xref: /openbmc/linux/kernel/bpf/core.c (revision 9144f784f852f9a125cabe9927b986d909bfa439)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 #include <linux/nospec.h>
38 #include <linux/bpf_mem_alloc.h>
39 #include <linux/memcontrol.h>
40 
41 #include <asm/barrier.h>
42 #include <asm/unaligned.h>
43 
44 /* Registers */
45 #define BPF_R0	regs[BPF_REG_0]
46 #define BPF_R1	regs[BPF_REG_1]
47 #define BPF_R2	regs[BPF_REG_2]
48 #define BPF_R3	regs[BPF_REG_3]
49 #define BPF_R4	regs[BPF_REG_4]
50 #define BPF_R5	regs[BPF_REG_5]
51 #define BPF_R6	regs[BPF_REG_6]
52 #define BPF_R7	regs[BPF_REG_7]
53 #define BPF_R8	regs[BPF_REG_8]
54 #define BPF_R9	regs[BPF_REG_9]
55 #define BPF_R10	regs[BPF_REG_10]
56 
57 /* Named registers */
58 #define DST	regs[insn->dst_reg]
59 #define SRC	regs[insn->src_reg]
60 #define FP	regs[BPF_REG_FP]
61 #define AX	regs[BPF_REG_AX]
62 #define ARG1	regs[BPF_REG_ARG1]
63 #define CTX	regs[BPF_REG_CTX]
64 #define OFF	insn->off
65 #define IMM	insn->imm
66 
67 struct bpf_mem_alloc bpf_global_ma;
68 bool bpf_global_ma_set;
69 
70 /* No hurry in this branch
71  *
72  * Exported for the bpf jit load helper.
73  */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)74 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
75 {
76 	u8 *ptr = NULL;
77 
78 	if (k >= SKF_NET_OFF) {
79 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
80 	} else if (k >= SKF_LL_OFF) {
81 		if (unlikely(!skb_mac_header_was_set(skb)))
82 			return NULL;
83 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
84 	}
85 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
86 		return ptr;
87 
88 	return NULL;
89 }
90 
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)91 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
92 {
93 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
94 	struct bpf_prog_aux *aux;
95 	struct bpf_prog *fp;
96 
97 	size = round_up(size, PAGE_SIZE);
98 	fp = __vmalloc(size, gfp_flags);
99 	if (fp == NULL)
100 		return NULL;
101 
102 	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
103 	if (aux == NULL) {
104 		vfree(fp);
105 		return NULL;
106 	}
107 	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
108 	if (!fp->active) {
109 		vfree(fp);
110 		kfree(aux);
111 		return NULL;
112 	}
113 
114 	fp->pages = size / PAGE_SIZE;
115 	fp->aux = aux;
116 	fp->aux->prog = fp;
117 	fp->jit_requested = ebpf_jit_enabled();
118 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
119 #ifdef CONFIG_CGROUP_BPF
120 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
121 #endif
122 
123 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
124 	mutex_init(&fp->aux->used_maps_mutex);
125 	mutex_init(&fp->aux->dst_mutex);
126 
127 	return fp;
128 }
129 
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)130 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
131 {
132 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
133 	struct bpf_prog *prog;
134 	int cpu;
135 
136 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
137 	if (!prog)
138 		return NULL;
139 
140 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
141 	if (!prog->stats) {
142 		free_percpu(prog->active);
143 		kfree(prog->aux);
144 		vfree(prog);
145 		return NULL;
146 	}
147 
148 	for_each_possible_cpu(cpu) {
149 		struct bpf_prog_stats *pstats;
150 
151 		pstats = per_cpu_ptr(prog->stats, cpu);
152 		u64_stats_init(&pstats->syncp);
153 	}
154 	return prog;
155 }
156 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
157 
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)158 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
159 {
160 	if (!prog->aux->nr_linfo || !prog->jit_requested)
161 		return 0;
162 
163 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
164 					  sizeof(*prog->aux->jited_linfo),
165 					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
166 	if (!prog->aux->jited_linfo)
167 		return -ENOMEM;
168 
169 	return 0;
170 }
171 
bpf_prog_jit_attempt_done(struct bpf_prog * prog)172 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
173 {
174 	if (prog->aux->jited_linfo &&
175 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
176 		kvfree(prog->aux->jited_linfo);
177 		prog->aux->jited_linfo = NULL;
178 	}
179 
180 	kfree(prog->aux->kfunc_tab);
181 	prog->aux->kfunc_tab = NULL;
182 }
183 
184 /* The jit engine is responsible to provide an array
185  * for insn_off to the jited_off mapping (insn_to_jit_off).
186  *
187  * The idx to this array is the insn_off.  Hence, the insn_off
188  * here is relative to the prog itself instead of the main prog.
189  * This array has one entry for each xlated bpf insn.
190  *
191  * jited_off is the byte off to the end of the jited insn.
192  *
193  * Hence, with
194  * insn_start:
195  *      The first bpf insn off of the prog.  The insn off
196  *      here is relative to the main prog.
197  *      e.g. if prog is a subprog, insn_start > 0
198  * linfo_idx:
199  *      The prog's idx to prog->aux->linfo and jited_linfo
200  *
201  * jited_linfo[linfo_idx] = prog->bpf_func
202  *
203  * For i > linfo_idx,
204  *
205  * jited_linfo[i] = prog->bpf_func +
206  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
207  */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)208 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
209 			       const u32 *insn_to_jit_off)
210 {
211 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
212 	const struct bpf_line_info *linfo;
213 	void **jited_linfo;
214 
215 	if (!prog->aux->jited_linfo)
216 		/* Userspace did not provide linfo */
217 		return;
218 
219 	linfo_idx = prog->aux->linfo_idx;
220 	linfo = &prog->aux->linfo[linfo_idx];
221 	insn_start = linfo[0].insn_off;
222 	insn_end = insn_start + prog->len;
223 
224 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
225 	jited_linfo[0] = prog->bpf_func;
226 
227 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
228 
229 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
230 		/* The verifier ensures that linfo[i].insn_off is
231 		 * strictly increasing
232 		 */
233 		jited_linfo[i] = prog->bpf_func +
234 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
235 }
236 
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)237 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
238 				  gfp_t gfp_extra_flags)
239 {
240 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
241 	struct bpf_prog *fp;
242 	u32 pages;
243 
244 	size = round_up(size, PAGE_SIZE);
245 	pages = size / PAGE_SIZE;
246 	if (pages <= fp_old->pages)
247 		return fp_old;
248 
249 	fp = __vmalloc(size, gfp_flags);
250 	if (fp) {
251 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
252 		fp->pages = pages;
253 		fp->aux->prog = fp;
254 
255 		/* We keep fp->aux from fp_old around in the new
256 		 * reallocated structure.
257 		 */
258 		fp_old->aux = NULL;
259 		fp_old->stats = NULL;
260 		fp_old->active = NULL;
261 		__bpf_prog_free(fp_old);
262 	}
263 
264 	return fp;
265 }
266 
__bpf_prog_free(struct bpf_prog * fp)267 void __bpf_prog_free(struct bpf_prog *fp)
268 {
269 	if (fp->aux) {
270 		mutex_destroy(&fp->aux->used_maps_mutex);
271 		mutex_destroy(&fp->aux->dst_mutex);
272 		kfree(fp->aux->poke_tab);
273 		kfree(fp->aux);
274 	}
275 	free_percpu(fp->stats);
276 	free_percpu(fp->active);
277 	vfree(fp);
278 }
279 
bpf_prog_calc_tag(struct bpf_prog * fp)280 int bpf_prog_calc_tag(struct bpf_prog *fp)
281 {
282 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
283 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
284 	u32 digest[SHA1_DIGEST_WORDS];
285 	u32 ws[SHA1_WORKSPACE_WORDS];
286 	u32 i, bsize, psize, blocks;
287 	struct bpf_insn *dst;
288 	bool was_ld_map;
289 	u8 *raw, *todo;
290 	__be32 *result;
291 	__be64 *bits;
292 
293 	raw = vmalloc(raw_size);
294 	if (!raw)
295 		return -ENOMEM;
296 
297 	sha1_init(digest);
298 	memset(ws, 0, sizeof(ws));
299 
300 	/* We need to take out the map fd for the digest calculation
301 	 * since they are unstable from user space side.
302 	 */
303 	dst = (void *)raw;
304 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
305 		dst[i] = fp->insnsi[i];
306 		if (!was_ld_map &&
307 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
308 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
309 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
310 			was_ld_map = true;
311 			dst[i].imm = 0;
312 		} else if (was_ld_map &&
313 			   dst[i].code == 0 &&
314 			   dst[i].dst_reg == 0 &&
315 			   dst[i].src_reg == 0 &&
316 			   dst[i].off == 0) {
317 			was_ld_map = false;
318 			dst[i].imm = 0;
319 		} else {
320 			was_ld_map = false;
321 		}
322 	}
323 
324 	psize = bpf_prog_insn_size(fp);
325 	memset(&raw[psize], 0, raw_size - psize);
326 	raw[psize++] = 0x80;
327 
328 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
329 	blocks = bsize / SHA1_BLOCK_SIZE;
330 	todo   = raw;
331 	if (bsize - psize >= sizeof(__be64)) {
332 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
333 	} else {
334 		bits = (__be64 *)(todo + bsize + bits_offset);
335 		blocks++;
336 	}
337 	*bits = cpu_to_be64((psize - 1) << 3);
338 
339 	while (blocks--) {
340 		sha1_transform(digest, todo, ws);
341 		todo += SHA1_BLOCK_SIZE;
342 	}
343 
344 	result = (__force __be32 *)digest;
345 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
346 		result[i] = cpu_to_be32(digest[i]);
347 	memcpy(fp->tag, result, sizeof(fp->tag));
348 
349 	vfree(raw);
350 	return 0;
351 }
352 
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)353 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
354 				s32 end_new, s32 curr, const bool probe_pass)
355 {
356 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
357 	s32 delta = end_new - end_old;
358 	s64 imm = insn->imm;
359 
360 	if (curr < pos && curr + imm + 1 >= end_old)
361 		imm += delta;
362 	else if (curr >= end_new && curr + imm + 1 < end_new)
363 		imm -= delta;
364 	if (imm < imm_min || imm > imm_max)
365 		return -ERANGE;
366 	if (!probe_pass)
367 		insn->imm = imm;
368 	return 0;
369 }
370 
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)371 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
372 				s32 end_new, s32 curr, const bool probe_pass)
373 {
374 	s64 off_min, off_max, off;
375 	s32 delta = end_new - end_old;
376 
377 	if (insn->code == (BPF_JMP32 | BPF_JA)) {
378 		off = insn->imm;
379 		off_min = S32_MIN;
380 		off_max = S32_MAX;
381 	} else {
382 		off = insn->off;
383 		off_min = S16_MIN;
384 		off_max = S16_MAX;
385 	}
386 
387 	if (curr < pos && curr + off + 1 >= end_old)
388 		off += delta;
389 	else if (curr >= end_new && curr + off + 1 < end_new)
390 		off -= delta;
391 	if (off < off_min || off > off_max)
392 		return -ERANGE;
393 	if (!probe_pass) {
394 		if (insn->code == (BPF_JMP32 | BPF_JA))
395 			insn->imm = off;
396 		else
397 			insn->off = off;
398 	}
399 	return 0;
400 }
401 
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)402 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
403 			    s32 end_new, const bool probe_pass)
404 {
405 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
406 	struct bpf_insn *insn = prog->insnsi;
407 	int ret = 0;
408 
409 	for (i = 0; i < insn_cnt; i++, insn++) {
410 		u8 code;
411 
412 		/* In the probing pass we still operate on the original,
413 		 * unpatched image in order to check overflows before we
414 		 * do any other adjustments. Therefore skip the patchlet.
