xref: /openbmc/linux/drivers/net/ethernet/xilinx/xilinx_axienet_main.c (revision aad29a73199b7fbccfbabea3f1ee627ad1924f52)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Xilinx Axi Ethernet device driver
4  *
5  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
6  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
7  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9  * Copyright (c) 2010 - 2011 PetaLogix
10  * Copyright (c) 2019 - 2022 Calian Advanced Technologies
11  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12  *
13  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14  * and Spartan6.
15  *
16  * TODO:
17  *  - Add Axi Fifo support.
18  *  - Factor out Axi DMA code into separate driver.
19  *  - Test and fix basic multicast filtering.
20  *  - Add support for extended multicast filtering.
21  *  - Test basic VLAN support.
22  *  - Add support for extended VLAN support.
23  */
24 
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/module.h>
29 #include <linux/netdevice.h>
30 #include <linux/of.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_address.h>
35 #include <linux/platform_device.h>
36 #include <linux/skbuff.h>
37 #include <linux/math64.h>
38 #include <linux/phy.h>
39 #include <linux/mii.h>
40 #include <linux/ethtool.h>
41 
42 #include "xilinx_axienet.h"
43 
44 /* Descriptors defines for Tx and Rx DMA */
45 #define TX_BD_NUM_DEFAULT		128
46 #define RX_BD_NUM_DEFAULT		1024
47 #define TX_BD_NUM_MIN			(MAX_SKB_FRAGS + 1)
48 #define TX_BD_NUM_MAX			4096
49 #define RX_BD_NUM_MAX			4096
50 
51 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
52 #define DRIVER_NAME		"xaxienet"
53 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
54 #define DRIVER_VERSION		"1.00a"
55 
56 #define AXIENET_REGS_N		40
57 
58 /* Match table for of_platform binding */
59 static const struct of_device_id axienet_of_match[] = {
60 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
61 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
62 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
63 	{},
64 };
65 
66 MODULE_DEVICE_TABLE(of, axienet_of_match);
67 
68 /* Option table for setting up Axi Ethernet hardware options */
69 static struct axienet_option axienet_options[] = {
70 	/* Turn on jumbo packet support for both Rx and Tx */
71 	{
72 		.opt = XAE_OPTION_JUMBO,
73 		.reg = XAE_TC_OFFSET,
74 		.m_or = XAE_TC_JUM_MASK,
75 	}, {
76 		.opt = XAE_OPTION_JUMBO,
77 		.reg = XAE_RCW1_OFFSET,
78 		.m_or = XAE_RCW1_JUM_MASK,
79 	}, { /* Turn on VLAN packet support for both Rx and Tx */
80 		.opt = XAE_OPTION_VLAN,
81 		.reg = XAE_TC_OFFSET,
82 		.m_or = XAE_TC_VLAN_MASK,
83 	}, {
84 		.opt = XAE_OPTION_VLAN,
85 		.reg = XAE_RCW1_OFFSET,
86 		.m_or = XAE_RCW1_VLAN_MASK,
87 	}, { /* Turn on FCS stripping on receive packets */
88 		.opt = XAE_OPTION_FCS_STRIP,
89 		.reg = XAE_RCW1_OFFSET,
90 		.m_or = XAE_RCW1_FCS_MASK,
91 	}, { /* Turn on FCS insertion on transmit packets */
92 		.opt = XAE_OPTION_FCS_INSERT,
93 		.reg = XAE_TC_OFFSET,
94 		.m_or = XAE_TC_FCS_MASK,
95 	}, { /* Turn off length/type field checking on receive packets */
96 		.opt = XAE_OPTION_LENTYPE_ERR,
97 		.reg = XAE_RCW1_OFFSET,
98 		.m_or = XAE_RCW1_LT_DIS_MASK,
99 	}, { /* Turn on Rx flow control */
100 		.opt = XAE_OPTION_FLOW_CONTROL,
101 		.reg = XAE_FCC_OFFSET,
102 		.m_or = XAE_FCC_FCRX_MASK,
103 	}, { /* Turn on Tx flow control */
104 		.opt = XAE_OPTION_FLOW_CONTROL,
105 		.reg = XAE_FCC_OFFSET,
106 		.m_or = XAE_FCC_FCTX_MASK,
107 	}, { /* Turn on promiscuous frame filtering */
108 		.opt = XAE_OPTION_PROMISC,
109 		.reg = XAE_FMI_OFFSET,
110 		.m_or = XAE_FMI_PM_MASK,
111 	}, { /* Enable transmitter */
112 		.opt = XAE_OPTION_TXEN,
113 		.reg = XAE_TC_OFFSET,
114 		.m_or = XAE_TC_TX_MASK,
115 	}, { /* Enable receiver */
116 		.opt = XAE_OPTION_RXEN,
117 		.reg = XAE_RCW1_OFFSET,
118 		.m_or = XAE_RCW1_RX_MASK,
119 	},
120 	{}
121 };
122 
123 /**
124  * axienet_dma_in32 - Memory mapped Axi DMA register read
125  * @lp:		Pointer to axienet local structure
126  * @reg:	Address offset from the base address of the Axi DMA core
127  *
128  * Return: The contents of the Axi DMA register
129  *
130  * This function returns the contents of the corresponding Axi DMA register.
