1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "qemu/memalign.h"
24 #include "trace.h"
25 #include "qed.h"
26 #include "sysemu/block-backend.h"
27 #include "qapi/qmp/qdict.h"
28 #include "qapi/qobject-input-visitor.h"
29 #include "qapi/qapi-visit-block-core.h"
30
31 static QemuOptsList qed_create_opts;
32
bdrv_qed_probe(const uint8_t * buf,int buf_size,const char * filename)33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
34 const char *filename)
35 {
36 const QEDHeader *header = (const QEDHeader *)buf;
37
38 if (buf_size < sizeof(*header)) {
39 return 0;
40 }
41 if (le32_to_cpu(header->magic) != QED_MAGIC) {
42 return 0;
43 }
44 return 100;
45 }
46
47 /**
48 * Check whether an image format is raw
49 *
50 * @fmt: Backing file format, may be NULL
51 */
qed_fmt_is_raw(const char * fmt)52 static bool qed_fmt_is_raw(const char *fmt)
53 {
54 return fmt && strcmp(fmt, "raw") == 0;
55 }
56
qed_header_le_to_cpu(const QEDHeader * le,QEDHeader * cpu)57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
58 {
59 cpu->magic = le32_to_cpu(le->magic);
60 cpu->cluster_size = le32_to_cpu(le->cluster_size);
61 cpu->table_size = le32_to_cpu(le->table_size);
62 cpu->header_size = le32_to_cpu(le->header_size);
63 cpu->features = le64_to_cpu(le->features);
64 cpu->compat_features = le64_to_cpu(le->compat_features);
65 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
66 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
67 cpu->image_size = le64_to_cpu(le->image_size);
68 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
69 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
70 }
71
qed_header_cpu_to_le(const QEDHeader * cpu,QEDHeader * le)72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
73 {
74 le->magic = cpu_to_le32(cpu->magic);
75 le->cluster_size = cpu_to_le32(cpu->cluster_size);
76 le->table_size = cpu_to_le32(cpu->table_size);
77 le->header_size = cpu_to_le32(cpu->header_size);
78 le->features = cpu_to_le64(cpu->features);
79 le->compat_features = cpu_to_le64(cpu->compat_features);
80 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
81 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
82 le->image_size = cpu_to_le64(cpu->image_size);
83 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
84 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
85 }
86
qed_write_header_sync(BDRVQEDState * s)87 int qed_write_header_sync(BDRVQEDState *s)
88 {
89 QEDHeader le;
90
91 qed_header_cpu_to_le(&s->header, &le);
92 return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0);
93 }
94
95 /**
96 * Update header in-place (does not rewrite backing filename or other strings)
97 *
98 * This function only updates known header fields in-place and does not affect
99 * extra data after the QED header.
100 *
101 * No new allocating reqs can start while this function runs.
102 */
qed_write_header(BDRVQEDState * s)103 static int coroutine_fn GRAPH_RDLOCK qed_write_header(BDRVQEDState *s)
104 {
105 /* We must write full sectors for O_DIRECT but cannot necessarily generate
106 * the data following the header if an unrecognized compat feature is
107 * active. Therefore, first read the sectors containing the header, update
108 * them, and write back.
109 */
110
111 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
112 size_t len = nsectors * BDRV_SECTOR_SIZE;
113 uint8_t *buf;
114 int ret;
115
116 assert(s->allocating_acb || s->allocating_write_reqs_plugged);
117
118 buf = qemu_blockalign(s->bs, len);
119
120 ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
121 if (ret < 0) {
122 goto out;
123 }
124
125 /* Update header */
126 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
127
128 ret = bdrv_co_pwrite(s->bs->file, 0, len, buf, 0);
129 if (ret < 0) {
130 goto out;
131 }
132
133 ret = 0;
134 out:
135 qemu_vfree(buf);
136 return ret;
137 }
138
qed_max_image_size(uint32_t cluster_size,uint32_t table_size)139 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
140 {
141 uint64_t table_entries;
142 uint64_t l2_size;
143
144 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
145 l2_size = table_entries * cluster_size;
146
147 return l2_size * table_entries;
148 }
149
qed_is_cluster_size_valid(uint32_t cluster_size)150 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
151 {
152 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
153 cluster_size > QED_MAX_CLUSTER_SIZE) {
154 return false;
155 }
156 if (cluster_size & (cluster_size - 1)) {
157 return false; /* not power of 2 */
158 }
159 return true;
160 }
161
qed_is_table_size_valid(uint32_t table_size)162 static bool qed_is_table_size_valid(uint32_t table_size)
163 {
164 if (table_size < QED_MIN_TABLE_SIZE ||
165 table_size > QED_MAX_TABLE_SIZE) {
166 return false;
167 }
168 if (table_size & (table_size - 1)) {
169 return false; /* not power of 2 */
170 }
171 return true;
172 }
173
qed_is_image_size_valid(uint64_t image_size,uint32_t cluster_size,uint32_t table_size)174 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
175 uint32_t table_size)
176 {
177 if (image_size % BDRV_SECTOR_SIZE != 0) {
178 return false; /* not multiple of sector size */
179 }
180 if (image_size > qed_max_image_size(cluster_size, table_size)) {
181 return false; /* image is too large */
182 }
183 return true;
184 }
185
186 /**
187 * Read a string of known length from the image file
188 *
189 * @file: Image file
190 * @offset: File offset to start of string, in bytes
191 * @n: String length in bytes
192 * @buf: Destination buffer
193 * @buflen: Destination buffer length in bytes
194 * @ret: 0 on success, -errno on failure
195 *
196 * The string is NUL-terminated.
197 */
198 static int coroutine_fn GRAPH_RDLOCK
qed_read_string(BdrvChild * file,uint64_t offset,size_t n,char * buf,size_t buflen)199 qed_read_string(BdrvChild *file, uint64_t offset,
200 size_t n, char *buf, size_t buflen)
201 {
202 int ret;
203 if (n >= buflen) {
204 return -EINVAL;
205 }
206 ret = bdrv_co_pread(file, offset, n, buf, 0);
207 if (ret < 0) {
208 return ret;
209 }
210 buf[n] = '\0';
211 return 0;
212 }
213
214 /**
215 * Allocate new clusters
216 *
217 * @s: QED state
218 * @n: Number of contiguous clusters to allocate
219 * @ret: Offset of first allocated cluster
220 *
221 * This function only produces the offset where the new clusters should be
222 * written. It updates BDRVQEDState but does not make any changes to the image
223 * file.
224 *
225 * Called with table_lock held.
226 */
qed_alloc_clusters(BDRVQEDState * s,unsigned int n)227 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
228 {
229 uint64_t offset = s->file_size;
230 s->file_size += n * s->header.cluster_size;
231 return offset;
232 }
233
qed_alloc_table(BDRVQEDState * s)234 QEDTable *qed_alloc_table(BDRVQEDState *s)
235 {
236 /* Honor O_DIRECT memory alignment requirements */
237 return qemu_blockalign(s->bs,
238 s->header.cluster_size * s->header.table_size);
239 }
240
241 /**
242 * Allocate a new zeroed L2 table
243 *
244 * Called with table_lock held.