415 		 */
416 		if (probe_pass && i == pos) {
417 			i = end_new;
418 			insn = prog->insnsi + end_old;
419 		}
420 		if (bpf_pseudo_func(insn)) {
421 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
422 						   end_new, i, probe_pass);
423 			if (ret)
424 				return ret;
425 			continue;
426 		}
427 		code = insn->code;
428 		if ((BPF_CLASS(code) != BPF_JMP &&
429 		     BPF_CLASS(code) != BPF_JMP32) ||
430 		    BPF_OP(code) == BPF_EXIT)
431 			continue;
432 		/* Adjust offset of jmps if we cross patch boundaries. */
433 		if (BPF_OP(code) == BPF_CALL) {
434 			if (insn->src_reg != BPF_PSEUDO_CALL)
435 				continue;
436 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
437 						   end_new, i, probe_pass);
438 		} else {
439 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
440 						   end_new, i, probe_pass);
441 		}
442 		if (ret)
443 			break;
444 	}
445 
446 	return ret;
447 }
448 
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)449 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
450 {
451 	struct bpf_line_info *linfo;
452 	u32 i, nr_linfo;
453 
454 	nr_linfo = prog->aux->nr_linfo;
455 	if (!nr_linfo || !delta)
456 		return;
457 
458 	linfo = prog->aux->linfo;
459 
460 	for (i = 0; i < nr_linfo; i++)
461 		if (off < linfo[i].insn_off)
462 			break;
463 
464 	/* Push all off < linfo[i].insn_off by delta */
465 	for (; i < nr_linfo; i++)
466 		linfo[i].insn_off += delta;
467 }
468 
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)469 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
470 				       const struct bpf_insn *patch, u32 len)
471 {
472 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
473 	const u32 cnt_max = S16_MAX;
474 	struct bpf_prog *prog_adj;
475 	int err;
476 
477 	/* Since our patchlet doesn't expand the image, we're done. */
478 	if (insn_delta == 0) {
479 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
480 		return prog;
481 	}
482 
483 	insn_adj_cnt = prog->len + insn_delta;
484 
485 	/* Reject anything that would potentially let the insn->off
486 	 * target overflow when we have excessive program expansions.
487 	 * We need to probe here before we do any reallocation where
488 	 * we afterwards may not fail anymore.
489 	 */
490 	if (insn_adj_cnt > cnt_max &&
491 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
492 		return ERR_PTR(err);
493 
494 	/* Several new instructions need to be inserted. Make room
495 	 * for them. Likely, there's no need for a new allocation as
496 	 * last page could have large enough tailroom.
497 	 */
498 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
499 				    GFP_USER);
500 	if (!prog_adj)
501 		return ERR_PTR(-ENOMEM);
502 
503 	prog_adj->len = insn_adj_cnt;
504 
505 	/* Patching happens in 3 steps:
506 	 *
507 	 * 1) Move over tail of insnsi from next instruction onwards,
508 	 *    so we can patch the single target insn with one or more
509 	 *    new ones (patching is always from 1 to n insns, n > 0).
510 	 * 2) Inject new instructions at the target location.
511 	 * 3) Adjust branch offsets if necessary.
512 	 */
513 	insn_rest = insn_adj_cnt - off - len;
514 
515 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
516 		sizeof(*patch) * insn_rest);
517 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
518 
519 	/* We are guaranteed to not fail at this point, otherwise
520 	 * the ship has sailed to reverse to the original state. An
521 	 * overflow cannot happen at this point.
522 	 */
523 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
524 
525 	bpf_adj_linfo(prog_adj, off, insn_delta);
526 
527 	return prog_adj;
528 }
529 
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)530 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
531 {
532 	int err;
533 
534 	/* Branch offsets can't overflow when program is shrinking, no need
535 	 * to call bpf_adj_branches(..., true) here
536 	 */
537 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
538 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
539 	prog->len -= cnt;
540 
541 	err = bpf_adj_branches(prog, off, off + cnt, off, false);
542 	WARN_ON_ONCE(err);
543 	return err;
544 }
545 
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)546 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
547 {
548 	int i;
549 
550 	for (i = 0; i < fp->aux->func_cnt; i++)
551 		bpf_prog_kallsyms_del(fp->aux->func[i]);
552 }
553 
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)554 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
555 {
556 	bpf_prog_kallsyms_del_subprogs(fp);
557 	bpf_prog_kallsyms_del(fp);
558 }
559 
560 #ifdef CONFIG_BPF_JIT
561 /* All BPF JIT sysctl knobs here. */
562 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
563 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
564 int bpf_jit_harden   __read_mostly;
565 long bpf_jit_limit   __read_mostly;
566 long bpf_jit_limit_max __read_mostly;
567 
568 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)569 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
570 {
571 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
572 
573 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
574 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
575 }
576 
577 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)578 bpf_prog_ksym_set_name(struct bpf_prog *prog)
579 {
580 	char *sym = prog->aux->ksym.name;
581 	const char *end = sym + KSYM_NAME_LEN;
582 	const struct btf_type *type;
583 	const char *func_name;
584 
585 	BUILD_BUG_ON(sizeof("bpf_prog_") +
586 		     sizeof(prog->tag) * 2 +
587 		     /* name has been null terminated.
588 		      * We should need +1 for the '_' preceding
589 		      * the name.  However, the null character
590 		      * is double counted between the name and the
591 		      * sizeof("bpf_prog_") above, so we omit
592 		      * the +1 here.
593 		      */
594 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
595 
596 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
597 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
598 
599 	/* prog->aux->name will be ignored if full btf name is available */
600 	if (prog->aux->func_info_cnt) {
601 		type = btf_type_by_id(prog->aux->btf,
602 				      prog->aux->func_info[prog->aux->func_idx].type_id);
603 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
604 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
605 		return;
606 	}
607 
608 	if (prog->aux->name[0])
609 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
610 	else
611 		*sym = 0;
612 }
613 
bpf_get_ksym_start(struct latch_tree_node * n)614 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
615 {
616 	return container_of(n, struct bpf_ksym, tnode)->start;
617 }
618 
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)619 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
620 					  struct latch_tree_node *b)
621 {
622 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
623 }
624 
bpf_tree_comp(void * key,struct latch_tree_node * n)625 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
626 {
627 	unsigned long val = (unsigned long)key;
628 	const struct bpf_ksym *ksym;
629 
630 	ksym = container_of(n, struct bpf_ksym, tnode);
631 
632 	if (val < ksym->start)
633 		return -1;
634 	/* Ensure that we detect return addresses as part of the program, when
635 	 * the final instruction is a call for a program part of the stack
636 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
637 	 */
638 	if (val > ksym->end)
639 		return  1;
640 
641 	return 0;
642 }
643 
644 static const struct latch_tree_ops bpf_tree_ops = {
645 	.less	= bpf_tree_less,
646 	.comp	= bpf_tree_comp,
647 };
648 
649 static DEFINE_SPINLOCK(bpf_lock);
650 static LIST_HEAD(bpf_kallsyms);
651 static struct latch_tree_root bpf_tree __cacheline_aligned;
652 
bpf_ksym_add(struct bpf_ksym * ksym)653 void bpf_ksym_add(struct bpf_ksym *ksym)
654 {
655 	spin_lock_bh(&bpf_lock);
656 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
657 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
658 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
659 	spin_unlock_bh(&bpf_lock);
660 }
661 
__bpf_ksym_del(struct bpf_ksym * ksym)662 static void __bpf_ksym_del(struct bpf_ksym *ksym)
663 {
664 	if (list_empty(&ksym->lnode))
665 		return;
666 
667 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
668 	list_del_rcu(&ksym->lnode);
669 }
670 
bpf_ksym_del(struct bpf_ksym * ksym)671 void bpf_ksym_del(struct bpf_ksym *ksym)
672 {
673 	spin_lock_bh(&bpf_lock);
674 	__bpf_ksym_del(ksym);
675 	spin_unlock_bh(&bpf_lock);
676 }
677 
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)678 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
679 {
680 	return fp->jited && !bpf_prog_was_classic(fp);
681 }
682 
bpf_prog_kallsyms_add(struct bpf_prog * fp)683 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
684 {
685 	if (!bpf_prog_kallsyms_candidate(fp) ||
686 	    !bpf_capable())
687 		return;
688 
689 	bpf_prog_ksym_set_addr(fp);
690 	bpf_prog_ksym_set_name(fp);
691 	fp->aux->ksym.prog = true;
692 
693 	bpf_ksym_add(&fp->aux->ksym);
694 }
695 
bpf_prog_kallsyms_del(struct bpf_prog * fp)696 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
697 {
698 	if (!bpf_prog_kallsyms_candidate(fp))
699 		return;
700 
701 	bpf_ksym_del(&fp->aux->ksym);
702 }
703 
bpf_ksym_find(unsigned long addr)704 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
705 {
706 	struct latch_tree_node *n;
707 
708 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
709 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
710 }
711 
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)712 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
713 				 unsigned long *off, char *sym)
714 {
715 	struct bpf_ksym *ksym;
716 	char *ret = NULL;
717 
718 	rcu_read_lock();
719 	ksym = bpf_ksym_find(addr);
720 	if (ksym) {
721 		unsigned long symbol_start = ksym->start;
722 		unsigned long symbol_end = ksym->end;
723 
724 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
725 
726 		ret = sym;
727 		if (size)
728 			*size = symbol_end - symbol_start;
729 		if (off)
730 			*off  = addr - symbol_start;
731 	}
732 	rcu_read_unlock();
733 
734 	return ret;
735 }
736 
is_bpf_text_address(unsigned long addr)737 bool is_bpf_text_address(unsigned long addr)
738 {
739 	bool ret;
740 
741 	rcu_read_lock();
742 	ret = bpf_ksym_find(addr) != NULL;
743 	rcu_read_unlock();
744 
745 	return ret;
746 }
747 
bpf_prog_ksym_find(unsigned long addr)748 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
749 {
750 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
751 
752 	return ksym && ksym->prog ?
753 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
754 	       NULL;
755 }
756 
search_bpf_extables(unsigned long addr)757 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
758 {
759 	const struct exception_table_entry *e = NULL;
760 	struct bpf_prog *prog;
761 
762 	rcu_read_lock();
763 	prog = bpf_prog_ksym_find(addr);
764 	if (!prog)
765 		goto out;
766 	if (!prog->aux->num_exentries)
767 		goto out;
768 
769 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
770 out:
771 	rcu_read_unlock();
772 	return e;
773 }
774 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)775 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
776 		    char *sym)
777 {
778 	struct bpf_ksym *ksym;
779 	unsigned int it = 0;
780 	int ret = -ERANGE;
781 
782 	if (!bpf_jit_kallsyms_enabled())
783 		return ret;
784 
785 	rcu_read_lock();
786 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
787 		if (it++ != symnum)
788 			continue;
789 
790 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
791 
792 		*value = ksym->start;
793 		*type  = BPF_SYM_ELF_TYPE;
794 
795 		ret = 0;
796 		break;
797 	}
798 	rcu_read_unlock();
799 
800 	return ret;
801 }
802 
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)803 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
804 				struct bpf_jit_poke_descriptor *poke)
805 {
806 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
807 	static const u32 poke_tab_max = 1024;
808 	u32 slot = prog->aux->size_poke_tab;
809 	u32 size = slot + 1;
810 
811 	if (size > poke_tab_max)
812 		return -ENOSPC;
813 	if (poke->tailcall_target || poke->tailcall_target_stable ||
814 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
815 		return -EINVAL;
816 
817 	switch (poke->reason) {
818 	case BPF_POKE_REASON_TAIL_CALL:
819 		if (!poke->tail_call.map)
820 			return -EINVAL;
821 		break;
822 	default:
823 		return -EINVAL;
824 	}
825 
826 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
827 	if (!tab)
828 		return -ENOMEM;
829 
830 	memcpy(&tab[slot], poke, sizeof(*poke));
831 	prog->aux->size_poke_tab = size;
832 	prog->aux->poke_tab = tab;
833 
834 	return slot;
835 }
836 
837 /*
838  * BPF program pack allocator.
839  *
840  * Most BPF programs are pretty small. Allocating a hole page for each
841  * program is sometime a waste. Many small bpf program also adds pressure
842  * to instruction TLB. To solve this issue, we introduce a BPF program pack
843  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
844  * to host BPF programs.
