xref: /openbmc/linux/block/blk-mq.c (revision ed4543328f7108e1047b83b96ca7f7208747d930)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46 static DEFINE_MUTEX(blk_mq_cpuhp_lock);
47 
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 		blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 		struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 			 struct io_comp_batch *iob, unsigned int flags);
55 
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 	return !list_empty_careful(&hctx->dispatch) ||
63 		sbitmap_any_bit_set(&hctx->ctx_map) ||
64 			blk_mq_sched_has_work(hctx);
65 }
66 
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 				     struct blk_mq_ctx *ctx)
72 {
73 	const int bit = ctx->index_hw[hctx->type];
74 
75 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 		sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78 
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 				      struct blk_mq_ctx *ctx)
81 {
82 	const int bit = ctx->index_hw[hctx->type];
83 
84 	sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86 
87 struct mq_inflight {
88 	struct block_device *part;
89 	unsigned int inflight[2];
90 };
91 
blk_mq_check_inflight(struct request * rq,void * priv)92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94 	struct mq_inflight *mi = priv;
95 
96 	if (rq->part && blk_do_io_stat(rq) &&
97 	    (!mi->part->bd_partno || rq->part == mi->part) &&
98 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 		mi->inflight[rq_data_dir(rq)]++;
100 
101 	return true;
102 }
103 
blk_mq_in_flight(struct request_queue * q,struct block_device * part)104 unsigned int blk_mq_in_flight(struct request_queue *q,
105 		struct block_device *part)
106 {
107 	struct mq_inflight mi = { .part = part };
108 
109 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110 
111 	return mi.inflight[0] + mi.inflight[1];
112 }
113 
blk_mq_in_flight_rw(struct request_queue * q,struct block_device * part,unsigned int inflight[2])114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115 		unsigned int inflight[2])
116 {
117 	struct mq_inflight mi = { .part = part };
118 
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 	inflight[0] = mi.inflight[0];
121 	inflight[1] = mi.inflight[1];
122 }
123 
blk_freeze_queue_start(struct request_queue * q)124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126 	mutex_lock(&q->mq_freeze_lock);
127 	if (++q->mq_freeze_depth == 1) {
128 		percpu_ref_kill(&q->q_usage_counter);
129 		mutex_unlock(&q->mq_freeze_lock);
130 		if (queue_is_mq(q))
131 			blk_mq_run_hw_queues(q, false);
132 	} else {
133 		mutex_unlock(&q->mq_freeze_lock);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137 
blk_mq_freeze_queue_wait(struct request_queue * q)138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143 
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145 				     unsigned long timeout)
146 {
147 	return wait_event_timeout(q->mq_freeze_wq,
148 					percpu_ref_is_zero(&q->q_usage_counter),
149 					timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152 
153 /*
154  * Guarantee no request is in use, so we can change any data structure of
155  * the queue afterward.
156  */
blk_freeze_queue(struct request_queue * q)157 void blk_freeze_queue(struct request_queue *q)
158 {
159 	/*
160 	 * In the !blk_mq case we are only calling this to kill the
161 	 * q_usage_counter, otherwise this increases the freeze depth
162 	 * and waits for it to return to zero.  For this reason there is
163 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164 	 * exported to drivers as the only user for unfreeze is blk_mq.
165 	 */
166 	blk_freeze_queue_start(q);
167 	blk_mq_freeze_queue_wait(q);
168 }
169 
blk_mq_freeze_queue(struct request_queue * q)170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172 	/*
173 	 * ...just an alias to keep freeze and unfreeze actions balanced
174 	 * in the blk_mq_* namespace
175 	 */
176 	blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179 
__blk_mq_unfreeze_queue(struct request_queue * q,bool force_atomic)180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182 	mutex_lock(&q->mq_freeze_lock);
183 	if (force_atomic)
184 		q->q_usage_counter.data->force_atomic = true;
185 	q->mq_freeze_depth--;
186 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
187 	if (!q->mq_freeze_depth) {
188 		percpu_ref_resurrect(&q->q_usage_counter);
189 		wake_up_all(&q->mq_freeze_wq);
190 	}
191 	mutex_unlock(&q->mq_freeze_lock);
192 }
193 
blk_mq_unfreeze_queue(struct request_queue * q)194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 	__blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199 
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
blk_mq_quiesce_queue_nowait(struct request_queue * q)204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206 	unsigned long flags;
207 
208 	spin_lock_irqsave(&q->queue_lock, flags);
209 	if (!q->quiesce_depth++)
210 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 	spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214 
215 /**
216  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217  * @set: tag_set to wait on
218  *
219  * Note: it is driver's responsibility for making sure that quiesce has
220  * been started on or more of the request_queues of the tag_set.  This
221  * function only waits for the quiesce on those request_queues that had
222  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223  */
blk_mq_wait_quiesce_done(struct blk_mq_tag_set * set)224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226 	if (set->flags & BLK_MQ_F_BLOCKING)
227 		synchronize_srcu(set->srcu);
228 	else
229 		synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232 
233 /**
234  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235  * @q: request queue.
236  *
237  * Note: this function does not prevent that the struct request end_io()
238  * callback function is invoked. Once this function is returned, we make
239  * sure no dispatch can happen until the queue is unquiesced via
240  * blk_mq_unquiesce_queue().
241  */
blk_mq_quiesce_queue(struct request_queue * q)242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244 	blk_mq_quiesce_queue_nowait(q);
245 	/* nothing to wait for non-mq queues */
246 	if (queue_is_mq(q))
247 		blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250 
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
blk_mq_unquiesce_queue(struct request_queue * q)258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260 	unsigned long flags;
261 	bool run_queue = false;
262 
263 	spin_lock_irqsave(&q->queue_lock, flags);
264 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265 		;
266 	} else if (!--q->quiesce_depth) {
267 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268 		run_queue = true;
269 	}
270 	spin_unlock_irqrestore(&q->queue_lock, flags);
271 
272 	/* dispatch requests which are inserted during quiescing */
273 	if (run_queue)
274 		blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277 
blk_mq_quiesce_tagset(struct blk_mq_tag_set * set)278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280 	struct request_queue *q;
281 
282 	mutex_lock(&set->tag_list_lock);
283 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
284 		if (!blk_queue_skip_tagset_quiesce(q))
285 			blk_mq_quiesce_queue_nowait(q);
286 	}
287 	mutex_unlock(&set->tag_list_lock);
288 
289 	blk_mq_wait_quiesce_done(set);
290 }
291 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
292 
blk_mq_unquiesce_tagset(struct blk_mq_tag_set * set)293 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
294 {
295 	struct request_queue *q;
296 
297 	mutex_lock(&set->tag_list_lock);
298 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
299 		if (!blk_queue_skip_tagset_quiesce(q))
300 			blk_mq_unquiesce_queue(q);
301 	}
302 	mutex_unlock(&set->tag_list_lock);
303 }
304 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
305 
blk_mq_wake_waiters(struct request_queue * q)306 void blk_mq_wake_waiters(struct request_queue *q)
307 {
308 	struct blk_mq_hw_ctx *hctx;
309 	unsigned long i;
310 
311 	queue_for_each_hw_ctx(q, hctx, i)
312 		if (blk_mq_hw_queue_mapped(hctx))
313 			blk_mq_tag_wakeup_all(hctx->tags, true);
314 }
315 
blk_rq_init(struct request_queue * q,struct request * rq)316 void blk_rq_init(struct request_queue *q, struct request *rq)
317 {
318 	memset(rq, 0, sizeof(*rq));
319 
320 	INIT_LIST_HEAD(&rq->queuelist);
321 	rq->q = q;
322 	rq->__sector = (sector_t) -1;
323 	INIT_HLIST_NODE(&rq->hash);
324 	RB_CLEAR_NODE(&rq->rb_node);
325 	rq->tag = BLK_MQ_NO_TAG;
326 	rq->internal_tag = BLK_MQ_NO_TAG;
327 	rq->start_time_ns = ktime_get_ns();
328 	rq->part = NULL;
329 	blk_crypto_rq_set_defaults(rq);
330 }
331 EXPORT_SYMBOL(blk_rq_init);
332 
333 /* Set start and alloc time when the allocated request is actually used */
blk_mq_rq_time_init(struct request * rq,u64 alloc_time_ns)334 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
335 {
336 	if (blk_mq_need_time_stamp(rq))
337 		rq->start_time_ns = ktime_get_ns();
338 	else
339 		rq->start_time_ns = 0;
340 
341 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
342 	if (blk_queue_rq_alloc_time(rq->q))
343 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
344 	else
345 		rq->alloc_time_ns = 0;
346 #endif
347 }
348 
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,struct blk_mq_tags * tags,unsigned int tag)349 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
350 		struct blk_mq_tags *tags, unsigned int tag)
351 {
352 	struct blk_mq_ctx *ctx = data->ctx;
353 	struct blk_mq_hw_ctx *hctx = data->hctx;
354 	struct request_queue *q = data->q;
355 	struct request *rq = tags->static_rqs[tag];
356 
357 	rq->q = q;
358 	rq->mq_ctx = ctx;
359 	rq->mq_hctx = hctx;
360 	rq->cmd_flags = data->cmd_flags;
361 
362 	if (data->flags & BLK_MQ_REQ_PM)
363 		data->rq_flags |= RQF_PM;
364 	if (blk_queue_io_stat(q))
365 		data->rq_flags |= RQF_IO_STAT;
366 	rq->rq_flags = data->rq_flags;
367 
368 	if (data->rq_flags & RQF_SCHED_TAGS) {
369 		rq->tag = BLK_MQ_NO_TAG;
370 		rq->internal_tag = tag;
371 	} else {
372 		rq->tag = tag;
373 		rq->internal_tag = BLK_MQ_NO_TAG;
374 	}
375 	rq->timeout = 0;
376 
377 	rq->part = NULL;
378 	rq->io_start_time_ns = 0;
379 	rq->stats_sectors = 0;
380 	rq->nr_phys_segments = 0;
381 #if defined(CONFIG_BLK_DEV_INTEGRITY)
382 	rq->nr_integrity_segments = 0;
383 #endif
384 	rq->end_io = NULL;
385 	rq->end_io_data = NULL;
386 
387 	blk_crypto_rq_set_defaults(rq);
388 	INIT_LIST_HEAD(&rq->queuelist);
389 	/* tag was already set */
390 	WRITE_ONCE(rq->deadline, 0);
391 	req_ref_set(rq, 1);
392 
393 	if (rq->rq_flags & RQF_USE_SCHED) {
394 		struct elevator_queue *e = data->q->elevator;
395 
396 		INIT_HLIST_NODE(&rq->hash);
397 		RB_CLEAR_NODE(&rq->rb_node);
398 
399 		if (e->type->ops.prepare_request)
400 			e->type->ops.prepare_request(rq);
401 	}
402 
403 	return rq;
404 }
405 
406 static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data * data)407 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
408 {
409 	unsigned int tag, tag_offset;
410 	struct blk_mq_tags *tags;
411 	struct request *rq;
412 	unsigned long tag_mask;
413 	int i, nr = 0;
414 
415 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
416 	if (unlikely(!tag_mask))
417 		return NULL;
418 
419 	tags = blk_mq_tags_from_data(data);
420 	for (i = 0; tag_mask; i++) {
421 		if (!(tag_mask & (1UL << i)))
422 			continue;
423 		tag = tag_offset + i;
424 		prefetch(tags->static_rqs[tag]);
425 		tag_mask &= ~(1UL << i);
426 		rq = blk_mq_rq_ctx_init(data, tags, tag);
427 		rq_list_add(data->cached_rq, rq);
428 		nr++;
429 	}
430 	/* caller already holds a reference, add for remainder */
431 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
432 	data->nr_tags -= nr;
433 
434 	return rq_list_pop(data->cached_rq);
435 }
436 
__blk_mq_alloc_requests(struct blk_mq_alloc_data * data)437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
438 {
439 	struct request_queue *q = data->q;
440 	u64 alloc_time_ns = 0;
441 	struct request *rq;
442 	unsigned int tag;
443 
444 	/* alloc_time includes depth and tag waits */
445 	if (blk_queue_rq_alloc_time(q))
446 		alloc_time_ns = ktime_get_ns();
447 
448 	if (data->cmd_flags & REQ_NOWAIT)
449 		data->flags |= BLK_MQ_REQ_NOWAIT;
450 
451 retry:
452 	data->ctx = blk_mq_get_ctx(q);
453 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
454 
455 	if (q->elevator) {
456 		/*
457 		 * All requests use scheduler tags when an I/O scheduler is
458 		 * enabled for the queue.
459 		 */
460 		data->rq_flags |= RQF_SCHED_TAGS;
461 
462 		/*
463 		 * Flush/passthrough requests are special and go directly to the
464 		 * dispatch list.
465 		 */
466 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
467 		    !blk_op_is_passthrough(data->cmd_flags)) {
468 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
469 
470 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
471 
472 			data->rq_flags |= RQF_USE_SCHED;
473 			if (ops->limit_depth)
474 				ops->limit_depth(data->cmd_flags, data);
475 		}
476 	} else {
477 		blk_mq_tag_busy(data->hctx);
478 	}
479 
480 	if (data->flags & BLK_MQ_REQ_RESERVED)
481 		data->rq_flags |= RQF_RESV;
482 
483 	/*
484 	 * Try batched alloc if we want more than 1 tag.
485 	 */
486 	if (data->nr_tags > 1) {
487 		rq = __blk_mq_alloc_requests_batch(data);
488 		if (rq) {
489 			blk_mq_rq_time_init(rq, alloc_time_ns);
490 			return rq;
491 		}
492 		data->nr_tags = 1;
493 	}
494 
495 	/*
496 	 * Waiting allocations only fail because of an inactive hctx.  In that
497 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
498 	 * should have migrated us to an online CPU by now.
499 	 */
500 	tag = blk_mq_get_tag(data);
501 	if (tag == BLK_MQ_NO_TAG) {
502 		if (data->flags & BLK_MQ_REQ_NOWAIT)
503 			return NULL;
504 		/*
505 		 * Give up the CPU and sleep for a random short time to
506 		 * ensure that thread using a realtime scheduling class
507 		 * are migrated off the CPU, and thus off the hctx that
508 		 * is going away.
509 		 */
510 		msleep(3);
511 		goto retry;
512 	}
513 
514 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
515 	blk_mq_rq_time_init(rq, alloc_time_ns);
516 	return rq;
517 }
518 
blk_mq_rq_cache_fill(struct request_queue * q,struct blk_plug * plug,blk_opf_t opf,blk_mq_req_flags_t flags)519 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
520 					    struct blk_plug *plug,
521 					    blk_opf_t opf,
522 					    blk_mq_req_flags_t flags)
523 {
524 	struct blk_mq_alloc_data data = {
525 		.q		= q,
526 		.flags		= flags,
527 		.cmd_flags	= opf,
528 		.nr_tags	= plug->nr_ios,
529 		.cached_rq	= &plug->cached_rq,
530 	};
531 	struct request *rq;
532 
533 	if (blk_queue_enter(q, flags))
534 		return NULL;
535 
536 	plug->nr_ios = 1;
537 
538 	rq = __blk_mq_alloc_requests(&data);
539 	if (unlikely(!rq))
540 		blk_queue_exit(q);
541 	return rq;
542 }
543 
blk_mq_alloc_cached_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)544 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
545 						   blk_opf_t opf,
546 						   blk_mq_req_flags_t flags)
547 {
548 	struct blk_plug *plug = current->plug;
549 	struct request *rq;
550 
551 	if (!plug)
552 		return NULL;
553 
554 	if (rq_list_empty(plug->cached_rq)) {
555 		if (plug->nr_ios == 1)
556 			return NULL;
557 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
558 		if (!rq)
559 			return NULL;
560 	} else {
561 		rq = rq_list_peek(&plug->cached_rq);
562 		if (!rq || rq->q != q)
563 			return NULL;
564 
565 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
566 			return NULL;
567 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
568 			return NULL;
569 
570 		plug->cached_rq = rq_list_next(rq);
571 		blk_mq_rq_time_init(rq, 0);
572 	}
573 
574 	rq->cmd_flags = opf;
575 	INIT_LIST_HEAD(&rq->queuelist);
576 	return rq;
577 }
578 
blk_mq_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)579 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
580 		blk_mq_req_flags_t flags)
581 {
582 	struct request *rq;
583 
584 	rq = blk_mq_alloc_cached_request(q, opf, flags);
585 	if (!rq) {
586 		struct blk_mq_alloc_data data = {
587 			.q		= q,
588 			.flags		= flags,
589 			.cmd_flags	= opf,
590 			.nr_tags	= 1,
591 		};
592 		int ret;
593 
594 		ret = blk_queue_enter(q, flags);
595 		if (ret)
596 			return ERR_PTR(ret);
597 
598 		rq = __blk_mq_alloc_requests(&data);
599 		if (!rq)
600 			goto out_queue_exit;
601 	}
602 	rq->__data_len = 0;
603 	rq->__sector = (sector_t) -1;
604 	rq->bio = rq->biotail = NULL;
605 	return rq;
606 out_queue_exit:
607 	blk_queue_exit(q);
608 	return ERR_PTR(-EWOULDBLOCK);
609 }
610 EXPORT_SYMBOL(blk_mq_alloc_request);
611 
blk_mq_alloc_request_hctx(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags,unsigned int hctx_idx)612 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
613 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
614 {
615 	struct blk_mq_alloc_data data = {
616 		.q		= q,
617 		.flags		= flags,
618 		.cmd_flags	= opf,
619 		.nr_tags	= 1,
620 	};
621 	u64 alloc_time_ns = 0;
622 	struct request *rq;
623 	unsigned int cpu;
624 	unsigned int tag;
625 	int ret;
626 
627 	/* alloc_time includes depth and tag waits */
628 	if (blk_queue_rq_alloc_time(q))
629 		alloc_time_ns = ktime_get_ns();
630 
631 	/*
632 	 * If the tag allocator sleeps we could get an allocation for a
633 	 * different hardware context.  No need to complicate the low level
634 	 * allocator for this for the rare use case of a command tied to
635 	 * a specific queue.
636 	 */
637 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
638 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
639 		return ERR_PTR(-EINVAL);
640 
641 	if (hctx_idx >= q->nr_hw_queues)
642 		return ERR_PTR(-EIO);
643 
644 	ret = blk_queue_enter(q, flags);
645 	if (ret)
646 		return ERR_PTR(ret);
647 
648 	/*
649 	 * Check if the hardware context is actually mapped to anything.
650 	 * If not tell the caller that it should skip this queue.
651 	 */
652 	ret = -EXDEV;
653 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
654 	if (!blk_mq_hw_queue_mapped(data.hctx))
655 		goto out_queue_exit;
656 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
657 	if (cpu >= nr_cpu_ids)
658 		goto out_queue_exit;
659 	data.ctx = __blk_mq_get_ctx(q, cpu);
660 
661 	if (q->elevator)
662 		data.rq_flags |= RQF_SCHED_TAGS;
663 	else
664 		blk_mq_tag_busy(data.hctx);
665 
666 	if (flags & BLK_MQ_REQ_RESERVED)
667 		data.rq_flags |= RQF_RESV;
668 
669 	ret = -EWOULDBLOCK;
670 	tag = blk_mq_get_tag(&data);
671 	if (tag == BLK_MQ_NO_TAG)
672 		goto out_queue_exit;
673 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
674 	blk_mq_rq_time_init(rq, alloc_time_ns);
675 	rq->__data_len = 0;
676 	rq->__sector = (sector_t) -1;
677 	rq->bio = rq->biotail = NULL;
678 	return rq;
679 
680 out_queue_exit:
681 	blk_queue_exit(q);
682 	return ERR_PTR(ret);
683 }
684 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
685 
blk_mq_finish_request(struct request * rq)686 static void blk_mq_finish_request(struct request *rq)
687 {
688 	struct request_queue *q = rq->q;
689 
690 	if (rq->rq_flags & RQF_USE_SCHED) {
691 		q->elevator->type->ops.finish_request(rq);
692 		/*
693 		 * For postflush request that may need to be
694 		 * completed twice, we should clear this flag
695 		 * to avoid double finish_request() on the rq.
