xref: /openbmc/linux/include/linux/filter.h (revision d60c7ab6fad75d753f866f2fc87725196645e0f3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26 
27 #include <net/sch_generic.h>
28 
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31 
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41 
42 /* ArgX, context and stack frame pointer register positions. Note,
43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44  * calls in BPF_CALL instruction.
45  */
46 #define BPF_REG_ARG1	BPF_REG_1
47 #define BPF_REG_ARG2	BPF_REG_2
48 #define BPF_REG_ARG3	BPF_REG_3
49 #define BPF_REG_ARG4	BPF_REG_4
50 #define BPF_REG_ARG5	BPF_REG_5
51 #define BPF_REG_CTX	BPF_REG_6
52 #define BPF_REG_FP	BPF_REG_10
53 
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A	BPF_REG_0
56 #define BPF_REG_X	BPF_REG_7
57 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
58 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
59 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
60 
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX		MAX_BPF_REG
63 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
65 
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL	0xf0
68 
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM	0x20
71 
72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73 #define BPF_PROBE_MEMSX	0x40
74 
75 /* unused opcode to mark call to interpreter with arguments */
76 #define BPF_CALL_ARGS	0xe0
77 
78 /* unused opcode to mark speculation barrier for mitigating
79  * Speculative Store Bypass
80  */
81 #define BPF_NOSPEC	0xc0
82 
83 /* As per nm, we expose JITed images as text (code) section for
84  * kallsyms. That way, tools like perf can find it to match
85  * addresses.
86  */
87 #define BPF_SYM_ELF_TYPE	't'
88 
89 /* BPF program can access up to 512 bytes of stack space. */
90 #define MAX_BPF_STACK	512
91 
92 /* Helper macros for filter block array initializers. */
93 
94 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
95 
96 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF)			\
97 	((struct bpf_insn) {					\
98 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
99 		.dst_reg = DST,					\
100 		.src_reg = SRC,					\
101 		.off   = OFF,					\
102 		.imm   = 0 })
103 
104 #define BPF_ALU64_REG(OP, DST, SRC)				\
105 	BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
106 
107 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF)			\
108 	((struct bpf_insn) {					\
109 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
110 		.dst_reg = DST,					\
111 		.src_reg = SRC,					\
112 		.off   = OFF,					\
113 		.imm   = 0 })
114 
115 #define BPF_ALU32_REG(OP, DST, SRC)				\
116 	BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
117 
118 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
119 
120 #define BPF_ALU64_IMM(OP, DST, IMM)				\
121 	((struct bpf_insn) {					\
122 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
123 		.dst_reg = DST,					\
124 		.src_reg = 0,					\
125 		.off   = 0,					\
126 		.imm   = IMM })
127 
128 #define BPF_ALU32_IMM(OP, DST, IMM)				\
129 	((struct bpf_insn) {					\
130 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
131 		.dst_reg = DST,					\
132 		.src_reg = 0,					\
133 		.off   = 0,					\
134 		.imm   = IMM })
135 
136 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
137 
138 #define BPF_ENDIAN(TYPE, DST, LEN)				\
139 	((struct bpf_insn) {					\
140 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
141 		.dst_reg = DST,					\
142 		.src_reg = 0,					\
143 		.off   = 0,					\
144 		.imm   = LEN })
145 
146 /* Short form of mov, dst_reg = src_reg */
147 
148 #define BPF_MOV64_REG(DST, SRC)					\
149 	((struct bpf_insn) {					\
150 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
151 		.dst_reg = DST,					\
152 		.src_reg = SRC,					\
153 		.off   = 0,					\
154 		.imm   = 0 })
155 
156 #define BPF_MOV32_REG(DST, SRC)					\
157 	((struct bpf_insn) {					\
158 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
159 		.dst_reg = DST,					\
160 		.src_reg = SRC,					\
161 		.off   = 0,					\
162 		.imm   = 0 })
163 
164 /* Short form of mov, dst_reg = imm32 */
165 
166 #define BPF_MOV64_IMM(DST, IMM)					\
167 	((struct bpf_insn) {					\
168 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
169 		.dst_reg = DST,					\
170 		.src_reg = 0,					\
171 		.off   = 0,					\
172 		.imm   = IMM })
173 
174 #define BPF_MOV32_IMM(DST, IMM)					\
175 	((struct bpf_insn) {					\
176 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
177 		.dst_reg = DST,					\
178 		.src_reg = 0,					\
179 		.off   = 0,					\
180 		.imm   = IMM })
181 
182 /* Special form of mov32, used for doing explicit zero extension on dst. */
183 #define BPF_ZEXT_REG(DST)					\
184 	((struct bpf_insn) {					\
185 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
186 		.dst_reg = DST,					\
187 		.src_reg = DST,					\
188 		.off   = 0,					\
189 		.imm   = 1 })
190 
insn_is_zext(const struct bpf_insn * insn)191 static inline bool insn_is_zext(const struct bpf_insn *insn)
192 {
193 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
194 }
195 
196 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
197 #define BPF_LD_IMM64(DST, IMM)					\
198 	BPF_LD_IMM64_RAW(DST, 0, IMM)
199 
200 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
201 	((struct bpf_insn) {					\
202 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
203 		.dst_reg = DST,					\
204 		.src_reg = SRC,					\
205 		.off   = 0,					\
206 		.imm   = (__u32) (IMM) }),			\
207 	((struct bpf_insn) {					\
208 		.code  = 0, /* zero is reserved opcode */	\
209 		.dst_reg = 0,					\
210 		.src_reg = 0,					\
211 		.off   = 0,					\
212 		.imm   = ((__u64) (IMM)) >> 32 })
213 
214 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
215 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
216 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
217 
218 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
219 
220 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
221 	((struct bpf_insn) {					\
222 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
223 		.dst_reg = DST,					\
224 		.src_reg = SRC,					\
225 		.off   = 0,					\
226 		.imm   = IMM })
227 
228 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
229 	((struct bpf_insn) {					\
230 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
231 		.dst_reg = DST,					\
232 		.src_reg = SRC,					\
233 		.off   = 0,					\
234 		.imm   = IMM })
235 
236 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
237 
238 #define BPF_LD_ABS(SIZE, IMM)					\
239 	((struct bpf_insn) {					\
240 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
241 		.dst_reg = 0,					\
242 		.src_reg = 0,					\
243 		.off   = 0,					\
244 		.imm   = IMM })
245 
246 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
247 
