1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36
37 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38
39 /*
40 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42 * policy [un]register operations including cgroup file additions /
43 * removals. Putting cgroup file registration outside blkcg_pol_mutex
44 * allows grabbing it from cgroup callbacks.
45 */
46 static DEFINE_MUTEX(blkcg_pol_register_mutex);
47 static DEFINE_MUTEX(blkcg_pol_mutex);
48
49 struct blkcg blkcg_root;
50 EXPORT_SYMBOL_GPL(blkcg_root);
51
52 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53 EXPORT_SYMBOL_GPL(blkcg_root_css);
54
55 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56
57 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
58
59 bool blkcg_debug_stats = false;
60
61 static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62
63 #define BLKG_DESTROY_BATCH_SIZE 64
64
65 /*
66 * Lockless lists for tracking IO stats update
67 *
68 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69 * There are multiple blkg's (one for each block device) attached to each
70 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71 * but it doesn't know which blkg has the updated stats. If there are many
72 * block devices in a system, the cost of iterating all the blkg's to flush
73 * out the IO stats can be high. To reduce such overhead, a set of percpu
74 * lockless lists (lhead) per blkcg are used to track the set of recently
75 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78 * References to blkg are gotten and then put back in the process to
79 * protect against blkg removal.
80 *
81 * Return: 0 if successful or -ENOMEM if allocation fails.
82 */
init_blkcg_llists(struct blkcg * blkcg)83 static int init_blkcg_llists(struct blkcg *blkcg)
84 {
85 int cpu;
86
87 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88 if (!blkcg->lhead)
89 return -ENOMEM;
90
91 for_each_possible_cpu(cpu)
92 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93 return 0;
94 }
95
96 /**
97 * blkcg_css - find the current css
98 *
99 * Find the css associated with either the kthread or the current task.
100 * This may return a dying css, so it is up to the caller to use tryget logic
101 * to confirm it is alive and well.
102 */
blkcg_css(void)103 static struct cgroup_subsys_state *blkcg_css(void)
104 {
105 struct cgroup_subsys_state *css;
106
107 css = kthread_blkcg();
108 if (css)
109 return css;
110 return task_css(current, io_cgrp_id);
111 }
112
blkcg_policy_enabled(struct request_queue * q,const struct blkcg_policy * pol)113 static bool blkcg_policy_enabled(struct request_queue *q,
114 const struct blkcg_policy *pol)
115 {
116 return pol && test_bit(pol->plid, q->blkcg_pols);
117 }
118
blkg_free_workfn(struct work_struct * work)119 static void blkg_free_workfn(struct work_struct *work)
120 {
121 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122 free_work);
123 struct request_queue *q = blkg->q;
124 int i;
125
126 /*
127 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
128 * in order to make sure pd_free_fn() is called in order, the deletion
129 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
130 * blkcg_mutex is used to synchronize blkg_free_workfn() and
131 * blkcg_deactivate_policy().
132 */
133 mutex_lock(&q->blkcg_mutex);
134 for (i = 0; i < BLKCG_MAX_POLS; i++)
135 if (blkg->pd[i])
136 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
137 if (blkg->parent)
138 blkg_put(blkg->parent);
139 spin_lock_irq(&q->queue_lock);
140 list_del_init(&blkg->q_node);
141 spin_unlock_irq(&q->queue_lock);
142 mutex_unlock(&q->blkcg_mutex);
143
144 blk_put_queue(q);
145 free_percpu(blkg->iostat_cpu);
146 percpu_ref_exit(&blkg->refcnt);
147 kfree(blkg);
148 }
149
150 /**
151 * blkg_free - free a blkg
152 * @blkg: blkg to free
153 *
154 * Free @blkg which may be partially allocated.
155 */
blkg_free(struct blkcg_gq * blkg)156 static void blkg_free(struct blkcg_gq *blkg)
157 {
158 if (!blkg)
159 return;
160
161 /*
162 * Both ->pd_free_fn() and request queue's release handler may
163 * sleep, so free us by scheduling one work func
164 */
165 INIT_WORK(&blkg->free_work, blkg_free_workfn);
166 schedule_work(&blkg->free_work);
167 }
168
__blkg_release(struct rcu_head * rcu)169 static void __blkg_release(struct rcu_head *rcu)
170 {
171 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
172 struct blkcg *blkcg = blkg->blkcg;
173 int cpu;
174
175 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
176 WARN_ON(!bio_list_empty(&blkg->async_bios));
177 #endif
178 /*
179 * Flush all the non-empty percpu lockless lists before releasing
180 * us, given these stat belongs to us.
181 *
182 * blkg_stat_lock is for serializing blkg stat update
183 */
184 for_each_possible_cpu(cpu)
185 __blkcg_rstat_flush(blkcg, cpu);
186
187 /* release the blkcg and parent blkg refs this blkg has been holding */
188 css_put(&blkg->blkcg->css);
189 blkg_free(blkg);
190 }
191
192 /*
193 * A group is RCU protected, but having an rcu lock does not mean that one
194 * can access all the fields of blkg and assume these are valid. For
195 * example, don't try to follow throtl_data and request queue links.
196 *
197 * Having a reference to blkg under an rcu allows accesses to only values
198 * local to groups like group stats and group rate limits.
199 */
blkg_release(struct percpu_ref * ref)200 static void blkg_release(struct percpu_ref *ref)
201 {
202 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
203
204 call_rcu(&blkg->rcu_head, __blkg_release);
205 }
206
207 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
208 static struct workqueue_struct *blkcg_punt_bio_wq;
209
blkg_async_bio_workfn(struct work_struct * work)210 static void blkg_async_bio_workfn(struct work_struct *work)
211 {
212 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
213 async_bio_work);
214 struct bio_list bios = BIO_EMPTY_LIST;
215 struct bio *bio;
216 struct blk_plug plug;
217 bool need_plug = false;
218
219 /* as long as there are pending bios, @blkg can't go away */
220 spin_lock(&blkg->async_bio_lock);
221 bio_list_merge(&bios, &blkg->async_bios);
222 bio_list_init(&blkg->async_bios);
223 spin_unlock(&blkg->async_bio_lock);
224
225 /* start plug only when bio_list contains at least 2 bios */
226 if (bios.head && bios.head->bi_next) {
227 need_plug = true;
228 blk_start_plug(&plug);
229 }
230 while ((bio = bio_list_pop(&bios)))
231 submit_bio(bio);
232 if (need_plug)
233 blk_finish_plug(&plug);
234 }
235
236 /*
237 * When a shared kthread issues a bio for a cgroup, doing so synchronously can
238 * lead to priority inversions as the kthread can be trapped waiting for that
239 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to
240 * a dedicated per-blkcg work item to avoid such priority inversions.
241 */
blkcg_punt_bio_submit(struct bio * bio)242 void blkcg_punt_bio_submit(struct bio *bio)
243 {
244 struct blkcg_gq *blkg = bio->bi_blkg;
245
246 if (blkg->parent) {
247 spin_lock(&blkg->async_bio_lock);
248 bio_list_add(&blkg->async_bios, bio);
249 spin_unlock(&blkg->async_bio_lock);
250 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
251 } else {
252 /* never bounce for the root cgroup */
253 submit_bio(bio);
254 }
255 }
256 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
257
blkcg_punt_bio_init(void)258 static int __init blkcg_punt_bio_init(void)
259 {
260 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
261 WQ_MEM_RECLAIM | WQ_FREEZABLE |
262 WQ_UNBOUND | WQ_SYSFS, 0);
263 if (!blkcg_punt_bio_wq)
264 return -ENOMEM;
265 return 0;
266 }
267 subsys_initcall(blkcg_punt_bio_init);
268 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
269
270 /**
271 * bio_blkcg_css - return the blkcg CSS associated with a bio
272 * @bio: target bio
273 *
274 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
275 * associated. Callers are expected to either handle %NULL or know association
276 * has been done prior to calling this.
277 */
bio_blkcg_css(struct bio * bio)278 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
279 {
280 if (!bio || !bio->bi_blkg)
281 return NULL;
282 return &bio->bi_blkg->blkcg->css;
283 }
284 EXPORT_SYMBOL_GPL(bio_blkcg_css);
285
286 /**
287 * blkcg_parent - get the parent of a blkcg
288 * @blkcg: blkcg of interest
289 *
290 * Return the parent blkcg of @blkcg. Can be called anytime.
291 */
blkcg_parent(struct blkcg * blkcg)292 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
293 {
294 return css_to_blkcg(blkcg->css.parent);
295 }
296
297 /**
298 * blkg_alloc - allocate a blkg
299 * @blkcg: block cgroup the new blkg is associated with
300 * @disk: gendisk the new blkg is associated with
301 * @gfp_mask: allocation mask to use
302 *
303 * Allocate a new blkg assocating @blkcg and @q.