245 */
qed_new_l2_table(BDRVQEDState * s)246 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
247 {
248 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
249
250 l2_table->table = qed_alloc_table(s);
251 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
252
253 memset(l2_table->table->offsets, 0,
254 s->header.cluster_size * s->header.table_size);
255 return l2_table;
256 }
257
qed_plug_allocating_write_reqs(BDRVQEDState * s)258 static bool coroutine_fn qed_plug_allocating_write_reqs(BDRVQEDState *s)
259 {
260 qemu_co_mutex_lock(&s->table_lock);
261
262 /* No reentrancy is allowed. */
263 assert(!s->allocating_write_reqs_plugged);
264 if (s->allocating_acb != NULL) {
265 /* Another allocating write came concurrently. This cannot happen
266 * from bdrv_qed_drain_begin, but it can happen when the timer runs.
267 */
268 qemu_co_mutex_unlock(&s->table_lock);
269 return false;
270 }
271
272 s->allocating_write_reqs_plugged = true;
273 qemu_co_mutex_unlock(&s->table_lock);
274 return true;
275 }
276
qed_unplug_allocating_write_reqs(BDRVQEDState * s)277 static void coroutine_fn qed_unplug_allocating_write_reqs(BDRVQEDState *s)
278 {
279 qemu_co_mutex_lock(&s->table_lock);
280 assert(s->allocating_write_reqs_plugged);
281 s->allocating_write_reqs_plugged = false;
282 qemu_co_queue_next(&s->allocating_write_reqs);
283 qemu_co_mutex_unlock(&s->table_lock);
284 }
285
qed_need_check_timer(BDRVQEDState * s)286 static void coroutine_fn GRAPH_RDLOCK qed_need_check_timer(BDRVQEDState *s)
287 {
288 int ret;
289
290 trace_qed_need_check_timer_cb(s);
291 assert_bdrv_graph_readable();
292
293 if (!qed_plug_allocating_write_reqs(s)) {
294 return;
295 }
296
297 /* Ensure writes are on disk before clearing flag */
298 ret = bdrv_co_flush(s->bs->file->bs);
299 if (ret < 0) {
300 qed_unplug_allocating_write_reqs(s);
301 return;
302 }
303
304 s->header.features &= ~QED_F_NEED_CHECK;
305 ret = qed_write_header(s);
306 (void) ret;
307
308 qed_unplug_allocating_write_reqs(s);
309
310 ret = bdrv_co_flush(s->bs);
311 (void) ret;
312 }
313
qed_need_check_timer_entry(void * opaque)314 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
315 {
316 BDRVQEDState *s = opaque;
317 GRAPH_RDLOCK_GUARD();
318
319 qed_need_check_timer(opaque);
320 bdrv_dec_in_flight(s->bs);
321 }
322
qed_need_check_timer_cb(void * opaque)323 static void qed_need_check_timer_cb(void *opaque)
324 {
325 BDRVQEDState *s = opaque;
326 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
327
328 bdrv_inc_in_flight(s->bs);
329 qemu_coroutine_enter(co);
330 }
331
qed_start_need_check_timer(BDRVQEDState * s)332 static void qed_start_need_check_timer(BDRVQEDState *s)
333 {
334 trace_qed_start_need_check_timer(s);
335
336 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
337 * migration.
338 */
339 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
340 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
341 }
342
343 /* It's okay to call this multiple times or when no timer is started */
qed_cancel_need_check_timer(BDRVQEDState * s)344 static void qed_cancel_need_check_timer(BDRVQEDState *s)
345 {
346 trace_qed_cancel_need_check_timer(s);
347 timer_del(s->need_check_timer);
348 }
349
bdrv_qed_detach_aio_context(BlockDriverState * bs)350 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
351 {
352 BDRVQEDState *s = bs->opaque;
353
354 qed_cancel_need_check_timer(s);
355 timer_free(s->need_check_timer);
356 s->need_check_timer = NULL;
357 }
358
bdrv_qed_attach_aio_context(BlockDriverState * bs,AioContext * new_context)359 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
360 AioContext *new_context)
361 {
362 BDRVQEDState *s = bs->opaque;
363
364 s->need_check_timer = aio_timer_new(new_context,
365 QEMU_CLOCK_VIRTUAL, SCALE_NS,
366 qed_need_check_timer_cb, s);
367 if (s->header.features & QED_F_NEED_CHECK) {
368 qed_start_need_check_timer(s);
369 }
370 }
371
bdrv_qed_drain_begin(BlockDriverState * bs)372 static void bdrv_qed_drain_begin(BlockDriverState *bs)
373 {
374 BDRVQEDState *s = bs->opaque;
375
376 /* Fire the timer immediately in order to start doing I/O as soon as the
377 * header is flushed.
