xref: /openbmc/qemu/block/qed.c (revision 007ea6d6ed16cf9a548535afc272a9f04683ad38)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "qemu/memalign.h"
24 #include "trace.h"
25 #include "qed.h"
26 #include "sysemu/block-backend.h"
27 #include "qapi/qmp/qdict.h"
28 #include "qapi/qobject-input-visitor.h"
29 #include "qapi/qapi-visit-block-core.h"
30 
31 static QemuOptsList qed_create_opts;
32 
bdrv_qed_probe(const uint8_t * buf,int buf_size,const char * filename)33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
34                           const char *filename)
35 {
36     const QEDHeader *header = (const QEDHeader *)buf;
37 
38     if (buf_size < sizeof(*header)) {
39         return 0;
40     }
41     if (le32_to_cpu(header->magic) != QED_MAGIC) {
42         return 0;
43     }
44     return 100;
45 }
46 
47 /**
48  * Check whether an image format is raw
49  *
50  * @fmt:    Backing file format, may be NULL
51  */
qed_fmt_is_raw(const char * fmt)52 static bool qed_fmt_is_raw(const char *fmt)
53 {
54     return fmt && strcmp(fmt, "raw") == 0;
55 }
56 
qed_header_le_to_cpu(const QEDHeader * le,QEDHeader * cpu)57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
58 {
59     cpu->magic = le32_to_cpu(le->magic);
60     cpu->cluster_size = le32_to_cpu(le->cluster_size);
61     cpu->table_size = le32_to_cpu(le->table_size);
62     cpu->header_size = le32_to_cpu(le->header_size);
63     cpu->features = le64_to_cpu(le->features);
64     cpu->compat_features = le64_to_cpu(le->compat_features);
65     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
66     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
67     cpu->image_size = le64_to_cpu(le->image_size);
68     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
69     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
70 }
71 
qed_header_cpu_to_le(const QEDHeader * cpu,QEDHeader * le)72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
73 {
74     le->magic = cpu_to_le32(cpu->magic);
75     le->cluster_size = cpu_to_le32(cpu->cluster_size);
76     le->table_size = cpu_to_le32(cpu->table_size);
77     le->header_size = cpu_to_le32(cpu->header_size);
78     le->features = cpu_to_le64(cpu->features);
79     le->compat_features = cpu_to_le64(cpu->compat_features);
80     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
81     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
82     le->image_size = cpu_to_le64(cpu->image_size);
83     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
84     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
85 }
86 
qed_write_header_sync(BDRVQEDState * s)87 int qed_write_header_sync(BDRVQEDState *s)
88 {
89     QEDHeader le;
90 
91     qed_header_cpu_to_le(&s->header, &le);
92     return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0);
93 }
94 
95 /**
96  * Update header in-place (does not rewrite backing filename or other strings)
97  *
98  * This function only updates known header fields in-place and does not affect
99  * extra data after the QED header.
100  *
101  * No new allocating reqs can start while this function runs.
102  */
qed_write_header(BDRVQEDState * s)103 static int coroutine_fn GRAPH_RDLOCK qed_write_header(BDRVQEDState *s)
104 {
105     /* We must write full sectors for O_DIRECT but cannot necessarily generate
106      * the data following the header if an unrecognized compat feature is
107      * active.  Therefore, first read the sectors containing the header, update
108      * them, and write back.
109      */
110 
111     int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
112     size_t len = nsectors * BDRV_SECTOR_SIZE;
113     uint8_t *buf;
114     int ret;
115 
116     assert(s->allocating_acb || s->allocating_write_reqs_plugged);
117 
118     buf = qemu_blockalign(s->bs, len);
119 
120     ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
121     if (ret < 0) {
122         goto out;
123     }
124 
125     /* Update header */
126     qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
127 
128     ret = bdrv_co_pwrite(s->bs->file, 0, len,  buf, 0);
129     if (ret < 0) {
130         goto out;
131     }
132 
133     ret = 0;
134 out:
135     qemu_vfree(buf);
136     return ret;
137 }
138 
qed_max_image_size(uint32_t cluster_size,uint32_t table_size)139 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
140 {
141     uint64_t table_entries;
142     uint64_t l2_size;
143 
144     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
145     l2_size = table_entries * cluster_size;
146 
147     return l2_size * table_entries;
148 }
149 
qed_is_cluster_size_valid(uint32_t cluster_size)150 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
151 {
152     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
153         cluster_size > QED_MAX_CLUSTER_SIZE) {
154         return false;
155     }
156     if (cluster_size & (cluster_size - 1)) {
157         return false; /* not power of 2 */
158     }
159     return true;
160 }
161 
qed_is_table_size_valid(uint32_t table_size)162 static bool qed_is_table_size_valid(uint32_t table_size)
163 {
164     if (table_size < QED_MIN_TABLE_SIZE ||
165         table_size > QED_MAX_TABLE_SIZE) {
166         return false;
167     }
168     if (table_size & (table_size - 1)) {
169         return false; /* not power of 2 */
170     }
171     return true;
172 }
173 
qed_is_image_size_valid(uint64_t image_size,uint32_t cluster_size,uint32_t table_size)174 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
175                                     uint32_t table_size)
176 {
177     if (image_size % BDRV_SECTOR_SIZE != 0) {
178         return false; /* not multiple of sector size */
179     }
180     if (image_size > qed_max_image_size(cluster_size, table_size)) {
181         return false; /* image is too large */
182     }
183     return true;
184 }
185 
186 /**
187  * Read a string of known length from the image file
188  *
189  * @file:       Image file
190  * @offset:     File offset to start of string, in bytes
191  * @n:          String length in bytes
192  * @buf:        Destination buffer
193  * @buflen:     Destination buffer length in bytes
194  * @ret:        0 on success, -errno on failure
195  *
196  * The string is NUL-terminated.
197  */
198 static int coroutine_fn GRAPH_RDLOCK
qed_read_string(BdrvChild * file,uint64_t offset,size_t n,char * buf,size_t buflen)199 qed_read_string(BdrvChild *file, uint64_t offset,
200                 size_t n, char *buf, size_t buflen)
201 {
202     int ret;
203     if (n >= buflen) {
204         return -EINVAL;
205     }
206     ret = bdrv_co_pread(file, offset, n, buf, 0);
207     if (ret < 0) {
208         return ret;
209     }
210     buf[n] = '\0';
211     return 0;
212 }
213 
214 /**
215  * Allocate new clusters
216  *
217  * @s:          QED state
218  * @n:          Number of contiguous clusters to allocate
219  * @ret:        Offset of first allocated cluster
220  *
221  * This function only produces the offset where the new clusters should be
222  * written.  It updates BDRVQEDState but does not make any changes to the image
223  * file.
224  *
225  * Called with table_lock held.
226  */
qed_alloc_clusters(BDRVQEDState * s,unsigned int n)227 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
228 {
229     uint64_t offset = s->file_size;
230     s->file_size += n * s->header.cluster_size;
231     return offset;
232 }
233 
qed_alloc_table(BDRVQEDState * s)234 QEDTable *qed_alloc_table(BDRVQEDState *s)
235 {
236     /* Honor O_DIRECT memory alignment requirements */
237     return qemu_blockalign(s->bs,
238                            s->header.cluster_size * s->header.table_size);
239 }
240 
241 /**
242  * Allocate a new zeroed L2 table
243  *
244  * Called with table_lock held.