304 */
blkg_alloc(struct blkcg * blkcg,struct gendisk * disk,gfp_t gfp_mask)305 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
306 gfp_t gfp_mask)
307 {
308 struct blkcg_gq *blkg;
309 int i, cpu;
310
311 /* alloc and init base part */
312 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
313 if (!blkg)
314 return NULL;
315 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
316 goto out_free_blkg;
317 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
318 if (!blkg->iostat_cpu)
319 goto out_exit_refcnt;
320 if (!blk_get_queue(disk->queue))
321 goto out_free_iostat;
322
323 blkg->q = disk->queue;
324 INIT_LIST_HEAD(&blkg->q_node);
325 blkg->blkcg = blkcg;
326 blkg->iostat.blkg = blkg;
327 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
328 spin_lock_init(&blkg->async_bio_lock);
329 bio_list_init(&blkg->async_bios);
330 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
331 #endif
332
333 u64_stats_init(&blkg->iostat.sync);
334 for_each_possible_cpu(cpu) {
335 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
336 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
337 }
338
339 for (i = 0; i < BLKCG_MAX_POLS; i++) {
340 struct blkcg_policy *pol = blkcg_policy[i];
341 struct blkg_policy_data *pd;
342
343 if (!blkcg_policy_enabled(disk->queue, pol))
344 continue;
345
346 /* alloc per-policy data and attach it to blkg */
347 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
348 if (!pd)
349 goto out_free_pds;
350 blkg->pd[i] = pd;
351 pd->blkg = blkg;
352 pd->plid = i;
353 pd->online = false;
354 }
355
356 return blkg;
357
358 out_free_pds:
359 while (--i >= 0)
360 if (blkg->pd[i])
361 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
362 blk_put_queue(disk->queue);
363 out_free_iostat:
364 free_percpu(blkg->iostat_cpu);
365 out_exit_refcnt:
366 percpu_ref_exit(&blkg->refcnt);
367 out_free_blkg:
368 kfree(blkg);
369 return NULL;
370 }
371
372 /*
373 * If @new_blkg is %NULL, this function tries to allocate a new one as
374 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
375 */
blkg_create(struct blkcg * blkcg,struct gendisk * disk,struct blkcg_gq * new_blkg)376 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
377 struct blkcg_gq *new_blkg)
378 {
379 struct blkcg_gq *blkg;
380 int i, ret;
381
382 lockdep_assert_held(&disk->queue->queue_lock);
383
384 /* request_queue is dying, do not create/recreate a blkg */
385 if (blk_queue_dying(disk->queue)) {
386 ret = -ENODEV;
387 goto err_free_blkg;
388 }
389
390 /* blkg holds a reference to blkcg */
391 if (!css_tryget_online(&blkcg->css)) {
392 ret = -ENODEV;
393 goto err_free_blkg;
394 }
395
396 /* allocate */
397 if (!new_blkg) {
398 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
399 if (unlikely(!new_blkg)) {
400 ret = -ENOMEM;
401 goto err_put_css;
402 }
403 }
404 blkg = new_blkg;
405
406 /* link parent */
407 if (blkcg_parent(blkcg)) {
408 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
409 if (WARN_ON_ONCE(!blkg->parent)) {
410 ret = -ENODEV;
411 goto err_put_css;
412 }
413 blkg_get(blkg->parent);
414 }
415
416 /* invoke per-policy init */
417 for (i = 0; i < BLKCG_MAX_POLS; i++) {
418 struct blkcg_policy *pol = blkcg_policy[i];
419
420 if (blkg->pd[i] && pol->pd_init_fn)
421 pol->pd_init_fn(blkg->pd[i]);
422 }
423
424 /* insert */
425 spin_lock(&blkcg->lock);
426 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
427 if (likely(!ret)) {
428 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
429 list_add(&blkg->q_node, &disk->queue->blkg_list);
430
431 for (i = 0; i < BLKCG_MAX_POLS; i++) {
432 struct blkcg_policy *pol = blkcg_policy[i];
433
434 if (blkg->pd[i]) {
435 if (pol->pd_online_fn)
436 pol->pd_online_fn(blkg->pd[i]);
437 blkg->pd[i]->online = true;
438 }
439 }
440 }
441 blkg->online = true;
442 spin_unlock(&blkcg->lock);
443
444 if (!ret)
445 return blkg;
446
447 /* @blkg failed fully initialized, use the usual release path */
448 blkg_put(blkg);
449 return ERR_PTR(ret);
450
451 err_put_css:
452 css_put(&blkcg->css);
453 err_free_blkg:
454 if (new_blkg)
455 blkg_free(new_blkg);
456 return ERR_PTR(ret);
457 }
458
459 /**
460 * blkg_lookup_create - lookup blkg, try to create one if not there
461 * @blkcg: blkcg of interest
462 * @disk: gendisk of interest
463 *
464 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
465 * create one. blkg creation is performed recursively from blkcg_root such
466 * that all non-root blkg's have access to the parent blkg. This function
467 * should be called under RCU read lock and takes @disk->queue->queue_lock.
468 *
469 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
470 * down from root.
471 */
blkg_lookup_create(struct blkcg * blkcg,struct gendisk * disk)472 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
473 struct gendisk *disk)
474 {
475 struct request_queue *q = disk->queue;
476 struct blkcg_gq *blkg;
477 unsigned long flags;
478
479 WARN_ON_ONCE(!rcu_read_lock_held());
480
481 blkg = blkg_lookup(blkcg, q);
482 if (blkg)
483 return blkg;
484
485 spin_lock_irqsave(&q->queue_lock, flags);
486 blkg = blkg_lookup(blkcg, q);
487 if (blkg) {
488 if (blkcg != &blkcg_root &&
489 blkg != rcu_dereference(blkcg->blkg_hint))
490 rcu_assign_pointer(blkcg->blkg_hint, blkg);
491 goto found;
492 }
493
494 /*
495 * Create blkgs walking down from blkcg_root to @blkcg, so that all
496 * non-root blkgs have access to their parents. Returns the closest
497 * blkg to the intended blkg should blkg_create() fail.
498 */
499 while (true) {
500 struct blkcg *pos = blkcg;
501 struct blkcg *parent = blkcg_parent(blkcg);
502 struct blkcg_gq *ret_blkg = q->root_blkg;
503
504 while (parent) {
505 blkg = blkg_lookup(parent, q);
506 if (blkg) {
507 /* remember closest blkg */
508 ret_blkg = blkg;
509 break;
510 }
511 pos = parent;
512 parent = blkcg_parent(parent);
513 }
514
515 blkg = blkg_create(pos, disk, NULL);
516 if (IS_ERR(blkg)) {
517 blkg = ret_blkg;
518 break;
519 }
520 if (pos == blkcg)
521 break;
522 }
523
524 found:
525 spin_unlock_irqrestore(&q->queue_lock, flags);
526 return blkg;
527 }
528
blkg_destroy(struct blkcg_gq * blkg)529 static void blkg_destroy(struct blkcg_gq *blkg)
530 {
531 struct blkcg *blkcg = blkg->blkcg;
532 int i;
533
534 lockdep_assert_held(&blkg->q->queue_lock);
535 lockdep_assert_held(&blkcg->lock);
536
537 /*
538 * blkg stays on the queue list until blkg_free_workfn(), see details in
539 * blkg_free_workfn(), hence this function can be called from
540 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
541 * blkg_free_workfn().
542 */
543 if (hlist_unhashed(&blkg->blkcg_node))
544 return;
545
546 for (i = 0; i < BLKCG_MAX_POLS; i++) {
547 struct blkcg_policy *pol = blkcg_policy[i];
548
549 if (blkg->pd[i] && blkg->pd[i]->online) {
550 blkg->pd[i]->online = false;
551 if (pol->pd_offline_fn)
552 pol->pd_offline_fn(blkg->pd[i]);
553 }
554 }
555
556 blkg->online = false;
557
558 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
559 hlist_del_init_rcu(&blkg->blkcg_node);
560
561 /*
562 * Both setting lookup hint to and clearing it from @blkg are done
563 * under queue_lock. If it's not pointing to @blkg now, it never
564 * will. Hint assignment itself can race safely.
565 */
566 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
567 rcu_assign_pointer(blkcg->blkg_hint, NULL);
568
569 /*
570 * Put the reference taken at the time of creation so that when all
571 * queues are gone, group can be destroyed.
572 */
573 percpu_ref_kill(&blkg->refcnt);
574 }
575
blkg_destroy_all(struct gendisk * disk)576 static void blkg_destroy_all(struct gendisk *disk)
577 {
578 struct request_queue *q = disk->queue;
579 struct blkcg_gq *blkg, *n;
580 int count = BLKG_DESTROY_BATCH_SIZE;
581 int i;
582
583 restart:
584 spin_lock_irq(&q->queue_lock);
585 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
586 struct blkcg *blkcg = blkg->blkcg;
587
588 if (hlist_unhashed(&blkg->blkcg_node))
589 continue;
590
591 spin_lock(&blkcg->lock);
592 blkg_destroy(blkg);
593 spin_unlock(&blkcg->lock);
594
595 /*
596 * in order to avoid holding the spin lock for too long, release
597 * it when a batch of blkgs are destroyed.