378 */
379 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
380 Coroutine *co;
381
382 qed_cancel_need_check_timer(s);
383 co = qemu_coroutine_create(qed_need_check_timer_entry, s);
384 bdrv_inc_in_flight(bs);
385 aio_co_enter(bdrv_get_aio_context(bs), co);
386 }
387 }
388
bdrv_qed_init_state(BlockDriverState * bs)389 static void bdrv_qed_init_state(BlockDriverState *bs)
390 {
391 BDRVQEDState *s = bs->opaque;
392
393 memset(s, 0, sizeof(BDRVQEDState));
394 s->bs = bs;
395 qemu_co_mutex_init(&s->table_lock);
396 qemu_co_queue_init(&s->allocating_write_reqs);
397 }
398
399 /* Called with table_lock held. */
400 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_do_open(BlockDriverState * bs,QDict * options,int flags,Error ** errp)401 bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags, Error **errp)
402 {
403 BDRVQEDState *s = bs->opaque;
404 QEDHeader le_header;
405 int64_t file_size;
406 int ret;
407
408 ret = bdrv_co_pread(bs->file, 0, sizeof(le_header), &le_header, 0);
409 if (ret < 0) {
410 error_setg(errp, "Failed to read QED header");
411 return ret;
412 }
413 qed_header_le_to_cpu(&le_header, &s->header);
414
415 if (s->header.magic != QED_MAGIC) {
416 error_setg(errp, "Image not in QED format");
417 return -EINVAL;
418 }
419 if (s->header.features & ~QED_FEATURE_MASK) {
420 /* image uses unsupported feature bits */
421 error_setg(errp, "Unsupported QED features: %" PRIx64,
422 s->header.features & ~QED_FEATURE_MASK);
423 return -ENOTSUP;
424 }
425 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
426 error_setg(errp, "QED cluster size is invalid");
427 return -EINVAL;
428 }
429
430 /* Round down file size to the last cluster */
431 file_size = bdrv_co_getlength(bs->file->bs);
432 if (file_size < 0) {
433 error_setg(errp, "Failed to get file length");
434 return file_size;
435 }
436 s->file_size = qed_start_of_cluster(s, file_size);
437
438 if (!qed_is_table_size_valid(s->header.table_size)) {
439 error_setg(errp, "QED table size is invalid");
440 return -EINVAL;
441 }
442 if (!qed_is_image_size_valid(s->header.image_size,
443 s->header.cluster_size,
444 s->header.table_size)) {
445 error_setg(errp, "QED image size is invalid");
446 return -EINVAL;
447 }
448 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
449 error_setg(errp, "QED table offset is invalid");
450 return -EINVAL;
451 }
452
453 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
454 sizeof(uint64_t);
455 s->l2_shift = ctz32(s->header.cluster_size);
456 s->l2_mask = s->table_nelems - 1;
457 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
458
459 /* Header size calculation must not overflow uint32_t */
460 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
461 error_setg(errp, "QED header size is too large");
462 return -EINVAL;
463 }
464
465 if ((s->header.features & QED_F_BACKING_FILE)) {
466 g_autofree char *backing_file_str = NULL;
467
468 if ((uint64_t)s->header.backing_filename_offset +
469 s->header.backing_filename_size >
470 s->header.cluster_size * s->header.header_size) {
471 error_setg(errp, "QED backing filename offset is invalid");
472 return -EINVAL;
473 }
474
475 backing_file_str = g_malloc(sizeof(bs->backing_file));
476 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
477 s->header.backing_filename_size,
478 backing_file_str, sizeof(bs->backing_file));
479 if (ret < 0) {
480 error_setg(errp, "Failed to read backing filename");
481 return ret;
482 }
483
484 if (!g_str_equal(backing_file_str, bs->backing_file)) {
485 pstrcpy(bs->backing_file, sizeof(bs->backing_file),
486 backing_file_str);
487 pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file),
488 backing_file_str);
489 }
490
491 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
492 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
493 }
494 }
495
496 /* Reset unknown autoclear feature bits. This is a backwards
497 * compatibility mechanism that allows images to be opened by older
498 * programs, which "knock out" unknown feature bits. When an image is
499 * opened by a newer program again it can detect that the autoclear
500 * feature is no longer valid.
501 */
502 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
503 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
504 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
505
506 ret = qed_write_header_sync(s);
507 if (ret) {
508 error_setg(errp, "Failed to update header");
509 return ret;
510 }
511
512 /* From here on only known autoclear feature bits are valid */
513 bdrv_co_flush(bs->file->bs);
514 }
515
516 s->l1_table = qed_alloc_table(s);
517 qed_init_l2_cache(&s->l2_cache);
518
519 ret = qed_read_l1_table_sync(s);
520 if (ret) {
521 error_setg(errp, "Failed to read L1 table");
522 goto out;
523 }
524
525 /* If image was not closed cleanly, check consistency */
526 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
527 /* Read-only images cannot be fixed. There is no risk of corruption
528 * since write operations are not possible. Therefore, allow
529 * potentially inconsistent images to be opened read-only. This can
530 * aid data recovery from an otherwise inconsistent image.
531 */
532 if (!bdrv_is_read_only(bs->file->bs) &&
533 !(flags & BDRV_O_INACTIVE)) {
534 BdrvCheckResult result = {0};
535
536 ret = qed_check(s, &result, true);
537 if (ret) {
538 error_setg(errp, "Image corrupted");
539 goto out;
540 }
541 }
542 }
543
544 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
545
546 out:
547 if (ret) {
548 qed_free_l2_cache(&s->l2_cache);
549 qemu_vfree(s->l1_table);
550 }
551 return ret;
552 }
553
554 typedef struct QEDOpenCo {
555 BlockDriverState *bs;
556 QDict *options;
557 int flags;
558 Error **errp;
559 int ret;
560 } QEDOpenCo;
561
bdrv_qed_open_entry(void * opaque)562 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
563 {
564 QEDOpenCo *qoc = opaque;
565 BDRVQEDState *s = qoc->bs->opaque;
566
567 GRAPH_RDLOCK_GUARD();
568
569 qemu_co_mutex_lock(&s->table_lock);
570 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
571 qemu_co_mutex_unlock(&s->table_lock);
572 }
573
bdrv_qed_open(BlockDriverState * bs,QDict * options,int flags,Error ** errp)574 static int coroutine_mixed_fn bdrv_qed_open(BlockDriverState *bs, QDict *options,
575 int flags, Error **errp)
576 {
577 QEDOpenCo qoc = {
578 .bs = bs,
579 .options = options,
580 .flags = flags,
581 .errp = errp,
582 .ret = -EINPROGRESS
583 };
584 int ret;
585
586 ret = bdrv_open_file_child(NULL, options, "file", bs, errp);
587 if (ret < 0) {
588 return ret;
589 }
590
591 bdrv_qed_init_state(bs);
592 assert(!qemu_in_coroutine());
593 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
594 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
595 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
596
597 return qoc.ret;
598 }
599
bdrv_qed_refresh_limits(BlockDriverState * bs,Error ** errp)600 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
601 {
602 BDRVQEDState *s = bs->opaque;
603
604 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
605 bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
606 }
607
608 /* We have nothing to do for QED reopen, stubs just return
609 * success */
bdrv_qed_reopen_prepare(BDRVReopenState * state,BlockReopenQueue * queue,Error ** errp)610 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
611 BlockReopenQueue *queue, Error **errp)
612 {
613 return 0;
614 }
615
bdrv_qed_do_close(BlockDriverState * bs)616 static void GRAPH_RDLOCK bdrv_qed_do_close(BlockDriverState *bs)
617 {
618 BDRVQEDState *s = bs->opaque;
619
620 bdrv_qed_detach_aio_context(bs);
621
622 /* Ensure writes reach stable storage */