696 		 */
697 		rq->rq_flags &= ~RQF_USE_SCHED;
698 	}
699 }
700 
__blk_mq_free_request(struct request * rq)701 static void __blk_mq_free_request(struct request *rq)
702 {
703 	struct request_queue *q = rq->q;
704 	struct blk_mq_ctx *ctx = rq->mq_ctx;
705 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
706 	const int sched_tag = rq->internal_tag;
707 
708 	blk_crypto_free_request(rq);
709 	blk_pm_mark_last_busy(rq);
710 	rq->mq_hctx = NULL;
711 
712 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
713 		__blk_mq_dec_active_requests(hctx);
714 
715 	if (rq->tag != BLK_MQ_NO_TAG)
716 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
717 	if (sched_tag != BLK_MQ_NO_TAG)
718 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
719 	blk_mq_sched_restart(hctx);
720 	blk_queue_exit(q);
721 }
722 
blk_mq_free_request(struct request * rq)723 void blk_mq_free_request(struct request *rq)
724 {
725 	struct request_queue *q = rq->q;
726 
727 	blk_mq_finish_request(rq);
728 
729 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
730 		laptop_io_completion(q->disk->bdi);
731 
732 	rq_qos_done(q, rq);
733 
734 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
735 	if (req_ref_put_and_test(rq))
736 		__blk_mq_free_request(rq);
737 }
738 EXPORT_SYMBOL_GPL(blk_mq_free_request);
739 
blk_mq_free_plug_rqs(struct blk_plug * plug)740 void blk_mq_free_plug_rqs(struct blk_plug *plug)
741 {
742 	struct request *rq;
743 
744 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
745 		blk_mq_free_request(rq);
746 }
747 
blk_dump_rq_flags(struct request * rq,char * msg)748 void blk_dump_rq_flags(struct request *rq, char *msg)
749 {
750 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
751 		rq->q->disk ? rq->q->disk->disk_name : "?",
752 		(__force unsigned long long) rq->cmd_flags);
753 
754 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
755 	       (unsigned long long)blk_rq_pos(rq),
756 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
757 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
758 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
759 }
760 EXPORT_SYMBOL(blk_dump_rq_flags);
761 
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)762 static void req_bio_endio(struct request *rq, struct bio *bio,
763 			  unsigned int nbytes, blk_status_t error)
764 {
765 	if (unlikely(error)) {
766 		bio->bi_status = error;
767 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
768 		/*
769 		 * Partial zone append completions cannot be supported as the
770 		 * BIO fragments may end up not being written sequentially.
771 		 */
772 		if (bio->bi_iter.bi_size != nbytes)
773 			bio->bi_status = BLK_STS_IOERR;
774 		else
775 			bio->bi_iter.bi_sector = rq->__sector;
776 	}
777 
778 	bio_advance(bio, nbytes);
779 
780 	if (unlikely(rq->rq_flags & RQF_QUIET))
781 		bio_set_flag(bio, BIO_QUIET);
782 	/* don't actually finish bio if it's part of flush sequence */
783 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
784 		bio_endio(bio);
785 }
786 
blk_account_io_completion(struct request * req,unsigned int bytes)787 static void blk_account_io_completion(struct request *req, unsigned int bytes)
788 {
789 	if (req->part && blk_do_io_stat(req)) {
790 		const int sgrp = op_stat_group(req_op(req));
791 
792 		part_stat_lock();
793 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
794 		part_stat_unlock();
795 	}
796 }
797 
blk_print_req_error(struct request * req,blk_status_t status)798 static void blk_print_req_error(struct request *req, blk_status_t status)
799 {
800 	printk_ratelimited(KERN_ERR
801 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
802 		"phys_seg %u prio class %u\n",
803 		blk_status_to_str(status),
804 		req->q->disk ? req->q->disk->disk_name : "?",
805 		blk_rq_pos(req), (__force u32)req_op(req),
806 		blk_op_str(req_op(req)),
807 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
808 		req->nr_phys_segments,
809 		IOPRIO_PRIO_CLASS(req->ioprio));
810 }
811 
812 /*
813  * Fully end IO on a request. Does not support partial completions, or
814  * errors.
815  */
blk_complete_request(struct request * req)816 static void blk_complete_request(struct request *req)
817 {
818 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
819 	int total_bytes = blk_rq_bytes(req);
820 	struct bio *bio = req->bio;
821 
822 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
823 
824 	if (!bio)
825 		return;
826 
827 #ifdef CONFIG_BLK_DEV_INTEGRITY
828 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
829 		req->q->integrity.profile->complete_fn(req, total_bytes);
830 #endif
831 
832 	/*
833 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
834 	 * bio_endio().  Therefore, the keyslot must be released before that.
835 	 */
836 	blk_crypto_rq_put_keyslot(req);
837 
838 	blk_account_io_completion(req, total_bytes);
839 
840 	do {
841 		struct bio *next = bio->bi_next;
842 
843 		/* Completion has already been traced */
844 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
845 
846 		if (req_op(req) == REQ_OP_ZONE_APPEND)
847 			bio->bi_iter.bi_sector = req->__sector;
848 
849 		if (!is_flush)
850 			bio_endio(bio);
851 		bio = next;
852 	} while (bio);
853 
854 	/*
855 	 * Reset counters so that the request stacking driver
856 	 * can find how many bytes remain in the request
857 	 * later.
858 	 */
859 	if (!req->end_io) {
860 		req->bio = NULL;
861 		req->__data_len = 0;
862 	}
863 }
864 
865 /**
866  * blk_update_request - Complete multiple bytes without completing the request
867  * @req:      the request being processed
868  * @error:    block status code
869  * @nr_bytes: number of bytes to complete for @req
870  *
871  * Description:
872  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
873  *     the request structure even if @req doesn't have leftover.
874  *     If @req has leftover, sets it up for the next range of segments.
875  *
876  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
877  *     %false return from this function.
878  *
879  * Note:
880  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
881  *      except in the consistency check at the end of this function.
882  *
883  * Return:
884  *     %false - this request doesn't have any more data
885  *     %true  - this request has more data
886  **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)887 bool blk_update_request(struct request *req, blk_status_t error,
888 		unsigned int nr_bytes)
889 {
890 	int total_bytes;
891 
892 	trace_block_rq_complete(req, error, nr_bytes);
893 
894 	if (!req->bio)
895 		return false;
896 
897 #ifdef CONFIG_BLK_DEV_INTEGRITY
898 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
899 	    error == BLK_STS_OK)
900 		req->q->integrity.profile->complete_fn(req, nr_bytes);
901 #endif
902 
903 	/*
904 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
905 	 * bio_endio().  Therefore, the keyslot must be released before that.
906 	 */
907 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
908 		__blk_crypto_rq_put_keyslot(req);
909 
910 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
911 		     !(req->rq_flags & RQF_QUIET)) &&
912 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
913 		blk_print_req_error(req, error);
914 		trace_block_rq_error(req, error, nr_bytes);
915 	}
916 
917 	blk_account_io_completion(req, nr_bytes);
918 
919 	total_bytes = 0;
920 	while (req->bio) {
921 		struct bio *bio = req->bio;
922 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
923 
924 		if (bio_bytes == bio->bi_iter.bi_size)
925 			req->bio = bio->bi_next;
926 
927 		/* Completion has already been traced */
928 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
929 		req_bio_endio(req, bio, bio_bytes, error);
930 
931 		total_bytes += bio_bytes;
932 		nr_bytes -= bio_bytes;
933 
934 		if (!nr_bytes)
935 			break;
936 	}
937 
938 	/*
939 	 * completely done
940 	 */
941 	if (!req->bio) {
942 		/*
943 		 * Reset counters so that the request stacking driver
944 		 * can find how many bytes remain in the request
945 		 * later.
946 		 */
947 		req->__data_len = 0;
948 		return false;
949 	}
950 
951 	req->__data_len -= total_bytes;
952 
953 	/* update sector only for requests with clear definition of sector */
954 	if (!blk_rq_is_passthrough(req))
955 		req->__sector += total_bytes >> 9;
956 
957 	/* mixed attributes always follow the first bio */
958 	if (req->rq_flags & RQF_MIXED_MERGE) {
959 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
960 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
961 	}
962 
963 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
964 		/*
965 		 * If total number of sectors is less than the first segment
966 		 * size, something has gone terribly wrong.
967 		 */
968 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
969 			blk_dump_rq_flags(req, "request botched");
970 			req->__data_len = blk_rq_cur_bytes(req);
971 		}
972 
973 		/* recalculate the number of segments */
974 		req->nr_phys_segments = blk_recalc_rq_segments(req);
975 	}
976 
977 	return true;
978 }
979 EXPORT_SYMBOL_GPL(blk_update_request);
980 
blk_account_io_done(struct request * req,u64 now)981 static inline void blk_account_io_done(struct request *req, u64 now)
982 {
983 	trace_block_io_done(req);
984 
985 	/*
986 	 * Account IO completion.  flush_rq isn't accounted as a
987 	 * normal IO on queueing nor completion.  Accounting the
988 	 * containing request is enough.
989 	 */
990 	if (blk_do_io_stat(req) && req->part &&
991 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
992 		const int sgrp = op_stat_group(req_op(req));
993 
994 		part_stat_lock();
995 		update_io_ticks(req->part, jiffies, true);
996 		part_stat_inc(req->part, ios[sgrp]);
997 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
998 		part_stat_local_dec(req->part,
999 				    in_flight[op_is_write(req_op(req))]);
1000 		part_stat_unlock();
1001 	}
1002 }
1003 
blk_account_io_start(struct request * req)1004 static inline void blk_account_io_start(struct request *req)
1005 {
1006 	trace_block_io_start(req);
1007 
1008 	if (blk_do_io_stat(req)) {
1009 		/*
1010 		 * All non-passthrough requests are created from a bio with one
1011 		 * exception: when a flush command that is part of a flush sequence
1012 		 * generated by the state machine in blk-flush.c is cloned onto the
1013 		 * lower device by dm-multipath we can get here without a bio.
1014 		 */
1015 		if (req->bio)
1016 			req->part = req->bio->bi_bdev;
1017 		else
1018 			req->part = req->q->disk->part0;
1019 
1020 		part_stat_lock();
1021 		update_io_ticks(req->part, jiffies, false);
1022 		part_stat_local_inc(req->part,
1023 				    in_flight[op_is_write(req_op(req))]);
1024 		part_stat_unlock();
1025 	}
1026 }
1027 
__blk_mq_end_request_acct(struct request * rq,u64 now)1028 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1029 {
1030 	if (rq->rq_flags & RQF_STATS)
1031 		blk_stat_add(rq, now);
1032 
1033 	blk_mq_sched_completed_request(rq, now);
1034 	blk_account_io_done(rq, now);
1035 }
1036 
__blk_mq_end_request(struct request * rq,blk_status_t error)1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038 {
1039 	if (blk_mq_need_time_stamp(rq))
1040 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1041 
1042 	blk_mq_finish_request(rq);
1043 
1044 	if (rq->end_io) {
1045 		rq_qos_done(rq->q, rq);
1046 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1047 			blk_mq_free_request(rq);
1048 	} else {
1049 		blk_mq_free_request(rq);
1050 	}
1051 }
1052 EXPORT_SYMBOL(__blk_mq_end_request);
1053 
blk_mq_end_request(struct request * rq,blk_status_t error)1054 void blk_mq_end_request(struct request *rq, blk_status_t error)
1055 {
1056 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1057 		BUG();
1058 	__blk_mq_end_request(rq, error);
1059 }
1060 EXPORT_SYMBOL(blk_mq_end_request);
1061 
1062 #define TAG_COMP_BATCH		32
1063 
blk_mq_flush_tag_batch(struct blk_mq_hw_ctx * hctx,int * tag_array,int nr_tags)1064 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1065 					  int *tag_array, int nr_tags)
1066 {
1067 	struct request_queue *q = hctx->queue;
1068 
1069 	/*
1070 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1071 	 * update hctx->nr_active in batch
1072 	 */
1073 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1074 		__blk_mq_sub_active_requests(hctx, nr_tags);
1075 
1076 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1077 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1078 }
1079 
blk_mq_end_request_batch(struct io_comp_batch * iob)1080 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1081 {
1082 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1083 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1084 	struct request *rq;
1085 	u64 now = 0;
1086 
1087 	if (iob->need_ts)
1088 		now = ktime_get_ns();
1089 
1090 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1091 		prefetch(rq->bio);
1092 		prefetch(rq->rq_next);
1093 
1094 		blk_complete_request(rq);
1095 		if (iob->need_ts)
1096 			__blk_mq_end_request_acct(rq, now);
1097 
1098 		blk_mq_finish_request(rq);
1099 
1100 		rq_qos_done(rq->q, rq);
1101 
1102 		/*
1103 		 * If end_io handler returns NONE, then it still has
1104 		 * ownership of the request.
1105 		 */
1106 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1107 			continue;
1108 
1109 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1110 		if (!req_ref_put_and_test(rq))
1111 			continue;
1112 
1113 		blk_crypto_free_request(rq);
1114 		blk_pm_mark_last_busy(rq);
1115 
1116 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1117 			if (cur_hctx)
1118 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1119 			nr_tags = 0;
1120 			cur_hctx = rq->mq_hctx;
1121 		}
1122 		tags[nr_tags++] = rq->tag;
1123 	}
1124 
1125 	if (nr_tags)
1126 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1127 }
1128 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1129 
blk_complete_reqs(struct llist_head * list)1130 static void blk_complete_reqs(struct llist_head *list)
1131 {
1132 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1133 	struct request *rq, *next;
1134 
1135 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1136 		rq->q->mq_ops->complete(rq);
1137 }
1138 
blk_done_softirq(struct softirq_action * h)1139 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1140 {
1141 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1142 }
1143 
blk_softirq_cpu_dead(unsigned int cpu)1144 static int blk_softirq_cpu_dead(unsigned int cpu)
1145 {
1146 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1147 	return 0;
1148 }
1149 
__blk_mq_complete_request_remote(void * data)1150 static void __blk_mq_complete_request_remote(void *data)
1151 {
1152 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1153 }
1154 
blk_mq_complete_need_ipi(struct request * rq)1155 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1156 {
1157 	int cpu = raw_smp_processor_id();
1158 
1159 	if (!IS_ENABLED(CONFIG_SMP) ||
1160 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1161 		return false;
1162 	/*
1163 	 * With force threaded interrupts enabled, raising softirq from an SMP
1164 	 * function call will always result in waking the ksoftirqd thread.
1165 	 * This is probably worse than completing the request on a different
1166 	 * cache domain.
1167 	 */
1168 	if (force_irqthreads())
1169 		return false;
1170 
1171 	/* same CPU or cache domain?  Complete locally */
1172 	if (cpu == rq->mq_ctx->cpu ||
1173 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1174 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1175 		return false;
1176 
1177 	/* don't try to IPI to an offline CPU */
1178 	return cpu_online(rq->mq_ctx->cpu);
1179 }
1180 
blk_mq_complete_send_ipi(struct request * rq)1181 static void blk_mq_complete_send_ipi(struct request *rq)
1182 {
1183 	unsigned int cpu;
1184 
1185 	cpu = rq->mq_ctx->cpu;
1186 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1187 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1188 }
1189 
blk_mq_raise_softirq(struct request * rq)1190 static void blk_mq_raise_softirq(struct request *rq)
1191 {
1192 	struct llist_head *list;
1193 
1194 	preempt_disable();
1195 	list = this_cpu_ptr(&blk_cpu_done);
1196 	if (llist_add(&rq->ipi_list, list))
1197 		raise_softirq(BLOCK_SOFTIRQ);
1198 	preempt_enable();
1199 }
1200 
blk_mq_complete_request_remote(struct request * rq)1201 bool blk_mq_complete_request_remote(struct request *rq)
1202 {
1203 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1204 
1205 	/*
1206 	 * For request which hctx has only one ctx mapping,
1207 	 * or a polled request, always complete locally,
1208 	 * it's pointless to redirect the completion.
1209 	 */
1210 	if ((rq->mq_hctx->nr_ctx == 1 &&
1211 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1212 	     rq->cmd_flags & REQ_POLLED)
1213 		return false;
1214 
1215 	if (blk_mq_complete_need_ipi(rq)) {
1216 		blk_mq_complete_send_ipi(rq);
1217 		return true;
1218 	}
1219 
1220 	if (rq->q->nr_hw_queues == 1) {
1221 		blk_mq_raise_softirq(rq);
1222 		return true;
1223 	}
1224 	return false;
1225 }
1226 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1227 
1228 /**
1229  * blk_mq_complete_request - end I/O on a request
1230  * @rq:		the request being processed
1231  *
1232  * Description:
1233  *	Complete a request by scheduling the ->complete_rq operation.
1234  **/
blk_mq_complete_request(struct request * rq)1235 void blk_mq_complete_request(struct request *rq)
1236 {
1237 	if (!blk_mq_complete_request_remote(rq))
1238 		rq->q->mq_ops->complete(rq);
1239 }
1240 EXPORT_SYMBOL(blk_mq_complete_request);
1241 
1242 /**
1243  * blk_mq_start_request - Start processing a request
1244  * @rq: Pointer to request to be started
1245  *
1246  * Function used by device drivers to notify the block layer that a request
1247  * is going to be processed now, so blk layer can do proper initializations
1248  * such as starting the timeout timer.
1249  */
blk_mq_start_request(struct request * rq)1250 void blk_mq_start_request(struct request *rq)
1251 {
1252 	struct request_queue *q = rq->q;
1253 
1254 	trace_block_rq_issue(rq);
1255 
1256 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1257 		rq->io_start_time_ns = ktime_get_ns();
1258 		rq->stats_sectors = blk_rq_sectors(rq);
1259 		rq->rq_flags |= RQF_STATS;
1260 		rq_qos_issue(q, rq);
1261 	}
1262 
1263 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1264 
1265 	blk_add_timer(rq);
1266 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1267 
1268 #ifdef CONFIG_BLK_DEV_INTEGRITY
1269 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1270 		q->integrity.profile->prepare_fn(rq);
1271 #endif
1272 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1273 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1274 }
1275 EXPORT_SYMBOL(blk_mq_start_request);
1276 
1277 /*
1278  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1279  * queues. This is important for md arrays to benefit from merging
1280  * requests.
1281  */
blk_plug_max_rq_count(struct blk_plug * plug)1282 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1283 {
1284 	if (plug->multiple_queues)
1285 		return BLK_MAX_REQUEST_COUNT * 2;
1286 	return BLK_MAX_REQUEST_COUNT;
1287 }
1288 
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)1289 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1290 {
1291 	struct request *last = rq_list_peek(&plug->mq_list);
1292 
1293 	if (!plug->rq_count) {
1294 		trace_block_plug(rq->q);
1295 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1296 		   (!blk_queue_nomerges(rq->q) &&
1297 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1298 		blk_mq_flush_plug_list(plug, false);
1299 		last = NULL;
1300 		trace_block_plug(rq->q);
1301 	}
1302 
1303 	if (!plug->multiple_queues && last && last->q != rq->q)
1304 		plug->multiple_queues = true;
1305 	/*
1306 	 * Any request allocated from sched tags can't be issued to
1307 	 * ->queue_rqs() directly
1308 	 */
1309 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1310 		plug->has_elevator = true;
1311 	rq->rq_next = NULL;
1312 	rq_list_add(&plug->mq_list, rq);
1313 	plug->rq_count++;
1314 }
1315 
1316 /**
1317  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1318  * @rq:		request to insert
1319  * @at_head:    insert request at head or tail of queue
1320  *
1321  * Description:
1322  *    Insert a fully prepared request at the back of the I/O scheduler queue
1323  *    for execution.  Don't wait for completion.