598 */
599 if (!(--count)) {
600 count = BLKG_DESTROY_BATCH_SIZE;
601 spin_unlock_irq(&q->queue_lock);
602 cond_resched();
603 goto restart;
604 }
605 }
606
607 /*
608 * Mark policy deactivated since policy offline has been done, and
609 * the free is scheduled, so future blkcg_deactivate_policy() can
610 * be bypassed
611 */
612 for (i = 0; i < BLKCG_MAX_POLS; i++) {
613 struct blkcg_policy *pol = blkcg_policy[i];
614
615 if (pol)
616 __clear_bit(pol->plid, q->blkcg_pols);
617 }
618
619 q->root_blkg = NULL;
620 spin_unlock_irq(&q->queue_lock);
621 }
622
blkg_iostat_set(struct blkg_iostat * dst,struct blkg_iostat * src)623 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
624 {
625 int i;
626
627 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
628 dst->bytes[i] = src->bytes[i];
629 dst->ios[i] = src->ios[i];
630 }
631 }
632
__blkg_clear_stat(struct blkg_iostat_set * bis)633 static void __blkg_clear_stat(struct blkg_iostat_set *bis)
634 {
635 struct blkg_iostat cur = {0};
636 unsigned long flags;
637
638 flags = u64_stats_update_begin_irqsave(&bis->sync);
639 blkg_iostat_set(&bis->cur, &cur);
640 blkg_iostat_set(&bis->last, &cur);
641 u64_stats_update_end_irqrestore(&bis->sync, flags);
642 }
643
blkg_clear_stat(struct blkcg_gq * blkg)644 static void blkg_clear_stat(struct blkcg_gq *blkg)
645 {
646 int cpu;
647
648 for_each_possible_cpu(cpu) {
649 struct blkg_iostat_set *s = per_cpu_ptr(blkg->iostat_cpu, cpu);
650
651 __blkg_clear_stat(s);
652 }
653 __blkg_clear_stat(&blkg->iostat);
654 }
655
blkcg_reset_stats(struct cgroup_subsys_state * css,struct cftype * cftype,u64 val)656 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
657 struct cftype *cftype, u64 val)
658 {
659 struct blkcg *blkcg = css_to_blkcg(css);
660 struct blkcg_gq *blkg;
661 int i;
662
663 mutex_lock(&blkcg_pol_mutex);
664 spin_lock_irq(&blkcg->lock);
665
666 /*
667 * Note that stat reset is racy - it doesn't synchronize against
668 * stat updates. This is a debug feature which shouldn't exist
669 * anyway. If you get hit by a race, retry.
670 */
671 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
672 blkg_clear_stat(blkg);
673 for (i = 0; i < BLKCG_MAX_POLS; i++) {
674 struct blkcg_policy *pol = blkcg_policy[i];
675
676 if (blkg->pd[i] && pol->pd_reset_stats_fn)
677 pol->pd_reset_stats_fn(blkg->pd[i]);
678 }
679 }
680
681 spin_unlock_irq(&blkcg->lock);
682 mutex_unlock(&blkcg_pol_mutex);
683 return 0;
684 }
685
blkg_dev_name(struct blkcg_gq * blkg)686 const char *blkg_dev_name(struct blkcg_gq *blkg)
687 {
688 if (!blkg->q->disk)
689 return NULL;
690 return bdi_dev_name(blkg->q->disk->bdi);
691 }
692
693 /**
694 * blkcg_print_blkgs - helper for printing per-blkg data
695 * @sf: seq_file to print to
696 * @blkcg: blkcg of interest
697 * @prfill: fill function to print out a blkg
698 * @pol: policy in question
699 * @data: data to be passed to @prfill
700 * @show_total: to print out sum of prfill return values or not
701 *
702 * This function invokes @prfill on each blkg of @blkcg if pd for the
703 * policy specified by @pol exists. @prfill is invoked with @sf, the
704 * policy data and @data and the matching queue lock held. If @show_total
705 * is %true, the sum of the return values from @prfill is printed with
706 * "Total" label at the end.
707 *
708 * This is to be used to construct print functions for
709 * cftype->read_seq_string method.
710 */
blkcg_print_blkgs(struct seq_file * sf,struct blkcg * blkcg,u64 (* prfill)(struct seq_file *,struct blkg_policy_data *,int),const struct blkcg_policy * pol,int data,bool show_total)711 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
712 u64 (*prfill)(struct seq_file *,
713 struct blkg_policy_data *, int),
714 const struct blkcg_policy *pol, int data,
715 bool show_total)
716 {
717 struct blkcg_gq *blkg;
718 u64 total = 0;
719
720 rcu_read_lock();
721 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
722 spin_lock_irq(&blkg->q->queue_lock);
723 if (blkcg_policy_enabled(blkg->q, pol))
724 total += prfill(sf, blkg->pd[pol->plid], data);
725 spin_unlock_irq(&blkg->q->queue_lock);
726 }
727 rcu_read_unlock();
728
729 if (show_total)
730 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
731 }
732 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
733
734 /**
735 * __blkg_prfill_u64 - prfill helper for a single u64 value
736 * @sf: seq_file to print to
737 * @pd: policy private data of interest
738 * @v: value to print
739 *
740 * Print @v to @sf for the device associated with @pd.
741 */
__blkg_prfill_u64(struct seq_file * sf,struct blkg_policy_data * pd,u64 v)742 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
743 {
744 const char *dname = blkg_dev_name(pd->blkg);
745
746 if (!dname)
747 return 0;
748
749 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
750 return v;
751 }
752 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
753
754 /**
755 * blkg_conf_init - initialize a blkg_conf_ctx
756 * @ctx: blkg_conf_ctx to initialize
757 * @input: input string
758 *
759 * Initialize @ctx which can be used to parse blkg config input string @input.
760 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
761 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
762 */
blkg_conf_init(struct blkg_conf_ctx * ctx,char * input)763 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
764 {
765 *ctx = (struct blkg_conf_ctx){ .input = input };
766 }
767 EXPORT_SYMBOL_GPL(blkg_conf_init);
768
769 /**
770 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
771 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
772 *
773 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
774 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
775 * set to point past the device node prefix.
776 *
777 * This function may be called multiple times on @ctx and the extra calls become
778 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
779 * explicitly if bdev access is needed without resolving the blkcg / policy part
780 * of @ctx->input. Returns -errno on error.
781 */
blkg_conf_open_bdev(struct blkg_conf_ctx * ctx)782 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
783 {
784 char *input = ctx->input;
785 unsigned int major, minor;
786 struct block_device *bdev;
787 int key_len;
788
789 if (ctx->bdev)
790 return 0;
791
792 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
793 return -EINVAL;
794
795 input += key_len;
796 if (!isspace(*input))
797 return -EINVAL;
798 input = skip_spaces(input);
799
800 bdev = blkdev_get_no_open(MKDEV(major, minor));
801 if (!bdev)
802 return -ENODEV;
803 if (bdev_is_partition(bdev)) {
804 blkdev_put_no_open(bdev);
805 return -ENODEV;
806 }
807
808 mutex_lock(&bdev->bd_queue->rq_qos_mutex);
809 if (!disk_live(bdev->bd_disk)) {
810 blkdev_put_no_open(bdev);
811 mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
812 return -ENODEV;
813 }
814
815 ctx->body = input;
816 ctx->bdev = bdev;
817 return 0;
818 }
819
820 /**
821 * blkg_conf_prep - parse and prepare for per-blkg config update
822 * @blkcg: target block cgroup
823 * @pol: target policy
824 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
825 *
826 * Parse per-blkg config update from @ctx->input and initialize @ctx
827 * accordingly. On success, @ctx->body points to the part of @ctx->input
828 * following MAJ:MIN, @ctx->bdev points to the target block device and
829 * @ctx->blkg to the blkg being configured.
830 *
831 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
832 * function returns with queue lock held and must be followed by
833 * blkg_conf_exit().
834 */
blkg_conf_prep(struct blkcg * blkcg,const struct blkcg_policy * pol,struct blkg_conf_ctx * ctx)835 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
836 struct blkg_conf_ctx *ctx)
837 __acquires(&bdev->bd_queue->queue_lock)
838 {
839 struct gendisk *disk;
840 struct request_queue *q;
841 struct blkcg_gq *blkg;
842 int ret;
843
844 ret = blkg_conf_open_bdev(ctx);
845 if (ret)
846 return ret;
847
848 disk = ctx->bdev->bd_disk;
849 q = disk->queue;
850
851 /*
852 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
853 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
854 */
855 ret = blk_queue_enter(q, 0);
856 if (ret)
857 goto fail;
858
859 spin_lock_irq(&q->queue_lock);
860
861 if (!blkcg_policy_enabled(q, pol)) {
862 ret = -EOPNOTSUPP;
863 goto fail_unlock;
864 }
865
866 blkg = blkg_lookup(blkcg, q);
867 if (blkg)
868 goto success;
869
870 /*
871 * Create blkgs walking down from blkcg_root to @blkcg, so that all
872 * non-root blkgs have access to their parents.