623 bdrv_flush(bs->file->bs);
624
625 /* Clean shutdown, no check required on next open */
626 if (s->header.features & QED_F_NEED_CHECK) {
627 s->header.features &= ~QED_F_NEED_CHECK;
628 qed_write_header_sync(s);
629 }
630
631 qed_free_l2_cache(&s->l2_cache);
632 qemu_vfree(s->l1_table);
633 }
634
bdrv_qed_close(BlockDriverState * bs)635 static void GRAPH_UNLOCKED bdrv_qed_close(BlockDriverState *bs)
636 {
637 GLOBAL_STATE_CODE();
638 GRAPH_RDLOCK_GUARD_MAINLOOP();
639
640 bdrv_qed_do_close(bs);
641 }
642
643 static int coroutine_fn GRAPH_UNLOCKED
bdrv_qed_co_create(BlockdevCreateOptions * opts,Error ** errp)644 bdrv_qed_co_create(BlockdevCreateOptions *opts, Error **errp)
645 {
646 BlockdevCreateOptionsQed *qed_opts;
647 BlockBackend *blk = NULL;
648 BlockDriverState *bs = NULL;
649
650 QEDHeader header;
651 QEDHeader le_header;
652 uint8_t *l1_table = NULL;
653 size_t l1_size;
654 int ret = 0;
655
656 assert(opts->driver == BLOCKDEV_DRIVER_QED);
657 qed_opts = &opts->u.qed;
658
659 /* Validate options and set default values */
660 if (!qed_opts->has_cluster_size) {
661 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
662 }
663 if (!qed_opts->has_table_size) {
664 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
665 }
666
667 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
668 error_setg(errp, "QED cluster size must be within range [%u, %u] "
669 "and power of 2",
670 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
671 return -EINVAL;
672 }
673 if (!qed_is_table_size_valid(qed_opts->table_size)) {
674 error_setg(errp, "QED table size must be within range [%u, %u] "
675 "and power of 2",
676 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
677 return -EINVAL;
678 }
679 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
680 qed_opts->table_size))
681 {
682 error_setg(errp, "QED image size must be a non-zero multiple of "
683 "cluster size and less than %" PRIu64 " bytes",
684 qed_max_image_size(qed_opts->cluster_size,
685 qed_opts->table_size));
686 return -EINVAL;
687 }
688
689 /* Create BlockBackend to write to the image */
690 bs = bdrv_co_open_blockdev_ref(qed_opts->file, errp);
691 if (bs == NULL) {
692 return -EIO;
693 }
694
695 blk = blk_co_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
696 errp);
697 if (!blk) {
698 ret = -EPERM;
699 goto out;
700 }
701 blk_set_allow_write_beyond_eof(blk, true);
702
703 /* Prepare image format */
704 header = (QEDHeader) {
705 .magic = QED_MAGIC,
706 .cluster_size = qed_opts->cluster_size,
707 .table_size = qed_opts->table_size,
708 .header_size = 1,
709 .features = 0,
710 .compat_features = 0,
711 .l1_table_offset = qed_opts->cluster_size,
712 .image_size = qed_opts->size,
713 };
714
715 l1_size = header.cluster_size * header.table_size;
716
717 /*
718 * The QED format associates file length with allocation status,
719 * so a new file (which is empty) must have a length of 0.
720 */
721 ret = blk_co_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
722 if (ret < 0) {
723 goto out;
724 }
725
726 if (qed_opts->backing_file) {
727 header.features |= QED_F_BACKING_FILE;
728 header.backing_filename_offset = sizeof(le_header);
729 header.backing_filename_size = strlen(qed_opts->backing_file);
730
731 if (qed_opts->has_backing_fmt) {
732 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
733 if (qed_fmt_is_raw(backing_fmt)) {
734 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
735 }
736 }
737 }
738
739 qed_header_cpu_to_le(&header, &le_header);
740 ret = blk_co_pwrite(blk, 0, sizeof(le_header), &le_header, 0);
741 if (ret < 0) {
742 goto out;
743 }
744 ret = blk_co_pwrite(blk, sizeof(le_header), header.backing_filename_size,
745 qed_opts->backing_file, 0);
746 if (ret < 0) {
747 goto out;
748 }
749
750 l1_table = g_malloc0(l1_size);
751 ret = blk_co_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0);
752 if (ret < 0) {
753 goto out;
754 }
755
756 ret = 0; /* success */
757 out:
758 g_free(l1_table);
759 blk_co_unref(blk);
760 bdrv_co_unref(bs);
761 return ret;
762 }
763
764 static int coroutine_fn GRAPH_UNLOCKED
bdrv_qed_co_create_opts(BlockDriver * drv,const char * filename,QemuOpts * opts,Error ** errp)765 bdrv_qed_co_create_opts(BlockDriver *drv, const char *filename,
766 QemuOpts *opts, Error **errp)
767 {
768 BlockdevCreateOptions *create_options = NULL;
769 QDict *qdict;
770 Visitor *v;
771 BlockDriverState *bs = NULL;
772 int ret;
773
774 static const QDictRenames opt_renames[] = {
775 { BLOCK_OPT_BACKING_FILE, "backing-file" },
776 { BLOCK_OPT_BACKING_FMT, "backing-fmt" },
777 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" },
778 { BLOCK_OPT_TABLE_SIZE, "table-size" },
779 { NULL, NULL },
780 };
781
782 /* Parse options and convert legacy syntax */
783 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
784
785 if (!qdict_rename_keys(qdict, opt_renames, errp)) {
786 ret = -EINVAL;
787 goto fail;
788 }
789
790 /* Create and open the file (protocol layer) */
791 ret = bdrv_co_create_file(filename, opts, errp);
792 if (ret < 0) {
793 goto fail;
794 }
795
796 bs = bdrv_co_open(filename, NULL, NULL,
797 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
798 if (bs == NULL) {
799 ret = -EIO;
800 goto fail;
801 }
802
803 /* Now get the QAPI type BlockdevCreateOptions */
804 qdict_put_str(qdict, "driver", "qed");
805 qdict_put_str(qdict, "file", bs->node_name);
806
807 v = qobject_input_visitor_new_flat_confused(qdict, errp);
808 if (!v) {
809 ret = -EINVAL;
810 goto fail;
811 }
812
813 visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
814 visit_free(v);
815 if (!create_options) {
816 ret = -EINVAL;
817 goto fail;
818 }
819
820 /* Silently round up size */
821 assert(create_options->driver == BLOCKDEV_DRIVER_QED);
822 create_options->u.qed.size =
823 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
824
825 /* Create the qed image (format layer) */
826 ret = bdrv_qed_co_create(create_options, errp);
827
828 fail:
829 qobject_unref(qdict);
830 bdrv_co_unref(bs);
831 qapi_free_BlockdevCreateOptions(create_options);
832 return ret;
833 }
834
835 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_block_status(BlockDriverState * bs,bool want_zero,int64_t pos,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)836 bdrv_qed_co_block_status(BlockDriverState *bs, bool want_zero, int64_t pos,
837 int64_t bytes, int64_t *pnum, int64_t *map,
838 BlockDriverState **file)
839 {
840 BDRVQEDState *s = bs->opaque;
841 size_t len = MIN(bytes, SIZE_MAX);
842 int status;
843 QEDRequest request = { .l2_table = NULL };
844 uint64_t offset;
845 int ret;
846
847 qemu_co_mutex_lock(&s->table_lock);
848 ret = qed_find_cluster(s, &request, pos, &len, &offset);
849
850 *pnum = len;
851 switch (ret) {
852 case QED_CLUSTER_FOUND:
853 *map = offset | qed_offset_into_cluster(s, pos);
854 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
855 *file = bs->file->bs;
856 break;
857 case QED_CLUSTER_ZERO:
858 status = BDRV_BLOCK_ZERO;
859 break;
860 case QED_CLUSTER_L2:
861 case QED_CLUSTER_L1:
862 status = 0;
863 break;
864 default:
865 assert(ret < 0);
866 status = ret;
867 break;
868 }
869
870 qed_unref_l2_cache_entry(request.l2_table);
871 qemu_co_mutex_unlock(&s->table_lock);
872
873 return status;
874 }
875
acb_to_s(QEDAIOCB * acb)876 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
877 {
878 return acb->bs->opaque;
879 }
880
881 /**
882 * Read from the backing file or zero-fill if no backing file
883 *
884 * @s: QED state
885 * @pos: Byte position in device
886 * @qiov: Destination I/O vector
887 *
888 * This function reads qiov->size bytes starting at pos from the backing file.
