_ssthresh = val;
5274 break;
5275 case TCP_BPF_DELACK_MAX:
5276 timeout = usecs_to_jiffies(val);
5277 if (timeout > TCP_DELACK_MAX ||
5278 timeout < TCP_TIMEOUT_MIN)
5279 return -EINVAL;
5280 inet_csk(sk)->icsk_delack_max = timeout;
5281 break;
5282 case TCP_BPF_RTO_MIN:
5283 timeout = usecs_to_jiffies(val);
5284 if (timeout > TCP_RTO_MIN ||
5285 timeout < TCP_TIMEOUT_MIN)
5286 return -EINVAL;
5287 inet_csk(sk)->icsk_rto_min = timeout;
5288 break;
5289 default:
5290 return -EINVAL;
5291 }
5292
5293 return 0;
5294 }
5295
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5296 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5297 int *optlen, bool getopt)
5298 {
5299 struct tcp_sock *tp;
5300 int ret;
5301
5302 if (*optlen < 2)
5303 return -EINVAL;
5304
5305 if (getopt) {
5306 if (!inet_csk(sk)->icsk_ca_ops)
5307 return -EINVAL;
5308 /* BPF expects NULL-terminated tcp-cc string */
5309 optval[--(*optlen)] = '\0';
5310 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5311 KERNEL_SOCKPTR(optval),
5312 KERNEL_SOCKPTR(optlen));
5313 }
5314
5315 /* "cdg" is the only cc that alloc a ptr
5316 * in inet_csk_ca area. The bpf-tcp-cc may
5317 * overwrite this ptr after switching to cdg.
5318 */
5319 if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5320 return -ENOTSUPP;
5321
5322 /* It stops this looping
5323 *
5324 * .init => bpf_setsockopt(tcp_cc) => .init =>
5325 * bpf_setsockopt(tcp_cc)" => .init => ....
5326 *
5327 * The second bpf_setsockopt(tcp_cc) is not allowed
5328 * in order to break the loop when both .init
5329 * are the same bpf prog.
5330 *
5331 * This applies even the second bpf_setsockopt(tcp_cc)
5332 * does not cause a loop. This limits only the first
5333 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5334 * pick a fallback cc (eg. peer does not support ECN)
5335 * and the second '.init' cannot fallback to
5336 * another.
5337 */
5338 tp = tcp_sk(sk);
5339 if (tp->bpf_chg_cc_inprogress)
5340 return -EBUSY;
5341
5342 tp->bpf_chg_cc_inprogress = 1;
5343 ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5344 KERNEL_SOCKPTR(optval), *optlen);
5345 tp->bpf_chg_cc_inprogress = 0;
5346 return ret;
5347 }
5348
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5349 static int sol_tcp_sockopt(struct sock *sk, int optname,
5350 char *optval, int *optlen,
5351 bool getopt)
5352 {
5353 if (sk->sk_protocol != IPPROTO_TCP)
5354 return -EINVAL;
5355
5356 switch (optname) {
5357 case TCP_NODELAY:
5358 case TCP_MAXSEG:
5359 case TCP_KEEPIDLE:
5360 case TCP_KEEPINTVL:
5361 case TCP_KEEPCNT:
5362 case TCP_SYNCNT:
5363 case TCP_WINDOW_CLAMP:
5364 case TCP_THIN_LINEAR_TIMEOUTS:
5365 case TCP_USER_TIMEOUT:
5366 case TCP_NOTSENT_LOWAT:
5367 case TCP_SAVE_SYN:
5368 if (*optlen != sizeof(int))
5369 return -EINVAL;
5370 break;
5371 case TCP_CONGESTION:
5372 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5373 case TCP_SAVED_SYN:
5374 if (*optlen < 1)
5375 return -EINVAL;
5376 break;
5377 default:
5378 if (getopt)
5379 return -EINVAL;
5380 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5381 }
5382
5383 if (getopt) {
5384 if (optname == TCP_SAVED_SYN) {
5385 struct tcp_sock *tp = tcp_sk(sk);
5386
5387 if (!tp->saved_syn ||
5388 *optlen > tcp_saved_syn_len(tp->saved_syn))
5389 return -EINVAL;
5390 memcpy(optval, tp->saved_syn->data, *optlen);
5391 /* It cannot free tp->saved_syn here because it
5392 * does not know if the user space still needs it.
5393 */
5394 return 0;
5395 }
5396
5397 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5398 KERNEL_SOCKPTR(optval),
5399 KERNEL_SOCKPTR(optlen));
5400 }
5401
5402 return do_tcp_setsockopt(sk, SOL_TCP, optname,
5403 KERNEL_SOCKPTR(optval), *optlen);
5404 }
5405
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5406 static int sol_ip_sockopt(struct sock *sk, int optname,
5407 char *optval, int *optlen,
5408 bool getopt)
5409 {
5410 if (sk->sk_family != AF_INET)
5411 return -EINVAL;
5412
5413 switch (optname) {
5414 case IP_TOS:
5415 if (*optlen != sizeof(int))
5416 return -EINVAL;
5417 break;
5418 default:
5419 return -EINVAL;
5420 }
5421
5422 if (getopt)
5423 return do_ip_getsockopt(sk, SOL_IP, optname,
5424 KERNEL_SOCKPTR(optval),
5425 KERNEL_SOCKPTR(optlen));
5426
5427 return do_ip_setsockopt(sk, SOL_IP, optname,
5428 KERNEL_SOCKPTR(optval), *optlen);
5429 }
5430
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5431 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5432 char *optval, int *optlen,
5433 bool getopt)
5434 {
5435 if (sk->sk_family != AF_INET6)
5436 return -EINVAL;
5437
5438 switch (optname) {
5439 case IPV6_TCLASS:
5440 case IPV6_AUTOFLOWLABEL:
5441 if (*optlen != sizeof(int))
5442 return -EINVAL;
5443 break;
5444 default:
5445 return -EINVAL;
5446 }
5447
5448 if (getopt)
5449 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5450 KERNEL_SOCKPTR(optval),
5451 KERNEL_SOCKPTR(optlen));
5452
5453 return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5454 KERNEL_SOCKPTR(optval), *optlen);
5455 }
5456
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5457 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5458 char *optval, int optlen)
5459 {
5460 if (!sk_fullsock(sk))
5461 return -EINVAL;
5462
5463 if (level == SOL_SOCKET)
5464 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5465 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5466 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5467 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5468 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5469 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5470 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5471
5472 return -EINVAL;
5473 }
5474
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5475 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5476 char *optval, int optlen)
5477 {
5478 if (sk_fullsock(sk))
5479 sock_owned_by_me(sk);
5480 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5481 }
5482
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5483 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5484 char *optval, int optlen)
5485 {
5486 int err, saved_optlen = optlen;
5487
5488 if (!sk_fullsock(sk)) {
5489 err = -EINVAL;
5490 goto done;
5491 }
5492
5493 if (level == SOL_SOCKET)
5494 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5495 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5496 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5497 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5498 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5499 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5500 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5501 else
5502 err = -EINVAL;
5503
5504 done:
5505 if (err)
5506 optlen = 0;
5507 if (optlen < saved_optlen)
5508 memset(optval + optlen, 0, saved_optlen - optlen);
5509 return err;
5510 }
5511
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5512 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5513 char *optval, int optlen)
5514 {
5515 if (sk_fullsock(sk))
5516 sock_owned_by_me(sk);
5517 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5518 }
5519
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5520 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5521 int, optname, char *, optval, int, optlen)
5522 {
5523 return _bpf_setsockopt(sk, level, optname, optval, optlen);
5524 }
5525
5526 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5527 .func = bpf_sk_setsockopt,
5528 .gpl_only = false,
5529 .ret_type = RET_INTEGER,
5530 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5531 .arg2_type = ARG_ANYTHING,
5532 .arg3_type = ARG_ANYTHING,
5533 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5534 .arg5_type = ARG_CONST_SIZE,
5535 };
5536
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5537 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5538 int, optname, char *, optval, int, optlen)
5539 {
5540 return _bpf_getsockopt(sk, level, optname, optval, optlen);
5541 }
5542
5543 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5544 .func = bpf_sk_getsockopt,
5545 .gpl_only = false,
5546 .ret_type = RET_INTEGER,
5547 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5548 .arg2_type = ARG_ANYTHING,
5549 .arg3_type = ARG_ANYTHING,
5550 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5551 .arg5_type = ARG_CONST_SIZE,
5552 };
5553
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5554 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5555 int, optname, char *, optval, int, optlen)
5556 {
5557 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5558 }
5559
5560 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5561 .func = bpf_unlocked_sk_setsockopt,
5562 .gpl_only = false,
5563 .ret_type = RET_INTEGER,
5564 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5565 .arg2_type = ARG_ANYTHING,
5566 .arg3_type = ARG_ANYTHING,
5567 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5568 .arg5_type = ARG_CONST_SIZE,
5569 };
5570
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5571 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5572 int, optname, char *, optval, int, optlen)
5573 {
5574 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5575 }
5576
5577 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5578 .func = bpf_unlocked_sk_getsockopt,
5579 .gpl_only = false,
5580 .ret_type = RET_INTEGER,
5581 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5582 .arg2_type = ARG_ANYTHING,
5583 .arg3_type = ARG_ANYTHING,
5584 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5585 .arg5_type = ARG_CONST_SIZE,
5586 };
5587
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5588 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5589 int, level, int, optname, char *, optval, int, optlen)
5590 {
5591 return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5592 }
5593
5594 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5595 .func = bpf_sock_addr_setsockopt,
5596 .gpl_only = false,
5597 .ret_type = RET_INTEGER,
5598 .arg1_type = ARG_PTR_TO_CTX,
5599 .arg2_type = ARG_ANYTHING,
5600 .arg3_type = ARG_ANYTHING,
5601 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5602 .arg5_type = ARG_CONST_SIZE,
5603 };
5604
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5605 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5606 int, level, int, optname, char *, optval, int, optlen)
5607 {
5608 return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5609 }
5610
5611 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5612 .func = bpf_sock_addr_getsockopt,
5613 .gpl_only = false,
5614 .ret_type = RET_INTEGER,
5615 .arg1_type = ARG_PTR_TO_CTX,
5616 .arg2_type = ARG_ANYTHING,
5617 .arg3_type = ARG_ANYTHING,
5618 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5619 .arg5_type = ARG_CONST_SIZE,
5620 };
5621
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5622 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5623 int, level, int, optname, char *, optval, int, optlen)
5624 {
5625 return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5626 }
5627
5628 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5629 .func = bpf_sock_ops_setsockopt,
5630 .gpl_only = false,
5631 .ret_type = RET_INTEGER,
5632 .arg1_type = ARG_PTR_TO_CTX,
5633 .arg2_type = ARG_ANYTHING,
5634 .arg3_type = ARG_ANYTHING,
5635 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5636 .arg5_type = ARG_CONST_SIZE,
5637 };
5638
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5639 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5640 int optname, const u8 **start)
5641 {
5642 struct sk_buff *syn_skb = bpf_sock->syn_skb;
5643 const u8 *hdr_start;
5644 int ret;
5645
5646 if (syn_skb) {
5647 /* sk is a request_sock here */
5648
5649 if (optname == TCP_BPF_SYN) {
5650 hdr_start = syn_skb->data;
5651 ret = tcp_hdrlen(syn_skb);
5652 } else if (optname == TCP_BPF_SYN_IP) {
5653 hdr_start = skb_network_header(syn_skb);
5654 ret = skb_network_header_len(syn_skb) +
5655 tcp_hdrlen(syn_skb);
5656 } else {
5657 /* optname == TCP_BPF_SYN_MAC */
5658 hdr_start = skb_mac_header(syn_skb);
5659 ret = skb_mac_header_len(syn_skb) +
5660 skb_network_header_len(syn_skb) +
5661 tcp_hdrlen(syn_skb);
5662 }
5663 } else {
5664 struct sock *sk = bpf_sock->sk;
5665 struct saved_syn *saved_syn;
5666
5667 if (sk->sk_state == TCP_NEW_SYN_RECV)
5668 /* synack retransmit. bpf_sock->syn_skb will
5669 * not be available. It has to resort to
5670 * saved_syn (if it is saved).
5671 */
5672 saved_syn = inet_reqsk(sk)->saved_syn;
5673 else
5674 saved_syn = tcp_sk(sk)->saved_syn;
5675
5676 if (!saved_syn)
5677 return -ENOENT;
5678
5679 if (optname == TCP_BPF_SYN) {
5680 hdr_start = saved_syn->data +
5681 saved_syn->mac_hdrlen +
5682 saved_syn->network_hdrlen;
5683 ret = saved_syn->tcp_hdrlen;
5684 } else if (optname == TCP_BPF_SYN_IP) {
5685 hdr_start = saved_syn->data +
5686 saved_syn->mac_hdrlen;
5687 ret = saved_syn->network_hdrlen +
5688 saved_syn->tcp_hdrlen;
5689 } else {
5690 /* optname == TCP_BPF_SYN_MAC */
5691
5692 /* TCP_SAVE_SYN may not have saved the mac hdr */
5693 if (!saved_syn->mac_hdrlen)
5694 return -ENOENT;
5695
5696 hdr_start = saved_syn->data;
5697 ret = saved_syn->mac_hdrlen +
5698 saved_syn->network_hdrlen +
5699 saved_syn->tcp_hdrlen;
5700 }
5701 }
5702
5703 *start = hdr_start;
5704 return ret;
5705 }
5706
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5707 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5708 int, level, int, optname, char *, optval, int, optlen)
5709 {
5710 if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5711 optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5712 int ret, copy_len = 0;
5713 const u8 *start;
5714
5715 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5716 if (ret > 0) {
5717 copy_len = ret;
5718 if (optlen < copy_len) {
5719 copy_len = optlen;
5720 ret = -ENOSPC;
5721 }
5722
5723 memcpy(optval, start, copy_len);
5724 }
5725
5726 /* Zero out unused buffer at the end */
5727 memset(optval + copy_len, 0, optlen - copy_len);
5728
5729 return ret;
5730 }
5731
5732 return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5733 }
5734
5735 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5736 .func = bpf_sock_ops_getsockopt,
5737 .gpl_only = false,
5738 .ret_type = RET_INTEGER,
5739 .arg1_type = ARG_PTR_TO_CTX,
5740 .arg2_type = ARG_ANYTHING,
5741 .arg3_type = ARG_ANYTHING,
5742 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5743 .arg5_type = ARG_CONST_SIZE,
5744 };
5745
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5746 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5747 int, argval)
5748 {
5749 struct sock *sk = bpf_sock->sk;
5750 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5751
5752 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5753 return -EINVAL;
5754
5755 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5756
5757 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5758 }
5759
5760 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5761 .func = bpf_sock_ops_cb_flags_set,
5762 .gpl_only = false,
5763 .ret_type = RET_INTEGER,
5764 .arg1_type = ARG_PTR_TO_CTX,
5765 .arg2_type = ARG_ANYTHING,
5766 };
5767
5768 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5769 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5770
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5771 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5772 int, addr_len)
5773 {
5774 #ifdef CONFIG_INET
5775 struct sock *sk = ctx->sk;
5776 u32 flags = BIND_FROM_BPF;
5777 int err;
5778
5779 err = -EINVAL;
5780 if (addr_len < offsetofend(struct sockaddr, sa_family))
5781 return err;
5782 if (addr->sa_family == AF_INET) {
5783 if (addr_len < sizeof(struct sockaddr_in))
5784 return err;
5785 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5786 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5787 return __inet_bind(sk, addr, addr_len, flags);
5788 #if IS_ENABLED(CONFIG_IPV6)
5789 } else if (addr->sa_family == AF_INET6) {
5790 if (addr_len < SIN6_LEN_RFC2133)
5791 return err;
5792 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5793 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5794 /* ipv6_bpf_stub cannot be NULL, since it's called from
5795 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5796 */
5797 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5798 #endif /* CONFIG_IPV6 */
5799 }
5800 #endif /* CONFIG_INET */
5801
5802 return -EAFNOSUPPORT;
5803 }
5804
5805 static const struct bpf_func_proto bpf_bind_proto = {
5806 .func = bpf_bind,
5807 .gpl_only = false,
5808 .ret_type = RET_INTEGER,
5809 .arg1_type = ARG_PTR_TO_CTX,
5810 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5811 .arg3_type = ARG_CONST_SIZE,
5812 };
5813
5814 #ifdef CONFIG_XFRM
5815
5816 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5817 (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5818
5819 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5820 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5821
5822 #endif
5823
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5824 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5825 struct bpf_xfrm_state *, to, u32, size, u64, flags)
5826 {
5827 const struct sec_path *sp = skb_sec_path(skb);
5828 const struct xfrm_state *x;
5829
5830 if (!sp || unlikely(index >= sp->len || flags))
5831 goto err_clear;
5832
5833 x = sp->xvec[index];
5834
5835 if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5836 goto err_clear;
5837
5838 to->reqid = x->props.reqid;
5839 to->spi = x->id.spi;
5840 to->family = x->props.family;
5841 to->ext = 0;
5842
5843 if (to->family == AF_INET6) {
5844 memcpy(to->remote_ipv6, x->props.saddr.a6,
5845 sizeof(to->remote_ipv6));
5846 } else {
5847 to->remote_ipv4 = x->props.saddr.a4;
5848 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5849 }
5850
5851 return 0;
5852 err_clear:
5853 memset(to, 0, size);
5854 return -EINVAL;
5855 }
5856
5857 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5858 .func = bpf_skb_get_xfrm_state,
5859 .gpl_only = false,
5860 .ret_type = RET_INTEGER,
5861 .arg1_type = ARG_PTR_TO_CTX,
5862 .arg2_type = ARG_ANYTHING,
5863 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
5864 .arg4_type = ARG_CONST_SIZE,
5865 .arg5_type = ARG_ANYTHING,
5866 };
5867 #endif
5868
5869 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5870 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5871 {
5872 params->h_vlan_TCI = 0;
5873 params->h_vlan_proto = 0;
5874 if (mtu)
5875 params->mtu_result = mtu; /* union with tot_len */
5876
5877 return 0;
5878 }
5879 #endif
5880
5881 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5882 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5883 u32 flags, bool check_mtu)
5884 {
5885 struct fib_nh_common *nhc;
5886 struct in_device *in_dev;
5887 struct neighbour *neigh;
5888 struct net_device *dev;
5889 struct fib_result res;
5890 struct flowi4 fl4;
5891 u32 mtu = 0;
5892 int err;
5893
5894 dev = dev_get_by_index_rcu(net, params->ifindex);
5895 if (unlikely(!dev))
5896 return -ENODEV;
5897
5898 /* verify forwarding is enabled on this interface */
5899 in_dev = __in_dev_get_rcu(dev);
5900 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5901 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5902
5903 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5904 fl4.flowi4_iif = 1;
5905 fl4.flowi4_oif = params->ifindex;
5906 } else {
5907 fl4.flowi4_iif = params->ifindex;
5908 fl4.flowi4_oif = 0;
5909 }
5910 fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5911 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5912 fl4.flowi4_flags = 0;
5913
5914 fl4.flowi4_proto = params->l4_protocol;
5915 fl4.daddr = params->ipv4_dst;
5916 fl4.saddr = params->ipv4_src;
5917 fl4.fl4_sport = params->sport;
5918 fl4.fl4_dport = params->dport;
5919 fl4.flowi4_multipath_hash = 0;
5920
5921 if (flags & BPF_FIB_LOOKUP_DIRECT) {
5922 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5923 struct fib_table *tb;
5924
5925 if (flags & BPF_FIB_LOOKUP_TBID) {
5926 tbid = params->tbid;
5927 /* zero out for vlan output */
5928 params->tbid = 0;
5929 }
5930
5931 tb = fib_get_table(net, tbid);
5932 if (unlikely(!tb))
5933 return BPF_FIB_LKUP_RET_NOT_FWDED;
5934
5935 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5936 } else {
5937 fl4.flowi4_mark = 0;
5938 fl4.flowi4_secid = 0;
5939 fl4.flowi4_tun_key.tun_id = 0;
5940 fl4.flowi4_uid = sock_net_uid(net, NULL);
5941
5942 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5943 }
5944
5945 if (err) {
5946 /* map fib lookup errors to RTN_ type */
5947 if (err == -EINVAL)
5948 return BPF_FIB_LKUP_RET_BLACKHOLE;
5949 if (err == -EHOSTUNREACH)
5950 return BPF_FIB_LKUP_RET_UNREACHABLE;
5951 if (err == -EACCES)
5952 return BPF_FIB_LKUP_RET_PROHIBIT;
5953
5954 return BPF_FIB_LKUP_RET_NOT_FWDED;
5955 }
5956
5957 if (res.type != RTN_UNICAST)
5958 return BPF_FIB_LKUP_RET_NOT_FWDED;
5959
5960 if (fib_info_num_path(res.fi) > 1)
5961 fib_select_path(net, &res, &fl4, NULL);
5962
5963 if (check_mtu) {
5964 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5965 if (params->tot_len > mtu) {
5966 params->mtu_result = mtu; /* union with tot_len */
5967 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5968 }
5969 }
5970
5971 nhc = res.nhc;
5972
5973 /* do not handle lwt encaps right now */
5974 if (nhc->nhc_lwtstate)
5975 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5976
5977 dev = nhc->nhc_dev;
5978
5979 params->rt_metric = res.fi->fib_priority;
5980 params->ifindex = dev->ifindex;
5981
5982 if (flags & BPF_FIB_LOOKUP_SRC)
5983 params->ipv4_src = fib_result_prefsrc(net, &res);
5984
5985 /* xdp and cls_bpf programs are run in RCU-bh so
5986 * rcu_read_lock_bh is not needed here
5987 */
5988 if (likely(nhc->nhc_gw_family != AF_INET6)) {
5989 if (nhc->nhc_gw_family)
5990 params->ipv4_dst = nhc->nhc_gw.ipv4;
5991 } else {
5992 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5993
5994 params->family = AF_INET6;
5995 *dst = nhc->nhc_gw.ipv6;
5996 }
5997
5998 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5999 goto set_fwd_params;
6000
6001 if (likely(nhc->nhc_gw_family != AF_INET6))
6002 neigh = __ipv4_neigh_lookup_noref(dev,
6003 (__force u32)params->ipv4_dst);
6004 else
6005 neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
6006
6007 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6008 return BPF_FIB_LKUP_RET_NO_NEIGH;
6009 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6010 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6011
6012 set_fwd_params:
6013 return bpf_fib_set_fwd_params(params, mtu);
6014 }
6015 #endif
6016
6017 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6018 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6019 u32 flags, bool check_mtu)
6020 {
6021 struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6022 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6023 struct fib6_result res = {};
6024 struct neighbour *neigh;
6025 struct net_device *dev;
6026 struct inet6_dev *idev;
6027 struct flowi6 fl6;
6028 int strict = 0;
6029 int oif, err;
6030 u32 mtu = 0;
6031
6032 /* link local addresses are never forwarded */
6033 if (rt6_need_strict(dst) || rt6_need_strict(src))
6034 return BPF_FIB_LKUP_RET_NOT_FWDED;
6035
6036 dev = dev_get_by_index_rcu(net, params->ifindex);
6037 if (unlikely(!dev))
6038 return -ENODEV;
6039
6040 idev = __in6_dev_get_safely(dev);
6041 if (unlikely(!idev || !idev->cnf.forwarding))
6042 return BPF_FIB_LKUP_RET_FWD_DISABLED;
6043
6044 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6045 fl6.flowi6_iif = 1;
6046 oif = fl6.flowi6_oif = params->ifindex;
6047 } else {
6048 oif = fl6.flowi6_iif = params->ifindex;
6049 fl6.flowi6_oif = 0;
6050 strict = RT6_LOOKUP_F_HAS_SADDR;
6051 }
6052 fl6.flowlabel = params->flowinfo;
6053 fl6.flowi6_scope = 0;
6054 fl6.flowi6_flags = 0;
6055 fl6.mp_hash = 0;
6056
6057 fl6.flowi6_proto = params->l4_protocol;
6058 fl6.daddr = *dst;
6059 fl6.saddr = *src;
6060 fl6.fl6_sport = params->sport;
6061 fl6.fl6_dport = params->dport;
6062
6063 if (flags & BPF_FIB_LOOKUP_DIRECT) {
6064 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6065 struct fib6_table *tb;
6066
6067 if (flags & BPF_FIB_LOOKUP_TBID) {
6068 tbid = params->tbid;
6069 /* zero out for vlan output */
6070 params->tbid = 0;
6071 }
6072
6073 tb = ipv6_stub->fib6_get_table(net, tbid);
6074 if (unlikely(!tb))
6075 return BPF_FIB_LKUP_RET_NOT_FWDED;
6076
6077 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6078 strict);
6079 } else {
6080 fl6.flowi6_mark = 0;
6081 fl6.flowi6_secid = 0;
6082 fl6.flowi6_tun_key.tun_id = 0;
6083 fl6.flowi6_uid = sock_net_uid(net, NULL);
6084
6085 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6086 }
6087
6088 if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6089 res.f6i == net->ipv6.fib6_null_entry))
6090 return BPF_FIB_LKUP_RET_NOT_FWDED;
6091
6092 switch (res.fib6_type) {
6093 /* only unicast is forwarded */
6094 case RTN_UNICAST:
6095 break;
6096 case RTN_BLACKHOLE:
6097 return BPF_FIB_LKUP_RET_BLACKHOLE;
6098 case RTN_UNREACHABLE:
6099 return BPF_FIB_LKUP_RET_UNREACHABLE;
6100 case RTN_PROHIBIT:
6101 return BPF_FIB_LKUP_RET_PROHIBIT;
6102 default:
6103 return BPF_FIB_LKUP_RET_NOT_FWDED;
6104 }
6105
6106 ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6107 fl6.flowi6_oif != 0, NULL, strict);
6108
6109 if (check_mtu) {
6110 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6111 if (params->tot_len > mtu) {
6112 params->mtu_result = mtu; /* union with tot_len */
6113 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6114 }
6115 }
6116
6117 if (res.nh->fib_nh_lws)
6118 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6119
6120 if (res.nh->fib_nh_gw_family)
6121 *dst = res.nh->fib_nh_gw6;
6122
6123 dev = res.nh->fib_nh_dev;
6124 params->rt_metric = res.f6i->fib6_metric;
6125 params->ifindex = dev->ifindex;
6126
6127 if (flags & BPF_FIB_LOOKUP_SRC) {
6128 if (res.f6i->fib6_prefsrc.plen) {
6129 *src = res.f6i->fib6_prefsrc.addr;
6130 } else {
6131 err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6132 &fl6.daddr, 0,
6133 src);
6134 if (err)
6135 return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6136 }
6137 }
6138
6139 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6140 goto set_fwd_params;
6141
6142 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6143 * not needed here.