248 #define BPF_LD_IND(SIZE, SRC, IMM)				\
249 	((struct bpf_insn) {					\
250 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
251 		.dst_reg = 0,					\
252 		.src_reg = SRC,					\
253 		.off   = 0,					\
254 		.imm   = IMM })
255 
256 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
257 
258 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
259 	((struct bpf_insn) {					\
260 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
261 		.dst_reg = DST,					\
262 		.src_reg = SRC,					\
263 		.off   = OFF,					\
264 		.imm   = 0 })
265 
266 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
267 
268 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
269 	((struct bpf_insn) {					\
270 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
271 		.dst_reg = DST,					\
272 		.src_reg = SRC,					\
273 		.off   = OFF,					\
274 		.imm   = 0 })
275 
276 
277 /*
278  * Atomic operations:
279  *
280  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
281  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
282  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
283  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
284  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
285  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
286  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
287  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
288  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
289  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
290  */
291 
292 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
293 	((struct bpf_insn) {					\
294 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
295 		.dst_reg = DST,					\
296 		.src_reg = SRC,					\
297 		.off   = OFF,					\
298 		.imm   = OP })
299 
300 /* Legacy alias */
301 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
302 
303 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
304 
305 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
306 	((struct bpf_insn) {					\
307 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
308 		.dst_reg = DST,					\
309 		.src_reg = 0,					\
310 		.off   = OFF,					\
311 		.imm   = IMM })
312 
313 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
314 
315 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
316 	((struct bpf_insn) {					\
317 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
318 		.dst_reg = DST,					\
319 		.src_reg = SRC,					\
320 		.off   = OFF,					\
321 		.imm   = 0 })
322 
323 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
324 
325 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
326 	((struct bpf_insn) {					\
327 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
328 		.dst_reg = DST,					\
329 		.src_reg = 0,					\
330 		.off   = OFF,					\
331 		.imm   = IMM })
332 
333 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
334 
335 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
336 	((struct bpf_insn) {					\
337 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
338 		.dst_reg = DST,					\
339 		.src_reg = SRC,					\
340 		.off   = OFF,					\
341 		.imm   = 0 })
342 
343 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
344 
345 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
346 	((struct bpf_insn) {					\
347 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
348 		.dst_reg = DST,					\
349 		.src_reg = 0,					\
350 		.off   = OFF,					\
351 		.imm   = IMM })
352 
353 /* Unconditional jumps, goto pc + off16 */
354 
355 #define BPF_JMP_A(OFF)						\
356 	((struct bpf_insn) {					\
357 		.code  = BPF_JMP | BPF_JA,			\
358 		.dst_reg = 0,					\
359 		.src_reg = 0,					\
360 		.off   = OFF,					\
361 		.imm   = 0 })
362 
363 /* Relative call */
364 
365 #define BPF_CALL_REL(TGT)					\
366 	((struct bpf_insn) {					\
367 		.code  = BPF_JMP | BPF_CALL,			\
368 		.dst_reg = 0,					\
369 		.src_reg = BPF_PSEUDO_CALL,			\
370 		.off   = 0,					\
371 		.imm   = TGT })
372 
373 /* Convert function address to BPF immediate */
374 
375 #define BPF_CALL_IMM(x)	((void *)(x) - (void *)__bpf_call_base)
376 
377 #define BPF_EMIT_CALL(FUNC)					\
378 	((struct bpf_insn) {					\
379 		.code  = BPF_JMP | BPF_CALL,			\
380 		.dst_reg = 0,					\
381 		.src_reg = 0,					\
382 		.off   = 0,					\
383 		.imm   = BPF_CALL_IMM(FUNC) })
384 
385 /* Raw code statement block */
386 
387 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
388 	((struct bpf_insn) {					\
389 		.code  = CODE,					\
390 		.dst_reg = DST,					\
391 		.src_reg = SRC,					\
392 		.off   = OFF,					\
393 		.imm   = IMM })
394 
395 /* Program exit */
396 
397 #define BPF_EXIT_INSN()						\
398 	((struct bpf_insn) {					\
399 		.code  = BPF_JMP | BPF_EXIT,			\
400 		.dst_reg = 0,					\
401 		.src_reg = 0,					\
402 		.off   = 0,					\
403 		.imm   = 0 })
404 
405 /* Speculation barrier */
406 
407 #define BPF_ST_NOSPEC()						\
408 	((struct bpf_insn) {					\
409 		.code  = BPF_ST | BPF_NOSPEC,			\
410 		.dst_reg = 0,					\
411 		.src_reg = 0,					\
412 		.off   = 0,					\
413 		.imm   = 0 })
414 
415 /* Internal classic blocks for direct assignment */
416 
417 #define __BPF_STMT(CODE, K)					\
418 	((struct sock_filter) BPF_STMT(CODE, K))
419 
420 #define __BPF_JUMP(CODE, K, JT, JF)				\
421 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
422 
423 #define bytes_to_bpf_size(bytes)				\
424 ({								\
425 	int bpf_size = -EINVAL;					\
426 								\
427 	if (bytes == sizeof(u8))				\
428 		bpf_size = BPF_B;				\
429 	else if (bytes == sizeof(u16))				\
430 		bpf_size = BPF_H;				\
431 	else if (bytes == sizeof(u32))				\
432 		bpf_size = BPF_W;				\
433 	else if (bytes == sizeof(u64))				\
434 		bpf_size = BPF_DW;				\
435 								\
436 	bpf_size;						\
437 })
438 
439 #define bpf_size_to_bytes(bpf_size)				\
440 ({								\
441 	int bytes = -EINVAL;					\
442 								\
443 	if (bpf_size == BPF_B)					\
444 		bytes = sizeof(u8);				\
445 	else if (bpf_size == BPF_H)				\
446 		bytes = sizeof(u16);				\
447 	else if (bpf_size == BPF_W)				\
448 		bytes = sizeof(u32);				\
449 	else if (bpf_size == BPF_DW)				\
450 		bytes = sizeof(u64);				\
451 								\
452 	bytes;							\
453 })
454 
455 #define BPF_SIZEOF(type)					\
456 	({							\
457 		const int __size = bytes_to_bpf_size(sizeof(type)); \
458 		BUILD_BUG_ON(__size < 0);			\
459 		__size;						\
460 	})
461 
462 #define BPF_FIELD_SIZEOF(type, field)				\
463 	({							\
464 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
465 		BUILD_BUG_ON(__size < 0);			\
466 		__size;						\
467 	})
468 
469 #define BPF_LDST_BYTES(insn)					\
470 	({							\
471 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
472 		WARN_ON(__size < 0);				\
473 		__size;						\
474 	})
475 
476 #define __BPF_MAP_0(m, v, ...) v
477 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