845  */
846 #define BPF_PROG_CHUNK_SHIFT	6
847 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
848 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
849 
850 struct bpf_prog_pack {
851 	struct list_head list;
852 	void *ptr;
853 	unsigned long bitmap[];
854 };
855 
bpf_jit_fill_hole_with_zero(void * area,unsigned int size)856 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
857 {
858 	memset(area, 0, size);
859 }
860 
861 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
862 
863 static DEFINE_MUTEX(pack_mutex);
864 static LIST_HEAD(pack_list);
865 
866 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
867  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
868  */
869 #ifdef PMD_SIZE
870 /* PMD_SIZE is really big for some archs. It doesn't make sense to
871  * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
872  * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
873  * greater than or equal to 2MB.
874  */
875 #define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
876 #else
877 #define BPF_PROG_PACK_SIZE PAGE_SIZE
878 #endif
879 
880 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
881 
alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)882 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
883 {
884 	struct bpf_prog_pack *pack;
885 
886 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
887 		       GFP_KERNEL);
888 	if (!pack)
889 		return NULL;
890 	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
891 	if (!pack->ptr) {
892 		kfree(pack);
893 		return NULL;
894 	}
895 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
896 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
897 	list_add_tail(&pack->list, &pack_list);
898 
899 	set_vm_flush_reset_perms(pack->ptr);
900 	set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
901 	return pack;
902 }
903 
bpf_prog_pack_alloc(u32 size,bpf_jit_fill_hole_t bpf_fill_ill_insns)904 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
905 {
906 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
907 	struct bpf_prog_pack *pack;
908 	unsigned long pos;
909 	void *ptr = NULL;
910 
911 	mutex_lock(&pack_mutex);
912 	if (size > BPF_PROG_PACK_SIZE) {
913 		size = round_up(size, PAGE_SIZE);
914 		ptr = bpf_jit_alloc_exec(size);
915 		if (ptr) {
916 			bpf_fill_ill_insns(ptr, size);
917 			set_vm_flush_reset_perms(ptr);
918 			set_memory_rox((unsigned long)ptr, size / PAGE_SIZE);
919 		}
920 		goto out;
921 	}
922 	list_for_each_entry(pack, &pack_list, list) {
923 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
924 						 nbits, 0);
925 		if (pos < BPF_PROG_CHUNK_COUNT)
926 			goto found_free_area;
927 	}
928 
929 	pack = alloc_new_pack(bpf_fill_ill_insns);
930 	if (!pack)
931 		goto out;
932 
933 	pos = 0;
934 
935 found_free_area:
936 	bitmap_set(pack->bitmap, pos, nbits);
937 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
938 
939 out:
940 	mutex_unlock(&pack_mutex);
941 	return ptr;
942 }
943 
bpf_prog_pack_free(struct bpf_binary_header * hdr)944 void bpf_prog_pack_free(struct bpf_binary_header *hdr)
945 {
946 	struct bpf_prog_pack *pack = NULL, *tmp;
947 	unsigned int nbits;
948 	unsigned long pos;
949 
950 	mutex_lock(&pack_mutex);
951 	if (hdr->size > BPF_PROG_PACK_SIZE) {
952 		bpf_jit_free_exec(hdr);
953 		goto out;
954 	}
955 
956 	list_for_each_entry(tmp, &pack_list, list) {
957 		if ((void *)hdr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > (void *)hdr) {
958 			pack = tmp;
959 			break;
960 		}
961 	}
962 
963 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
964 		goto out;
965 
966 	nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
967 	pos = ((unsigned long)hdr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
968 
969 	WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
970 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
971 
972 	bitmap_clear(pack->bitmap, pos, nbits);
973 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
974 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
975 		list_del(&pack->list);
976 		bpf_jit_free_exec(pack->ptr);
977 		kfree(pack);
978 	}
979 out:
980 	mutex_unlock(&pack_mutex);
981 }
982 
983 static atomic_long_t bpf_jit_current;
984 
985 /* Can be overridden by an arch's JIT compiler if it has a custom,
986  * dedicated BPF backend memory area, or if neither of the two
987  * below apply.
988  */
bpf_jit_alloc_exec_limit(void)989 u64 __weak bpf_jit_alloc_exec_limit(void)
990 {
991 #if defined(MODULES_VADDR)
992 	return MODULES_END - MODULES_VADDR;
993 #else
994 	return VMALLOC_END - VMALLOC_START;
995 #endif
996 }
997 
bpf_jit_charge_init(void)998 static int __init bpf_jit_charge_init(void)
999 {
1000 	/* Only used as heuristic here to derive limit. */
1001 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1002 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1003 					    PAGE_SIZE), LONG_MAX);
1004 	return 0;
1005 }
1006 pure_initcall(bpf_jit_charge_init);
1007 
bpf_jit_charge_modmem(u32 size)1008 int bpf_jit_charge_modmem(u32 size)
1009 {
1010 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1011 		if (!bpf_capable()) {
1012 			atomic_long_sub(size, &bpf_jit_current);
1013 			return -EPERM;
1014 		}
1015 	}
1016 
1017 	return 0;
1018 }
1019 
bpf_jit_uncharge_modmem(u32 size)1020 void bpf_jit_uncharge_modmem(u32 size)
1021 {
1022 	atomic_long_sub(size, &bpf_jit_current);
1023 }
1024 
bpf_jit_alloc_exec(unsigned long size)1025 void *__weak bpf_jit_alloc_exec(unsigned long size)
1026 {
1027 	return module_alloc(size);
1028 }
1029 
bpf_jit_free_exec(void * addr)1030 void __weak bpf_jit_free_exec(void *addr)
1031 {
1032 	module_memfree(addr);
1033 }
1034 
1035 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)1036 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1037 		     unsigned int alignment,
1038 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1039 {
1040 	struct bpf_binary_header *hdr;
1041 	u32 size, hole, start;
1042 
1043 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1044 		     alignment > BPF_IMAGE_ALIGNMENT);
1045 
1046 	/* Most of BPF filters are really small, but if some of them
1047 	 * fill a page, allow at least 128 extra bytes to insert a
1048 	 * random section of illegal instructions.
1049 	 */
1050 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1051 
1052 	if (bpf_jit_charge_modmem(size))
1053 		return NULL;
1054 	hdr = bpf_jit_alloc_exec(size);
1055 	if (!hdr) {
1056 		bpf_jit_uncharge_modmem(size);
1057 		return NULL;
1058 	}
1059 
1060 	/* Fill space with illegal/arch-dep instructions. */
1061 	bpf_fill_ill_insns(hdr, size);
1062 
1063 	hdr->size = size;
1064 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1065 		     PAGE_SIZE - sizeof(*hdr));
1066 	start = get_random_u32_below(hole) & ~(alignment - 1);
1067 
1068 	/* Leave a random number of instructions before BPF code. */
1069 	*image_ptr = &hdr->image[start];
1070 
1071 	return hdr;
1072 }
1073 
bpf_jit_binary_free(struct bpf_binary_header * hdr)1074 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1075 {
1076 	u32 size = hdr->size;
1077 
1078 	bpf_jit_free_exec(hdr);
1079 	bpf_jit_uncharge_modmem(size);
1080 }
1081 
1082 /* Allocate jit binary from bpf_prog_pack allocator.
1083  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1084  * to the memory. To solve this problem, a RW buffer is also allocated at
1085  * as the same time. The JIT engine should calculate offsets based on the
1086  * RO memory address, but write JITed program to the RW buffer. Once the
1087  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1088  * the JITed program to the RO memory.
1089  */
1090 struct bpf_binary_header *
bpf_jit_binary_pack_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,struct bpf_binary_header ** rw_header,u8 ** rw_image,bpf_jit_fill_hole_t bpf_fill_ill_insns)1091 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1092 			  unsigned int alignment,
1093 			  struct bpf_binary_header **rw_header,
1094 			  u8 **rw_image,
1095 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1096 {
1097 	struct bpf_binary_header *ro_header;
1098 	u32 size, hole, start;
1099 
1100 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1101 		     alignment > BPF_IMAGE_ALIGNMENT);
1102 
1103 	/* add 16 bytes for a random section of illegal instructions */
1104 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1105 
1106 	if (bpf_jit_charge_modmem(size))
1107 		return NULL;
1108 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1109 	if (!ro_header) {
1110 		bpf_jit_uncharge_modmem(size);
1111 		return NULL;
1112 	}
1113 
1114 	*rw_header = kvmalloc(size, GFP_KERNEL);
1115 	if (!*rw_header) {
1116 		bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
1117 		bpf_prog_pack_free(ro_header);
1118 		bpf_jit_uncharge_modmem(size);
1119 		return NULL;
1120 	}
1121 
1122 	/* Fill space with illegal/arch-dep instructions. */
1123 	bpf_fill_ill_insns(*rw_header, size);
1124 	(*rw_header)->size = size;
1125 
1126 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1127 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1128 	start = get_random_u32_below(hole) & ~(alignment - 1);
1129 
1130 	*image_ptr = &ro_header->image[start];
1131 	*rw_image = &(*rw_header)->image[start];
1132 
1133 	return ro_header;
1134 }
1135 
1136 /* Copy JITed text from rw_header to its final location, the ro_header. */
bpf_jit_binary_pack_finalize(struct bpf_prog * prog,struct bpf_binary_header * ro_header,struct bpf_binary_header * rw_header)1137 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1138 				 struct bpf_binary_header *ro_header,
1139 				 struct bpf_binary_header *rw_header)
1140 {
1141 	void *ptr;
1142 
1143 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1144 
1145 	kvfree(rw_header);
1146 
1147 	if (IS_ERR(ptr)) {
1148 		bpf_prog_pack_free(ro_header);
1149 		return PTR_ERR(ptr);
1150 	}
1151 	return 0;
1152 }
1153 
1154 /* bpf_jit_binary_pack_free is called in two different scenarios:
1155  *   1) when the program is freed after;
1156  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1157  * For case 2), we need to free both the RO memory and the RW buffer.
1158  *
1159  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1160  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1161  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1162  * bpf_arch_text_copy (when jit fails).
1163  */
bpf_jit_binary_pack_free(struct bpf_binary_header * ro_header,struct bpf_binary_header * rw_header)1164 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1165 			      struct bpf_binary_header *rw_header)
1166 {
1167 	u32 size = ro_header->size;
1168 
1169 	bpf_prog_pack_free(ro_header);
1170 	kvfree(rw_header);
1171 	bpf_jit_uncharge_modmem(size);
1172 }
1173 
1174 struct bpf_binary_header *
bpf_jit_binary_pack_hdr(const struct bpf_prog * fp)1175 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1176 {
1177 	unsigned long real_start = (unsigned long)fp->bpf_func;
1178 	unsigned long addr;
1179 
1180 	addr = real_start & BPF_PROG_CHUNK_MASK;
1181 	return (void *)addr;
1182 }
1183 
1184 static inline struct bpf_binary_header *
bpf_jit_binary_hdr(const struct bpf_prog * fp)1185 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1186 {
1187 	unsigned long real_start = (unsigned long)fp->bpf_func;
1188 	unsigned long addr;
1189 
1190 	addr = real_start & PAGE_MASK;
1191 	return (void *)addr;
1192 }
1193 
1194 /* This symbol is only overridden by archs that have different
1195  * requirements than the usual eBPF JITs, f.e. when they only
1196  * implement cBPF JIT, do not set images read-only, etc.
1197  */
bpf_jit_free(struct bpf_prog * fp)1198 void __weak bpf_jit_free(struct bpf_prog *fp)
1199 {
1200 	if (fp->jited) {
1201 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1202 
1203 		bpf_jit_binary_free(hdr);
1204 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1205 	}
1206 
1207 	bpf_prog_unlock_free(fp);
1208 }
1209 
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)1210 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1211 			  const struct bpf_insn *insn, bool extra_pass,
1212 			  u64 *func_addr, bool *func_addr_fixed)
1213 {
1214 	s16 off = insn->off;
1215 	s32 imm = insn->imm;
1216 	u8 *addr;
1217 	int err;
1218 
1219 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1220 	if (!*func_addr_fixed) {
1221 		/* Place-holder address till the last pass has collected
1222 		 * all addresses for JITed subprograms in which case we
1223 		 * can pick them up from prog->aux.