6144 */
6145 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6146 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6147 return BPF_FIB_LKUP_RET_NO_NEIGH;
6148 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6149 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6150
6151 set_fwd_params:
6152 return bpf_fib_set_fwd_params(params, mtu);
6153 }
6154 #endif
6155
6156 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6157 BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6158 BPF_FIB_LOOKUP_SRC)
6159
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6160 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6161 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6162 {
6163 if (plen < sizeof(*params))
6164 return -EINVAL;
6165
6166 if (flags & ~BPF_FIB_LOOKUP_MASK)
6167 return -EINVAL;
6168
6169 switch (params->family) {
6170 #if IS_ENABLED(CONFIG_INET)
6171 case AF_INET:
6172 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6173 flags, true);
6174 #endif
6175 #if IS_ENABLED(CONFIG_IPV6)
6176 case AF_INET6:
6177 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6178 flags, true);
6179 #endif
6180 }
6181 return -EAFNOSUPPORT;
6182 }
6183
6184 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6185 .func = bpf_xdp_fib_lookup,
6186 .gpl_only = true,
6187 .ret_type = RET_INTEGER,
6188 .arg1_type = ARG_PTR_TO_CTX,
6189 .arg2_type = ARG_PTR_TO_MEM,
6190 .arg3_type = ARG_CONST_SIZE,
6191 .arg4_type = ARG_ANYTHING,
6192 };
6193
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6194 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6195 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6196 {
6197 struct net *net = dev_net(skb->dev);
6198 int rc = -EAFNOSUPPORT;
6199 bool check_mtu = false;
6200
6201 if (plen < sizeof(*params))
6202 return -EINVAL;
6203
6204 if (flags & ~BPF_FIB_LOOKUP_MASK)
6205 return -EINVAL;
6206
6207 if (params->tot_len)
6208 check_mtu = true;
6209
6210 switch (params->family) {
6211 #if IS_ENABLED(CONFIG_INET)
6212 case AF_INET:
6213 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6214 break;
6215 #endif
6216 #if IS_ENABLED(CONFIG_IPV6)
6217 case AF_INET6:
6218 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6219 break;
6220 #endif
6221 }
6222
6223 if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6224 struct net_device *dev;
6225
6226 /* When tot_len isn't provided by user, check skb
6227 * against MTU of FIB lookup resulting net_device
6228 */
6229 dev = dev_get_by_index_rcu(net, params->ifindex);
6230 if (!is_skb_forwardable(dev, skb))
6231 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6232
6233 params->mtu_result = dev->mtu; /* union with tot_len */
6234 }
6235
6236 return rc;
6237 }
6238
6239 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6240 .func = bpf_skb_fib_lookup,
6241 .gpl_only = true,
6242 .ret_type = RET_INTEGER,
6243 .arg1_type = ARG_PTR_TO_CTX,
6244 .arg2_type = ARG_PTR_TO_MEM,
6245 .arg3_type = ARG_CONST_SIZE,
6246 .arg4_type = ARG_ANYTHING,
6247 };
6248
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6249 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6250 u32 ifindex)
6251 {
6252 struct net *netns = dev_net(dev_curr);
6253
6254 /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6255 if (ifindex == 0)
6256 return dev_curr;
6257
6258 return dev_get_by_index_rcu(netns, ifindex);
6259 }
6260
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6261 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6262 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6263 {
6264 int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6265 struct net_device *dev = skb->dev;
6266 int mtu, dev_len, skb_len;
6267
6268 if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6269 return -EINVAL;
6270 if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6271 return -EINVAL;
6272
6273 dev = __dev_via_ifindex(dev, ifindex);
6274 if (unlikely(!dev))
6275 return -ENODEV;
6276
6277 mtu = READ_ONCE(dev->mtu);
6278 dev_len = mtu + dev->hard_header_len;
6279
6280 /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6281 skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6282
6283 skb_len += len_diff; /* minus result pass check */
6284 if (skb_len <= dev_len) {
6285 ret = BPF_MTU_CHK_RET_SUCCESS;
6286 goto out;
6287 }
6288 /* At this point, skb->len exceed MTU, but as it include length of all
6289 * segments, it can still be below MTU. The SKB can possibly get
6290 * re-segmented in transmit path (see validate_xmit_skb). Thus, user
6291 * must choose if segs are to be MTU checked.
6292 */
6293 if (skb_is_gso(skb)) {
6294 ret = BPF_MTU_CHK_RET_SUCCESS;
6295 if (flags & BPF_MTU_CHK_SEGS &&
6296 !skb_gso_validate_network_len(skb, mtu))
6297 ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6298 }
6299 out:
6300 *mtu_len = mtu;
6301 return ret;
6302 }
6303
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6304 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6305 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6306 {
6307 struct net_device *dev = xdp->rxq->dev;
6308 int xdp_len = xdp->data_end - xdp->data;
6309 int ret = BPF_MTU_CHK_RET_SUCCESS;
6310 int mtu, dev_len;
6311
6312 /* XDP variant doesn't support multi-buffer segment check (yet) */
6313 if (unlikely(flags))
6314 return -EINVAL;
6315
6316 dev = __dev_via_ifindex(dev, ifindex);
6317 if (unlikely(!dev))
6318 return -ENODEV;
6319
6320 mtu = READ_ONCE(dev->mtu);
6321 dev_len = mtu + dev->hard_header_len;
6322
6323 /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6324 if (*mtu_len)
6325 xdp_len = *mtu_len + dev->hard_header_len;
6326
6327 xdp_len += len_diff; /* minus result pass check */
6328 if (xdp_len > dev_len)
6329 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6330
6331 *mtu_len = mtu;
6332 return ret;
6333 }
6334
6335 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6336 .func = bpf_skb_check_mtu,
6337 .gpl_only = true,
6338 .ret_type = RET_INTEGER,
6339 .arg1_type = ARG_PTR_TO_CTX,
6340 .arg2_type = ARG_ANYTHING,
6341 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6342 .arg3_size = sizeof(u32),
6343 .arg4_type = ARG_ANYTHING,
6344 .arg5_type = ARG_ANYTHING,
6345 };
6346
6347 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6348 .func = bpf_xdp_check_mtu,
6349 .gpl_only = true,
6350 .ret_type = RET_INTEGER,
6351 .arg1_type = ARG_PTR_TO_CTX,
6352 .arg2_type = ARG_ANYTHING,
6353 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6354 .arg3_size = sizeof(u32),
6355 .arg4_type = ARG_ANYTHING,
6356 .arg5_type = ARG_ANYTHING,
6357 };
6358
6359 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6360 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6361 {
6362 int err;
6363 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6364
6365 if (!seg6_validate_srh(srh, len, false))
6366 return -EINVAL;
6367
6368 switch (type) {
6369 case BPF_LWT_ENCAP_SEG6_INLINE:
6370 if (skb->protocol != htons(ETH_P_IPV6))
6371 return -EBADMSG;
6372
6373 err = seg6_do_srh_inline(skb, srh);
6374 break;
6375 case BPF_LWT_ENCAP_SEG6:
6376 skb_reset_inner_headers(skb);
6377 skb->encapsulation = 1;
6378 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6379 break;
6380 default:
6381 return -EINVAL;
6382 }
6383
6384 bpf_compute_data_pointers(skb);
6385 if (err)
6386 return err;
6387
6388 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6389
6390 return seg6_lookup_nexthop(skb, NULL, 0);
6391 }
6392 #endif /* CONFIG_IPV6_SEG6_BPF */
6393
6394 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6395 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6396 bool ingress)
6397 {
6398 return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6399 }
6400 #endif
6401
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6402 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6403 u32, len)
6404 {
6405 switch (type) {
6406 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6407 case BPF_LWT_ENCAP_SEG6:
6408 case BPF_LWT_ENCAP_SEG6_INLINE:
6409 return bpf_push_seg6_encap(skb, type, hdr, len);
6410 #endif
6411 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6412 case BPF_LWT_ENCAP_IP:
6413 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6414 #endif
6415 default:
6416 return -EINVAL;
6417 }
6418 }
6419
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6420 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6421 void *, hdr, u32, len)
6422 {
6423 switch (type) {
6424 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6425 case BPF_LWT_ENCAP_IP:
6426 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6427 #endif
6428 default:
6429 return -EINVAL;
6430 }
6431 }
6432
6433 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6434 .func = bpf_lwt_in_push_encap,
6435 .gpl_only = false,
6436 .ret_type = RET_INTEGER,
6437 .arg1_type = ARG_PTR_TO_CTX,
6438 .arg2_type = ARG_ANYTHING,
6439 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6440 .arg4_type = ARG_CONST_SIZE
6441 };
6442
6443 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6444 .func = bpf_lwt_xmit_push_encap,
6445 .gpl_only = false,
6446 .ret_type = RET_INTEGER,
6447 .arg1_type = ARG_PTR_TO_CTX,
6448 .arg2_type = ARG_ANYTHING,
6449 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6450 .arg4_type = ARG_CONST_SIZE
6451 };
6452
6453 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6454 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6455 const void *, from, u32, len)
6456 {
6457 struct seg6_bpf_srh_state *srh_state =
6458 this_cpu_ptr(&seg6_bpf_srh_states);
6459 struct ipv6_sr_hdr *srh = srh_state->srh;
6460 void *srh_tlvs, *srh_end, *ptr;
6461 int srhoff = 0;
6462
6463 if (srh == NULL)
6464 return -EINVAL;
6465
6466 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6467 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6468
6469 ptr = skb->data + offset;
6470 if (ptr >= srh_tlvs && ptr + len <= srh_end)
6471 srh_state->valid = false;
6472 else if (ptr < (void *)&srh->flags ||
6473 ptr + len > (void *)&srh->segments)
6474 return -EFAULT;
6475
6476 if (unlikely(bpf_try_make_writable(skb, offset + len)))
6477 return -EFAULT;
6478 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6479 return -EINVAL;
6480 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6481
6482 memcpy(skb->data + offset, from, len);
6483 return 0;
6484 }
6485
6486 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6487 .func = bpf_lwt_seg6_store_bytes,
6488 .gpl_only = false,
6489 .ret_type = RET_INTEGER,
6490 .arg1_type = ARG_PTR_TO_CTX,
6491 .arg2_type = ARG_ANYTHING,
6492 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6493 .arg4_type = ARG_CONST_SIZE
6494 };
6495
bpf_update_srh_state(struct sk_buff * skb)6496 static void bpf_update_srh_state(struct sk_buff *skb)
6497 {
6498 struct seg6_bpf_srh_state *srh_state =
6499 this_cpu_ptr(&seg6_bpf_srh_states);
6500 int srhoff = 0;
6501
6502 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6503 srh_state->srh = NULL;
6504 } else {
6505 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6506 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6507 srh_state->valid = true;
6508 }
6509 }
6510
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6511 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6512 u32, action, void *, param, u32, param_len)
6513 {
6514 struct seg6_bpf_srh_state *srh_state =
6515 this_cpu_ptr(&seg6_bpf_srh_states);
6516 int hdroff = 0;
6517 int err;
6518
6519 switch (action) {
6520 case SEG6_LOCAL_ACTION_END_X:
6521 if (!seg6_bpf_has_valid_srh(skb))
6522 return -EBADMSG;
6523 if (param_len != sizeof(struct in6_addr))
6524 return -EINVAL;
6525 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6526 case SEG6_LOCAL_ACTION_END_T:
6527 if (!seg6_bpf_has_valid_srh(skb))
6528 return -EBADMSG;
6529 if (param_len != sizeof(int))
6530 return -EINVAL;
6531 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6532 case SEG6_LOCAL_ACTION_END_DT6:
6533 if (!seg6_bpf_has_valid_srh(skb))
6534 return -EBADMSG;
6535 if (param_len != sizeof(int))
6536 return -EINVAL;
6537
6538 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6539 return -EBADMSG;
6540 if (!pskb_pull(skb, hdroff))
6541 return -EBADMSG;
6542
6543 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6544 skb_reset_network_header(skb);
6545 skb_reset_transport_header(skb);
6546 skb->encapsulation = 0;
6547
6548 bpf_compute_data_pointers(skb);
6549 bpf_update_srh_state(skb);
6550 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6551 case SEG6_LOCAL_ACTION_END_B6:
6552 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6553 return -EBADMSG;
6554 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6555 param, param_len);
6556 if (!err)
6557 bpf_update_srh_state(skb);
6558
6559 return err;
6560 case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6561 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6562 return -EBADMSG;
6563 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6564 param, param_len);
6565 if (!err)
6566 bpf_update_srh_state(skb);
6567
6568 return err;
6569 default:
6570 return -EINVAL;
6571 }
6572 }
6573
6574 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6575 .func = bpf_lwt_seg6_action,
6576 .gpl_only = false,
6577 .ret_type = RET_INTEGER,
6578 .arg1_type = ARG_PTR_TO_CTX,
6579 .arg2_type = ARG_ANYTHING,
6580 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6581 .arg4_type = ARG_CONST_SIZE
6582 };
6583
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6584 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6585 s32, len)
6586 {
6587 struct seg6_bpf_srh_state *srh_state =
6588 this_cpu_ptr(&seg6_bpf_srh_states);
6589 struct ipv6_sr_hdr *srh = srh_state->srh;
6590 void *srh_end, *srh_tlvs, *ptr;
6591 struct ipv6hdr *hdr;
6592 int srhoff = 0;
6593 int ret;
6594
6595 if (unlikely(srh == NULL))
6596 return -EINVAL;
6597
6598 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6599 ((srh->first_segment + 1) << 4));
6600 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6601 srh_state->hdrlen);
6602 ptr = skb->data + offset;
6603
6604 if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6605 return -EFAULT;
6606 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6607 return -EFAULT;
6608
6609 if (len > 0) {
6610 ret = skb_cow_head(skb, len);
6611 if (unlikely(ret < 0))
6612 return ret;
6613
6614 ret = bpf_skb_net_hdr_push(skb, offset, len);
6615 } else {
6616 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6617 }
6618
6619 bpf_compute_data_pointers(skb);
6620 if (unlikely(ret < 0))
6621 return ret;
6622
6623 hdr = (struct ipv6hdr *)skb->data;
6624 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6625
6626 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6627 return -EINVAL;
6628 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6629 srh_state->hdrlen += len;
6630 srh_state->valid = false;
6631 return 0;
6632 }
6633
6634 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6635 .func = bpf_lwt_seg6_adjust_srh,
6636 .gpl_only = false,
6637 .ret_type = RET_INTEGER,
6638 .arg1_type = ARG_PTR_TO_CTX,
6639 .arg2_type = ARG_ANYTHING,
6640 .arg3_type = ARG_ANYTHING,
6641 };
6642 #endif /* CONFIG_IPV6_SEG6_BPF */
6643
6644 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6645 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6646 int dif, int sdif, u8 family, u8 proto)
6647 {
6648 struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6649 bool refcounted = false;
6650 struct sock *sk = NULL;
6651
6652 if (family == AF_INET) {
6653 __be32 src4 = tuple->ipv4.saddr;
6654 __be32 dst4 = tuple->ipv4.daddr;
6655
6656 if (proto == IPPROTO_TCP)
6657 sk = __inet_lookup(net, hinfo, NULL, 0,
6658 src4, tuple->ipv4.sport,
6659 dst4, tuple->ipv4.dport,
6660 dif, sdif, &refcounted);
6661 else
6662 sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6663 dst4, tuple->ipv4.dport,
6664 dif, sdif, net->ipv4.udp_table, NULL);
6665 #if IS_ENABLED(CONFIG_IPV6)
6666 } else {
6667 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6668 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6669
6670 if (proto == IPPROTO_TCP)
6671 sk = __inet6_lookup(net, hinfo, NULL, 0,
6672 src6, tuple->ipv6.sport,
6673 dst6, ntohs(tuple->ipv6.dport),
6674 dif, sdif, &refcounted);
6675 else if (likely(ipv6_bpf_stub))
6676 sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6677 src6, tuple->ipv6.sport,
6678 dst6, tuple->ipv6.dport,
6679 dif, sdif,
6680 net->ipv4.udp_table, NULL);
6681 #endif
6682 }
6683
6684 if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6685 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6686 sk = NULL;
6687 }
6688 return sk;
6689 }
6690
6691 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6692 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6693 */
6694 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6695 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6696 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6697 u64 flags, int sdif)
6698 {
6699 struct sock *sk = NULL;
6700 struct net *net;
6701 u8 family;
6702
6703 if (len == sizeof(tuple->ipv4))
6704 family = AF_INET;
6705 else if (len == sizeof(tuple->ipv6))
6706 family = AF_INET6;
6707 else
6708 return NULL;
6709
6710 if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6711 goto out;
6712
6713 if (sdif < 0) {
6714 if (family == AF_INET)
6715 sdif = inet_sdif(skb);
6716 else
6717 sdif = inet6_sdif(skb);
6718 }
6719
6720 if ((s32)netns_id < 0) {
6721 net = caller_net;
6722 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6723 } else {
6724 net = get_net_ns_by_id(caller_net, netns_id);
6725 if (unlikely(!net))
6726 goto out;
6727 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6728 put_net(net);
6729 }
6730
6731 out:
6732 return sk;
6733 }
6734
6735 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6736 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6737 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6738 u64 flags, int sdif)
6739 {
6740 struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6741 ifindex, proto, netns_id, flags,
6742 sdif);
6743
6744 if (sk) {
6745 struct sock *sk2 = sk_to_full_sk(sk);
6746
6747 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6748 * sock refcnt is decremented to prevent a request_sock leak.
6749 */
6750 if (!sk_fullsock(sk2))
6751 sk2 = NULL;
6752 if (sk2 != sk) {
6753 sock_gen_put(sk);
6754 /* Ensure there is no need to bump sk2 refcnt */
6755 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6756 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6757 return NULL;
6758 }
6759 sk = sk2;
6760 }
6761 }
6762
6763 return sk;
6764 }
6765
6766 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6767 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6768 u8 proto, u64 netns_id, u64 flags)
6769 {
6770 struct net *caller_net;
6771 int ifindex;
6772
6773 if (skb->dev) {
6774 caller_net = dev_net(skb->dev);
6775 ifindex = skb->dev->ifindex;
6776 } else {
6777 caller_net = sock_net(skb->sk);
6778 ifindex = 0;
6779 }
6780
6781 return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6782 netns_id, flags, -1);
6783 }
6784
6785 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6786 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6787 u8 proto, u64 netns_id, u64 flags)
6788 {
6789 struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6790 flags);
6791
6792 if (sk) {
6793 struct sock *sk2 = sk_to_full_sk(sk);
6794
6795 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6796 * sock refcnt is decremented to prevent a request_sock leak.