478 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
479 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
480 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
481 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
482 
483 #define __BPF_REG_0(...) __BPF_PAD(5)
484 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
485 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
486 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
487 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
488 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
489 
490 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
491 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
492 
493 #define __BPF_CAST(t, a)						       \
494 	(__force t)							       \
495 	(__force							       \
496 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
497 				      (unsigned long)0, (t)0))) a
498 #define __BPF_V void
499 #define __BPF_N
500 
501 #define __BPF_DECL_ARGS(t, a) t   a
502 #define __BPF_DECL_REGS(t, a) u64 a
503 
504 #define __BPF_PAD(n)							       \
505 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
506 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
507 
508 #define BPF_CALL_x(x, attr, name, ...)					       \
509 	static __always_inline						       \
510 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
511 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
512 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));    \
513 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))     \
514 	{								       \
515 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
516 	}								       \
517 	static __always_inline						       \
518 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
519 
520 #define __NOATTR
521 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
522 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
523 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
524 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
525 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
526 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)
527 
528 #define NOTRACE_BPF_CALL_1(name, ...)	BPF_CALL_x(1, notrace, name, __VA_ARGS__)
529 
530 #define bpf_ctx_range(TYPE, MEMBER)						\
531 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
532 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
533 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
534 #if BITS_PER_LONG == 64
535 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
536 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
537 #else
538 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
539 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
540 #endif /* BITS_PER_LONG == 64 */
541 
542 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
543 	({									\
544 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
545 		*(PTR_SIZE) = (SIZE);						\
546 		offsetof(TYPE, MEMBER);						\
547 	})
548 
549 /* A struct sock_filter is architecture independent. */
550 struct compat_sock_fprog {
551 	u16		len;
552 	compat_uptr_t	filter;	/* struct sock_filter * */
553 };
554 
555 struct sock_fprog_kern {
556 	u16			len;
557 	struct sock_filter	*filter;
558 };
559 
560 /* Some arches need doubleword alignment for their instructions and/or data */
561 #define BPF_IMAGE_ALIGNMENT 8
562 
563 struct bpf_binary_header {
564 	u32 size;
565 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
566 };
567 
568 struct bpf_prog_stats {
569 	u64_stats_t cnt;
570 	u64_stats_t nsecs;
571 	u64_stats_t misses;
572 	struct u64_stats_sync syncp;
573 } __aligned(2 * sizeof(u64));
574 
575 struct sk_filter {
576 	refcount_t	refcnt;
577 	struct rcu_head	rcu;
578 	struct bpf_prog	*prog;
579 };
580 
581 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
582 
583 extern struct mutex nf_conn_btf_access_lock;
584 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
585 				     const struct bpf_reg_state *reg,
586 				     int off, int size);
587 
588 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
589 					  const struct bpf_insn *insnsi,
590 					  unsigned int (*bpf_func)(const void *,
591 								   const struct bpf_insn *));
592 
__bpf_prog_run(const struct bpf_prog * prog,const void * ctx,bpf_dispatcher_fn dfunc)593 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
594 					  const void *ctx,
595 					  bpf_dispatcher_fn dfunc)
596 {
597 	u32 ret;
598 
599 	cant_migrate();
600 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
601 		struct bpf_prog_stats *stats;
602 		u64 start = sched_clock();
603 		unsigned long flags;
604 
605 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
606 		stats = this_cpu_ptr(prog->stats);
607 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
608 		u64_stats_inc(&stats->cnt);
609 		u64_stats_add(&stats->nsecs, sched_clock() - start);
610 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
611 	} else {
612 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
613 	}
614 	return ret;
615 }
616 
bpf_prog_run(const struct bpf_prog * prog,const void * ctx)617 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
618 {
619 	return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
620 }
621 
622 /*
623  * Use in preemptible and therefore migratable context to make sure that
624  * the execution of the BPF program runs on one CPU.
625  *
626  * This uses migrate_disable/enable() explicitly to document that the
627  * invocation of a BPF program does not require reentrancy protection
628  * against a BPF program which is invoked from a preempting task.
629  */
bpf_prog_run_pin_on_cpu(const struct bpf_prog * prog,const void * ctx)630 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
631 					  const void *ctx)
632 {
633 	u32 ret;
634 
635 	migrate_disable();
636 	ret = bpf_prog_run(prog, ctx);
637 	migrate_enable();
638 	return ret;
639 }
640 
641 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
642 
643 struct bpf_skb_data_end {
644 	struct qdisc_skb_cb qdisc_cb;
645 	void *data_meta;
646 	void *data_end;
647 };
648 
649 struct bpf_nh_params {
650 	u32 nh_family;
651 	union {
652 		u32 ipv4_nh;
653 		struct in6_addr ipv6_nh;
654 	};
655 };
656 
657 struct bpf_redirect_info {
658 	u64 tgt_index;
659 	void *tgt_value;
660 	struct bpf_map *map;
661 	u32 flags;
662 	u32 kern_flags;
663 	u32 map_id;
664 	enum bpf_map_type map_type;
665 	struct bpf_nh_params nh;
666 };
667 
668 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
669 
670 /* flags for bpf_redirect_info kern_flags */
671 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
672 
673 /* Compute the linear packet data range [data, data_end) which
674  * will be accessed by various program types (cls_bpf, act_bpf,
675  * lwt, ...). Subsystems allowing direct data access must (!)