1324  *
1325  * Note:
1326  *    This function will invoke @done directly if the queue is dead.
1327  */
blk_execute_rq_nowait(struct request * rq,bool at_head)1328 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1329 {
1330 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1331 
1332 	WARN_ON(irqs_disabled());
1333 	WARN_ON(!blk_rq_is_passthrough(rq));
1334 
1335 	blk_account_io_start(rq);
1336 
1337 	/*
1338 	 * As plugging can be enabled for passthrough requests on a zoned
1339 	 * device, directly accessing the plug instead of using blk_mq_plug()
1340 	 * should not have any consequences.
1341 	 */
1342 	if (current->plug && !at_head) {
1343 		blk_add_rq_to_plug(current->plug, rq);
1344 		return;
1345 	}
1346 
1347 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1348 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1349 }
1350 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1351 
1352 struct blk_rq_wait {
1353 	struct completion done;
1354 	blk_status_t ret;
1355 };
1356 
blk_end_sync_rq(struct request * rq,blk_status_t ret)1357 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1358 {
1359 	struct blk_rq_wait *wait = rq->end_io_data;
1360 
1361 	wait->ret = ret;
1362 	complete(&wait->done);
1363 	return RQ_END_IO_NONE;
1364 }
1365 
blk_rq_is_poll(struct request * rq)1366 bool blk_rq_is_poll(struct request *rq)
1367 {
1368 	if (!rq->mq_hctx)
1369 		return false;
1370 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1371 		return false;
1372 	return true;
1373 }
1374 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1375 
blk_rq_poll_completion(struct request * rq,struct completion * wait)1376 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1377 {
1378 	do {
1379 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1380 		cond_resched();
1381 	} while (!completion_done(wait));
1382 }
1383 
1384 /**
1385  * blk_execute_rq - insert a request into queue for execution
1386  * @rq:		request to insert
1387  * @at_head:    insert request at head or tail of queue
1388  *
1389  * Description:
1390  *    Insert a fully prepared request at the back of the I/O scheduler queue
1391  *    for execution and wait for completion.
1392  * Return: The blk_status_t result provided to blk_mq_end_request().
1393  */
blk_execute_rq(struct request * rq,bool at_head)1394 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1395 {
1396 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1397 	struct blk_rq_wait wait = {
1398 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1399 	};
1400 
1401 	WARN_ON(irqs_disabled());
1402 	WARN_ON(!blk_rq_is_passthrough(rq));
1403 
1404 	rq->end_io_data = &wait;
1405 	rq->end_io = blk_end_sync_rq;
1406 
1407 	blk_account_io_start(rq);
1408 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1409 	blk_mq_run_hw_queue(hctx, false);
1410 
1411 	if (blk_rq_is_poll(rq)) {
1412 		blk_rq_poll_completion(rq, &wait.done);
1413 	} else {
1414 		/*
1415 		 * Prevent hang_check timer from firing at us during very long
1416 		 * I/O
1417 		 */
1418 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1419 
1420 		if (hang_check)
1421 			while (!wait_for_completion_io_timeout(&wait.done,
1422 					hang_check * (HZ/2)))
1423 				;
1424 		else
1425 			wait_for_completion_io(&wait.done);
1426 	}
1427 
1428 	return wait.ret;
1429 }
1430 EXPORT_SYMBOL(blk_execute_rq);
1431 
__blk_mq_requeue_request(struct request * rq)1432 static void __blk_mq_requeue_request(struct request *rq)
1433 {
1434 	struct request_queue *q = rq->q;
1435 
1436 	blk_mq_put_driver_tag(rq);
1437 
1438 	trace_block_rq_requeue(rq);
1439 	rq_qos_requeue(q, rq);
1440 
1441 	if (blk_mq_request_started(rq)) {
1442 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1443 		rq->rq_flags &= ~RQF_TIMED_OUT;
1444 	}
1445 }
1446 
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)1447 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1448 {
1449 	struct request_queue *q = rq->q;
1450 	unsigned long flags;
1451 
1452 	__blk_mq_requeue_request(rq);
1453 
1454 	/* this request will be re-inserted to io scheduler queue */
1455 	blk_mq_sched_requeue_request(rq);
1456 
1457 	spin_lock_irqsave(&q->requeue_lock, flags);
1458 	list_add_tail(&rq->queuelist, &q->requeue_list);
1459 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1460 
1461 	if (kick_requeue_list)
1462 		blk_mq_kick_requeue_list(q);
1463 }
1464 EXPORT_SYMBOL(blk_mq_requeue_request);
1465 
blk_mq_requeue_work(struct work_struct * work)1466 static void blk_mq_requeue_work(struct work_struct *work)
1467 {
1468 	struct request_queue *q =
1469 		container_of(work, struct request_queue, requeue_work.work);
1470 	LIST_HEAD(rq_list);
1471 	LIST_HEAD(flush_list);
1472 	struct request *rq;
1473 
1474 	spin_lock_irq(&q->requeue_lock);
1475 	list_splice_init(&q->requeue_list, &rq_list);
1476 	list_splice_init(&q->flush_list, &flush_list);
1477 	spin_unlock_irq(&q->requeue_lock);
1478 
1479 	while (!list_empty(&rq_list)) {
1480 		rq = list_entry(rq_list.next, struct request, queuelist);
1481 		/*
1482 		 * If RQF_DONTPREP ist set, the request has been started by the
1483 		 * driver already and might have driver-specific data allocated
1484 		 * already.  Insert it into the hctx dispatch list to avoid
1485 		 * block layer merges for the request.
1486 		 */
1487 		if (rq->rq_flags & RQF_DONTPREP) {
1488 			list_del_init(&rq->queuelist);
1489 			blk_mq_request_bypass_insert(rq, 0);
1490 		} else {
1491 			list_del_init(&rq->queuelist);
1492 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1493 		}
1494 	}
1495 
1496 	while (!list_empty(&flush_list)) {
1497 		rq = list_entry(flush_list.next, struct request, queuelist);
1498 		list_del_init(&rq->queuelist);
1499 		blk_mq_insert_request(rq, 0);
1500 	}
1501 
1502 	blk_mq_run_hw_queues(q, false);
1503 }
1504 
blk_mq_kick_requeue_list(struct request_queue * q)1505 void blk_mq_kick_requeue_list(struct request_queue *q)
1506 {
1507 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1508 }
1509 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1510 
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)1511 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1512 				    unsigned long msecs)
1513 {
1514 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1515 				    msecs_to_jiffies(msecs));
1516 }
1517 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1518 
blk_is_flush_data_rq(struct request * rq)1519 static bool blk_is_flush_data_rq(struct request *rq)
1520 {
1521 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1522 }
1523 
blk_mq_rq_inflight(struct request * rq,void * priv)1524 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1525 {
1526 	/*
1527 	 * If we find a request that isn't idle we know the queue is busy
1528 	 * as it's checked in the iter.
1529 	 * Return false to stop the iteration.
1530 	 *
1531 	 * In case of queue quiesce, if one flush data request is completed,
1532 	 * don't count it as inflight given the flush sequence is suspended,
1533 	 * and the original flush data request is invisible to driver, just
1534 	 * like other pending requests because of quiesce
1535 	 */
1536 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1537 				blk_is_flush_data_rq(rq) &&
1538 				blk_mq_request_completed(rq))) {
1539 		bool *busy = priv;
1540 
1541 		*busy = true;
1542 		return false;
1543 	}
1544 
1545 	return true;
1546 }
1547 
blk_mq_queue_inflight(struct request_queue * q)1548 bool blk_mq_queue_inflight(struct request_queue *q)
1549 {
1550 	bool busy = false;
1551 
1552 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1553 	return busy;
1554 }
1555 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1556 
blk_mq_rq_timed_out(struct request * req)1557 static void blk_mq_rq_timed_out(struct request *req)
1558 {
1559 	req->rq_flags |= RQF_TIMED_OUT;
1560 	if (req->q->mq_ops->timeout) {
1561 		enum blk_eh_timer_return ret;
1562 
1563 		ret = req->q->mq_ops->timeout(req);
1564 		if (ret == BLK_EH_DONE)
1565 			return;
1566 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1567 	}
1568 
1569 	blk_add_timer(req);
1570 }
1571 
1572 struct blk_expired_data {
1573 	bool has_timedout_rq;
1574 	unsigned long next;
1575 	unsigned long timeout_start;
1576 };
1577 
blk_mq_req_expired(struct request * rq,struct blk_expired_data * expired)1578 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1579 {
1580 	unsigned long deadline;
1581 
1582 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1583 		return false;
1584 	if (rq->rq_flags & RQF_TIMED_OUT)
1585 		return false;
1586 
1587 	deadline = READ_ONCE(rq->deadline);
1588 	if (time_after_eq(expired->timeout_start, deadline))
1589 		return true;
1590 
1591 	if (expired->next == 0)
1592 		expired->next = deadline;
1593 	else if (time_after(expired->next, deadline))
1594 		expired->next = deadline;
1595 	return false;
1596 }
1597 
blk_mq_put_rq_ref(struct request * rq)1598 void blk_mq_put_rq_ref(struct request *rq)
1599 {
1600 	if (is_flush_rq(rq)) {
1601 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1602 			blk_mq_free_request(rq);
1603 	} else if (req_ref_put_and_test(rq)) {
1604 		__blk_mq_free_request(rq);
1605 	}
1606 }
1607 
blk_mq_check_expired(struct request * rq,void * priv)1608 static bool blk_mq_check_expired(struct request *rq, void *priv)
1609 {
1610 	struct blk_expired_data *expired = priv;
1611 
1612 	/*
1613 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1614 	 * be reallocated underneath the timeout handler's processing, then
1615 	 * the expire check is reliable. If the request is not expired, then
1616 	 * it was completed and reallocated as a new request after returning
1617 	 * from blk_mq_check_expired().
1618 	 */
1619 	if (blk_mq_req_expired(rq, expired)) {
1620 		expired->has_timedout_rq = true;
1621 		return false;
1622 	}
1623 	return true;
1624 }
1625 
blk_mq_handle_expired(struct request * rq,void * priv)1626 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1627 {
1628 	struct blk_expired_data *expired = priv;
1629 
1630 	if (blk_mq_req_expired(rq, expired))
1631 		blk_mq_rq_timed_out(rq);
1632 	return true;
1633 }
1634 
blk_mq_timeout_work(struct work_struct * work)1635 static void blk_mq_timeout_work(struct work_struct *work)
1636 {
1637 	struct request_queue *q =
1638 		container_of(work, struct request_queue, timeout_work);
1639 	struct blk_expired_data expired = {
1640 		.timeout_start = jiffies,
1641 	};
1642 	struct blk_mq_hw_ctx *hctx;
1643 	unsigned long i;
1644 
1645 	/* A deadlock might occur if a request is stuck requiring a
1646 	 * timeout at the same time a queue freeze is waiting
1647 	 * completion, since the timeout code would not be able to
1648 	 * acquire the queue reference here.
1649 	 *
1650 	 * That's why we don't use blk_queue_enter here; instead, we use
1651 	 * percpu_ref_tryget directly, because we need to be able to
1652 	 * obtain a reference even in the short window between the queue
1653 	 * starting to freeze, by dropping the first reference in
1654 	 * blk_freeze_queue_start, and the moment the last request is
1655 	 * consumed, marked by the instant q_usage_counter reaches
1656 	 * zero.
1657 	 */
1658 	if (!percpu_ref_tryget(&q->q_usage_counter))
1659 		return;
1660 
1661 	/* check if there is any timed-out request */
1662 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1663 	if (expired.has_timedout_rq) {
1664 		/*
1665 		 * Before walking tags, we must ensure any submit started
1666 		 * before the current time has finished. Since the submit
1667 		 * uses srcu or rcu, wait for a synchronization point to
1668 		 * ensure all running submits have finished
1669 		 */
1670 		blk_mq_wait_quiesce_done(q->tag_set);
1671 
1672 		expired.next = 0;
1673 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1674 	}
1675 
1676 	if (expired.next != 0) {
1677 		mod_timer(&q->timeout, expired.next);
1678 	} else {
1679 		/*
1680 		 * Request timeouts are handled as a forward rolling timer. If
1681 		 * we end up here it means that no requests are pending and
1682 		 * also that no request has been pending for a while. Mark
1683 		 * each hctx as idle.
1684 		 */
1685 		queue_for_each_hw_ctx(q, hctx, i) {
1686 			/* the hctx may be unmapped, so check it here */
1687 			if (blk_mq_hw_queue_mapped(hctx))
1688 				blk_mq_tag_idle(hctx);
1689 		}
1690 	}
1691 	blk_queue_exit(q);
1692 }
1693 
1694 struct flush_busy_ctx_data {
1695 	struct blk_mq_hw_ctx *hctx;
1696 	struct list_head *list;
1697 };
1698 
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1699 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1700 {
1701 	struct flush_busy_ctx_data *flush_data = data;
1702 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1703 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1704 	enum hctx_type type = hctx->type;
1705 
1706 	spin_lock(&ctx->lock);
1707 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1708 	sbitmap_clear_bit(sb, bitnr);
1709 	spin_unlock(&ctx->lock);
1710 	return true;
1711 }
1712 
1713 /*
1714  * Process software queues that have been marked busy, splicing them
1715  * to the for-dispatch
1716  */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1717 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1718 {
1719 	struct flush_busy_ctx_data data = {
1720 		.hctx = hctx,
1721 		.list = list,
1722 	};
1723 
1724 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1725 }
1726 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1727 
1728 struct dispatch_rq_data {
1729 	struct blk_mq_hw_ctx *hctx;
1730 	struct request *rq;
1731 };
1732 
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1733 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1734 		void *data)
1735 {
1736 	struct dispatch_rq_data *dispatch_data = data;
1737 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1738 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1739 	enum hctx_type type = hctx->type;
1740 
1741 	spin_lock(&ctx->lock);
1742 	if (!list_empty(&ctx->rq_lists[type])) {
1743 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1744 		list_del_init(&dispatch_data->rq->queuelist);
1745 		if (list_empty(&ctx->rq_lists[type]))
1746 			sbitmap_clear_bit(sb, bitnr);
1747 	}
1748 	spin_unlock(&ctx->lock);
1749 
1750 	return !dispatch_data->rq;
1751 }
1752 
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1753 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1754 					struct blk_mq_ctx *start)
1755 {
1756 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1757 	struct dispatch_rq_data data = {
1758 		.hctx = hctx,
1759 		.rq   = NULL,
1760 	};
1761 
1762 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1763 			       dispatch_rq_from_ctx, &data);
1764 
1765 	return data.rq;
1766 }
1767 
__blk_mq_alloc_driver_tag(struct request * rq)1768 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1769 {
1770 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1771 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1772 	int tag;
1773 
1774 	blk_mq_tag_busy(rq->mq_hctx);
1775 
1776 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1777 		bt = &rq->mq_hctx->tags->breserved_tags;
1778 		tag_offset = 0;
1779 	} else {
1780 		if (!hctx_may_queue(rq->mq_hctx, bt))
1781 			return false;
1782 	}
1783 
1784 	tag = __sbitmap_queue_get(bt);
1785 	if (tag == BLK_MQ_NO_TAG)
1786 		return false;
1787 
1788 	rq->tag = tag + tag_offset;
1789 	return true;
1790 }
1791 
__blk_mq_get_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)1792 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1793 {
1794 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1795 		return false;
1796 
1797 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1798 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1799 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1800 		__blk_mq_inc_active_requests(hctx);
1801 	}
1802 	hctx->tags->rqs[rq->tag] = rq;
1803 	return true;
1804 }
1805 
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1806 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1807 				int flags, void *key)
1808 {
1809 	struct blk_mq_hw_ctx *hctx;
1810 
1811 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1812 
1813 	spin_lock(&hctx->dispatch_wait_lock);
1814 	if (!list_empty(&wait->entry)) {
1815 		struct sbitmap_queue *sbq;
1816 
1817 		list_del_init(&wait->entry);
1818 		sbq = &hctx->tags->bitmap_tags;
1819 		atomic_dec(&sbq->ws_active);
1820 	}
1821 	spin_unlock(&hctx->dispatch_wait_lock);
1822 
1823 	blk_mq_run_hw_queue(hctx, true);
1824 	return 1;
1825 }
1826 
1827 /*
1828  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1829  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1830  * restart. For both cases, take care to check the condition again after
1831  * marking us as waiting.
1832  */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1833 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1834 				 struct request *rq)
1835 {
1836 	struct sbitmap_queue *sbq;
1837 	struct wait_queue_head *wq;
1838 	wait_queue_entry_t *wait;
1839 	bool ret;
1840 
1841 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1842 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1843 		blk_mq_sched_mark_restart_hctx(hctx);
1844 
1845 		/*
1846 		 * It's possible that a tag was freed in the window between the
1847 		 * allocation failure and adding the hardware queue to the wait
1848 		 * queue.
1849 		 *
1850 		 * Don't clear RESTART here, someone else could have set it.
1851 		 * At most this will cost an extra queue run.
1852 		 */
1853 		return blk_mq_get_driver_tag(rq);
1854 	}
1855 
1856 	wait = &hctx->dispatch_wait;
1857 	if (!list_empty_careful(&wait->entry))
1858 		return false;
1859 
1860 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1861 		sbq = &hctx->tags->breserved_tags;
1862 	else
1863 		sbq = &hctx->tags->bitmap_tags;
1864 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1865 
1866 	spin_lock_irq(&wq->lock);
1867 	spin_lock(&hctx->dispatch_wait_lock);
1868 	if (!list_empty(&wait->entry)) {
1869 		spin_unlock(&hctx->dispatch_wait_lock);
1870 		spin_unlock_irq(&wq->lock);
1871 		return false;
1872 	}
1873 
1874 	atomic_inc(&sbq->ws_active);
1875 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1876 	__add_wait_queue(wq, wait);
1877 
1878 	/*
1879 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1880 	 * not imply barrier in case of failure.
1881 	 *
1882 	 * Order adding us to wait queue and allocating driver tag.
1883 	 *
1884 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1885 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1886 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1887 	 *
1888 	 * Otherwise, re-order of adding wait queue and getting driver tag
1889 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1890 	 * the waitqueue_active() may not observe us in wait queue.
1891 	 */
1892 	smp_mb();
1893 
1894 	/*
1895 	 * It's possible that a tag was freed in the window between the
1896 	 * allocation failure and adding the hardware queue to the wait
1897 	 * queue.
1898 	 */
1899 	ret = blk_mq_get_driver_tag(rq);
1900 	if (!ret) {
1901 		spin_unlock(&hctx->dispatch_wait_lock);
1902 		spin_unlock_irq(&wq->lock);
1903 		return false;
1904 	}
1905 
1906 	/*
1907 	 * We got a tag, remove ourselves from the wait queue to ensure
1908 	 * someone else gets the wakeup.