131  */
axienet_dma_in32(struct axienet_local * lp,off_t reg)132 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
133 {
134 	return ioread32(lp->dma_regs + reg);
135 }
136 
desc_set_phys_addr(struct axienet_local * lp,dma_addr_t addr,struct axidma_bd * desc)137 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
138 			       struct axidma_bd *desc)
139 {
140 	desc->phys = lower_32_bits(addr);
141 	if (lp->features & XAE_FEATURE_DMA_64BIT)
142 		desc->phys_msb = upper_32_bits(addr);
143 }
144 
desc_get_phys_addr(struct axienet_local * lp,struct axidma_bd * desc)145 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
146 				     struct axidma_bd *desc)
147 {
148 	dma_addr_t ret = desc->phys;
149 
150 	if (lp->features & XAE_FEATURE_DMA_64BIT)
151 		ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
152 
153 	return ret;
154 }
155 
156 /**
157  * axienet_dma_bd_release - Release buffer descriptor rings
158  * @ndev:	Pointer to the net_device structure
159  *
160  * This function is used to release the descriptors allocated in
161  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
162  * driver stop api is called.
163  */
axienet_dma_bd_release(struct net_device * ndev)164 static void axienet_dma_bd_release(struct net_device *ndev)
165 {
166 	int i;
167 	struct axienet_local *lp = netdev_priv(ndev);
168 
169 	/* If we end up here, tx_bd_v must have been DMA allocated. */
170 	dma_free_coherent(lp->dev,
171 			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
172 			  lp->tx_bd_v,
173 			  lp->tx_bd_p);
174 
175 	if (!lp->rx_bd_v)
176 		return;
177 
178 	for (i = 0; i < lp->rx_bd_num; i++) {
179 		dma_addr_t phys;
180 
181 		/* A NULL skb means this descriptor has not been initialised
182 		 * at all.
183 		 */
184 		if (!lp->rx_bd_v[i].skb)
185 			break;
186 
187 		dev_kfree_skb(lp->rx_bd_v[i].skb);
188 
189 		/* For each descriptor, we programmed cntrl with the (non-zero)
190 		 * descriptor size, after it had been successfully allocated.
191 		 * So a non-zero value in there means we need to unmap it.