889 * If there is no backing file then zeroes are read.
890 */
891 static int coroutine_fn GRAPH_RDLOCK
qed_read_backing_file(BDRVQEDState * s,uint64_t pos,QEMUIOVector * qiov)892 qed_read_backing_file(BDRVQEDState *s, uint64_t pos, QEMUIOVector *qiov)
893 {
894 if (s->bs->backing) {
895 BLKDBG_CO_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
896 return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
897 }
898 qemu_iovec_memset(qiov, 0, 0, qiov->size);
899 return 0;
900 }
901
902 /**
903 * Copy data from backing file into the image
904 *
905 * @s: QED state
906 * @pos: Byte position in device
907 * @len: Number of bytes
908 * @offset: Byte offset in image file
909 */
910 static int coroutine_fn GRAPH_RDLOCK
qed_copy_from_backing_file(BDRVQEDState * s,uint64_t pos,uint64_t len,uint64_t offset)911 qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, uint64_t len,
912 uint64_t offset)
913 {
914 QEMUIOVector qiov;
915 int ret;
916
917 /* Skip copy entirely if there is no work to do */
918 if (len == 0) {
919 return 0;
920 }
921
922 qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
923
924 ret = qed_read_backing_file(s, pos, &qiov);
925
926 if (ret) {
927 goto out;
928 }
929
930 BLKDBG_CO_EVENT(s->bs->file, BLKDBG_COW_WRITE);
931 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
932 if (ret < 0) {
933 goto out;
934 }
935 ret = 0;
936 out:
937 qemu_vfree(qemu_iovec_buf(&qiov));
938 return ret;
939 }
940
941 /**
942 * Link one or more contiguous clusters into a table
943 *
944 * @s: QED state
945 * @table: L2 table
946 * @index: First cluster index
947 * @n: Number of contiguous clusters
948 * @cluster: First cluster offset
949 *
950 * The cluster offset may be an allocated byte offset in the image file, the
951 * zero cluster marker, or the unallocated cluster marker.
952 *
953 * Called with table_lock held.
954 */
qed_update_l2_table(BDRVQEDState * s,QEDTable * table,int index,unsigned int n,uint64_t cluster)955 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
956 int index, unsigned int n,
957 uint64_t cluster)
958 {
959 int i;
960 for (i = index; i < index + n; i++) {
961 table->offsets[i] = cluster;
962 if (!qed_offset_is_unalloc_cluster(cluster) &&
963 !qed_offset_is_zero_cluster(cluster)) {
964 cluster += s->header.cluster_size;
965 }
966 }
967 }
968
969 /* Called with table_lock held. */
qed_aio_complete(QEDAIOCB * acb)970 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
971 {
972 BDRVQEDState *s = acb_to_s(acb);
973
974 /* Free resources */
975 qemu_iovec_destroy(&acb->cur_qiov);
976 qed_unref_l2_cache_entry(acb->request.l2_table);
977
978 /* Free the buffer we may have allocated for zero writes */
979 if (acb->flags & QED_AIOCB_ZERO) {
980 qemu_vfree(acb->qiov->iov[0].iov_base);
981 acb->qiov->iov[0].iov_base = NULL;
982 }
983
984 /* Start next allocating write request waiting behind this one. Note that
985 * requests enqueue themselves when they first hit an unallocated cluster
986 * but they wait until the entire request is finished before waking up the
987 * next request in the queue. This ensures that we don't cycle through
988 * requests multiple times but rather finish one at a time completely.
989 */
990 if (acb == s->allocating_acb) {
991 s->allocating_acb = NULL;
992 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
993 qemu_co_queue_next(&s->allocating_write_reqs);
994 } else if (s->header.features & QED_F_NEED_CHECK) {
995 qed_start_need_check_timer(s);
996 }
997 }
998 }
999
1000 /**
1001 * Update L1 table with new L2 table offset and write it out
1002 *
1003 * Called with table_lock held.
1004 */
qed_aio_write_l1_update(QEDAIOCB * acb)1005 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_l1_update(QEDAIOCB *acb)
1006 {
1007 BDRVQEDState *s = acb_to_s(acb);
1008 CachedL2Table *l2_table = acb->request.l2_table;
1009 uint64_t l2_offset = l2_table->offset;
1010 int index, ret;
1011
1012 index = qed_l1_index(s, acb->cur_pos);
1013 s->l1_table->offsets[index] = l2_table->offset;
1014
1015 ret = qed_write_l1_table(s, index, 1);
1016
1017 /* Commit the current L2 table to the cache */
1018 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1019
1020 /* This is guaranteed to succeed because we just committed the entry to the
1021 * cache.
1022 */
1023 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1024 assert(acb->request.l2_table != NULL);
1025
1026 return ret;
1027 }
1028
1029
1030 /**
1031 * Update L2 table with new cluster offsets and write them out
1032 *
1033 * Called with table_lock held.
1034 */
1035 static int coroutine_fn GRAPH_RDLOCK
qed_aio_write_l2_update(QEDAIOCB * acb,uint64_t offset)1036 qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1037 {
1038 BDRVQEDState *s = acb_to_s(acb);
1039 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1040 int index, ret;
1041
1042 if (need_alloc) {
1043 qed_unref_l2_cache_entry(acb->request.l2_table);
1044 acb->request.l2_table = qed_new_l2_table(s);
1045 }
1046
1047 index = qed_l2_index(s, acb->cur_pos);
1048 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1049 offset);
1050
1051 if (need_alloc) {
1052 /* Write out the whole new L2 table */
1053 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1054 if (ret) {
1055 return ret;
1056 }
1057 return qed_aio_write_l1_update(acb);
1058 } else {
1059 /* Write out only the updated part of the L2 table */
1060 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1061 false);
1062 if (ret) {
1063 return ret;
1064 }
1065 }
1066 return 0;
1067 }
1068
1069 /**
1070 * Write data to the image file
1071 *
1072 * Called with table_lock *not* held.