676  * ensure that cb[] area can be written to when BPF program is
677  * invoked (otherwise cb[] save/restore is necessary).
678  */
bpf_compute_data_pointers(struct sk_buff * skb)679 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
680 {
681 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
682 
683 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
684 	cb->data_meta = skb->data - skb_metadata_len(skb);
685 	cb->data_end  = skb->data + skb_headlen(skb);
686 }
687 
688 /* Similar to bpf_compute_data_pointers(), except that save orginal
689  * data in cb->data and cb->meta_data for restore.
690  */
bpf_compute_and_save_data_end(struct sk_buff * skb,void ** saved_data_end)691 static inline void bpf_compute_and_save_data_end(
692 	struct sk_buff *skb, void **saved_data_end)
693 {
694 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
695 
696 	*saved_data_end = cb->data_end;
697 	cb->data_end  = skb->data + skb_headlen(skb);
698 }
699 
700 /* Restore data saved by bpf_compute_data_pointers(). */
bpf_restore_data_end(struct sk_buff * skb,void * saved_data_end)701 static inline void bpf_restore_data_end(
702 	struct sk_buff *skb, void *saved_data_end)
703 {
704 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
705 
706 	cb->data_end = saved_data_end;
707 }
708 
bpf_skb_cb(const struct sk_buff * skb)709 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
710 {
711 	/* eBPF programs may read/write skb->cb[] area to transfer meta
712 	 * data between tail calls. Since this also needs to work with
713 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
714 	 *
715 	 * In some socket filter cases, the cb unfortunately needs to be
716 	 * saved/restored so that protocol specific skb->cb[] data won't
717 	 * be lost. In any case, due to unpriviledged eBPF programs
718 	 * attached to sockets, we need to clear the bpf_skb_cb() area
719 	 * to not leak previous contents to user space.
720 	 */
721 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
722 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
723 		     sizeof_field(struct qdisc_skb_cb, data));
724 
725 	return qdisc_skb_cb(skb)->data;
726 }
727 
728 /* Must be invoked with migration disabled */
__bpf_prog_run_save_cb(const struct bpf_prog * prog,const void * ctx)729 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
730 					 const void *ctx)
731 {
732 	const struct sk_buff *skb = ctx;
733 	u8 *cb_data = bpf_skb_cb(skb);
734 	u8 cb_saved[BPF_SKB_CB_LEN];
735 	u32 res;
736 
737 	if (unlikely(prog->cb_access)) {
738 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
739 		memset(cb_data, 0, sizeof(cb_saved));
740 	}
741 
742 	res = bpf_prog_run(prog, skb);
743 
744 	if (unlikely(prog->cb_access))
745 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
746 
747 	return res;
748 }
749 
bpf_prog_run_save_cb(const struct bpf_prog * prog,struct sk_buff * skb)750 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
751 				       struct sk_buff *skb)
752 {
753 	u32 res;
754 
755 	migrate_disable();
756 	res = __bpf_prog_run_save_cb(prog, skb);
757 	migrate_enable();
758 	return res;
759 }
760 
bpf_prog_run_clear_cb(const struct bpf_prog * prog,struct sk_buff * skb)761 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
762 					struct sk_buff *skb)
763 {
764 	u8 *cb_data = bpf_skb_cb(skb);
765 	u32 res;
766 
767 	if (unlikely(prog->cb_access))
768 		memset(cb_data, 0, BPF_SKB_CB_LEN);
769 
770 	res = bpf_prog_run_pin_on_cpu(prog, skb);
771 	return res;
772 }
773 
774 DECLARE_BPF_DISPATCHER(xdp)
775 
776 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
777 
778 u32 xdp_master_redirect(struct xdp_buff *xdp);
779 
780 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
781 
bpf_prog_insn_size(const struct bpf_prog * prog)782 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
783 {
784 	return prog->len * sizeof(struct bpf_insn);
785 }
786 
bpf_prog_tag_scratch_size(const struct bpf_prog * prog)787 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
788 {
789 	return round_up(bpf_prog_insn_size(prog) +
790 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
791 }
792 
bpf_prog_size(unsigned int proglen)793 static inline unsigned int bpf_prog_size(unsigned int proglen)
794 {
795 	return max(sizeof(struct bpf_prog),
796 		   offsetof(struct bpf_prog, insns[proglen]));
797 }
798 
bpf_prog_was_classic(const struct bpf_prog * prog)799 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
800 {
801 	/* When classic BPF programs have been loaded and the arch
802 	 * does not have a classic BPF JIT (anymore), they have been
803 	 * converted via bpf_migrate_filter() to eBPF and thus always
804 	 * have an unspec program type.