245  */
qed_new_l2_table(BDRVQEDState * s)246 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
247 {
248     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
249 
250     l2_table->table = qed_alloc_table(s);
251     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
252 
253     memset(l2_table->table->offsets, 0,
254            s->header.cluster_size * s->header.table_size);
255     return l2_table;
256 }
257 
qed_plug_allocating_write_reqs(BDRVQEDState * s)258 static bool coroutine_fn qed_plug_allocating_write_reqs(BDRVQEDState *s)
259 {
260     qemu_co_mutex_lock(&s->table_lock);
261 
262     /* No reentrancy is allowed.  */
263     assert(!s->allocating_write_reqs_plugged);
264     if (s->allocating_acb != NULL) {
265         /* Another allocating write came concurrently.  This cannot happen
266          * from bdrv_qed_drain_begin, but it can happen when the timer runs.
267          */
268         qemu_co_mutex_unlock(&s->table_lock);
269         return false;
270     }
271 
272     s->allocating_write_reqs_plugged = true;
273     qemu_co_mutex_unlock(&s->table_lock);
274     return true;
275 }
276 
qed_unplug_allocating_write_reqs(BDRVQEDState * s)277 static void coroutine_fn qed_unplug_allocating_write_reqs(BDRVQEDState *s)
278 {
279     qemu_co_mutex_lock(&s->table_lock);
280     assert(s->allocating_write_reqs_plugged);
281     s->allocating_write_reqs_plugged = false;
282     qemu_co_queue_next(&s->allocating_write_reqs);
283     qemu_co_mutex_unlock(&s->table_lock);
284 }
285 
qed_need_check_timer(BDRVQEDState * s)286 static void coroutine_fn GRAPH_RDLOCK qed_need_check_timer(BDRVQEDState *s)
287 {
288     int ret;
289 
290     trace_qed_need_check_timer_cb(s);
291     assert_bdrv_graph_readable();
292 
293     if (!qed_plug_allocating_write_reqs(s)) {
294         return;
295     }
296 
297     /* Ensure writes are on disk before clearing flag */
298     ret = bdrv_co_flush(s->bs->file->bs);
299     if (ret < 0) {
300         qed_unplug_allocating_write_reqs(s);
301         return;
302     }
303 
304     s->header.features &= ~QED_F_NEED_CHECK;
305     ret = qed_write_header(s);
306     (void) ret;
307 
308     qed_unplug_allocating_write_reqs(s);
309 
310     ret = bdrv_co_flush(s->bs);
311     (void) ret;
312 }
313 
qed_need_check_timer_entry(void * opaque)314 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
315 {
316     BDRVQEDState *s = opaque;
317     GRAPH_RDLOCK_GUARD();
318 
319     qed_need_check_timer(opaque);
320     bdrv_dec_in_flight(s->bs);
321 }
322 
qed_need_check_timer_cb(void * opaque)323 static void qed_need_check_timer_cb(void *opaque)
324 {
325     BDRVQEDState *s = opaque;
326     Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
327 
328     bdrv_inc_in_flight(s->bs);
329     qemu_coroutine_enter(co);
330 }
331 
qed_start_need_check_timer(BDRVQEDState * s)332 static void qed_start_need_check_timer(BDRVQEDState *s)
333 {
334     trace_qed_start_need_check_timer(s);
335 
336     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
337      * migration.
338      */
339     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
340                    NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
341 }
342 
343 /* It's okay to call this multiple times or when no timer is started */
qed_cancel_need_check_timer(BDRVQEDState * s)344 static void qed_cancel_need_check_timer(BDRVQEDState *s)
345 {
346     trace_qed_cancel_need_check_timer(s);
347     timer_del(s->need_check_timer);
348 }
349 
bdrv_qed_detach_aio_context(BlockDriverState * bs)350 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
351 {
352     BDRVQEDState *s = bs->opaque;
353 
354     qed_cancel_need_check_timer(s);
355     timer_free(s->need_check_timer);
356     s->need_check_timer = NULL;
357 }
358 
bdrv_qed_attach_aio_context(BlockDriverState * bs,AioContext * new_context)359 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
360                                         AioContext *new_context)
361 {
362     BDRVQEDState *s = bs->opaque;
363 
364     s->need_check_timer = aio_timer_new(new_context,
365                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
366                                         qed_need_check_timer_cb, s);
367     if (s->header.features & QED_F_NEED_CHECK) {
368         qed_start_need_check_timer(s);
369     }
370 }
371 
bdrv_qed_drain_begin(BlockDriverState * bs)372 static void bdrv_qed_drain_begin(BlockDriverState *bs)
373 {
374     BDRVQEDState *s = bs->opaque;
375 
376     /* Fire the timer immediately in order to start doing I/O as soon as the
377      * header is flushed.