6797 */
6798 if (!sk_fullsock(sk2))
6799 sk2 = NULL;
6800 if (sk2 != sk) {
6801 sock_gen_put(sk);
6802 /* Ensure there is no need to bump sk2 refcnt */
6803 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6804 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6805 return NULL;
6806 }
6807 sk = sk2;
6808 }
6809 }
6810
6811 return sk;
6812 }
6813
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6814 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6815 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6816 {
6817 return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6818 netns_id, flags);
6819 }
6820
6821 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6822 .func = bpf_skc_lookup_tcp,
6823 .gpl_only = false,
6824 .pkt_access = true,
6825 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6826 .arg1_type = ARG_PTR_TO_CTX,
6827 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6828 .arg3_type = ARG_CONST_SIZE,
6829 .arg4_type = ARG_ANYTHING,
6830 .arg5_type = ARG_ANYTHING,
6831 };
6832
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6833 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6834 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6835 {
6836 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6837 netns_id, flags);
6838 }
6839
6840 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6841 .func = bpf_sk_lookup_tcp,
6842 .gpl_only = false,
6843 .pkt_access = true,
6844 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6845 .arg1_type = ARG_PTR_TO_CTX,
6846 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6847 .arg3_type = ARG_CONST_SIZE,
6848 .arg4_type = ARG_ANYTHING,
6849 .arg5_type = ARG_ANYTHING,
6850 };
6851
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6852 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6853 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6854 {
6855 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6856 netns_id, flags);
6857 }
6858
6859 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6860 .func = bpf_sk_lookup_udp,
6861 .gpl_only = false,
6862 .pkt_access = true,
6863 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6864 .arg1_type = ARG_PTR_TO_CTX,
6865 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6866 .arg3_type = ARG_CONST_SIZE,
6867 .arg4_type = ARG_ANYTHING,
6868 .arg5_type = ARG_ANYTHING,
6869 };
6870
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6871 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6872 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6873 {
6874 struct net_device *dev = skb->dev;
6875 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6876 struct net *caller_net = dev_net(dev);
6877
6878 return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6879 ifindex, IPPROTO_TCP, netns_id,
6880 flags, sdif);
6881 }
6882
6883 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6884 .func = bpf_tc_skc_lookup_tcp,
6885 .gpl_only = false,
6886 .pkt_access = true,
6887 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6888 .arg1_type = ARG_PTR_TO_CTX,
6889 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6890 .arg3_type = ARG_CONST_SIZE,
6891 .arg4_type = ARG_ANYTHING,
6892 .arg5_type = ARG_ANYTHING,
6893 };
6894
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6895 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6896 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6897 {
6898 struct net_device *dev = skb->dev;
6899 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6900 struct net *caller_net = dev_net(dev);
6901
6902 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6903 ifindex, IPPROTO_TCP, netns_id,
6904 flags, sdif);
6905 }
6906
6907 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6908 .func = bpf_tc_sk_lookup_tcp,
6909 .gpl_only = false,
6910 .pkt_access = true,
6911 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6912 .arg1_type = ARG_PTR_TO_CTX,
6913 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6914 .arg3_type = ARG_CONST_SIZE,
6915 .arg4_type = ARG_ANYTHING,
6916 .arg5_type = ARG_ANYTHING,
6917 };
6918
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6919 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6920 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6921 {
6922 struct net_device *dev = skb->dev;
6923 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6924 struct net *caller_net = dev_net(dev);
6925
6926 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6927 ifindex, IPPROTO_UDP, netns_id,
6928 flags, sdif);
6929 }
6930
6931 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6932 .func = bpf_tc_sk_lookup_udp,
6933 .gpl_only = false,
6934 .pkt_access = true,
6935 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6936 .arg1_type = ARG_PTR_TO_CTX,
6937 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6938 .arg3_type = ARG_CONST_SIZE,
6939 .arg4_type = ARG_ANYTHING,
6940 .arg5_type = ARG_ANYTHING,
6941 };
6942
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6943 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6944 {
6945 if (sk && sk_is_refcounted(sk))
6946 sock_gen_put(sk);
6947 return 0;
6948 }
6949
6950 static const struct bpf_func_proto bpf_sk_release_proto = {
6951 .func = bpf_sk_release,
6952 .gpl_only = false,
6953 .ret_type = RET_INTEGER,
6954 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6955 };
6956
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6957 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6958 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6959 {
6960 struct net_device *dev = ctx->rxq->dev;
6961 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6962 struct net *caller_net = dev_net(dev);
6963
6964 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6965 ifindex, IPPROTO_UDP, netns_id,
6966 flags, sdif);
6967 }
6968
6969 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6970 .func = bpf_xdp_sk_lookup_udp,
6971 .gpl_only = false,
6972 .pkt_access = true,
6973 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6974 .arg1_type = ARG_PTR_TO_CTX,
6975 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6976 .arg3_type = ARG_CONST_SIZE,
6977 .arg4_type = ARG_ANYTHING,
6978 .arg5_type = ARG_ANYTHING,
6979 };
6980
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6981 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6982 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6983 {
6984 struct net_device *dev = ctx->rxq->dev;
6985 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6986 struct net *caller_net = dev_net(dev);
6987
6988 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6989 ifindex, IPPROTO_TCP, netns_id,
6990 flags, sdif);
6991 }
6992
6993 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6994 .func = bpf_xdp_skc_lookup_tcp,
6995 .gpl_only = false,
6996 .pkt_access = true,
6997 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6998 .arg1_type = ARG_PTR_TO_CTX,
6999 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7000 .arg3_type = ARG_CONST_SIZE,
7001 .arg4_type = ARG_ANYTHING,
7002 .arg5_type = ARG_ANYTHING,
7003 };
7004
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7005 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
7006 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7007 {
7008 struct net_device *dev = ctx->rxq->dev;
7009 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7010 struct net *caller_net = dev_net(dev);
7011
7012 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7013 ifindex, IPPROTO_TCP, netns_id,
7014 flags, sdif);
7015 }
7016
7017 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7018 .func = bpf_xdp_sk_lookup_tcp,
7019 .gpl_only = false,
7020 .pkt_access = true,
7021 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7022 .arg1_type = ARG_PTR_TO_CTX,
7023 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7024 .arg3_type = ARG_CONST_SIZE,
7025 .arg4_type = ARG_ANYTHING,
7026 .arg5_type = ARG_ANYTHING,
7027 };
7028
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7029 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7030 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7031 {
7032 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7033 sock_net(ctx->sk), 0,
7034 IPPROTO_TCP, netns_id, flags,
7035 -1);
7036 }
7037
7038 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7039 .func = bpf_sock_addr_skc_lookup_tcp,
7040 .gpl_only = false,
7041 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7042 .arg1_type = ARG_PTR_TO_CTX,
7043 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7044 .arg3_type = ARG_CONST_SIZE,
7045 .arg4_type = ARG_ANYTHING,
7046 .arg5_type = ARG_ANYTHING,
7047 };
7048
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7049 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7050 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7051 {
7052 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7053 sock_net(ctx->sk), 0, IPPROTO_TCP,
7054 netns_id, flags, -1);
7055 }
7056
7057 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7058 .func = bpf_sock_addr_sk_lookup_tcp,
7059 .gpl_only = false,
7060 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7061 .arg1_type = ARG_PTR_TO_CTX,
7062 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7063 .arg3_type = ARG_CONST_SIZE,
7064 .arg4_type = ARG_ANYTHING,
7065 .arg5_type = ARG_ANYTHING,
7066 };
7067
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7068 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7069 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7070 {
7071 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7072 sock_net(ctx->sk), 0, IPPROTO_UDP,
7073 netns_id, flags, -1);
7074 }
7075
7076 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7077 .func = bpf_sock_addr_sk_lookup_udp,
7078 .gpl_only = false,
7079 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7080 .arg1_type = ARG_PTR_TO_CTX,
7081 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7082 .arg3_type = ARG_CONST_SIZE,
7083 .arg4_type = ARG_ANYTHING,
7084 .arg5_type = ARG_ANYTHING,
7085 };
7086
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7087 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7088 struct bpf_insn_access_aux *info)
7089 {
7090 if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7091 icsk_retransmits))
7092 return false;
7093
7094 if (off % size != 0)
7095 return false;
7096
7097 switch (off) {
7098 case offsetof(struct bpf_tcp_sock, bytes_received):
7099 case offsetof(struct bpf_tcp_sock, bytes_acked):
7100 return size == sizeof(__u64);
7101 default:
7102 return size == sizeof(__u32);
7103 }
7104 }
7105
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7106 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7107 const struct bpf_insn *si,
7108 struct bpf_insn *insn_buf,
7109 struct bpf_prog *prog, u32 *target_size)
7110 {
7111 struct bpf_insn *insn = insn_buf;
7112
7113 #define BPF_TCP_SOCK_GET_COMMON(FIELD) \
7114 do { \
7115 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \
7116 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7117 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7118 si->dst_reg, si->src_reg, \
7119 offsetof(struct tcp_sock, FIELD)); \
7120 } while (0)
7121
7122 #define BPF_INET_SOCK_GET_COMMON(FIELD) \
7123 do { \
7124 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \
7125 FIELD) > \
7126 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7127 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
7128 struct inet_connection_sock, \
7129 FIELD), \
7130 si->dst_reg, si->src_reg, \
7131 offsetof( \
7132 struct inet_connection_sock, \
7133 FIELD)); \
7134 } while (0)
7135
7136 BTF_TYPE_EMIT(struct bpf_tcp_sock);
7137
7138 switch (si->off) {
7139 case offsetof(struct bpf_tcp_sock, rtt_min):
7140 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7141 sizeof(struct minmax));
7142 BUILD_BUG_ON(sizeof(struct minmax) <
7143 sizeof(struct minmax_sample));
7144
7145 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7146 offsetof(struct tcp_sock, rtt_min) +
7147 offsetof(struct minmax_sample, v));
7148 break;
7149 case offsetof(struct bpf_tcp_sock, snd_cwnd):
7150 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7151 break;
7152 case offsetof(struct bpf_tcp_sock, srtt_us):
7153 BPF_TCP_SOCK_GET_COMMON(srtt_us);
7154 break;
7155 case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7156 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7157 break;
7158 case offsetof(struct bpf_tcp_sock, rcv_nxt):
7159 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7160 break;
7161 case offsetof(struct bpf_tcp_sock, snd_nxt):
7162 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7163 break;
7164 case offsetof(struct bpf_tcp_sock, snd_una):
7165 BPF_TCP_SOCK_GET_COMMON(snd_una);
7166 break;
7167 case offsetof(struct bpf_tcp_sock, mss_cache):
7168 BPF_TCP_SOCK_GET_COMMON(mss_cache);
7169 break;
7170 case offsetof(struct bpf_tcp_sock, ecn_flags):
7171 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7172 break;
7173 case offsetof(struct bpf_tcp_sock, rate_delivered):
7174 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7175 break;
7176 case offsetof(struct bpf_tcp_sock, rate_interval_us):
7177 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7178 break;
7179 case offsetof(struct bpf_tcp_sock, packets_out):
7180 BPF_TCP_SOCK_GET_COMMON(packets_out);
7181 break;
7182 case offsetof(struct bpf_tcp_sock, retrans_out):
7183 BPF_TCP_SOCK_GET_COMMON(retrans_out);
7184 break;
7185 case offsetof(struct bpf_tcp_sock, total_retrans):
7186 BPF_TCP_SOCK_GET_COMMON(total_retrans);
7187 break;
7188 case offsetof(struct bpf_tcp_sock, segs_in):
7189 BPF_TCP_SOCK_GET_COMMON(segs_in);
7190 break;
7191 case offsetof(struct bpf_tcp_sock, data_segs_in):
7192 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7193 break;
7194 case offsetof(struct bpf_tcp_sock, segs_out):
7195 BPF_TCP_SOCK_GET_COMMON(segs_out);
7196 break;
7197 case offsetof(struct bpf_tcp_sock, data_segs_out):
7198 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7199 break;
7200 case offsetof(struct bpf_tcp_sock, lost_out):
7201 BPF_TCP_SOCK_GET_COMMON(lost_out);
7202 break;
7203 case offsetof(struct bpf_tcp_sock, sacked_out):
7204 BPF_TCP_SOCK_GET_COMMON(sacked_out);
7205 break;
7206 case offsetof(struct bpf_tcp_sock, bytes_received):
7207 BPF_TCP_SOCK_GET_COMMON(bytes_received);
7208 break;
7209 case offsetof(struct bpf_tcp_sock, bytes_acked):
7210 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7211 break;
7212 case offsetof(struct bpf_tcp_sock, dsack_dups):
7213 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7214 break;
7215 case offsetof(struct bpf_tcp_sock, delivered):
7216 BPF_TCP_SOCK_GET_COMMON(delivered);
7217 break;
7218 case offsetof(struct bpf_tcp_sock, delivered_ce):
7219 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7220 break;
7221 case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7222 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7223 break;
7224 }
7225
7226 return insn - insn_buf;
7227 }
7228
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7229 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7230 {
7231 if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7232 return (unsigned long)sk;
7233
7234 return (unsigned long)NULL;
7235 }
7236
7237 const struct bpf_func_proto bpf_tcp_sock_proto = {
7238 .func = bpf_tcp_sock,
7239 .gpl_only = false,
7240 .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL,
7241 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7242 };
7243
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7244 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7245 {
7246 sk = sk_to_full_sk(sk);
7247
7248 if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7249 return (unsigned long)sk;
7250
7251 return (unsigned long)NULL;
7252 }
7253
7254 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7255 .func = bpf_get_listener_sock,
7256 .gpl_only = false,
7257 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7258 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7259 };
7260
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7261 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7262 {
7263 unsigned int iphdr_len;
7264
7265 switch (skb_protocol(skb, true)) {
7266 case cpu_to_be16(ETH_P_IP):
7267 iphdr_len = sizeof(struct iphdr);
7268 break;
7269 case cpu_to_be16(ETH_P_IPV6):
7270 iphdr_len = sizeof(struct ipv6hdr);
7271 break;
7272 default:
7273 return 0;
7274 }
7275
7276 if (skb_headlen(skb) < iphdr_len)
7277 return 0;
7278
7279 if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7280 return 0;
7281
7282 return INET_ECN_set_ce(skb);
7283 }
7284
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7285 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7286 struct bpf_insn_access_aux *info)
7287 {
7288 if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7289 return false;
7290
7291 if (off % size != 0)
7292 return false;
7293
7294 switch (off) {
7295 default:
7296 return size == sizeof(__u32);
7297 }
7298 }
7299
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7300 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7301 const struct bpf_insn *si,
7302 struct bpf_insn *insn_buf,
7303 struct bpf_prog *prog, u32 *target_size)
7304 {
7305 struct bpf_insn *insn = insn_buf;
7306
7307 #define BPF_XDP_SOCK_GET(FIELD) \
7308 do { \
7309 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \
7310 sizeof_field(struct bpf_xdp_sock, FIELD)); \
7311 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7312 si->dst_reg, si->src_reg, \
7313 offsetof(struct xdp_sock, FIELD)); \
7314 } while (0)
7315
7316 switch (si->off) {
7317 case offsetof(struct bpf_xdp_sock, queue_id):
7318 BPF_XDP_SOCK_GET(queue_id);
7319 break;
7320 }
7321
7322 return insn - insn_buf;
7323 }
7324
7325 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7326 .func = bpf_skb_ecn_set_ce,
7327 .gpl_only = false,
7328 .ret_type = RET_INTEGER,
7329 .arg1_type = ARG_PTR_TO_CTX,
7330 };
7331
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7332 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7333 struct tcphdr *, th, u32, th_len)
7334 {
7335 #ifdef CONFIG_SYN_COOKIES
7336 u32 cookie;
7337 int ret;
7338
7339 if (unlikely(!sk || th_len < sizeof(*th)))
7340 return -EINVAL;
7341
7342 /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7343 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7344 return -EINVAL;
7345
7346 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7347 return -EINVAL;
7348
7349 if (!th->ack || th->rst || th->syn)
7350 return -ENOENT;
7351
7352 if (unlikely(iph_len < sizeof(struct iphdr)))
7353 return -EINVAL;
7354
7355 if (tcp_synq_no_recent_overflow(sk))
7356 return -ENOENT;
7357
7358 cookie = ntohl(th->ack_seq) - 1;
7359
7360 /* Both struct iphdr and struct ipv6hdr have the version field at the
7361 * same offset so we can cast to the shorter header (struct iphdr).
7362 */
7363 switch (((struct iphdr *)iph)->version) {
7364 case 4:
7365 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7366 return -EINVAL;
7367
7368 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7369 break;
7370
7371 #if IS_BUILTIN(CONFIG_IPV6)
7372 case 6:
7373 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7374 return -EINVAL;
7375
7376 if (sk->sk_family != AF_INET6)
7377 return -EINVAL;
7378
7379 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7380 break;
7381 #endif /* CONFIG_IPV6 */
7382
7383 default:
7384 return -EPROTONOSUPPORT;
7385 }
7386
7387 if (ret > 0)
7388 return 0;
7389
7390 return -ENOENT;
7391 #else
7392 return -ENOTSUPP;
7393 #endif
7394 }
7395
7396 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7397 .func = bpf_tcp_check_syncookie,
7398 .gpl_only = true,
7399 .pkt_access = true,
7400 .ret_type = RET_INTEGER,
7401 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7402 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7403 .arg3_type = ARG_CONST_SIZE,
7404 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7405 .arg5_type = ARG_CONST_SIZE,
7406 };
7407
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7408 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7409 struct tcphdr *, th, u32, th_len)
7410 {
7411 #ifdef CONFIG_SYN_COOKIES
7412 u32 cookie;
7413 u16 mss;
7414
7415 if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7416 return -EINVAL;
7417
7418 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7419 return -EINVAL;
7420
7421 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7422 return -ENOENT;
7423
7424 if (!th->syn || th->ack || th->fin || th->rst)
7425 return -EINVAL;
7426
7427 if (unlikely(iph_len < sizeof(struct iphdr)))
7428 return -EINVAL;
7429
7430 /* Both struct iphdr and struct ipv6hdr have the version field at the
7431 * same offset so we can cast to the shorter header (struct iphdr).
7432 */
7433 switch (((struct iphdr *)iph)->version) {
7434 case 4:
7435 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7436 return -EINVAL;
7437
7438 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7439 break;
7440
7441 #if IS_BUILTIN(CONFIG_IPV6)
7442 case 6:
7443 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7444 return -EINVAL;
7445
7446 if (sk->sk_family != AF_INET6)
7447 return -EINVAL;
7448
7449 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7450 break;
7451 #endif /* CONFIG_IPV6 */
7452
7453 default:
7454 return -EPROTONOSUPPORT;
7455 }
7456 if (mss == 0)
7457 return -ENOENT;
7458
7459 return cookie | ((u64)mss << 32);
7460 #else
7461 return -EOPNOTSUPP;
7462 #endif /* CONFIG_SYN_COOKIES */
7463 }
7464
7465 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7466 .func = bpf_tcp_gen_syncookie,
7467 .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */
7468 .pkt_access = true,
7469 .ret_type = RET_INTEGER,
7470 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7471 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7472 .arg3_type = ARG_CONST_SIZE,
7473 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7474 .arg5_type = ARG_CONST_SIZE,
7475 };
7476
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7477 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7478 {
7479 if (!sk || flags != 0)
7480 return -EINVAL;
7481 if (!skb_at_tc_ingress(skb))
7482 return -EOPNOTSUPP;
7483 if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7484 return -ENETUNREACH;
7485 if (sk_unhashed(sk))
7486 return -EOPNOTSUPP;
7487 if (sk_is_refcounted(sk) &&
7488 unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7489 return -ENOENT;
7490
7491 skb_orphan(skb);
7492 skb->sk = sk;
7493 skb->destructor = sock_pfree;
7494
7495 return 0;
7496 }
7497
7498 static const struct bpf_func_proto bpf_sk_assign_proto = {
7499 .func = bpf_sk_assign,
7500 .gpl_only = false,
7501 .ret_type = RET_INTEGER,
7502 .arg1_type = ARG_PTR_TO_CTX,
7503 .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7504 .arg3_type = ARG_ANYTHING,
7505 };
7506
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7507 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7508 u8 search_kind, const u8 *magic,
7509 u8 magic_len, bool *eol)
7510 {
7511 u8 kind, kind_len;
7512
7513 *eol = false;
7514
7515 while (op < opend) {
7516 kind = op[0];
7517
7518 if (kind == TCPOPT_EOL) {
7519 *eol = true;
7520 return ERR_PTR(-ENOMSG);
7521 } else if (kind == TCPOPT_NOP) {
7522 op++;
7523 continue;
7524 }
7525
7526 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7527 /* Something is wrong in the received header.
7528 * Follow the TCP stack's tcp_parse_options()
7529 * and just bail here.
7530 */
7531 return ERR_PTR(-EFAULT);
7532
7533 kind_len = op[1];
7534 if (search_kind == kind) {
7535 if (!magic_len)
7536 return op;
7537
7538 if (magic_len > kind_len - 2)
7539 return ERR_PTR(-ENOMSG);
7540
7541 if (!memcmp(&op[2], magic, magic_len))
7542 return op;
7543 }
7544
7545 op += kind_len;
7546 }
7547
7548 return ERR_PTR(-ENOMSG);
7549 }
7550
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7551 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7552 void *, search_res, u32, len, u64, flags)
7553 {
7554 bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7555 const u8 *op, *opend, *magic, *search = search_res;
7556 u8 search_kind, search_len, copy_len, magic_len;
7557 int ret;
7558
7559 /* 2 byte is the minimal option len except TCPOPT_NOP and
7560 * TCPOPT_EOL which are useless for the bpf prog to learn
7561 * and this helper disallow loading them also.
7562 */
7563 if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7564 return -EINVAL;
7565
7566 search_kind = search[0];
7567 search_len = search[1];
7568
7569 if (search_len > len || search_kind == TCPOPT_NOP ||
7570 search_kind == TCPOPT_EOL)
7571 return -EINVAL;
7572
7573 if (search_kind == TCPOPT_EXP || search_kind == 253) {
7574 /* 16 or 32 bit magic. +2 for kind and kind length */
7575 if (search_len != 4 && search_len != 6)
7576 return -EINVAL;
7577 magic = &search[2];
7578 magic_len = search_len - 2;
7579 } else {
7580 if (search_len)
7581 return -EINVAL;
7582 magic = NULL;
7583 magic_len = 0;
7584 }
7585
7586 if (load_syn) {
7587 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7588 if (ret < 0)
7589 return ret;
7590
7591 opend = op + ret;
7592 op += sizeof(struct tcphdr);
7593 } else {
7594 if (!bpf_sock->skb ||
7595 bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7596 /* This bpf_sock->op cannot call this helper */
7597 return -EPERM;
7598
7599 opend = bpf_sock->skb_data_end;
7600 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7601 }
7602
7603 op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7604 &eol);
7605 if (IS_ERR(op))
7606 return PTR_ERR(op);
7607
7608 copy_len = op[1];
7609 ret = copy_len;
7610 if (copy_len > len) {
7611 ret = -ENOSPC;
7612 copy_len = len;
7613 }
7614
7615 memcpy(search_res, op, copy_len);
7616 return ret;
7617 }
7618
7619 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7620 .func = bpf_sock_ops_load_hdr_opt,
7621 .gpl_only = false,
7622 .ret_type = RET_INTEGER,
7623 .arg1_type = ARG_PTR_TO_CTX,
7624 .arg2_type = ARG_PTR_TO_MEM | MEM_WRITE,
7625 .arg3_type = ARG_CONST_SIZE,
7626 .arg4_type = ARG_ANYTHING,
7627 };
7628
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7629 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7630 const void *, from, u32, len, u64, flags)
7631 {
7632 u8 new_kind, new_kind_len, magic_len = 0, *opend;
7633 const u8 *op, *new_op, *magic = NULL;
7634 struct sk_buff *skb;
7635 bool eol;
7636
7637 if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7638 return -EPERM;
7639
7640 if (len < 2 || flags)
7641 return -EINVAL;
7642
7643 new_op = from;
7644 new_kind = new_op[0];
7645 new_kind_len = new_op[1];
7646
7647 if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7648 new_kind == TCPOPT_EOL)
7649 return -EINVAL;
7650
7651 if (new_kind_len > bpf_sock->remaining_opt_len)
7652 return -ENOSPC;
7653
7654 /* 253 is another experimental kind */
7655 if (new_kind == TCPOPT_EXP || new_kind == 253) {
7656 if (new_kind_len < 4)
7657 return -EINVAL;
7658 /* Match for the 2 byte magic also.
7659 * RFC 6994: the magic could be 2 or 4 bytes.
7660 * Hence, matching by 2 byte only is on the
7661 * conservative side but it is the right
7662 * thing to do for the 'search-for-duplication'
7663 * purpose.
7664 */
7665 magic = &new_op[2];
7666 magic_len = 2;
7667 }
7668
7669 /* Check for duplication */
7670 skb = bpf_sock->skb;
7671 op = skb->data + sizeof(struct tcphdr);
7672 opend = bpf_sock->skb_data_end;
7673
7674 op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7675 &eol);
7676 if (!IS_ERR(op))
7677 return -EEXIST;
7678
7679 if (PTR_ERR(op) != -ENOMSG)
7680 return PTR_ERR(op);
7681
7682 if (eol)
7683 /* The option has been ended. Treat it as no more
7684 * header option can be written.
7685 */
7686 return -ENOSPC;
7687
7688 /* No duplication found. Store the header option. */
7689 memcpy(opend, from, new_kind_len);
7690
7691 bpf_sock->remaining_opt_len -= new_kind_len;
7692 bpf_sock->skb_data_end += new_kind_len;
7693
7694 return 0;
7695 }
7696
7697 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7698 .func = bpf_sock_ops_store_hdr_opt,