192 		 */
193 		if (lp->rx_bd_v[i].cntrl) {
194 			phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
195 			dma_unmap_single(lp->dev, phys,
196 					 lp->max_frm_size, DMA_FROM_DEVICE);
197 		}
198 	}
199 
200 	dma_free_coherent(lp->dev,
201 			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
202 			  lp->rx_bd_v,
203 			  lp->rx_bd_p);
204 }
205 
206 /**
207  * axienet_usec_to_timer - Calculate IRQ delay timer value
208  * @lp:		Pointer to the axienet_local structure
209  * @coalesce_usec: Microseconds to convert into timer value
210  */
axienet_usec_to_timer(struct axienet_local * lp,u32 coalesce_usec)211 static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
212 {
213 	u32 result;
214 	u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
215 
216 	if (lp->axi_clk)
217 		clk_rate = clk_get_rate(lp->axi_clk);
218 
219 	/* 1 Timeout Interval = 125 * (clock period of SG clock) */
220 	result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
221 					 (u64)125000000);
222 	if (result > 255)
223 		result = 255;
224 
225 	return result;
226 }
227 
228 /**
229  * axienet_dma_start - Set up DMA registers and start DMA operation
230  * @lp:		Pointer to the axienet_local structure
231  */
axienet_dma_start(struct axienet_local * lp)232 static void axienet_dma_start(struct axienet_local *lp)
233 {
234 	/* Start updating the Rx channel control register */
235 	lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
236 			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
237 	/* Only set interrupt delay timer if not generating an interrupt on
238 	 * the first RX packet. Otherwise leave at 0 to disable delay interrupt.
239 	 */
240 	if (lp->coalesce_count_rx > 1)
241 		lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
242 					<< XAXIDMA_DELAY_SHIFT) |
243 				 XAXIDMA_IRQ_DELAY_MASK;
244 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
245 
246 	/* Start updating the Tx channel control register */
247 	lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
248 			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
249 	/* Only set interrupt delay timer if not generating an interrupt on
250 	 * the first TX packet. Otherwise leave at 0 to disable delay interrupt.
251 	 */
252 	if (lp->coalesce_count_tx > 1)
253 		lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
254 					<< XAXIDMA_DELAY_SHIFT) |
255 				 XAXIDMA_IRQ_DELAY_MASK;
256 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
257 
258 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
259 	 * halted state. This will make the Rx side ready for reception.
260 	 */
261 	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
262 	lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
263 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
264 	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
265 			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
266 
267 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
268 	 * Tx channel is now ready to run. But only after we write to the
269 	 * tail pointer register that the Tx channel will start transmitting.
270 	 */
271 	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
272 	lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
273 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
274 }
275 
276 /**
277  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
278  * @ndev:	Pointer to the net_device structure
279  *
280  * Return: 0, on success -ENOMEM, on failure
281  *
282  * This function is called to initialize the Rx and Tx DMA descriptor
283  * rings. This initializes the descriptors with required default values
284  * and is called when Axi Ethernet driver reset is called.
285  */
axienet_dma_bd_init(struct net_device * ndev)286 static int axienet_dma_bd_init(struct net_device *ndev)
287 {
288 	int i;
289 	struct sk_buff *skb;
290 	struct axienet_local *lp = netdev_priv(ndev);
291 
292 	/* Reset the indexes which are used for accessing the BDs */
293 	lp->tx_bd_ci = 0;
294 	lp->tx_bd_tail = 0;
295 	lp->rx_bd_ci = 0;
296 
297 	/* Allocate the Tx and Rx buffer descriptors. */
298 	lp->tx_bd_v = dma_alloc_coherent(lp->dev,
299 					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
300 					 &lp->tx_bd_p, GFP_KERNEL);
301 	if (!lp->tx_bd_v)
302 		return -ENOMEM;
303 
304 	lp->rx_bd_v = dma_alloc_coherent(lp->dev,
305 					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
306 					 &lp->rx_bd_p, GFP_KERNEL);
307 	if (!lp->rx_bd_v)
308 		goto out;
309 
310 	for (i = 0; i < lp->tx_bd_num; i++) {
311 		dma_addr_t addr = lp->tx_bd_p +
312 				  sizeof(*lp->tx_bd_v) *
313 				  ((i + 1) % lp->tx_bd_num);
314 
315 		lp->tx_bd_v[i].next = lower_32_bits(addr);
316 		if (lp->features & XAE_FEATURE_DMA_64BIT)
317 			lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
318 	}
319 
320 	for (i = 0; i < lp->rx_bd_num; i++) {
321 		dma_addr_t addr;
322 
323 		addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
324 			((i + 1) % lp->rx_bd_num);
325 		lp->rx_bd_v[i].next = lower_32_bits(addr);
326 		if (lp->features & XAE_FEATURE_DMA_64BIT)
327 			lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
328 
329 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
330 		if (!skb)
331 			goto out;
332 
333 		lp->rx_bd_v[i].skb = skb;
334 		addr = dma_map_single(lp->dev, skb->data,
335 				      lp->max_frm_size, DMA_FROM_DEVICE);
336 		if (dma_mapping_error(lp->dev, addr)) {
337 			netdev_err(ndev, "DMA mapping error\n");
338 			goto out;
339 		}
340 		desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
341 
342 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
343 	}
344 
345 	axienet_dma_start(lp);
346 
347 	return 0;
348 out:
349 	axienet_dma_bd_release(ndev);
350 	return -ENOMEM;
351 }
352 
353 /**
354  * axienet_set_mac_address - Write the MAC address
355  * @ndev:	Pointer to the net_device structure
356  * @address:	6 byte Address to be written as MAC address
357  *
358  * This function is called to initialize the MAC address of the Axi Ethernet
359  * core. It writes to the UAW0 and UAW1 registers of the core.