378      */
379     if (s->need_check_timer && timer_pending(s->need_check_timer)) {
380         Coroutine *co;
381 
382         qed_cancel_need_check_timer(s);
383         co = qemu_coroutine_create(qed_need_check_timer_entry, s);
384         bdrv_inc_in_flight(bs);
385         aio_co_enter(bdrv_get_aio_context(bs), co);
386     }
387 }
388 
bdrv_qed_init_state(BlockDriverState * bs)389 static void bdrv_qed_init_state(BlockDriverState *bs)
390 {
391     BDRVQEDState *s = bs->opaque;
392 
393     memset(s, 0, sizeof(BDRVQEDState));
394     s->bs = bs;
395     qemu_co_mutex_init(&s->table_lock);
396     qemu_co_queue_init(&s->allocating_write_reqs);
397 }
398 
399 /* Called with table_lock held.  */
400 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_do_open(BlockDriverState * bs,QDict * options,int flags,Error ** errp)401 bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags, Error **errp)
402 {
403     BDRVQEDState *s = bs->opaque;
404     QEDHeader le_header;
405     int64_t file_size;
406     int ret;
407 
408     ret = bdrv_co_pread(bs->file, 0, sizeof(le_header), &le_header, 0);
409     if (ret < 0) {
410         error_setg(errp, "Failed to read QED header");
411         return ret;
412     }
413     qed_header_le_to_cpu(&le_header, &s->header);
414 
415     if (s->header.magic != QED_MAGIC) {
416         error_setg(errp, "Image not in QED format");
417         return -EINVAL;
418     }
419     if (s->header.features & ~QED_FEATURE_MASK) {
420         /* image uses unsupported feature bits */
421         error_setg(errp, "Unsupported QED features: %" PRIx64,
422                    s->header.features & ~QED_FEATURE_MASK);
423         return -ENOTSUP;
424     }
425     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
426         error_setg(errp, "QED cluster size is invalid");
427         return -EINVAL;
428     }
429 
430     /* Round down file size to the last cluster */
431     file_size = bdrv_co_getlength(bs->file->bs);
432     if (file_size < 0) {
433         error_setg(errp, "Failed to get file length");
434         return file_size;
435     }
436     s->file_size = qed_start_of_cluster(s, file_size);
437 
438     if (!qed_is_table_size_valid(s->header.table_size)) {
439         error_setg(errp, "QED table size is invalid");
440         return -EINVAL;
441     }
442     if (!qed_is_image_size_valid(s->header.image_size,
443                                  s->header.cluster_size,
444                                  s->header.table_size)) {
445         error_setg(errp, "QED image size is invalid");
446         return -EINVAL;
447     }
448     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
449         error_setg(errp, "QED table offset is invalid");
450         return -EINVAL;
451     }
452 
453     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
454                       sizeof(uint64_t);
455     s->l2_shift = ctz32(s->header.cluster_size);
456     s->l2_mask = s->table_nelems - 1;
457     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
458 
459     /* Header size calculation must not overflow uint32_t */
460     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
461         error_setg(errp, "QED header size is too large");
462         return -EINVAL;
463     }
464 
465     if ((s->header.features & QED_F_BACKING_FILE)) {
466         g_autofree char *backing_file_str = NULL;
467 
468         if ((uint64_t)s->header.backing_filename_offset +
469             s->header.backing_filename_size >
470             s->header.cluster_size * s->header.header_size) {
471             error_setg(errp, "QED backing filename offset is invalid");
472             return -EINVAL;
473         }
474 
475         backing_file_str = g_malloc(sizeof(bs->backing_file));
476         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
477                               s->header.backing_filename_size,
478                               backing_file_str, sizeof(bs->backing_file));
479         if (ret < 0) {
480             error_setg(errp, "Failed to read backing filename");
481             return ret;
482         }
483 
484         if (!g_str_equal(backing_file_str, bs->backing_file)) {
485             pstrcpy(bs->backing_file, sizeof(bs->backing_file),
486                     backing_file_str);
487             pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file),
488                     backing_file_str);
489         }
490 
491         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
492             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
493         }
494     }
495 
496     /* Reset unknown autoclear feature bits.  This is a backwards
497      * compatibility mechanism that allows images to be opened by older
498      * programs, which "knock out" unknown feature bits.  When an image is
499      * opened by a newer program again it can detect that the autoclear
500      * feature is no longer valid.
501      */
502     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
503         !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
504         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
505 
506         ret = qed_write_header_sync(s);
507         if (ret) {
508             error_setg(errp, "Failed to update header");
509             return ret;
510         }
511 
512         /* From here on only known autoclear feature bits are valid */
513         bdrv_co_flush(bs->file->bs);
514     }
515 
516     s->l1_table = qed_alloc_table(s);
517     qed_init_l2_cache(&s->l2_cache);
518 
519     ret = qed_read_l1_table_sync(s);
520     if (ret) {
521         error_setg(errp, "Failed to read L1 table");
522         goto out;
523     }
524 
525     /* If image was not closed cleanly, check consistency */
526     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
527         /* Read-only images cannot be fixed.  There is no risk of corruption
528          * since write operations are not possible.  Therefore, allow
529          * potentially inconsistent images to be opened read-only.  This can
530          * aid data recovery from an otherwise inconsistent image.
531          */
532         if (!bdrv_is_read_only(bs->file->bs) &&
533             !(flags & BDRV_O_INACTIVE)) {
534             BdrvCheckResult result = {0};
535 
536             ret = qed_check(s, &result, true);
537             if (ret) {
538                 error_setg(errp, "Image corrupted");
539                 goto out;
540             }
541         }
542     }
543 
544     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
545 
546 out:
547     if (ret) {
548         qed_free_l2_cache(&s->l2_cache);
549         qemu_vfree(s->l1_table);
550     }
551     return ret;
552 }
553 
554 typedef struct QEDOpenCo {
555     BlockDriverState *bs;
556     QDict *options;
557     int flags;
558     Error **errp;
559     int ret;
560 } QEDOpenCo;
561 
bdrv_qed_open_entry(void * opaque)562 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
563 {
564     QEDOpenCo *qoc = opaque;
565     BDRVQEDState *s = qoc->bs->opaque;
566 
567     GRAPH_RDLOCK_GUARD();
568 
569     qemu_co_mutex_lock(&s->table_lock);
570     qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
571     qemu_co_mutex_unlock(&s->table_lock);
572 }
573 
bdrv_qed_open(BlockDriverState * bs,QDict * options,int flags,Error ** errp)574 static int coroutine_mixed_fn bdrv_qed_open(BlockDriverState *bs, QDict *options,
575                                             int flags, Error **errp)
576 {
577     QEDOpenCo qoc = {
578         .bs = bs,
579         .options = options,
580         .flags = flags,
581         .errp = errp,
582         .ret = -EINPROGRESS
583     };
584     int ret;
585 
586     ret = bdrv_open_file_child(NULL, options, "file", bs, errp);
587     if (ret < 0) {
588         return ret;
589     }
590 
591     bdrv_qed_init_state(bs);
592     assert(!qemu_in_coroutine());
593     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
594     qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
595     BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
596 
597     return qoc.ret;
598 }
599 
bdrv_qed_refresh_limits(BlockDriverState * bs,Error ** errp)600 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
601 {
602     BDRVQEDState *s = bs->opaque;
603 
604     bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
605     bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
606 }
607 
608 /* We have nothing to do for QED reopen, stubs just return
609  * success */
bdrv_qed_reopen_prepare(BDRVReopenState * state,BlockReopenQueue * queue,Error ** errp)610 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
611                                    BlockReopenQueue *queue, Error **errp)
612 {
613     return 0;
614 }
615 
bdrv_qed_do_close(BlockDriverState * bs)616 static void GRAPH_RDLOCK bdrv_qed_do_close(BlockDriverState *bs)
617 {
618     BDRVQEDState *s = bs->opaque;
619 
620     bdrv_qed_detach_aio_context(bs);
621 
622     /* Ensure writes reach stable storage */
623     bdrv_flush(bs->file->bs);