1909 	 */
1910 	list_del_init(&wait->entry);
1911 	atomic_dec(&sbq->ws_active);
1912 	spin_unlock(&hctx->dispatch_wait_lock);
1913 	spin_unlock_irq(&wq->lock);
1914 
1915 	return true;
1916 }
1917 
1918 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1919 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1920 /*
1921  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1922  * - EWMA is one simple way to compute running average value
1923  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1924  * - take 4 as factor for avoiding to get too small(0) result, and this
1925  *   factor doesn't matter because EWMA decreases exponentially
1926  */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1927 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1928 {
1929 	unsigned int ewma;
1930 
1931 	ewma = hctx->dispatch_busy;
1932 
1933 	if (!ewma && !busy)
1934 		return;
1935 
1936 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1937 	if (busy)
1938 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1939 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1940 
1941 	hctx->dispatch_busy = ewma;
1942 }
1943 
1944 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1945 
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1946 static void blk_mq_handle_dev_resource(struct request *rq,
1947 				       struct list_head *list)
1948 {
1949 	list_add(&rq->queuelist, list);
1950 	__blk_mq_requeue_request(rq);
1951 }
1952 
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1953 static void blk_mq_handle_zone_resource(struct request *rq,
1954 					struct list_head *zone_list)
1955 {
1956 	/*
1957 	 * If we end up here it is because we cannot dispatch a request to a
1958 	 * specific zone due to LLD level zone-write locking or other zone
1959 	 * related resource not being available. In this case, set the request
1960 	 * aside in zone_list for retrying it later.
1961 	 */
1962 	list_add(&rq->queuelist, zone_list);
1963 	__blk_mq_requeue_request(rq);
1964 }
1965 
1966 enum prep_dispatch {
1967 	PREP_DISPATCH_OK,
1968 	PREP_DISPATCH_NO_TAG,
1969 	PREP_DISPATCH_NO_BUDGET,
1970 };
1971 
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1972 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1973 						  bool need_budget)
1974 {
1975 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1976 	int budget_token = -1;
1977 
1978 	if (need_budget) {
1979 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1980 		if (budget_token < 0) {
1981 			blk_mq_put_driver_tag(rq);
1982 			return PREP_DISPATCH_NO_BUDGET;
1983 		}
1984 		blk_mq_set_rq_budget_token(rq, budget_token);
1985 	}
1986 
1987 	if (!blk_mq_get_driver_tag(rq)) {
1988 		/*
1989 		 * The initial allocation attempt failed, so we need to
1990 		 * rerun the hardware queue when a tag is freed. The
1991 		 * waitqueue takes care of that. If the queue is run
1992 		 * before we add this entry back on the dispatch list,
1993 		 * we'll re-run it below.
1994 		 */
1995 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1996 			/*
1997 			 * All budgets not got from this function will be put
1998 			 * together during handling partial dispatch
1999 			 */
2000 			if (need_budget)
2001 				blk_mq_put_dispatch_budget(rq->q, budget_token);
2002 			return PREP_DISPATCH_NO_TAG;
2003 		}
2004 	}
2005 
2006 	return PREP_DISPATCH_OK;
2007 }
2008 
2009 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,struct list_head * list)2010 static void blk_mq_release_budgets(struct request_queue *q,
2011 		struct list_head *list)
2012 {
2013 	struct request *rq;
2014 
2015 	list_for_each_entry(rq, list, queuelist) {
2016 		int budget_token = blk_mq_get_rq_budget_token(rq);
2017 
2018 		if (budget_token >= 0)
2019 			blk_mq_put_dispatch_budget(q, budget_token);
2020 	}
2021 }
2022 
2023 /*
2024  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2025  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2026  * details)
2027  * Attention, we should explicitly call this in unusual cases:
2028  *  1) did not queue everything initially scheduled to queue
2029  *  2) the last attempt to queue a request failed
2030  */
blk_mq_commit_rqs(struct blk_mq_hw_ctx * hctx,int queued,bool from_schedule)2031 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2032 			      bool from_schedule)
2033 {
2034 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2035 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2036 		hctx->queue->mq_ops->commit_rqs(hctx);
2037 	}
2038 }
2039 
2040 /*
2041  * Returns true if we did some work AND can potentially do more.
2042  */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)2043 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2044 			     unsigned int nr_budgets)
2045 {
2046 	enum prep_dispatch prep;
2047 	struct request_queue *q = hctx->queue;
2048 	struct request *rq;
2049 	int queued;
2050 	blk_status_t ret = BLK_STS_OK;
2051 	LIST_HEAD(zone_list);
2052 	bool needs_resource = false;
2053 
2054 	if (list_empty(list))
2055 		return false;
2056 
2057 	/*
2058 	 * Now process all the entries, sending them to the driver.
2059 	 */
2060 	queued = 0;
2061 	do {
2062 		struct blk_mq_queue_data bd;
2063 
2064 		rq = list_first_entry(list, struct request, queuelist);
2065 
2066 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2067 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2068 		if (prep != PREP_DISPATCH_OK)
2069 			break;
2070 
2071 		list_del_init(&rq->queuelist);
2072 
2073 		bd.rq = rq;
2074 		bd.last = list_empty(list);
2075 
2076 		/*
2077 		 * once the request is queued to lld, no need to cover the
2078 		 * budget any more
2079 		 */
2080 		if (nr_budgets)
2081 			nr_budgets--;
2082 		ret = q->mq_ops->queue_rq(hctx, &bd);
2083 		switch (ret) {
2084 		case BLK_STS_OK:
2085 			queued++;
2086 			break;
2087 		case BLK_STS_RESOURCE:
2088 			needs_resource = true;
2089 			fallthrough;
2090 		case BLK_STS_DEV_RESOURCE:
2091 			blk_mq_handle_dev_resource(rq, list);
2092 			goto out;
2093 		case BLK_STS_ZONE_RESOURCE:
2094 			/*
2095 			 * Move the request to zone_list and keep going through
2096 			 * the dispatch list to find more requests the drive can
2097 			 * accept.
2098 			 */
2099 			blk_mq_handle_zone_resource(rq, &zone_list);
2100 			needs_resource = true;
2101 			break;
2102 		default:
2103 			blk_mq_end_request(rq, ret);
2104 		}
2105 	} while (!list_empty(list));
2106 out:
2107 	if (!list_empty(&zone_list))
2108 		list_splice_tail_init(&zone_list, list);
2109 
2110 	/* If we didn't flush the entire list, we could have told the driver
2111 	 * there was more coming, but that turned out to be a lie.
2112 	 */
2113 	if (!list_empty(list) || ret != BLK_STS_OK)
2114 		blk_mq_commit_rqs(hctx, queued, false);
2115 
2116 	/*
2117 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2118 	 * that is where we will continue on next queue run.
2119 	 */
2120 	if (!list_empty(list)) {
2121 		bool needs_restart;
2122 		/* For non-shared tags, the RESTART check will suffice */
2123 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2124 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2125 			blk_mq_is_shared_tags(hctx->flags));
2126 
2127 		if (nr_budgets)
2128 			blk_mq_release_budgets(q, list);
2129 
2130 		spin_lock(&hctx->lock);
2131 		list_splice_tail_init(list, &hctx->dispatch);
2132 		spin_unlock(&hctx->lock);
2133 
2134 		/*
2135 		 * Order adding requests to hctx->dispatch and checking
2136 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2137 		 * in blk_mq_sched_restart(). Avoid restart code path to
2138 		 * miss the new added requests to hctx->dispatch, meantime
2139 		 * SCHED_RESTART is observed here.
2140 		 */
2141 		smp_mb();
2142 
2143 		/*
2144 		 * If SCHED_RESTART was set by the caller of this function and
2145 		 * it is no longer set that means that it was cleared by another
2146 		 * thread and hence that a queue rerun is needed.
2147 		 *
2148 		 * If 'no_tag' is set, that means that we failed getting
2149 		 * a driver tag with an I/O scheduler attached. If our dispatch
2150 		 * waitqueue is no longer active, ensure that we run the queue
2151 		 * AFTER adding our entries back to the list.
2152 		 *
2153 		 * If no I/O scheduler has been configured it is possible that
2154 		 * the hardware queue got stopped and restarted before requests
2155 		 * were pushed back onto the dispatch list. Rerun the queue to
2156 		 * avoid starvation. Notes:
2157 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2158 		 *   been stopped before rerunning a queue.
2159 		 * - Some but not all block drivers stop a queue before
2160 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2161 		 *   and dm-rq.
2162 		 *
2163 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2164 		 * bit is set, run queue after a delay to avoid IO stalls
2165 		 * that could otherwise occur if the queue is idle.  We'll do
2166 		 * similar if we couldn't get budget or couldn't lock a zone
2167 		 * and SCHED_RESTART is set.
2168 		 */
2169 		needs_restart = blk_mq_sched_needs_restart(hctx);
2170 		if (prep == PREP_DISPATCH_NO_BUDGET)
2171 			needs_resource = true;
2172 		if (!needs_restart ||
2173 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2174 			blk_mq_run_hw_queue(hctx, true);
2175 		else if (needs_resource)
2176 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2177 
2178 		blk_mq_update_dispatch_busy(hctx, true);
2179 		return false;
2180 	}
2181 
2182 	blk_mq_update_dispatch_busy(hctx, false);
2183 	return true;
2184 }
2185 
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)2186 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2187 {
2188 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2189 
2190 	if (cpu >= nr_cpu_ids)
2191 		cpu = cpumask_first(hctx->cpumask);
2192 	return cpu;
2193 }
2194 
2195 /*
2196  * It'd be great if the workqueue API had a way to pass
2197  * in a mask and had some smarts for more clever placement.
2198  * For now we just round-robin here, switching for every
2199  * BLK_MQ_CPU_WORK_BATCH queued items.
2200  */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)2201 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2202 {
2203 	bool tried = false;
2204 	int next_cpu = hctx->next_cpu;
2205 
2206 	if (hctx->queue->nr_hw_queues == 1)
2207 		return WORK_CPU_UNBOUND;
2208 
2209 	if (--hctx->next_cpu_batch <= 0) {
2210 select_cpu:
2211 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2212 				cpu_online_mask);
2213 		if (next_cpu >= nr_cpu_ids)
2214 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2215 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2216 	}
2217 
2218 	/*
2219 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2220 	 * and it should only happen in the path of handling CPU DEAD.
2221 	 */
2222 	if (!cpu_online(next_cpu)) {
2223 		if (!tried) {
2224 			tried = true;
2225 			goto select_cpu;
2226 		}
2227 
2228 		/*
2229 		 * Make sure to re-select CPU next time once after CPUs
2230 		 * in hctx->cpumask become online again.
2231 		 */
2232 		hctx->next_cpu = next_cpu;
2233 		hctx->next_cpu_batch = 1;
2234 		return WORK_CPU_UNBOUND;
2235 	}
2236 
2237 	hctx->next_cpu = next_cpu;
2238 	return next_cpu;
2239 }
2240 
2241 /**
2242  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2243  * @hctx: Pointer to the hardware queue to run.
2244  * @msecs: Milliseconds of delay to wait before running the queue.
2245  *
2246  * Run a hardware queue asynchronously with a delay of @msecs.
2247  */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)2248 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2249 {
2250 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2251 		return;
2252 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2253 				    msecs_to_jiffies(msecs));
2254 }
2255 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2256 
blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx * hctx)2257 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2258 {
2259 	bool need_run;
2260 
2261 	/*
2262 	 * When queue is quiesced, we may be switching io scheduler, or
2263 	 * updating nr_hw_queues, or other things, and we can't run queue
2264 	 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2265 	 *
2266 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2267 	 * quiesced.
2268 	 */
2269 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2270 		need_run = !blk_queue_quiesced(hctx->queue) &&
2271 		blk_mq_hctx_has_pending(hctx));
2272 	return need_run;
2273 }
2274 
2275 /**
2276  * blk_mq_run_hw_queue - Start to run a hardware queue.
2277  * @hctx: Pointer to the hardware queue to run.
2278  * @async: If we want to run the queue asynchronously.
2279  *
2280  * Check if the request queue is not in a quiesced state and if there are
2281  * pending requests to be sent. If this is true, run the queue to send requests
2282  * to hardware.
2283  */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2284 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2285 {
2286 	bool need_run;
2287 
2288 	/*
2289 	 * We can't run the queue inline with interrupts disabled.
2290 	 */
2291 	WARN_ON_ONCE(!async && in_interrupt());
2292 
2293 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2294 
2295 	need_run = blk_mq_hw_queue_need_run(hctx);
2296 	if (!need_run) {
2297 		unsigned long flags;
2298 
2299 		/*
2300 		 * Synchronize with blk_mq_unquiesce_queue(), because we check
2301 		 * if hw queue is quiesced locklessly above, we need the use
2302 		 * ->queue_lock to make sure we see the up-to-date status to
2303 		 * not miss rerunning the hw queue.
2304 		 */
2305 		spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2306 		need_run = blk_mq_hw_queue_need_run(hctx);
2307 		spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2308 
2309 		if (!need_run)
2310 			return;
2311 	}
2312 
2313 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2314 		blk_mq_delay_run_hw_queue(hctx, 0);
2315 		return;
2316 	}
2317 
2318 	blk_mq_run_dispatch_ops(hctx->queue,
2319 				blk_mq_sched_dispatch_requests(hctx));
2320 }
2321 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2322 
2323 /*
2324  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2325  * scheduler.
2326  */
blk_mq_get_sq_hctx(struct request_queue * q)2327 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2328 {
2329 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2330 	/*
2331 	 * If the IO scheduler does not respect hardware queues when
2332 	 * dispatching, we just don't bother with multiple HW queues and
2333 	 * dispatch from hctx for the current CPU since running multiple queues
2334 	 * just causes lock contention inside the scheduler and pointless cache
2335 	 * bouncing.
2336 	 */
2337 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2338 
2339 	if (!blk_mq_hctx_stopped(hctx))
2340 		return hctx;
2341 	return NULL;
2342 }
2343 
2344 /**
2345  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2346  * @q: Pointer to the request queue to run.
2347  * @async: If we want to run the queue asynchronously.
2348  */
blk_mq_run_hw_queues(struct request_queue * q,bool async)2349 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2350 {
2351 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2352 	unsigned long i;
2353 
2354 	sq_hctx = NULL;
2355 	if (blk_queue_sq_sched(q))
2356 		sq_hctx = blk_mq_get_sq_hctx(q);
2357 	queue_for_each_hw_ctx(q, hctx, i) {
2358 		if (blk_mq_hctx_stopped(hctx))
2359 			continue;
2360 		/*
2361 		 * Dispatch from this hctx either if there's no hctx preferred
2362 		 * by IO scheduler or if it has requests that bypass the
2363 		 * scheduler.
2364 		 */
2365 		if (!sq_hctx || sq_hctx == hctx ||
2366 		    !list_empty_careful(&hctx->dispatch))
2367 			blk_mq_run_hw_queue(hctx, async);
2368 	}
2369 }
2370 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2371 
2372 /**
2373  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2374  * @q: Pointer to the request queue to run.
2375  * @msecs: Milliseconds of delay to wait before running the queues.
2376  */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)2377 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2378 {
2379 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2380 	unsigned long i;
2381 
2382 	sq_hctx = NULL;
2383 	if (blk_queue_sq_sched(q))
2384 		sq_hctx = blk_mq_get_sq_hctx(q);
2385 	queue_for_each_hw_ctx(q, hctx, i) {
2386 		if (blk_mq_hctx_stopped(hctx))
2387 			continue;
2388 		/*
2389 		 * If there is already a run_work pending, leave the
2390 		 * pending delay untouched. Otherwise, a hctx can stall
2391 		 * if another hctx is re-delaying the other's work
2392 		 * before the work executes.
2393 		 */
2394 		if (delayed_work_pending(&hctx->run_work))
2395 			continue;
2396 		/*
2397 		 * Dispatch from this hctx either if there's no hctx preferred
2398 		 * by IO scheduler or if it has requests that bypass the
2399 		 * scheduler.
2400 		 */
2401 		if (!sq_hctx || sq_hctx == hctx ||
2402 		    !list_empty_careful(&hctx->dispatch))
2403 			blk_mq_delay_run_hw_queue(hctx, msecs);
2404 	}
2405 }
2406 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2407 
2408 /*
2409  * This function is often used for pausing .queue_rq() by driver when
2410  * there isn't enough resource or some conditions aren't satisfied, and
2411  * BLK_STS_RESOURCE is usually returned.
2412  *
2413  * We do not guarantee that dispatch can be drained or blocked
2414  * after blk_mq_stop_hw_queue() returns. Please use
2415  * blk_mq_quiesce_queue() for that requirement.
2416  */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)2417 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2418 {
2419 	cancel_delayed_work(&hctx->run_work);
2420 
2421 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2422 }
2423 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2424 
2425 /*
2426  * This function is often used for pausing .queue_rq() by driver when
2427  * there isn't enough resource or some conditions aren't satisfied, and
2428  * BLK_STS_RESOURCE is usually returned.
2429  *
2430  * We do not guarantee that dispatch can be drained or blocked
2431  * after blk_mq_stop_hw_queues() returns. Please use
2432  * blk_mq_quiesce_queue() for that requirement.
2433  */
blk_mq_stop_hw_queues(struct request_queue * q)2434 void blk_mq_stop_hw_queues(struct request_queue *q)
2435 {
2436 	struct blk_mq_hw_ctx *hctx;
2437 	unsigned long i;
2438 
2439 	queue_for_each_hw_ctx(q, hctx, i)
2440 		blk_mq_stop_hw_queue(hctx);
2441 }
2442 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2443 
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)2444 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2445 {
2446 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2447 
2448 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2449 }
2450 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2451 
blk_mq_start_hw_queues(struct request_queue * q)2452 void blk_mq_start_hw_queues(struct request_queue *q)
2453 {
2454 	struct blk_mq_hw_ctx *hctx;
2455 	unsigned long i;
2456 
2457 	queue_for_each_hw_ctx(q, hctx, i)
2458 		blk_mq_start_hw_queue(hctx);
2459 }
2460 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2461 
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2462 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2463 {
2464 	if (!blk_mq_hctx_stopped(hctx))
2465 		return;
2466 
2467 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2468 	/*
2469 	 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2470 	 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2471 	 * list in the subsequent routine.
2472 	 */
2473 	smp_mb__after_atomic();
2474 	blk_mq_run_hw_queue(hctx, async);
2475 }
2476 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2477 
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)2478 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2479 {
2480 	struct blk_mq_hw_ctx *hctx;
2481 	unsigned long i;
2482 
2483 	queue_for_each_hw_ctx(q, hctx, i)
2484 		blk_mq_start_stopped_hw_queue(hctx, async ||
2485 					(hctx->flags & BLK_MQ_F_BLOCKING));
2486 }
2487 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2488 
blk_mq_run_work_fn(struct work_struct * work)2489 static void blk_mq_run_work_fn(struct work_struct *work)
2490 {
2491 	struct blk_mq_hw_ctx *hctx =
2492 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2493 
2494 	blk_mq_run_dispatch_ops(hctx->queue,
2495 				blk_mq_sched_dispatch_requests(hctx));
2496 }
2497 
2498 /**
2499  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2500  * @rq: Pointer to request to be inserted.
2501  * @flags: BLK_MQ_INSERT_*
2502  *
2503  * Should only be used carefully, when the caller knows we want to
2504  * bypass a potential IO scheduler on the target device.
2505  */
blk_mq_request_bypass_insert(struct request * rq,blk_insert_t flags)2506 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2507 {
2508 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2509 
2510 	spin_lock(&hctx->lock);
2511 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2512 		list_add(&rq->queuelist, &hctx->dispatch);
2513 	else
2514 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2515 	spin_unlock(&hctx->lock);
2516 }
2517 
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)2518 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2519 		struct blk_mq_ctx *ctx, struct list_head *list,
2520 		bool run_queue_async)
2521 {
2522 	struct request *rq;
2523 	enum hctx_type type = hctx->type;
2524 
2525 	/*
2526 	 * Try to issue requests directly if the hw queue isn't busy to save an
2527 	 * extra enqueue & dequeue to the sw queue.