360  */
axienet_set_mac_address(struct net_device * ndev,const void * address)361 static void axienet_set_mac_address(struct net_device *ndev,
362 				    const void *address)
363 {
364 	struct axienet_local *lp = netdev_priv(ndev);
365 
366 	if (address)
367 		eth_hw_addr_set(ndev, address);
368 	if (!is_valid_ether_addr(ndev->dev_addr))
369 		eth_hw_addr_random(ndev);
370 
371 	/* Set up unicast MAC address filter set its mac address */
372 	axienet_iow(lp, XAE_UAW0_OFFSET,
373 		    (ndev->dev_addr[0]) |
374 		    (ndev->dev_addr[1] << 8) |
375 		    (ndev->dev_addr[2] << 16) |
376 		    (ndev->dev_addr[3] << 24));
377 	axienet_iow(lp, XAE_UAW1_OFFSET,
378 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
379 		      ~XAE_UAW1_UNICASTADDR_MASK) |
380 		     (ndev->dev_addr[4] |
381 		     (ndev->dev_addr[5] << 8))));
382 }
383 
384 /**
385  * netdev_set_mac_address - Write the MAC address (from outside the driver)
386  * @ndev:	Pointer to the net_device structure
387  * @p:		6 byte Address to be written as MAC address
388  *
389  * Return: 0 for all conditions. Presently, there is no failure case.
390  *
391  * This function is called to initialize the MAC address of the Axi Ethernet
392  * core. It calls the core specific axienet_set_mac_address. This is the
393  * function that goes into net_device_ops structure entry ndo_set_mac_address.
394  */
netdev_set_mac_address(struct net_device * ndev,void * p)395 static int netdev_set_mac_address(struct net_device *ndev, void *p)
396 {
397 	struct sockaddr *addr = p;
398 	axienet_set_mac_address(ndev, addr->sa_data);
399 	return 0;
400 }
401 
402 /**
403  * axienet_set_multicast_list - Prepare the multicast table
404  * @ndev:	Pointer to the net_device structure
405  *
406  * This function is called to initialize the multicast table during
407  * initialization. The Axi Ethernet basic multicast support has a four-entry
408  * multicast table which is initialized here. Additionally this function
409  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
410  * means whenever the multicast table entries need to be updated this
411  * function gets called.
412  */
axienet_set_multicast_list(struct net_device * ndev)413 static void axienet_set_multicast_list(struct net_device *ndev)
414 {
415 	int i = 0;
416 	u32 reg, af0reg, af1reg;
417 	struct axienet_local *lp = netdev_priv(ndev);
418 
419 	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
420 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
421 		/* We must make the kernel realize we had to move into
422 		 * promiscuous mode. If it was a promiscuous mode request
423 		 * the flag is already set. If not we set it.