7699 .gpl_only = false,
7700 .ret_type = RET_INTEGER,
7701 .arg1_type = ARG_PTR_TO_CTX,
7702 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7703 .arg3_type = ARG_CONST_SIZE,
7704 .arg4_type = ARG_ANYTHING,
7705 };
7706
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7707 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7708 u32, len, u64, flags)
7709 {
7710 if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7711 return -EPERM;
7712
7713 if (flags || len < 2)
7714 return -EINVAL;
7715
7716 if (len > bpf_sock->remaining_opt_len)
7717 return -ENOSPC;
7718
7719 bpf_sock->remaining_opt_len -= len;
7720
7721 return 0;
7722 }
7723
7724 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7725 .func = bpf_sock_ops_reserve_hdr_opt,
7726 .gpl_only = false,
7727 .ret_type = RET_INTEGER,
7728 .arg1_type = ARG_PTR_TO_CTX,
7729 .arg2_type = ARG_ANYTHING,
7730 .arg3_type = ARG_ANYTHING,
7731 };
7732
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7733 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7734 u64, tstamp, u32, tstamp_type)
7735 {
7736 /* skb_clear_delivery_time() is done for inet protocol */
7737 if (skb->protocol != htons(ETH_P_IP) &&
7738 skb->protocol != htons(ETH_P_IPV6))
7739 return -EOPNOTSUPP;
7740
7741 switch (tstamp_type) {
7742 case BPF_SKB_TSTAMP_DELIVERY_MONO:
7743 if (!tstamp)
7744 return -EINVAL;
7745 skb->tstamp = tstamp;
7746 skb->tstamp_type = SKB_CLOCK_MONOTONIC;
7747 break;
7748 case BPF_SKB_TSTAMP_UNSPEC:
7749 if (tstamp)
7750 return -EINVAL;
7751 skb->tstamp = 0;
7752 skb->tstamp_type = SKB_CLOCK_REALTIME;
7753 break;
7754 default:
7755 return -EINVAL;
7756 }
7757
7758 return 0;
7759 }
7760
7761 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7762 .func = bpf_skb_set_tstamp,
7763 .gpl_only = false,
7764 .ret_type = RET_INTEGER,
7765 .arg1_type = ARG_PTR_TO_CTX,
7766 .arg2_type = ARG_ANYTHING,
7767 .arg3_type = ARG_ANYTHING,
7768 };
7769
7770 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7771 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7772 struct tcphdr *, th, u32, th_len)
7773 {
7774 u32 cookie;
7775 u16 mss;
7776
7777 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7778 return -EINVAL;
7779
7780 mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7781 cookie = __cookie_v4_init_sequence(iph, th, &mss);
7782
7783 return cookie | ((u64)mss << 32);
7784 }
7785
7786 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7787 .func = bpf_tcp_raw_gen_syncookie_ipv4,
7788 .gpl_only = true, /* __cookie_v4_init_sequence() is GPL */
7789 .pkt_access = true,
7790 .ret_type = RET_INTEGER,
7791 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7792 .arg1_size = sizeof(struct iphdr),
7793 .arg2_type = ARG_PTR_TO_MEM,
7794 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7795 };
7796
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7797 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7798 struct tcphdr *, th, u32, th_len)
7799 {
7800 #if IS_BUILTIN(CONFIG_IPV6)
7801 const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7802 sizeof(struct ipv6hdr);
7803 u32 cookie;
7804 u16 mss;
7805
7806 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7807 return -EINVAL;
7808
7809 mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7810 cookie = __cookie_v6_init_sequence(iph, th, &mss);
7811
7812 return cookie | ((u64)mss << 32);
7813 #else
7814 return -EPROTONOSUPPORT;
7815 #endif
7816 }
7817
7818 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7819 .func = bpf_tcp_raw_gen_syncookie_ipv6,
7820 .gpl_only = true, /* __cookie_v6_init_sequence() is GPL */
7821 .pkt_access = true,
7822 .ret_type = RET_INTEGER,
7823 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7824 .arg1_size = sizeof(struct ipv6hdr),
7825 .arg2_type = ARG_PTR_TO_MEM,
7826 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7827 };
7828
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7829 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7830 struct tcphdr *, th)
7831 {
7832 u32 cookie = ntohl(th->ack_seq) - 1;
7833
7834 if (__cookie_v4_check(iph, th, cookie) > 0)
7835 return 0;
7836
7837 return -EACCES;
7838 }
7839
7840 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7841 .func = bpf_tcp_raw_check_syncookie_ipv4,
7842 .gpl_only = true, /* __cookie_v4_check is GPL */
7843 .pkt_access = true,
7844 .ret_type = RET_INTEGER,
7845 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7846 .arg1_size = sizeof(struct iphdr),
7847 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7848 .arg2_size = sizeof(struct tcphdr),
7849 };
7850
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7851 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7852 struct tcphdr *, th)
7853 {
7854 #if IS_BUILTIN(CONFIG_IPV6)
7855 u32 cookie = ntohl(th->ack_seq) - 1;
7856
7857 if (__cookie_v6_check(iph, th, cookie) > 0)
7858 return 0;
7859
7860 return -EACCES;
7861 #else
7862 return -EPROTONOSUPPORT;
7863 #endif
7864 }
7865
7866 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7867 .func = bpf_tcp_raw_check_syncookie_ipv6,
7868 .gpl_only = true, /* __cookie_v6_check is GPL */
7869 .pkt_access = true,
7870 .ret_type = RET_INTEGER,
7871 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7872 .arg1_size = sizeof(struct ipv6hdr),
7873 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7874 .arg2_size = sizeof(struct tcphdr),
7875 };
7876 #endif /* CONFIG_SYN_COOKIES */
7877
7878 #endif /* CONFIG_INET */
7879
bpf_helper_changes_pkt_data(enum bpf_func_id func_id)7880 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
7881 {
7882 switch (func_id) {
7883 case BPF_FUNC_clone_redirect:
7884 case BPF_FUNC_l3_csum_replace:
7885 case BPF_FUNC_l4_csum_replace:
7886 case BPF_FUNC_lwt_push_encap:
7887 case BPF_FUNC_lwt_seg6_action:
7888 case BPF_FUNC_lwt_seg6_adjust_srh:
7889 case BPF_FUNC_lwt_seg6_store_bytes:
7890 case BPF_FUNC_msg_pop_data:
7891 case BPF_FUNC_msg_pull_data:
7892 case BPF_FUNC_msg_push_data:
7893 case BPF_FUNC_skb_adjust_room:
7894 case BPF_FUNC_skb_change_head:
7895 case BPF_FUNC_skb_change_proto:
7896 case BPF_FUNC_skb_change_tail:
7897 case BPF_FUNC_skb_pull_data:
7898 case BPF_FUNC_skb_store_bytes:
7899 case BPF_FUNC_skb_vlan_pop:
7900 case BPF_FUNC_skb_vlan_push:
7901 case BPF_FUNC_store_hdr_opt:
7902 case BPF_FUNC_xdp_adjust_head:
7903 case BPF_FUNC_xdp_adjust_meta:
7904 case BPF_FUNC_xdp_adjust_tail:
7905 /* tail-called program could call any of the above */
7906 case BPF_FUNC_tail_call:
7907 return true;
7908 default:
7909 return false;
7910 }
7911 }
7912
7913 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7914 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7915
7916 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7917 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7918 {
7919 const struct bpf_func_proto *func_proto;
7920
7921 func_proto = cgroup_common_func_proto(func_id, prog);
7922 if (func_proto)
7923 return func_proto;
7924
7925 func_proto = cgroup_current_func_proto(func_id, prog);
7926 if (func_proto)
7927 return func_proto;
7928
7929 switch (func_id) {
7930 case BPF_FUNC_get_socket_cookie:
7931 return &bpf_get_socket_cookie_sock_proto;
7932 case BPF_FUNC_get_netns_cookie:
7933 return &bpf_get_netns_cookie_sock_proto;
7934 case BPF_FUNC_perf_event_output:
7935 return &bpf_event_output_data_proto;
7936 case BPF_FUNC_sk_storage_get:
7937 return &bpf_sk_storage_get_cg_sock_proto;
7938 case BPF_FUNC_ktime_get_coarse_ns:
7939 return &bpf_ktime_get_coarse_ns_proto;
7940 default:
7941 return bpf_base_func_proto(func_id);
7942 }
7943 }
7944
7945 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7946 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7947 {
7948 const struct bpf_func_proto *func_proto;
7949
7950 func_proto = cgroup_common_func_proto(func_id, prog);
7951 if (func_proto)
7952 return func_proto;
7953
7954 func_proto = cgroup_current_func_proto(func_id, prog);
7955 if (func_proto)
7956 return func_proto;
7957
7958 switch (func_id) {
7959 case BPF_FUNC_bind:
7960 switch (prog->expected_attach_type) {
7961 case BPF_CGROUP_INET4_CONNECT:
7962 case BPF_CGROUP_INET6_CONNECT:
7963 return &bpf_bind_proto;
7964 default:
7965 return NULL;
7966 }
7967 case BPF_FUNC_get_socket_cookie:
7968 return &bpf_get_socket_cookie_sock_addr_proto;
7969 case BPF_FUNC_get_netns_cookie:
7970 return &bpf_get_netns_cookie_sock_addr_proto;
7971 case BPF_FUNC_perf_event_output:
7972 return &bpf_event_output_data_proto;
7973 #ifdef CONFIG_INET
7974 case BPF_FUNC_sk_lookup_tcp:
7975 return &bpf_sock_addr_sk_lookup_tcp_proto;
7976 case BPF_FUNC_sk_lookup_udp:
7977 return &bpf_sock_addr_sk_lookup_udp_proto;
7978 case BPF_FUNC_sk_release:
7979 return &bpf_sk_release_proto;
7980 case BPF_FUNC_skc_lookup_tcp:
7981 return &bpf_sock_addr_skc_lookup_tcp_proto;
7982 #endif /* CONFIG_INET */
7983 case BPF_FUNC_sk_storage_get:
7984 return &bpf_sk_storage_get_proto;
7985 case BPF_FUNC_sk_storage_delete:
7986 return &bpf_sk_storage_delete_proto;
7987 case BPF_FUNC_setsockopt:
7988 switch (prog->expected_attach_type) {
7989 case BPF_CGROUP_INET4_BIND:
7990 case BPF_CGROUP_INET6_BIND:
7991 case BPF_CGROUP_INET4_CONNECT:
7992 case BPF_CGROUP_INET6_CONNECT:
7993 case BPF_CGROUP_UDP4_RECVMSG:
7994 case BPF_CGROUP_UDP6_RECVMSG:
7995 case BPF_CGROUP_UDP4_SENDMSG:
7996 case BPF_CGROUP_UDP6_SENDMSG:
7997 case BPF_CGROUP_INET4_GETPEERNAME:
7998 case BPF_CGROUP_INET6_GETPEERNAME:
7999 case BPF_CGROUP_INET4_GETSOCKNAME:
8000 case BPF_CGROUP_INET6_GETSOCKNAME:
8001 return &bpf_sock_addr_setsockopt_proto;
8002 default:
8003 return NULL;
8004 }
8005 case BPF_FUNC_getsockopt:
8006 switch (prog->expected_attach_type) {
8007 case BPF_CGROUP_INET4_BIND:
8008 case BPF_CGROUP_INET6_BIND:
8009 case BPF_CGROUP_INET4_CONNECT:
8010 case BPF_CGROUP_INET6_CONNECT:
8011 case BPF_CGROUP_UDP4_RECVMSG:
8012 case BPF_CGROUP_UDP6_RECVMSG:
8013 case BPF_CGROUP_UDP4_SENDMSG:
8014 case BPF_CGROUP_UDP6_SENDMSG:
8015 case BPF_CGROUP_INET4_GETPEERNAME:
8016 case BPF_CGROUP_INET6_GETPEERNAME:
8017 case BPF_CGROUP_INET4_GETSOCKNAME:
8018 case BPF_CGROUP_INET6_GETSOCKNAME:
8019 return &bpf_sock_addr_getsockopt_proto;
8020 default:
8021 return NULL;
8022 }
8023 default:
8024 return bpf_sk_base_func_proto(func_id);
8025 }
8026 }
8027
8028 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8029 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8030 {
8031 switch (func_id) {
8032 case BPF_FUNC_skb_load_bytes:
8033 return &bpf_skb_load_bytes_proto;
8034 case BPF_FUNC_skb_load_bytes_relative:
8035 return &bpf_skb_load_bytes_relative_proto;
8036 case BPF_FUNC_get_socket_cookie:
8037 return &bpf_get_socket_cookie_proto;
8038 case BPF_FUNC_get_socket_uid:
8039 return &bpf_get_socket_uid_proto;
8040 case BPF_FUNC_perf_event_output:
8041 return &bpf_skb_event_output_proto;
8042 default:
8043 return bpf_sk_base_func_proto(func_id);
8044 }
8045 }
8046
8047 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8048 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8049
8050 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8051 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8052 {
8053 const struct bpf_func_proto *func_proto;
8054
8055 func_proto = cgroup_common_func_proto(func_id, prog);
8056 if (func_proto)
8057 return func_proto;
8058
8059 switch (func_id) {
8060 case BPF_FUNC_sk_fullsock:
8061 return &bpf_sk_fullsock_proto;
8062 case BPF_FUNC_sk_storage_get:
8063 return &bpf_sk_storage_get_proto;
8064 case BPF_FUNC_sk_storage_delete:
8065 return &bpf_sk_storage_delete_proto;
8066 case BPF_FUNC_perf_event_output:
8067 return &bpf_skb_event_output_proto;
8068 #ifdef CONFIG_SOCK_CGROUP_DATA
8069 case BPF_FUNC_skb_cgroup_id:
8070 return &bpf_skb_cgroup_id_proto;
8071 case BPF_FUNC_skb_ancestor_cgroup_id:
8072 return &bpf_skb_ancestor_cgroup_id_proto;
8073 case BPF_FUNC_sk_cgroup_id:
8074 return &bpf_sk_cgroup_id_proto;
8075 case BPF_FUNC_sk_ancestor_cgroup_id:
8076 return &bpf_sk_ancestor_cgroup_id_proto;
8077 #endif
8078 #ifdef CONFIG_INET
8079 case BPF_FUNC_sk_lookup_tcp:
8080 return &bpf_sk_lookup_tcp_proto;
8081 case BPF_FUNC_sk_lookup_udp:
8082 return &bpf_sk_lookup_udp_proto;
8083 case BPF_FUNC_sk_release:
8084 return &bpf_sk_release_proto;
8085 case BPF_FUNC_skc_lookup_tcp:
8086 return &bpf_skc_lookup_tcp_proto;
8087 case BPF_FUNC_tcp_sock:
8088 return &bpf_tcp_sock_proto;
8089 case BPF_FUNC_get_listener_sock:
8090 return &bpf_get_listener_sock_proto;
8091 case BPF_FUNC_skb_ecn_set_ce:
8092 return &bpf_skb_ecn_set_ce_proto;
8093 #endif
8094 default:
8095 return sk_filter_func_proto(func_id, prog);
8096 }
8097 }
8098
8099 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8100 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8101 {
8102 switch (func_id) {
8103 case BPF_FUNC_skb_store_bytes:
8104 return &bpf_skb_store_bytes_proto;
8105 case BPF_FUNC_skb_load_bytes:
8106 return &bpf_skb_load_bytes_proto;
8107 case BPF_FUNC_skb_load_bytes_relative:
8108 return &bpf_skb_load_bytes_relative_proto;
8109 case BPF_FUNC_skb_pull_data:
8110 return &bpf_skb_pull_data_proto;
8111 case BPF_FUNC_csum_diff:
8112 return &bpf_csum_diff_proto;
8113 case BPF_FUNC_csum_update:
8114 return &bpf_csum_update_proto;
8115 case BPF_FUNC_csum_level:
8116 return &bpf_csum_level_proto;
8117 case BPF_FUNC_l3_csum_replace:
8118 return &bpf_l3_csum_replace_proto;
8119 case BPF_FUNC_l4_csum_replace:
8120 return &bpf_l4_csum_replace_proto;
8121 case BPF_FUNC_clone_redirect:
8122 return &bpf_clone_redirect_proto;
8123 case BPF_FUNC_get_cgroup_classid:
8124 return &bpf_get_cgroup_classid_proto;
8125 case BPF_FUNC_skb_vlan_push:
8126 return &bpf_skb_vlan_push_proto;
8127 case BPF_FUNC_skb_vlan_pop:
8128 return &bpf_skb_vlan_pop_proto;
8129 case BPF_FUNC_skb_change_proto:
8130 return &bpf_skb_change_proto_proto;
8131 case BPF_FUNC_skb_change_type:
8132 return &bpf_skb_change_type_proto;
8133 case BPF_FUNC_skb_adjust_room:
8134 return &bpf_skb_adjust_room_proto;
8135 case BPF_FUNC_skb_change_tail:
8136 return &bpf_skb_change_tail_proto;
8137 case BPF_FUNC_skb_change_head:
8138 return &bpf_skb_change_head_proto;
8139 case BPF_FUNC_skb_get_tunnel_key:
8140 return &bpf_skb_get_tunnel_key_proto;
8141 case BPF_FUNC_skb_set_tunnel_key:
8142 return bpf_get_skb_set_tunnel_proto(func_id);
8143 case BPF_FUNC_skb_get_tunnel_opt:
8144 return &bpf_skb_get_tunnel_opt_proto;
8145 case BPF_FUNC_skb_set_tunnel_opt:
8146 return bpf_get_skb_set_tunnel_proto(func_id);
8147 case BPF_FUNC_redirect:
8148 return &bpf_redirect_proto;
8149 case BPF_FUNC_redirect_neigh:
8150 return &bpf_redirect_neigh_proto;
8151 case BPF_FUNC_redirect_peer:
8152 return &bpf_redirect_peer_proto;
8153 case BPF_FUNC_get_route_realm:
8154 return &bpf_get_route_realm_proto;
8155 case BPF_FUNC_get_hash_recalc:
8156 return &bpf_get_hash_recalc_proto;
8157 case BPF_FUNC_set_hash_invalid:
8158 return &bpf_set_hash_invalid_proto;
8159 case BPF_FUNC_set_hash:
8160 return &bpf_set_hash_proto;
8161 case BPF_FUNC_perf_event_output:
8162 return &bpf_skb_event_output_proto;
8163 case BPF_FUNC_get_smp_processor_id:
8164 return &bpf_get_smp_processor_id_proto;
8165 case BPF_FUNC_skb_under_cgroup:
8166 return &bpf_skb_under_cgroup_proto;
8167 case BPF_FUNC_get_socket_cookie:
8168 return &bpf_get_socket_cookie_proto;
8169 case BPF_FUNC_get_socket_uid:
8170 return &bpf_get_socket_uid_proto;
8171 case BPF_FUNC_fib_lookup:
8172 return &bpf_skb_fib_lookup_proto;
8173 case BPF_FUNC_check_mtu:
8174 return &bpf_skb_check_mtu_proto;
8175 case BPF_FUNC_sk_fullsock:
8176 return &bpf_sk_fullsock_proto;
8177 case BPF_FUNC_sk_storage_get:
8178 return &bpf_sk_storage_get_proto;
8179 case BPF_FUNC_sk_storage_delete:
8180 return &bpf_sk_storage_delete_proto;
8181 #ifdef CONFIG_XFRM
8182 case BPF_FUNC_skb_get_xfrm_state:
8183 return &bpf_skb_get_xfrm_state_proto;
8184 #endif
8185 #ifdef CONFIG_CGROUP_NET_CLASSID
8186 case BPF_FUNC_skb_cgroup_classid:
8187 return &bpf_skb_cgroup_classid_proto;
8188 #endif
8189 #ifdef CONFIG_SOCK_CGROUP_DATA
8190 case BPF_FUNC_skb_cgroup_id:
8191 return &bpf_skb_cgroup_id_proto;
8192 case BPF_FUNC_skb_ancestor_cgroup_id:
8193 return &bpf_skb_ancestor_cgroup_id_proto;
8194 #endif
8195 #ifdef CONFIG_INET
8196 case BPF_FUNC_sk_lookup_tcp:
8197 return &bpf_tc_sk_lookup_tcp_proto;
8198 case BPF_FUNC_sk_lookup_udp:
8199 return &bpf_tc_sk_lookup_udp_proto;
8200 case BPF_FUNC_sk_release:
8201 return &bpf_sk_release_proto;
8202 case BPF_FUNC_tcp_sock:
8203 return &bpf_tcp_sock_proto;
8204 case BPF_FUNC_get_listener_sock:
8205 return &bpf_get_listener_sock_proto;
8206 case BPF_FUNC_skc_lookup_tcp:
8207 return &bpf_tc_skc_lookup_tcp_proto;
8208 case BPF_FUNC_tcp_check_syncookie:
8209 return &bpf_tcp_check_syncookie_proto;
8210 case BPF_FUNC_skb_ecn_set_ce:
8211 return &bpf_skb_ecn_set_ce_proto;
8212 case BPF_FUNC_tcp_gen_syncookie:
8213 return &bpf_tcp_gen_syncookie_proto;
8214 case BPF_FUNC_sk_assign:
8215 return &bpf_sk_assign_proto;
8216 case BPF_FUNC_skb_set_tstamp:
8217 return &bpf_skb_set_tstamp_proto;
8218 #ifdef CONFIG_SYN_COOKIES
8219 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8220 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8221 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8222 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8223 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8224 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8225 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8226 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8227 #endif
8228 #endif
8229 default:
8230 return bpf_sk_base_func_proto(func_id);
8231 }
8232 }
8233
8234 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8235 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8236 {
8237 switch (func_id) {
8238 case BPF_FUNC_perf_event_output:
8239 return &bpf_xdp_event_output_proto;
8240 case BPF_FUNC_get_smp_processor_id:
8241 return &bpf_get_smp_processor_id_proto;
8242 case BPF_FUNC_csum_diff:
8243 return &bpf_csum_diff_proto;
8244 case BPF_FUNC_xdp_adjust_head:
8245 return &bpf_xdp_adjust_head_proto;
8246 case BPF_FUNC_xdp_adjust_meta:
8247 return &bpf_xdp_adjust_meta_proto;
8248 case BPF_FUNC_redirect:
8249 return &bpf_xdp_redirect_proto;
8250 case BPF_FUNC_redirect_map:
8251 return &bpf_xdp_redirect_map_proto;
8252 case BPF_FUNC_xdp_adjust_tail:
8253 return &bpf_xdp_adjust_tail_proto;
8254 case BPF_FUNC_xdp_get_buff_len:
8255 return &bpf_xdp_get_buff_len_proto;
8256 case BPF_FUNC_xdp_load_bytes:
8257 return &bpf_xdp_load_bytes_proto;
8258 case BPF_FUNC_xdp_store_bytes:
8259 return &bpf_xdp_store_bytes_proto;
8260 case BPF_FUNC_fib_lookup:
8261 return &bpf_xdp_fib_lookup_proto;
8262 case BPF_FUNC_check_mtu:
8263 return &bpf_xdp_check_mtu_proto;
8264 #ifdef CONFIG_INET
8265 case BPF_FUNC_sk_lookup_udp:
8266 return &bpf_xdp_sk_lookup_udp_proto;
8267 case BPF_FUNC_sk_lookup_tcp:
8268 return &bpf_xdp_sk_lookup_tcp_proto;
8269 case BPF_FUNC_sk_release:
8270 return &bpf_sk_release_proto;
8271 case BPF_FUNC_skc_lookup_tcp:
8272 return &bpf_xdp_skc_lookup_tcp_proto;
8273 case BPF_FUNC_tcp_check_syncookie:
8274 return &bpf_tcp_check_syncookie_proto;
8275 case BPF_FUNC_tcp_gen_syncookie:
8276 return &bpf_tcp_gen_syncookie_proto;
8277 #ifdef CONFIG_SYN_COOKIES
8278 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8279 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8280 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8281 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8282 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8283 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8284 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8285 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8286 #endif
8287 #endif
8288 default:
8289 return bpf_sk_base_func_proto(func_id);
8290 }
8291
8292 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8293 /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8294 * kfuncs are defined in two different modules, and we want to be able
8295 * to use them interchangably with the same BTF type ID. Because modules
8296 * can't de-duplicate BTF IDs between each other, we need the type to be
8297 * referenced in the vmlinux BTF or the verifier will get confused about
8298 * the different types. So we add this dummy type reference which will
8299 * be included in vmlinux BTF, allowing both modules to refer to the
8300 * same type ID.
8301 */
8302 BTF_TYPE_EMIT(struct nf_conn___init);
8303 #endif
8304 }
8305
8306 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8307 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8308
8309 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8310 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8311 {
8312 const struct bpf_func_proto *func_proto;
8313
8314 func_proto = cgroup_common_func_proto(func_id, prog);
8315 if (func_proto)
8316 return func_proto;
8317
8318 switch (func_id) {
8319 case BPF_FUNC_setsockopt:
8320 return &bpf_sock_ops_setsockopt_proto;
8321 case BPF_FUNC_getsockopt:
8322 return &bpf_sock_ops_getsockopt_proto;
8323 case BPF_FUNC_sock_ops_cb_flags_set:
8324 return &bpf_sock_ops_cb_flags_set_proto;
8325 case BPF_FUNC_sock_map_update:
8326 return &bpf_sock_map_update_proto;
8327 case BPF_FUNC_sock_hash_update:
8328 return &bpf_sock_hash_update_proto;
8329 case BPF_FUNC_get_socket_cookie:
8330 return &bpf_get_socket_cookie_sock_ops_proto;
8331 case BPF_FUNC_perf_event_output:
8332 return &bpf_event_output_data_proto;
8333 case BPF_FUNC_sk_storage_get:
8334 return &bpf_sk_storage_get_proto;
8335 case BPF_FUNC_sk_storage_delete:
8336 return &bpf_sk_storage_delete_proto;
8337 case BPF_FUNC_get_netns_cookie:
8338 return &bpf_get_netns_cookie_sock_ops_proto;
8339 #ifdef CONFIG_INET
8340 case BPF_FUNC_load_hdr_opt:
8341 return &bpf_sock_ops_load_hdr_opt_proto;
8342 case BPF_FUNC_store_hdr_opt:
8343 return &bpf_sock_ops_store_hdr_opt_proto;
8344 case BPF_FUNC_reserve_hdr_opt:
8345 return &bpf_sock_ops_reserve_hdr_opt_proto;
8346 case BPF_FUNC_tcp_sock:
8347 return &bpf_tcp_sock_proto;
8348 #endif /* CONFIG_INET */
8349 default:
8350 return bpf_sk_base_func_proto(func_id);
8351 }
8352 }
8353
8354 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8355 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8356
8357 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8358 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8359 {
8360 switch (func_id) {
8361 case BPF_FUNC_msg_redirect_map:
8362 return &bpf_msg_redirect_map_proto;
8363 case BPF_FUNC_msg_redirect_hash:
8364 return &bpf_msg_redirect_hash_proto;
8365 case BPF_FUNC_msg_apply_bytes:
8366 return &bpf_msg_apply_bytes_proto;
8367 case BPF_FUNC_msg_cork_bytes:
8368 return &bpf_msg_cork_bytes_proto;
8369 case BPF_FUNC_msg_pull_data:
8370 return &bpf_msg_pull_data_proto;
8371 case BPF_FUNC_msg_push_data:
8372 return &bpf_msg_push_data_proto;
8373 case BPF_FUNC_msg_pop_data:
8374 return &bpf_msg_pop_data_proto;
8375 case BPF_FUNC_perf_event_output:
8376 return &bpf_event_output_data_proto;
8377 case BPF_FUNC_get_current_uid_gid:
8378 return &bpf_get_current_uid_gid_proto;
8379 case BPF_FUNC_get_current_pid_tgid:
8380 return &bpf_get_current_pid_tgid_proto;
8381 case BPF_FUNC_sk_storage_get:
8382 return &bpf_sk_storage_get_proto;
8383 case BPF_FUNC_sk_storage_delete:
8384 return &bpf_sk_storage_delete_proto;
8385 case BPF_FUNC_get_netns_cookie:
8386 return &bpf_get_netns_cookie_sk_msg_proto;
8387 #ifdef CONFIG_CGROUP_NET_CLASSID
8388 case BPF_FUNC_get_cgroup_classid:
8389 return &bpf_get_cgroup_classid_curr_proto;
8390 #endif
8391 default:
8392 return bpf_sk_base_func_proto(func_id);
8393 }
8394 }
8395
8396 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8397 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8398
8399 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8400 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8401 {
8402 switch (func_id) {
8403 case BPF_FUNC_skb_store_bytes:
8404 return &bpf_skb_store_bytes_proto;
8405 case BPF_FUNC_skb_load_bytes:
8406 return &bpf_skb_load_bytes_proto;
8407 case BPF_FUNC_skb_pull_data:
8408 return &sk_skb_pull_data_proto;
8409 case BPF_FUNC_skb_change_tail:
8410 return &sk_skb_change_tail_proto;
8411 case BPF_FUNC_skb_change_head:
8412 return &sk_skb_change_head_proto;
8413 case BPF_FUNC_skb_adjust_room:
8414 return &sk_skb_adjust_room_proto;
8415 case BPF_FUNC_get_socket_cookie:
8416 return &bpf_get_socket_cookie_proto;
8417 case BPF_FUNC_get_socket_uid:
8418 return &bpf_get_socket_uid_proto;
8419 case BPF_FUNC_sk_redirect_map:
8420 return &bpf_sk_redirect_map_proto;
8421 case BPF_FUNC_sk_redirect_hash:
8422 return &bpf_sk_redirect_hash_proto;
8423 case BPF_FUNC_perf_event_output:
8424 return &bpf_skb_event_output_proto;
8425 #ifdef CONFIG_INET
8426 case BPF_FUNC_sk_lookup_tcp:
8427 return &bpf_sk_lookup_tcp_proto;
8428 case BPF_FUNC_sk_lookup_udp:
8429 return &bpf_sk_lookup_udp_proto;
8430 case BPF_FUNC_sk_release:
8431 return &bpf_sk_release_proto;
8432 case BPF_FUNC_skc_lookup_tcp:
8433 return &bpf_skc_lookup_tcp_proto;
8434 #endif
8435 default:
8436 return bpf_sk_base_func_proto(func_id);
8437 }
8438 }
8439
8440 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8441 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8442 {
8443 switch (func_id) {
8444 case BPF_FUNC_skb_load_bytes:
8445 return &bpf_flow_dissector_load_bytes_proto;
8446 default:
8447 return bpf_sk_base_func_proto(func_id);
8448 }
8449 }
8450
8451 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8452 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8453 {
8454 switch (func_id) {
8455 case BPF_FUNC_skb_load_bytes:
8456 return &bpf_skb_load_bytes_proto;
8457 case BPF_FUNC_skb_pull_data:
8458 return &bpf_skb_pull_data_proto;
8459 case BPF_FUNC_csum_diff:
8460 return &bpf_csum_diff_proto;
8461 case BPF_FUNC_get_cgroup_classid:
8462 return &bpf_get_cgroup_classid_proto;
8463 case BPF_FUNC_get_route_realm:
8464 return &bpf_get_route_realm_proto;
8465 case BPF_FUNC_get_hash_recalc:
8466 return &bpf_get_hash_recalc_proto;
8467 case BPF_FUNC_perf_event_output:
8468 return &bpf_skb_event_output_proto;
8469 case BPF_FUNC_get_smp_processor_id:
8470 return &bpf_get_smp_processor_id_proto;
8471 case BPF_FUNC_skb_under_cgroup:
8472 return &bpf_skb_under_cgroup_proto;
8473 default:
8474 return bpf_sk_base_func_proto(func_id);
8475 }
8476 }
8477
8478 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8479 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8480 {
8481 switch (func_id) {
8482 case BPF_FUNC_lwt_push_encap:
8483 return &bpf_lwt_in_push_encap_proto;
8484 default:
8485 return lwt_out_func_proto(func_id, prog);
8486 }
8487 }
8488
8489 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8490 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8491 {
8492 switch (func_id) {
8493 case BPF_FUNC_skb_get_tunnel_key:
8494 return &bpf_skb_get_tunnel_key_proto;
8495 case BPF_FUNC_skb_set_tunnel_key:
8496 return bpf_get_skb_set_tunnel_proto(func_id);
8497 case BPF_FUNC_skb_get_tunnel_opt:
8498 return &bpf_skb_get_tunnel_opt_proto;
8499 case BPF_FUNC_skb_set_tunnel_opt:
8500 return bpf_get_skb_set_tunnel_proto(func_id);
8501 case BPF_FUNC_redirect:
8502 return &bpf_redirect_proto;
8503 case BPF_FUNC_clone_redirect:
8504 return &bpf_clone_redirect_proto;
8505 case BPF_FUNC_skb_change_tail:
8506 return &bpf_skb_change_tail_proto;
8507 case BPF_FUNC_skb_change_head:
8508 return &bpf_skb_change_head_proto;
8509 case BPF_FUNC_skb_store_bytes:
8510 return &bpf_skb_store_bytes_proto;
8511 case BPF_FUNC_csum_update:
8512 return &bpf_csum_update_proto;
8513 case BPF_FUNC_csum_level:
8514 return &bpf_csum_level_proto;
8515 case BPF_FUNC_l3_csum_replace:
8516 return &bpf_l3_csum_replace_proto;
8517 case BPF_FUNC_l4_csum_replace:
8518 return &bpf_l4_csum_replace_proto;
8519 case BPF_FUNC_set_hash_invalid:
8520 return &bpf_set_hash_invalid_proto;
8521 case BPF_FUNC_lwt_push_encap:
8522 return &bpf_lwt_xmit_push_encap_proto;
8523 default:
8524 return lwt_out_func_proto(func_id, prog);
8525 }
8526 }
8527
8528 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8529 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8530 {