2528 	 */
2529 	if (!hctx->dispatch_busy && !run_queue_async) {
2530 		blk_mq_run_dispatch_ops(hctx->queue,
2531 			blk_mq_try_issue_list_directly(hctx, list));
2532 		if (list_empty(list))
2533 			goto out;
2534 	}
2535 
2536 	/*
2537 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2538 	 * offline now
2539 	 */
2540 	list_for_each_entry(rq, list, queuelist) {
2541 		BUG_ON(rq->mq_ctx != ctx);
2542 		trace_block_rq_insert(rq);
2543 		if (rq->cmd_flags & REQ_NOWAIT)
2544 			run_queue_async = true;
2545 	}
2546 
2547 	spin_lock(&ctx->lock);
2548 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2549 	blk_mq_hctx_mark_pending(hctx, ctx);
2550 	spin_unlock(&ctx->lock);
2551 out:
2552 	blk_mq_run_hw_queue(hctx, run_queue_async);
2553 }
2554 
blk_mq_insert_request(struct request * rq,blk_insert_t flags)2555 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2556 {
2557 	struct request_queue *q = rq->q;
2558 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2559 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2560 
2561 	if (blk_rq_is_passthrough(rq)) {
2562 		/*
2563 		 * Passthrough request have to be added to hctx->dispatch
2564 		 * directly.  The device may be in a situation where it can't
2565 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2566 		 * them, which gets them added to hctx->dispatch.
2567 		 *
2568 		 * If a passthrough request is required to unblock the queues,
2569 		 * and it is added to the scheduler queue, there is no chance to
2570 		 * dispatch it given we prioritize requests in hctx->dispatch.
2571 		 */
2572 		blk_mq_request_bypass_insert(rq, flags);
2573 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2574 		/*
2575 		 * Firstly normal IO request is inserted to scheduler queue or
2576 		 * sw queue, meantime we add flush request to dispatch queue(
2577 		 * hctx->dispatch) directly and there is at most one in-flight
2578 		 * flush request for each hw queue, so it doesn't matter to add
2579 		 * flush request to tail or front of the dispatch queue.
2580 		 *
2581 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2582 		 * command, and queueing it will fail when there is any
2583 		 * in-flight normal IO request(NCQ command). When adding flush
2584 		 * rq to the front of hctx->dispatch, it is easier to introduce
2585 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2586 		 * compared with adding to the tail of dispatch queue, then
2587 		 * chance of flush merge is increased, and less flush requests
2588 		 * will be issued to controller. It is observed that ~10% time
2589 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2590 		 * drive when adding flush rq to the front of hctx->dispatch.
2591 		 *
2592 		 * Simply queue flush rq to the front of hctx->dispatch so that
2593 		 * intensive flush workloads can benefit in case of NCQ HW.
2594 		 */
2595 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2596 	} else if (q->elevator) {
2597 		LIST_HEAD(list);
2598 
2599 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2600 
2601 		list_add(&rq->queuelist, &list);
2602 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2603 	} else {
2604 		trace_block_rq_insert(rq);
2605 
2606 		spin_lock(&ctx->lock);
2607 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2608 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2609 		else
2610 			list_add_tail(&rq->queuelist,
2611 				      &ctx->rq_lists[hctx->type]);
2612 		blk_mq_hctx_mark_pending(hctx, ctx);
2613 		spin_unlock(&ctx->lock);
2614 	}
2615 }
2616 
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)2617 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2618 		unsigned int nr_segs)
2619 {
2620 	int err;
2621 
2622 	if (bio->bi_opf & REQ_RAHEAD)
2623 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2624 
2625 	rq->__sector = bio->bi_iter.bi_sector;
2626 	blk_rq_bio_prep(rq, bio, nr_segs);
2627 
2628 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2629 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2630 	WARN_ON_ONCE(err);
2631 
2632 	blk_account_io_start(rq);
2633 }
2634 
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool last)2635 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2636 					    struct request *rq, bool last)
2637 {
2638 	struct request_queue *q = rq->q;
2639 	struct blk_mq_queue_data bd = {
2640 		.rq = rq,
2641 		.last = last,
2642 	};
2643 	blk_status_t ret;
2644 
2645 	/*
2646 	 * For OK queue, we are done. For error, caller may kill it.
2647 	 * Any other error (busy), just add it to our list as we
2648 	 * previously would have done.
2649 	 */
2650 	ret = q->mq_ops->queue_rq(hctx, &bd);
2651 	switch (ret) {
2652 	case BLK_STS_OK:
2653 		blk_mq_update_dispatch_busy(hctx, false);
2654 		break;
2655 	case BLK_STS_RESOURCE:
2656 	case BLK_STS_DEV_RESOURCE:
2657 		blk_mq_update_dispatch_busy(hctx, true);
2658 		__blk_mq_requeue_request(rq);
2659 		break;
2660 	default:
2661 		blk_mq_update_dispatch_busy(hctx, false);
2662 		break;
2663 	}
2664 
2665 	return ret;
2666 }
2667 
blk_mq_get_budget_and_tag(struct request * rq)2668 static bool blk_mq_get_budget_and_tag(struct request *rq)
2669 {
2670 	int budget_token;
2671 
2672 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2673 	if (budget_token < 0)
2674 		return false;
2675 	blk_mq_set_rq_budget_token(rq, budget_token);
2676 	if (!blk_mq_get_driver_tag(rq)) {
2677 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2678 		return false;
2679 	}
2680 	return true;
2681 }
2682 
2683 /**
2684  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2685  * @hctx: Pointer of the associated hardware queue.
2686  * @rq: Pointer to request to be sent.
2687  *
2688  * If the device has enough resources to accept a new request now, send the
2689  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2690  * we can try send it another time in the future. Requests inserted at this
2691  * queue have higher priority.
2692  */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq)2693 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2694 		struct request *rq)
2695 {
2696 	blk_status_t ret;
2697 
2698 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2699 		blk_mq_insert_request(rq, 0);
2700 		blk_mq_run_hw_queue(hctx, false);
2701 		return;
2702 	}
2703 
2704 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2705 		blk_mq_insert_request(rq, 0);
2706 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2707 		return;
2708 	}
2709 
2710 	ret = __blk_mq_issue_directly(hctx, rq, true);
2711 	switch (ret) {
2712 	case BLK_STS_OK:
2713 		break;
2714 	case BLK_STS_RESOURCE:
2715 	case BLK_STS_DEV_RESOURCE:
2716 		blk_mq_request_bypass_insert(rq, 0);
2717 		blk_mq_run_hw_queue(hctx, false);
2718 		break;
2719 	default:
2720 		blk_mq_end_request(rq, ret);
2721 		break;
2722 	}
2723 }
2724 
blk_mq_request_issue_directly(struct request * rq,bool last)2725 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2726 {
2727 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2728 
2729 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2730 		blk_mq_insert_request(rq, 0);
2731 		blk_mq_run_hw_queue(hctx, false);
2732 		return BLK_STS_OK;
2733 	}
2734 
2735 	if (!blk_mq_get_budget_and_tag(rq))
2736 		return BLK_STS_RESOURCE;
2737 	return __blk_mq_issue_directly(hctx, rq, last);
2738 }
2739 
blk_mq_plug_issue_direct(struct blk_plug * plug)2740 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2741 {
2742 	struct blk_mq_hw_ctx *hctx = NULL;
2743 	struct request *rq;
2744 	int queued = 0;
2745 	blk_status_t ret = BLK_STS_OK;
2746 
2747 	while ((rq = rq_list_pop(&plug->mq_list))) {
2748 		bool last = rq_list_empty(plug->mq_list);
2749 
2750 		if (hctx != rq->mq_hctx) {
2751 			if (hctx) {
2752 				blk_mq_commit_rqs(hctx, queued, false);
2753 				queued = 0;
2754 			}
2755 			hctx = rq->mq_hctx;
2756 		}
2757 
2758 		ret = blk_mq_request_issue_directly(rq, last);
2759 		switch (ret) {
2760 		case BLK_STS_OK:
2761 			queued++;
2762 			break;
2763 		case BLK_STS_RESOURCE:
2764 		case BLK_STS_DEV_RESOURCE:
2765 			blk_mq_request_bypass_insert(rq, 0);
2766 			blk_mq_run_hw_queue(hctx, false);
2767 			goto out;
2768 		default:
2769 			blk_mq_end_request(rq, ret);
2770 			break;
2771 		}
2772 	}
2773 
2774 out:
2775 	if (ret != BLK_STS_OK)
2776 		blk_mq_commit_rqs(hctx, queued, false);
2777 }
2778 
__blk_mq_flush_plug_list(struct request_queue * q,struct blk_plug * plug)2779 static void __blk_mq_flush_plug_list(struct request_queue *q,
2780 				     struct blk_plug *plug)
2781 {
2782 	if (blk_queue_quiesced(q))
2783 		return;
2784 	q->mq_ops->queue_rqs(&plug->mq_list);
2785 }
2786 
blk_mq_dispatch_plug_list(struct blk_plug * plug,bool from_sched)2787 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2788 {
2789 	struct blk_mq_hw_ctx *this_hctx = NULL;
2790 	struct blk_mq_ctx *this_ctx = NULL;
2791 	struct request *requeue_list = NULL;
2792 	struct request **requeue_lastp = &requeue_list;
2793 	unsigned int depth = 0;
2794 	bool is_passthrough = false;
2795 	LIST_HEAD(list);
2796 
2797 	do {
2798 		struct request *rq = rq_list_pop(&plug->mq_list);
2799 
2800 		if (!this_hctx) {
2801 			this_hctx = rq->mq_hctx;
2802 			this_ctx = rq->mq_ctx;
2803 			is_passthrough = blk_rq_is_passthrough(rq);
2804 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2805 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2806 			rq_list_add_tail(&requeue_lastp, rq);
2807 			continue;
2808 		}
2809 		list_add(&rq->queuelist, &list);
2810 		depth++;
2811 	} while (!rq_list_empty(plug->mq_list));
2812 
2813 	plug->mq_list = requeue_list;
2814 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2815 
2816 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2817 	/* passthrough requests should never be issued to the I/O scheduler */
2818 	if (is_passthrough) {
2819 		spin_lock(&this_hctx->lock);
2820 		list_splice_tail_init(&list, &this_hctx->dispatch);
2821 		spin_unlock(&this_hctx->lock);
2822 		blk_mq_run_hw_queue(this_hctx, from_sched);
2823 	} else if (this_hctx->queue->elevator) {
2824 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2825 				&list, 0);
2826 		blk_mq_run_hw_queue(this_hctx, from_sched);
2827 	} else {
2828 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2829 	}
2830 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2831 }
2832 
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)2833 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2834 {
2835 	struct request *rq;
2836 
2837 	/*
2838 	 * We may have been called recursively midway through handling
2839 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2840 	 * To avoid mq_list changing under our feet, clear rq_count early and
2841 	 * bail out specifically if rq_count is 0 rather than checking
2842 	 * whether the mq_list is empty.
2843 	 */
2844 	if (plug->rq_count == 0)
2845 		return;
2846 	plug->rq_count = 0;
2847 
2848 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2849 		struct request_queue *q;
2850 
2851 		rq = rq_list_peek(&plug->mq_list);
2852 		q = rq->q;
2853 
2854 		/*
2855 		 * Peek first request and see if we have a ->queue_rqs() hook.
2856 		 * If we do, we can dispatch the whole plug list in one go. We
2857 		 * already know at this point that all requests belong to the
2858 		 * same queue, caller must ensure that's the case.
2859 		 *
2860 		 * Since we pass off the full list to the driver at this point,
2861 		 * we do not increment the active request count for the queue.
2862 		 * Bypass shared tags for now because of that.
2863 		 */
2864 		if (q->mq_ops->queue_rqs &&
2865 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2866 			blk_mq_run_dispatch_ops(q,
2867 				__blk_mq_flush_plug_list(q, plug));
2868 			if (rq_list_empty(plug->mq_list))
2869 				return;
2870 		}
2871 
2872 		blk_mq_run_dispatch_ops(q,
2873 				blk_mq_plug_issue_direct(plug));
2874 		if (rq_list_empty(plug->mq_list))
2875 			return;
2876 	}
2877 
2878 	do {
2879 		blk_mq_dispatch_plug_list(plug, from_schedule);
2880 	} while (!rq_list_empty(plug->mq_list));
2881 }
2882 
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2883 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2884 		struct list_head *list)
2885 {
2886 	int queued = 0;
2887 	blk_status_t ret = BLK_STS_OK;
2888 
2889 	while (!list_empty(list)) {
2890 		struct request *rq = list_first_entry(list, struct request,
2891 				queuelist);
2892 
2893 		list_del_init(&rq->queuelist);
2894 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2895 		switch (ret) {
2896 		case BLK_STS_OK:
2897 			queued++;
2898 			break;
2899 		case BLK_STS_RESOURCE:
2900 		case BLK_STS_DEV_RESOURCE:
2901 			blk_mq_request_bypass_insert(rq, 0);
2902 			if (list_empty(list))
2903 				blk_mq_run_hw_queue(hctx, false);
2904 			goto out;
2905 		default:
2906 			blk_mq_end_request(rq, ret);
2907 			break;
2908 		}
2909 	}
2910 
2911 out:
2912 	if (ret != BLK_STS_OK)
2913 		blk_mq_commit_rqs(hctx, queued, false);
2914 }
2915 
blk_mq_attempt_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2916 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2917 				     struct bio *bio, unsigned int nr_segs)
2918 {
2919 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2920 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2921 			return true;
2922 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2923 			return true;
2924 	}
2925 	return false;
2926 }
2927 
blk_mq_get_new_requests(struct request_queue * q,struct blk_plug * plug,struct bio * bio,unsigned int nsegs)2928 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2929 					       struct blk_plug *plug,
2930 					       struct bio *bio,
2931 					       unsigned int nsegs)
2932 {
2933 	struct blk_mq_alloc_data data = {
2934 		.q		= q,
2935 		.nr_tags	= 1,
2936 		.cmd_flags	= bio->bi_opf,
2937 	};
2938 	struct request *rq;
2939 
2940 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2941 		return NULL;
2942 
2943 	rq_qos_throttle(q, bio);
2944 
2945 	if (plug) {
2946 		data.nr_tags = plug->nr_ios;
2947 		plug->nr_ios = 1;
2948 		data.cached_rq = &plug->cached_rq;
2949 	}
2950 
2951 	rq = __blk_mq_alloc_requests(&data);
2952 	if (rq)
2953 		return rq;
2954 	rq_qos_cleanup(q, bio);
2955 	if (bio->bi_opf & REQ_NOWAIT)
2956 		bio_wouldblock_error(bio);
2957 	return NULL;
2958 }
2959 
2960 /* return true if this @rq can be used for @bio */
blk_mq_can_use_cached_rq(struct request * rq,struct blk_plug * plug,struct bio * bio)2961 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2962 		struct bio *bio)
2963 {
2964 	enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2965 	enum hctx_type hctx_type = rq->mq_hctx->type;
2966 
2967 	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2968 
2969 	if (type != hctx_type &&
2970 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2971 		return false;
2972 	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2973 		return false;
2974 
2975 	/*
2976 	 * If any qos ->throttle() end up blocking, we will have flushed the
2977 	 * plug and hence killed the cached_rq list as well. Pop this entry
2978 	 * before we throttle.
2979 	 */
2980 	plug->cached_rq = rq_list_next(rq);
2981 	rq_qos_throttle(rq->q, bio);
2982 
2983 	blk_mq_rq_time_init(rq, 0);
2984 	rq->cmd_flags = bio->bi_opf;
2985 	INIT_LIST_HEAD(&rq->queuelist);
2986 	return true;
2987 }
2988 
2989 /**
2990  * blk_mq_submit_bio - Create and send a request to block device.
2991  * @bio: Bio pointer.
2992  *
2993  * Builds up a request structure from @q and @bio and send to the device. The
2994  * request may not be queued directly to hardware if:
2995  * * This request can be merged with another one
2996  * * We want to place request at plug queue for possible future merging
2997  * * There is an IO scheduler active at this queue
2998  *
2999  * It will not queue the request if there is an error with the bio, or at the
3000  * request creation.
3001  */
blk_mq_submit_bio(struct bio * bio)3002 void blk_mq_submit_bio(struct bio *bio)
3003 {
3004 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3005 	struct blk_plug *plug = blk_mq_plug(bio);
3006 	const int is_sync = op_is_sync(bio->bi_opf);
3007 	struct blk_mq_hw_ctx *hctx;
3008 	struct request *rq = NULL;
3009 	unsigned int nr_segs = 1;
3010 	blk_status_t ret;
3011 
3012 	bio = blk_queue_bounce(bio, q);
3013 
3014 	if (plug) {
3015 		rq = rq_list_peek(&plug->cached_rq);
3016 		if (rq && rq->q != q)
3017 			rq = NULL;
3018 	}
3019 	if (rq) {
3020 		if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3021 			bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3022 			if (!bio)
3023 				return;
3024 		}
3025 		if (!bio_integrity_prep(bio))
3026 			return;
3027 		if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3028 			return;
3029 		if (blk_mq_can_use_cached_rq(rq, plug, bio))
3030 			goto done;
3031 		percpu_ref_get(&q->q_usage_counter);
3032 	} else {
3033 		if (unlikely(bio_queue_enter(bio)))
3034 			return;
3035 		if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3036 			bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3037 			if (!bio)
3038 				goto fail;
3039 		}
3040 		if (!bio_integrity_prep(bio))
3041 			goto fail;
3042 	}
3043 
3044 	rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3045 	if (unlikely(!rq)) {
3046 fail:
3047 		blk_queue_exit(q);
3048 		return;
3049 	}
3050 
3051 done:
3052 	trace_block_getrq(bio);
3053 
3054 	rq_qos_track(q, rq, bio);
3055 
3056 	blk_mq_bio_to_request(rq, bio, nr_segs);
3057 
3058 	ret = blk_crypto_rq_get_keyslot(rq);
3059 	if (ret != BLK_STS_OK) {
3060 		bio->bi_status = ret;
3061 		bio_endio(bio);
3062 		blk_mq_free_request(rq);
3063 		return;
3064 	}
3065 
3066 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3067 		return;
3068 
3069 	if (plug) {
3070 		blk_add_rq_to_plug(plug, rq);
3071 		return;
3072 	}
3073 
3074 	hctx = rq->mq_hctx;
3075 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3076 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3077 		blk_mq_insert_request(rq, 0);
3078 		blk_mq_run_hw_queue(hctx, true);
3079 	} else {
3080 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3081 	}
3082 }
3083 
3084 #ifdef CONFIG_BLK_MQ_STACKING
3085 /**
3086  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3087  * @rq: the request being queued
3088  */
blk_insert_cloned_request(struct request * rq)3089 blk_status_t blk_insert_cloned_request(struct request *rq)
3090 {
3091 	struct request_queue *q = rq->q;
3092 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3093 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3094 	blk_status_t ret;
3095 
3096 	if (blk_rq_sectors(rq) > max_sectors) {
3097 		/*
3098 		 * SCSI device does not have a good way to return if
3099 		 * Write Same/Zero is actually supported. If a device rejects
3100 		 * a non-read/write command (discard, write same,etc.) the
3101 		 * low-level device driver will set the relevant queue limit to
3102 		 * 0 to prevent blk-lib from issuing more of the offending
3103 		 * operations. Commands queued prior to the queue limit being
3104 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3105 		 * errors being propagated to upper layers.
3106 		 */
3107 		if (max_sectors == 0)
3108 			return BLK_STS_NOTSUPP;
3109 
3110 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3111 			__func__, blk_rq_sectors(rq), max_sectors);
3112 		return BLK_STS_IOERR;
3113 	}
3114 
3115 	/*
3116 	 * The queue settings related to segment counting may differ from the
3117 	 * original queue.