424 		 */
425 		ndev->flags |= IFF_PROMISC;
426 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
427 		reg |= XAE_FMI_PM_MASK;
428 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
429 		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
430 	} else if (!netdev_mc_empty(ndev)) {
431 		struct netdev_hw_addr *ha;
432 
433 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
434 		reg &= ~XAE_FMI_PM_MASK;
435 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
436 
437 		netdev_for_each_mc_addr(ha, ndev) {
438 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
439 				break;
440 
441 			af0reg = (ha->addr[0]);
442 			af0reg |= (ha->addr[1] << 8);
443 			af0reg |= (ha->addr[2] << 16);
444 			af0reg |= (ha->addr[3] << 24);
445 
446 			af1reg = (ha->addr[4]);
447 			af1reg |= (ha->addr[5] << 8);
448 
449 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
450 			reg |= i;
451 
452 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
453 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
454 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
455 			axienet_iow(lp, XAE_FFE_OFFSET, 1);
456 			i++;
457 		}
458 	} else {
459 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
460 		reg &= ~XAE_FMI_PM_MASK;
461 
462 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
463 		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
464 	}
465 
466 	for (; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
467 		reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
468 		reg |= i;
469 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
470 		axienet_iow(lp, XAE_FFE_OFFSET, 0);
471 	}
472 }
473 
474 /**
475  * axienet_setoptions - Set an Axi Ethernet option
476  * @ndev:	Pointer to the net_device structure
477  * @options:	Option to be enabled/disabled
478  *
479  * The Axi Ethernet core has multiple features which can be selectively turned
480  * on or off. The typical options could be jumbo frame option, basic VLAN
481  * option, promiscuous mode option etc. This function is used to set or clear
482  * these options in the Axi Ethernet hardware. This is done through
483  * axienet_option structure .
484  */
axienet_setoptions(struct net_device * ndev,u32 options)485 static void axienet_setoptions(struct net_device *ndev, u32 options)
486 {
487 	int reg;
488 	struct axienet_local *lp = netdev_priv(ndev);
489 	struct axienet_option *tp = &axienet_options[0];
490 
491 	while (tp->opt) {
492 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
493 		if (options & tp->opt)
494 			reg |= tp->m_or;
495 		axienet_iow(lp, tp->reg, reg);
496 		tp++;
497 	}
498 
499 	lp->options |= options;
500 }
501 
__axienet_device_reset(struct axienet_local * lp)502 static int __axienet_device_reset(struct axienet_local *lp)
503 {
504 	u32 value;
505 	int ret;
506 
507 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
508 	 * process of Axi DMA takes a while to complete as all pending
509 	 * commands/transfers will be flushed or completed during this
510 	 * reset process.
511 	 * Note that even though both TX and RX have their own reset register,
512 	 * they both reset the entire DMA core, so only one needs to be used.
513 	 */
514 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
515 	ret = read_poll_timeout(axienet_dma_in32, value,
516 				!(value & XAXIDMA_CR_RESET_MASK),
517 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
518 				XAXIDMA_TX_CR_OFFSET);
519 	if (ret) {
520 		dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
521 		return ret;
522 	}
523 
524 	/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
525 	ret = read_poll_timeout(axienet_ior, value,
526 				value & XAE_INT_PHYRSTCMPLT_MASK,
527 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
528 				XAE_IS_OFFSET);
529 	if (ret) {
530 		dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
531 		return ret;
532 	}
533 
534 	return 0;
535 }
536 
537 /**
538  * axienet_dma_stop - Stop DMA operation
539  * @lp:		Pointer to the axienet_local structure
540  */
axienet_dma_stop(struct axienet_local * lp)541 static void axienet_dma_stop(struct axienet_local *lp)
542 {
543 	int count;
544 	u32 cr, sr;
545 
546 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
547 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
548 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
549 	synchronize_irq(lp->rx_irq);
550 
551 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
552 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
553 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
554 	synchronize_irq(lp->tx_irq);
555 
556 	/* Give DMAs a chance to halt gracefully */
557 	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
558 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
559 		msleep(20);
560 		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
561 	}
562 
563 	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
564 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
565 		msleep(20);
566 		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
567 	}
568 
569 	/* Do a reset to ensure DMA is really stopped */
570 	axienet_lock_mii(lp);
571 	__axienet_device_reset(lp);
572 	axienet_unlock_mii(lp);
573 }
574 
575 /**
576  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
577  * @ndev:	Pointer to the net_device structure
578  *
579  * This function is called to reset and initialize the Axi Ethernet core. This
580  * is typically called during initialization. It does a reset of the Axi DMA
581  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
582  * are connected to Axi Ethernet reset lines, this in turn resets the Axi
583  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
584  * core.