805 	 */
806 	return prog->type == BPF_PROG_TYPE_UNSPEC;
807 }
808 
bpf_ctx_off_adjust_machine(u32 size)809 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
810 {
811 	const u32 size_machine = sizeof(unsigned long);
812 
813 	if (size > size_machine && size % size_machine == 0)
814 		size = size_machine;
815 
816 	return size;
817 }
818 
819 static inline bool
bpf_ctx_narrow_access_ok(u32 off,u32 size,u32 size_default)820 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
821 {
822 	return size <= size_default && (size & (size - 1)) == 0;
823 }
824 
825 static inline u8
bpf_ctx_narrow_access_offset(u32 off,u32 size,u32 size_default)826 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
827 {
828 	u8 access_off = off & (size_default - 1);
829 
830 #ifdef __LITTLE_ENDIAN
831 	return access_off;
832 #else
833 	return size_default - (access_off + size);
834 #endif
835 }
836 
837 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
838 	(size == sizeof(__u64) &&					\
839 	off >= offsetof(type, field) &&					\
840 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
841 	off % sizeof(__u64) == 0)
842 
843 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
844 
bpf_prog_lock_ro(struct bpf_prog * fp)845 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
846 {
847 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
848 	if (!fp->jited) {
849 		set_vm_flush_reset_perms(fp);
850 		set_memory_ro((unsigned long)fp, fp->pages);
851 	}
852 #endif
853 }
854 
bpf_jit_binary_lock_ro(struct bpf_binary_header * hdr)855 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
856 {
857 	set_vm_flush_reset_perms(hdr);
858 	set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
859 }
860 
861 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
sk_filter(struct sock * sk,struct sk_buff * skb)862 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
863 {
864 	return sk_filter_trim_cap(sk, skb, 1);
865 }
866 
867 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
868 void bpf_prog_free(struct bpf_prog *fp);
869 
870 bool bpf_opcode_in_insntable(u8 code);
871 
872 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
873 			       const u32 *insn_to_jit_off);
874 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
875 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
876 
877 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
878 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
879 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
880 				  gfp_t gfp_extra_flags);
881 void __bpf_prog_free(struct bpf_prog *fp);
882 
bpf_prog_unlock_free(struct bpf_prog * fp)883 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
884 {
885 	__bpf_prog_free(fp);
886 }
887 
888 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
889 				       unsigned int flen);
890 
891 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
892 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
893 			      bpf_aux_classic_check_t trans, bool save_orig);
894 void bpf_prog_destroy(struct bpf_prog *fp);
895 
896 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
897 int sk_attach_bpf(u32 ufd, struct sock *sk);
898 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
899 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
900 void sk_reuseport_prog_free(struct bpf_prog *prog);
901 int sk_detach_filter(struct sock *sk);
902 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
903 
904 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
905 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
906 
907 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
908 #define __bpf_call_base_args \
909 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
910 	 (void *)__bpf_call_base)
911 
912 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
913 void bpf_jit_compile(struct bpf_prog *prog);
914 bool bpf_jit_needs_zext(void);
915 bool bpf_jit_supports_subprog_tailcalls(void);
916 bool bpf_jit_supports_kfunc_call(void);
917 bool bpf_jit_supports_far_kfunc_call(void);
918 bool bpf_helper_changes_pkt_data(void *func);
919 
bpf_dump_raw_ok(const struct cred * cred)920 static inline bool bpf_dump_raw_ok(const struct cred *cred)
921 {
922 	/* Reconstruction of call-sites is dependent on kallsyms,
923 	 * thus make dump the same restriction.
924 	 */
925 	return kallsyms_show_value(cred);
926 }
927 
928 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
929 				       const struct bpf_insn *patch, u32 len);
930 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
931 
932 void bpf_clear_redirect_map(struct bpf_map *map);
933 
xdp_return_frame_no_direct(void)934 static inline bool xdp_return_frame_no_direct(void)
935 {
936 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
937 
938 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
939 }
940 
xdp_set_return_frame_no_direct(void)941 static inline void xdp_set_return_frame_no_direct(void)
942 {
943 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
944 
945 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
946 }
947 
xdp_clear_return_frame_no_direct(void)948 static inline void xdp_clear_return_frame_no_direct(void)
949 {
950 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
951 
952 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
953 }
954 
xdp_ok_fwd_dev(const struct net_device * fwd,unsigned int pktlen)955 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
956 				 unsigned int pktlen)
957 {
958 	unsigned int len;
959 
960 	if (unlikely(!(fwd->flags & IFF_UP)))
961 		return -ENETDOWN;
962 
963 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
964 	if (pktlen > len)
965 		return -EMSGSIZE;
966 
967 	return 0;
968 }
969 
970 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
971  * same cpu context. Further for best results no more than a single map
972  * for the do_redirect/do_flush pair should be used. This limitation is
973  * because we only track one map and force a flush when the map changes.
974  * This does not appear to be a real limitation for existing software.
975  */
976 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
977 			    struct xdp_buff *xdp, struct bpf_prog *prog);
978 int xdp_do_redirect(struct net_device *dev,
979 		    struct xdp_buff *xdp,
980 		    struct bpf_prog *prog);
981 int xdp_do_redirect_frame(struct net_device *dev,
982 			  struct xdp_buff *xdp,
983 			  struct xdp_frame *xdpf,
984 			  struct bpf_prog *prog);