1224 		 */
1225 		if (!extra_pass)
1226 			addr = NULL;
1227 		else if (prog->aux->func &&
1228 			 off >= 0 && off < prog->aux->func_cnt)
1229 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1230 		else
1231 			return -EINVAL;
1232 	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1233 		   bpf_jit_supports_far_kfunc_call()) {
1234 		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1235 		if (err)
1236 			return err;
1237 	} else {
1238 		/* Address of a BPF helper call. Since part of the core
1239 		 * kernel, it's always at a fixed location. __bpf_call_base
1240 		 * and the helper with imm relative to it are both in core
1241 		 * kernel.
1242 		 */
1243 		addr = (u8 *)__bpf_call_base + imm;
1244 	}
1245 
1246 	*func_addr = (unsigned long)addr;
1247 	return 0;
1248 }
1249 
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)1250 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1251 			      const struct bpf_insn *aux,
1252 			      struct bpf_insn *to_buff,
1253 			      bool emit_zext)
1254 {
1255 	struct bpf_insn *to = to_buff;
1256 	u32 imm_rnd = get_random_u32();
1257 	s16 off;
1258 
1259 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1260 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1261 
1262 	/* Constraints on AX register:
1263 	 *
1264 	 * AX register is inaccessible from user space. It is mapped in
1265 	 * all JITs, and used here for constant blinding rewrites. It is
1266 	 * typically "stateless" meaning its contents are only valid within
1267 	 * the executed instruction, but not across several instructions.
1268 	 * There are a few exceptions however which are further detailed
1269 	 * below.
1270 	 *
1271 	 * Constant blinding is only used by JITs, not in the interpreter.
1272 	 * The interpreter uses AX in some occasions as a local temporary
1273 	 * register e.g. in DIV or MOD instructions.
1274 	 *
1275 	 * In restricted circumstances, the verifier can also use the AX
1276 	 * register for rewrites as long as they do not interfere with
1277 	 * the above cases!
1278 	 */
1279 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1280 		goto out;
1281 
1282 	if (from->imm == 0 &&
1283 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1284 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1285 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1286 		goto out;
1287 	}
1288 
1289 	switch (from->code) {
1290 	case BPF_ALU | BPF_ADD | BPF_K:
1291 	case BPF_ALU | BPF_SUB | BPF_K:
1292 	case BPF_ALU | BPF_AND | BPF_K:
1293 	case BPF_ALU | BPF_OR  | BPF_K:
1294 	case BPF_ALU | BPF_XOR | BPF_K:
1295 	case BPF_ALU | BPF_MUL | BPF_K:
1296 	case BPF_ALU | BPF_MOV | BPF_K:
1297 	case BPF_ALU | BPF_DIV | BPF_K:
1298 	case BPF_ALU | BPF_MOD | BPF_K:
1299 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1300 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1301 		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1302 		break;
1303 
1304 	case BPF_ALU64 | BPF_ADD | BPF_K:
1305 	case BPF_ALU64 | BPF_SUB | BPF_K:
1306 	case BPF_ALU64 | BPF_AND | BPF_K:
1307 	case BPF_ALU64 | BPF_OR  | BPF_K:
1308 	case BPF_ALU64 | BPF_XOR | BPF_K:
1309 	case BPF_ALU64 | BPF_MUL | BPF_K:
1310 	case BPF_ALU64 | BPF_MOV | BPF_K:
1311 	case BPF_ALU64 | BPF_DIV | BPF_K:
1312 	case BPF_ALU64 | BPF_MOD | BPF_K:
1313 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1314 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1315 		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1316 		break;
1317 
1318 	case BPF_JMP | BPF_JEQ  | BPF_K:
1319 	case BPF_JMP | BPF_JNE  | BPF_K:
1320 	case BPF_JMP | BPF_JGT  | BPF_K:
1321 	case BPF_JMP | BPF_JLT  | BPF_K:
1322 	case BPF_JMP | BPF_JGE  | BPF_K:
1323 	case BPF_JMP | BPF_JLE  | BPF_K:
1324 	case BPF_JMP | BPF_JSGT | BPF_K:
1325 	case BPF_JMP | BPF_JSLT | BPF_K:
1326 	case BPF_JMP | BPF_JSGE | BPF_K:
1327 	case BPF_JMP | BPF_JSLE | BPF_K:
1328 	case BPF_JMP | BPF_JSET | BPF_K:
1329 		/* Accommodate for extra offset in case of a backjump. */
1330 		off = from->off;
1331 		if (off < 0)
1332 			off -= 2;
1333 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1334 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1335 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1336 		break;
1337 
1338 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1339 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1340 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1341 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1342 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1343 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1344 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1345 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1346 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1347 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1348 	case BPF_JMP32 | BPF_JSET | BPF_K:
1349 		/* Accommodate for extra offset in case of a backjump. */
1350 		off = from->off;
1351 		if (off < 0)
1352 			off -= 2;
1353 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1354 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1355 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1356 				      off);
1357 		break;
1358 
1359 	case BPF_LD | BPF_IMM | BPF_DW:
1360 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1361 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1362 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1363 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1364 		break;
1365 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1366 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1367 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1368 		if (emit_zext)
1369 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1370 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1371 		break;
1372 
1373 	case BPF_ST | BPF_MEM | BPF_DW:
1374 	case BPF_ST | BPF_MEM | BPF_W:
1375 	case BPF_ST | BPF_MEM | BPF_H:
1376 	case BPF_ST | BPF_MEM | BPF_B:
1377 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1378 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1379 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1380 		break;
1381 	}
1382 out:
1383 	return to - to_buff;
1384 }
1385 
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1386 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1387 					      gfp_t gfp_extra_flags)
1388 {
1389 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1390 	struct bpf_prog *fp;
1391 
1392 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1393 	if (fp != NULL) {
1394 		/* aux->prog still points to the fp_other one, so
1395 		 * when promoting the clone to the real program,
1396 		 * this still needs to be adapted.
1397 		 */
1398 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1399 	}
1400 
1401 	return fp;
1402 }
1403 
bpf_prog_clone_free(struct bpf_prog * fp)1404 static void bpf_prog_clone_free(struct bpf_prog *fp)
1405 {
1406 	/* aux was stolen by the other clone, so we cannot free
1407 	 * it from this path! It will be freed eventually by the
1408 	 * other program on release.
1409 	 *
1410 	 * At this point, we don't need a deferred release since
1411 	 * clone is guaranteed to not be locked.
1412 	 */
1413 	fp->aux = NULL;
1414 	fp->stats = NULL;
1415 	fp->active = NULL;
1416 	__bpf_prog_free(fp);
1417 }
1418 
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1419 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1420 {
1421 	/* We have to repoint aux->prog to self, as we don't
1422 	 * know whether fp here is the clone or the original.
1423 	 */
1424 	fp->aux->prog = fp;
1425 	bpf_prog_clone_free(fp_other);
1426 }
1427 
bpf_jit_blind_constants(struct bpf_prog * prog)1428 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1429 {
1430 	struct bpf_insn insn_buff[16], aux[2];
1431 	struct bpf_prog *clone, *tmp;
1432 	int insn_delta, insn_cnt;
1433 	struct bpf_insn *insn;
1434 	int i, rewritten;
1435 
1436 	if (!prog->blinding_requested || prog->blinded)
1437 		return prog;
1438 
1439 	clone = bpf_prog_clone_create(prog, GFP_USER);
1440 	if (!clone)
1441 		return ERR_PTR(-ENOMEM);
1442 
1443 	insn_cnt = clone->len;
1444 	insn = clone->insnsi;
1445 
1446 	for (i = 0; i < insn_cnt; i++, insn++) {
1447 		if (bpf_pseudo_func(insn)) {
1448 			/* ld_imm64 with an address of bpf subprog is not
1449 			 * a user controlled constant. Don't randomize it,
1450 			 * since it will conflict with jit_subprogs() logic.
1451 			 */
1452 			insn++;
1453 			i++;
1454 			continue;
1455 		}
1456 
1457 		/* We temporarily need to hold the original ld64 insn
1458 		 * so that we can still access the first part in the
1459 		 * second blinding run.
1460 		 */
1461 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1462 		    insn[1].code == 0)
1463 			memcpy(aux, insn, sizeof(aux));
1464 
1465 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1466 						clone->aux->verifier_zext);
1467 		if (!rewritten)
1468 			continue;
1469 
1470 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1471 		if (IS_ERR(tmp)) {
1472 			/* Patching may have repointed aux->prog during
1473 			 * realloc from the original one, so we need to
1474 			 * fix it up here on error.
1475 			 */
1476 			bpf_jit_prog_release_other(prog, clone);
1477 			return tmp;
1478 		}
1479 
1480 		clone = tmp;
1481 		insn_delta = rewritten - 1;
1482 
1483 		/* Walk new program and skip insns we just inserted. */
1484 		insn = clone->insnsi + i + insn_delta;
1485 		insn_cnt += insn_delta;
1486 		i        += insn_delta;
1487 	}
1488 
1489 	clone->blinded = 1;
1490 	return clone;
1491 }
1492 #endif /* CONFIG_BPF_JIT */
1493 
1494 /* Base function for offset calculation. Needs to go into .text section,
1495  * therefore keeping it non-static as well; will also be used by JITs
1496  * anyway later on, so do not let the compiler omit it. This also needs
1497  * to go into kallsyms for correlation from e.g. bpftool, so naming
1498  * must not change.