624 
625     /* Clean shutdown, no check required on next open */
626     if (s->header.features & QED_F_NEED_CHECK) {
627         s->header.features &= ~QED_F_NEED_CHECK;
628         qed_write_header_sync(s);
629     }
630 
631     qed_free_l2_cache(&s->l2_cache);
632     qemu_vfree(s->l1_table);
633 }
634 
bdrv_qed_close(BlockDriverState * bs)635 static void GRAPH_UNLOCKED bdrv_qed_close(BlockDriverState *bs)
636 {
637     GLOBAL_STATE_CODE();
638     GRAPH_RDLOCK_GUARD_MAINLOOP();
639 
640     bdrv_qed_do_close(bs);
641 }
642 
643 static int coroutine_fn GRAPH_UNLOCKED
bdrv_qed_co_create(BlockdevCreateOptions * opts,Error ** errp)644 bdrv_qed_co_create(BlockdevCreateOptions *opts, Error **errp)
645 {
646     BlockdevCreateOptionsQed *qed_opts;
647     BlockBackend *blk = NULL;
648     BlockDriverState *bs = NULL;
649 
650     QEDHeader header;
651     QEDHeader le_header;
652     uint8_t *l1_table = NULL;
653     size_t l1_size;
654     int ret = 0;
655 
656     assert(opts->driver == BLOCKDEV_DRIVER_QED);
657     qed_opts = &opts->u.qed;
658 
659     /* Validate options and set default values */
660     if (!qed_opts->has_cluster_size) {
661         qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
662     }
663     if (!qed_opts->has_table_size) {
664         qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
665     }
666 
667     if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
668         error_setg(errp, "QED cluster size must be within range [%u, %u] "
669                          "and power of 2",
670                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
671         return -EINVAL;
672     }
673     if (!qed_is_table_size_valid(qed_opts->table_size)) {
674         error_setg(errp, "QED table size must be within range [%u, %u] "
675                          "and power of 2",
676                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
677         return -EINVAL;
678     }
679     if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
680                                  qed_opts->table_size))
681     {
682         error_setg(errp, "QED image size must be a non-zero multiple of "
683                          "cluster size and less than %" PRIu64 " bytes",
684                    qed_max_image_size(qed_opts->cluster_size,
685                                       qed_opts->table_size));
686         return -EINVAL;
687     }
688 
689     /* Create BlockBackend to write to the image */
690     bs = bdrv_co_open_blockdev_ref(qed_opts->file, errp);
691     if (bs == NULL) {
692         return -EIO;
693     }
694 
695     blk = blk_co_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
696                              errp);
697     if (!blk) {
698         ret = -EPERM;
699         goto out;
700     }
701     blk_set_allow_write_beyond_eof(blk, true);
702 
703     /* Prepare image format */
704     header = (QEDHeader) {
705         .magic = QED_MAGIC,
706         .cluster_size = qed_opts->cluster_size,
707         .table_size = qed_opts->table_size,
708         .header_size = 1,
709         .features = 0,
710         .compat_features = 0,
711         .l1_table_offset = qed_opts->cluster_size,
712         .image_size = qed_opts->size,
713     };
714 
715     l1_size = header.cluster_size * header.table_size;
716 
717     /*
718      * The QED format associates file length with allocation status,
719      * so a new file (which is empty) must have a length of 0.
720      */
721     ret = blk_co_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
722     if (ret < 0) {
723         goto out;
724     }
725 
726     if (qed_opts->backing_file) {
727         header.features |= QED_F_BACKING_FILE;
728         header.backing_filename_offset = sizeof(le_header);
729         header.backing_filename_size = strlen(qed_opts->backing_file);
730 
731         if (qed_opts->has_backing_fmt) {
732             const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
733             if (qed_fmt_is_raw(backing_fmt)) {
734                 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
735             }
736         }
737     }
738 
739     qed_header_cpu_to_le(&header, &le_header);
740     ret = blk_co_pwrite(blk, 0, sizeof(le_header), &le_header, 0);
741     if (ret < 0) {
742         goto out;
743     }
744     ret = blk_co_pwrite(blk, sizeof(le_header), header.backing_filename_size,
745                      qed_opts->backing_file, 0);
746     if (ret < 0) {
747         goto out;
748     }
749 
750     l1_table = g_malloc0(l1_size);
751     ret = blk_co_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0);
752     if (ret < 0) {
753         goto out;
754     }
755 
756     ret = 0; /* success */
757 out:
758     g_free(l1_table);
759     blk_co_unref(blk);
760     bdrv_co_unref(bs);
761     return ret;
762 }
763 
764 static int coroutine_fn GRAPH_UNLOCKED
bdrv_qed_co_create_opts(BlockDriver * drv,const char * filename,QemuOpts * opts,Error ** errp)765 bdrv_qed_co_create_opts(BlockDriver *drv, const char *filename,
766                         QemuOpts *opts, Error **errp)
767 {
768     BlockdevCreateOptions *create_options = NULL;
769     QDict *qdict;
770     Visitor *v;
771     BlockDriverState *bs = NULL;
772     int ret;
773 
774     static const QDictRenames opt_renames[] = {
775         { BLOCK_OPT_BACKING_FILE,       "backing-file" },
776         { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
777         { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
778         { BLOCK_OPT_TABLE_SIZE,         "table-size" },
779         { NULL, NULL },
780     };
781 
782     /* Parse options and convert legacy syntax */
783     qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
784 
785     if (!qdict_rename_keys(qdict, opt_renames, errp)) {
786         ret = -EINVAL;
787         goto fail;
788     }
789 
790     /* Create and open the file (protocol layer) */
791     ret = bdrv_co_create_file(filename, opts, errp);
792     if (ret < 0) {
793         goto fail;
794     }
795 
796     bs = bdrv_co_open(filename, NULL, NULL,
797                       BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
798     if (bs == NULL) {
799         ret = -EIO;
800         goto fail;
801     }
802 
803     /* Now get the QAPI type BlockdevCreateOptions */
804     qdict_put_str(qdict, "driver", "qed");
805     qdict_put_str(qdict, "file", bs->node_name);
806 
807     v = qobject_input_visitor_new_flat_confused(qdict, errp);
808     if (!v) {
809         ret = -EINVAL;
810         goto fail;
811     }
812 
813     visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
814     visit_free(v);
815     if (!create_options) {
816         ret = -EINVAL;
817         goto fail;
818     }
819 
820     /* Silently round up size */
821     assert(create_options->driver == BLOCKDEV_DRIVER_QED);
822     create_options->u.qed.size =
823         ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
824 
825     /* Create the qed image (format layer) */
826     ret = bdrv_qed_co_create(create_options, errp);
827 
828 fail:
829     qobject_unref(qdict);
830     bdrv_co_unref(bs);
831     qapi_free_BlockdevCreateOptions(create_options);
832     return ret;
833 }
834 
835 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_block_status(BlockDriverState * bs,bool want_zero,int64_t pos,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)836 bdrv_qed_co_block_status(BlockDriverState *bs, bool want_zero, int64_t pos,
837                          int64_t bytes, int64_t *pnum, int64_t *map,
838                          BlockDriverState **file)
839 {
840     BDRVQEDState *s = bs->opaque;
841     size_t len = MIN(bytes, SIZE_MAX);
842     int status;
843     QEDRequest request = { .l2_table = NULL };
844     uint64_t offset;
845     int ret;
846 
847     qemu_co_mutex_lock(&s->table_lock);
848     ret = qed_find_cluster(s, &request, pos, &len, &offset);
849 
850     *pnum = len;
851     switch (ret) {
852     case QED_CLUSTER_FOUND:
853         *map = offset | qed_offset_into_cluster(s, pos);
854         status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
855         *file = bs->file->bs;
856         break;
857     case QED_CLUSTER_ZERO:
858         status = BDRV_BLOCK_ZERO;
859         break;
860     case QED_CLUSTER_L2:
861     case QED_CLUSTER_L1:
862         status = 0;
863         break;
864     default:
865         assert(ret < 0);
866         status = ret;
867         break;
868     }
869 
870     qed_unref_l2_cache_entry(request.l2_table);
871     qemu_co_mutex_unlock(&s->table_lock);
872 
873     return status;
874 }
875 
acb_to_s(QEDAIOCB * acb)876 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
877 {
878     return acb->bs->opaque;
879 }
880 
881 /**
882  * Read from the backing file or zero-fill if no backing file
883  *
884  * @s:              QED state
885  * @pos:            Byte position in device
886  * @qiov:           Destination I/O vector
887  *
888  * This function reads qiov->size bytes starting at pos from the backing file.