1073 */
qed_aio_write_main(QEDAIOCB * acb)1074 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_main(QEDAIOCB *acb)
1075 {
1076 BDRVQEDState *s = acb_to_s(acb);
1077 uint64_t offset = acb->cur_cluster +
1078 qed_offset_into_cluster(s, acb->cur_pos);
1079
1080 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1081
1082 BLKDBG_CO_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1083 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1084 &acb->cur_qiov, 0);
1085 }
1086
1087 /**
1088 * Populate untouched regions of new data cluster
1089 *
1090 * Called with table_lock held.
1091 */
qed_aio_write_cow(QEDAIOCB * acb)1092 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_cow(QEDAIOCB *acb)
1093 {
1094 BDRVQEDState *s = acb_to_s(acb);
1095 uint64_t start, len, offset;
1096 int ret;
1097
1098 qemu_co_mutex_unlock(&s->table_lock);
1099
1100 /* Populate front untouched region of new data cluster */
1101 start = qed_start_of_cluster(s, acb->cur_pos);
1102 len = qed_offset_into_cluster(s, acb->cur_pos);
1103
1104 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1105 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1106 if (ret < 0) {
1107 goto out;
1108 }
1109
1110 /* Populate back untouched region of new data cluster */
1111 start = acb->cur_pos + acb->cur_qiov.size;
1112 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1113 offset = acb->cur_cluster +
1114 qed_offset_into_cluster(s, acb->cur_pos) +
1115 acb->cur_qiov.size;
1116
1117 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1118 ret = qed_copy_from_backing_file(s, start, len, offset);
1119 if (ret < 0) {
1120 goto out;
1121 }
1122
1123 ret = qed_aio_write_main(acb);
1124 if (ret < 0) {
1125 goto out;
1126 }
1127
1128 if (s->bs->backing) {
1129 /*
1130 * Flush new data clusters before updating the L2 table
1131 *
1132 * This flush is necessary when a backing file is in use. A crash
1133 * during an allocating write could result in empty clusters in the
1134 * image. If the write only touched a subregion of the cluster,
1135 * then backing image sectors have been lost in the untouched
1136 * region. The solution is to flush after writing a new data
1137 * cluster and before updating the L2 table.
1138 */
1139 ret = bdrv_co_flush(s->bs->file->bs);
1140 }
1141
1142 out:
1143 qemu_co_mutex_lock(&s->table_lock);
1144 return ret;
1145 }
1146
1147 /**
1148 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1149 */
qed_should_set_need_check(BDRVQEDState * s)1150 static bool GRAPH_RDLOCK qed_should_set_need_check(BDRVQEDState *s)
1151 {
1152 /* The flush before L2 update path ensures consistency */
1153 if (s->bs->backing) {
1154 return false;
1155 }
1156
1157 return !(s->header.features & QED_F_NEED_CHECK);
1158 }
1159
1160 /**
1161 * Write new data cluster
1162 *
1163 * @acb: Write request
1164 * @len: Length in bytes
1165 *
1166 * This path is taken when writing to previously unallocated clusters.
1167 *
1168 * Called with table_lock held.
1169 */
1170 static int coroutine_fn GRAPH_RDLOCK
qed_aio_write_alloc(QEDAIOCB * acb,size_t len)1171 qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1172 {
1173 BDRVQEDState *s = acb_to_s(acb);
1174 int ret;
1175
1176 /* Cancel timer when the first allocating request comes in */
1177 if (s->allocating_acb == NULL) {
1178 qed_cancel_need_check_timer(s);
1179 }
1180
1181 /* Freeze this request if another allocating write is in progress */
1182 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1183 if (s->allocating_acb != NULL) {
1184 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1185 assert(s->allocating_acb == NULL);
1186 }
1187 s->allocating_acb = acb;
1188 return -EAGAIN; /* start over with looking up table entries */
1189 }
1190
1191 acb->cur_nclusters = qed_bytes_to_clusters(s,
1192 qed_offset_into_cluster(s, acb->cur_pos) + len);
1193 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1194
1195 if (acb->flags & QED_AIOCB_ZERO) {
1196 /* Skip ahead if the clusters are already zero */
1197 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1198 return 0;
1199 }
1200 acb->cur_cluster = 1;
1201 } else {
1202 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1203 }
1204
1205 if (qed_should_set_need_check(s)) {
1206 s->header.features |= QED_F_NEED_CHECK;
1207 ret = qed_write_header(s);
1208 if (ret < 0) {
1209 return ret;
1210 }
1211 }
1212
1213 if (!(acb->flags & QED_AIOCB_ZERO)) {
1214 ret = qed_aio_write_cow(acb);
1215 if (ret < 0) {
1216 return ret;
1217 }
1218 }
1219
1220 return qed_aio_write_l2_update(acb, acb->cur_cluster);
1221 }
1222
1223 /**
1224 * Write data cluster in place
1225 *
1226 * @acb: Write request
1227 * @offset: Cluster offset in bytes
1228 * @len: Length in bytes
1229 *
1230 * This path is taken when writing to already allocated clusters.
1231 *
1232 * Called with table_lock held.
1233 */
1234 static int coroutine_fn GRAPH_RDLOCK
qed_aio_write_inplace(QEDAIOCB * acb,uint64_t offset,size_t len)1235 qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1236 {
1237 BDRVQEDState *s = acb_to_s(acb);
1238 int r;
1239
1240 qemu_co_mutex_unlock(&s->table_lock);
1241
1242 /* Allocate buffer for zero writes */
1243 if (acb->flags & QED_AIOCB_ZERO) {
1244 struct iovec *iov = acb->qiov->iov;
1245
1246 if (!iov->iov_base) {
1247 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1248 if (iov->iov_base == NULL) {
1249 r = -ENOMEM;
1250 goto out;
1251 }
1252 memset(iov->iov_base, 0, iov->iov_len);
1253 }
1254 }
1255
1256 /* Calculate the I/O vector */
1257 acb->cur_cluster = offset;
1258 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1259
1260 /* Do the actual write. */
1261 r = qed_aio_write_main(acb);
1262 out:
1263 qemu_co_mutex_lock(&s->table_lock);
1264 return r;
1265 }
1266
1267 /**
1268 * Write data cluster
1269 *
1270 * @opaque: Write request
1271 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1272 * @offset: Cluster offset in bytes
1273 * @len: Length in bytes
1274 *
1275 * Called with table_lock held.
1276 */
1277 static int coroutine_fn GRAPH_RDLOCK
qed_aio_write_data(void * opaque,int ret,uint64_t offset,size_t len)1278 qed_aio_write_data(void *opaque, int ret, uint64_t offset, size_t len)
1279 {
1280 QEDAIOCB *acb = opaque;
1281
1282 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1283
1284 acb->find_cluster_ret = ret;
1285
1286 switch (ret) {
1287 case QED_CLUSTER_FOUND:
1288 return qed_aio_write_inplace(acb, offset, len);
1289
1290 case QED_CLUSTER_L2:
1291 case QED_CLUSTER_L1:
1292 case QED_CLUSTER_ZERO:
1293 return qed_aio_write_alloc(acb, len);
1294
1295 default:
1296 g_assert_not_reached();
1297 }
1298 }
1299
1300 /**
1301 * Read data cluster
1302 *
1303 * @opaque: Read request
1304 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1305 * @offset: Cluster offset in bytes
1306 * @len: Length in bytes
1307 *
1308 * Called with table_lock held.