873 */
874 while (true) {
875 struct blkcg *pos = blkcg;
876 struct blkcg *parent;
877 struct blkcg_gq *new_blkg;
878
879 parent = blkcg_parent(blkcg);
880 while (parent && !blkg_lookup(parent, q)) {
881 pos = parent;
882 parent = blkcg_parent(parent);
883 }
884
885 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
886 spin_unlock_irq(&q->queue_lock);
887
888 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
889 if (unlikely(!new_blkg)) {
890 ret = -ENOMEM;
891 goto fail_exit_queue;
892 }
893
894 if (radix_tree_preload(GFP_KERNEL)) {
895 blkg_free(new_blkg);
896 ret = -ENOMEM;
897 goto fail_exit_queue;
898 }
899
900 spin_lock_irq(&q->queue_lock);
901
902 if (!blkcg_policy_enabled(q, pol)) {
903 blkg_free(new_blkg);
904 ret = -EOPNOTSUPP;
905 goto fail_preloaded;
906 }
907
908 blkg = blkg_lookup(pos, q);
909 if (blkg) {
910 blkg_free(new_blkg);
911 } else {
912 blkg = blkg_create(pos, disk, new_blkg);
913 if (IS_ERR(blkg)) {
914 ret = PTR_ERR(blkg);
915 goto fail_preloaded;
916 }
917 }
918
919 radix_tree_preload_end();
920
921 if (pos == blkcg)
922 goto success;
923 }
924 success:
925 blk_queue_exit(q);
926 ctx->blkg = blkg;
927 return 0;
928
929 fail_preloaded:
930 radix_tree_preload_end();
931 fail_unlock:
932 spin_unlock_irq(&q->queue_lock);
933 fail_exit_queue:
934 blk_queue_exit(q);
935 fail:
936 /*
937 * If queue was bypassing, we should retry. Do so after a
938 * short msleep(). It isn't strictly necessary but queue
939 * can be bypassing for some time and it's always nice to
940 * avoid busy looping.
941 */
942 if (ret == -EBUSY) {
943 msleep(10);
944 ret = restart_syscall();
945 }
946 return ret;
947 }
948 EXPORT_SYMBOL_GPL(blkg_conf_prep);
949
950 /**
951 * blkg_conf_exit - clean up per-blkg config update
952 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
953 *
954 * Clean up after per-blkg config update. This function must be called on all
955 * blkg_conf_ctx's initialized with blkg_conf_init().
956 */
blkg_conf_exit(struct blkg_conf_ctx * ctx)957 void blkg_conf_exit(struct blkg_conf_ctx *ctx)
958 __releases(&ctx->bdev->bd_queue->queue_lock)
959 __releases(&ctx->bdev->bd_queue->rq_qos_mutex)
960 {
961 if (ctx->blkg) {
962 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
963 ctx->blkg = NULL;
964 }
965
966 if (ctx->bdev) {
967 mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
968 blkdev_put_no_open(ctx->bdev);
969 ctx->body = NULL;
970 ctx->bdev = NULL;
971 }
972 }
973 EXPORT_SYMBOL_GPL(blkg_conf_exit);
974
blkg_iostat_add(struct blkg_iostat * dst,struct blkg_iostat * src)975 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
976 {
977 int i;
978
979 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
980 dst->bytes[i] += src->bytes[i];
981 dst->ios[i] += src->ios[i];
982 }
983 }
984
blkg_iostat_sub(struct blkg_iostat * dst,struct blkg_iostat * src)985 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
986 {
987 int i;
988
989 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
990 dst->bytes[i] -= src->bytes[i];
991 dst->ios[i] -= src->ios[i];
992 }
993 }
994
blkcg_iostat_update(struct blkcg_gq * blkg,struct blkg_iostat * cur,struct blkg_iostat * last)995 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
996 struct blkg_iostat *last)
997 {
998 struct blkg_iostat delta;
999 unsigned long flags;
1000
1001 /* propagate percpu delta to global */
1002 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1003 blkg_iostat_set(&delta, cur);
1004 blkg_iostat_sub(&delta, last);
1005 blkg_iostat_add(&blkg->iostat.cur, &delta);
1006 blkg_iostat_add(last, &delta);
1007 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1008 }
1009
__blkcg_rstat_flush(struct blkcg * blkcg,int cpu)1010 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
1011 {
1012 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
1013 struct llist_node *lnode;
1014 struct blkg_iostat_set *bisc, *next_bisc;
1015 unsigned long flags;
1016
1017 rcu_read_lock();
1018
1019 lnode = llist_del_all(lhead);
1020 if (!lnode)
1021 goto out;
1022
1023 /*
1024 * For covering concurrent parent blkg update from blkg_release().
1025 *
1026 * When flushing from cgroup, cgroup_rstat_lock is always held, so
1027 * this lock won't cause contention most of time.
1028 */
1029 raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1030
1031 /*
1032 * Iterate only the iostat_cpu's queued in the lockless list.
1033 */
1034 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1035 struct blkcg_gq *blkg = bisc->blkg;
1036 struct blkcg_gq *parent = blkg->parent;
1037 struct blkg_iostat cur;
1038 unsigned int seq;
1039
1040 /*
1041 * Order assignment of `next_bisc` from `bisc->lnode.next` in
1042 * llist_for_each_entry_safe and clearing `bisc->lqueued` for
1043 * avoiding to assign `next_bisc` with new next pointer added
1044 * in blk_cgroup_bio_start() in case of re-ordering.
1045 *
1046 * The pair barrier is implied in llist_add() in blk_cgroup_bio_start().
1047 */
1048 smp_mb();
1049
1050 WRITE_ONCE(bisc->lqueued, false);
1051 if (bisc == &blkg->iostat)
1052 goto propagate_up; /* propagate up to parent only */
1053
1054 /* fetch the current per-cpu values */
1055 do {
1056 seq = u64_stats_fetch_begin(&bisc->sync);
1057 blkg_iostat_set(&cur, &bisc->cur);
1058 } while (u64_stats_fetch_retry(&bisc->sync, seq));
1059
1060 blkcg_iostat_update(blkg, &cur, &bisc->last);
1061
1062 propagate_up:
1063 /* propagate global delta to parent (unless that's root) */
1064 if (parent && parent->parent) {
1065 blkcg_iostat_update(parent, &blkg->iostat.cur,
1066 &blkg->iostat.last);
1067 /*
1068 * Queue parent->iostat to its blkcg's lockless
1069 * list to propagate up to the grandparent if the
1070 * iostat hasn't been queued yet.
1071 */
1072 if (!parent->iostat.lqueued) {
1073 struct llist_head *plhead;
1074
1075 plhead = per_cpu_ptr(parent->blkcg->lhead, cpu);
1076 llist_add(&parent->iostat.lnode, plhead);
1077 parent->iostat.lqueued = true;
1078 }
1079 }
1080 }
1081 raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1082 out:
1083 rcu_read_unlock();
1084 }
1085
blkcg_rstat_flush(struct cgroup_subsys_state * css,int cpu)1086 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1087 {
1088 /* Root-level stats are sourced from system-wide IO stats */
1089 if (cgroup_parent(css->cgroup))
1090 __blkcg_rstat_flush(css_to_blkcg(css), cpu);
1091 }
1092
1093 /*
1094 * We source root cgroup stats from the system-wide stats to avoid
1095 * tracking the same information twice and incurring overhead when no
1096 * cgroups are defined. For that reason, cgroup_rstat_flush in
1097 * blkcg_print_stat does not actually fill out the iostat in the root
1098 * cgroup's blkcg_gq.
1099 *
1100 * However, we would like to re-use the printing code between the root and
1101 * non-root cgroups to the extent possible. For that reason, we simulate
1102 * flushing the root cgroup's stats by explicitly filling in the iostat
1103 * with disk level statistics.