889  * If there is no backing file then zeroes are read.
890  */
891 static int coroutine_fn GRAPH_RDLOCK
qed_read_backing_file(BDRVQEDState * s,uint64_t pos,QEMUIOVector * qiov)892 qed_read_backing_file(BDRVQEDState *s, uint64_t pos, QEMUIOVector *qiov)
893 {
894     if (s->bs->backing) {
895         BLKDBG_CO_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
896         return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
897     }
898     qemu_iovec_memset(qiov, 0, 0, qiov->size);
899     return 0;
900 }
901 
902 /**
903  * Copy data from backing file into the image
904  *
905  * @s:          QED state
906  * @pos:        Byte position in device
907  * @len:        Number of bytes
908  * @offset:     Byte offset in image file
909  */
910 static int coroutine_fn GRAPH_RDLOCK
qed_copy_from_backing_file(BDRVQEDState * s,uint64_t pos,uint64_t len,uint64_t offset)911 qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, uint64_t len,
912                            uint64_t offset)
913 {
914     QEMUIOVector qiov;
915     int ret;
916 
917     /* Skip copy entirely if there is no work to do */
918     if (len == 0) {
919         return 0;
920     }
921 
922     qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
923 
924     ret = qed_read_backing_file(s, pos, &qiov);
925 
926     if (ret) {
927         goto out;
928     }
929 
930     BLKDBG_CO_EVENT(s->bs->file, BLKDBG_COW_WRITE);
931     ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
932     if (ret < 0) {
933         goto out;
934     }
935     ret = 0;
936 out:
937     qemu_vfree(qemu_iovec_buf(&qiov));
938     return ret;
939 }
940 
941 /**
942  * Link one or more contiguous clusters into a table
943  *
944  * @s:              QED state
945  * @table:          L2 table
946  * @index:          First cluster index
947  * @n:              Number of contiguous clusters
948  * @cluster:        First cluster offset
949  *
950  * The cluster offset may be an allocated byte offset in the image file, the
951  * zero cluster marker, or the unallocated cluster marker.
952  *
953  * Called with table_lock held.
954  */
qed_update_l2_table(BDRVQEDState * s,QEDTable * table,int index,unsigned int n,uint64_t cluster)955 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
956                                              int index, unsigned int n,
957                                              uint64_t cluster)
958 {
959     int i;
960     for (i = index; i < index + n; i++) {
961         table->offsets[i] = cluster;
962         if (!qed_offset_is_unalloc_cluster(cluster) &&
963             !qed_offset_is_zero_cluster(cluster)) {
964             cluster += s->header.cluster_size;
965         }
966     }
967 }
968 
969 /* Called with table_lock held.  */
qed_aio_complete(QEDAIOCB * acb)970 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
971 {
972     BDRVQEDState *s = acb_to_s(acb);
973 
974     /* Free resources */
975     qemu_iovec_destroy(&acb->cur_qiov);
976     qed_unref_l2_cache_entry(acb->request.l2_table);
977 
978     /* Free the buffer we may have allocated for zero writes */
979     if (acb->flags & QED_AIOCB_ZERO) {
980         qemu_vfree(acb->qiov->iov[0].iov_base);
981         acb->qiov->iov[0].iov_base = NULL;
982     }
983 
984     /* Start next allocating write request waiting behind this one.  Note that
985      * requests enqueue themselves when they first hit an unallocated cluster
986      * but they wait until the entire request is finished before waking up the
987      * next request in the queue.  This ensures that we don't cycle through
988      * requests multiple times but rather finish one at a time completely.
989      */
990     if (acb == s->allocating_acb) {
991         s->allocating_acb = NULL;
992         if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
993             qemu_co_queue_next(&s->allocating_write_reqs);
994         } else if (s->header.features & QED_F_NEED_CHECK) {
995             qed_start_need_check_timer(s);
996         }
997     }
998 }
999 
1000 /**
1001  * Update L1 table with new L2 table offset and write it out
1002  *
1003  * Called with table_lock held.
1004  */
qed_aio_write_l1_update(QEDAIOCB * acb)1005 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_l1_update(QEDAIOCB *acb)
1006 {
1007     BDRVQEDState *s = acb_to_s(acb);
1008     CachedL2Table *l2_table = acb->request.l2_table;
1009     uint64_t l2_offset = l2_table->offset;
1010     int index, ret;
1011 
1012     index = qed_l1_index(s, acb->cur_pos);
1013     s->l1_table->offsets[index] = l2_table->offset;
1014 
1015     ret = qed_write_l1_table(s, index, 1);
1016 
1017     /* Commit the current L2 table to the cache */
1018     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1019 
1020     /* This is guaranteed to succeed because we just committed the entry to the
1021      * cache.
1022      */
1023     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1024     assert(acb->request.l2_table != NULL);
1025 
1026     return ret;
1027 }
1028 
1029 
1030 /**
1031  * Update L2 table with new cluster offsets and write them out
1032  *
1033  * Called with table_lock held.
1034  */
1035 static int coroutine_fn GRAPH_RDLOCK
qed_aio_write_l2_update(QEDAIOCB * acb,uint64_t offset)1036 qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1037 {
1038     BDRVQEDState *s = acb_to_s(acb);
1039     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1040     int index, ret;
1041 
1042     if (need_alloc) {
1043         qed_unref_l2_cache_entry(acb->request.l2_table);
1044         acb->request.l2_table = qed_new_l2_table(s);
1045     }
1046 
1047     index = qed_l2_index(s, acb->cur_pos);
1048     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1049                          offset);
1050 
1051     if (need_alloc) {
1052         /* Write out the whole new L2 table */
1053         ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1054         if (ret) {
1055             return ret;
1056         }
1057         return qed_aio_write_l1_update(acb);
1058     } else {
1059         /* Write out only the updated part of the L2 table */
1060         ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1061                                  false);
1062         if (ret) {
1063             return ret;
1064         }
1065     }
1066     return 0;
1067 }
1068 
1069 /**
1070  * Write data to the image file
1071  *
1072  * Called with table_lock *not* held.
1073  */
qed_aio_write_main(QEDAIOCB * acb)1074 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_main(QEDAIOCB *acb)
1075 {
1076     BDRVQEDState *s = acb_to_s(acb);
1077     uint64_t offset = acb->cur_cluster +
1078                       qed_offset_into_cluster(s, acb->cur_pos);
1079 
1080     trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1081 
1082     BLKDBG_CO_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1083     return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1084                            &acb->cur_qiov, 0);
1085 }
1086 
1087 /**
1088  * Populate untouched regions of new data cluster
1089  *
1090  * Called with table_lock held.