3118 	 */
3119 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3120 	if (rq->nr_phys_segments > max_segments) {
3121 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3122 			__func__, rq->nr_phys_segments, max_segments);
3123 		return BLK_STS_IOERR;
3124 	}
3125 
3126 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3127 		return BLK_STS_IOERR;
3128 
3129 	ret = blk_crypto_rq_get_keyslot(rq);
3130 	if (ret != BLK_STS_OK)
3131 		return ret;
3132 
3133 	blk_account_io_start(rq);
3134 
3135 	/*
3136 	 * Since we have a scheduler attached on the top device,
3137 	 * bypass a potential scheduler on the bottom device for
3138 	 * insert.
3139 	 */
3140 	blk_mq_run_dispatch_ops(q,
3141 			ret = blk_mq_request_issue_directly(rq, true));
3142 	if (ret)
3143 		blk_account_io_done(rq, ktime_get_ns());
3144 	return ret;
3145 }
3146 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3147 
3148 /**
3149  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3150  * @rq: the clone request to be cleaned up
3151  *
3152  * Description:
3153  *     Free all bios in @rq for a cloned request.
3154  */
blk_rq_unprep_clone(struct request * rq)3155 void blk_rq_unprep_clone(struct request *rq)
3156 {
3157 	struct bio *bio;
3158 
3159 	while ((bio = rq->bio) != NULL) {
3160 		rq->bio = bio->bi_next;
3161 
3162 		bio_put(bio);
3163 	}
3164 }
3165 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3166 
3167 /**
3168  * blk_rq_prep_clone - Helper function to setup clone request
3169  * @rq: the request to be setup
3170  * @rq_src: original request to be cloned
3171  * @bs: bio_set that bios for clone are allocated from
3172  * @gfp_mask: memory allocation mask for bio
3173  * @bio_ctr: setup function to be called for each clone bio.
3174  *           Returns %0 for success, non %0 for failure.
3175  * @data: private data to be passed to @bio_ctr
3176  *
3177  * Description:
3178  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3179  *     Also, pages which the original bios are pointing to are not copied
3180  *     and the cloned bios just point same pages.
3181  *     So cloned bios must be completed before original bios, which means
3182  *     the caller must complete @rq before @rq_src.
3183  */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3184 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3185 		      struct bio_set *bs, gfp_t gfp_mask,
3186 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3187 		      void *data)
3188 {
3189 	struct bio *bio, *bio_src;
3190 
3191 	if (!bs)
3192 		bs = &fs_bio_set;
3193 
3194 	__rq_for_each_bio(bio_src, rq_src) {
3195 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3196 				      bs);
3197 		if (!bio)
3198 			goto free_and_out;
3199 
3200 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3201 			goto free_and_out;
3202 
3203 		if (rq->bio) {
3204 			rq->biotail->bi_next = bio;
3205 			rq->biotail = bio;
3206 		} else {
3207 			rq->bio = rq->biotail = bio;
3208 		}
3209 		bio = NULL;
3210 	}
3211 
3212 	/* Copy attributes of the original request to the clone request. */
3213 	rq->__sector = blk_rq_pos(rq_src);
3214 	rq->__data_len = blk_rq_bytes(rq_src);
3215 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3216 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3217 		rq->special_vec = rq_src->special_vec;
3218 	}
3219 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3220 	rq->ioprio = rq_src->ioprio;
3221 
3222 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3223 		goto free_and_out;
3224 
3225 	return 0;
3226 
3227 free_and_out:
3228 	if (bio)
3229 		bio_put(bio);
3230 	blk_rq_unprep_clone(rq);
3231 
3232 	return -ENOMEM;
3233 }
3234 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3235 #endif /* CONFIG_BLK_MQ_STACKING */
3236 
3237 /*
3238  * Steal bios from a request and add them to a bio list.
3239  * The request must not have been partially completed before.
3240  */
blk_steal_bios(struct bio_list * list,struct request * rq)3241 void blk_steal_bios(struct bio_list *list, struct request *rq)
3242 {
3243 	if (rq->bio) {
3244 		if (list->tail)
3245 			list->tail->bi_next = rq->bio;
3246 		else
3247 			list->head = rq->bio;
3248 		list->tail = rq->biotail;
3249 
3250 		rq->bio = NULL;
3251 		rq->biotail = NULL;
3252 	}
3253 
3254 	rq->__data_len = 0;
3255 }
3256 EXPORT_SYMBOL_GPL(blk_steal_bios);
3257 
order_to_size(unsigned int order)3258 static size_t order_to_size(unsigned int order)
3259 {
3260 	return (size_t)PAGE_SIZE << order;
3261 }
3262 
3263 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tags * drv_tags,struct blk_mq_tags * tags)3264 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3265 				    struct blk_mq_tags *tags)
3266 {
3267 	struct page *page;
3268 	unsigned long flags;
3269 
3270 	/*
3271 	 * There is no need to clear mapping if driver tags is not initialized
3272 	 * or the mapping belongs to the driver tags.
3273 	 */
3274 	if (!drv_tags || drv_tags == tags)
3275 		return;
3276 
3277 	list_for_each_entry(page, &tags->page_list, lru) {
3278 		unsigned long start = (unsigned long)page_address(page);
3279 		unsigned long end = start + order_to_size(page->private);
3280 		int i;
3281 
3282 		for (i = 0; i < drv_tags->nr_tags; i++) {
3283 			struct request *rq = drv_tags->rqs[i];
3284 			unsigned long rq_addr = (unsigned long)rq;
3285 
3286 			if (rq_addr >= start && rq_addr < end) {
3287 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3288 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3289 			}
3290 		}
3291 	}
3292 
3293 	/*
3294 	 * Wait until all pending iteration is done.
3295 	 *
3296 	 * Request reference is cleared and it is guaranteed to be observed
3297 	 * after the ->lock is released.
3298 	 */
3299 	spin_lock_irqsave(&drv_tags->lock, flags);
3300 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3301 }
3302 
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3303 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3304 		     unsigned int hctx_idx)
3305 {
3306 	struct blk_mq_tags *drv_tags;
3307 	struct page *page;
3308 
3309 	if (list_empty(&tags->page_list))
3310 		return;
3311 
3312 	if (blk_mq_is_shared_tags(set->flags))
3313 		drv_tags = set->shared_tags;
3314 	else
3315 		drv_tags = set->tags[hctx_idx];
3316 
3317 	if (tags->static_rqs && set->ops->exit_request) {
3318 		int i;
3319 
3320 		for (i = 0; i < tags->nr_tags; i++) {
3321 			struct request *rq = tags->static_rqs[i];
3322 
3323 			if (!rq)
3324 				continue;
3325 			set->ops->exit_request(set, rq, hctx_idx);
3326 			tags->static_rqs[i] = NULL;
3327 		}
3328 	}
3329 
3330 	blk_mq_clear_rq_mapping(drv_tags, tags);
3331 
3332 	while (!list_empty(&tags->page_list)) {
3333 		page = list_first_entry(&tags->page_list, struct page, lru);
3334 		list_del_init(&page->lru);
3335 		/*
3336 		 * Remove kmemleak object previously allocated in
3337 		 * blk_mq_alloc_rqs().
3338 		 */
3339 		kmemleak_free(page_address(page));
3340 		__free_pages(page, page->private);
3341 	}
3342 }
3343 
blk_mq_free_rq_map(struct blk_mq_tags * tags)3344 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3345 {
3346 	kfree(tags->rqs);
3347 	tags->rqs = NULL;
3348 	kfree(tags->static_rqs);
3349 	tags->static_rqs = NULL;
3350 
3351 	blk_mq_free_tags(tags);
3352 }
3353 
hctx_idx_to_type(struct blk_mq_tag_set * set,unsigned int hctx_idx)3354 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3355 		unsigned int hctx_idx)
3356 {
3357 	int i;
3358 
3359 	for (i = 0; i < set->nr_maps; i++) {
3360 		unsigned int start = set->map[i].queue_offset;
3361 		unsigned int end = start + set->map[i].nr_queues;
3362 
3363 		if (hctx_idx >= start && hctx_idx < end)
3364 			break;
3365 	}
3366 
3367 	if (i >= set->nr_maps)
3368 		i = HCTX_TYPE_DEFAULT;
3369 
3370 	return i;
3371 }
3372 
blk_mq_get_hctx_node(struct blk_mq_tag_set * set,unsigned int hctx_idx)3373 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3374 		unsigned int hctx_idx)
3375 {
3376 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3377 
3378 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3379 }
3380 
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)3381 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3382 					       unsigned int hctx_idx,
3383 					       unsigned int nr_tags,
3384 					       unsigned int reserved_tags)
3385 {
3386 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3387 	struct blk_mq_tags *tags;
3388 
3389 	if (node == NUMA_NO_NODE)
3390 		node = set->numa_node;
3391 
3392 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3393 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3394 	if (!tags)
3395 		return NULL;
3396 
3397 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3398 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3399 				 node);
3400 	if (!tags->rqs)
3401 		goto err_free_tags;
3402 
3403 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3404 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3405 					node);
3406 	if (!tags->static_rqs)
3407 		goto err_free_rqs;
3408 
3409 	return tags;
3410 
3411 err_free_rqs:
3412 	kfree(tags->rqs);
3413 err_free_tags:
3414 	blk_mq_free_tags(tags);
3415 	return NULL;
3416 }
3417 
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)3418 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3419 			       unsigned int hctx_idx, int node)
3420 {
3421 	int ret;
3422 
3423 	if (set->ops->init_request) {
3424 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3425 		if (ret)
3426 			return ret;
3427 	}
3428 
3429 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3430 	return 0;
3431 }
3432 
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)3433 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3434 			    struct blk_mq_tags *tags,
3435 			    unsigned int hctx_idx, unsigned int depth)
3436 {
3437 	unsigned int i, j, entries_per_page, max_order = 4;
3438 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3439 	size_t rq_size, left;
3440 
3441 	if (node == NUMA_NO_NODE)
3442 		node = set->numa_node;
3443 
3444 	INIT_LIST_HEAD(&tags->page_list);
3445 
3446 	/*
3447 	 * rq_size is the size of the request plus driver payload, rounded
3448 	 * to the cacheline size
3449 	 */
3450 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3451 				cache_line_size());
3452 	left = rq_size * depth;
3453 
3454 	for (i = 0; i < depth; ) {
3455 		int this_order = max_order;
3456 		struct page *page;
3457 		int to_do;
3458 		void *p;
3459 
3460 		while (this_order && left < order_to_size(this_order - 1))
3461 			this_order--;
3462 
3463 		do {
3464 			page = alloc_pages_node(node,
3465 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3466 				this_order);
3467 			if (page)
3468 				break;
3469 			if (!this_order--)
3470 				break;
3471 			if (order_to_size(this_order) < rq_size)
3472 				break;
3473 		} while (1);
3474 
3475 		if (!page)
3476 			goto fail;
3477 
3478 		page->private = this_order;
3479 		list_add_tail(&page->lru, &tags->page_list);
3480 
3481 		p = page_address(page);
3482 		/*
3483 		 * Allow kmemleak to scan these pages as they contain pointers
3484 		 * to additional allocations like via ops->init_request().
3485 		 */
3486 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3487 		entries_per_page = order_to_size(this_order) / rq_size;
3488 		to_do = min(entries_per_page, depth - i);
3489 		left -= to_do * rq_size;
3490 		for (j = 0; j < to_do; j++) {
3491 			struct request *rq = p;
3492 
3493 			tags->static_rqs[i] = rq;
3494 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3495 				tags->static_rqs[i] = NULL;
3496 				goto fail;
3497 			}
3498 
3499 			p += rq_size;
3500 			i++;
3501 		}
3502 	}
3503 	return 0;
3504 
3505 fail:
3506 	blk_mq_free_rqs(set, tags, hctx_idx);
3507 	return -ENOMEM;
3508 }
3509 
3510 struct rq_iter_data {
3511 	struct blk_mq_hw_ctx *hctx;
3512 	bool has_rq;
3513 };
3514 
blk_mq_has_request(struct request * rq,void * data)3515 static bool blk_mq_has_request(struct request *rq, void *data)
3516 {
3517 	struct rq_iter_data *iter_data = data;
3518 
3519 	if (rq->mq_hctx != iter_data->hctx)
3520 		return true;
3521 	iter_data->has_rq = true;
3522 	return false;
3523 }
3524 
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)3525 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3526 {
3527 	struct blk_mq_tags *tags = hctx->sched_tags ?
3528 			hctx->sched_tags : hctx->tags;
3529 	struct rq_iter_data data = {
3530 		.hctx	= hctx,
3531 	};
3532 
3533 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3534 	return data.has_rq;
3535 }
3536 
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)3537 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3538 		struct blk_mq_hw_ctx *hctx)
3539 {
3540 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3541 		return false;
3542 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3543 		return false;
3544 	return true;
3545 }
3546 
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)3547 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3548 {
3549 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3550 			struct blk_mq_hw_ctx, cpuhp_online);
3551 
3552 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3553 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3554 		return 0;
3555 
3556 	/*
3557 	 * Prevent new request from being allocated on the current hctx.
3558 	 *
3559 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3560 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3561 	 * seen once we return from the tag allocator.
3562 	 */
3563 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3564 	smp_mb__after_atomic();
3565 
3566 	/*
3567 	 * Try to grab a reference to the queue and wait for any outstanding
3568 	 * requests.  If we could not grab a reference the queue has been
3569 	 * frozen and there are no requests.
3570 	 */
3571 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3572 		while (blk_mq_hctx_has_requests(hctx))
3573 			msleep(5);
3574 		percpu_ref_put(&hctx->queue->q_usage_counter);
3575 	}
3576 
3577 	return 0;
3578 }
3579 
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)3580 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3581 {
3582 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3583 			struct blk_mq_hw_ctx, cpuhp_online);
3584 
3585 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3586 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3587 	return 0;
3588 }
3589 
3590 /*
3591  * 'cpu' is going away. splice any existing rq_list entries from this
3592  * software queue to the hw queue dispatch list, and ensure that it
3593  * gets run.
3594  */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)3595 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3596 {
3597 	struct blk_mq_hw_ctx *hctx;
3598 	struct blk_mq_ctx *ctx;
3599 	LIST_HEAD(tmp);
3600 	enum hctx_type type;
3601 
3602 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3603 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3604 		return 0;
3605 
3606 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3607 	type = hctx->type;
3608 
3609 	spin_lock(&ctx->lock);
3610 	if (!list_empty(&ctx->rq_lists[type])) {
3611 		list_splice_init(&ctx->rq_lists[type], &tmp);
3612 		blk_mq_hctx_clear_pending(hctx, ctx);
3613 	}
3614 	spin_unlock(&ctx->lock);
3615 
3616 	if (list_empty(&tmp))
3617 		return 0;
3618 
3619 	spin_lock(&hctx->lock);
3620 	list_splice_tail_init(&tmp, &hctx->dispatch);
3621 	spin_unlock(&hctx->lock);
3622 
3623 	blk_mq_run_hw_queue(hctx, true);
3624 	return 0;
3625 }
3626 
__blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3627 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3628 {
3629 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3630 
3631 	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3632 	    !hlist_unhashed(&hctx->cpuhp_online)) {
3633 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3634 						    &hctx->cpuhp_online);
3635 		INIT_HLIST_NODE(&hctx->cpuhp_online);
3636 	}
3637 
3638 	if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3639 		cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3640 						    &hctx->cpuhp_dead);
3641 		INIT_HLIST_NODE(&hctx->cpuhp_dead);
3642 	}
3643 }
3644 
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3645 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3646 {
3647 	mutex_lock(&blk_mq_cpuhp_lock);
3648 	__blk_mq_remove_cpuhp(hctx);
3649 	mutex_unlock(&blk_mq_cpuhp_lock);
3650 }
3651 
__blk_mq_add_cpuhp(struct blk_mq_hw_ctx * hctx)3652 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3653 {
3654 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3655 
3656 	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3657 	    hlist_unhashed(&hctx->cpuhp_online))
3658 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3659 				&hctx->cpuhp_online);
3660 
3661 	if (hlist_unhashed(&hctx->cpuhp_dead))
3662 		cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3663 				&hctx->cpuhp_dead);
3664 }
3665 
__blk_mq_remove_cpuhp_list(struct list_head * head)3666 static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3667 {
3668 	struct blk_mq_hw_ctx *hctx;
3669 
3670 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3671 
3672 	list_for_each_entry(hctx, head, hctx_list)
3673 		__blk_mq_remove_cpuhp(hctx);
3674 }
3675 
3676 /*
3677  * Unregister cpuhp callbacks from exited hw queues
3678  *
3679  * Safe to call if this `request_queue` is live
3680  */
blk_mq_remove_hw_queues_cpuhp(struct request_queue * q)3681 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3682 {
3683 	LIST_HEAD(hctx_list);
3684 
3685 	spin_lock(&q->unused_hctx_lock);
3686 	list_splice_init(&q->unused_hctx_list, &hctx_list);
3687 	spin_unlock(&q->unused_hctx_lock);
3688 
3689 	mutex_lock(&blk_mq_cpuhp_lock);
3690 	__blk_mq_remove_cpuhp_list(&hctx_list);
3691 	mutex_unlock(&blk_mq_cpuhp_lock);
3692 
3693 	spin_lock(&q->unused_hctx_lock);
3694 	list_splice(&hctx_list, &q->unused_hctx_list);
3695 	spin_unlock(&q->unused_hctx_lock);
3696 }
3697 
3698 /*
3699  * Register cpuhp callbacks from all hw queues
3700  *
3701  * Safe to call if this `request_queue` is live
3702  */
blk_mq_add_hw_queues_cpuhp(struct request_queue * q)3703 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3704 {
3705 	struct blk_mq_hw_ctx *hctx;
3706 	unsigned long i;
3707 
3708 	mutex_lock(&blk_mq_cpuhp_lock);
3709 	queue_for_each_hw_ctx(q, hctx, i)
3710 		__blk_mq_add_cpuhp(hctx);
3711 	mutex_unlock(&blk_mq_cpuhp_lock);
3712 }
3713 
3714 /*
3715  * Before freeing hw queue, clearing the flush request reference in
3716  * tags->rqs[] for avoiding potential UAF.
3717  */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)3718 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3719 		unsigned int queue_depth, struct request *flush_rq)
3720 {
3721 	int i;
3722 	unsigned long flags;
3723 
3724 	/* The hw queue may not be mapped yet */
3725 	if (!tags)
3726 		return;
3727 
3728 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3729 
3730 	for (i = 0; i < queue_depth; i++)
3731 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3732 
3733 	/*
3734 	 * Wait until all pending iteration is done.
3735 	 *
3736 	 * Request reference is cleared and it is guaranteed to be observed
3737 	 * after the ->lock is released.