1499  */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1500 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1501 {
1502 	return 0;
1503 }
1504 EXPORT_SYMBOL_GPL(__bpf_call_base);
1505 
1506 /* All UAPI available opcodes. */
1507 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1508 	/* 32 bit ALU operations. */		\
1509 	/*   Register based. */			\
1510 	INSN_3(ALU, ADD,  X),			\
1511 	INSN_3(ALU, SUB,  X),			\
1512 	INSN_3(ALU, AND,  X),			\
1513 	INSN_3(ALU, OR,   X),			\
1514 	INSN_3(ALU, LSH,  X),			\
1515 	INSN_3(ALU, RSH,  X),			\
1516 	INSN_3(ALU, XOR,  X),			\
1517 	INSN_3(ALU, MUL,  X),			\
1518 	INSN_3(ALU, MOV,  X),			\
1519 	INSN_3(ALU, ARSH, X),			\
1520 	INSN_3(ALU, DIV,  X),			\
1521 	INSN_3(ALU, MOD,  X),			\
1522 	INSN_2(ALU, NEG),			\
1523 	INSN_3(ALU, END, TO_BE),		\
1524 	INSN_3(ALU, END, TO_LE),		\
1525 	/*   Immediate based. */		\
1526 	INSN_3(ALU, ADD,  K),			\
1527 	INSN_3(ALU, SUB,  K),			\
1528 	INSN_3(ALU, AND,  K),			\
1529 	INSN_3(ALU, OR,   K),			\
1530 	INSN_3(ALU, LSH,  K),			\
1531 	INSN_3(ALU, RSH,  K),			\
1532 	INSN_3(ALU, XOR,  K),			\
1533 	INSN_3(ALU, MUL,  K),			\
1534 	INSN_3(ALU, MOV,  K),			\
1535 	INSN_3(ALU, ARSH, K),			\
1536 	INSN_3(ALU, DIV,  K),			\
1537 	INSN_3(ALU, MOD,  K),			\
1538 	/* 64 bit ALU operations. */		\
1539 	/*   Register based. */			\
1540 	INSN_3(ALU64, ADD,  X),			\
1541 	INSN_3(ALU64, SUB,  X),			\
1542 	INSN_3(ALU64, AND,  X),			\
1543 	INSN_3(ALU64, OR,   X),			\
1544 	INSN_3(ALU64, LSH,  X),			\
1545 	INSN_3(ALU64, RSH,  X),			\
1546 	INSN_3(ALU64, XOR,  X),			\
1547 	INSN_3(ALU64, MUL,  X),			\
1548 	INSN_3(ALU64, MOV,  X),			\
1549 	INSN_3(ALU64, ARSH, X),			\
1550 	INSN_3(ALU64, DIV,  X),			\
1551 	INSN_3(ALU64, MOD,  X),			\
1552 	INSN_2(ALU64, NEG),			\
1553 	INSN_3(ALU64, END, TO_LE),		\
1554 	/*   Immediate based. */		\
1555 	INSN_3(ALU64, ADD,  K),			\
1556 	INSN_3(ALU64, SUB,  K),			\
1557 	INSN_3(ALU64, AND,  K),			\
1558 	INSN_3(ALU64, OR,   K),			\
1559 	INSN_3(ALU64, LSH,  K),			\
1560 	INSN_3(ALU64, RSH,  K),			\
1561 	INSN_3(ALU64, XOR,  K),			\
1562 	INSN_3(ALU64, MUL,  K),			\
1563 	INSN_3(ALU64, MOV,  K),			\
1564 	INSN_3(ALU64, ARSH, K),			\
1565 	INSN_3(ALU64, DIV,  K),			\
1566 	INSN_3(ALU64, MOD,  K),			\
1567 	/* Call instruction. */			\
1568 	INSN_2(JMP, CALL),			\
1569 	/* Exit instruction. */			\
1570 	INSN_2(JMP, EXIT),			\
1571 	/* 32-bit Jump instructions. */		\
1572 	/*   Register based. */			\
1573 	INSN_3(JMP32, JEQ,  X),			\
1574 	INSN_3(JMP32, JNE,  X),			\
1575 	INSN_3(JMP32, JGT,  X),			\
1576 	INSN_3(JMP32, JLT,  X),			\
1577 	INSN_3(JMP32, JGE,  X),			\
1578 	INSN_3(JMP32, JLE,  X),			\
1579 	INSN_3(JMP32, JSGT, X),			\
1580 	INSN_3(JMP32, JSLT, X),			\
1581 	INSN_3(JMP32, JSGE, X),			\
1582 	INSN_3(JMP32, JSLE, X),			\
1583 	INSN_3(JMP32, JSET, X),			\
1584 	/*   Immediate based. */		\
1585 	INSN_3(JMP32, JEQ,  K),			\
1586 	INSN_3(JMP32, JNE,  K),			\
1587 	INSN_3(JMP32, JGT,  K),			\
1588 	INSN_3(JMP32, JLT,  K),			\
1589 	INSN_3(JMP32, JGE,  K),			\
1590 	INSN_3(JMP32, JLE,  K),			\
1591 	INSN_3(JMP32, JSGT, K),			\
1592 	INSN_3(JMP32, JSLT, K),			\
1593 	INSN_3(JMP32, JSGE, K),			\
1594 	INSN_3(JMP32, JSLE, K),			\
1595 	INSN_3(JMP32, JSET, K),			\
1596 	/* Jump instructions. */		\
1597 	/*   Register based. */			\
1598 	INSN_3(JMP, JEQ,  X),			\
1599 	INSN_3(JMP, JNE,  X),			\
1600 	INSN_3(JMP, JGT,  X),			\
1601 	INSN_3(JMP, JLT,  X),			\
1602 	INSN_3(JMP, JGE,  X),			\
1603 	INSN_3(JMP, JLE,  X),			\
1604 	INSN_3(JMP, JSGT, X),			\
1605 	INSN_3(JMP, JSLT, X),			\
1606 	INSN_3(JMP, JSGE, X),			\
1607 	INSN_3(JMP, JSLE, X),			\
1608 	INSN_3(JMP, JSET, X),			\
1609 	/*   Immediate based. */		\
1610 	INSN_3(JMP, JEQ,  K),			\
1611 	INSN_3(JMP, JNE,  K),			\
1612 	INSN_3(JMP, JGT,  K),			\
1613 	INSN_3(JMP, JLT,  K),			\
1614 	INSN_3(JMP, JGE,  K),			\
1615 	INSN_3(JMP, JLE,  K),			\
1616 	INSN_3(JMP, JSGT, K),			\
1617 	INSN_3(JMP, JSLT, K),			\
1618 	INSN_3(JMP, JSGE, K),			\
1619 	INSN_3(JMP, JSLE, K),			\
1620 	INSN_3(JMP, JSET, K),			\
1621 	INSN_2(JMP, JA),			\
1622 	INSN_2(JMP32, JA),			\
1623 	/* Store instructions. */		\
1624 	/*   Register based. */			\
1625 	INSN_3(STX, MEM,  B),			\
1626 	INSN_3(STX, MEM,  H),			\
1627 	INSN_3(STX, MEM,  W),			\
1628 	INSN_3(STX, MEM,  DW),			\
1629 	INSN_3(STX, ATOMIC, W),			\
1630 	INSN_3(STX, ATOMIC, DW),		\
1631 	/*   Immediate based. */		\
1632 	INSN_3(ST, MEM, B),			\
1633 	INSN_3(ST, MEM, H),			\
1634 	INSN_3(ST, MEM, W),			\
1635 	INSN_3(ST, MEM, DW),			\
1636 	/* Load instructions. */		\
1637 	/*   Register based. */			\
1638 	INSN_3(LDX, MEM, B),			\
1639 	INSN_3(LDX, MEM, H),			\
1640 	INSN_3(LDX, MEM, W),			\
1641 	INSN_3(LDX, MEM, DW),			\
1642 	INSN_3(LDX, MEMSX, B),			\
1643 	INSN_3(LDX, MEMSX, H),			\
1644 	INSN_3(LDX, MEMSX, W),			\
1645 	/*   Immediate based. */		\
1646 	INSN_3(LD, IMM, DW)
1647 
bpf_opcode_in_insntable(u8 code)1648 bool bpf_opcode_in_insntable(u8 code)
1649 {
1650 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1651 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1652 	static const bool public_insntable[256] = {
1653 		[0 ... 255] = false,
1654 		/* Now overwrite non-defaults ... */
1655 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1656 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1657 		[BPF_LD | BPF_ABS | BPF_B] = true,
1658 		[BPF_LD | BPF_ABS | BPF_H] = true,
1659 		[BPF_LD | BPF_ABS | BPF_W] = true,
1660 		[BPF_LD | BPF_IND | BPF_B] = true,
1661 		[BPF_LD | BPF_IND | BPF_H] = true,
1662 		[BPF_LD | BPF_IND | BPF_W] = true,
1663 	};
1664 #undef BPF_INSN_3_TBL
1665 #undef BPF_INSN_2_TBL
1666 	return public_insntable[code];
1667 }
1668 
1669 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1670 /**
1671  *	___bpf_prog_run - run eBPF program on a given context
1672  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1673  *	@insn: is the array of eBPF instructions
1674  *
1675  * Decode and execute eBPF instructions.
1676  *
1677  * Return: whatever value is in %BPF_R0 at program exit
1678  */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn)1679 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1680 {
1681 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1682 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1683 	static const void * const jumptable[256] __annotate_jump_table = {
1684 		[0 ... 255] = &&default_label,
1685 		/* Now overwrite non-defaults ... */
1686 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1687 		/* Non-UAPI available opcodes. */
1688 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1689 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1690 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1691 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1692 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1693 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1694 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1695 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1696 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1697 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1698 	};
1699 #undef BPF_INSN_3_LBL
1700 #undef BPF_INSN_2_LBL
1701 	u32 tail_call_cnt = 0;
1702 
1703 #define CONT	 ({ insn++; goto select_insn; })
1704 #define CONT_JMP ({ insn++; goto select_insn; })
1705 
1706 select_insn:
1707 	goto *jumptable[insn->code];
1708 
1709 	/* Explicitly mask the register-based shift amounts with 63 or 31
1710 	 * to avoid undefined behavior. Normally this won't affect the
1711 	 * generated code, for example, in case of native 64 bit archs such
1712 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1713 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1714 	 * the BPF shift operations to machine instructions which produce
1715 	 * implementation-defined results in such a case; the resulting
1716 	 * contents of the register may be arbitrary, but program behaviour
1717 	 * as a whole remains defined. In other words, in case of JIT backends,
1718 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1719 	 */
1720 	/* ALU (shifts) */
1721 #define SHT(OPCODE, OP)					\
1722 	ALU64_##OPCODE##_X:				\
1723 		DST = DST OP (SRC & 63);		\
1724 		CONT;					\
1725 	ALU_##OPCODE##_X:				\
1726 		DST = (u32) DST OP ((u32) SRC & 31);	\
1727 		CONT;					\
1728 	ALU64_##OPCODE##_K:				\
1729 		DST = DST OP IMM;			\
1730 		CONT;					\
1731 	ALU_##OPCODE##_K:				\
1732 		DST = (u32) DST OP (u32) IMM;		\
1733 		CONT;
1734 	/* ALU (rest) */
1735 #define ALU(OPCODE, OP)					\
1736 	ALU64_##OPCODE##_X:				\
1737 		DST = DST OP SRC;			\
1738 		CONT;					\
1739 	ALU_##OPCODE##_X:				\
1740 		DST = (u32) DST OP (u32) SRC;		\
1741 		CONT;					\
1742 	ALU64_##OPCODE##_K:				\
1743 		DST = DST OP IMM;			\
1744 		CONT;					\
1745 	ALU_##OPCODE##_K:				\
1746 		DST = (u32) DST OP (u32) IMM;		\
1747 		CONT;
1748 	ALU(ADD,  +)
1749 	ALU(SUB,  -)
1750 	ALU(AND,  &)
1751 	ALU(OR,   |)
1752 	ALU(XOR,  ^)
1753 	ALU(MUL,  *)
1754 	SHT(LSH, <<)
1755 	SHT(RSH, >>)
1756 #undef SHT
1757 #undef ALU
1758 	ALU_NEG:
1759 		DST = (u32) -DST;
1760 		CONT;
1761 	ALU64_NEG:
1762 		DST = -DST;
1763 		CONT;
1764 	ALU_MOV_X:
1765 		switch (OFF) {
1766 		case 0:
1767 			DST = (u32) SRC;
1768 			break;
1769 		case 8:
1770 			DST = (u32)(s8) SRC;
1771 			break;
1772 		case 16:
1773 			DST = (u32)(s16) SRC;
1774 			break;
1775 		}
1776 		CONT;
1777 	ALU_MOV_K:
1778 		DST = (u32) IMM;
1779 		CONT;
1780 	ALU64_MOV_X:
1781 		switch (OFF) {
1782 		case 0:
1783 			DST = SRC;
1784 			break;
1785 		case 8:
1786 			DST = (s8) SRC;
1787 			break;
1788 		case 16:
1789 			DST = (s16) SRC;
1790 			break;
1791 		case 32:
1792 			DST = (s32) SRC;
1793 			break;
1794 		}
1795 		CONT;
1796 	ALU64_MOV_K:
1797 		DST = IMM;
1798 		CONT;
1799 	LD_IMM_DW:
1800 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1801 		insn++;
1802 		CONT;
1803 	ALU_ARSH_X:
1804 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1805 		CONT;
1806 	ALU_ARSH_K:
1807 		DST = (u64) (u32) (((s32) DST) >> IMM);
1808 		CONT;
1809 	ALU64_ARSH_X:
1810 		(*(s64 *) &DST) >>= (SRC & 63);
1811 		CONT;
1812 	ALU64_ARSH_K:
1813 		(*(s64 *) &DST) >>= IMM;
1814 		CONT;
1815 	ALU64_MOD_X:
1816 		switch (OFF) {
1817 		case 0:
1818 			div64_u64_rem(DST, SRC, &AX);
1819 			DST = AX;
1820 			break;
1821 		case 1:
1822 			AX = div64_s64(DST, SRC);
1823 			DST = DST - AX * SRC;
1824 			break;
1825 		}
1826 		CONT;
1827 	ALU_MOD_X:
1828 		switch (OFF) {
1829 		case 0:
1830 			AX = (u32) DST;
1831 			DST = do_div(AX, (u32) SRC);
1832 			break;
1833 		case 1:
1834 			AX = abs((s32)DST);
1835 			AX = do_div(AX, abs((s32)SRC));
1836 			if ((s32)DST < 0)
1837 				DST = (u32)-AX;
1838 			else
1839 				DST = (u32)AX;
1840 			break;
1841 		}
1842 		CONT;
1843 	ALU64_MOD_K:
1844 		switch (OFF) {
1845 		case 0:
1846 			div64_u64_rem(DST, IMM, &AX);
1847 			DST = AX;
1848 			break;
1849 		case 1:
1850 			AX = div64_s64(DST, IMM);
1851 			DST = DST - AX * IMM;
1852 			break;
1853 		}
1854 		CONT;
1855 	ALU_MOD_K:
1856 		switch (OFF) {
1857 		case 0:
1858 			AX = (u32) DST;
1859 			DST = do_div(AX, (u32) IMM);
1860 			break;
1861 		case 1:
1862 			AX = abs((s32)DST);
1863 			AX = do_div(AX, abs((s32)IMM));
1864 			if ((s32)DST < 0)
1865 				DST = (u32)-AX;
1866 			else
1867 				DST = (u32)AX;
1868 			break;
1869 		}
1870 		CONT;
1871 	ALU64_DIV_X:
1872 		switch (OFF) {
1873 		case 0:
1874 			DST = div64_u64(DST, SRC);
1875 			break;
1876 		case 1:
1877 			DST = div64_s64(DST, SRC);
1878 			break;
1879 		}
1880 		CONT;
1881 	ALU_DIV_X:
1882 		switch (OFF) {
1883 		case 0:
1884 			AX = (u32) DST;
1885 			do_div(AX, (u32) SRC);
1886 			DST = (u32) AX;
1887 			break;
1888 		case 1:
1889 			AX = abs((s32)DST);
1890 			do_div(AX, abs((s32)SRC));
1891 			if (((s32)DST < 0) == ((s32)SRC < 0))
1892 				DST = (u32)AX;
1893 			else
1894 				DST = (u32)-AX;
1895 			break;
1896 		}
1897 		CONT;
1898 	ALU64_DIV_K:
1899 		switch (OFF) {
1900 		case 0:
1901 			DST = div64_u64(DST, IMM);
1902 			break;
1903 		case 1:
1904 			DST = div64_s64(DST, IMM);
1905 			break;
1906 		}
1907 		CONT;
1908 	ALU_DIV_K:
1909 		switch (OFF) {
1910 		case 0:
1911 			AX = (u32) DST;
1912 			do_div(AX, (u32) IMM);
1913 			DST = (u32) AX;
1914 			break;
1915 		case 1:
1916 			AX = abs((s32)DST);
1917 			do_div(AX, abs((s32)IMM));
1918 			if (((s32)DST < 0) == ((s32)IMM < 0))
1919 				DST = (u32)AX;
1920 			else
1921 				DST = (u32)-AX;
1922 			break;
1923 		}
1924 		CONT;
1925 	ALU_END_TO_BE:
1926 		switch (IMM) {
1927 		case 16:
1928 			DST = (__force u16) cpu_to_be16(DST);
1929 			break;
1930 		case 32:
1931 			DST = (__force u32) cpu_to_be32(DST);
1932 			break;
1933 		case 64:
1934 			DST = (__force u64) cpu_to_be64(DST);
1935 			break;
1936 		}
1937 		CONT;
1938 	ALU_END_TO_LE:
1939 		switch (IMM) {
1940 		case 16:
1941 			DST = (__force u16) cpu_to_le16(DST);
1942 			break;
1943 		case 32:
1944 			DST = (__force u32) cpu_to_le32(DST);
1945 			break;
1946 		case 64:
1947 			DST = (__force u64) cpu_to_le64(DST);
1948 			break;
1949 		}
1950 		CONT;
1951 	ALU64_END_TO_LE:
1952 		switch (IMM) {
1953 		case 16:
1954 			DST = (__force u16) __swab16(DST);
1955 			break;
1956 		case 32:
1957 			DST = (__force u32) __swab32(DST);
1958 			break;
1959 		case 64:
1960 			DST = (__force u64) __swab64(DST);
1961 			break;
1962 		}
1963 		CONT;
1964 
1965 	/* CALL */
1966 	JMP_CALL:
1967 		/* Function call scratches BPF_R1-BPF_R5 registers,
1968 		 * preserves BPF_R6-BPF_R9, and stores return value
1969 		 * into BPF_R0.
1970 		 */
1971 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1972 						       BPF_R4, BPF_R5);
1973 		CONT;
1974 
1975 	JMP_CALL_ARGS:
1976 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1977 							    BPF_R3, BPF_R4,
1978 							    BPF_R5,
1979 							    insn + insn->off + 1);
1980 		CONT;
1981 
1982 	JMP_TAIL_CALL: {
1983 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1984 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1985 		struct bpf_prog *prog;
1986 		u32 index = BPF_R3;
1987 
1988 		if (unlikely(index >= array->map.max_entries))
1989 			goto out;
1990 
1991 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
1992 			goto out;
1993 
1994 		tail_call_cnt++;
1995 
1996 		prog = READ_ONCE(array->ptrs[index]);
1997 		if (!prog)
1998 			goto out;
1999 
2000 		/* ARG1 at this point is guaranteed to point to CTX from
2001 		 * the verifier side due to the fact that the tail call is
2002 		 * handled like a helper, that is, bpf_tail_call_proto,
2003 		 * where arg1_type is ARG_PTR_TO_CTX.
2004 		 */
2005 		insn = prog->insnsi;
2006 		goto select_insn;
2007 out:
2008 		CONT;
2009 	}
2010 	JMP_JA:
2011 		insn += insn->off;
2012 		CONT;
2013 	JMP32_JA:
2014 		insn += insn->imm;
2015 		CONT;
2016 	JMP_EXIT:
2017 		return BPF_R0;
2018 	/* JMP */
2019 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2020 	JMP_##OPCODE##_X:					\
2021 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2022 			insn += insn->off;			\
2023 			CONT_JMP;				\
2024 		}						\
2025 		CONT;						\
2026 	JMP32_##OPCODE##_X:					\
2027 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2028 			insn += insn->off;			\
2029 			CONT_JMP;				\
2030 		}						\
2031 		CONT;						\
2032 	JMP_##OPCODE##_K:					\
2033 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2034 			insn += insn->off;			\
2035 			CONT_JMP;				\
2036 		}						\
2037 		CONT;						\
2038 	JMP32_##OPCODE##_K:					\
2039 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2040 			insn += insn->off;			\
2041 			CONT_JMP;				\
2042 		}						\
2043 		CONT;
2044 	COND_JMP(u, JEQ, ==)
2045 	COND_JMP(u, JNE, !=)
2046 	COND_JMP(u, JGT, >)
2047 	COND_JMP(u, JLT, <)
2048 	COND_JMP(u, JGE, >=)
2049 	COND_JMP(u, JLE, <=)
2050 	COND_JMP(u, JSET, &)
2051 	COND_JMP(s, JSGT, >)
2052 	COND_JMP(s, JSLT, <)
2053 	COND_JMP(s, JSGE, >=)
2054 	COND_JMP(s, JSLE, <=)
2055 #undef COND_JMP
2056 	/* ST, STX and LDX*/
2057 	ST_NOSPEC:
2058 		/* Speculation barrier for mitigating Speculative Store Bypass.
2059 		 * In case of arm64, we rely on the firmware mitigation as
2060 		 * controlled via the ssbd kernel parameter. Whenever the
2061 		 * mitigation is enabled, it works for all of the kernel code
2062 		 * with no need to provide any additional instructions here.
2063 		 * In case of x86, we use 'lfence' insn for mitigation. We
2064 		 * reuse preexisting logic from Spectre v1 mitigation that
2065 		 * happens to produce the required code on x86 for v4 as well.
2066 		 */
2067 		barrier_nospec();
2068 		CONT;
2069 #define LDST(SIZEOP, SIZE)						\
2070 	STX_MEM_##SIZEOP:						\
2071 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2072 		CONT;							\
2073 	ST_MEM_##SIZEOP:						\
2074 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2075 		CONT;							\
2076 	LDX_MEM_##SIZEOP:						\
2077 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2078 		CONT;							\
2079 	LDX_PROBE_MEM_##SIZEOP:						\
2080 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2081 			      (const void *)(long) (SRC + insn->off));	\
2082 		DST = *((SIZE *)&DST);					\
2083 		CONT;
2084 
2085 	LDST(B,   u8)
2086 	LDST(H,  u16)
2087 	LDST(W,  u32)
2088 	LDST(DW, u64)
2089 #undef LDST
2090 
2091 #define LDSX(SIZEOP, SIZE)						\
2092 	LDX_MEMSX_##SIZEOP:						\
2093 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2094 		CONT;							\
2095 	LDX_PROBE_MEMSX_##SIZEOP:					\
2096 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2097 				      (const void *)(long) (SRC + insn->off));	\
2098 		DST = *((SIZE *)&DST);					\
2099 		CONT;
2100 
2101 	LDSX(B,   s8)
2102 	LDSX(H,  s16)
2103 	LDSX(W,  s32)
2104 #undef LDSX
2105 
2106 #define ATOMIC_ALU_OP(BOP, KOP)						\
2107 		case BOP:						\
2108 			if (BPF_SIZE(insn->code) == BPF_W)		\
2109 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2110 					     (DST + insn->off));	\
2111 			else						\
2112 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2113 					       (DST + insn->off));	\
2114 			break;						\
2115 		case BOP | BPF_FETCH:					\
2116 			if (BPF_SIZE(insn->code) == BPF_W)		\
2117 				SRC = (u32) atomic_fetch_##KOP(		\
2118 					(u32) SRC,			\
2119 					(atomic_t *)(unsigned long) (DST + insn->off)); \
2120 			else						\
2121 				SRC = (u64) atomic64_fetch_##KOP(	\
2122 					(u64) SRC,			\
2123 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2124 			break;
2125 
2126 	STX_ATOMIC_DW:
2127 	STX_ATOMIC_W:
2128 		switch (IMM) {
2129 		ATOMIC_ALU_OP(BPF_ADD, add)
2130 		ATOMIC_ALU_OP(BPF_AND, and)
2131 		ATOMIC_ALU_OP(BPF_OR, or)
2132 		ATOMIC_ALU_OP(BPF_XOR, xor)
2133 #undef ATOMIC_ALU_OP
2134 
2135 		case BPF_XCHG:
2136 			if (BPF_SIZE(insn->code) == BPF_W)
2137 				SRC = (u32) atomic_xchg(
2138 					(atomic_t *)(unsigned long) (DST + insn->off),
2139 					(u32) SRC);
2140 			else
2141 				SRC = (u64) atomic64_xchg(
2142 					(atomic64_t *)(unsigned long) (DST + insn->off),
2143 					(u64) SRC);
2144 			break;
2145 		case BPF_CMPXCHG:
2146 			if (BPF_SIZE(insn->code) == BPF_W)
2147 				BPF_R0 = (u32) atomic_cmpxchg(
2148 					(atomic_t *)(unsigned long) (DST + insn->off),
2149 					(u32) BPF_R0, (u32) SRC);
2150 			else
2151 				BPF_R0 = (u64) atomic64_cmpxchg(
2152 					(atomic64_t *)(unsigned long) (DST + insn->off),
2153 					(u64) BPF_R0, (u64) SRC);
2154 			break;
2155 
2156 		default:
2157 			goto default_label;
2158 		}
2159 		CONT;
2160 
2161 	default_label:
2162 		/* If we ever reach this, we have a bug somewhere. Die hard here
2163 		 * instead of just returning 0; we could be somewhere in a subprog,
2164 		 * so execution could continue otherwise which we do /not/ want.