585  * Returns 0 on success or a negative error number otherwise.
586  */
axienet_device_reset(struct net_device * ndev)587 static int axienet_device_reset(struct net_device *ndev)
588 {
589 	u32 axienet_status;
590 	struct axienet_local *lp = netdev_priv(ndev);
591 	int ret;
592 
593 	ret = __axienet_device_reset(lp);
594 	if (ret)
595 		return ret;
596 
597 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
598 	lp->options |= XAE_OPTION_VLAN;
599 	lp->options &= (~XAE_OPTION_JUMBO);
600 
601 	if ((ndev->mtu > XAE_MTU) &&
602 	    (ndev->mtu <= XAE_JUMBO_MTU)) {
603 		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
604 					XAE_TRL_SIZE;
605 
606 		if (lp->max_frm_size <= lp->rxmem)
607 			lp->options |= XAE_OPTION_JUMBO;
608 	}
609 
610 	ret = axienet_dma_bd_init(ndev);
611 	if (ret) {
612 		netdev_err(ndev, "%s: descriptor allocation failed\n",
613 			   __func__);
614 		return ret;
615 	}
616 
617 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
618 	axienet_status &= ~XAE_RCW1_RX_MASK;
619 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
620 
621 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
622 	if (axienet_status & XAE_INT_RXRJECT_MASK)
623 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
624 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
625 		    XAE_INT_RECV_ERROR_MASK : 0);
626 
627 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
628 
629 	/* Sync default options with HW but leave receiver and
630 	 * transmitter disabled.
631 	 */
632 	axienet_setoptions(ndev, lp->options &
633 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
634 	axienet_set_mac_address(ndev, NULL);
635 	axienet_set_multicast_list(ndev);
636 	axienet_setoptions(ndev, lp->options);
637 
638 	netif_trans_update(ndev);
639 
640 	return 0;
641 }
642 
643 /**
644  * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
645  * @lp:		Pointer to the axienet_local structure
646  * @first_bd:	Index of first descriptor to clean up
647  * @nr_bds:	Max number of descriptors to clean up
648  * @force:	Whether to clean descriptors even if not complete
649  * @sizep:	Pointer to a u32 filled with the total sum of all bytes
650  *		in all cleaned-up descriptors. Ignored if NULL.
651  * @budget:	NAPI budget (use 0 when not called from NAPI poll)
652  *
653  * Would either be called after a successful transmit operation, or after
654  * there was an error when setting up the chain.
655  * Returns the number of packets handled.
656  */
axienet_free_tx_chain(struct axienet_local * lp,u32 first_bd,int nr_bds,bool force,u32 * sizep,int budget)657 static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
658 				 int nr_bds, bool force, u32 *sizep, int budget)
659 {
660 	struct axidma_bd *cur_p;
661 	unsigned int status;
662 	int i, packets = 0;
663 	dma_addr_t phys;
664 
665 	for (i = 0; i < nr_bds; i++) {
666 		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
667 		status = cur_p->status;
668 
669 		/* If force is not specified, clean up only descriptors
670 		 * that have been completed by the MAC.
671 		 */
672 		if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
673 			break;
674 
675 		/* Ensure we see complete descriptor update */
676 		dma_rmb();
677 		phys = desc_get_phys_addr(lp, cur_p);
678 		dma_unmap_single(lp->dev, phys,
679 				 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
680 				 DMA_TO_DEVICE);
681 
682 		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
683 			napi_consume_skb(cur_p->skb, budget);
684 			packets++;
685 		}
686 
687 		cur_p->app0 = 0;
688 		cur_p->app1 = 0;
689 		cur_p->app2 = 0;
690 		cur_p->app4 = 0;
691 		cur_p->skb = NULL;
692 		/* ensure our transmit path and device don't prematurely see status cleared */
693 		wmb();
694 		cur_p->cntrl = 0;
695 		cur_p->status = 0;
696 
697 		if (sizep)
698 			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
699 	}
700 
701 	if (!force) {
702 		lp->tx_bd_ci += i;
703 		if (lp->tx_bd_ci >= lp->tx_bd_num)
704 			lp->tx_bd_ci %= lp->tx_bd_num;
705 	}
706 
707 	return packets;
708 }
709 
710 /**
711  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
712  * @lp:		Pointer to the axienet_local structure
713  * @num_frag:	The number of BDs to check for
714  *
715  * Return: 0, on success
716  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
717  *
718  * This function is invoked before BDs are allocated and transmission starts.