3738 	 */
3739 	spin_lock_irqsave(&tags->lock, flags);
3740 	spin_unlock_irqrestore(&tags->lock, flags);
3741 }
3742 
3743 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)3744 static void blk_mq_exit_hctx(struct request_queue *q,
3745 		struct blk_mq_tag_set *set,
3746 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3747 {
3748 	struct request *flush_rq = hctx->fq->flush_rq;
3749 
3750 	if (blk_mq_hw_queue_mapped(hctx))
3751 		blk_mq_tag_idle(hctx);
3752 
3753 	if (blk_queue_init_done(q))
3754 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3755 				set->queue_depth, flush_rq);
3756 	if (set->ops->exit_request)
3757 		set->ops->exit_request(set, flush_rq, hctx_idx);
3758 
3759 	if (set->ops->exit_hctx)
3760 		set->ops->exit_hctx(hctx, hctx_idx);
3761 
3762 	xa_erase(&q->hctx_table, hctx_idx);
3763 
3764 	spin_lock(&q->unused_hctx_lock);
3765 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3766 	spin_unlock(&q->unused_hctx_lock);
3767 }
3768 
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)3769 static void blk_mq_exit_hw_queues(struct request_queue *q,
3770 		struct blk_mq_tag_set *set, int nr_queue)
3771 {
3772 	struct blk_mq_hw_ctx *hctx;
3773 	unsigned long i;
3774 
3775 	queue_for_each_hw_ctx(q, hctx, i) {
3776 		if (i == nr_queue)
3777 			break;
3778 		blk_mq_remove_cpuhp(hctx);
3779 		blk_mq_exit_hctx(q, set, hctx, i);
3780 	}
3781 }
3782 
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)3783 static int blk_mq_init_hctx(struct request_queue *q,
3784 		struct blk_mq_tag_set *set,
3785 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3786 {
3787 	hctx->queue_num = hctx_idx;
3788 
3789 	hctx->tags = set->tags[hctx_idx];
3790 
3791 	if (set->ops->init_hctx &&
3792 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3793 		goto fail;
3794 
3795 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3796 				hctx->numa_node))
3797 		goto exit_hctx;
3798 
3799 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3800 		goto exit_flush_rq;
3801 
3802 	return 0;
3803 
3804  exit_flush_rq:
3805 	if (set->ops->exit_request)
3806 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3807  exit_hctx:
3808 	if (set->ops->exit_hctx)
3809 		set->ops->exit_hctx(hctx, hctx_idx);
3810  fail:
3811 	return -1;
3812 }
3813 
3814 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)3815 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3816 		int node)
3817 {
3818 	struct blk_mq_hw_ctx *hctx;
3819 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3820 
3821 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3822 	if (!hctx)
3823 		goto fail_alloc_hctx;
3824 
3825 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3826 		goto free_hctx;
3827 
3828 	atomic_set(&hctx->nr_active, 0);
3829 	if (node == NUMA_NO_NODE)
3830 		node = set->numa_node;
3831 	hctx->numa_node = node;
3832 
3833 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3834 	spin_lock_init(&hctx->lock);
3835 	INIT_LIST_HEAD(&hctx->dispatch);
3836 	INIT_HLIST_NODE(&hctx->cpuhp_dead);
3837 	INIT_HLIST_NODE(&hctx->cpuhp_online);
3838 	hctx->queue = q;
3839 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3840 
3841 	INIT_LIST_HEAD(&hctx->hctx_list);
3842 
3843 	/*
3844 	 * Allocate space for all possible cpus to avoid allocation at
3845 	 * runtime
3846 	 */
3847 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3848 			gfp, node);
3849 	if (!hctx->ctxs)
3850 		goto free_cpumask;
3851 
3852 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3853 				gfp, node, false, false))
3854 		goto free_ctxs;
3855 	hctx->nr_ctx = 0;
3856 
3857 	spin_lock_init(&hctx->dispatch_wait_lock);
3858 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3859 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3860 
3861 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3862 	if (!hctx->fq)
3863 		goto free_bitmap;
3864 
3865 	blk_mq_hctx_kobj_init(hctx);
3866 
3867 	return hctx;
3868 
3869  free_bitmap:
3870 	sbitmap_free(&hctx->ctx_map);
3871  free_ctxs:
3872 	kfree(hctx->ctxs);
3873  free_cpumask:
3874 	free_cpumask_var(hctx->cpumask);
3875  free_hctx:
3876 	kfree(hctx);
3877  fail_alloc_hctx:
3878 	return NULL;
3879 }
3880 
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)3881 static void blk_mq_init_cpu_queues(struct request_queue *q,
3882 				   unsigned int nr_hw_queues)
3883 {
3884 	struct blk_mq_tag_set *set = q->tag_set;
3885 	unsigned int i, j;
3886 
3887 	for_each_possible_cpu(i) {
3888 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3889 		struct blk_mq_hw_ctx *hctx;
3890 		int k;
3891 
3892 		__ctx->cpu = i;
3893 		spin_lock_init(&__ctx->lock);
3894 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3895 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3896 
3897 		__ctx->queue = q;
3898 
3899 		/*
3900 		 * Set local node, IFF we have more than one hw queue. If
3901 		 * not, we remain on the home node of the device
3902 		 */
3903 		for (j = 0; j < set->nr_maps; j++) {
3904 			hctx = blk_mq_map_queue_type(q, j, i);
3905 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3906 				hctx->numa_node = cpu_to_node(i);
3907 		}
3908 	}
3909 }
3910 
blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int depth)3911 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3912 					     unsigned int hctx_idx,
3913 					     unsigned int depth)
3914 {
3915 	struct blk_mq_tags *tags;
3916 	int ret;
3917 
3918 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3919 	if (!tags)
3920 		return NULL;
3921 
3922 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3923 	if (ret) {
3924 		blk_mq_free_rq_map(tags);
3925 		return NULL;
3926 	}
3927 
3928 	return tags;
3929 }
3930 
__blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,int hctx_idx)3931 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3932 				       int hctx_idx)
3933 {
3934 	if (blk_mq_is_shared_tags(set->flags)) {
3935 		set->tags[hctx_idx] = set->shared_tags;
3936 
3937 		return true;
3938 	}
3939 
3940 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3941 						       set->queue_depth);
3942 
3943 	return set->tags[hctx_idx];
3944 }
3945 
blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3946 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3947 			     struct blk_mq_tags *tags,
3948 			     unsigned int hctx_idx)
3949 {
3950 	if (tags) {
3951 		blk_mq_free_rqs(set, tags, hctx_idx);
3952 		blk_mq_free_rq_map(tags);
3953 	}
3954 }
3955 
__blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx)3956 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3957 				      unsigned int hctx_idx)
3958 {
3959 	if (!blk_mq_is_shared_tags(set->flags))
3960 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3961 
3962 	set->tags[hctx_idx] = NULL;
3963 }
3964 
blk_mq_map_swqueue(struct request_queue * q)3965 static void blk_mq_map_swqueue(struct request_queue *q)
3966 {
3967 	unsigned int j, hctx_idx;
3968 	unsigned long i;
3969 	struct blk_mq_hw_ctx *hctx;
3970 	struct blk_mq_ctx *ctx;
3971 	struct blk_mq_tag_set *set = q->tag_set;
3972 
3973 	queue_for_each_hw_ctx(q, hctx, i) {
3974 		cpumask_clear(hctx->cpumask);
3975 		hctx->nr_ctx = 0;
3976 		hctx->dispatch_from = NULL;
3977 	}
3978 
3979 	/*
3980 	 * Map software to hardware queues.
3981 	 *
3982 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3983 	 */
3984 	for_each_possible_cpu(i) {
3985 
3986 		ctx = per_cpu_ptr(q->queue_ctx, i);
3987 		for (j = 0; j < set->nr_maps; j++) {
3988 			if (!set->map[j].nr_queues) {
3989 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3990 						HCTX_TYPE_DEFAULT, i);
3991 				continue;
3992 			}
3993 			hctx_idx = set->map[j].mq_map[i];
3994 			/* unmapped hw queue can be remapped after CPU topo changed */
3995 			if (!set->tags[hctx_idx] &&
3996 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3997 				/*
3998 				 * If tags initialization fail for some hctx,
3999 				 * that hctx won't be brought online.  In this
4000 				 * case, remap the current ctx to hctx[0] which
4001 				 * is guaranteed to always have tags allocated
4002 				 */
4003 				set->map[j].mq_map[i] = 0;
4004 			}
4005 
4006 			hctx = blk_mq_map_queue_type(q, j, i);
4007 			ctx->hctxs[j] = hctx;
4008 			/*
4009 			 * If the CPU is already set in the mask, then we've
4010 			 * mapped this one already. This can happen if
4011 			 * devices share queues across queue maps.
4012 			 */
4013 			if (cpumask_test_cpu(i, hctx->cpumask))
4014 				continue;
4015 
4016 			cpumask_set_cpu(i, hctx->cpumask);
4017 			hctx->type = j;
4018 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
4019 			hctx->ctxs[hctx->nr_ctx++] = ctx;
4020 
4021 			/*
4022 			 * If the nr_ctx type overflows, we have exceeded the
4023 			 * amount of sw queues we can support.
4024 			 */
4025 			BUG_ON(!hctx->nr_ctx);
4026 		}
4027 
4028 		for (; j < HCTX_MAX_TYPES; j++)
4029 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
4030 					HCTX_TYPE_DEFAULT, i);
4031 	}
4032 
4033 	queue_for_each_hw_ctx(q, hctx, i) {
4034 		/*
4035 		 * If no software queues are mapped to this hardware queue,
4036 		 * disable it and free the request entries.
4037 		 */
4038 		if (!hctx->nr_ctx) {
4039 			/* Never unmap queue 0.  We need it as a
4040 			 * fallback in case of a new remap fails
4041 			 * allocation
4042 			 */
4043 			if (i)
4044 				__blk_mq_free_map_and_rqs(set, i);
4045 
4046 			hctx->tags = NULL;
4047 			continue;
4048 		}
4049 
4050 		hctx->tags = set->tags[i];
4051 		WARN_ON(!hctx->tags);
4052 
4053 		/*
4054 		 * Set the map size to the number of mapped software queues.
4055 		 * This is more accurate and more efficient than looping
4056 		 * over all possibly mapped software queues.
4057 		 */
4058 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4059 
4060 		/*
4061 		 * Initialize batch roundrobin counts
4062 		 */
4063 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4064 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4065 	}
4066 }
4067 
4068 /*
4069  * Caller needs to ensure that we're either frozen/quiesced, or that
4070  * the queue isn't live yet.
4071  */
queue_set_hctx_shared(struct request_queue * q,bool shared)4072 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4073 {
4074 	struct blk_mq_hw_ctx *hctx;
4075 	unsigned long i;
4076 
4077 	queue_for_each_hw_ctx(q, hctx, i) {
4078 		if (shared) {
4079 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4080 		} else {
4081 			blk_mq_tag_idle(hctx);
4082 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4083 		}
4084 	}
4085 }
4086 
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)4087 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4088 					 bool shared)
4089 {
4090 	struct request_queue *q;
4091 
4092 	lockdep_assert_held(&set->tag_list_lock);
4093 
4094 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4095 		blk_mq_freeze_queue(q);
4096 		queue_set_hctx_shared(q, shared);
4097 		blk_mq_unfreeze_queue(q);
4098 	}
4099 }
4100 
blk_mq_del_queue_tag_set(struct request_queue * q)4101 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4102 {
4103 	struct blk_mq_tag_set *set = q->tag_set;
4104 
4105 	mutex_lock(&set->tag_list_lock);
4106 	list_del(&q->tag_set_list);
4107 	if (list_is_singular(&set->tag_list)) {
4108 		/* just transitioned to unshared */
4109 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4110 		/* update existing queue */
4111 		blk_mq_update_tag_set_shared(set, false);
4112 	}
4113 	mutex_unlock(&set->tag_list_lock);
4114 	INIT_LIST_HEAD(&q->tag_set_list);
4115 }
4116 
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)4117 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4118 				     struct request_queue *q)
4119 {
4120 	mutex_lock(&set->tag_list_lock);
4121 
4122 	/*
4123 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4124 	 */
4125 	if (!list_empty(&set->tag_list) &&
4126 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4127 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4128 		/* update existing queue */
4129 		blk_mq_update_tag_set_shared(set, true);
4130 	}
4131 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4132 		queue_set_hctx_shared(q, true);
4133 	list_add_tail(&q->tag_set_list, &set->tag_list);
4134 
4135 	mutex_unlock(&set->tag_list_lock);
4136 }
4137 
4138 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)4139 static int blk_mq_alloc_ctxs(struct request_queue *q)
4140 {
4141 	struct blk_mq_ctxs *ctxs;
4142 	int cpu;
4143 
4144 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4145 	if (!ctxs)
4146 		return -ENOMEM;
4147 
4148 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4149 	if (!ctxs->queue_ctx)
4150 		goto fail;
4151 
4152 	for_each_possible_cpu(cpu) {
4153 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4154 		ctx->ctxs = ctxs;
4155 	}
4156 
4157 	q->mq_kobj = &ctxs->kobj;
4158 	q->queue_ctx = ctxs->queue_ctx;
4159 
4160 	return 0;
4161  fail:
4162 	kfree(ctxs);
4163 	return -ENOMEM;
4164 }
4165 
4166 /*
4167  * It is the actual release handler for mq, but we do it from
4168  * request queue's release handler for avoiding use-after-free
4169  * and headache because q->mq_kobj shouldn't have been introduced,
4170  * but we can't group ctx/kctx kobj without it.
4171  */
blk_mq_release(struct request_queue * q)4172 void blk_mq_release(struct request_queue *q)
4173 {
4174 	struct blk_mq_hw_ctx *hctx, *next;
4175 	unsigned long i;
4176 
4177 	queue_for_each_hw_ctx(q, hctx, i)
4178 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4179 
4180 	/* all hctx are in .unused_hctx_list now */
4181 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4182 		list_del_init(&hctx->hctx_list);
4183 		kobject_put(&hctx->kobj);
4184 	}
4185 
4186 	xa_destroy(&q->hctx_table);
4187 
4188 	/*
4189 	 * release .mq_kobj and sw queue's kobject now because
4190 	 * both share lifetime with request queue.
4191 	 */
4192 	blk_mq_sysfs_deinit(q);
4193 }
4194 
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)4195 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4196 		void *queuedata)
4197 {
4198 	struct request_queue *q;
4199 	int ret;
4200 
4201 	q = blk_alloc_queue(set->numa_node);
4202 	if (!q)
4203 		return ERR_PTR(-ENOMEM);
4204 	q->queuedata = queuedata;
4205 	ret = blk_mq_init_allocated_queue(set, q);
4206 	if (ret) {
4207 		blk_put_queue(q);
4208 		return ERR_PTR(ret);
4209 	}
4210 	return q;
4211 }
4212 
blk_mq_init_queue(struct blk_mq_tag_set * set)4213 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4214 {
4215 	return blk_mq_init_queue_data(set, NULL);
4216 }
4217 EXPORT_SYMBOL(blk_mq_init_queue);
4218 
4219 /**
4220  * blk_mq_destroy_queue - shutdown a request queue
4221  * @q: request queue to shutdown
4222  *
4223  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4224  * requests will be failed with -ENODEV. The caller is responsible for dropping
4225  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4226  *
4227  * Context: can sleep
4228  */
blk_mq_destroy_queue(struct request_queue * q)4229 void blk_mq_destroy_queue(struct request_queue *q)
4230 {
4231 	WARN_ON_ONCE(!queue_is_mq(q));
4232 	WARN_ON_ONCE(blk_queue_registered(q));
4233 
4234 	might_sleep();
4235 
4236 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4237 	blk_queue_start_drain(q);
4238 	blk_mq_freeze_queue_wait(q);
4239 
4240 	blk_sync_queue(q);
4241 	blk_mq_cancel_work_sync(q);
4242 	blk_mq_exit_queue(q);
4243 }
4244 EXPORT_SYMBOL(blk_mq_destroy_queue);
4245 
__blk_mq_alloc_disk(struct blk_mq_tag_set * set,void * queuedata,struct lock_class_key * lkclass)4246 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4247 		struct lock_class_key *lkclass)
4248 {
4249 	struct request_queue *q;
4250 	struct gendisk *disk;
4251 
4252 	q = blk_mq_init_queue_data(set, queuedata);
4253 	if (IS_ERR(q))
4254 		return ERR_CAST(q);
4255 
4256 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4257 	if (!disk) {
4258 		blk_mq_destroy_queue(q);
4259 		blk_put_queue(q);
4260 		return ERR_PTR(-ENOMEM);
4261 	}
4262 	set_bit(GD_OWNS_QUEUE, &disk->state);
4263 	return disk;
4264 }
4265 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4266 
blk_mq_alloc_disk_for_queue(struct request_queue * q,struct lock_class_key * lkclass)4267 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4268 		struct lock_class_key *lkclass)
4269 {
4270 	struct gendisk *disk;
4271 
4272 	if (!blk_get_queue(q))
4273 		return NULL;
4274 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4275 	if (!disk)
4276 		blk_put_queue(q);
4277 	return disk;
4278 }
4279 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4280 
4281 /*
4282  * Only hctx removed from cpuhp list can be reused
4283  */
blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx * hctx)4284 static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx)
4285 {
4286 	return hlist_unhashed(&hctx->cpuhp_online) &&
4287 		hlist_unhashed(&hctx->cpuhp_dead);
4288 }
4289 
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)4290 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4291 		struct blk_mq_tag_set *set, struct request_queue *q,
4292 		int hctx_idx, int node)
4293 {
4294 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4295 
4296 	/* reuse dead hctx first */
4297 	spin_lock(&q->unused_hctx_lock);
4298 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4299 		if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) {
4300 			hctx = tmp;
4301 			break;
4302 		}
4303 	}
4304 	if (hctx)
4305 		list_del_init(&hctx->hctx_list);
4306 	spin_unlock(&q->unused_hctx_lock);
4307 
4308 	if (!hctx)
4309 		hctx = blk_mq_alloc_hctx(q, set, node);
4310 	if (!hctx)
4311 		goto fail;
4312 
4313 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4314 		goto free_hctx;
4315 
4316 	return hctx;
4317 
4318  free_hctx:
4319 	kobject_put(&hctx->kobj);
4320  fail:
4321 	return NULL;
4322 }
4323 
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)4324 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4325 						struct request_queue *q)
4326 {
4327 	struct blk_mq_hw_ctx *hctx;
4328 	unsigned long i, j;
4329 
4330 	/* protect against switching io scheduler  */
4331 	mutex_lock(&q->sysfs_lock);
4332 	for (i = 0; i < set->nr_hw_queues; i++) {
4333 		int old_node;
4334 		int node = blk_mq_get_hctx_node(set, i);
4335 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4336 
4337 		if (old_hctx) {
4338 			old_node = old_hctx->numa_node;
4339 			blk_mq_exit_hctx(q, set, old_hctx, i);
4340 		}
4341 
4342 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4343 			if (!old_hctx)
4344 				break;
4345 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4346 					node, old_node);
4347 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4348 			WARN_ON_ONCE(!hctx);
4349 		}
4350 	}
4351 	/*
4352 	 * Increasing nr_hw_queues fails. Free the newly allocated
4353 	 * hctxs and keep the previous q->nr_hw_queues.