1104 */
blkcg_fill_root_iostats(void)1105 static void blkcg_fill_root_iostats(void)
1106 {
1107 struct class_dev_iter iter;
1108 struct device *dev;
1109
1110 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1111 while ((dev = class_dev_iter_next(&iter))) {
1112 struct block_device *bdev = dev_to_bdev(dev);
1113 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1114 struct blkg_iostat tmp;
1115 int cpu;
1116 unsigned long flags;
1117
1118 memset(&tmp, 0, sizeof(tmp));
1119 for_each_possible_cpu(cpu) {
1120 struct disk_stats *cpu_dkstats;
1121
1122 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1123 tmp.ios[BLKG_IOSTAT_READ] +=
1124 cpu_dkstats->ios[STAT_READ];
1125 tmp.ios[BLKG_IOSTAT_WRITE] +=
1126 cpu_dkstats->ios[STAT_WRITE];
1127 tmp.ios[BLKG_IOSTAT_DISCARD] +=
1128 cpu_dkstats->ios[STAT_DISCARD];
1129 // convert sectors to bytes
1130 tmp.bytes[BLKG_IOSTAT_READ] +=
1131 cpu_dkstats->sectors[STAT_READ] << 9;
1132 tmp.bytes[BLKG_IOSTAT_WRITE] +=
1133 cpu_dkstats->sectors[STAT_WRITE] << 9;
1134 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1135 cpu_dkstats->sectors[STAT_DISCARD] << 9;
1136 }
1137
1138 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1139 blkg_iostat_set(&blkg->iostat.cur, &tmp);
1140 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1141 }
1142 }
1143
blkcg_print_one_stat(struct blkcg_gq * blkg,struct seq_file * s)1144 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1145 {
1146 struct blkg_iostat_set *bis = &blkg->iostat;
1147 u64 rbytes, wbytes, rios, wios, dbytes, dios;
1148 const char *dname;
1149 unsigned seq;
1150 int i;
1151
1152 if (!blkg->online)
1153 return;
1154
1155 dname = blkg_dev_name(blkg);
1156 if (!dname)
1157 return;
1158
1159 seq_printf(s, "%s ", dname);
1160
1161 do {
1162 seq = u64_stats_fetch_begin(&bis->sync);
1163
1164 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1165 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1166 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1167 rios = bis->cur.ios[BLKG_IOSTAT_READ];
1168 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1169 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1170 } while (u64_stats_fetch_retry(&bis->sync, seq));
1171
1172 if (rbytes || wbytes || rios || wios) {
1173 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1174 rbytes, wbytes, rios, wios,
1175 dbytes, dios);
1176 }
1177
1178 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1179 seq_printf(s, " use_delay=%d delay_nsec=%llu",
1180 atomic_read(&blkg->use_delay),
1181 atomic64_read(&blkg->delay_nsec));
1182 }
1183
1184 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1185 struct blkcg_policy *pol = blkcg_policy[i];
1186
1187 if (!blkg->pd[i] || !pol->pd_stat_fn)
1188 continue;
1189
1190 pol->pd_stat_fn(blkg->pd[i], s);
1191 }
1192
1193 seq_puts(s, "\n");
1194 }
1195
blkcg_print_stat(struct seq_file * sf,void * v)1196 static int blkcg_print_stat(struct seq_file *sf, void *v)
1197 {
1198 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1199 struct blkcg_gq *blkg;
1200
1201 if (!seq_css(sf)->parent)
1202 blkcg_fill_root_iostats();
1203 else
1204 cgroup_rstat_flush(blkcg->css.cgroup);
1205
1206 rcu_read_lock();
1207 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1208 spin_lock_irq(&blkg->q->queue_lock);
1209 blkcg_print_one_stat(blkg, sf);
1210 spin_unlock_irq(&blkg->q->queue_lock);
1211 }
1212 rcu_read_unlock();
1213 return 0;
1214 }
1215
1216 static struct cftype blkcg_files[] = {
1217 {
1218 .name = "stat",
1219 .seq_show = blkcg_print_stat,
1220 },
1221 { } /* terminate */
1222 };
1223
1224 static struct cftype blkcg_legacy_files[] = {
1225 {
1226 .name = "reset_stats",
1227 .write_u64 = blkcg_reset_stats,
1228 },
1229 { } /* terminate */
1230 };
1231
1232 #ifdef CONFIG_CGROUP_WRITEBACK
blkcg_get_cgwb_list(struct cgroup_subsys_state * css)1233 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1234 {
1235 return &css_to_blkcg(css)->cgwb_list;
1236 }
1237 #endif
1238
1239 /*
1240 * blkcg destruction is a three-stage process.
1241 *
1242 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1243 * which offlines writeback. Here we tie the next stage of blkg destruction
1244 * to the completion of writeback associated with the blkcg. This lets us
1245 * avoid punting potentially large amounts of outstanding writeback to root
1246 * while maintaining any ongoing policies. The next stage is triggered when
1247 * the nr_cgwbs count goes to zero.
1248 *
1249 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1250 * and handles the destruction of blkgs. Here the css reference held by
1251 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1252 * This work may occur in cgwb_release_workfn() on the cgwb_release
1253 * workqueue. Any submitted ios that fail to get the blkg ref will be
1254 * punted to the root_blkg.
1255 *
1256 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1257 * This finally frees the blkcg.
1258 */
1259
1260 /**
1261 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1262 * @blkcg: blkcg of interest
1263 *
1264 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1265 * is nested inside q lock, this function performs reverse double lock dancing.
1266 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1267 * blkcg_css_free to eventually be called.
1268 *
1269 * This is the blkcg counterpart of ioc_release_fn().
1270 */
blkcg_destroy_blkgs(struct blkcg * blkcg)1271 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1272 {
1273 might_sleep();
1274
1275 spin_lock_irq(&blkcg->lock);
1276
1277 while (!hlist_empty(&blkcg->blkg_list)) {
1278 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1279 struct blkcg_gq, blkcg_node);
1280 struct request_queue *q = blkg->q;
1281
1282 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1283 /*
1284 * Given that the system can accumulate a huge number
1285 * of blkgs in pathological cases, check to see if we
1286 * need to rescheduling to avoid softlockup.
1287 */
1288 spin_unlock_irq(&blkcg->lock);
1289 cond_resched();
1290 spin_lock_irq(&blkcg->lock);
1291 continue;
1292 }
1293
1294 blkg_destroy(blkg);
1295 spin_unlock(&q->queue_lock);
1296 }
1297
1298 spin_unlock_irq(&blkcg->lock);
1299 }
1300
1301 /**
1302 * blkcg_pin_online - pin online state
1303 * @blkcg_css: blkcg of interest
1304 *
1305 * While pinned, a blkcg is kept online. This is primarily used to
1306 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1307 * while an associated cgwb is still active.
1308 */
blkcg_pin_online(struct cgroup_subsys_state * blkcg_css)1309 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1310 {
1311 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1312 }
1313
1314 /**
1315 * blkcg_unpin_online - unpin online state
1316 * @blkcg_css: blkcg of interest
1317 *
1318 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1319 * that blkg doesn't go offline while an associated cgwb is still active.
1320 * When this count goes to zero, all active cgwbs have finished so the
1321 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1322 */
blkcg_unpin_online(struct cgroup_subsys_state * blkcg_css)1323 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1324 {
1325 struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1326
1327 do {
1328 struct blkcg *parent;
1329
1330 if (!refcount_dec_and_test(&blkcg->online_pin))
1331 break;
1332
1333 parent = blkcg_parent(blkcg);
1334 blkcg_destroy_blkgs(blkcg);
1335 blkcg = parent;
1336 } while (blkcg);
1337 }
1338
1339 /**
1340 * blkcg_css_offline - cgroup css_offline callback
1341 * @css: css of interest
1342 *
1343 * This function is called when @css is about to go away. Here the cgwbs are
1344 * offlined first and only once writeback associated with the blkcg has
1345 * finished do we start step 2 (see above).
1346 */
blkcg_css_offline(struct cgroup_subsys_state * css)1347 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1348 {
1349 /* this prevents anyone from attaching or migrating to this blkcg */
1350 wb_blkcg_offline(css);
1351
1352 /* put the base online pin allowing step 2 to be triggered */
1353 blkcg_unpin_online(css);
1354 }
1355
blkcg_css_free(struct cgroup_subsys_state * css)1356 static void blkcg_css_free(struct cgroup_subsys_state *css)
1357 {
1358 struct blkcg *blkcg = css_to_blkcg(css);
1359 int i;
1360
1361 mutex_lock(&blkcg_pol_mutex);
1362
1363 list_del(&blkcg->all_blkcgs_node);
1364
1365 for (i = 0; i < BLKCG_MAX_POLS; i++)
1366 if (blkcg->cpd[i])
1367 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1368
1369 mutex_unlock(&blkcg_pol_mutex);
1370
1371 free_percpu(blkcg->lhead);
1372 kfree(blkcg);
1373 }
1374
1375 static struct cgroup_subsys_state *
blkcg_css_alloc(struct cgroup_subsys_state * parent_css)1376 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1377 {
1378 struct blkcg *blkcg;
1379 int i;
1380
1381 mutex_lock(&blkcg_pol_mutex);
1382
1383 if (!parent_css) {
1384 blkcg = &blkcg_root;
1385 } else {
1386 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1387 if (!blkcg)
1388 goto unlock;
1389 }
1390
1391 if (init_blkcg_llists(blkcg))
1392 goto free_blkcg;
1393
1394 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1395 struct blkcg_policy *pol = blkcg_policy[i];
1396 struct blkcg_policy_data *cpd;
1397
1398 /*
1399 * If the policy hasn't been attached yet, wait for it
1400 * to be attached before doing anything else. Otherwise,
1401 * check if the policy requires any specific per-cgroup
1402 * data: if it does, allocate and initialize it.