1091  */
qed_aio_write_cow(QEDAIOCB * acb)1092 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_cow(QEDAIOCB *acb)
1093 {
1094     BDRVQEDState *s = acb_to_s(acb);
1095     uint64_t start, len, offset;
1096     int ret;
1097 
1098     qemu_co_mutex_unlock(&s->table_lock);
1099 
1100     /* Populate front untouched region of new data cluster */
1101     start = qed_start_of_cluster(s, acb->cur_pos);
1102     len = qed_offset_into_cluster(s, acb->cur_pos);
1103 
1104     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1105     ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1106     if (ret < 0) {
1107         goto out;
1108     }
1109 
1110     /* Populate back untouched region of new data cluster */
1111     start = acb->cur_pos + acb->cur_qiov.size;
1112     len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1113     offset = acb->cur_cluster +
1114              qed_offset_into_cluster(s, acb->cur_pos) +
1115              acb->cur_qiov.size;
1116 
1117     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1118     ret = qed_copy_from_backing_file(s, start, len, offset);
1119     if (ret < 0) {
1120         goto out;
1121     }
1122 
1123     ret = qed_aio_write_main(acb);
1124     if (ret < 0) {
1125         goto out;
1126     }
1127 
1128     if (s->bs->backing) {
1129         /*
1130          * Flush new data clusters before updating the L2 table
1131          *
1132          * This flush is necessary when a backing file is in use.  A crash
1133          * during an allocating write could result in empty clusters in the
1134          * image.  If the write only touched a subregion of the cluster,
1135          * then backing image sectors have been lost in the untouched
1136          * region.  The solution is to flush after writing a new data
1137          * cluster and before updating the L2 table.
1138          */
1139         ret = bdrv_co_flush(s->bs->file->bs);
1140     }
1141 
1142 out:
1143     qemu_co_mutex_lock(&s->table_lock);
1144     return ret;
1145 }
1146 
1147 /**
1148  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1149  */
qed_should_set_need_check(BDRVQEDState * s)1150 static bool GRAPH_RDLOCK qed_should_set_need_check(BDRVQEDState *s)
1151 {
1152     /* The flush before L2 update path ensures consistency */
1153     if (s->bs->backing) {
1154         return false;
1155     }
1156 
1157     return !(s->header.features & QED_F_NEED_CHECK);
1158 }
1159 
1160 /**
1161  * Write new data cluster
1162  *
1163  * @acb:        Write request
1164  * @len:        Length in bytes
1165  *
1166  * This path is taken when writing to previously unallocated clusters.
1167  *
1168  * Called with table_lock held.
1169  */
1170 static int coroutine_fn GRAPH_RDLOCK
qed_aio_write_alloc(QEDAIOCB * acb,size_t len)1171 qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1172 {
1173     BDRVQEDState *s = acb_to_s(acb);
1174     int ret;
1175 
1176     /* Cancel timer when the first allocating request comes in */
1177     if (s->allocating_acb == NULL) {
1178         qed_cancel_need_check_timer(s);
1179     }
1180 
1181     /* Freeze this request if another allocating write is in progress */
1182     if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1183         if (s->allocating_acb != NULL) {
1184             qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1185             assert(s->allocating_acb == NULL);
1186         }
1187         s->allocating_acb = acb;
1188         return -EAGAIN; /* start over with looking up table entries */
1189     }
1190 
1191     acb->cur_nclusters = qed_bytes_to_clusters(s,
1192             qed_offset_into_cluster(s, acb->cur_pos) + len);
1193     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1194 
1195     if (acb->flags & QED_AIOCB_ZERO) {
1196         /* Skip ahead if the clusters are already zero */
1197         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1198             return 0;
1199         }
1200         acb->cur_cluster = 1;
1201     } else {
1202         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1203     }
1204 
1205     if (qed_should_set_need_check(s)) {
1206         s->header.features |= QED_F_NEED_CHECK;
1207         ret = qed_write_header(s);
1208         if (ret < 0) {
1209             return ret;
1210         }
1211     }
1212 
1213     if (!(acb->flags & QED_AIOCB_ZERO)) {
1214         ret = qed_aio_write_cow(acb);
1215         if (ret < 0) {
1216             return ret;
1217         }
1218     }
1219 
1220     return qed_aio_write_l2_update(acb, acb->cur_cluster);
1221 }
1222 
1223 /**
1224  * Write data cluster in place
1225  *
1226  * @acb:        Write request
1227  * @offset:     Cluster offset in bytes
1228  * @len:        Length in bytes
1229  *
1230  * This path is taken when writing to already allocated clusters.
1231  *
1232  * Called with table_lock held.
1233  */
1234 static int coroutine_fn GRAPH_RDLOCK
qed_aio_write_inplace(QEDAIOCB * acb,uint64_t offset,size_t len)1235 qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1236 {
1237     BDRVQEDState *s = acb_to_s(acb);
1238     int r;
1239 
1240     qemu_co_mutex_unlock(&s->table_lock);
1241 
1242     /* Allocate buffer for zero writes */
1243     if (acb->flags & QED_AIOCB_ZERO) {
1244         struct iovec *iov = acb->qiov->iov;
1245 
1246         if (!iov->iov_base) {
1247             iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1248             if (iov->iov_base == NULL) {
1249                 r = -ENOMEM;
1250                 goto out;
1251             }
1252             memset(iov->iov_base, 0, iov->iov_len);
1253         }
1254     }
1255 
1256     /* Calculate the I/O vector */
1257     acb->cur_cluster = offset;
1258     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1259 
1260     /* Do the actual write.  */
1261     r = qed_aio_write_main(acb);
1262 out:
1263     qemu_co_mutex_lock(&s->table_lock);
1264     return r;
1265 }
1266 
1267 /**
1268  * Write data cluster
1269  *
1270  * @opaque:     Write request
1271  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1272  * @offset:     Cluster offset in bytes
1273  * @len:        Length in bytes
1274  *
1275  * Called with table_lock held.
1276  */
1277 static int coroutine_fn GRAPH_RDLOCK
qed_aio_write_data(void * opaque,int ret,uint64_t offset,size_t len)1278 qed_aio_write_data(void *opaque, int ret, uint64_t offset, size_t len)
1279 {
1280     QEDAIOCB *acb = opaque;
1281 
1282     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1283 
1284     acb->find_cluster_ret = ret;
1285 
1286     switch (ret) {
1287     case QED_CLUSTER_FOUND:
1288         return qed_aio_write_inplace(acb, offset, len);
1289 
1290     case QED_CLUSTER_L2:
1291     case QED_CLUSTER_L1:
1292     case QED_CLUSTER_ZERO:
1293         return qed_aio_write_alloc(acb, len);
1294 
1295     default:
1296         g_assert_not_reached();
1297     }
1298 }
1299 
1300 /**
1301  * Read data cluster
1302  *
1303  * @opaque:     Read request
1304  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1305  * @offset:     Cluster offset in bytes
1306  * @len:        Length in bytes
1307  *
1308  * Called with table_lock held.