4354 	 */
4355 	if (i != set->nr_hw_queues) {
4356 		j = q->nr_hw_queues;
4357 	} else {
4358 		j = i;
4359 		q->nr_hw_queues = set->nr_hw_queues;
4360 	}
4361 
4362 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4363 		blk_mq_exit_hctx(q, set, hctx, j);
4364 	mutex_unlock(&q->sysfs_lock);
4365 
4366 	/* unregister cpuhp callbacks for exited hctxs */
4367 	blk_mq_remove_hw_queues_cpuhp(q);
4368 
4369 	/* register cpuhp for new initialized hctxs */
4370 	blk_mq_add_hw_queues_cpuhp(q);
4371 }
4372 
blk_mq_update_poll_flag(struct request_queue * q)4373 static void blk_mq_update_poll_flag(struct request_queue *q)
4374 {
4375 	struct blk_mq_tag_set *set = q->tag_set;
4376 
4377 	if (set->nr_maps > HCTX_TYPE_POLL &&
4378 	    set->map[HCTX_TYPE_POLL].nr_queues)
4379 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4380 	else
4381 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4382 }
4383 
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)4384 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4385 		struct request_queue *q)
4386 {
4387 	/* mark the queue as mq asap */
4388 	q->mq_ops = set->ops;
4389 
4390 	if (blk_mq_alloc_ctxs(q))
4391 		goto err_exit;
4392 
4393 	/* init q->mq_kobj and sw queues' kobjects */
4394 	blk_mq_sysfs_init(q);
4395 
4396 	INIT_LIST_HEAD(&q->unused_hctx_list);
4397 	spin_lock_init(&q->unused_hctx_lock);
4398 
4399 	xa_init(&q->hctx_table);
4400 
4401 	blk_mq_realloc_hw_ctxs(set, q);
4402 	if (!q->nr_hw_queues)
4403 		goto err_hctxs;
4404 
4405 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4406 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4407 
4408 	q->tag_set = set;
4409 
4410 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4411 	blk_mq_update_poll_flag(q);
4412 
4413 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4414 	INIT_LIST_HEAD(&q->flush_list);
4415 	INIT_LIST_HEAD(&q->requeue_list);
4416 	spin_lock_init(&q->requeue_lock);
4417 
4418 	q->nr_requests = set->queue_depth;
4419 
4420 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4421 	blk_mq_add_queue_tag_set(set, q);
4422 	blk_mq_map_swqueue(q);
4423 	return 0;
4424 
4425 err_hctxs:
4426 	blk_mq_release(q);
4427 err_exit:
4428 	q->mq_ops = NULL;
4429 	return -ENOMEM;
4430 }
4431 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4432 
4433 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)4434 void blk_mq_exit_queue(struct request_queue *q)
4435 {
4436 	struct blk_mq_tag_set *set = q->tag_set;
4437 
4438 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4439 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4440 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4441 	blk_mq_del_queue_tag_set(q);
4442 }
4443 
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)4444 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4445 {
4446 	int i;
4447 
4448 	if (blk_mq_is_shared_tags(set->flags)) {
4449 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4450 						BLK_MQ_NO_HCTX_IDX,
4451 						set->queue_depth);
4452 		if (!set->shared_tags)
4453 			return -ENOMEM;
4454 	}
4455 
4456 	for (i = 0; i < set->nr_hw_queues; i++) {
4457 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4458 			goto out_unwind;
4459 		cond_resched();
4460 	}
4461 
4462 	return 0;
4463 
4464 out_unwind:
4465 	while (--i >= 0)
4466 		__blk_mq_free_map_and_rqs(set, i);
4467 
4468 	if (blk_mq_is_shared_tags(set->flags)) {
4469 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4470 					BLK_MQ_NO_HCTX_IDX);
4471 	}
4472 
4473 	return -ENOMEM;
4474 }
4475 
4476 /*
4477  * Allocate the request maps associated with this tag_set. Note that this
4478  * may reduce the depth asked for, if memory is tight. set->queue_depth
4479  * will be updated to reflect the allocated depth.
4480  */
blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set * set)4481 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4482 {
4483 	unsigned int depth;
4484 	int err;
4485 
4486 	depth = set->queue_depth;
4487 	do {
4488 		err = __blk_mq_alloc_rq_maps(set);
4489 		if (!err)
4490 			break;
4491 
4492 		set->queue_depth >>= 1;
4493 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4494 			err = -ENOMEM;
4495 			break;
4496 		}
4497 	} while (set->queue_depth);
4498 
4499 	if (!set->queue_depth || err) {
4500 		pr_err("blk-mq: failed to allocate request map\n");
4501 		return -ENOMEM;
4502 	}
4503 
4504 	if (depth != set->queue_depth)
4505 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4506 						depth, set->queue_depth);
4507 
4508 	return 0;
4509 }
4510 
blk_mq_update_queue_map(struct blk_mq_tag_set * set)4511 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4512 {
4513 	/*
4514 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4515 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4516 	 * number of hardware queues.
4517 	 */
4518 	if (set->nr_maps == 1)
4519 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4520 
4521 	if (set->ops->map_queues && !is_kdump_kernel()) {
4522 		int i;
4523 
4524 		/*
4525 		 * transport .map_queues is usually done in the following
4526 		 * way:
4527 		 *
4528 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4529 		 * 	mask = get_cpu_mask(queue)
4530 		 * 	for_each_cpu(cpu, mask)
4531 		 * 		set->map[x].mq_map[cpu] = queue;
4532 		 * }
4533 		 *
4534 		 * When we need to remap, the table has to be cleared for
4535 		 * killing stale mapping since one CPU may not be mapped
4536 		 * to any hw queue.
4537 		 */
4538 		for (i = 0; i < set->nr_maps; i++)
4539 			blk_mq_clear_mq_map(&set->map[i]);
4540 
4541 		set->ops->map_queues(set);
4542 	} else {
4543 		BUG_ON(set->nr_maps > 1);
4544 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4545 	}
4546 }
4547 
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int new_nr_hw_queues)4548 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4549 				       int new_nr_hw_queues)
4550 {
4551 	struct blk_mq_tags **new_tags;
4552 	int i;
4553 
4554 	if (set->nr_hw_queues >= new_nr_hw_queues)
4555 		goto done;
4556 
4557 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4558 				GFP_KERNEL, set->numa_node);
4559 	if (!new_tags)
4560 		return -ENOMEM;
4561 
4562 	if (set->tags)
4563 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4564 		       sizeof(*set->tags));
4565 	kfree(set->tags);
4566 	set->tags = new_tags;
4567 
4568 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4569 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4570 			while (--i >= set->nr_hw_queues)
4571 				__blk_mq_free_map_and_rqs(set, i);
4572 			return -ENOMEM;
4573 		}
4574 		cond_resched();
4575 	}
4576 
4577 done:
4578 	set->nr_hw_queues = new_nr_hw_queues;
4579 	return 0;
4580 }
4581 
4582 /*
4583  * Alloc a tag set to be associated with one or more request queues.
4584  * May fail with EINVAL for various error conditions. May adjust the
4585  * requested depth down, if it's too large. In that case, the set
4586  * value will be stored in set->queue_depth.
4587  */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)4588 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4589 {
4590 	int i, ret;
4591 
4592 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4593 
4594 	if (!set->nr_hw_queues)
4595 		return -EINVAL;
4596 	if (!set->queue_depth)
4597 		return -EINVAL;
4598 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4599 		return -EINVAL;
4600 
4601 	if (!set->ops->queue_rq)
4602 		return -EINVAL;
4603 
4604 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4605 		return -EINVAL;
4606 
4607 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4608 		pr_info("blk-mq: reduced tag depth to %u\n",
4609 			BLK_MQ_MAX_DEPTH);
4610 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4611 	}
4612 
4613 	if (!set->nr_maps)
4614 		set->nr_maps = 1;
4615 	else if (set->nr_maps > HCTX_MAX_TYPES)
4616 		return -EINVAL;
4617 
4618 	/*
4619 	 * If a crashdump is active, then we are potentially in a very
4620 	 * memory constrained environment. Limit us to 1 queue and
4621 	 * 64 tags to prevent using too much memory.
4622 	 */
4623 	if (is_kdump_kernel()) {
4624 		set->nr_hw_queues = 1;
4625 		set->nr_maps = 1;
4626 		set->queue_depth = min(64U, set->queue_depth);
4627 	}
4628 	/*
4629 	 * There is no use for more h/w queues than cpus if we just have
4630 	 * a single map
4631 	 */
4632 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4633 		set->nr_hw_queues = nr_cpu_ids;
4634 
4635 	if (set->flags & BLK_MQ_F_BLOCKING) {
4636 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4637 		if (!set->srcu)
4638 			return -ENOMEM;
4639 		ret = init_srcu_struct(set->srcu);
4640 		if (ret)
4641 			goto out_free_srcu;
4642 	}
4643 
4644 	ret = -ENOMEM;
4645 	set->tags = kcalloc_node(set->nr_hw_queues,
4646 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4647 				 set->numa_node);
4648 	if (!set->tags)
4649 		goto out_cleanup_srcu;
4650 
4651 	for (i = 0; i < set->nr_maps; i++) {
4652 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4653 						  sizeof(set->map[i].mq_map[0]),
4654 						  GFP_KERNEL, set->numa_node);
4655 		if (!set->map[i].mq_map)
4656 			goto out_free_mq_map;
4657 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4658 	}
4659 
4660 	blk_mq_update_queue_map(set);
4661 
4662 	ret = blk_mq_alloc_set_map_and_rqs(set);
4663 	if (ret)
4664 		goto out_free_mq_map;
4665 
4666 	mutex_init(&set->tag_list_lock);
4667 	INIT_LIST_HEAD(&set->tag_list);
4668 
4669 	return 0;
4670 
4671 out_free_mq_map:
4672 	for (i = 0; i < set->nr_maps; i++) {
4673 		kfree(set->map[i].mq_map);
4674 		set->map[i].mq_map = NULL;
4675 	}
4676 	kfree(set->tags);
4677 	set->tags = NULL;
4678 out_cleanup_srcu:
4679 	if (set->flags & BLK_MQ_F_BLOCKING)
4680 		cleanup_srcu_struct(set->srcu);
4681 out_free_srcu:
4682 	if (set->flags & BLK_MQ_F_BLOCKING)
4683 		kfree(set->srcu);
4684 	return ret;
4685 }
4686 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4687 
4688 /* allocate and initialize a tagset for a simple single-queue device */
blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)4689 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4690 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4691 		unsigned int set_flags)
4692 {
4693 	memset(set, 0, sizeof(*set));
4694 	set->ops = ops;
4695 	set->nr_hw_queues = 1;
4696 	set->nr_maps = 1;
4697 	set->queue_depth = queue_depth;
4698 	set->numa_node = NUMA_NO_NODE;
4699 	set->flags = set_flags;
4700 	return blk_mq_alloc_tag_set(set);
4701 }
4702 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4703 
blk_mq_free_tag_set(struct blk_mq_tag_set * set)4704 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4705 {
4706 	int i, j;
4707 
4708 	for (i = 0; i < set->nr_hw_queues; i++)
4709 		__blk_mq_free_map_and_rqs(set, i);
4710 
4711 	if (blk_mq_is_shared_tags(set->flags)) {
4712 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4713 					BLK_MQ_NO_HCTX_IDX);
4714 	}
4715 
4716 	for (j = 0; j < set->nr_maps; j++) {
4717 		kfree(set->map[j].mq_map);
4718 		set->map[j].mq_map = NULL;
4719 	}
4720 
4721 	kfree(set->tags);
4722 	set->tags = NULL;
4723 	if (set->flags & BLK_MQ_F_BLOCKING) {
4724 		cleanup_srcu_struct(set->srcu);
4725 		kfree(set->srcu);
4726 	}
4727 }
4728 EXPORT_SYMBOL(blk_mq_free_tag_set);
4729 
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)4730 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4731 {
4732 	struct blk_mq_tag_set *set = q->tag_set;
4733 	struct blk_mq_hw_ctx *hctx;
4734 	int ret;
4735 	unsigned long i;
4736 
4737 	if (!set)
4738 		return -EINVAL;
4739 
4740 	if (q->nr_requests == nr)
4741 		return 0;
4742 
4743 	blk_mq_freeze_queue(q);
4744 	blk_mq_quiesce_queue(q);
4745 
4746 	ret = 0;
4747 	queue_for_each_hw_ctx(q, hctx, i) {
4748 		if (!hctx->tags)
4749 			continue;
4750 		/*
4751 		 * If we're using an MQ scheduler, just update the scheduler
4752 		 * queue depth. This is similar to what the old code would do.
4753 		 */
4754 		if (hctx->sched_tags) {
4755 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4756 						      nr, true);
4757 		} else {
4758 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4759 						      false);
4760 		}
4761 		if (ret)
4762 			break;
4763 		if (q->elevator && q->elevator->type->ops.depth_updated)
4764 			q->elevator->type->ops.depth_updated(hctx);
4765 	}
4766 	if (!ret) {
4767 		q->nr_requests = nr;
4768 		if (blk_mq_is_shared_tags(set->flags)) {
4769 			if (q->elevator)
4770 				blk_mq_tag_update_sched_shared_tags(q);
4771 			else
4772 				blk_mq_tag_resize_shared_tags(set, nr);
4773 		}
4774 	}
4775 
4776 	blk_mq_unquiesce_queue(q);
4777 	blk_mq_unfreeze_queue(q);
4778 
4779 	return ret;
4780 }
4781 
4782 /*
4783  * request_queue and elevator_type pair.
4784  * It is just used by __blk_mq_update_nr_hw_queues to cache
4785  * the elevator_type associated with a request_queue.
4786  */
4787 struct blk_mq_qe_pair {
4788 	struct list_head node;
4789 	struct request_queue *q;
4790 	struct elevator_type *type;
4791 };
4792 
4793 /*
4794  * Cache the elevator_type in qe pair list and switch the
4795  * io scheduler to 'none'
4796  */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)4797 static bool blk_mq_elv_switch_none(struct list_head *head,
4798 		struct request_queue *q)
4799 {
4800 	struct blk_mq_qe_pair *qe;
4801 
4802 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4803 	if (!qe)
4804 		return false;
4805 
4806 	/* q->elevator needs protection from ->sysfs_lock */
4807 	mutex_lock(&q->sysfs_lock);
4808 
4809 	/* the check has to be done with holding sysfs_lock */
4810 	if (!q->elevator) {
4811 		kfree(qe);
4812 		goto unlock;
4813 	}
4814 
4815 	INIT_LIST_HEAD(&qe->node);
4816 	qe->q = q;
4817 	qe->type = q->elevator->type;
4818 	/* keep a reference to the elevator module as we'll switch back */
4819 	__elevator_get(qe->type);
4820 	list_add(&qe->node, head);
4821 	elevator_disable(q);
4822 unlock:
4823 	mutex_unlock(&q->sysfs_lock);
4824 
4825 	return true;
4826 }
4827 
blk_lookup_qe_pair(struct list_head * head,struct request_queue * q)4828 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4829 						struct request_queue *q)
4830 {
4831 	struct blk_mq_qe_pair *qe;
4832 
4833 	list_for_each_entry(qe, head, node)
4834 		if (qe->q == q)
4835 			return qe;
4836 
4837 	return NULL;
4838 }
4839 
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)4840 static void blk_mq_elv_switch_back(struct list_head *head,
4841 				  struct request_queue *q)
4842 {
4843 	struct blk_mq_qe_pair *qe;
4844 	struct elevator_type *t;
4845 
4846 	qe = blk_lookup_qe_pair(head, q);
4847 	if (!qe)
4848 		return;
4849 	t = qe->type;
4850 	list_del(&qe->node);
4851 	kfree(qe);
4852 
4853 	mutex_lock(&q->sysfs_lock);
4854 	elevator_switch(q, t);
4855 	/* drop the reference acquired in blk_mq_elv_switch_none */
4856 	elevator_put(t);
4857 	mutex_unlock(&q->sysfs_lock);
4858 }
4859 
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4860 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4861 							int nr_hw_queues)
4862 {
4863 	struct request_queue *q;
4864 	LIST_HEAD(head);
4865 	int prev_nr_hw_queues = set->nr_hw_queues;
4866 	int i;
4867 
4868 	lockdep_assert_held(&set->tag_list_lock);
4869 
4870 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4871 		nr_hw_queues = nr_cpu_ids;
4872 	if (nr_hw_queues < 1)
4873 		return;
4874 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4875 		return;
4876 
4877 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4878 		blk_mq_freeze_queue(q);
4879 	/*
4880 	 * Switch IO scheduler to 'none', cleaning up the data associated
4881 	 * with the previous scheduler. We will switch back once we are done
4882 	 * updating the new sw to hw queue mappings.
4883 	 */
4884 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4885 		if (!blk_mq_elv_switch_none(&head, q))
4886 			goto switch_back;
4887 
4888 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4889 		blk_mq_debugfs_unregister_hctxs(q);
4890 		blk_mq_sysfs_unregister_hctxs(q);
4891 	}
4892 
4893 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4894 		goto reregister;
4895 
4896 fallback:
4897 	blk_mq_update_queue_map(set);
4898 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4899 		blk_mq_realloc_hw_ctxs(set, q);
4900 		blk_mq_update_poll_flag(q);
4901 		if (q->nr_hw_queues != set->nr_hw_queues) {
4902 			int i = prev_nr_hw_queues;
4903 
4904 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4905 					nr_hw_queues, prev_nr_hw_queues);
4906 			for (; i < set->nr_hw_queues; i++)
4907 				__blk_mq_free_map_and_rqs(set, i);
4908 
4909 			set->nr_hw_queues = prev_nr_hw_queues;
4910 			goto fallback;
4911 		}
4912 		blk_mq_map_swqueue(q);
4913 	}
4914 
4915 reregister:
4916 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4917 		blk_mq_sysfs_register_hctxs(q);
4918 		blk_mq_debugfs_register_hctxs(q);
4919 	}
4920 
4921 switch_back:
4922 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4923 		blk_mq_elv_switch_back(&head, q);
4924 
4925 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4926 		blk_mq_unfreeze_queue(q);
4927 
4928 	/* Free the excess tags when nr_hw_queues shrink. */
4929 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4930 		__blk_mq_free_map_and_rqs(set, i);
4931 }
4932 
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4933 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4934 {
4935 	mutex_lock(&set->tag_list_lock);
4936 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4937 	mutex_unlock(&set->tag_list_lock);
4938 }
4939 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4940 
blk_hctx_poll(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob,unsigned int flags)4941 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4942 			 struct io_comp_batch *iob, unsigned int flags)
4943 {
4944 	long state = get_current_state();
4945 	int ret;
4946 
4947 	do {
4948 		ret = q->mq_ops->poll(hctx, iob);
4949 		if (ret > 0) {
4950 			__set_current_state(TASK_RUNNING);
4951 			return ret;
4952 		}
4953 
4954 		if (signal_pending_state(state, current))
4955 			__set_current_state(TASK_RUNNING);
4956 		if (task_is_running(current))
4957 			return 1;
4958 
4959 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4960 			break;
4961 		cpu_relax();
4962 	} while (!need_resched());
4963 
4964 	__set_current_state(TASK_RUNNING);
4965 	return 0;
4966 }
4967 
blk_mq_poll(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)4968 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4969 		struct io_comp_batch *iob, unsigned int flags)
4970 {
4971 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4972 
4973 	return blk_hctx_poll(q, hctx, iob, flags);
4974 }
4975 
blk_rq_poll(struct request * rq,struct io_comp_batch * iob,unsigned int poll_flags)4976 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4977 		unsigned int poll_flags)
4978 {
4979 	struct request_queue *q = rq->q;
4980 	int ret;
4981 
4982 	if (!blk_rq_is_poll(rq))
4983 		return 0;
4984 	if (!percpu_ref_tryget(&q->q_usage_counter))
4985 		return 0;
4986 
4987 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4988 	blk_queue_exit(q);
4989 
4990 	return ret;
4991 }
4992 EXPORT_SYMBOL_GPL(blk_rq_poll);
4993 
blk_mq_rq_cpu(struct request * rq)4994 unsigned int blk_mq_rq_cpu(struct request *rq)
4995 {
4996 	return rq->mq_ctx->cpu;
4997 }
4998 EXPORT_SYMBOL(blk_mq_rq_cpu);
4999 
blk_mq_cancel_work_sync(struct request_queue * q)5000 void blk_mq_cancel_work_sync(struct request_queue *q)
5001 {
5002 	struct blk_mq_hw_ctx *hctx;
5003 	unsigned long i;
5004 
5005 	cancel_delayed_work_sync(&q->requeue_work);
5006 
5007 	queue_for_each_hw_ctx(q, hctx, i)
5008 		cancel_delayed_work_sync(&hctx->run_work);
5009 }
5010 
blk_mq_init(void)5011 static int __init blk_mq_init(void)
5012 {
5013 	int i;
5014 
5015 	for_each_possible_cpu(i)
5016 		init_llist_head(&per_cpu(blk_cpu_done, i));
5017 	for_each_possible_cpu(i)
5018 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
5019 			 __blk_mq_complete_request_remote, NULL);
5020 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5021 
5022 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5023 				  "block/softirq:dead", NULL,
5024 				  blk_softirq_cpu_dead);
5025 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5026 				blk_mq_hctx_notify_dead);
5027 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5028 				blk_mq_hctx_notify_online,
5029 				blk_mq_hctx_notify_offline);
5030 	return 0;
5031 }
5032 subsys_initcall(blk_mq_init);
5033