1403 */
1404 if (!pol || !pol->cpd_alloc_fn)
1405 continue;
1406
1407 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1408 if (!cpd)
1409 goto free_pd_blkcg;
1410
1411 blkcg->cpd[i] = cpd;
1412 cpd->blkcg = blkcg;
1413 cpd->plid = i;
1414 }
1415
1416 spin_lock_init(&blkcg->lock);
1417 refcount_set(&blkcg->online_pin, 1);
1418 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1419 INIT_HLIST_HEAD(&blkcg->blkg_list);
1420 #ifdef CONFIG_CGROUP_WRITEBACK
1421 INIT_LIST_HEAD(&blkcg->cgwb_list);
1422 #endif
1423 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1424
1425 mutex_unlock(&blkcg_pol_mutex);
1426 return &blkcg->css;
1427
1428 free_pd_blkcg:
1429 for (i--; i >= 0; i--)
1430 if (blkcg->cpd[i])
1431 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1432 free_percpu(blkcg->lhead);
1433 free_blkcg:
1434 if (blkcg != &blkcg_root)
1435 kfree(blkcg);
1436 unlock:
1437 mutex_unlock(&blkcg_pol_mutex);
1438 return ERR_PTR(-ENOMEM);
1439 }
1440
blkcg_css_online(struct cgroup_subsys_state * css)1441 static int blkcg_css_online(struct cgroup_subsys_state *css)
1442 {
1443 struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1444
1445 /*
1446 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1447 * don't go offline while cgwbs are still active on them. Pin the
1448 * parent so that offline always happens towards the root.
1449 */
1450 if (parent)
1451 blkcg_pin_online(&parent->css);
1452 return 0;
1453 }
1454
blkg_init_queue(struct request_queue * q)1455 void blkg_init_queue(struct request_queue *q)
1456 {
1457 INIT_LIST_HEAD(&q->blkg_list);
1458 mutex_init(&q->blkcg_mutex);
1459 }
1460
blkcg_init_disk(struct gendisk * disk)1461 int blkcg_init_disk(struct gendisk *disk)
1462 {
1463 struct request_queue *q = disk->queue;
1464 struct blkcg_gq *new_blkg, *blkg;
1465 bool preloaded;
1466 int ret;
1467
1468 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1469 if (!new_blkg)
1470 return -ENOMEM;
1471
1472 preloaded = !radix_tree_preload(GFP_KERNEL);
1473
1474 /* Make sure the root blkg exists. */
1475 /* spin_lock_irq can serve as RCU read-side critical section. */
1476 spin_lock_irq(&q->queue_lock);
1477 blkg = blkg_create(&blkcg_root, disk, new_blkg);
1478 if (IS_ERR(blkg))
1479 goto err_unlock;
1480 q->root_blkg = blkg;
1481 spin_unlock_irq(&q->queue_lock);
1482
1483 if (preloaded)
1484 radix_tree_preload_end();
1485
1486 ret = blk_ioprio_init(disk);
1487 if (ret)
1488 goto err_destroy_all;
1489
1490 ret = blk_throtl_init(disk);
1491 if (ret)
1492 goto err_ioprio_exit;
1493
1494 return 0;
1495
1496 err_ioprio_exit:
1497 blk_ioprio_exit(disk);
1498 err_destroy_all:
1499 blkg_destroy_all(disk);
1500 return ret;
1501 err_unlock:
1502 spin_unlock_irq(&q->queue_lock);
1503 if (preloaded)
1504 radix_tree_preload_end();
1505 return PTR_ERR(blkg);
1506 }
1507
blkcg_exit_disk(struct gendisk * disk)1508 void blkcg_exit_disk(struct gendisk *disk)
1509 {
1510 blkg_destroy_all(disk);
1511 blk_throtl_exit(disk);
1512 }
1513
blkcg_exit(struct task_struct * tsk)1514 static void blkcg_exit(struct task_struct *tsk)
1515 {
1516 if (tsk->throttle_disk)
1517 put_disk(tsk->throttle_disk);
1518 tsk->throttle_disk = NULL;
1519 }
1520
1521 struct cgroup_subsys io_cgrp_subsys = {
1522 .css_alloc = blkcg_css_alloc,
1523 .css_online = blkcg_css_online,
1524 .css_offline = blkcg_css_offline,
1525 .css_free = blkcg_css_free,
1526 .css_rstat_flush = blkcg_rstat_flush,
1527 .dfl_cftypes = blkcg_files,
1528 .legacy_cftypes = blkcg_legacy_files,
1529 .legacy_name = "blkio",
1530 .exit = blkcg_exit,
1531 #ifdef CONFIG_MEMCG
1532 /*
1533 * This ensures that, if available, memcg is automatically enabled
1534 * together on the default hierarchy so that the owner cgroup can
1535 * be retrieved from writeback pages.
1536 */
1537 .depends_on = 1 << memory_cgrp_id,
1538 #endif
1539 };
1540 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1541
1542 /**
1543 * blkcg_activate_policy - activate a blkcg policy on a gendisk
1544 * @disk: gendisk of interest
1545 * @pol: blkcg policy to activate
1546 *
1547 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1548 * bypass mode to populate its blkgs with policy_data for @pol.
1549 *
1550 * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1551 * from IO path. Update of each blkg is protected by both queue and blkcg
1552 * locks so that holding either lock and testing blkcg_policy_enabled() is
1553 * always enough for dereferencing policy data.
1554 *
1555 * The caller is responsible for synchronizing [de]activations and policy
1556 * [un]registerations. Returns 0 on success, -errno on failure.
1557 */
blkcg_activate_policy(struct gendisk * disk,const struct blkcg_policy * pol)1558 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1559 {
1560 struct request_queue *q = disk->queue;
1561 struct blkg_policy_data *pd_prealloc = NULL;
1562 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1563 int ret;
1564
1565 if (blkcg_policy_enabled(q, pol))
1566 return 0;
1567
1568 if (queue_is_mq(q))
1569 blk_mq_freeze_queue(q);
1570 retry:
1571 spin_lock_irq(&q->queue_lock);
1572
1573 /* blkg_list is pushed at the head, reverse walk to initialize parents first */
1574 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1575 struct blkg_policy_data *pd;
1576
1577 if (blkg->pd[pol->plid])
1578 continue;
1579
1580 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1581 if (blkg == pinned_blkg) {
1582 pd = pd_prealloc;
1583 pd_prealloc = NULL;
1584 } else {
1585 pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1586 GFP_NOWAIT | __GFP_NOWARN);
1587 }
1588
1589 if (!pd) {
1590 /*
1591 * GFP_NOWAIT failed. Free the existing one and
1592 * prealloc for @blkg w/ GFP_KERNEL.
1593 */
1594 if (pinned_blkg)
1595 blkg_put(pinned_blkg);
1596 blkg_get(blkg);
1597 pinned_blkg = blkg;
1598
1599 spin_unlock_irq(&q->queue_lock);
1600
1601 if (pd_prealloc)
1602 pol->pd_free_fn(pd_prealloc);
1603 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1604 GFP_KERNEL);
1605 if (pd_prealloc)
1606 goto retry;
1607 else
1608 goto enomem;
1609 }
1610
1611 spin_lock(&blkg->blkcg->lock);
1612
1613 pd->blkg = blkg;
1614 pd->plid = pol->plid;
1615 blkg->pd[pol->plid] = pd;
1616
1617 if (pol->pd_init_fn)
1618 pol->pd_init_fn(pd);
1619
1620 if (pol->pd_online_fn)
1621 pol->pd_online_fn(pd);
1622 pd->online = true;
1623
1624 spin_unlock(&blkg->blkcg->lock);
1625 }
1626
1627 __set_bit(pol->plid, q->blkcg_pols);
1628 ret = 0;
1629
1630 spin_unlock_irq(&q->queue_lock);
1631 out:
1632 if (queue_is_mq(q))
1633 blk_mq_unfreeze_queue(q);
1634 if (pinned_blkg)
1635 blkg_put(pinned_blkg);
1636 if (pd_prealloc)
1637 pol->pd_free_fn(pd_prealloc);
1638 return ret;
1639
1640 enomem:
1641 /* alloc failed, take down everything */
1642 spin_lock_irq(&q->queue_lock);
1643 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1644 struct blkcg *blkcg = blkg->blkcg;
1645 struct blkg_policy_data *pd;
1646
1647 spin_lock(&blkcg->lock);
1648 pd = blkg->pd[pol->plid];
1649 if (pd) {
1650 if (pd->online && pol->pd_offline_fn)
1651 pol->pd_offline_fn(pd);
1652 pd->online = false;
1653 pol->pd_free_fn(pd);
1654 blkg->pd[pol->plid] = NULL;
1655 }
1656 spin_unlock(&blkcg->lock);
1657 }
1658 spin_unlock_irq(&q->queue_lock);
1659 ret = -ENOMEM;
1660 goto out;
1661 }
1662 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1663
1664 /**
1665 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1666 * @disk: gendisk of interest
1667 * @pol: blkcg policy to deactivate
1668 *
1669 * Deactivate @pol on @disk. Follows the same synchronization rules as
1670 * blkcg_activate_policy().