1309  */
1310 static int coroutine_fn GRAPH_RDLOCK
qed_aio_read_data(void * opaque,int ret,uint64_t offset,size_t len)1311 qed_aio_read_data(void *opaque, int ret, uint64_t offset, size_t len)
1312 {
1313     QEDAIOCB *acb = opaque;
1314     BDRVQEDState *s = acb_to_s(acb);
1315     BlockDriverState *bs = acb->bs;
1316     int r;
1317 
1318     qemu_co_mutex_unlock(&s->table_lock);
1319 
1320     /* Adjust offset into cluster */
1321     offset += qed_offset_into_cluster(s, acb->cur_pos);
1322 
1323     trace_qed_aio_read_data(s, acb, ret, offset, len);
1324 
1325     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1326 
1327     /* Handle zero cluster and backing file reads, otherwise read
1328      * data cluster directly.
1329      */
1330     if (ret == QED_CLUSTER_ZERO) {
1331         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1332         r = 0;
1333     } else if (ret != QED_CLUSTER_FOUND) {
1334         r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1335     } else {
1336         BLKDBG_CO_EVENT(bs->file, BLKDBG_READ_AIO);
1337         r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1338                            &acb->cur_qiov, 0);
1339     }
1340 
1341     qemu_co_mutex_lock(&s->table_lock);
1342     return r;
1343 }
1344 
1345 /**
1346  * Begin next I/O or complete the request
1347  */
qed_aio_next_io(QEDAIOCB * acb)1348 static int coroutine_fn GRAPH_RDLOCK qed_aio_next_io(QEDAIOCB *acb)
1349 {
1350     BDRVQEDState *s = acb_to_s(acb);
1351     uint64_t offset;
1352     size_t len;
1353     int ret;
1354 
1355     qemu_co_mutex_lock(&s->table_lock);
1356     while (1) {
1357         trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1358 
1359         acb->qiov_offset += acb->cur_qiov.size;
1360         acb->cur_pos += acb->cur_qiov.size;
1361         qemu_iovec_reset(&acb->cur_qiov);
1362 
1363         /* Complete request */
1364         if (acb->cur_pos >= acb->end_pos) {
1365             ret = 0;
1366             break;
1367         }
1368 
1369         /* Find next cluster and start I/O */
1370         len = acb->end_pos - acb->cur_pos;
1371         ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1372         if (ret < 0) {
1373             break;
1374         }
1375 
1376         if (acb->flags & QED_AIOCB_WRITE) {
1377             ret = qed_aio_write_data(acb, ret, offset, len);
1378         } else {
1379             ret = qed_aio_read_data(acb, ret, offset, len);
1380         }
1381 
1382         if (ret < 0 && ret != -EAGAIN) {
1383             break;
1384         }
1385     }
1386 
1387     trace_qed_aio_complete(s, acb, ret);
1388     qed_aio_complete(acb);
1389     qemu_co_mutex_unlock(&s->table_lock);
1390     return ret;
1391 }
1392 
1393 static int coroutine_fn GRAPH_RDLOCK
qed_co_request(BlockDriverState * bs,int64_t sector_num,QEMUIOVector * qiov,int nb_sectors,int flags)1394 qed_co_request(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov,
1395                int nb_sectors, int flags)
1396 {
1397     QEDAIOCB acb = {
1398         .bs         = bs,
1399         .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1400         .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1401         .qiov       = qiov,
1402         .flags      = flags,
1403     };
1404     qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1405 
1406     trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1407 
1408     /* Start request */
1409     return qed_aio_next_io(&acb);
1410 }
1411 
1412 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_readv(BlockDriverState * bs,int64_t sector_num,int nb_sectors,QEMUIOVector * qiov)1413 bdrv_qed_co_readv(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1414                   QEMUIOVector *qiov)
1415 {
1416     return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1417 }
1418 
1419 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_writev(BlockDriverState * bs,int64_t sector_num,int nb_sectors,QEMUIOVector * qiov,int flags)1420 bdrv_qed_co_writev(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1421                    QEMUIOVector *qiov, int flags)
1422 {
1423     return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1424 }
1425 
1426 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_pwrite_zeroes(BlockDriverState * bs,int64_t offset,int64_t bytes,BdrvRequestFlags flags)1427 bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1428                           BdrvRequestFlags flags)
1429 {
1430     BDRVQEDState *s = bs->opaque;
1431 
1432     /*
1433      * Zero writes start without an I/O buffer.  If a buffer becomes necessary
1434      * then it will be allocated during request processing.
1435      */
1436     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1437 
1438     /*
1439      * QED is not prepared for 63bit write-zero requests, so rely on
1440      * max_pwrite_zeroes.
1441      */
1442     assert(bytes <= INT_MAX);
1443 
1444     /* Fall back if the request is not aligned */
1445     if (qed_offset_into_cluster(s, offset) ||
1446         qed_offset_into_cluster(s, bytes)) {
1447         return -ENOTSUP;
1448     }
1449 
1450     return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1451                           bytes >> BDRV_SECTOR_BITS,
1452                           QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1453 }
1454 
1455 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_truncate(BlockDriverState * bs,int64_t offset,bool exact,PreallocMode prealloc,BdrvRequestFlags flags,Error ** errp)1456 bdrv_qed_co_truncate(BlockDriverState *bs, int64_t offset, bool exact,
1457                      PreallocMode prealloc, BdrvRequestFlags flags,
1458                      Error **errp)
1459 {
1460     BDRVQEDState *s = bs->opaque;
1461     uint64_t old_image_size;
1462     int ret;
1463 
1464     if (prealloc != PREALLOC_MODE_OFF) {
1465         error_setg(errp, "Unsupported preallocation mode '%s'",
1466                    PreallocMode_str(prealloc));
1467         return -ENOTSUP;
1468     }
1469 
1470     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1471                                  s->header.table_size)) {
1472         error_setg(errp, "Invalid image size specified");
1473         return -EINVAL;
1474     }
1475 
1476     if ((uint64_t)offset < s->header.image_size) {
1477         error_setg(errp, "Shrinking images is currently not supported");
1478         return -ENOTSUP;
1479     }
1480 
1481     old_image_size = s->header.image_size;
1482     s->header.image_size = offset;
1483     ret = qed_write_header_sync(s);
1484     if (ret < 0) {
1485         s->header.image_size = old_image_size;
1486         error_setg_errno(errp, -ret, "Failed to update the image size");
1487     }
1488     return ret;
1489 }
1490 
bdrv_qed_co_getlength(BlockDriverState * bs)1491 static int64_t coroutine_fn bdrv_qed_co_getlength(BlockDriverState *bs)
1492 {
1493     BDRVQEDState *s = bs->opaque;
1494     return s->header.image_size;
1495 }
1496 
1497 static int coroutine_fn
bdrv_qed_co_get_info(BlockDriverState * bs,BlockDriverInfo * bdi)1498 bdrv_qed_co_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1499 {
1500     BDRVQEDState *s = bs->opaque;
1501 
1502     memset(bdi, 0, sizeof(*bdi));
1503     bdi->cluster_size = s->header.cluster_size;
1504     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1505     return 0;
1506 }
1507 
1508 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_change_backing_file(BlockDriverState * bs,const char * backing_file,const char * backing_fmt)1509 bdrv_qed_co_change_backing_file(BlockDriverState *bs, const char *backing_file,
1510                                 const char *backing_fmt)
1511 {
1512     BDRVQEDState *s = bs->opaque;
1513     QEDHeader new_header, le_header;
1514     void *buffer;
1515     size_t buffer_len, backing_file_len;
1516     int ret;
1517 
1518     /* Refuse to set backing filename if unknown compat feature bits are
1519      * active.  If the image uses an unknown compat feature then we may not
1520      * know the layout of data following the header structure and cannot safely
1521      * add a new string.