2165 		 *
2166 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2167 		 */
2168 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2169 			insn->code, insn->imm);
2170 		BUG_ON(1);
2171 		return 0;
2172 }
2173 
2174 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2175 #define DEFINE_BPF_PROG_RUN(stack_size) \
2176 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2177 { \
2178 	u64 stack[stack_size / sizeof(u64)]; \
2179 	u64 regs[MAX_BPF_EXT_REG] = {}; \
2180 \
2181 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2182 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2183 	ARG1 = (u64) (unsigned long) ctx; \
2184 	return ___bpf_prog_run(regs, insn); \
2185 }
2186 
2187 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2188 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2189 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2190 				      const struct bpf_insn *insn) \
2191 { \
2192 	u64 stack[stack_size / sizeof(u64)]; \
2193 	u64 regs[MAX_BPF_EXT_REG]; \
2194 \
2195 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2196 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2197 	BPF_R1 = r1; \
2198 	BPF_R2 = r2; \
2199 	BPF_R3 = r3; \
2200 	BPF_R4 = r4; \
2201 	BPF_R5 = r5; \
2202 	return ___bpf_prog_run(regs, insn); \
2203 }
2204 
2205 #define EVAL1(FN, X) FN(X)
2206 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2207 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2208 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2209 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2210 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2211 
2212 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2213 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2214 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2215 
2216 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2217 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2218 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2219 
2220 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2221 
2222 static unsigned int (*interpreters[])(const void *ctx,
2223 				      const struct bpf_insn *insn) = {
2224 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2225 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2226 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2227 };
2228 #undef PROG_NAME_LIST
2229 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2230 static __maybe_unused
2231 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2232 			   const struct bpf_insn *insn) = {
2233 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2234 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2235 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2236 };
2237 #undef PROG_NAME_LIST
2238 
2239 #ifdef CONFIG_BPF_SYSCALL
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)2240 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2241 {
2242 	stack_depth = max_t(u32, stack_depth, 1);
2243 	insn->off = (s16) insn->imm;
2244 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2245 		__bpf_call_base_args;
2246 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2247 }
2248 #endif
2249 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)2250 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2251 					 const struct bpf_insn *insn)
2252 {
2253 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2254 	 * is not working properly, so warn about it!
2255 	 */
2256 	WARN_ON_ONCE(1);
2257 	return 0;
2258 }
2259 #endif
2260 
bpf_prog_map_compatible(struct bpf_map * map,const struct bpf_prog * fp)2261 bool bpf_prog_map_compatible(struct bpf_map *map,
2262 			     const struct bpf_prog *fp)
2263 {
2264 	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2265 	bool ret;
2266 	struct bpf_prog_aux *aux = fp->aux;
2267 
2268 	if (fp->kprobe_override)
2269 		return false;
2270 
2271 	/* XDP programs inserted into maps are not guaranteed to run on
2272 	 * a particular netdev (and can run outside driver context entirely
2273 	 * in the case of devmap and cpumap). Until device checks
2274 	 * are implemented, prohibit adding dev-bound programs to program maps.
2275 	 */
2276 	if (bpf_prog_is_dev_bound(aux))
2277 		return false;
2278 
2279 	spin_lock(&map->owner.lock);
2280 	if (!map->owner.type) {
2281 		/* There's no owner yet where we could check for
2282 		 * compatibility.
2283 		 */
2284 		map->owner.type  = prog_type;
2285 		map->owner.jited = fp->jited;
2286 		map->owner.xdp_has_frags = aux->xdp_has_frags;
2287 		map->owner.attach_func_proto = aux->attach_func_proto;
2288 		ret = true;
2289 	} else {
2290 		ret = map->owner.type  == prog_type &&
2291 		      map->owner.jited == fp->jited &&
2292 		      map->owner.xdp_has_frags == aux->xdp_has_frags;
2293 		if (ret &&
2294 		    map->owner.attach_func_proto != aux->attach_func_proto) {
2295 			switch (prog_type) {
2296 			case BPF_PROG_TYPE_TRACING:
2297 			case BPF_PROG_TYPE_LSM:
2298 			case BPF_PROG_TYPE_EXT:
2299 			case BPF_PROG_TYPE_STRUCT_OPS:
2300 				ret = false;
2301 				break;
2302 			default:
2303 				break;
2304 			}
2305 		}
2306 	}
2307 	spin_unlock(&map->owner.lock);
2308 
2309 	return ret;
2310 }
2311 
bpf_check_tail_call(const struct bpf_prog * fp)2312 static int bpf_check_tail_call(const struct bpf_prog *fp)
2313 {
2314 	struct bpf_prog_aux *aux = fp->aux;
2315 	int i, ret = 0;
2316 
2317 	mutex_lock(&aux->used_maps_mutex);
2318 	for (i = 0; i < aux->used_map_cnt; i++) {
2319 		struct bpf_map *map = aux->used_maps[i];
2320 
2321 		if (!map_type_contains_progs(map))
2322 			continue;
2323 
2324 		if (!bpf_prog_map_compatible(map, fp)) {
2325 			ret = -EINVAL;
2326 			goto out;
2327 		}
2328 	}
2329 
2330 out:
2331 	mutex_unlock(&aux->used_maps_mutex);
2332 	return ret;
2333 }
2334 
bpf_prog_select_func(struct bpf_prog * fp)2335 static void bpf_prog_select_func(struct bpf_prog *fp)
2336 {
2337 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2338 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2339 
2340 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2341 #else
2342 	fp->bpf_func = __bpf_prog_ret0_warn;
2343 #endif
2344 }
2345 
2346 /**
2347  *	bpf_prog_select_runtime - select exec runtime for BPF program
2348  *	@fp: bpf_prog populated with BPF program
2349  *	@err: pointer to error variable
2350  *
2351  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2352  * The BPF program will be executed via bpf_prog_run() function.
2353  *
2354  * Return: the &fp argument along with &err set to 0 for success or
2355  * a negative errno code on failure
2356  */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)2357 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2358 {
2359 	/* In case of BPF to BPF calls, verifier did all the prep
2360 	 * work with regards to JITing, etc.
2361 	 */
2362 	bool jit_needed = false;
2363 
2364 	if (fp->bpf_func)
2365 		goto finalize;
2366 
2367 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2368 	    bpf_prog_has_kfunc_call(fp))
2369 		jit_needed = true;
2370 
2371 	bpf_prog_select_func(fp);
2372 
2373 	/* eBPF JITs can rewrite the program in case constant
2374 	 * blinding is active. However, in case of error during
2375 	 * blinding, bpf_int_jit_compile() must always return a
2376 	 * valid program, which in this case would simply not
2377 	 * be JITed, but falls back to the interpreter.
2378 	 */
2379 	if (!bpf_prog_is_offloaded(fp->aux)) {
2380 		*err = bpf_prog_alloc_jited_linfo(fp);
2381 		if (*err)
2382 			return fp;
2383 
2384 		fp = bpf_int_jit_compile(fp);
2385 		bpf_prog_jit_attempt_done(fp);
2386 		if (!fp->jited && jit_needed) {
2387 			*err = -ENOTSUPP;
2388 			return fp;
2389 		}
2390 	} else {
2391 		*err = bpf_prog_offload_compile(fp);
2392 		if (*err)
2393 			return fp;
2394 	}
2395 
2396 finalize:
2397 	bpf_prog_lock_ro(fp);
2398 
2399 	/* The tail call compatibility check can only be done at
2400 	 * this late stage as we need to determine, if we deal
2401 	 * with JITed or non JITed program concatenations and not
2402 	 * all eBPF JITs might immediately support all features.
2403 	 */
2404 	*err = bpf_check_tail_call(fp);
2405 
2406 	return fp;
2407 }
2408 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2409 
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)2410 static unsigned int __bpf_prog_ret1(const void *ctx,
2411 				    const struct bpf_insn *insn)
2412 {
2413 	return 1;
2414 }
2415 
2416 static struct bpf_prog_dummy {
2417 	struct bpf_prog prog;
2418 } dummy_bpf_prog = {
2419 	.prog = {
2420 		.bpf_func = __bpf_prog_ret1,
2421 	},
2422 };
2423 
2424 struct bpf_empty_prog_array bpf_empty_prog_array = {
2425 	.null_prog = NULL,
2426 };
2427 EXPORT_SYMBOL(bpf_empty_prog_array);
2428 
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)2429 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2430 {
2431 	if (prog_cnt)
2432 		return kzalloc(sizeof(struct bpf_prog_array) +
2433 			       sizeof(struct bpf_prog_array_item) *
2434 			       (prog_cnt + 1),
2435 			       flags);
2436 
2437 	return &bpf_empty_prog_array.hdr;
2438 }
2439 
bpf_prog_array_free(struct bpf_prog_array * progs)2440 void bpf_prog_array_free(struct bpf_prog_array *progs)
2441 {
2442 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2443 		return;
2444 	kfree_rcu(progs, rcu);
2445 }
2446 
__bpf_prog_array_free_sleepable_cb(struct rcu_head * rcu)2447 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2448 {
2449 	struct bpf_prog_array *progs;
2450 
2451 	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2452 	 * no need to call kfree_rcu(), just call kfree() directly.
2453 	 */
2454 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2455 	if (rcu_trace_implies_rcu_gp())
2456 		kfree(progs);
2457 	else
2458 		kfree_rcu(progs, rcu);
2459 }
2460 
bpf_prog_array_free_sleepable(struct bpf_prog_array * progs)2461 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2462 {
2463 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2464 		return;
2465 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2466 }
2467 
bpf_prog_array_length(struct bpf_prog_array * array)2468 int bpf_prog_array_length(struct bpf_prog_array *array)
2469 {
2470 	struct bpf_prog_array_item *item;
2471 	u32 cnt = 0;
2472 
2473 	for (item = array->items; item->prog; item++)
2474 		if (item->prog != &dummy_bpf_prog.prog)
2475 			cnt++;
2476 	return cnt;
2477 }
2478 
bpf_prog_array_is_empty(struct bpf_prog_array * array)2479 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2480 {
2481 	struct bpf_prog_array_item *item;
2482 
2483 	for (item = array->items; item->prog; item++)
2484 		if (item->prog != &dummy_bpf_prog.prog)
2485 			return false;
2486 	return true;
2487 }
2488 
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)2489 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2490 				     u32 *prog_ids,
2491 				     u32 request_cnt)
2492 {
2493 	struct bpf_prog_array_item *item;
2494 	int i = 0;
2495 
2496 	for (item = array->items; item->prog; item++) {
2497 		if (item->prog == &dummy_bpf_prog.prog)
2498 			continue;
2499 		prog_ids[i] = item->prog->aux->id;
2500 		if (++i == request_cnt) {
2501 			item++;
2502 			break;
2503 		}
2504 	}
2505 
2506 	return !!(item->prog);
2507 }
2508 
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)2509 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2510 				__u32 __user *prog_ids, u32 cnt)
2511 {
2512 	unsigned long err = 0;
2513 	bool nospc;
2514 	u32 *ids;
2515 
2516 	/* users of this function are doing:
2517 	 * cnt = bpf_prog_array_length();
2518 	 * if (cnt > 0)
2519 	 *     bpf_prog_array_copy_to_user(..., cnt);
2520 	 * so below kcalloc doesn't need extra cnt > 0 check.
2521 	 */
2522 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2523 	if (!ids)
2524 		return -ENOMEM;
2525 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2526 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2527 	kfree(ids);
2528 	if (err)
2529 		return -EFAULT;
2530 	if (nospc)
2531 		return -ENOSPC;
2532 	return 0;
2533 }
2534 
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2535 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2536 				struct bpf_prog *old_prog)
2537 {
2538 	struct bpf_prog_array_item *item;
2539 
2540 	for (item = array->items; item->prog; item++)
2541 		if (item->prog == old_prog) {
2542 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2543 			break;
2544 		}
2545 }
2546 
2547 /**
2548  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2549  *                                   index into the program array with
2550  *                                   a dummy no-op program.
2551  * @array: a bpf_prog_array
2552  * @index: the index of the program to replace
2553  *
2554  * Skips over dummy programs, by not counting them, when calculating
2555  * the position of the program to replace.
2556  *
2557  * Return:
2558  * * 0		- Success
2559  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2560  * * -ENOENT	- Index out of range
2561  */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2562 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2563 {
2564 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2565 }
2566 
2567 /**
2568  * bpf_prog_array_update_at() - Updates the program at the given index
2569  *                              into the program array.
2570  * @array: a bpf_prog_array
2571  * @index: the index of the program to update
2572  * @prog: the program to insert into the array
2573  *
2574  * Skips over dummy programs, by not counting them, when calculating
2575  * the position of the program to update.