1309 */
1310 static int coroutine_fn GRAPH_RDLOCK
qed_aio_read_data(void * opaque,int ret,uint64_t offset,size_t len)1311 qed_aio_read_data(void *opaque, int ret, uint64_t offset, size_t len)
1312 {
1313 QEDAIOCB *acb = opaque;
1314 BDRVQEDState *s = acb_to_s(acb);
1315 BlockDriverState *bs = acb->bs;
1316 int r;
1317
1318 qemu_co_mutex_unlock(&s->table_lock);
1319
1320 /* Adjust offset into cluster */
1321 offset += qed_offset_into_cluster(s, acb->cur_pos);
1322
1323 trace_qed_aio_read_data(s, acb, ret, offset, len);
1324
1325 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1326
1327 /* Handle zero cluster and backing file reads, otherwise read
1328 * data cluster directly.
1329 */
1330 if (ret == QED_CLUSTER_ZERO) {
1331 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1332 r = 0;
1333 } else if (ret != QED_CLUSTER_FOUND) {
1334 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1335 } else {
1336 BLKDBG_CO_EVENT(bs->file, BLKDBG_READ_AIO);
1337 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1338 &acb->cur_qiov, 0);
1339 }
1340
1341 qemu_co_mutex_lock(&s->table_lock);
1342 return r;
1343 }
1344
1345 /**
1346 * Begin next I/O or complete the request
1347 */
qed_aio_next_io(QEDAIOCB * acb)1348 static int coroutine_fn GRAPH_RDLOCK qed_aio_next_io(QEDAIOCB *acb)
1349 {
1350 BDRVQEDState *s = acb_to_s(acb);
1351 uint64_t offset;
1352 size_t len;
1353 int ret;
1354
1355 qemu_co_mutex_lock(&s->table_lock);
1356 while (1) {
1357 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1358
1359 acb->qiov_offset += acb->cur_qiov.size;
1360 acb->cur_pos += acb->cur_qiov.size;
1361 qemu_iovec_reset(&acb->cur_qiov);
1362
1363 /* Complete request */
1364 if (acb->cur_pos >= acb->end_pos) {
1365 ret = 0;
1366 break;
1367 }
1368
1369 /* Find next cluster and start I/O */
1370 len = acb->end_pos - acb->cur_pos;
1371 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1372 if (ret < 0) {
1373 break;
1374 }
1375
1376 if (acb->flags & QED_AIOCB_WRITE) {
1377 ret = qed_aio_write_data(acb, ret, offset, len);
1378 } else {
1379 ret = qed_aio_read_data(acb, ret, offset, len);
1380 }
1381
1382 if (ret < 0 && ret != -EAGAIN) {
1383 break;
1384 }
1385 }
1386
1387 trace_qed_aio_complete(s, acb, ret);
1388 qed_aio_complete(acb);
1389 qemu_co_mutex_unlock(&s->table_lock);
1390 return ret;
1391 }
1392
1393 static int coroutine_fn GRAPH_RDLOCK
qed_co_request(BlockDriverState * bs,int64_t sector_num,QEMUIOVector * qiov,int nb_sectors,int flags)1394 qed_co_request(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov,
1395 int nb_sectors, int flags)
1396 {
1397 QEDAIOCB acb = {
1398 .bs = bs,
1399 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1400 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1401 .qiov = qiov,
1402 .flags = flags,
1403 };
1404 qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1405
1406 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1407
1408 /* Start request */
1409 return qed_aio_next_io(&acb);
1410 }
1411
1412 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_readv(BlockDriverState * bs,int64_t sector_num,int nb_sectors,QEMUIOVector * qiov)1413 bdrv_qed_co_readv(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1414 QEMUIOVector *qiov)
1415 {
1416 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1417 }
1418
1419 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_writev(BlockDriverState * bs,int64_t sector_num,int nb_sectors,QEMUIOVector * qiov,int flags)1420 bdrv_qed_co_writev(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1421 QEMUIOVector *qiov, int flags)
1422 {
1423 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1424 }
1425
1426 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_pwrite_zeroes(BlockDriverState * bs,int64_t offset,int64_t bytes,BdrvRequestFlags flags)1427 bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1428 BdrvRequestFlags flags)
1429 {
1430 BDRVQEDState *s = bs->opaque;
1431
1432 /*
1433 * Zero writes start without an I/O buffer. If a buffer becomes necessary
1434 * then it will be allocated during request processing.
1435 */
1436 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1437
1438 /*
1439 * QED is not prepared for 63bit write-zero requests, so rely on
1440 * max_pwrite_zeroes.
1441 */
1442 assert(bytes <= INT_MAX);
1443
1444 /* Fall back if the request is not aligned */
1445 if (qed_offset_into_cluster(s, offset) ||
1446 qed_offset_into_cluster(s, bytes)) {
1447 return -ENOTSUP;
1448 }
1449
1450 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1451 bytes >> BDRV_SECTOR_BITS,
1452 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1453 }
1454
1455 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_truncate(BlockDriverState * bs,int64_t offset,bool exact,PreallocMode prealloc,BdrvRequestFlags flags,Error ** errp)1456 bdrv_qed_co_truncate(BlockDriverState *bs, int64_t offset, bool exact,
1457 PreallocMode prealloc, BdrvRequestFlags flags,
1458 Error **errp)
1459 {
1460 BDRVQEDState *s = bs->opaque;
1461 uint64_t old_image_size;
1462 int ret;
1463
1464 if (prealloc != PREALLOC_MODE_OFF) {
1465 error_setg(errp, "Unsupported preallocation mode '%s'",
1466 PreallocMode_str(prealloc));
1467 return -ENOTSUP;
1468 }
1469
1470 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1471 s->header.table_size)) {
1472 error_setg(errp, "Invalid image size specified");
1473 return -EINVAL;
1474 }
1475
1476 if ((uint64_t)offset < s->header.image_size) {
1477 error_setg(errp, "Shrinking images is currently not supported");
1478 return -ENOTSUP;
1479 }
1480
1481 old_image_size = s->header.image_size;
1482 s->header.image_size = offset;
1483 ret = qed_write_header_sync(s);
1484 if (ret < 0) {
1485 s->header.image_size = old_image_size;
1486 error_setg_errno(errp, -ret, "Failed to update the image size");
1487 }
1488 return ret;
1489 }
1490
bdrv_qed_co_getlength(BlockDriverState * bs)1491 static int64_t coroutine_fn bdrv_qed_co_getlength(BlockDriverState *bs)
1492 {
1493 BDRVQEDState *s = bs->opaque;
1494 return s->header.image_size;
1495 }
1496
1497 static int coroutine_fn
bdrv_qed_co_get_info(BlockDriverState * bs,BlockDriverInfo * bdi)1498 bdrv_qed_co_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1499 {
1500 BDRVQEDState *s = bs->opaque;
1501
1502 memset(bdi, 0, sizeof(*bdi));
1503 bdi->cluster_size = s->header.cluster_size;
1504 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1505 return 0;
1506 }
1507
1508 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_change_backing_file(BlockDriverState * bs,const char * backing_file,const char * backing_fmt)1509 bdrv_qed_co_change_backing_file(BlockDriverState *bs, const char *backing_file,
1510 const char *backing_fmt)
1511 {
1512 BDRVQEDState *s = bs->opaque;
1513 QEDHeader new_header, le_header;
1514 void *buffer;
1515 size_t buffer_len, backing_file_len;
1516 int ret;
1517
1518 /* Refuse to set backing filename if unknown compat feature bits are
1519 * active. If the image uses an unknown compat feature then we may not
1520 * know the layout of data following the header structure and cannot safely
1521 * add a new string.