8531 switch (func_id) {
8532 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8533 case BPF_FUNC_lwt_seg6_store_bytes:
8534 return &bpf_lwt_seg6_store_bytes_proto;
8535 case BPF_FUNC_lwt_seg6_action:
8536 return &bpf_lwt_seg6_action_proto;
8537 case BPF_FUNC_lwt_seg6_adjust_srh:
8538 return &bpf_lwt_seg6_adjust_srh_proto;
8539 #endif
8540 default:
8541 return lwt_out_func_proto(func_id, prog);
8542 }
8543 }
8544
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8545 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8546 const struct bpf_prog *prog,
8547 struct bpf_insn_access_aux *info)
8548 {
8549 const int size_default = sizeof(__u32);
8550
8551 if (off < 0 || off >= sizeof(struct __sk_buff))
8552 return false;
8553
8554 /* The verifier guarantees that size > 0. */
8555 if (off % size != 0)
8556 return false;
8557
8558 switch (off) {
8559 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8560 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8561 return false;
8562 break;
8563 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8564 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8565 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8566 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8567 case bpf_ctx_range(struct __sk_buff, data):
8568 case bpf_ctx_range(struct __sk_buff, data_meta):
8569 case bpf_ctx_range(struct __sk_buff, data_end):
8570 if (size != size_default)
8571 return false;
8572 break;
8573 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8574 return false;
8575 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8576 if (type == BPF_WRITE || size != sizeof(__u64))
8577 return false;
8578 break;
8579 case bpf_ctx_range(struct __sk_buff, tstamp):
8580 if (size != sizeof(__u64))
8581 return false;
8582 break;
8583 case offsetof(struct __sk_buff, sk):
8584 if (type == BPF_WRITE || size != sizeof(__u64))
8585 return false;
8586 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8587 break;
8588 case offsetof(struct __sk_buff, tstamp_type):
8589 return false;
8590 case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8591 /* Explicitly prohibit access to padding in __sk_buff. */
8592 return false;
8593 default:
8594 /* Only narrow read access allowed for now. */
8595 if (type == BPF_WRITE) {
8596 if (size != size_default)
8597 return false;
8598 } else {
8599 bpf_ctx_record_field_size(info, size_default);
8600 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8601 return false;
8602 }
8603 }
8604
8605 return true;
8606 }
8607
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8608 static bool sk_filter_is_valid_access(int off, int size,
8609 enum bpf_access_type type,
8610 const struct bpf_prog *prog,
8611 struct bpf_insn_access_aux *info)
8612 {
8613 switch (off) {
8614 case bpf_ctx_range(struct __sk_buff, tc_classid):
8615 case bpf_ctx_range(struct __sk_buff, data):
8616 case bpf_ctx_range(struct __sk_buff, data_meta):
8617 case bpf_ctx_range(struct __sk_buff, data_end):
8618 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8619 case bpf_ctx_range(struct __sk_buff, tstamp):
8620 case bpf_ctx_range(struct __sk_buff, wire_len):
8621 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8622 return false;
8623 }
8624
8625 if (type == BPF_WRITE) {
8626 switch (off) {
8627 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8628 break;
8629 default:
8630 return false;
8631 }
8632 }
8633
8634 return bpf_skb_is_valid_access(off, size, type, prog, info);
8635 }
8636
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8637 static bool cg_skb_is_valid_access(int off, int size,
8638 enum bpf_access_type type,
8639 const struct bpf_prog *prog,
8640 struct bpf_insn_access_aux *info)
8641 {
8642 switch (off) {
8643 case bpf_ctx_range(struct __sk_buff, tc_classid):
8644 case bpf_ctx_range(struct __sk_buff, data_meta):
8645 case bpf_ctx_range(struct __sk_buff, wire_len):
8646 return false;
8647 case bpf_ctx_range(struct __sk_buff, data):
8648 case bpf_ctx_range(struct __sk_buff, data_end):
8649 if (!bpf_capable())
8650 return false;
8651 break;
8652 }
8653
8654 if (type == BPF_WRITE) {
8655 switch (off) {
8656 case bpf_ctx_range(struct __sk_buff, mark):
8657 case bpf_ctx_range(struct __sk_buff, priority):
8658 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8659 break;
8660 case bpf_ctx_range(struct __sk_buff, tstamp):
8661 if (!bpf_capable())
8662 return false;
8663 break;
8664 default:
8665 return false;
8666 }
8667 }
8668
8669 switch (off) {
8670 case bpf_ctx_range(struct __sk_buff, data):
8671 info->reg_type = PTR_TO_PACKET;
8672 break;
8673 case bpf_ctx_range(struct __sk_buff, data_end):
8674 info->reg_type = PTR_TO_PACKET_END;
8675 break;
8676 }
8677
8678 return bpf_skb_is_valid_access(off, size, type, prog, info);
8679 }
8680
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8681 static bool lwt_is_valid_access(int off, int size,
8682 enum bpf_access_type type,
8683 const struct bpf_prog *prog,
8684 struct bpf_insn_access_aux *info)
8685 {
8686 switch (off) {
8687 case bpf_ctx_range(struct __sk_buff, tc_classid):
8688 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8689 case bpf_ctx_range(struct __sk_buff, data_meta):
8690 case bpf_ctx_range(struct __sk_buff, tstamp):
8691 case bpf_ctx_range(struct __sk_buff, wire_len):
8692 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8693 return false;
8694 }
8695
8696 if (type == BPF_WRITE) {
8697 switch (off) {
8698 case bpf_ctx_range(struct __sk_buff, mark):
8699 case bpf_ctx_range(struct __sk_buff, priority):
8700 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8701 break;
8702 default:
8703 return false;
8704 }
8705 }
8706
8707 switch (off) {
8708 case bpf_ctx_range(struct __sk_buff, data):
8709 info->reg_type = PTR_TO_PACKET;
8710 break;
8711 case bpf_ctx_range(struct __sk_buff, data_end):
8712 info->reg_type = PTR_TO_PACKET_END;
8713 break;
8714 }
8715
8716 return bpf_skb_is_valid_access(off, size, type, prog, info);
8717 }
8718
8719 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8720 static bool __sock_filter_check_attach_type(int off,
8721 enum bpf_access_type access_type,
8722 enum bpf_attach_type attach_type)
8723 {
8724 switch (off) {
8725 case offsetof(struct bpf_sock, bound_dev_if):
8726 case offsetof(struct bpf_sock, mark):
8727 case offsetof(struct bpf_sock, priority):
8728 switch (attach_type) {
8729 case BPF_CGROUP_INET_SOCK_CREATE:
8730 case BPF_CGROUP_INET_SOCK_RELEASE:
8731 goto full_access;
8732 default:
8733 return false;
8734 }
8735 case bpf_ctx_range(struct bpf_sock, src_ip4):
8736 switch (attach_type) {
8737 case BPF_CGROUP_INET4_POST_BIND:
8738 goto read_only;
8739 default:
8740 return false;
8741 }
8742 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8743 switch (attach_type) {
8744 case BPF_CGROUP_INET6_POST_BIND:
8745 goto read_only;
8746 default:
8747 return false;
8748 }
8749 case bpf_ctx_range(struct bpf_sock, src_port):
8750 switch (attach_type) {
8751 case BPF_CGROUP_INET4_POST_BIND:
8752 case BPF_CGROUP_INET6_POST_BIND:
8753 goto read_only;
8754 default:
8755 return false;
8756 }
8757 }
8758 read_only:
8759 return access_type == BPF_READ;
8760 full_access:
8761 return true;
8762 }
8763
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8764 bool bpf_sock_common_is_valid_access(int off, int size,
8765 enum bpf_access_type type,
8766 struct bpf_insn_access_aux *info)
8767 {
8768 switch (off) {
8769 case bpf_ctx_range_till(struct bpf_sock, type, priority):
8770 return false;
8771 default:
8772 return bpf_sock_is_valid_access(off, size, type, info);
8773 }
8774 }
8775
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8776 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8777 struct bpf_insn_access_aux *info)
8778 {
8779 const int size_default = sizeof(__u32);
8780 int field_size;
8781
8782 if (off < 0 || off >= sizeof(struct bpf_sock))
8783 return false;
8784 if (off % size != 0)
8785 return false;
8786
8787 switch (off) {
8788 case offsetof(struct bpf_sock, state):
8789 case offsetof(struct bpf_sock, family):
8790 case offsetof(struct bpf_sock, type):
8791 case offsetof(struct bpf_sock, protocol):
8792 case offsetof(struct bpf_sock, src_port):
8793 case offsetof(struct bpf_sock, rx_queue_mapping):
8794 case bpf_ctx_range(struct bpf_sock, src_ip4):
8795 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8796 case bpf_ctx_range(struct bpf_sock, dst_ip4):
8797 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8798 bpf_ctx_record_field_size(info, size_default);
8799 return bpf_ctx_narrow_access_ok(off, size, size_default);
8800 case bpf_ctx_range(struct bpf_sock, dst_port):
8801 field_size = size == size_default ?
8802 size_default : sizeof_field(struct bpf_sock, dst_port);
8803 bpf_ctx_record_field_size(info, field_size);
8804 return bpf_ctx_narrow_access_ok(off, size, field_size);
8805 case offsetofend(struct bpf_sock, dst_port) ...
8806 offsetof(struct bpf_sock, dst_ip4) - 1:
8807 return false;
8808 }
8809
8810 return size == size_default;
8811 }
8812
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8813 static bool sock_filter_is_valid_access(int off, int size,
8814 enum bpf_access_type type,
8815 const struct bpf_prog *prog,
8816 struct bpf_insn_access_aux *info)
8817 {
8818 if (!bpf_sock_is_valid_access(off, size, type, info))
8819 return false;
8820 return __sock_filter_check_attach_type(off, type,
8821 prog->expected_attach_type);
8822 }
8823
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8824 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8825 const struct bpf_prog *prog)
8826 {
8827 /* Neither direct read nor direct write requires any preliminary
8828 * action.
8829 */
8830 return 0;
8831 }
8832
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8833 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8834 const struct bpf_prog *prog, int drop_verdict)
8835 {
8836 struct bpf_insn *insn = insn_buf;
8837
8838 if (!direct_write)
8839 return 0;
8840
8841 /* if (!skb->cloned)
8842 * goto start;
8843 *
8844 * (Fast-path, otherwise approximation that we might be
8845 * a clone, do the rest in helper.)
8846 */
8847 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8848 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8849 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8850
8851 /* ret = bpf_skb_pull_data(skb, 0); */
8852 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8853 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8854 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8855 BPF_FUNC_skb_pull_data);
8856 /* if (!ret)
8857 * goto restore;
8858 * return TC_ACT_SHOT;
8859 */
8860 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8861 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8862 *insn++ = BPF_EXIT_INSN();
8863
8864 /* restore: */
8865 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8866 /* start: */
8867 *insn++ = prog->insnsi[0];
8868
8869 return insn - insn_buf;
8870 }
8871
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8872 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8873 struct bpf_insn *insn_buf)
8874 {
8875 bool indirect = BPF_MODE(orig->code) == BPF_IND;
8876 struct bpf_insn *insn = insn_buf;
8877
8878 if (!indirect) {
8879 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8880 } else {
8881 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8882 if (orig->imm)
8883 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8884 }
8885 /* We're guaranteed here that CTX is in R6. */
8886 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8887
8888 switch (BPF_SIZE(orig->code)) {
8889 case BPF_B:
8890 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8891 break;
8892 case BPF_H:
8893 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8894 break;
8895 case BPF_W:
8896 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8897 break;
8898 }
8899
8900 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8901 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8902 *insn++ = BPF_EXIT_INSN();
8903
8904 return insn - insn_buf;
8905 }
8906
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8907 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8908 const struct bpf_prog *prog)
8909 {
8910 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8911 }
8912
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8913 static bool tc_cls_act_is_valid_access(int off, int size,
8914 enum bpf_access_type type,
8915 const struct bpf_prog *prog,
8916 struct bpf_insn_access_aux *info)
8917 {
8918 if (type == BPF_WRITE) {
8919 switch (off) {
8920 case bpf_ctx_range(struct __sk_buff, mark):
8921 case bpf_ctx_range(struct __sk_buff, tc_index):
8922 case bpf_ctx_range(struct __sk_buff, priority):
8923 case bpf_ctx_range(struct __sk_buff, tc_classid):
8924 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8925 case bpf_ctx_range(struct __sk_buff, tstamp):
8926 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8927 break;
8928 default:
8929 return false;
8930 }
8931 }
8932
8933 switch (off) {
8934 case bpf_ctx_range(struct __sk_buff, data):
8935 info->reg_type = PTR_TO_PACKET;
8936 break;
8937 case bpf_ctx_range(struct __sk_buff, data_meta):
8938 info->reg_type = PTR_TO_PACKET_META;
8939 break;
8940 case bpf_ctx_range(struct __sk_buff, data_end):
8941 info->reg_type = PTR_TO_PACKET_END;
8942 break;
8943 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8944 return false;
8945 case offsetof(struct __sk_buff, tstamp_type):
8946 /* The convert_ctx_access() on reading and writing
8947 * __sk_buff->tstamp depends on whether the bpf prog
8948 * has used __sk_buff->tstamp_type or not.
8949 * Thus, we need to set prog->tstamp_type_access
8950 * earlier during is_valid_access() here.
8951 */
8952 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
8953 return size == sizeof(__u8);
8954 }
8955
8956 return bpf_skb_is_valid_access(off, size, type, prog, info);
8957 }
8958
8959 DEFINE_MUTEX(nf_conn_btf_access_lock);
8960 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8961
8962 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8963 const struct bpf_reg_state *reg,
8964 int off, int size);
8965 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8966
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)8967 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8968 const struct bpf_reg_state *reg,
8969 int off, int size)
8970 {
8971 int ret = -EACCES;
8972
8973 mutex_lock(&nf_conn_btf_access_lock);
8974 if (nfct_btf_struct_access)
8975 ret = nfct_btf_struct_access(log, reg, off, size);
8976 mutex_unlock(&nf_conn_btf_access_lock);
8977
8978 return ret;
8979 }
8980
__is_valid_xdp_access(int off,int size)8981 static bool __is_valid_xdp_access(int off, int size)
8982 {
8983 if (off < 0 || off >= sizeof(struct xdp_md))
8984 return false;
8985 if (off % size != 0)
8986 return false;
8987 if (size != sizeof(__u32))
8988 return false;
8989
8990 return true;
8991 }
8992
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8993 static bool xdp_is_valid_access(int off, int size,
8994 enum bpf_access_type type,
8995 const struct bpf_prog *prog,
8996 struct bpf_insn_access_aux *info)
8997 {
8998 if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8999 switch (off) {
9000 case offsetof(struct xdp_md, egress_ifindex):
9001 return false;
9002 }
9003 }
9004
9005 if (type == BPF_WRITE) {
9006 if (bpf_prog_is_offloaded(prog->aux)) {
9007 switch (off) {
9008 case offsetof(struct xdp_md, rx_queue_index):
9009 return __is_valid_xdp_access(off, size);
9010 }
9011 }
9012 return false;
9013 }
9014
9015 switch (off) {
9016 case offsetof(struct xdp_md, data):
9017 info->reg_type = PTR_TO_PACKET;
9018 break;
9019 case offsetof(struct xdp_md, data_meta):
9020 info->reg_type = PTR_TO_PACKET_META;
9021 break;
9022 case offsetof(struct xdp_md, data_end):
9023 info->reg_type = PTR_TO_PACKET_END;
9024 break;
9025 }
9026
9027 return __is_valid_xdp_access(off, size);
9028 }
9029
bpf_warn_invalid_xdp_action(struct net_device * dev,struct bpf_prog * prog,u32 act)9030 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
9031 {
9032 const u32 act_max = XDP_REDIRECT;
9033
9034 pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9035 act > act_max ? "Illegal" : "Driver unsupported",
9036 act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9037 }
9038 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9039
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9040 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9041 const struct bpf_reg_state *reg,
9042 int off, int size)
9043 {
9044 int ret = -EACCES;
9045
9046 mutex_lock(&nf_conn_btf_access_lock);
9047 if (nfct_btf_struct_access)
9048 ret = nfct_btf_struct_access(log, reg, off, size);
9049 mutex_unlock(&nf_conn_btf_access_lock);
9050
9051 return ret;
9052 }
9053
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9054 static bool sock_addr_is_valid_access(int off, int size,
9055 enum bpf_access_type type,
9056 const struct bpf_prog *prog,
9057 struct bpf_insn_access_aux *info)
9058 {
9059 const int size_default = sizeof(__u32);
9060
9061 if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9062 return false;
9063 if (off % size != 0)
9064 return false;
9065
9066 /* Disallow access to IPv6 fields from IPv4 contex and vise
9067 * versa.
9068 */
9069 switch (off) {
9070 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9071 switch (prog->expected_attach_type) {
9072 case BPF_CGROUP_INET4_BIND:
9073 case BPF_CGROUP_INET4_CONNECT:
9074 case BPF_CGROUP_INET4_GETPEERNAME:
9075 case BPF_CGROUP_INET4_GETSOCKNAME:
9076 case BPF_CGROUP_UDP4_SENDMSG:
9077 case BPF_CGROUP_UDP4_RECVMSG:
9078 break;
9079 default:
9080 return false;
9081 }
9082 break;
9083 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9084 switch (prog->expected_attach_type) {
9085 case BPF_CGROUP_INET6_BIND:
9086 case BPF_CGROUP_INET6_CONNECT:
9087 case BPF_CGROUP_INET6_GETPEERNAME:
9088 case BPF_CGROUP_INET6_GETSOCKNAME:
9089 case BPF_CGROUP_UDP6_SENDMSG:
9090 case BPF_CGROUP_UDP6_RECVMSG:
9091 break;
9092 default:
9093 return false;
9094 }
9095 break;
9096 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9097 switch (prog->expected_attach_type) {
9098 case BPF_CGROUP_UDP4_SENDMSG:
9099 break;
9100 default:
9101 return false;
9102 }
9103 break;
9104 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9105 msg_src_ip6[3]):
9106 switch (prog->expected_attach_type) {
9107 case BPF_CGROUP_UDP6_SENDMSG:
9108 break;
9109 default:
9110 return false;
9111 }
9112 break;
9113 }
9114
9115 switch (off) {
9116 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9117 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9118 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9119 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9120 msg_src_ip6[3]):
9121 case bpf_ctx_range(struct bpf_sock_addr, user_port):
9122 if (type == BPF_READ) {
9123 bpf_ctx_record_field_size(info, size_default);
9124
9125 if (bpf_ctx_wide_access_ok(off, size,
9126 struct bpf_sock_addr,
9127 user_ip6))
9128 return true;
9129
9130 if (bpf_ctx_wide_access_ok(off, size,
9131 struct bpf_sock_addr,
9132 msg_src_ip6))
9133 return true;
9134
9135 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9136 return false;
9137 } else {
9138 if (bpf_ctx_wide_access_ok(off, size,
9139 struct bpf_sock_addr,
9140 user_ip6))
9141 return true;
9142
9143 if (bpf_ctx_wide_access_ok(off, size,
9144 struct bpf_sock_addr,
9145 msg_src_ip6))
9146 return true;
9147
9148 if (size != size_default)
9149 return false;
9150 }
9151 break;
9152 case offsetof(struct bpf_sock_addr, sk):
9153 if (type != BPF_READ)
9154 return false;
9155 if (size != sizeof(__u64))
9156 return false;
9157 info->reg_type = PTR_TO_SOCKET;
9158 break;
9159 default:
9160 if (type == BPF_READ) {
9161 if (size != size_default)
9162 return false;
9163 } else {
9164 return false;
9165 }
9166 }
9167
9168 return true;
9169 }
9170
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9171 static bool sock_ops_is_valid_access(int off, int size,
9172 enum bpf_access_type type,
9173 const struct bpf_prog *prog,
9174 struct bpf_insn_access_aux *info)
9175 {
9176 const int size_default = sizeof(__u32);
9177
9178 if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9179 return false;
9180
9181 /* The verifier guarantees that size > 0. */
9182 if (off % size != 0)
9183 return false;
9184
9185 if (type == BPF_WRITE) {
9186 switch (off) {
9187 case offsetof(struct bpf_sock_ops, reply):
9188 case offsetof(struct bpf_sock_ops, sk_txhash):
9189 if (size != size_default)
9190 return false;
9191 break;
9192 default:
9193 return false;
9194 }
9195 } else {
9196 switch (off) {
9197 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9198 bytes_acked):
9199 if (size != sizeof(__u64))
9200 return false;
9201 break;
9202 case offsetof(struct bpf_sock_ops, sk):
9203 if (size != sizeof(__u64))
9204 return false;
9205 info->reg_type = PTR_TO_SOCKET_OR_NULL;
9206 break;
9207 case offsetof(struct bpf_sock_ops, skb_data):
9208 if (size != sizeof(__u64))
9209 return false;
9210 info->reg_type = PTR_TO_PACKET;
9211 break;
9212 case offsetof(struct bpf_sock_ops, skb_data_end):
9213 if (size != sizeof(__u64))
9214 return false;
9215 info->reg_type = PTR_TO_PACKET_END;
9216 break;
9217 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9218 bpf_ctx_record_field_size(info, size_default);
9219 return bpf_ctx_narrow_access_ok(off, size,
9220 size_default);
9221 case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9222 if (size != sizeof(__u64))
9223 return false;
9224 break;
9225 default:
9226 if (size != size_default)
9227 return false;
9228 break;
9229 }
9230 }
9231
9232 return true;
9233 }
9234
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9235 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9236 const struct bpf_prog *prog)
9237 {
9238 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9239 }
9240
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9241 static bool sk_skb_is_valid_access(int off, int size,
9242 enum bpf_access_type type,
9243 const struct bpf_prog *prog,
9244 struct bpf_insn_access_aux *info)
9245 {
9246 switch (off) {
9247 case bpf_ctx_range(struct __sk_buff, tc_classid):
9248 case bpf_ctx_range(struct __sk_buff, data_meta):
9249 case bpf_ctx_range(struct __sk_buff, tstamp):
9250 case bpf_ctx_range(struct __sk_buff, wire_len):
9251 case bpf_ctx_range(struct __sk_buff, hwtstamp):
9252 return false;
9253 }
9254
9255 if (type == BPF_WRITE) {
9256 switch (off) {
9257 case bpf_ctx_range(struct __sk_buff, tc_index):
9258 case bpf_ctx_range(struct __sk_buff, priority):
9259 break;
9260 default:
9261 return false;
9262 }
9263 }
9264
9265 switch (off) {
9266 case bpf_ctx_range(struct __sk_buff, mark):
9267 return false;
9268 case bpf_ctx_range(struct __sk_buff, data):
9269 info->reg_type = PTR_TO_PACKET;
9270 break;
9271 case bpf_ctx_range(struct __sk_buff, data_end):
9272 info->reg_type = PTR_TO_PACKET_END;
9273 break;
9274 }
9275
9276 return bpf_skb_is_valid_access(off, size, type, prog, info);
9277 }
9278
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9279 static bool sk_msg_is_valid_access(int off, int size,
9280 enum bpf_access_type type,
9281 const struct bpf_prog *prog,
9282 struct bpf_insn_access_aux *info)
9283 {
9284 if (type == BPF_WRITE)
9285 return false;
9286
9287 if (off % size != 0)
9288 return false;
9289
9290 switch (off) {
9291 case offsetof(struct sk_msg_md, data):
9292 info->reg_type = PTR_TO_PACKET;
9293 if (size != sizeof(__u64))
9294 return false;
9295 break;
9296 case offsetof(struct sk_msg_md, data_end):
9297 info->reg_type = PTR_TO_PACKET_END;
9298 if (size != sizeof(__u64))
9299 return false;
9300 break;
9301 case offsetof(struct sk_msg_md, sk):
9302 if (size != sizeof(__u64))
9303 return false;
9304 info->reg_type = PTR_TO_SOCKET;
9305 break;
9306 case bpf_ctx_range(struct sk_msg_md, family):
9307 case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9308 case bpf_ctx_range(struct sk_msg_md, local_ip4):
9309 case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9310 case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9311 case bpf_ctx_range(struct sk_msg_md, remote_port):
9312 case bpf_ctx_range(struct sk_msg_md, local_port):
9313 case bpf_ctx_range(struct sk_msg_md, size):
9314 if (size != sizeof(__u32))
9315 return false;
9316 break;
9317 default:
9318 return false;
9319 }
9320 return true;
9321 }
9322
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9323 static bool flow_dissector_is_valid_access(int off, int size,
9324 enum bpf_access_type type,
9325 const struct bpf_prog *prog,
9326 struct bpf_insn_access_aux *info)
9327 {
9328 const int size_default = sizeof(__u32);
9329
9330 if (off < 0 || off >= sizeof(struct __sk_buff))
9331 return false;
9332
9333 if (type == BPF_WRITE)
9334 return false;
9335
9336 switch (off) {
9337 case bpf_ctx_range(struct __sk_buff, data):
9338 if (size != size_default)
9339 return false;
9340 info->reg_type = PTR_TO_PACKET;
9341 return true;
9342 case bpf_ctx_range(struct __sk_buff, data_end):
9343 if (size != size_default)
9344 return false;
9345 info->reg_type = PTR_TO_PACKET_END;
9346 return true;
9347 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9348 if (size != sizeof(__u64))
9349 return false;
9350 info->reg_type = PTR_TO_FLOW_KEYS;
9351 return true;
9352 default:
9353 return false;
9354 }
9355 }
9356
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9357 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9358 const struct bpf_insn *si,
9359 struct bpf_insn *insn_buf,
9360 struct bpf_prog *prog,
9361 u32 *target_size)
9362
9363 {
9364 struct bpf_insn *insn = insn_buf;
9365
9366 switch (si->off) {
9367 case offsetof(struct __sk_buff, data):
9368 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9369 si->dst_reg, si->src_reg,
9370 offsetof(struct bpf_flow_dissector, data));
9371 break;
9372
9373 case offsetof(struct __sk_buff, data_end):
9374 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9375 si->dst_reg, si->src_reg,
9376 offsetof(struct bpf_flow_dissector, data_end));
9377 break;
9378
9379 case offsetof(struct __sk_buff, flow_keys):
9380 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9381 si->dst_reg, si->src_reg,
9382 offsetof(struct bpf_flow_dissector, flow_keys));
9383 break;
9384 }
9385
9386 return insn - insn_buf;
9387 }
9388
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9389 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9390 struct bpf_insn *insn)
9391 {
9392 __u8 value_reg = si->dst_reg;
9393 __u8 skb_reg = si->src_reg;
9394 /* AX is needed because src_reg and dst_reg could be the same */
9395 __u8 tmp_reg = BPF_REG_AX;
9396
9397 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9398 SKB_BF_MONO_TC_OFFSET);
9399 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9400 SKB_MONO_DELIVERY_TIME_MASK, 2);
9401 *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9402 *insn++ = BPF_JMP_A(1);
9403 *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9404
9405 return insn;
9406 }
9407
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9408 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9409 struct bpf_insn *insn)
9410 {
9411 /* si->dst_reg = skb_shinfo(SKB); */
9412 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9413 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9414 BPF_REG_AX, skb_reg,
9415 offsetof(struct sk_buff, end));
9416 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9417 dst_reg, skb_reg,
9418 offsetof(struct sk_buff, head));
9419 *insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9420 #else
9421 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9422 dst_reg, skb_reg,
9423 offsetof(struct sk_buff, end));
9424 #endif
9425
9426 return insn;
9427 }
9428
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9429 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9430 const struct bpf_insn *si,
9431 struct bpf_insn *insn)
9432 {
9433 __u8 value_reg = si->dst_reg;
9434 __u8 skb_reg = si->src_reg;
9435
9436 #ifdef CONFIG_NET_XGRESS
9437 /* If the tstamp_type is read,
9438 * the bpf prog is aware the tstamp could have delivery time.