2576  *
2577  * Return:
2578  * * 0		- Success
2579  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2580  * * -ENOENT	- Index out of range
2581  */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2582 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2583 			     struct bpf_prog *prog)
2584 {
2585 	struct bpf_prog_array_item *item;
2586 
2587 	if (unlikely(index < 0))
2588 		return -EINVAL;
2589 
2590 	for (item = array->items; item->prog; item++) {
2591 		if (item->prog == &dummy_bpf_prog.prog)
2592 			continue;
2593 		if (!index) {
2594 			WRITE_ONCE(item->prog, prog);
2595 			return 0;
2596 		}
2597 		index--;
2598 	}
2599 	return -ENOENT;
2600 }
2601 
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,u64 bpf_cookie,struct bpf_prog_array ** new_array)2602 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2603 			struct bpf_prog *exclude_prog,
2604 			struct bpf_prog *include_prog,
2605 			u64 bpf_cookie,
2606 			struct bpf_prog_array **new_array)
2607 {
2608 	int new_prog_cnt, carry_prog_cnt = 0;
2609 	struct bpf_prog_array_item *existing, *new;
2610 	struct bpf_prog_array *array;
2611 	bool found_exclude = false;
2612 
2613 	/* Figure out how many existing progs we need to carry over to
2614 	 * the new array.
2615 	 */
2616 	if (old_array) {
2617 		existing = old_array->items;
2618 		for (; existing->prog; existing++) {
2619 			if (existing->prog == exclude_prog) {
2620 				found_exclude = true;
2621 				continue;
2622 			}
2623 			if (existing->prog != &dummy_bpf_prog.prog)
2624 				carry_prog_cnt++;
2625 			if (existing->prog == include_prog)
2626 				return -EEXIST;
2627 		}
2628 	}
2629 
2630 	if (exclude_prog && !found_exclude)
2631 		return -ENOENT;
2632 
2633 	/* How many progs (not NULL) will be in the new array? */
2634 	new_prog_cnt = carry_prog_cnt;
2635 	if (include_prog)
2636 		new_prog_cnt += 1;
2637 
2638 	/* Do we have any prog (not NULL) in the new array? */
2639 	if (!new_prog_cnt) {
2640 		*new_array = NULL;
2641 		return 0;
2642 	}
2643 
2644 	/* +1 as the end of prog_array is marked with NULL */
2645 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2646 	if (!array)
2647 		return -ENOMEM;
2648 	new = array->items;
2649 
2650 	/* Fill in the new prog array */
2651 	if (carry_prog_cnt) {
2652 		existing = old_array->items;
2653 		for (; existing->prog; existing++) {
2654 			if (existing->prog == exclude_prog ||
2655 			    existing->prog == &dummy_bpf_prog.prog)
2656 				continue;
2657 
2658 			new->prog = existing->prog;
2659 			new->bpf_cookie = existing->bpf_cookie;
2660 			new++;
2661 		}
2662 	}
2663 	if (include_prog) {
2664 		new->prog = include_prog;
2665 		new->bpf_cookie = bpf_cookie;
2666 		new++;
2667 	}
2668 	new->prog = NULL;
2669 	*new_array = array;
2670 	return 0;
2671 }
2672 
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2673 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2674 			     u32 *prog_ids, u32 request_cnt,
2675 			     u32 *prog_cnt)
2676 {
2677 	u32 cnt = 0;
2678 
2679 	if (array)
2680 		cnt = bpf_prog_array_length(array);
2681 
2682 	*prog_cnt = cnt;
2683 
2684 	/* return early if user requested only program count or nothing to copy */
2685 	if (!request_cnt || !cnt)
2686 		return 0;
2687 
2688 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2689 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2690 								     : 0;
2691 }
2692 
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2693 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2694 			  struct bpf_map **used_maps, u32 len)
2695 {
2696 	struct bpf_map *map;
2697 	bool sleepable;
2698 	u32 i;
2699 
2700 	sleepable = aux->sleepable;
2701 	for (i = 0; i < len; i++) {
2702 		map = used_maps[i];
2703 		if (map->ops->map_poke_untrack)
2704 			map->ops->map_poke_untrack(map, aux);
2705 		if (sleepable)
2706 			atomic64_dec(&map->sleepable_refcnt);
2707 		bpf_map_put(map);
2708 	}
2709 }
2710 
bpf_free_used_maps(struct bpf_prog_aux * aux)2711 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2712 {
2713 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2714 	kfree(aux->used_maps);
2715 }
2716 
__bpf_free_used_btfs(struct bpf_prog_aux * aux,struct btf_mod_pair * used_btfs,u32 len)2717 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2718 			  struct btf_mod_pair *used_btfs, u32 len)
2719 {
2720 #ifdef CONFIG_BPF_SYSCALL
2721 	struct btf_mod_pair *btf_mod;
2722 	u32 i;
2723 
2724 	for (i = 0; i < len; i++) {
2725 		btf_mod = &used_btfs[i];
2726 		if (btf_mod->module)
2727 			module_put(btf_mod->module);
2728 		btf_put(btf_mod->btf);
2729 	}
2730 #endif
2731 }
2732 
bpf_free_used_btfs(struct bpf_prog_aux * aux)2733 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2734 {
2735 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2736 	kfree(aux->used_btfs);
2737 }
2738 
bpf_prog_free_deferred(struct work_struct * work)2739 static void bpf_prog_free_deferred(struct work_struct *work)
2740 {
2741 	struct bpf_prog_aux *aux;
2742 	int i;
2743 
2744 	aux = container_of(work, struct bpf_prog_aux, work);
2745 #ifdef CONFIG_BPF_SYSCALL
2746 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2747 #endif
2748 #ifdef CONFIG_CGROUP_BPF
2749 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2750 		bpf_cgroup_atype_put(aux->cgroup_atype);
2751 #endif
2752 	bpf_free_used_maps(aux);
2753 	bpf_free_used_btfs(aux);
2754 	if (bpf_prog_is_dev_bound(aux))
2755 		bpf_prog_dev_bound_destroy(aux->prog);
2756 #ifdef CONFIG_PERF_EVENTS
2757 	if (aux->prog->has_callchain_buf)
2758 		put_callchain_buffers();
2759 #endif
2760 	if (aux->dst_trampoline)
2761 		bpf_trampoline_put(aux->dst_trampoline);
2762 	for (i = 0; i < aux->func_cnt; i++) {
2763 		/* We can just unlink the subprog poke descriptor table as
2764 		 * it was originally linked to the main program and is also
2765 		 * released along with it.
2766 		 */
2767 		aux->func[i]->aux->poke_tab = NULL;
2768 		bpf_jit_free(aux->func[i]);
2769 	}
2770 	if (aux->func_cnt) {
2771 		kfree(aux->func);
2772 		bpf_prog_unlock_free(aux->prog);
2773 	} else {
2774 		bpf_jit_free(aux->prog);
2775 	}
2776 }
2777 
bpf_prog_free(struct bpf_prog * fp)2778 void bpf_prog_free(struct bpf_prog *fp)
2779 {
2780 	struct bpf_prog_aux *aux = fp->aux;
2781 
2782 	if (aux->dst_prog)
2783 		bpf_prog_put(aux->dst_prog);
2784 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2785 	schedule_work(&aux->work);
2786 }
2787 EXPORT_SYMBOL_GPL(bpf_prog_free);
2788 
2789 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2790 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2791 
bpf_user_rnd_init_once(void)2792 void bpf_user_rnd_init_once(void)
2793 {
2794 	prandom_init_once(&bpf_user_rnd_state);
2795 }
2796 
BPF_CALL_0(bpf_user_rnd_u32)2797 BPF_CALL_0(bpf_user_rnd_u32)
2798 {
2799 	/* Should someone ever have the rather unwise idea to use some
2800 	 * of the registers passed into this function, then note that
2801 	 * this function is called from native eBPF and classic-to-eBPF
2802 	 * transformations. Register assignments from both sides are
2803 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2804 	 */
2805 	struct rnd_state *state;
2806 	u32 res;
2807 
2808 	state = &get_cpu_var(bpf_user_rnd_state);
2809 	res = prandom_u32_state(state);
2810 	put_cpu_var(bpf_user_rnd_state);
2811 
2812 	return res;
2813 }
2814 
BPF_CALL_0(bpf_get_raw_cpu_id)2815 BPF_CALL_0(bpf_get_raw_cpu_id)
2816 {
2817 	return raw_smp_processor_id();
2818 }
2819 
2820 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2821 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2822 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2823 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2824 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2825 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2826 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2827 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2828 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2829 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2830 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2831 
2832 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2833 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2834 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2835 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2836 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2837 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2838 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2839 
2840 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2841 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2842 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2843 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2844 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2845 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2846 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2847 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2848 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2849 const struct bpf_func_proto bpf_set_retval_proto __weak;
2850 const struct bpf_func_proto bpf_get_retval_proto __weak;
2851 
bpf_get_trace_printk_proto(void)2852 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2853 {
2854 	return NULL;
2855 }
2856 
bpf_get_trace_vprintk_proto(void)2857 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2858 {
2859 	return NULL;
2860 }
2861 
2862 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)2863 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2864 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2865 {
2866 	return -ENOTSUPP;
2867 }
2868 EXPORT_SYMBOL_GPL(bpf_event_output);
2869 
2870 /* Always built-in helper functions. */
2871 const struct bpf_func_proto bpf_tail_call_proto = {
2872 	.func		= NULL,
2873 	.gpl_only	= false,
2874 	.ret_type	= RET_VOID,
2875 	.arg1_type	= ARG_PTR_TO_CTX,
2876 	.arg2_type	= ARG_CONST_MAP_PTR,
2877 	.arg3_type	= ARG_ANYTHING,
2878 };
2879 
2880 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2881  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2882  * eBPF and implicitly also cBPF can get JITed!
2883  */
bpf_int_jit_compile(struct bpf_prog * prog)2884 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2885 {
2886 	return prog;
2887 }
2888 
2889 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2890  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2891  */
bpf_jit_compile(struct bpf_prog * prog)2892 void __weak bpf_jit_compile(struct bpf_prog *prog)
2893 {
2894 }
2895 
bpf_helper_changes_pkt_data(void * func)2896 bool __weak bpf_helper_changes_pkt_data(void *func)
2897 {
2898 	return false;
2899 }
2900 
2901 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2902  * analysis code and wants explicit zero extension inserted by verifier.
2903  * Otherwise, return FALSE.
2904  *
2905  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2906  * you don't override this. JITs that don't want these extra insns can detect
2907  * them using insn_is_zext.
2908  */
bpf_jit_needs_zext(void)2909 bool __weak bpf_jit_needs_zext(void)
2910 {
2911 	return false;
2912 }
2913 
2914 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
bpf_jit_supports_subprog_tailcalls(void)2915 bool __weak bpf_jit_supports_subprog_tailcalls(void)
2916 {
2917 	return false;
2918 }
2919 
bpf_jit_supports_kfunc_call(void)2920 bool __weak bpf_jit_supports_kfunc_call(void)
2921 {
2922 	return false;
2923 }
2924 
bpf_jit_supports_far_kfunc_call(void)2925 bool __weak bpf_jit_supports_far_kfunc_call(void)
2926 {
2927 	return false;
2928 }
2929 
2930 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2931  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2932  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2933 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2934 			 int len)
2935 {
2936 	return -EFAULT;
2937 }
2938 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * addr1,void * addr2)2939 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2940 			      void *addr1, void *addr2)
2941 {
2942 	return -ENOTSUPP;
2943 }
2944 
bpf_arch_text_copy(void * dst,void * src,size_t len)2945 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2946 {
2947 	return ERR_PTR(-ENOTSUPP);
2948 }
2949 
bpf_arch_text_invalidate(void * dst,size_t len)2950 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2951 {
2952 	return -ENOTSUPP;
2953 }
2954 
2955 #ifdef CONFIG_BPF_SYSCALL
bpf_global_ma_init(void)2956 static int __init bpf_global_ma_init(void)
2957 {
2958 	int ret;
2959 
2960 	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
2961 	bpf_global_ma_set = !ret;
2962 	return ret;
2963 }
2964 late_initcall(bpf_global_ma_init);
2965 #endif
2966 
2967 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2968 EXPORT_SYMBOL(bpf_stats_enabled_key);
2969 
2970 /* All definitions of tracepoints related to BPF. */
2971 #define CREATE_TRACE_POINTS
2972 #include <linux/bpf_trace.h>
2973 
2974 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2975 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2976