985 void xdp_do_flush(void);
986 
987 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
988  * it is no longer only flushing maps. Keep this define for compatibility
989  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
990  */
991 #define xdp_do_flush_map xdp_do_flush
992 
993 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
994 
995 #ifdef CONFIG_INET
996 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
997 				  struct bpf_prog *prog, struct sk_buff *skb,
998 				  struct sock *migrating_sk,
999 				  u32 hash);
1000 #else
1001 static inline struct sock *
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)1002 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1003 		     struct bpf_prog *prog, struct sk_buff *skb,
1004 		     struct sock *migrating_sk,
1005 		     u32 hash)
1006 {
1007 	return NULL;
1008 }
1009 #endif
1010 
1011 #ifdef CONFIG_BPF_JIT
1012 extern int bpf_jit_enable;
1013 extern int bpf_jit_harden;
1014 extern int bpf_jit_kallsyms;
1015 extern long bpf_jit_limit;
1016 extern long bpf_jit_limit_max;
1017 
1018 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1019 
1020 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1021 
1022 struct bpf_binary_header *
1023 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1024 		     unsigned int alignment,
1025 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1026 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1027 u64 bpf_jit_alloc_exec_limit(void);
1028 void *bpf_jit_alloc_exec(unsigned long size);
1029 void bpf_jit_free_exec(void *addr);
1030 void bpf_jit_free(struct bpf_prog *fp);
1031 struct bpf_binary_header *
1032 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1033 
1034 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1035 void bpf_prog_pack_free(struct bpf_binary_header *hdr);
1036 
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)1037 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1038 {
1039 	return list_empty(&fp->aux->ksym.lnode) ||
1040 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
1041 }
1042 
1043 struct bpf_binary_header *
1044 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1045 			  unsigned int alignment,
1046 			  struct bpf_binary_header **rw_hdr,
1047 			  u8 **rw_image,
1048 			  bpf_jit_fill_hole_t bpf_fill_ill_insns);
1049 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1050 				 struct bpf_binary_header *ro_header,
1051 				 struct bpf_binary_header *rw_header);
1052 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1053 			      struct bpf_binary_header *rw_header);
1054 
1055 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1056 				struct bpf_jit_poke_descriptor *poke);
1057 
1058 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1059 			  const struct bpf_insn *insn, bool extra_pass,
1060 			  u64 *func_addr, bool *func_addr_fixed);
1061 
1062 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1063 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1064 
bpf_jit_dump(unsigned int flen,unsigned int proglen,u32 pass,void * image)1065 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1066 				u32 pass, void *image)
1067 {
1068 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1069 	       proglen, pass, image, current->comm, task_pid_nr(current));
1070 
1071 	if (image)
1072 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1073 			       16, 1, image, proglen, false);
1074 }
1075 
bpf_jit_is_ebpf(void)1076 static inline bool bpf_jit_is_ebpf(void)
1077 {
1078 # ifdef CONFIG_HAVE_EBPF_JIT
1079 	return true;
1080 # else
1081 	return false;
1082 # endif
1083 }
1084 
ebpf_jit_enabled(void)1085 static inline bool ebpf_jit_enabled(void)
1086 {
1087 	return bpf_jit_enable && bpf_jit_is_ebpf();
1088 }
1089 
bpf_prog_ebpf_jited(const struct bpf_prog * fp)1090 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1091 {
1092 	return fp->jited && bpf_jit_is_ebpf();
1093 }
1094 
bpf_jit_blinding_enabled(struct bpf_prog * prog)1095 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1096 {
1097 	/* These are the prerequisites, should someone ever have the
1098 	 * idea to call blinding outside of them, we make sure to
1099 	 * bail out.
1100 	 */
1101 	if (!bpf_jit_is_ebpf())
1102 		return false;
1103 	if (!prog->jit_requested)
1104 		return false;
1105 	if (!bpf_jit_harden)
1106 		return false;
1107 	if (bpf_jit_harden == 1 && bpf_capable())
1108 		return false;
1109 
1110 	return true;
1111 }
1112 
bpf_jit_kallsyms_enabled(void)1113 static inline bool bpf_jit_kallsyms_enabled(void)
1114 {
1115 	/* There are a couple of corner cases where kallsyms should
1116 	 * not be enabled f.e. on hardening.
1117 	 */
1118 	if (bpf_jit_harden)
1119 		return false;
1120 	if (!bpf_jit_kallsyms)
1121 		return false;
1122 	if (bpf_jit_kallsyms == 1)
1123 		return true;
1124 
1125 	return false;
1126 }
1127 
1128 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1129 				 unsigned long *off, char *sym);
1130 bool is_bpf_text_address(unsigned long addr);
1131 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1132 		    char *sym);
1133 
1134 static inline const char *
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1135 bpf_address_lookup(unsigned long addr, unsigned long *size,
1136 		   unsigned long *off, char **modname, char *sym)
1137 {
1138 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1139 
1140 	if (ret && modname)
1141 		*modname = NULL;
1142 	return ret;
1143 }
1144 
1145 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1146 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1147 
1148 #else /* CONFIG_BPF_JIT */
1149 
ebpf_jit_enabled(void)1150 static inline bool ebpf_jit_enabled(void)
1151 {
1152 	return false;
1153 }
1154 
bpf_jit_blinding_enabled(struct bpf_prog * prog)1155 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1156 {
1157 	return false;
1158 }
1159 
bpf_prog_ebpf_jited(const struct bpf_prog * fp)1160 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1161 {
1162 	return false;
1163 }
1164 
1165 static inline int
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)1166 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1167 			    struct bpf_jit_poke_descriptor *poke)
1168 {
1169 	return -ENOTSUPP;
1170 }
1171 
bpf_jit_free(struct bpf_prog * fp)1172 static inline void bpf_jit_free(struct bpf_prog *fp)
1173 {
1174 	bpf_prog_unlock_free(fp);
1175 }
1176 