1671 */
blkcg_deactivate_policy(struct gendisk * disk,const struct blkcg_policy * pol)1672 void blkcg_deactivate_policy(struct gendisk *disk,
1673 const struct blkcg_policy *pol)
1674 {
1675 struct request_queue *q = disk->queue;
1676 struct blkcg_gq *blkg;
1677
1678 if (!blkcg_policy_enabled(q, pol))
1679 return;
1680
1681 if (queue_is_mq(q))
1682 blk_mq_freeze_queue(q);
1683
1684 mutex_lock(&q->blkcg_mutex);
1685 spin_lock_irq(&q->queue_lock);
1686
1687 __clear_bit(pol->plid, q->blkcg_pols);
1688
1689 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1690 struct blkcg *blkcg = blkg->blkcg;
1691
1692 spin_lock(&blkcg->lock);
1693 if (blkg->pd[pol->plid]) {
1694 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1695 pol->pd_offline_fn(blkg->pd[pol->plid]);
1696 pol->pd_free_fn(blkg->pd[pol->plid]);
1697 blkg->pd[pol->plid] = NULL;
1698 }
1699 spin_unlock(&blkcg->lock);
1700 }
1701
1702 spin_unlock_irq(&q->queue_lock);
1703 mutex_unlock(&q->blkcg_mutex);
1704
1705 if (queue_is_mq(q))
1706 blk_mq_unfreeze_queue(q);
1707 }
1708 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1709
blkcg_free_all_cpd(struct blkcg_policy * pol)1710 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1711 {
1712 struct blkcg *blkcg;
1713
1714 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1715 if (blkcg->cpd[pol->plid]) {
1716 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1717 blkcg->cpd[pol->plid] = NULL;
1718 }
1719 }
1720 }
1721
1722 /**
1723 * blkcg_policy_register - register a blkcg policy
1724 * @pol: blkcg policy to register
1725 *
1726 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1727 * successful registration. Returns 0 on success and -errno on failure.
1728 */
blkcg_policy_register(struct blkcg_policy * pol)1729 int blkcg_policy_register(struct blkcg_policy *pol)
1730 {
1731 struct blkcg *blkcg;
1732 int i, ret;
1733
1734 mutex_lock(&blkcg_pol_register_mutex);
1735 mutex_lock(&blkcg_pol_mutex);
1736
1737 /* find an empty slot */
1738 ret = -ENOSPC;
1739 for (i = 0; i < BLKCG_MAX_POLS; i++)
1740 if (!blkcg_policy[i])
1741 break;
1742 if (i >= BLKCG_MAX_POLS) {
1743 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1744 goto err_unlock;
1745 }
1746
1747 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1748 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1749 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1750 goto err_unlock;
1751
1752 /* register @pol */
1753 pol->plid = i;
1754 blkcg_policy[pol->plid] = pol;
1755
1756 /* allocate and install cpd's */
1757 if (pol->cpd_alloc_fn) {
1758 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1759 struct blkcg_policy_data *cpd;
1760
1761 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1762 if (!cpd)
1763 goto err_free_cpds;
1764
1765 blkcg->cpd[pol->plid] = cpd;
1766 cpd->blkcg = blkcg;
1767 cpd->plid = pol->plid;
1768 }
1769 }
1770
1771 mutex_unlock(&blkcg_pol_mutex);
1772
1773 /* everything is in place, add intf files for the new policy */
1774 if (pol->dfl_cftypes)
1775 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1776 pol->dfl_cftypes));
1777 if (pol->legacy_cftypes)
1778 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1779 pol->legacy_cftypes));
1780 mutex_unlock(&blkcg_pol_register_mutex);
1781 return 0;
1782
1783 err_free_cpds:
1784 if (pol->cpd_free_fn)
1785 blkcg_free_all_cpd(pol);
1786
1787 blkcg_policy[pol->plid] = NULL;
1788 err_unlock:
1789 mutex_unlock(&blkcg_pol_mutex);
1790 mutex_unlock(&blkcg_pol_register_mutex);
1791 return ret;
1792 }
1793 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1794
1795 /**
1796 * blkcg_policy_unregister - unregister a blkcg policy
1797 * @pol: blkcg policy to unregister
1798 *
1799 * Undo blkcg_policy_register(@pol). Might sleep.
1800 */
blkcg_policy_unregister(struct blkcg_policy * pol)1801 void blkcg_policy_unregister(struct blkcg_policy *pol)
1802 {
1803 mutex_lock(&blkcg_pol_register_mutex);
1804
1805 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1806 goto out_unlock;
1807
1808 /* kill the intf files first */
1809 if (pol->dfl_cftypes)
1810 cgroup_rm_cftypes(pol->dfl_cftypes);
1811 if (pol->legacy_cftypes)
1812 cgroup_rm_cftypes(pol->legacy_cftypes);
1813
1814 /* remove cpds and unregister */
1815 mutex_lock(&blkcg_pol_mutex);
1816
1817 if (pol->cpd_free_fn)
1818 blkcg_free_all_cpd(pol);
1819
1820 blkcg_policy[pol->plid] = NULL;
1821
1822 mutex_unlock(&blkcg_pol_mutex);
1823 out_unlock:
1824 mutex_unlock(&blkcg_pol_register_mutex);
1825 }
1826 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1827
1828 /*
1829 * Scale the accumulated delay based on how long it has been since we updated
1830 * the delay. We only call this when we are adding delay, in case it's been a
1831 * while since we added delay, and when we are checking to see if we need to
1832 * delay a task, to account for any delays that may have occurred.
1833 */
blkcg_scale_delay(struct blkcg_gq * blkg,u64 now)1834 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1835 {
1836 u64 old = atomic64_read(&blkg->delay_start);
1837
1838 /* negative use_delay means no scaling, see blkcg_set_delay() */
1839 if (atomic_read(&blkg->use_delay) < 0)
1840 return;
1841
1842 /*
1843 * We only want to scale down every second. The idea here is that we
1844 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1845 * time window. We only want to throttle tasks for recent delay that
1846 * has occurred, in 1 second time windows since that's the maximum
1847 * things can be throttled. We save the current delay window in
1848 * blkg->last_delay so we know what amount is still left to be charged
1849 * to the blkg from this point onward. blkg->last_use keeps track of
1850 * the use_delay counter. The idea is if we're unthrottling the blkg we
1851 * are ok with whatever is happening now, and we can take away more of
1852 * the accumulated delay as we've already throttled enough that
1853 * everybody is happy with their IO latencies.
1854 */
1855 if (time_before64(old + NSEC_PER_SEC, now) &&
1856 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1857 u64 cur = atomic64_read(&blkg->delay_nsec);
1858 u64 sub = min_t(u64, blkg->last_delay, now - old);
1859 int cur_use = atomic_read(&blkg->use_delay);
1860
1861 /*
1862 * We've been unthrottled, subtract a larger chunk of our
1863 * accumulated delay.
1864 */
1865 if (cur_use < blkg->last_use)
1866 sub = max_t(u64, sub, blkg->last_delay >> 1);
1867
1868 /*
1869 * This shouldn't happen, but handle it anyway. Our delay_nsec
1870 * should only ever be growing except here where we subtract out
1871 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1872 * rather not end up with negative numbers.
1873 */
1874 if (unlikely(cur < sub)) {
1875 atomic64_set(&blkg->delay_nsec, 0);
1876 blkg->last_delay = 0;
1877 } else {
1878 atomic64_sub(sub, &blkg->delay_nsec);
1879 blkg->last_delay = cur - sub;
1880 }
1881 blkg->last_use = cur_use;
1882 }
1883 }
1884
1885 /*
1886 * This is called when we want to actually walk up the hierarchy and check to
1887 * see if we need to throttle, and then actually throttle if there is some
1888 * accumulated delay. This should only be called upon return to user space so
1889 * we're not holding some lock that would induce a priority inversion.
1890 */
blkcg_maybe_throttle_blkg(struct blkcg_gq * blkg,bool use_memdelay)1891 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1892 {
1893 unsigned long pflags;
1894 bool clamp;
1895 u64 now = ktime_to_ns(ktime_get());
1896 u64 exp;
1897 u64 delay_nsec = 0;
1898 int tok;
1899
1900 while (blkg->parent) {
1901 int use_delay = atomic_read(&blkg->use_delay);
1902
1903 if (use_delay) {
1904 u64 this_delay;
1905
1906 blkcg_scale_delay(blkg, now);
1907 this_delay = atomic64_read(&blkg->delay_nsec);
1908 if (this_delay > delay_nsec) {
1909 delay_nsec = this_delay;
1910 clamp = use_delay > 0;
1911 }
1912 }
1913 blkg = blkg->parent;
1914 }
1915
1916 if (!delay_nsec)
1917 return;
1918
1919 /*
1920 * Let's not sleep for all eternity if we've amassed a huge delay.
1921 * Swapping or metadata IO can accumulate 10's of seconds worth of
1922 * delay, and we want userspace to be able to do _something_ so cap the
1923 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1924 * tasks will be delayed for 0.25 second for every syscall. If
1925 * blkcg_set_delay() was used as indicated by negative use_delay, the
1926 * caller is responsible for regulating the range.