1522      */
1523     if (backing_file && (s->header.compat_features &
1524                          ~QED_COMPAT_FEATURE_MASK)) {
1525         return -ENOTSUP;
1526     }
1527 
1528     memcpy(&new_header, &s->header, sizeof(new_header));
1529 
1530     new_header.features &= ~(QED_F_BACKING_FILE |
1531                              QED_F_BACKING_FORMAT_NO_PROBE);
1532 
1533     /* Adjust feature flags */
1534     if (backing_file) {
1535         new_header.features |= QED_F_BACKING_FILE;
1536 
1537         if (qed_fmt_is_raw(backing_fmt)) {
1538             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1539         }
1540     }
1541 
1542     /* Calculate new header size */
1543     backing_file_len = 0;
1544 
1545     if (backing_file) {
1546         backing_file_len = strlen(backing_file);
1547     }
1548 
1549     buffer_len = sizeof(new_header);
1550     new_header.backing_filename_offset = buffer_len;
1551     new_header.backing_filename_size = backing_file_len;
1552     buffer_len += backing_file_len;
1553 
1554     /* Make sure we can rewrite header without failing */
1555     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1556         return -ENOSPC;
1557     }
1558 
1559     /* Prepare new header */
1560     buffer = g_malloc(buffer_len);
1561 
1562     qed_header_cpu_to_le(&new_header, &le_header);
1563     memcpy(buffer, &le_header, sizeof(le_header));
1564     buffer_len = sizeof(le_header);
1565 
1566     if (backing_file) {
1567         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1568         buffer_len += backing_file_len;
1569     }
1570 
1571     /* Write new header */
1572     ret = bdrv_co_pwrite_sync(bs->file, 0, buffer_len, buffer, 0);
1573     g_free(buffer);
1574     if (ret == 0) {
1575         memcpy(&s->header, &new_header, sizeof(new_header));
1576     }
1577     return ret;
1578 }
1579 
1580 static void coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_invalidate_cache(BlockDriverState * bs,Error ** errp)1581 bdrv_qed_co_invalidate_cache(BlockDriverState *bs, Error **errp)
1582 {
1583     ERRP_GUARD();
1584     BDRVQEDState *s = bs->opaque;
1585     int ret;
1586 
1587     bdrv_qed_do_close(bs);
1588 
1589     bdrv_qed_init_state(bs);
1590     qemu_co_mutex_lock(&s->table_lock);
1591     ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1592     qemu_co_mutex_unlock(&s->table_lock);
1593     if (ret < 0) {
1594         error_prepend(errp, "Could not reopen qed layer: ");
1595     }
1596 }
1597 
1598 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_check(BlockDriverState * bs,BdrvCheckResult * result,BdrvCheckMode fix)1599 bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result,
1600                   BdrvCheckMode fix)
1601 {
1602     BDRVQEDState *s = bs->opaque;
1603     int ret;
1604 
1605     qemu_co_mutex_lock(&s->table_lock);
1606     ret = qed_check(s, result, !!fix);
1607     qemu_co_mutex_unlock(&s->table_lock);
1608 
1609     return ret;
1610 }
1611 
1612 static QemuOptsList qed_create_opts = {
1613     .name = "qed-create-opts",
1614     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1615     .desc = {
1616         {
1617             .name = BLOCK_OPT_SIZE,
1618             .type = QEMU_OPT_SIZE,
1619             .help = "Virtual disk size"
1620         },
1621         {
1622             .name = BLOCK_OPT_BACKING_FILE,
1623             .type = QEMU_OPT_STRING,
1624             .help = "File name of a base image"
1625         },
1626         {
1627             .name = BLOCK_OPT_BACKING_FMT,
1628             .type = QEMU_OPT_STRING,
1629             .help = "Image format of the base image"
1630         },
1631         {
1632             .name = BLOCK_OPT_CLUSTER_SIZE,
1633             .type = QEMU_OPT_SIZE,
1634             .help = "Cluster size (in bytes)",
1635             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1636         },
1637         {
1638             .name = BLOCK_OPT_TABLE_SIZE,
1639             .type = QEMU_OPT_SIZE,
1640             .help = "L1/L2 table size (in clusters)"
1641         },
1642         { /* end of list */ }
1643     }
1644 };
1645 
1646 static BlockDriver bdrv_qed = {
1647     .format_name                    = "qed",
1648     .instance_size                  = sizeof(BDRVQEDState),
1649     .create_opts                    = &qed_create_opts,
1650     .is_format                      = true,
1651     .supports_backing               = true,
1652 
1653     .bdrv_probe                     = bdrv_qed_probe,
1654     .bdrv_open                      = bdrv_qed_open,
1655     .bdrv_close                     = bdrv_qed_close,
1656     .bdrv_reopen_prepare            = bdrv_qed_reopen_prepare,
1657     .bdrv_child_perm                = bdrv_default_perms,
1658     .bdrv_co_create                 = bdrv_qed_co_create,
1659     .bdrv_co_create_opts            = bdrv_qed_co_create_opts,
1660     .bdrv_has_zero_init             = bdrv_has_zero_init_1,
1661     .bdrv_co_block_status           = bdrv_qed_co_block_status,
1662     .bdrv_co_readv                  = bdrv_qed_co_readv,
1663     .bdrv_co_writev                 = bdrv_qed_co_writev,
1664     .bdrv_co_pwrite_zeroes          = bdrv_qed_co_pwrite_zeroes,
1665     .bdrv_co_truncate               = bdrv_qed_co_truncate,
1666     .bdrv_co_getlength              = bdrv_qed_co_getlength,
1667     .bdrv_co_get_info               = bdrv_qed_co_get_info,
1668     .bdrv_refresh_limits            = bdrv_qed_refresh_limits,
1669     .bdrv_co_change_backing_file    = bdrv_qed_co_change_backing_file,
1670     .bdrv_co_invalidate_cache       = bdrv_qed_co_invalidate_cache,
1671     .bdrv_co_check                  = bdrv_qed_co_check,
1672     .bdrv_detach_aio_context        = bdrv_qed_detach_aio_context,
1673     .bdrv_attach_aio_context        = bdrv_qed_attach_aio_context,
1674     .bdrv_drain_begin               = bdrv_qed_drain_begin,
1675 };
1676 
bdrv_qed_init(void)1677 static void bdrv_qed_init(void)
1678 {
1679     bdrv_register(&bdrv_qed);
1680 }
1681 
1682 block_init(bdrv_qed_init);
1683