9439 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9440 */
9441 if (!prog->tstamp_type_access) {
9442 /* AX is needed because src_reg and dst_reg could be the same */
9443 __u8 tmp_reg = BPF_REG_AX;
9444
9445 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9446 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9447 TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9448 *insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9449 TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9450 /* skb->tc_at_ingress && skb->tstamp_type,
9451 * read 0 as the (rcv) timestamp.
9452 */
9453 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9454 *insn++ = BPF_JMP_A(1);
9455 }
9456 #endif
9457
9458 *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9459 offsetof(struct sk_buff, tstamp));
9460 return insn;
9461 }
9462
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9463 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9464 const struct bpf_insn *si,
9465 struct bpf_insn *insn)
9466 {
9467 __u8 value_reg = si->src_reg;
9468 __u8 skb_reg = si->dst_reg;
9469
9470 #ifdef CONFIG_NET_XGRESS
9471 /* If the tstamp_type is read,
9472 * the bpf prog is aware the tstamp could have delivery time.
9473 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9474 * Otherwise, writing at ingress will have to clear the
9475 * skb->tstamp_type bit also.
9476 */
9477 if (!prog->tstamp_type_access) {
9478 __u8 tmp_reg = BPF_REG_AX;
9479
9480 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9481 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9482 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9483 /* goto <store> */
9484 *insn++ = BPF_JMP_A(2);
9485 /* <clear>: skb->tstamp_type */
9486 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9487 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9488 }
9489 #endif
9490
9491 /* <store>: skb->tstamp = tstamp */
9492 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9493 skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9494 return insn;
9495 }
9496
9497 #define BPF_EMIT_STORE(size, si, off) \
9498 BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM, \
9499 (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9500
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9501 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9502 const struct bpf_insn *si,
9503 struct bpf_insn *insn_buf,
9504 struct bpf_prog *prog, u32 *target_size)
9505 {
9506 struct bpf_insn *insn = insn_buf;
9507 int off;
9508
9509 switch (si->off) {
9510 case offsetof(struct __sk_buff, len):
9511 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9512 bpf_target_off(struct sk_buff, len, 4,
9513 target_size));
9514 break;
9515
9516 case offsetof(struct __sk_buff, protocol):
9517 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9518 bpf_target_off(struct sk_buff, protocol, 2,
9519 target_size));
9520 break;
9521
9522 case offsetof(struct __sk_buff, vlan_proto):
9523 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9524 bpf_target_off(struct sk_buff, vlan_proto, 2,
9525 target_size));
9526 break;
9527
9528 case offsetof(struct __sk_buff, priority):
9529 if (type == BPF_WRITE)
9530 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9531 bpf_target_off(struct sk_buff, priority, 4,
9532 target_size));
9533 else
9534 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9535 bpf_target_off(struct sk_buff, priority, 4,
9536 target_size));
9537 break;
9538
9539 case offsetof(struct __sk_buff, ingress_ifindex):
9540 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9541 bpf_target_off(struct sk_buff, skb_iif, 4,
9542 target_size));
9543 break;
9544
9545 case offsetof(struct __sk_buff, ifindex):
9546 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9547 si->dst_reg, si->src_reg,
9548 offsetof(struct sk_buff, dev));
9549 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9550 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9551 bpf_target_off(struct net_device, ifindex, 4,
9552 target_size));
9553 break;
9554
9555 case offsetof(struct __sk_buff, hash):
9556 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9557 bpf_target_off(struct sk_buff, hash, 4,
9558 target_size));
9559 break;
9560
9561 case offsetof(struct __sk_buff, mark):
9562 if (type == BPF_WRITE)
9563 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9564 bpf_target_off(struct sk_buff, mark, 4,
9565 target_size));
9566 else
9567 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9568 bpf_target_off(struct sk_buff, mark, 4,
9569 target_size));
9570 break;
9571
9572 case offsetof(struct __sk_buff, pkt_type):
9573 *target_size = 1;
9574 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9575 PKT_TYPE_OFFSET);
9576 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9577 #ifdef __BIG_ENDIAN_BITFIELD
9578 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9579 #endif
9580 break;
9581
9582 case offsetof(struct __sk_buff, queue_mapping):
9583 if (type == BPF_WRITE) {
9584 u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9585
9586 if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9587 *insn++ = BPF_JMP_A(0); /* noop */
9588 break;
9589 }
9590
9591 if (BPF_CLASS(si->code) == BPF_STX)
9592 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9593 *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9594 } else {
9595 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9596 bpf_target_off(struct sk_buff,
9597 queue_mapping,
9598 2, target_size));
9599 }
9600 break;
9601
9602 case offsetof(struct __sk_buff, vlan_present):
9603 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9604 bpf_target_off(struct sk_buff,
9605 vlan_all, 4, target_size));
9606 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9607 *insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9608 break;
9609
9610 case offsetof(struct __sk_buff, vlan_tci):
9611 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9612 bpf_target_off(struct sk_buff, vlan_tci, 2,
9613 target_size));
9614 break;
9615
9616 case offsetof(struct __sk_buff, cb[0]) ...
9617 offsetofend(struct __sk_buff, cb[4]) - 1:
9618 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9619 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9620 offsetof(struct qdisc_skb_cb, data)) %
9621 sizeof(__u64));
9622
9623 prog->cb_access = 1;
9624 off = si->off;
9625 off -= offsetof(struct __sk_buff, cb[0]);
9626 off += offsetof(struct sk_buff, cb);
9627 off += offsetof(struct qdisc_skb_cb, data);
9628 if (type == BPF_WRITE)
9629 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9630 else
9631 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9632 si->src_reg, off);
9633 break;
9634
9635 case offsetof(struct __sk_buff, tc_classid):
9636 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9637
9638 off = si->off;
9639 off -= offsetof(struct __sk_buff, tc_classid);
9640 off += offsetof(struct sk_buff, cb);
9641 off += offsetof(struct qdisc_skb_cb, tc_classid);
9642 *target_size = 2;
9643 if (type == BPF_WRITE)
9644 *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9645 else
9646 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9647 si->src_reg, off);
9648 break;
9649
9650 case offsetof(struct __sk_buff, data):
9651 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9652 si->dst_reg, si->src_reg,
9653 offsetof(struct sk_buff, data));
9654 break;
9655
9656 case offsetof(struct __sk_buff, data_meta):
9657 off = si->off;
9658 off -= offsetof(struct __sk_buff, data_meta);
9659 off += offsetof(struct sk_buff, cb);
9660 off += offsetof(struct bpf_skb_data_end, data_meta);
9661 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9662 si->src_reg, off);
9663 break;
9664
9665 case offsetof(struct __sk_buff, data_end):
9666 off = si->off;
9667 off -= offsetof(struct __sk_buff, data_end);
9668 off += offsetof(struct sk_buff, cb);
9669 off += offsetof(struct bpf_skb_data_end, data_end);
9670 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9671 si->src_reg, off);
9672 break;
9673
9674 case offsetof(struct __sk_buff, tc_index):
9675 #ifdef CONFIG_NET_SCHED
9676 if (type == BPF_WRITE)
9677 *insn++ = BPF_EMIT_STORE(BPF_H, si,
9678 bpf_target_off(struct sk_buff, tc_index, 2,
9679 target_size));
9680 else
9681 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9682 bpf_target_off(struct sk_buff, tc_index, 2,
9683 target_size));
9684 #else
9685 *target_size = 2;
9686 if (type == BPF_WRITE)
9687 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9688 else
9689 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9690 #endif
9691 break;
9692
9693 case offsetof(struct __sk_buff, napi_id):
9694 #if defined(CONFIG_NET_RX_BUSY_POLL)
9695 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9696 bpf_target_off(struct sk_buff, napi_id, 4,
9697 target_size));
9698 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9699 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9700 #else
9701 *target_size = 4;
9702 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9703 #endif
9704 break;
9705 case offsetof(struct __sk_buff, family):
9706 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9707
9708 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9709 si->dst_reg, si->src_reg,
9710 offsetof(struct sk_buff, sk));
9711 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9712 bpf_target_off(struct sock_common,
9713 skc_family,
9714 2, target_size));
9715 break;
9716 case offsetof(struct __sk_buff, remote_ip4):
9717 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9718
9719 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9720 si->dst_reg, si->src_reg,
9721 offsetof(struct sk_buff, sk));
9722 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9723 bpf_target_off(struct sock_common,
9724 skc_daddr,
9725 4, target_size));
9726 break;
9727 case offsetof(struct __sk_buff, local_ip4):
9728 BUILD_BUG_ON(sizeof_field(struct sock_common,
9729 skc_rcv_saddr) != 4);
9730
9731 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9732 si->dst_reg, si->src_reg,
9733 offsetof(struct sk_buff, sk));
9734 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9735 bpf_target_off(struct sock_common,
9736 skc_rcv_saddr,
9737 4, target_size));
9738 break;
9739 case offsetof(struct __sk_buff, remote_ip6[0]) ...
9740 offsetof(struct __sk_buff, remote_ip6[3]):
9741 #if IS_ENABLED(CONFIG_IPV6)
9742 BUILD_BUG_ON(sizeof_field(struct sock_common,
9743 skc_v6_daddr.s6_addr32[0]) != 4);
9744
9745 off = si->off;
9746 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9747
9748 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9749 si->dst_reg, si->src_reg,
9750 offsetof(struct sk_buff, sk));
9751 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9752 offsetof(struct sock_common,
9753 skc_v6_daddr.s6_addr32[0]) +
9754 off);
9755 #else
9756 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9757 #endif
9758 break;
9759 case offsetof(struct __sk_buff, local_ip6[0]) ...
9760 offsetof(struct __sk_buff, local_ip6[3]):
9761 #if IS_ENABLED(CONFIG_IPV6)
9762 BUILD_BUG_ON(sizeof_field(struct sock_common,
9763 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9764
9765 off = si->off;
9766 off -= offsetof(struct __sk_buff, local_ip6[0]);
9767
9768 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9769 si->dst_reg, si->src_reg,
9770 offsetof(struct sk_buff, sk));
9771 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9772 offsetof(struct sock_common,
9773 skc_v6_rcv_saddr.s6_addr32[0]) +
9774 off);
9775 #else
9776 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9777 #endif
9778 break;
9779
9780 case offsetof(struct __sk_buff, remote_port):
9781 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9782
9783 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9784 si->dst_reg, si->src_reg,
9785 offsetof(struct sk_buff, sk));
9786 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9787 bpf_target_off(struct sock_common,
9788 skc_dport,
9789 2, target_size));
9790 #ifndef __BIG_ENDIAN_BITFIELD
9791 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9792 #endif
9793 break;
9794
9795 case offsetof(struct __sk_buff, local_port):
9796 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9797
9798 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9799 si->dst_reg, si->src_reg,
9800 offsetof(struct sk_buff, sk));
9801 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9802 bpf_target_off(struct sock_common,
9803 skc_num, 2, target_size));
9804 break;
9805
9806 case offsetof(struct __sk_buff, tstamp):
9807 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9808
9809 if (type == BPF_WRITE)
9810 insn = bpf_convert_tstamp_write(prog, si, insn);
9811 else
9812 insn = bpf_convert_tstamp_read(prog, si, insn);
9813 break;
9814
9815 case offsetof(struct __sk_buff, tstamp_type):
9816 insn = bpf_convert_tstamp_type_read(si, insn);
9817 break;
9818
9819 case offsetof(struct __sk_buff, gso_segs):
9820 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9821 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9822 si->dst_reg, si->dst_reg,
9823 bpf_target_off(struct skb_shared_info,
9824 gso_segs, 2,
9825 target_size));
9826 break;
9827 case offsetof(struct __sk_buff, gso_size):
9828 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9829 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9830 si->dst_reg, si->dst_reg,
9831 bpf_target_off(struct skb_shared_info,
9832 gso_size, 2,
9833 target_size));
9834 break;
9835 case offsetof(struct __sk_buff, wire_len):
9836 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9837
9838 off = si->off;
9839 off -= offsetof(struct __sk_buff, wire_len);
9840 off += offsetof(struct sk_buff, cb);
9841 off += offsetof(struct qdisc_skb_cb, pkt_len);
9842 *target_size = 4;
9843 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9844 break;
9845
9846 case offsetof(struct __sk_buff, sk):
9847 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9848 si->dst_reg, si->src_reg,
9849 offsetof(struct sk_buff, sk));
9850 break;
9851 case offsetof(struct __sk_buff, hwtstamp):
9852 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9853 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9854
9855 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9856 *insn++ = BPF_LDX_MEM(BPF_DW,
9857 si->dst_reg, si->dst_reg,
9858 bpf_target_off(struct skb_shared_info,
9859 hwtstamps, 8,
9860 target_size));
9861 break;
9862 }
9863
9864 return insn - insn_buf;
9865 }
9866
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9867 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9868 const struct bpf_insn *si,
9869 struct bpf_insn *insn_buf,
9870 struct bpf_prog *prog, u32 *target_size)
9871 {
9872 struct bpf_insn *insn = insn_buf;
9873 int off;
9874
9875 switch (si->off) {
9876 case offsetof(struct bpf_sock, bound_dev_if):
9877 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9878
9879 if (type == BPF_WRITE)
9880 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9881 offsetof(struct sock, sk_bound_dev_if));
9882 else
9883 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9884 offsetof(struct sock, sk_bound_dev_if));
9885 break;
9886
9887 case offsetof(struct bpf_sock, mark):
9888 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9889
9890 if (type == BPF_WRITE)
9891 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9892 offsetof(struct sock, sk_mark));
9893 else
9894 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9895 offsetof(struct sock, sk_mark));
9896 break;
9897
9898 case offsetof(struct bpf_sock, priority):
9899 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9900
9901 if (type == BPF_WRITE)
9902 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9903 offsetof(struct sock, sk_priority));
9904 else
9905 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9906 offsetof(struct sock, sk_priority));
9907 break;
9908
9909 case offsetof(struct bpf_sock, family):
9910 *insn++ = BPF_LDX_MEM(
9911 BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9912 si->dst_reg, si->src_reg,
9913 bpf_target_off(struct sock_common,
9914 skc_family,
9915 sizeof_field(struct sock_common,
9916 skc_family),
9917 target_size));
9918 break;
9919
9920 case offsetof(struct bpf_sock, type):
9921 *insn++ = BPF_LDX_MEM(
9922 BPF_FIELD_SIZEOF(struct sock, sk_type),
9923 si->dst_reg, si->src_reg,
9924 bpf_target_off(struct sock, sk_type,
9925 sizeof_field(struct sock, sk_type),
9926 target_size));
9927 break;
9928
9929 case offsetof(struct bpf_sock, protocol):
9930 *insn++ = BPF_LDX_MEM(
9931 BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9932 si->dst_reg, si->src_reg,
9933 bpf_target_off(struct sock, sk_protocol,
9934 sizeof_field(struct sock, sk_protocol),
9935 target_size));
9936 break;
9937
9938 case offsetof(struct bpf_sock, src_ip4):
9939 *insn++ = BPF_LDX_MEM(
9940 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9941 bpf_target_off(struct sock_common, skc_rcv_saddr,
9942 sizeof_field(struct sock_common,
9943 skc_rcv_saddr),
9944 target_size));
9945 break;
9946
9947 case offsetof(struct bpf_sock, dst_ip4):
9948 *insn++ = BPF_LDX_MEM(
9949 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9950 bpf_target_off(struct sock_common, skc_daddr,
9951 sizeof_field(struct sock_common,
9952 skc_daddr),
9953 target_size));
9954 break;
9955
9956 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9957 #if IS_ENABLED(CONFIG_IPV6)
9958 off = si->off;
9959 off -= offsetof(struct bpf_sock, src_ip6[0]);
9960 *insn++ = BPF_LDX_MEM(
9961 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9962 bpf_target_off(
9963 struct sock_common,
9964 skc_v6_rcv_saddr.s6_addr32[0],
9965 sizeof_field(struct sock_common,
9966 skc_v6_rcv_saddr.s6_addr32[0]),
9967 target_size) + off);
9968 #else
9969 (void)off;
9970 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9971 #endif
9972 break;
9973
9974 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9975 #if IS_ENABLED(CONFIG_IPV6)
9976 off = si->off;
9977 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9978 *insn++ = BPF_LDX_MEM(
9979 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9980 bpf_target_off(struct sock_common,
9981 skc_v6_daddr.s6_addr32[0],
9982 sizeof_field(struct sock_common,
9983 skc_v6_daddr.s6_addr32[0]),
9984 target_size) + off);
9985 #else
9986 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9987 *target_size = 4;
9988 #endif
9989 break;
9990
9991 case offsetof(struct bpf_sock, src_port):
9992 *insn++ = BPF_LDX_MEM(
9993 BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9994 si->dst_reg, si->src_reg,
9995 bpf_target_off(struct sock_common, skc_num,
9996 sizeof_field(struct sock_common,
9997 skc_num),
9998 target_size));
9999 break;
10000
10001 case offsetof(struct bpf_sock, dst_port):
10002 *insn++ = BPF_LDX_MEM(
10003 BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
10004 si->dst_reg, si->src_reg,
10005 bpf_target_off(struct sock_common, skc_dport,
10006 sizeof_field(struct sock_common,
10007 skc_dport),
10008 target_size));
10009 break;
10010
10011 case offsetof(struct bpf_sock, state):
10012 *insn++ = BPF_LDX_MEM(
10013 BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10014 si->dst_reg, si->src_reg,
10015 bpf_target_off(struct sock_common, skc_state,
10016 sizeof_field(struct sock_common,
10017 skc_state),
10018 target_size));
10019 break;
10020 case offsetof(struct bpf_sock, rx_queue_mapping):
10021 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10022 *insn++ = BPF_LDX_MEM(
10023 BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10024 si->dst_reg, si->src_reg,
10025 bpf_target_off(struct sock, sk_rx_queue_mapping,
10026 sizeof_field(struct sock,
10027 sk_rx_queue_mapping),
10028 target_size));
10029 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10030 1);
10031 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10032 #else
10033 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10034 *target_size = 2;
10035 #endif
10036 break;
10037 }
10038
10039 return insn - insn_buf;
10040 }
10041
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10042 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10043 const struct bpf_insn *si,
10044 struct bpf_insn *insn_buf,
10045 struct bpf_prog *prog, u32 *target_size)
10046 {
10047 struct bpf_insn *insn = insn_buf;
10048
10049 switch (si->off) {
10050 case offsetof(struct __sk_buff, ifindex):
10051 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10052 si->dst_reg, si->src_reg,
10053 offsetof(struct sk_buff, dev));
10054 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10055 bpf_target_off(struct net_device, ifindex, 4,
10056 target_size));
10057 break;
10058 default:
10059 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10060 target_size);
10061 }
10062
10063 return insn - insn_buf;
10064 }
10065
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10066 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10067 const struct bpf_insn *si,
10068 struct bpf_insn *insn_buf,
10069 struct bpf_prog *prog, u32 *target_size)
10070 {
10071 struct bpf_insn *insn = insn_buf;
10072
10073 switch (si->off) {
10074 case offsetof(struct xdp_md, data):
10075 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10076 si->dst_reg, si->src_reg,
10077 offsetof(struct xdp_buff, data));
10078 break;
10079 case offsetof(struct xdp_md, data_meta):
10080 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10081 si->dst_reg, si->src_reg,
10082 offsetof(struct xdp_buff, data_meta));
10083 break;
10084 case offsetof(struct xdp_md, data_end):
10085 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10086 si->dst_reg, si->src_reg,
10087 offsetof(struct xdp_buff, data_end));
10088 break;
10089 case offsetof(struct xdp_md, ingress_ifindex):
10090 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10091 si->dst_reg, si->src_reg,
10092 offsetof(struct xdp_buff, rxq));
10093 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10094 si->dst_reg, si->dst_reg,
10095 offsetof(struct xdp_rxq_info, dev));
10096 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10097 offsetof(struct net_device, ifindex));
10098 break;
10099 case offsetof(struct xdp_md, rx_queue_index):
10100 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10101 si->dst_reg, si->src_reg,
10102 offsetof(struct xdp_buff, rxq));
10103 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10104 offsetof(struct xdp_rxq_info,
10105 queue_index));
10106 break;
10107 case offsetof(struct xdp_md, egress_ifindex):
10108 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10109 si->dst_reg, si->src_reg,
10110 offsetof(struct xdp_buff, txq));
10111 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10112 si->dst_reg, si->dst_reg,
10113 offsetof(struct xdp_txq_info, dev));
10114 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10115 offsetof(struct net_device, ifindex));
10116 break;
10117 }
10118
10119 return insn - insn_buf;
10120 }
10121
10122 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10123 * context Structure, F is Field in context structure that contains a pointer
10124 * to Nested Structure of type NS that has the field NF.
10125 *
10126 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10127 * sure that SIZE is not greater than actual size of S.F.NF.
10128 *
10129 * If offset OFF is provided, the load happens from that offset relative to
10130 * offset of NF.
10131 */
10132 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \
10133 do { \
10134 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \
10135 si->src_reg, offsetof(S, F)); \
10136 *insn++ = BPF_LDX_MEM( \
10137 SIZE, si->dst_reg, si->dst_reg, \
10138 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10139 target_size) \
10140 + OFF); \
10141 } while (0)
10142
10143 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \
10144 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \
10145 BPF_FIELD_SIZEOF(NS, NF), 0)
10146
10147 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10148 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10149 *
10150 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10151 * "register" since two registers available in convert_ctx_access are not
10152 * enough: we can't override neither SRC, since it contains value to store, nor
10153 * DST since it contains pointer to context that may be used by later
10154 * instructions. But we need a temporary place to save pointer to nested
10155 * structure whose field we want to store to.
10156 */
10157 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \
10158 do { \
10159 int tmp_reg = BPF_REG_9; \
10160 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10161 --tmp_reg; \
10162 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10163 --tmp_reg; \
10164 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \
10165 offsetof(S, TF)); \
10166 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \
10167 si->dst_reg, offsetof(S, F)); \
10168 *insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code), \
10169 tmp_reg, si->src_reg, \
10170 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10171 target_size) \
10172 + OFF, \
10173 si->imm); \
10174 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \
10175 offsetof(S, TF)); \
10176 } while (0)
10177
10178 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10179 TF) \
10180 do { \
10181 if (type == BPF_WRITE) { \
10182 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \
10183 OFF, TF); \
10184 } else { \
10185 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \
10186 S, NS, F, NF, SIZE, OFF); \
10187 } \
10188 } while (0)
10189
10190 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF) \
10191 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( \
10192 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10193
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10194 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10195 const struct bpf_insn *si,
10196 struct bpf_insn *insn_buf,
10197 struct bpf_prog *prog, u32 *target_size)
10198 {
10199 int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10200 struct bpf_insn *insn = insn_buf;
10201
10202 switch (si->off) {
10203 case offsetof(struct bpf_sock_addr, user_family):
10204 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10205 struct sockaddr, uaddr, sa_family);
10206 break;
10207
10208 case offsetof(struct bpf_sock_addr, user_ip4):
10209 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10210 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10211 sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10212 break;
10213
10214 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10215 off = si->off;
10216 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10217 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10218 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10219 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10220 tmp_reg);
10221 break;
10222
10223 case offsetof(struct bpf_sock_addr, user_port):
10224 /* To get port we need to know sa_family first and then treat
10225 * sockaddr as either sockaddr_in or sockaddr_in6.
10226 * Though we can simplify since port field has same offset and
10227 * size in both structures.
10228 * Here we check this invariant and use just one of the
10229 * structures if it's true.