bpf_jit_kallsyms_enabled(void)1177 static inline bool bpf_jit_kallsyms_enabled(void)
1178 {
1179 	return false;
1180 }
1181 
1182 static inline const char *
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)1183 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1184 		     unsigned long *off, char *sym)
1185 {
1186 	return NULL;
1187 }
1188 
is_bpf_text_address(unsigned long addr)1189 static inline bool is_bpf_text_address(unsigned long addr)
1190 {
1191 	return false;
1192 }
1193 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)1194 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1195 				  char *type, char *sym)
1196 {
1197 	return -ERANGE;
1198 }
1199 
1200 static inline const char *
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1201 bpf_address_lookup(unsigned long addr, unsigned long *size,
1202 		   unsigned long *off, char **modname, char *sym)
1203 {
1204 	return NULL;
1205 }
1206 
bpf_prog_kallsyms_add(struct bpf_prog * fp)1207 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1208 {
1209 }
1210 
bpf_prog_kallsyms_del(struct bpf_prog * fp)1211 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1212 {
1213 }
1214 
1215 #endif /* CONFIG_BPF_JIT */
1216 
1217 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1218 
1219 #define BPF_ANC		BIT(15)
1220 
bpf_needs_clear_a(const struct sock_filter * first)1221 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1222 {
1223 	switch (first->code) {
1224 	case BPF_RET | BPF_K:
1225 	case BPF_LD | BPF_W | BPF_LEN:
1226 		return false;
1227 
1228 	case BPF_LD | BPF_W | BPF_ABS:
1229 	case BPF_LD | BPF_H | BPF_ABS:
1230 	case BPF_LD | BPF_B | BPF_ABS:
1231 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1232 			return true;
1233 		return false;
1234 
1235 	default:
1236 		return true;
1237 	}
1238 }
1239 
bpf_anc_helper(const struct sock_filter * ftest)1240 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1241 {
1242 	BUG_ON(ftest->code & BPF_ANC);
1243 
1244 	switch (ftest->code) {
1245 	case BPF_LD | BPF_W | BPF_ABS:
1246 	case BPF_LD | BPF_H | BPF_ABS:
1247 	case BPF_LD | BPF_B | BPF_ABS:
1248 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1249 				return BPF_ANC | SKF_AD_##CODE
1250 		switch (ftest->k) {
1251 		BPF_ANCILLARY(PROTOCOL);
1252 		BPF_ANCILLARY(PKTTYPE);
1253 		BPF_ANCILLARY(IFINDEX);
1254 		BPF_ANCILLARY(NLATTR);
1255 		BPF_ANCILLARY(NLATTR_NEST);
1256 		BPF_ANCILLARY(MARK);
1257 		BPF_ANCILLARY(QUEUE);
1258 		BPF_ANCILLARY(HATYPE);
1259 		BPF_ANCILLARY(RXHASH);
1260 		BPF_ANCILLARY(CPU);
1261 		BPF_ANCILLARY(ALU_XOR_X);
1262 		BPF_ANCILLARY(VLAN_TAG);
1263 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1264 		BPF_ANCILLARY(PAY_OFFSET);
1265 		BPF_ANCILLARY(RANDOM);
1266 		BPF_ANCILLARY(VLAN_TPID);
1267 		}
1268 		fallthrough;
1269 	default:
1270 		return ftest->code;
1271 	}
1272 }
1273 
1274 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1275 					   int k, unsigned int size);
1276 
bpf_tell_extensions(void)1277 static inline int bpf_tell_extensions(void)
1278 {
1279 	return SKF_AD_MAX;
1280 }
1281 
1282 struct bpf_sock_addr_kern {
1283 	struct sock *sk;
1284 	struct sockaddr *uaddr;
1285 	/* Temporary "register" to make indirect stores to nested structures
1286 	 * defined above. We need three registers to make such a store, but
1287 	 * only two (src and dst) are available at convert_ctx_access time
1288 	 */
1289 	u64 tmp_reg;
1290 	void *t_ctx;	/* Attach type specific context. */
1291 	u32 uaddrlen;
1292 };
1293 
1294 struct bpf_sock_ops_kern {
1295 	struct	sock *sk;
1296 	union {
1297 		u32 args[4];
1298 		u32 reply;
1299 		u32 replylong[4];
1300 	};
1301 	struct sk_buff	*syn_skb;
1302 	struct sk_buff	*skb;
1303 	void	*skb_data_end;
1304 	u8	op;
1305 	u8	is_fullsock;
1306 	u8	remaining_opt_len;
1307 	u64	temp;			/* temp and everything after is not
1308 					 * initialized to 0 before calling
1309 					 * the BPF program. New fields that
1310 					 * should be initialized to 0 should
1311 					 * be inserted before temp.
1312 					 * temp is scratch storage used by
1313 					 * sock_ops_convert_ctx_access
1314 					 * as temporary storage of a register.
1315 					 */
1316 };
1317 
1318 struct bpf_sysctl_kern {
1319 	struct ctl_table_header *head;
1320 	struct ctl_table *table;
1321 	void *cur_val;
1322 	size_t cur_len;
1323 	void *new_val;
1324 	size_t new_len;
1325 	int new_updated;
1326 	int write;
1327 	loff_t *ppos;
1328 	/* Temporary "register" for indirect stores to ppos. */
1329 	u64 tmp_reg;
1330 };
1331 
1332 #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1333 struct bpf_sockopt_buf {
1334 	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1335 };
1336 
1337 struct bpf_sockopt_kern {
1338 	struct sock	*sk;
1339 	u8		*optval;
1340 	u8		*optval_end;
1341 	s32		level;
1342 	s32		optname;
1343 	s32		optlen;
1344 	/* for retval in struct bpf_cg_run_ctx */
1345 	struct task_struct *current_task;
1346 	/* Temporary "register" for indirect stores to ppos. */
1347 	u64		tmp_reg;
1348 };
1349 
1350 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1351 
1352 struct bpf_sk_lookup_kern {
1353 	u16		family;
1354 	u16		protocol;
1355 	__be16		sport;
1356 	u16		dport;
1357 	struct {
1358 		__be32 saddr;
1359 		__be32 daddr;
1360 	} v4;
1361 	struct {
1362 		const struct in6_addr *saddr;
1363 		const struct in6_addr *daddr;
1364 	} v6;
1365 	struct sock	*selected_sk;
1366 	u32		ingress_ifindex;
1367 	bool		no_reuseport;
1368 };
1369 
1370 extern struct static_key_false bpf_sk_lookup_enabled;
1371 
1372 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1373  *
1374  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1375  * SK_DROP. Their meaning is as follows:
1376  *
1377  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1378  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1379  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1380  *
1381  * This macro aggregates return values and selected sockets from
1382  * multiple BPF programs according to following rules in order:
1383  *
1384  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1385  *     macro result is SK_PASS and last ctx.selected_sk is used.
1386  *  2. If any program returned SK_DROP return value,
1387  *     macro result is SK_DROP.
1388  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1389  *
1390  * Caller must ensure that the prog array is non-NULL, and that the
1391  * array as well as the programs it contains remain valid.