1522 */
1523 if (backing_file && (s->header.compat_features &
1524 ~QED_COMPAT_FEATURE_MASK)) {
1525 return -ENOTSUP;
1526 }
1527
1528 memcpy(&new_header, &s->header, sizeof(new_header));
1529
1530 new_header.features &= ~(QED_F_BACKING_FILE |
1531 QED_F_BACKING_FORMAT_NO_PROBE);
1532
1533 /* Adjust feature flags */
1534 if (backing_file) {
1535 new_header.features |= QED_F_BACKING_FILE;
1536
1537 if (qed_fmt_is_raw(backing_fmt)) {
1538 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1539 }
1540 }
1541
1542 /* Calculate new header size */
1543 backing_file_len = 0;
1544
1545 if (backing_file) {
1546 backing_file_len = strlen(backing_file);
1547 }
1548
1549 buffer_len = sizeof(new_header);
1550 new_header.backing_filename_offset = buffer_len;
1551 new_header.backing_filename_size = backing_file_len;
1552 buffer_len += backing_file_len;
1553
1554 /* Make sure we can rewrite header without failing */
1555 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1556 return -ENOSPC;
1557 }
1558
1559 /* Prepare new header */
1560 buffer = g_malloc(buffer_len);
1561
1562 qed_header_cpu_to_le(&new_header, &le_header);
1563 memcpy(buffer, &le_header, sizeof(le_header));
1564 buffer_len = sizeof(le_header);
1565
1566 if (backing_file) {
1567 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1568 buffer_len += backing_file_len;
1569 }
1570
1571 /* Write new header */
1572 ret = bdrv_co_pwrite_sync(bs->file, 0, buffer_len, buffer, 0);
1573 g_free(buffer);
1574 if (ret == 0) {
1575 memcpy(&s->header, &new_header, sizeof(new_header));
1576 }
1577 return ret;
1578 }
1579
1580 static void coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_invalidate_cache(BlockDriverState * bs,Error ** errp)1581 bdrv_qed_co_invalidate_cache(BlockDriverState *bs, Error **errp)
1582 {
1583 ERRP_GUARD();
1584 BDRVQEDState *s = bs->opaque;
1585 int ret;
1586
1587 bdrv_qed_do_close(bs);
1588
1589 bdrv_qed_init_state(bs);
1590 qemu_co_mutex_lock(&s->table_lock);
1591 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1592 qemu_co_mutex_unlock(&s->table_lock);
1593 if (ret < 0) {
1594 error_prepend(errp, "Could not reopen qed layer: ");
1595 }
1596 }
1597
1598 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_check(BlockDriverState * bs,BdrvCheckResult * result,BdrvCheckMode fix)1599 bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result,
1600 BdrvCheckMode fix)
1601 {
1602 BDRVQEDState *s = bs->opaque;
1603 int ret;
1604
1605 qemu_co_mutex_lock(&s->table_lock);
1606 ret = qed_check(s, result, !!fix);
1607 qemu_co_mutex_unlock(&s->table_lock);
1608
1609 return ret;
1610 }
1611
1612 static QemuOptsList qed_create_opts = {
1613 .name = "qed-create-opts",
1614 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1615 .desc = {
1616 {
1617 .name = BLOCK_OPT_SIZE,
1618 .type = QEMU_OPT_SIZE,
1619 .help = "Virtual disk size"
1620 },
1621 {
1622 .name = BLOCK_OPT_BACKING_FILE,
1623 .type = QEMU_OPT_STRING,
1624 .help = "File name of a base image"
1625 },
1626 {
1627 .name = BLOCK_OPT_BACKING_FMT,
1628 .type = QEMU_OPT_STRING,
1629 .help = "Image format of the base image"
1630 },
1631 {
1632 .name = BLOCK_OPT_CLUSTER_SIZE,
1633 .type = QEMU_OPT_SIZE,
1634 .help = "Cluster size (in bytes)",
1635 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1636 },
1637 {
1638 .name = BLOCK_OPT_TABLE_SIZE,
1639 .type = QEMU_OPT_SIZE,
1640 .help = "L1/L2 table size (in clusters)"
1641 },
1642 { /* end of list */ }
1643 }
1644 };
1645
1646 static BlockDriver bdrv_qed = {
1647 .format_name = "qed",
1648 .instance_size = sizeof(BDRVQEDState),
1649 .create_opts = &qed_create_opts,
1650 .is_format = true,
1651 .supports_backing = true,
1652
1653 .bdrv_probe = bdrv_qed_probe,
1654 .bdrv_open = bdrv_qed_open,
1655 .bdrv_close = bdrv_qed_close,
1656 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1657 .bdrv_child_perm = bdrv_default_perms,
1658 .bdrv_co_create = bdrv_qed_co_create,
1659 .bdrv_co_create_opts = bdrv_qed_co_create_opts,
1660 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1661 .bdrv_co_block_status = bdrv_qed_co_block_status,
1662 .bdrv_co_readv = bdrv_qed_co_readv,
1663 .bdrv_co_writev = bdrv_qed_co_writev,
1664 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1665 .bdrv_co_truncate = bdrv_qed_co_truncate,
1666 .bdrv_co_getlength = bdrv_qed_co_getlength,
1667 .bdrv_co_get_info = bdrv_qed_co_get_info,
1668 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1669 .bdrv_co_change_backing_file = bdrv_qed_co_change_backing_file,
1670 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1671 .bdrv_co_check = bdrv_qed_co_check,
1672 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1673 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1674 .bdrv_drain_begin = bdrv_qed_drain_begin,
1675 };
1676
bdrv_qed_init(void)1677 static void bdrv_qed_init(void)
1678 {
1679 bdrv_register(&bdrv_qed);
1680 }
1681
1682 block_init(bdrv_qed_init);
1683