719  * This function returns 0 if a BD or group of BDs can be allocated for
720  * transmission. If the BD or any of the BDs are not free the function
721  * returns a busy status.
722  */
axienet_check_tx_bd_space(struct axienet_local * lp,int num_frag)723 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
724 					    int num_frag)
725 {
726 	struct axidma_bd *cur_p;
727 
728 	/* Ensure we see all descriptor updates from device or TX polling */
729 	rmb();
730 	cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
731 			     lp->tx_bd_num];
732 	if (cur_p->cntrl)
733 		return NETDEV_TX_BUSY;
734 	return 0;
735 }
736 
737 /**
738  * axienet_tx_poll - Invoked once a transmit is completed by the
739  * Axi DMA Tx channel.
740  * @napi:	Pointer to NAPI structure.
741  * @budget:	Max number of TX packets to process.
742  *
743  * Return: Number of TX packets processed.
744  *
745  * This function is invoked from the NAPI processing to notify the completion
746  * of transmit operation. It clears fields in the corresponding Tx BDs and
747  * unmaps the corresponding buffer so that CPU can regain ownership of the
748  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
749  * required.
750  */
axienet_tx_poll(struct napi_struct * napi,int budget)751 static int axienet_tx_poll(struct napi_struct *napi, int budget)
752 {
753 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
754 	struct net_device *ndev = lp->ndev;
755 	u32 size = 0;
756 	int packets;
757 
758 	packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, lp->tx_bd_num, false,
759 					&size, budget);
760 
761 	if (packets) {
762 		u64_stats_update_begin(&lp->tx_stat_sync);
763 		u64_stats_add(&lp->tx_packets, packets);
764 		u64_stats_add(&lp->tx_bytes, size);
765 		u64_stats_update_end(&lp->tx_stat_sync);
766 
767 		/* Matches barrier in axienet_start_xmit */
768 		smp_mb();
769 
770 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
771 			netif_wake_queue(ndev);
772 	}
773 
774 	if (packets < budget && napi_complete_done(napi, packets)) {
775 		/* Re-enable TX completion interrupts. This should
776 		 * cause an immediate interrupt if any TX packets are
777 		 * already pending.
778 		 */
779 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
780 	}
781 	return packets;
782 }
783 
784 /**
785  * axienet_start_xmit - Starts the transmission.
786  * @skb:	sk_buff pointer that contains data to be Txed.
787  * @ndev:	Pointer to net_device structure.
788  *
789  * Return: NETDEV_TX_OK, on success
790  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
791  *
792  * This function is invoked from upper layers to initiate transmission. The
793  * function uses the next available free BDs and populates their fields to
794  * start the transmission. Additionally if checksum offloading is supported,
795  * it populates AXI Stream Control fields with appropriate values.
796  */
797 static netdev_tx_t
axienet_start_xmit(struct sk_buff * skb,struct net_device * ndev)798 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
799 {
800 	u32 ii;
801 	u32 num_frag;
802 	u32 csum_start_off;
803 	u32 csum_index_off;
804 	skb_frag_t *frag;
805 	dma_addr_t tail_p, phys;
806 	u32 orig_tail_ptr, new_tail_ptr;
807 	struct axienet_local *lp = netdev_priv(ndev);
808 	struct axidma_bd *cur_p;
809 
810 	orig_tail_ptr = lp->tx_bd_tail;
811 	new_tail_ptr = orig_tail_ptr;
812 
813 	num_frag = skb_shinfo(skb)->nr_frags;
814 	cur_p = &lp->tx_bd_v[orig_tail_ptr];
815 
816 	if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
817 		/* Should not happen as last start_xmit call should have
818 		 * checked for sufficient space and queue should only be
819 		 * woken when sufficient space is available.