1392  */
1393 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1394 	({								\
1395 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1396 		struct bpf_prog_array_item *_item;			\
1397 		struct sock *_selected_sk = NULL;			\
1398 		bool _no_reuseport = false;				\
1399 		struct bpf_prog *_prog;					\
1400 		bool _all_pass = true;					\
1401 		u32 _ret;						\
1402 									\
1403 		migrate_disable();					\
1404 		_item = &(array)->items[0];				\
1405 		while ((_prog = READ_ONCE(_item->prog))) {		\
1406 			/* restore most recent selection */		\
1407 			_ctx->selected_sk = _selected_sk;		\
1408 			_ctx->no_reuseport = _no_reuseport;		\
1409 									\
1410 			_ret = func(_prog, _ctx);			\
1411 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1412 				/* remember last non-NULL socket */	\
1413 				_selected_sk = _ctx->selected_sk;	\
1414 				_no_reuseport = _ctx->no_reuseport;	\
1415 			} else if (_ret == SK_DROP && _all_pass) {	\
1416 				_all_pass = false;			\
1417 			}						\
1418 			_item++;					\
1419 		}							\
1420 		_ctx->selected_sk = _selected_sk;			\
1421 		_ctx->no_reuseport = _no_reuseport;			\
1422 		migrate_enable();					\
1423 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1424 	 })
1425 
bpf_sk_lookup_run_v4(struct net * net,int protocol,const __be32 saddr,const __be16 sport,const __be32 daddr,const u16 dport,const int ifindex,struct sock ** psk)1426 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1427 					const __be32 saddr, const __be16 sport,
1428 					const __be32 daddr, const u16 dport,
1429 					const int ifindex, struct sock **psk)
1430 {
1431 	struct bpf_prog_array *run_array;
1432 	struct sock *selected_sk = NULL;
1433 	bool no_reuseport = false;
1434 
1435 	rcu_read_lock();
1436 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1437 	if (run_array) {
1438 		struct bpf_sk_lookup_kern ctx = {
1439 			.family		= AF_INET,
1440 			.protocol	= protocol,
1441 			.v4.saddr	= saddr,
1442 			.v4.daddr	= daddr,
1443 			.sport		= sport,
1444 			.dport		= dport,
1445 			.ingress_ifindex	= ifindex,
1446 		};
1447 		u32 act;
1448 
1449 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1450 		if (act == SK_PASS) {
1451 			selected_sk = ctx.selected_sk;
1452 			no_reuseport = ctx.no_reuseport;
1453 		} else {
1454 			selected_sk = ERR_PTR(-ECONNREFUSED);
1455 		}
1456 	}
1457 	rcu_read_unlock();
1458 	*psk = selected_sk;
1459 	return no_reuseport;
1460 }
1461 
1462 #if IS_ENABLED(CONFIG_IPV6)
bpf_sk_lookup_run_v6(struct net * net,int protocol,const struct in6_addr * saddr,const __be16 sport,const struct in6_addr * daddr,const u16 dport,const int ifindex,struct sock ** psk)1463 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1464 					const struct in6_addr *saddr,
1465 					const __be16 sport,
1466 					const struct in6_addr *daddr,
1467 					const u16 dport,
1468 					const int ifindex, struct sock **psk)
1469 {
1470 	struct bpf_prog_array *run_array;
1471 	struct sock *selected_sk = NULL;
1472 	bool no_reuseport = false;
1473 
1474 	rcu_read_lock();
1475 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1476 	if (run_array) {
1477 		struct bpf_sk_lookup_kern ctx = {
1478 			.family		= AF_INET6,
1479 			.protocol	= protocol,
1480 			.v6.saddr	= saddr,
1481 			.v6.daddr	= daddr,
1482 			.sport		= sport,
1483 			.dport		= dport,
1484 			.ingress_ifindex	= ifindex,
1485 		};
1486 		u32 act;
1487 
1488 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1489 		if (act == SK_PASS) {
1490 			selected_sk = ctx.selected_sk;
1491 			no_reuseport = ctx.no_reuseport;
1492 		} else {
1493 			selected_sk = ERR_PTR(-ECONNREFUSED);
1494 		}
1495 	}
1496 	rcu_read_unlock();
1497 	*psk = selected_sk;
1498 	return no_reuseport;
1499 }
1500 #endif /* IS_ENABLED(CONFIG_IPV6) */
1501 
__bpf_xdp_redirect_map(struct bpf_map * map,u64 index,u64 flags,const u64 flag_mask,void * lookup_elem (struct bpf_map * map,u32 key))1502 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1503 						   u64 flags, const u64 flag_mask,
1504 						   void *lookup_elem(struct bpf_map *map, u32 key))
1505 {
1506 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1507 	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1508 
1509 	/* Lower bits of the flags are used as return code on lookup failure */
1510 	if (unlikely(flags & ~(action_mask | flag_mask)))
1511 		return XDP_ABORTED;
1512 
1513 	ri->tgt_value = lookup_elem(map, index);
1514 	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1515 		/* If the lookup fails we want to clear out the state in the
1516 		 * redirect_info struct completely, so that if an eBPF program
1517 		 * performs multiple lookups, the last one always takes
1518 		 * precedence.
1519 		 */
1520 		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1521 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1522 		return flags & action_mask;
1523 	}
1524 
1525 	ri->tgt_index = index;
1526 	ri->map_id = map->id;
1527 	ri->map_type = map->map_type;
1528 
1529 	if (flags & BPF_F_BROADCAST) {
1530 		WRITE_ONCE(ri->map, map);
1531 		ri->flags = flags;
1532 	} else {
1533 		WRITE_ONCE(ri->map, NULL);
1534 		ri->flags = 0;
1535 	}
1536 
1537 	return XDP_REDIRECT;
1538 }
1539 
1540 #ifdef CONFIG_NET
1541 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1542 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1543 			  u32 len, u64 flags);
1544 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1545 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1546 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1547 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1548 		      void *buf, unsigned long len, bool flush);
1549 #else /* CONFIG_NET */
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1550 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1551 				       void *to, u32 len)
1552 {
1553 	return -EOPNOTSUPP;
1554 }
1555 
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1556 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1557 					const void *from, u32 len, u64 flags)
1558 {
1559 	return -EOPNOTSUPP;
1560 }
1561 
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)1562 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1563 				       void *buf, u32 len)
1564 {
1565 	return -EOPNOTSUPP;
1566 }
1567 
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)1568 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1569 					void *buf, u32 len)
1570 {
1571 	return -EOPNOTSUPP;
1572 }
1573 
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)1574 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1575 {
1576 	return NULL;
1577 }
1578 
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)1579 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1580 				    unsigned long len, bool flush)
1581 {
1582 }
1583 #endif /* CONFIG_NET */
1584 
1585 #endif /* __LINUX_FILTER_H__ */
1586