10230 */
10231 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10232 offsetof(struct sockaddr_in6, sin6_port));
10233 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10234 sizeof_field(struct sockaddr_in6, sin6_port));
10235 /* Account for sin6_port being smaller than user_port. */
10236 port_size = min(port_size, BPF_LDST_BYTES(si));
10237 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10238 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10239 sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10240 break;
10241
10242 case offsetof(struct bpf_sock_addr, family):
10243 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10244 struct sock, sk, sk_family);
10245 break;
10246
10247 case offsetof(struct bpf_sock_addr, type):
10248 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10249 struct sock, sk, sk_type);
10250 break;
10251
10252 case offsetof(struct bpf_sock_addr, protocol):
10253 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10254 struct sock, sk, sk_protocol);
10255 break;
10256
10257 case offsetof(struct bpf_sock_addr, msg_src_ip4):
10258 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
10259 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10260 struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10261 s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10262 break;
10263
10264 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10265 msg_src_ip6[3]):
10266 off = si->off;
10267 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10268 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10269 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10270 struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10271 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10272 break;
10273 case offsetof(struct bpf_sock_addr, sk):
10274 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10275 si->dst_reg, si->src_reg,
10276 offsetof(struct bpf_sock_addr_kern, sk));
10277 break;
10278 }
10279
10280 return insn - insn_buf;
10281 }
10282
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10283 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10284 const struct bpf_insn *si,
10285 struct bpf_insn *insn_buf,
10286 struct bpf_prog *prog,
10287 u32 *target_size)
10288 {
10289 struct bpf_insn *insn = insn_buf;
10290 int off;
10291
10292 /* Helper macro for adding read access to tcp_sock or sock fields. */
10293 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10294 do { \
10295 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \
10296 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10297 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10298 if (si->dst_reg == reg || si->src_reg == reg) \
10299 reg--; \
10300 if (si->dst_reg == reg || si->src_reg == reg) \
10301 reg--; \
10302 if (si->dst_reg == si->src_reg) { \
10303 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10304 offsetof(struct bpf_sock_ops_kern, \
10305 temp)); \
10306 fullsock_reg = reg; \
10307 jmp += 2; \
10308 } \
10309 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10310 struct bpf_sock_ops_kern, \
10311 is_fullsock), \
10312 fullsock_reg, si->src_reg, \
10313 offsetof(struct bpf_sock_ops_kern, \
10314 is_fullsock)); \
10315 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10316 if (si->dst_reg == si->src_reg) \
10317 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10318 offsetof(struct bpf_sock_ops_kern, \
10319 temp)); \
10320 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10321 struct bpf_sock_ops_kern, sk),\
10322 si->dst_reg, si->src_reg, \
10323 offsetof(struct bpf_sock_ops_kern, sk));\
10324 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \
10325 OBJ_FIELD), \
10326 si->dst_reg, si->dst_reg, \
10327 offsetof(OBJ, OBJ_FIELD)); \
10328 if (si->dst_reg == si->src_reg) { \
10329 *insn++ = BPF_JMP_A(1); \
10330 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10331 offsetof(struct bpf_sock_ops_kern, \
10332 temp)); \
10333 } \
10334 } while (0)
10335
10336 #define SOCK_OPS_GET_SK() \
10337 do { \
10338 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \
10339 if (si->dst_reg == reg || si->src_reg == reg) \
10340 reg--; \
10341 if (si->dst_reg == reg || si->src_reg == reg) \
10342 reg--; \
10343 if (si->dst_reg == si->src_reg) { \
10344 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10345 offsetof(struct bpf_sock_ops_kern, \
10346 temp)); \
10347 fullsock_reg = reg; \
10348 jmp += 2; \
10349 } \
10350 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10351 struct bpf_sock_ops_kern, \
10352 is_fullsock), \
10353 fullsock_reg, si->src_reg, \
10354 offsetof(struct bpf_sock_ops_kern, \
10355 is_fullsock)); \
10356 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10357 if (si->dst_reg == si->src_reg) \
10358 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10359 offsetof(struct bpf_sock_ops_kern, \
10360 temp)); \
10361 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10362 struct bpf_sock_ops_kern, sk),\
10363 si->dst_reg, si->src_reg, \
10364 offsetof(struct bpf_sock_ops_kern, sk));\
10365 if (si->dst_reg == si->src_reg) { \
10366 *insn++ = BPF_JMP_A(1); \
10367 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10368 offsetof(struct bpf_sock_ops_kern, \
10369 temp)); \
10370 } \
10371 } while (0)
10372
10373 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10374 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10375
10376 /* Helper macro for adding write access to tcp_sock or sock fields.
10377 * The macro is called with two registers, dst_reg which contains a pointer
10378 * to ctx (context) and src_reg which contains the value that should be
10379 * stored. However, we need an additional register since we cannot overwrite
10380 * dst_reg because it may be used later in the program.
10381 * Instead we "borrow" one of the other register. We first save its value
10382 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10383 * it at the end of the macro.
10384 */
10385 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10386 do { \
10387 int reg = BPF_REG_9; \
10388 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10389 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10390 if (si->dst_reg == reg || si->src_reg == reg) \
10391 reg--; \
10392 if (si->dst_reg == reg || si->src_reg == reg) \
10393 reg--; \
10394 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \
10395 offsetof(struct bpf_sock_ops_kern, \
10396 temp)); \
10397 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10398 struct bpf_sock_ops_kern, \
10399 is_fullsock), \
10400 reg, si->dst_reg, \
10401 offsetof(struct bpf_sock_ops_kern, \
10402 is_fullsock)); \
10403 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \
10404 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10405 struct bpf_sock_ops_kern, sk),\
10406 reg, si->dst_reg, \
10407 offsetof(struct bpf_sock_ops_kern, sk));\
10408 *insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) | \
10409 BPF_MEM | BPF_CLASS(si->code), \
10410 reg, si->src_reg, \
10411 offsetof(OBJ, OBJ_FIELD), \
10412 si->imm); \
10413 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \
10414 offsetof(struct bpf_sock_ops_kern, \
10415 temp)); \
10416 } while (0)
10417
10418 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \
10419 do { \
10420 if (TYPE == BPF_WRITE) \
10421 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10422 else \
10423 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10424 } while (0)
10425
10426 switch (si->off) {
10427 case offsetof(struct bpf_sock_ops, op):
10428 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10429 op),
10430 si->dst_reg, si->src_reg,
10431 offsetof(struct bpf_sock_ops_kern, op));
10432 break;
10433
10434 case offsetof(struct bpf_sock_ops, replylong[0]) ...
10435 offsetof(struct bpf_sock_ops, replylong[3]):
10436 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10437 sizeof_field(struct bpf_sock_ops_kern, reply));
10438 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10439 sizeof_field(struct bpf_sock_ops_kern, replylong));
10440 off = si->off;
10441 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10442 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10443 if (type == BPF_WRITE)
10444 *insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10445 else
10446 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10447 off);
10448 break;
10449
10450 case offsetof(struct bpf_sock_ops, family):
10451 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10452
10453 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10454 struct bpf_sock_ops_kern, sk),
10455 si->dst_reg, si->src_reg,
10456 offsetof(struct bpf_sock_ops_kern, sk));
10457 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10458 offsetof(struct sock_common, skc_family));
10459 break;
10460
10461 case offsetof(struct bpf_sock_ops, remote_ip4):
10462 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10463
10464 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10465 struct bpf_sock_ops_kern, sk),
10466 si->dst_reg, si->src_reg,
10467 offsetof(struct bpf_sock_ops_kern, sk));
10468 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10469 offsetof(struct sock_common, skc_daddr));
10470 break;
10471
10472 case offsetof(struct bpf_sock_ops, local_ip4):
10473 BUILD_BUG_ON(sizeof_field(struct sock_common,
10474 skc_rcv_saddr) != 4);
10475
10476 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10477 struct bpf_sock_ops_kern, sk),
10478 si->dst_reg, si->src_reg,
10479 offsetof(struct bpf_sock_ops_kern, sk));
10480 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10481 offsetof(struct sock_common,
10482 skc_rcv_saddr));
10483 break;
10484
10485 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10486 offsetof(struct bpf_sock_ops, remote_ip6[3]):
10487 #if IS_ENABLED(CONFIG_IPV6)
10488 BUILD_BUG_ON(sizeof_field(struct sock_common,
10489 skc_v6_daddr.s6_addr32[0]) != 4);
10490
10491 off = si->off;
10492 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10493 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10494 struct bpf_sock_ops_kern, sk),
10495 si->dst_reg, si->src_reg,
10496 offsetof(struct bpf_sock_ops_kern, sk));
10497 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10498 offsetof(struct sock_common,
10499 skc_v6_daddr.s6_addr32[0]) +
10500 off);
10501 #else
10502 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10503 #endif
10504 break;
10505
10506 case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10507 offsetof(struct bpf_sock_ops, local_ip6[3]):
10508 #if IS_ENABLED(CONFIG_IPV6)
10509 BUILD_BUG_ON(sizeof_field(struct sock_common,
10510 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10511
10512 off = si->off;
10513 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10514 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10515 struct bpf_sock_ops_kern, sk),
10516 si->dst_reg, si->src_reg,
10517 offsetof(struct bpf_sock_ops_kern, sk));
10518 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10519 offsetof(struct sock_common,
10520 skc_v6_rcv_saddr.s6_addr32[0]) +
10521 off);
10522 #else
10523 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10524 #endif
10525 break;
10526
10527 case offsetof(struct bpf_sock_ops, remote_port):
10528 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10529
10530 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10531 struct bpf_sock_ops_kern, sk),
10532 si->dst_reg, si->src_reg,
10533 offsetof(struct bpf_sock_ops_kern, sk));
10534 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10535 offsetof(struct sock_common, skc_dport));
10536 #ifndef __BIG_ENDIAN_BITFIELD
10537 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10538 #endif
10539 break;
10540
10541 case offsetof(struct bpf_sock_ops, local_port):
10542 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10543
10544 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10545 struct bpf_sock_ops_kern, sk),
10546 si->dst_reg, si->src_reg,
10547 offsetof(struct bpf_sock_ops_kern, sk));
10548 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10549 offsetof(struct sock_common, skc_num));
10550 break;
10551
10552 case offsetof(struct bpf_sock_ops, is_fullsock):
10553 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10554 struct bpf_sock_ops_kern,
10555 is_fullsock),
10556 si->dst_reg, si->src_reg,
10557 offsetof(struct bpf_sock_ops_kern,
10558 is_fullsock));
10559 break;
10560
10561 case offsetof(struct bpf_sock_ops, state):
10562 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10563
10564 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10565 struct bpf_sock_ops_kern, sk),
10566 si->dst_reg, si->src_reg,
10567 offsetof(struct bpf_sock_ops_kern, sk));
10568 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10569 offsetof(struct sock_common, skc_state));
10570 break;
10571
10572 case offsetof(struct bpf_sock_ops, rtt_min):
10573 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10574 sizeof(struct minmax));
10575 BUILD_BUG_ON(sizeof(struct minmax) <
10576 sizeof(struct minmax_sample));
10577
10578 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10579 struct bpf_sock_ops_kern, sk),
10580 si->dst_reg, si->src_reg,
10581 offsetof(struct bpf_sock_ops_kern, sk));
10582 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10583 offsetof(struct tcp_sock, rtt_min) +
10584 sizeof_field(struct minmax_sample, t));
10585 break;
10586
10587 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10588 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10589 struct tcp_sock);
10590 break;
10591
10592 case offsetof(struct bpf_sock_ops, sk_txhash):
10593 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10594 struct sock, type);
10595 break;
10596 case offsetof(struct bpf_sock_ops, snd_cwnd):
10597 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10598 break;
10599 case offsetof(struct bpf_sock_ops, srtt_us):
10600 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10601 break;
10602 case offsetof(struct bpf_sock_ops, snd_ssthresh):
10603 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10604 break;
10605 case offsetof(struct bpf_sock_ops, rcv_nxt):
10606 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10607 break;
10608 case offsetof(struct bpf_sock_ops, snd_nxt):
10609 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10610 break;
10611 case offsetof(struct bpf_sock_ops, snd_una):
10612 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10613 break;
10614 case offsetof(struct bpf_sock_ops, mss_cache):
10615 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10616 break;
10617 case offsetof(struct bpf_sock_ops, ecn_flags):
10618 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10619 break;
10620 case offsetof(struct bpf_sock_ops, rate_delivered):
10621 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10622 break;
10623 case offsetof(struct bpf_sock_ops, rate_interval_us):
10624 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10625 break;
10626 case offsetof(struct bpf_sock_ops, packets_out):
10627 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10628 break;
10629 case offsetof(struct bpf_sock_ops, retrans_out):
10630 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10631 break;
10632 case offsetof(struct bpf_sock_ops, total_retrans):
10633 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10634 break;
10635 case offsetof(struct bpf_sock_ops, segs_in):
10636 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10637 break;
10638 case offsetof(struct bpf_sock_ops, data_segs_in):
10639 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10640 break;
10641 case offsetof(struct bpf_sock_ops, segs_out):
10642 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10643 break;
10644 case offsetof(struct bpf_sock_ops, data_segs_out):
10645 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10646 break;
10647 case offsetof(struct bpf_sock_ops, lost_out):
10648 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10649 break;
10650 case offsetof(struct bpf_sock_ops, sacked_out):
10651 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10652 break;
10653 case offsetof(struct bpf_sock_ops, bytes_received):
10654 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10655 break;
10656 case offsetof(struct bpf_sock_ops, bytes_acked):
10657 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10658 break;
10659 case offsetof(struct bpf_sock_ops, sk):
10660 SOCK_OPS_GET_SK();
10661 break;
10662 case offsetof(struct bpf_sock_ops, skb_data_end):
10663 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10664 skb_data_end),
10665 si->dst_reg, si->src_reg,
10666 offsetof(struct bpf_sock_ops_kern,
10667 skb_data_end));
10668 break;
10669 case offsetof(struct bpf_sock_ops, skb_data):
10670 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10671 skb),
10672 si->dst_reg, si->src_reg,
10673 offsetof(struct bpf_sock_ops_kern,
10674 skb));
10675 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10676 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10677 si->dst_reg, si->dst_reg,
10678 offsetof(struct sk_buff, data));
10679 break;
10680 case offsetof(struct bpf_sock_ops, skb_len):
10681 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10682 skb),
10683 si->dst_reg, si->src_reg,
10684 offsetof(struct bpf_sock_ops_kern,
10685 skb));
10686 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10687 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10688 si->dst_reg, si->dst_reg,
10689 offsetof(struct sk_buff, len));
10690 break;
10691 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10692 off = offsetof(struct sk_buff, cb);
10693 off += offsetof(struct tcp_skb_cb, tcp_flags);
10694 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10695 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10696 skb),
10697 si->dst_reg, si->src_reg,
10698 offsetof(struct bpf_sock_ops_kern,
10699 skb));
10700 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10701 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10702 tcp_flags),
10703 si->dst_reg, si->dst_reg, off);
10704 break;
10705 case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10706 struct bpf_insn *jmp_on_null_skb;
10707
10708 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10709 skb),
10710 si->dst_reg, si->src_reg,
10711 offsetof(struct bpf_sock_ops_kern,
10712 skb));
10713 /* Reserve one insn to test skb == NULL */
10714 jmp_on_null_skb = insn++;
10715 insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10716 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10717 bpf_target_off(struct skb_shared_info,
10718 hwtstamps, 8,
10719 target_size));
10720 *jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10721 insn - jmp_on_null_skb - 1);
10722 break;
10723 }
10724 }
10725 return insn - insn_buf;
10726 }
10727
10728 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10729 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10730 struct bpf_insn *insn)
10731 {
10732 int reg;
10733 int temp_reg_off = offsetof(struct sk_buff, cb) +
10734 offsetof(struct sk_skb_cb, temp_reg);
10735
10736 if (si->src_reg == si->dst_reg) {
10737 /* We need an extra register, choose and save a register. */
10738 reg = BPF_REG_9;
10739 if (si->src_reg == reg || si->dst_reg == reg)
10740 reg--;
10741 if (si->src_reg == reg || si->dst_reg == reg)
10742 reg--;
10743 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10744 } else {
10745 reg = si->dst_reg;
10746 }
10747
10748 /* reg = skb->data */
10749 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10750 reg, si->src_reg,
10751 offsetof(struct sk_buff, data));
10752 /* AX = skb->len */
10753 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10754 BPF_REG_AX, si->src_reg,
10755 offsetof(struct sk_buff, len));
10756 /* reg = skb->data + skb->len */
10757 *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10758 /* AX = skb->data_len */
10759 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10760 BPF_REG_AX, si->src_reg,
10761 offsetof(struct sk_buff, data_len));
10762
10763 /* reg = skb->data + skb->len - skb->data_len */
10764 *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10765
10766 if (si->src_reg == si->dst_reg) {
10767 /* Restore the saved register */
10768 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10769 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10770 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10771 }
10772
10773 return insn;
10774 }
10775
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10776 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10777 const struct bpf_insn *si,
10778 struct bpf_insn *insn_buf,
10779 struct bpf_prog *prog, u32 *target_size)
10780 {
10781 struct bpf_insn *insn = insn_buf;
10782 int off;
10783
10784 switch (si->off) {
10785 case offsetof(struct __sk_buff, data_end):
10786 insn = bpf_convert_data_end_access(si, insn);
10787 break;
10788 case offsetof(struct __sk_buff, cb[0]) ...
10789 offsetofend(struct __sk_buff, cb[4]) - 1:
10790 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10791 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10792 offsetof(struct sk_skb_cb, data)) %
10793 sizeof(__u64));
10794
10795 prog->cb_access = 1;
10796 off = si->off;
10797 off -= offsetof(struct __sk_buff, cb[0]);
10798 off += offsetof(struct sk_buff, cb);
10799 off += offsetof(struct sk_skb_cb, data);
10800 if (type == BPF_WRITE)
10801 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10802 else
10803 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10804 si->src_reg, off);
10805 break;
10806
10807
10808 default:
10809 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10810 target_size);
10811 }
10812
10813 return insn - insn_buf;
10814 }
10815
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10816 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10817 const struct bpf_insn *si,
10818 struct bpf_insn *insn_buf,
10819 struct bpf_prog *prog, u32 *target_size)
10820 {
10821 struct bpf_insn *insn = insn_buf;
10822 #if IS_ENABLED(CONFIG_IPV6)
10823 int off;
10824 #endif
10825
10826 /* convert ctx uses the fact sg element is first in struct */
10827 BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10828
10829 switch (si->off) {
10830 case offsetof(struct sk_msg_md, data):
10831 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10832 si->dst_reg, si->src_reg,
10833 offsetof(struct sk_msg, data));
10834 break;
10835 case offsetof(struct sk_msg_md, data_end):
10836 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10837 si->dst_reg, si->src_reg,
10838 offsetof(struct sk_msg, data_end));
10839 break;
10840 case offsetof(struct sk_msg_md, family):
10841 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10842
10843 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10844 struct sk_msg, sk),
10845 si->dst_reg, si->src_reg,
10846 offsetof(struct sk_msg, sk));
10847 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10848 offsetof(struct sock_common, skc_family));
10849 break;
10850
10851 case offsetof(struct sk_msg_md, remote_ip4):
10852 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10853
10854 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10855 struct sk_msg, sk),
10856 si->dst_reg, si->src_reg,
10857 offsetof(struct sk_msg, sk));
10858 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10859 offsetof(struct sock_common, skc_daddr));
10860 break;
10861
10862 case offsetof(struct sk_msg_md, local_ip4):
10863 BUILD_BUG_ON(sizeof_field(struct sock_common,
10864 skc_rcv_saddr) != 4);
10865
10866 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10867 struct sk_msg, sk),
10868 si->dst_reg, si->src_reg,
10869 offsetof(struct sk_msg, sk));
10870 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10871 offsetof(struct sock_common,
10872 skc_rcv_saddr));
10873 break;
10874
10875 case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10876 offsetof(struct sk_msg_md, remote_ip6[3]):
10877 #if IS_ENABLED(CONFIG_IPV6)
10878 BUILD_BUG_ON(sizeof_field(struct sock_common,
10879 skc_v6_daddr.s6_addr32[0]) != 4);
10880
10881 off = si->off;
10882 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10883 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10884 struct sk_msg, sk),
10885 si->dst_reg, si->src_reg,
10886 offsetof(struct sk_msg, sk));
10887 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10888 offsetof(struct sock_common,
10889 skc_v6_daddr.s6_addr32[0]) +
10890 off);
10891 #else
10892 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10893 #endif
10894 break;
10895
10896 case offsetof(struct sk_msg_md, local_ip6[0]) ...
10897 offsetof(struct sk_msg_md, local_ip6[3]):
10898 #if IS_ENABLED(CONFIG_IPV6)
10899 BUILD_BUG_ON(sizeof_field(struct sock_common,
10900 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10901
10902 off = si->off;
10903 off -= offsetof(struct sk_msg_md, local_ip6[0]);
10904 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10905 struct sk_msg, sk),
10906 si->dst_reg, si->src_reg,
10907 offsetof(struct sk_msg, sk));
10908 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10909 offsetof(struct sock_common,
10910 skc_v6_rcv_saddr.s6_addr32[0]) +
10911 off);
10912 #else
10913 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10914 #endif
10915 break;
10916
10917 case offsetof(struct sk_msg_md, remote_port):
10918 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10919
10920 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10921 struct sk_msg, sk),
10922 si->dst_reg, si->src_reg,
10923 offsetof(struct sk_msg, sk));
10924 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10925 offsetof(struct sock_common, skc_dport));
10926 #ifndef __BIG_ENDIAN_BITFIELD
10927 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10928 #endif
10929 break;
10930
10931 case offsetof(struct sk_msg_md, local_port):
10932 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10933
10934 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10935 struct sk_msg, sk),
10936 si->dst_reg, si->src_reg,
10937 offsetof(struct sk_msg, sk));
10938 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10939 offsetof(struct sock_common, skc_num));
10940 break;
10941
10942 case offsetof(struct sk_msg_md, size):
10943 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10944 si->dst_reg, si->src_reg,
10945 offsetof(struct sk_msg_sg, size));
10946 break;
10947
10948 case offsetof(struct sk_msg_md, sk):
10949 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10950 si->dst_reg, si->src_reg,
10951 offsetof(struct sk_msg, sk));
10952 break;
10953 }
10954
10955 return insn - insn_buf;
10956 }
10957
10958 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10959 .get_func_proto = sk_filter_func_proto,
10960 .is_valid_access = sk_filter_is_valid_access,
10961 .convert_ctx_access = bpf_convert_ctx_access,
10962 .gen_ld_abs = bpf_gen_ld_abs,
10963 };
10964
10965 const struct bpf_prog_ops sk_filter_prog_ops = {
10966 .test_run = bpf_prog_test_run_skb,
10967 };
10968
10969 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10970 .get_func_proto = tc_cls_act_func_proto,
10971 .is_valid_access = tc_cls_act_is_valid_access,
10972 .convert_ctx_access = tc_cls_act_convert_ctx_access,
10973 .gen_prologue = tc_cls_act_prologue,
10974 .gen_ld_abs = bpf_gen_ld_abs,
10975 .btf_struct_access = tc_cls_act_btf_struct_access,
10976 };
10977
10978 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10979 .test_run = bpf_prog_test_run_skb,
10980 };
10981
10982 const struct bpf_verifier_ops xdp_verifier_ops = {
10983 .get_func_proto = xdp_func_proto,
10984 .is_valid_access = xdp_is_valid_access,
10985 .convert_ctx_access = xdp_convert_ctx_access,
10986 .gen_prologue = bpf_noop_prologue,
10987 .btf_struct_access = xdp_btf_struct_access,
10988 };
10989
10990 const struct bpf_prog_ops xdp_prog_ops = {
10991 .test_run = bpf_prog_test_run_xdp,
10992 };
10993
10994 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10995 .get_func_proto = cg_skb_func_proto,
10996 .is_valid_access = cg_skb_is_valid_access,
10997 .convert_ctx_access = bpf_convert_ctx_access,
10998 };
10999
11000 const struct bpf_prog_ops cg_skb_prog_ops = {
11001 .test_run = bpf_prog_test_run_skb,
11002 };
11003
11004 const struct bpf_verifier_ops lwt_in_verifier_ops = {
11005 .get_func_proto = lwt_in_func_proto,
11006 .is_valid_access = lwt_is_valid_access,
11007 .convert_ctx_access = bpf_convert_ctx_access,
11008 };
11009
11010 const struct bpf_prog_ops lwt_in_prog_ops = {
11011 .test_run = bpf_prog_test_run_skb,
11012 };
11013
11014 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11015 .get_func_proto = lwt_out_func_proto,
11016 .is_valid_access = lwt_is_valid_access,
11017 .convert_ctx_access = bpf_convert_ctx_access,
11018 };
11019
11020 const struct bpf_prog_ops lwt_out_prog_ops = {
11021 .test_run = bpf_prog_test_run_skb,
11022 };
11023
11024 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11025 .get_func_proto = lwt_xmit_func_proto,
11026 .is_valid_access = lwt_is_valid_access,
11027 .convert_ctx_access = bpf_convert_ctx_access,
11028 .gen_prologue = tc_cls_act_prologue,
11029 };
11030
11031 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11032 .test_run = bpf_prog_test_run_skb,
11033 };
11034
11035 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11036 .get_func_proto = lwt_seg6local_func_proto,
11037 .is_valid_access = lwt_is_valid_access,
11038 .convert_ctx_access = bpf_convert_ctx_access,
11039 };
11040
11041 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11042 .test_run = bpf_prog_test_run_skb,
11043 };
11044
11045 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11046 .get_func_proto = sock_filter_func_proto,
11047 .is_valid_access = sock_filter_is_valid_access,
11048 .convert_ctx_access = bpf_sock_convert_ctx_access,
11049 };
11050
11051 const struct bpf_prog_ops cg_sock_prog_ops = {
11052 };
11053
11054 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11055 .get_func_proto = sock_addr_func_proto,
11056 .is_valid_access = sock_addr_is_valid_access,
11057 .convert_ctx_access = sock_addr_convert_ctx_access,
11058 };
11059
11060 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11061 };
11062
11063 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11064 .get_func_proto = sock_ops_func_proto,
11065 .is_valid_access = sock_ops_is_valid_access,
11066 .convert_ctx_access = sock_ops_convert_ctx_access,
11067 };
11068
11069 const struct bpf_prog_ops sock_ops_prog_ops = {
11070 };
11071
11072 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11073 .get_func_proto = sk_skb_func_proto,
11074 .is_valid_access = sk_skb_is_valid_access,
11075 .convert_ctx_access = sk_skb_convert_ctx_access,
11076 .gen_prologue = sk_skb_prologue,
11077 };
11078
11079 const struct bpf_prog_ops sk_skb_prog_ops = {
11080 };
11081
11082 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11083 .get_func_proto = sk_msg_func_proto,
11084 .is_valid_access = sk_msg_is_valid_access,
11085 .convert_ctx_access = sk_msg_convert_ctx_access,
11086 .gen_prologue = bpf_noop_prologue,
11087 };
11088
11089 const struct bpf_prog_ops sk_msg_prog_ops = {
11090 };
11091
11092 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11093 .get_func_proto = flow_dissector_func_proto,
11094 .is_valid_access = flow_dissector_is_valid_access,
11095 .convert_ctx_access = flow_dissector_convert_ctx_access,
11096 };
11097
11098 const struct bpf_prog_ops flow_dissector_prog_ops = {
11099 .test_run = bpf_prog_test_run_flow_dissector,
11100 };
11101
sk_detach_filter(struct sock * sk)11102 int sk_detach_filter(struct sock *sk)
11103 {
11104 int ret = -ENOENT;
11105 struct sk_filter *filter;
11106
11107 if (sock_flag(sk, SOCK_FILTER_LOCKED))
11108 return -EPERM;
11109
11110 filter = rcu_dereference_protected(sk->sk_filter,
11111 lockdep_sock_is_held(sk));
11112 if (filter) {
11113 RCU_INIT_POINTER(sk->sk_filter, NULL);
11114 sk_filter_uncharge(sk, filter);
11115 ret = 0;
11116 }
11117
11118 return ret;
11119 }
11120 EXPORT_SYMBOL_GPL(sk_detach_filter);
11121
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11122 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11123 {
11124 struct sock_fprog_kern *fprog;
11125 struct sk_filter *filter;
11126 int ret = 0;
11127
11128 sockopt_lock_sock(sk);
11129 filter = rcu_dereference_protected(sk->sk_filter,
11130 lockdep_sock_is_held(sk));
11131 if (!filter)
11132 goto out;
11133
11134 /* We're copying the filter that has been originally attached,
11135 * so no conversion/decode needed anymore. eBPF programs that
11136 * have no original program cannot be dumped through this.