1927 */
1928 if (clamp)
1929 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1930
1931 if (use_memdelay)
1932 psi_memstall_enter(&pflags);
1933
1934 exp = ktime_add_ns(now, delay_nsec);
1935 tok = io_schedule_prepare();
1936 do {
1937 __set_current_state(TASK_KILLABLE);
1938 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1939 break;
1940 } while (!fatal_signal_pending(current));
1941 io_schedule_finish(tok);
1942
1943 if (use_memdelay)
1944 psi_memstall_leave(&pflags);
1945 }
1946
1947 /**
1948 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1949 *
1950 * This is only called if we've been marked with set_notify_resume(). Obviously
1951 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1952 * check to see if current->throttle_disk is set and if not this doesn't do
1953 * anything. This should only ever be called by the resume code, it's not meant
1954 * to be called by people willy-nilly as it will actually do the work to
1955 * throttle the task if it is setup for throttling.
1956 */
blkcg_maybe_throttle_current(void)1957 void blkcg_maybe_throttle_current(void)
1958 {
1959 struct gendisk *disk = current->throttle_disk;
1960 struct blkcg *blkcg;
1961 struct blkcg_gq *blkg;
1962 bool use_memdelay = current->use_memdelay;
1963
1964 if (!disk)
1965 return;
1966
1967 current->throttle_disk = NULL;
1968 current->use_memdelay = false;
1969
1970 rcu_read_lock();
1971 blkcg = css_to_blkcg(blkcg_css());
1972 if (!blkcg)
1973 goto out;
1974 blkg = blkg_lookup(blkcg, disk->queue);
1975 if (!blkg)
1976 goto out;
1977 if (!blkg_tryget(blkg))
1978 goto out;
1979 rcu_read_unlock();
1980
1981 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1982 blkg_put(blkg);
1983 put_disk(disk);
1984 return;
1985 out:
1986 rcu_read_unlock();
1987 }
1988
1989 /**
1990 * blkcg_schedule_throttle - this task needs to check for throttling
1991 * @disk: disk to throttle
1992 * @use_memdelay: do we charge this to memory delay for PSI
1993 *
1994 * This is called by the IO controller when we know there's delay accumulated
1995 * for the blkg for this task. We do not pass the blkg because there are places
1996 * we call this that may not have that information, the swapping code for
1997 * instance will only have a block_device at that point. This set's the
1998 * notify_resume for the task to check and see if it requires throttling before
1999 * returning to user space.
2000 *
2001 * We will only schedule once per syscall. You can call this over and over
2002 * again and it will only do the check once upon return to user space, and only
2003 * throttle once. If the task needs to be throttled again it'll need to be
2004 * re-set at the next time we see the task.
2005 */
blkcg_schedule_throttle(struct gendisk * disk,bool use_memdelay)2006 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
2007 {
2008 if (unlikely(current->flags & PF_KTHREAD))
2009 return;
2010
2011 if (current->throttle_disk != disk) {
2012 if (test_bit(GD_DEAD, &disk->state))
2013 return;
2014 get_device(disk_to_dev(disk));
2015
2016 if (current->throttle_disk)
2017 put_disk(current->throttle_disk);
2018 current->throttle_disk = disk;
2019 }
2020
2021 if (use_memdelay)
2022 current->use_memdelay = use_memdelay;
2023 set_notify_resume(current);
2024 }
2025
2026 /**
2027 * blkcg_add_delay - add delay to this blkg
2028 * @blkg: blkg of interest
2029 * @now: the current time in nanoseconds
2030 * @delta: how many nanoseconds of delay to add
2031 *
2032 * Charge @delta to the blkg's current delay accumulation. This is used to
2033 * throttle tasks if an IO controller thinks we need more throttling.
2034 */
blkcg_add_delay(struct blkcg_gq * blkg,u64 now,u64 delta)2035 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
2036 {
2037 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
2038 return;
2039 blkcg_scale_delay(blkg, now);
2040 atomic64_add(delta, &blkg->delay_nsec);
2041 }
2042
2043 /**
2044 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
2045 * @bio: target bio
2046 * @css: target css
2047 *
2048 * As the failure mode here is to walk up the blkg tree, this ensure that the
2049 * blkg->parent pointers are always valid. This returns the blkg that it ended
2050 * up taking a reference on or %NULL if no reference was taken.
2051 */
blkg_tryget_closest(struct bio * bio,struct cgroup_subsys_state * css)2052 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
2053 struct cgroup_subsys_state *css)
2054 {
2055 struct blkcg_gq *blkg, *ret_blkg = NULL;
2056
2057 rcu_read_lock();
2058 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
2059 while (blkg) {
2060 if (blkg_tryget(blkg)) {
2061 ret_blkg = blkg;
2062 break;
2063 }
2064 blkg = blkg->parent;
2065 }
2066 rcu_read_unlock();
2067
2068 return ret_blkg;
2069 }
2070
2071 /**
2072 * bio_associate_blkg_from_css - associate a bio with a specified css
2073 * @bio: target bio
2074 * @css: target css
2075 *
2076 * Associate @bio with the blkg found by combining the css's blkg and the
2077 * request_queue of the @bio. An association failure is handled by walking up
2078 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
2079 * and q->root_blkg. This situation only happens when a cgroup is dying and
2080 * then the remaining bios will spill to the closest alive blkg.
2081 *
2082 * A reference will be taken on the blkg and will be released when @bio is
2083 * freed.
2084 */
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)2085 void bio_associate_blkg_from_css(struct bio *bio,
2086 struct cgroup_subsys_state *css)
2087 {
2088 if (bio->bi_blkg)
2089 blkg_put(bio->bi_blkg);
2090
2091 if (css && css->parent) {
2092 bio->bi_blkg = blkg_tryget_closest(bio, css);
2093 } else {
2094 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2095 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2096 }
2097 }
2098 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2099
2100 /**
2101 * bio_associate_blkg - associate a bio with a blkg
2102 * @bio: target bio
2103 *
2104 * Associate @bio with the blkg found from the bio's css and request_queue.
2105 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2106 * already associated, the css is reused and association redone as the
2107 * request_queue may have changed.
2108 */
bio_associate_blkg(struct bio * bio)2109 void bio_associate_blkg(struct bio *bio)
2110 {
2111 struct cgroup_subsys_state *css;
2112
2113 rcu_read_lock();
2114
2115 if (bio->bi_blkg)
2116 css = bio_blkcg_css(bio);
2117 else
2118 css = blkcg_css();
2119
2120 bio_associate_blkg_from_css(bio, css);
2121
2122 rcu_read_unlock();
2123 }
2124 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2125
2126 /**
2127 * bio_clone_blkg_association - clone blkg association from src to dst bio
2128 * @dst: destination bio
2129 * @src: source bio
2130 */
bio_clone_blkg_association(struct bio * dst,struct bio * src)2131 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2132 {
2133 if (src->bi_blkg)
2134 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2135 }
2136 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2137
blk_cgroup_io_type(struct bio * bio)2138 static int blk_cgroup_io_type(struct bio *bio)
2139 {
2140 if (op_is_discard(bio->bi_opf))
2141 return BLKG_IOSTAT_DISCARD;
2142 if (op_is_write(bio->bi_opf))
2143 return BLKG_IOSTAT_WRITE;
2144 return BLKG_IOSTAT_READ;
2145 }
2146
blk_cgroup_bio_start(struct bio * bio)2147 void blk_cgroup_bio_start(struct bio *bio)
2148 {
2149 struct blkcg *blkcg = bio->bi_blkg->blkcg;
2150 int rwd = blk_cgroup_io_type(bio), cpu;
2151 struct blkg_iostat_set *bis;
2152 unsigned long flags;
2153
2154 if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2155 return;
2156
2157 /* Root-level stats are sourced from system-wide IO stats */
2158 if (!cgroup_parent(blkcg->css.cgroup))
2159 return;
2160
2161 cpu = get_cpu();
2162 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2163 flags = u64_stats_update_begin_irqsave(&bis->sync);
2164
2165 /*
2166 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2167 * bio and we would have already accounted for the size of the bio.
2168 */
2169 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2170 bio_set_flag(bio, BIO_CGROUP_ACCT);
2171 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2172 }
2173 bis->cur.ios[rwd]++;
2174
2175 /*
2176 * If the iostat_cpu isn't in a lockless list, put it into the
2177 * list to indicate that a stat update is pending.
2178 */
2179 if (!READ_ONCE(bis->lqueued)) {
2180 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2181
2182 llist_add(&bis->lnode, lhead);
2183 WRITE_ONCE(bis->lqueued, true);
2184 }
2185
2186 u64_stats_update_end_irqrestore(&bis->sync, flags);
2187 cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2188 put_cpu();
2189 }
2190
blk_cgroup_congested(void)2191 bool blk_cgroup_congested(void)
2192 {
2193 struct cgroup_subsys_state *css;
2194 bool ret = false;
2195
2196 rcu_read_lock();
2197 for (css = blkcg_css(); css; css = css->parent) {
2198 if (atomic_read(&css->cgroup->congestion_count)) {
2199 ret = true;
2200 break;
2201 }
2202 }
2203 rcu_read_unlock();
2204 return ret;
2205 }
2206
2207 module_param(blkcg_debug_stats, bool, 0644);
2208 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2209