11137 */
11138 ret = -EACCES;
11139 fprog = filter->prog->orig_prog;
11140 if (!fprog)
11141 goto out;
11142
11143 ret = fprog->len;
11144 if (!len)
11145 /* User space only enquires number of filter blocks. */
11146 goto out;
11147
11148 ret = -EINVAL;
11149 if (len < fprog->len)
11150 goto out;
11151
11152 ret = -EFAULT;
11153 if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11154 goto out;
11155
11156 /* Instead of bytes, the API requests to return the number
11157 * of filter blocks.
11158 */
11159 ret = fprog->len;
11160 out:
11161 sockopt_release_sock(sk);
11162 return ret;
11163 }
11164
11165 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11166 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11167 struct sock_reuseport *reuse,
11168 struct sock *sk, struct sk_buff *skb,
11169 struct sock *migrating_sk,
11170 u32 hash)
11171 {
11172 reuse_kern->skb = skb;
11173 reuse_kern->sk = sk;
11174 reuse_kern->selected_sk = NULL;
11175 reuse_kern->migrating_sk = migrating_sk;
11176 reuse_kern->data_end = skb->data + skb_headlen(skb);
11177 reuse_kern->hash = hash;
11178 reuse_kern->reuseport_id = reuse->reuseport_id;
11179 reuse_kern->bind_inany = reuse->bind_inany;
11180 }
11181
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11182 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11183 struct bpf_prog *prog, struct sk_buff *skb,
11184 struct sock *migrating_sk,
11185 u32 hash)
11186 {
11187 struct sk_reuseport_kern reuse_kern;
11188 enum sk_action action;
11189
11190 bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11191 action = bpf_prog_run(prog, &reuse_kern);
11192
11193 if (action == SK_PASS)
11194 return reuse_kern.selected_sk;
11195 else
11196 return ERR_PTR(-ECONNREFUSED);
11197 }
11198
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11199 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11200 struct bpf_map *, map, void *, key, u32, flags)
11201 {
11202 bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11203 struct sock_reuseport *reuse;
11204 struct sock *selected_sk;
11205 int err;
11206
11207 selected_sk = map->ops->map_lookup_elem(map, key);
11208 if (!selected_sk)
11209 return -ENOENT;
11210
11211 reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11212 if (!reuse) {
11213 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
11214 * The only (!reuse) case here is - the sk has already been
11215 * unhashed (e.g. by close()), so treat it as -ENOENT.
11216 *
11217 * Other maps (e.g. sock_map) do not provide this guarantee and
11218 * the sk may never be in the reuseport group to begin with.
11219 */
11220 err = is_sockarray ? -ENOENT : -EINVAL;
11221 goto error;
11222 }
11223
11224 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11225 struct sock *sk = reuse_kern->sk;
11226
11227 if (sk->sk_protocol != selected_sk->sk_protocol) {
11228 err = -EPROTOTYPE;
11229 } else if (sk->sk_family != selected_sk->sk_family) {
11230 err = -EAFNOSUPPORT;
11231 } else {
11232 /* Catch all. Likely bound to a different sockaddr. */
11233 err = -EBADFD;
11234 }
11235 goto error;
11236 }
11237
11238 reuse_kern->selected_sk = selected_sk;
11239
11240 return 0;
11241 error:
11242 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11243 if (sk_is_refcounted(selected_sk))
11244 sock_put(selected_sk);
11245
11246 return err;
11247 }
11248
11249 static const struct bpf_func_proto sk_select_reuseport_proto = {
11250 .func = sk_select_reuseport,
11251 .gpl_only = false,
11252 .ret_type = RET_INTEGER,
11253 .arg1_type = ARG_PTR_TO_CTX,
11254 .arg2_type = ARG_CONST_MAP_PTR,
11255 .arg3_type = ARG_PTR_TO_MAP_KEY,
11256 .arg4_type = ARG_ANYTHING,
11257 };
11258
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11259 BPF_CALL_4(sk_reuseport_load_bytes,
11260 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11261 void *, to, u32, len)
11262 {
11263 return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11264 }
11265
11266 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11267 .func = sk_reuseport_load_bytes,
11268 .gpl_only = false,
11269 .ret_type = RET_INTEGER,
11270 .arg1_type = ARG_PTR_TO_CTX,
11271 .arg2_type = ARG_ANYTHING,
11272 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11273 .arg4_type = ARG_CONST_SIZE,
11274 };
11275
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11276 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11277 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11278 void *, to, u32, len, u32, start_header)
11279 {
11280 return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11281 len, start_header);
11282 }
11283
11284 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11285 .func = sk_reuseport_load_bytes_relative,
11286 .gpl_only = false,
11287 .ret_type = RET_INTEGER,
11288 .arg1_type = ARG_PTR_TO_CTX,
11289 .arg2_type = ARG_ANYTHING,
11290 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11291 .arg4_type = ARG_CONST_SIZE,
11292 .arg5_type = ARG_ANYTHING,
11293 };
11294
11295 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11296 sk_reuseport_func_proto(enum bpf_func_id func_id,
11297 const struct bpf_prog *prog)
11298 {
11299 switch (func_id) {
11300 case BPF_FUNC_sk_select_reuseport:
11301 return &sk_select_reuseport_proto;
11302 case BPF_FUNC_skb_load_bytes:
11303 return &sk_reuseport_load_bytes_proto;
11304 case BPF_FUNC_skb_load_bytes_relative:
11305 return &sk_reuseport_load_bytes_relative_proto;
11306 case BPF_FUNC_get_socket_cookie:
11307 return &bpf_get_socket_ptr_cookie_proto;
11308 case BPF_FUNC_ktime_get_coarse_ns:
11309 return &bpf_ktime_get_coarse_ns_proto;
11310 default:
11311 return bpf_base_func_proto(func_id);
11312 }
11313 }
11314
11315 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11316 sk_reuseport_is_valid_access(int off, int size,
11317 enum bpf_access_type type,
11318 const struct bpf_prog *prog,
11319 struct bpf_insn_access_aux *info)
11320 {
11321 const u32 size_default = sizeof(__u32);
11322
11323 if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11324 off % size || type != BPF_READ)
11325 return false;
11326
11327 switch (off) {
11328 case offsetof(struct sk_reuseport_md, data):
11329 info->reg_type = PTR_TO_PACKET;
11330 return size == sizeof(__u64);
11331
11332 case offsetof(struct sk_reuseport_md, data_end):
11333 info->reg_type = PTR_TO_PACKET_END;
11334 return size == sizeof(__u64);
11335
11336 case offsetof(struct sk_reuseport_md, hash):
11337 return size == size_default;
11338
11339 case offsetof(struct sk_reuseport_md, sk):
11340 info->reg_type = PTR_TO_SOCKET;
11341 return size == sizeof(__u64);
11342
11343 case offsetof(struct sk_reuseport_md, migrating_sk):
11344 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11345 return size == sizeof(__u64);
11346
11347 /* Fields that allow narrowing */
11348 case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11349 if (size < sizeof_field(struct sk_buff, protocol))
11350 return false;
11351 fallthrough;
11352 case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11353 case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11354 case bpf_ctx_range(struct sk_reuseport_md, len):
11355 bpf_ctx_record_field_size(info, size_default);
11356 return bpf_ctx_narrow_access_ok(off, size, size_default);
11357
11358 default:
11359 return false;
11360 }
11361 }
11362
11363 #define SK_REUSEPORT_LOAD_FIELD(F) ({ \
11364 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11365 si->dst_reg, si->src_reg, \
11366 bpf_target_off(struct sk_reuseport_kern, F, \
11367 sizeof_field(struct sk_reuseport_kern, F), \
11368 target_size)); \
11369 })
11370
11371 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \
11372 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11373 struct sk_buff, \
11374 skb, \
11375 SKB_FIELD)
11376
11377 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \
11378 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11379 struct sock, \
11380 sk, \
11381 SK_FIELD)
11382
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11383 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11384 const struct bpf_insn *si,
11385 struct bpf_insn *insn_buf,
11386 struct bpf_prog *prog,
11387 u32 *target_size)
11388 {
11389 struct bpf_insn *insn = insn_buf;
11390
11391 switch (si->off) {
11392 case offsetof(struct sk_reuseport_md, data):
11393 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11394 break;
11395
11396 case offsetof(struct sk_reuseport_md, len):
11397 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11398 break;
11399
11400 case offsetof(struct sk_reuseport_md, eth_protocol):
11401 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11402 break;
11403
11404 case offsetof(struct sk_reuseport_md, ip_protocol):
11405 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11406 break;
11407
11408 case offsetof(struct sk_reuseport_md, data_end):
11409 SK_REUSEPORT_LOAD_FIELD(data_end);
11410 break;
11411
11412 case offsetof(struct sk_reuseport_md, hash):
11413 SK_REUSEPORT_LOAD_FIELD(hash);
11414 break;
11415
11416 case offsetof(struct sk_reuseport_md, bind_inany):
11417 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11418 break;
11419
11420 case offsetof(struct sk_reuseport_md, sk):
11421 SK_REUSEPORT_LOAD_FIELD(sk);
11422 break;
11423
11424 case offsetof(struct sk_reuseport_md, migrating_sk):
11425 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11426 break;
11427 }
11428
11429 return insn - insn_buf;
11430 }
11431
11432 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11433 .get_func_proto = sk_reuseport_func_proto,
11434 .is_valid_access = sk_reuseport_is_valid_access,
11435 .convert_ctx_access = sk_reuseport_convert_ctx_access,
11436 };
11437
11438 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11439 };
11440
11441 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11442 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11443
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11444 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11445 struct sock *, sk, u64, flags)
11446 {
11447 if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11448 BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11449 return -EINVAL;
11450 if (unlikely(sk && sk_is_refcounted(sk)))
11451 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11452 if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11453 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11454 if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11455 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11456
11457 /* Check if socket is suitable for packet L3/L4 protocol */
11458 if (sk && sk->sk_protocol != ctx->protocol)
11459 return -EPROTOTYPE;
11460 if (sk && sk->sk_family != ctx->family &&
11461 (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11462 return -EAFNOSUPPORT;
11463
11464 if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11465 return -EEXIST;
11466
11467 /* Select socket as lookup result */
11468 ctx->selected_sk = sk;
11469 ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11470 return 0;
11471 }
11472
11473 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11474 .func = bpf_sk_lookup_assign,
11475 .gpl_only = false,
11476 .ret_type = RET_INTEGER,
11477 .arg1_type = ARG_PTR_TO_CTX,
11478 .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL,
11479 .arg3_type = ARG_ANYTHING,
11480 };
11481
11482 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11483 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11484 {
11485 switch (func_id) {
11486 case BPF_FUNC_perf_event_output:
11487 return &bpf_event_output_data_proto;
11488 case BPF_FUNC_sk_assign:
11489 return &bpf_sk_lookup_assign_proto;
11490 case BPF_FUNC_sk_release:
11491 return &bpf_sk_release_proto;
11492 default:
11493 return bpf_sk_base_func_proto(func_id);
11494 }
11495 }
11496
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11497 static bool sk_lookup_is_valid_access(int off, int size,
11498 enum bpf_access_type type,
11499 const struct bpf_prog *prog,
11500 struct bpf_insn_access_aux *info)
11501 {
11502 if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11503 return false;
11504 if (off % size != 0)
11505 return false;
11506 if (type != BPF_READ)
11507 return false;
11508
11509 switch (off) {
11510 case offsetof(struct bpf_sk_lookup, sk):
11511 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11512 return size == sizeof(__u64);
11513
11514 case bpf_ctx_range(struct bpf_sk_lookup, family):
11515 case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11516 case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11517 case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11518 case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11519 case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11520 case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11521 case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11522 bpf_ctx_record_field_size(info, sizeof(__u32));
11523 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11524
11525 case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11526 /* Allow 4-byte access to 2-byte field for backward compatibility */
11527 if (size == sizeof(__u32))
11528 return true;
11529 bpf_ctx_record_field_size(info, sizeof(__be16));
11530 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11531
11532 case offsetofend(struct bpf_sk_lookup, remote_port) ...
11533 offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11534 /* Allow access to zero padding for backward compatibility */
11535 bpf_ctx_record_field_size(info, sizeof(__u16));
11536 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11537
11538 default:
11539 return false;
11540 }
11541 }
11542
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11543 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11544 const struct bpf_insn *si,
11545 struct bpf_insn *insn_buf,
11546 struct bpf_prog *prog,
11547 u32 *target_size)
11548 {
11549 struct bpf_insn *insn = insn_buf;
11550
11551 switch (si->off) {
11552 case offsetof(struct bpf_sk_lookup, sk):
11553 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11554 offsetof(struct bpf_sk_lookup_kern, selected_sk));
11555 break;
11556
11557 case offsetof(struct bpf_sk_lookup, family):
11558 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11559 bpf_target_off(struct bpf_sk_lookup_kern,
11560 family, 2, target_size));
11561 break;
11562
11563 case offsetof(struct bpf_sk_lookup, protocol):
11564 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11565 bpf_target_off(struct bpf_sk_lookup_kern,
11566 protocol, 2, target_size));
11567 break;
11568
11569 case offsetof(struct bpf_sk_lookup, remote_ip4):
11570 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11571 bpf_target_off(struct bpf_sk_lookup_kern,
11572 v4.saddr, 4, target_size));
11573 break;
11574
11575 case offsetof(struct bpf_sk_lookup, local_ip4):
11576 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11577 bpf_target_off(struct bpf_sk_lookup_kern,
11578 v4.daddr, 4, target_size));
11579 break;
11580
11581 case bpf_ctx_range_till(struct bpf_sk_lookup,
11582 remote_ip6[0], remote_ip6[3]): {
11583 #if IS_ENABLED(CONFIG_IPV6)
11584 int off = si->off;
11585
11586 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11587 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11588 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11589 offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11590 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11591 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11592 #else
11593 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11594 #endif
11595 break;
11596 }
11597 case bpf_ctx_range_till(struct bpf_sk_lookup,
11598 local_ip6[0], local_ip6[3]): {
11599 #if IS_ENABLED(CONFIG_IPV6)
11600 int off = si->off;
11601
11602 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11603 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11604 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11605 offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11606 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11607 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11608 #else
11609 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11610 #endif
11611 break;
11612 }
11613 case offsetof(struct bpf_sk_lookup, remote_port):
11614 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11615 bpf_target_off(struct bpf_sk_lookup_kern,
11616 sport, 2, target_size));
11617 break;
11618
11619 case offsetofend(struct bpf_sk_lookup, remote_port):
11620 *target_size = 2;
11621 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11622 break;
11623
11624 case offsetof(struct bpf_sk_lookup, local_port):
11625 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11626 bpf_target_off(struct bpf_sk_lookup_kern,
11627 dport, 2, target_size));
11628 break;
11629
11630 case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11631 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11632 bpf_target_off(struct bpf_sk_lookup_kern,
11633 ingress_ifindex, 4, target_size));
11634 break;
11635 }
11636
11637 return insn - insn_buf;
11638 }
11639
11640 const struct bpf_prog_ops sk_lookup_prog_ops = {
11641 .test_run = bpf_prog_test_run_sk_lookup,
11642 };
11643
11644 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11645 .get_func_proto = sk_lookup_func_proto,
11646 .is_valid_access = sk_lookup_is_valid_access,
11647 .convert_ctx_access = sk_lookup_convert_ctx_access,
11648 };
11649
11650 #endif /* CONFIG_INET */
11651
DEFINE_BPF_DISPATCHER(xdp)11652 DEFINE_BPF_DISPATCHER(xdp)
11653
11654 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11655 {
11656 bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11657 }
11658
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11659 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11660 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11661 BTF_SOCK_TYPE_xxx
11662 #undef BTF_SOCK_TYPE
11663
11664 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11665 {
11666 /* tcp6_sock type is not generated in dwarf and hence btf,
11667 * trigger an explicit type generation here.
11668 */
11669 BTF_TYPE_EMIT(struct tcp6_sock);
11670 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11671 sk->sk_family == AF_INET6)
11672 return (unsigned long)sk;
11673
11674 return (unsigned long)NULL;
11675 }
11676
11677 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11678 .func = bpf_skc_to_tcp6_sock,
11679 .gpl_only = false,
11680 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11681 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11682 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11683 };
11684
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11685 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11686 {
11687 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11688 return (unsigned long)sk;
11689
11690 return (unsigned long)NULL;
11691 }
11692
11693 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11694 .func = bpf_skc_to_tcp_sock,
11695 .gpl_only = false,
11696 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11697 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11698 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11699 };
11700
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11701 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11702 {
11703 /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11704 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11705 */
11706 BTF_TYPE_EMIT(struct inet_timewait_sock);
11707 BTF_TYPE_EMIT(struct tcp_timewait_sock);
11708
11709 #ifdef CONFIG_INET
11710 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11711 return (unsigned long)sk;
11712 #endif
11713
11714 #if IS_BUILTIN(CONFIG_IPV6)
11715 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11716 return (unsigned long)sk;
11717 #endif
11718
11719 return (unsigned long)NULL;
11720 }
11721
11722 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11723 .func = bpf_skc_to_tcp_timewait_sock,
11724 .gpl_only = false,
11725 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11726 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11727 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11728 };
11729
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11730 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11731 {
11732 #ifdef CONFIG_INET
11733 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11734 return (unsigned long)sk;
11735 #endif
11736
11737 #if IS_BUILTIN(CONFIG_IPV6)
11738 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11739 return (unsigned long)sk;
11740 #endif
11741
11742 return (unsigned long)NULL;
11743 }
11744
11745 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11746 .func = bpf_skc_to_tcp_request_sock,
11747 .gpl_only = false,
11748 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11749 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11750 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11751 };
11752
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11753 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11754 {
11755 /* udp6_sock type is not generated in dwarf and hence btf,
11756 * trigger an explicit type generation here.
11757 */
11758 BTF_TYPE_EMIT(struct udp6_sock);
11759 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11760 sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11761 return (unsigned long)sk;
11762
11763 return (unsigned long)NULL;
11764 }
11765
11766 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11767 .func = bpf_skc_to_udp6_sock,
11768 .gpl_only = false,
11769 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11770 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11771 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11772 };
11773
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11774 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11775 {
11776 /* unix_sock type is not generated in dwarf and hence btf,
11777 * trigger an explicit type generation here.
11778 */
11779 BTF_TYPE_EMIT(struct unix_sock);
11780 if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11781 return (unsigned long)sk;
11782
11783 return (unsigned long)NULL;
11784 }
11785
11786 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11787 .func = bpf_skc_to_unix_sock,
11788 .gpl_only = false,
11789 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11790 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11791 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11792 };
11793
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11794 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11795 {
11796 BTF_TYPE_EMIT(struct mptcp_sock);
11797 return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11798 }
11799
11800 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11801 .func = bpf_skc_to_mptcp_sock,
11802 .gpl_only = false,
11803 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11804 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
11805 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11806 };
11807
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11808 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11809 {
11810 return (unsigned long)sock_from_file(file);
11811 }
11812
11813 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11814 BTF_ID(struct, socket)
11815 BTF_ID(struct, file)
11816
11817 const struct bpf_func_proto bpf_sock_from_file_proto = {
11818 .func = bpf_sock_from_file,
11819 .gpl_only = false,
11820 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11821 .ret_btf_id = &bpf_sock_from_file_btf_ids[0],
11822 .arg1_type = ARG_PTR_TO_BTF_ID,
11823 .arg1_btf_id = &bpf_sock_from_file_btf_ids[1],
11824 };
11825
11826 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id)11827 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11828 {
11829 const struct bpf_func_proto *func;
11830
11831 switch (func_id) {
11832 case BPF_FUNC_skc_to_tcp6_sock:
11833 func = &bpf_skc_to_tcp6_sock_proto;
11834 break;
11835 case BPF_FUNC_skc_to_tcp_sock:
11836 func = &bpf_skc_to_tcp_sock_proto;
11837 break;
11838 case BPF_FUNC_skc_to_tcp_timewait_sock:
11839 func = &bpf_skc_to_tcp_timewait_sock_proto;
11840 break;
11841 case BPF_FUNC_skc_to_tcp_request_sock:
11842 func = &bpf_skc_to_tcp_request_sock_proto;
11843 break;
11844 case BPF_FUNC_skc_to_udp6_sock:
11845 func = &bpf_skc_to_udp6_sock_proto;
11846 break;
11847 case BPF_FUNC_skc_to_unix_sock:
11848 func = &bpf_skc_to_unix_sock_proto;
11849 break;
11850 case BPF_FUNC_skc_to_mptcp_sock:
11851 func = &bpf_skc_to_mptcp_sock_proto;
11852 break;
11853 case BPF_FUNC_ktime_get_coarse_ns:
11854 return &bpf_ktime_get_coarse_ns_proto;
11855 default:
11856 return bpf_base_func_proto(func_id);
11857 }
11858
11859 if (!perfmon_capable())
11860 return NULL;
11861
11862 return func;
11863 }
11864
11865 __diag_push();
11866 __diag_ignore_all("-Wmissing-prototypes",
11867 "Global functions as their definitions will be in vmlinux BTF");
bpf_dynptr_from_skb(struct sk_buff * skb,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11868 __bpf_kfunc int bpf_dynptr_from_skb(struct sk_buff *skb, u64 flags,
11869 struct bpf_dynptr_kern *ptr__uninit)
11870 {
11871 if (flags) {
11872 bpf_dynptr_set_null(ptr__uninit);
11873 return -EINVAL;
11874 }
11875
11876 bpf_dynptr_init(ptr__uninit, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11877
11878 return 0;
11879 }
11880
bpf_dynptr_from_xdp(struct xdp_buff * xdp,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11881 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_buff *xdp, u64 flags,
11882 struct bpf_dynptr_kern *ptr__uninit)
11883 {
11884 if (flags) {
11885 bpf_dynptr_set_null(ptr__uninit);
11886 return -EINVAL;
11887 }
11888
11889 bpf_dynptr_init(ptr__uninit, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
11890
11891 return 0;
11892 }
11893
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)11894 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
11895 const u8 *sun_path, u32 sun_path__sz)
11896 {
11897 struct sockaddr_un *un;
11898
11899 if (sa_kern->sk->sk_family != AF_UNIX)
11900 return -EINVAL;
11901
11902 /* We do not allow changing the address to unnamed or larger than the
11903 * maximum allowed address size for a unix sockaddr.
11904 */
11905 if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
11906 return -EINVAL;
11907
11908 un = (struct sockaddr_un *)sa_kern->uaddr;
11909 memcpy(un->sun_path, sun_path, sun_path__sz);
11910 sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
11911
11912 return 0;
11913 }
11914 __diag_pop();
11915
bpf_dynptr_from_skb_rdonly(struct sk_buff * skb,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11916 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
11917 struct bpf_dynptr_kern *ptr__uninit)
11918 {
11919 int err;
11920
11921 err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
11922 if (err)
11923 return err;
11924
11925 bpf_dynptr_set_rdonly(ptr__uninit);
11926
11927 return 0;
11928 }
11929
11930 BTF_SET8_START(bpf_kfunc_check_set_skb)
11931 BTF_ID_FLAGS(func, bpf_dynptr_from_skb)
11932 BTF_SET8_END(bpf_kfunc_check_set_skb)
11933
11934 BTF_SET8_START(bpf_kfunc_check_set_xdp)
11935 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
11936 BTF_SET8_END(bpf_kfunc_check_set_xdp)
11937
11938 BTF_SET8_START(bpf_kfunc_check_set_sock_addr)
11939 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
11940 BTF_SET8_END(bpf_kfunc_check_set_sock_addr)
11941
11942 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
11943 .owner = THIS_MODULE,
11944 .set = &bpf_kfunc_check_set_skb,
11945 };
11946
11947 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
11948 .owner = THIS_MODULE,
11949 .set = &bpf_kfunc_check_set_xdp,
11950 };
11951
11952 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
11953 .owner = THIS_MODULE,
11954 .set = &bpf_kfunc_check_set_sock_addr,
11955 };
11956
bpf_kfunc_init(void)11957 static int __init bpf_kfunc_init(void)
11958 {
11959 int ret;
11960
11961 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
11962 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
11963 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
11964 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
11965 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
11966 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
11967 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
11968 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
11969 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
11970 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
11971 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
11972 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
11973 &bpf_kfunc_set_sock_addr);
11974 }
11975 late_initcall(bpf_kfunc_init);
11976
11977 /* Disables missing prototype warnings */
11978 __diag_push();
11979 __diag_ignore_all("-Wmissing-prototypes",
11980 "Global functions as their definitions will be in vmlinux BTF");
11981
11982 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
11983 *
11984 * The function expects a non-NULL pointer to a socket, and invokes the
11985 * protocol specific socket destroy handlers.
11986 *
11987 * The helper can only be called from BPF contexts that have acquired the socket
11988 * locks.
11989 *
11990 * Parameters:
11991 * @sock: Pointer to socket to be destroyed
11992 *
11993 * Return:
11994 * On error, may return EPROTONOSUPPORT, EINVAL.
11995 * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
11996 * 0 otherwise
11997 */
bpf_sock_destroy(struct sock_common * sock)11998 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
11999 {
12000 struct sock *sk = (struct sock *)sock;
12001
12002 /* The locking semantics that allow for synchronous execution of the
12003 * destroy handlers are only supported for TCP and UDP.
12004 * Supporting protocols will need to acquire sock lock in the BPF context
12005 * prior to invoking this kfunc.
12006 */
12007 if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12008 sk->sk_protocol != IPPROTO_UDP))
12009 return -EOPNOTSUPP;
12010
12011 return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12012 }
12013
12014 __diag_pop()
12015
BTF_SET8_START(bpf_sk_iter_kfunc_ids)12016 BTF_SET8_START(bpf_sk_iter_kfunc_ids)
12017 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12018 BTF_SET8_END(bpf_sk_iter_kfunc_ids)
12019
12020 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12021 {
12022 if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12023 prog->expected_attach_type != BPF_TRACE_ITER)
12024 return -EACCES;
12025 return 0;
12026 }
12027
12028 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12029 .owner = THIS_MODULE,
12030 .set = &bpf_sk_iter_kfunc_ids,
12031 .filter = tracing_iter_filter,
12032 };
12033
init_subsystem(void)12034 static int init_subsystem(void)
12035 {
12036 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12037 }
12038 late_initcall(init_subsystem);
12039