820 		 */
821 		netif_stop_queue(ndev);
822 		if (net_ratelimit())
823 			netdev_warn(ndev, "TX ring unexpectedly full\n");
824 		return NETDEV_TX_BUSY;
825 	}
826 
827 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
828 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
829 			/* Tx Full Checksum Offload Enabled */
830 			cur_p->app0 |= 2;
831 		} else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
832 			csum_start_off = skb_transport_offset(skb);
833 			csum_index_off = csum_start_off + skb->csum_offset;
834 			/* Tx Partial Checksum Offload Enabled */
835 			cur_p->app0 |= 1;
836 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
837 		}
838 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
839 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
840 	}
841 
842 	phys = dma_map_single(lp->dev, skb->data,
843 			      skb_headlen(skb), DMA_TO_DEVICE);
844 	if (unlikely(dma_mapping_error(lp->dev, phys))) {
845 		if (net_ratelimit())
846 			netdev_err(ndev, "TX DMA mapping error\n");
847 		ndev->stats.tx_dropped++;
848 		dev_kfree_skb_any(skb);
849 		return NETDEV_TX_OK;
850 	}
851 	desc_set_phys_addr(lp, phys, cur_p);
852 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
853 
854 	for (ii = 0; ii < num_frag; ii++) {
855 		if (++new_tail_ptr >= lp->tx_bd_num)
856 			new_tail_ptr = 0;
857 		cur_p = &lp->tx_bd_v[new_tail_ptr];
858 		frag = &skb_shinfo(skb)->frags[ii];
859 		phys = dma_map_single(lp->dev,
860 				      skb_frag_address(frag),
861 				      skb_frag_size(frag),
862 				      DMA_TO_DEVICE);
863 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
864 			if (net_ratelimit())
865 				netdev_err(ndev, "TX DMA mapping error\n");
866 			ndev->stats.tx_dropped++;
867 			axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
868 					      true, NULL, 0);
869 			dev_kfree_skb_any(skb);
870 			return NETDEV_TX_OK;
871 		}
872 		desc_set_phys_addr(lp, phys, cur_p);
873 		cur_p->cntrl = skb_frag_size(frag);
874 	}
875 
876 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
877 	cur_p->skb = skb;
878 
879 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
880 	if (++new_tail_ptr >= lp->tx_bd_num)
881 		new_tail_ptr = 0;
882 	WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
883 
884 	/* Start the transfer */
885 	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
886 
887 	/* Stop queue if next transmit may not have space */
888 	if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
889 		netif_stop_queue(ndev);
890 
891 		/* Matches barrier in axienet_tx_poll */
892 		smp_mb();
893 
894 		/* Space might have just been freed - check again */
895 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
896 			netif_wake_queue(ndev);
897 	}
898 
899 	return NETDEV_TX_OK;
900 }
901 
902 /**
903  * axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
904  * @napi:	Pointer to NAPI structure.
905  * @budget:	Max number of RX packets to process.
906  *
907  * Return: Number of RX packets processed.
908  */
axienet_rx_poll(struct napi_struct * napi,int budget)909 static int axienet_rx_poll(struct napi_struct *napi, int budget)
910 {
911 	u32 length;
912 	u32 csumstatus;
913 	u32 size = 0;
914 	int packets = 0;
915 	dma_addr_t tail_p = 0;
916 	struct axidma_bd *cur_p;
917 	struct sk_buff *skb, *new_skb;
918 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
919 
920 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
921 
922 	while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
923 		dma_addr_t phys;
924 
925 		/* Ensure we see complete descriptor update */
926 		dma_rmb();
927 
928 		skb = cur_p->skb;
929 		cur_p->skb = NULL;
930 
931 		/* skb could be NULL if a previous pass already received the
932 		 * packet for this slot in the ring, but failed to refill it
933 		 * with a newly allocated buffer. In this case, don't try to
934 		 * receive it again.
935 		 */
936 		if (likely(skb)) {
937 			length = cur_p->app4 & 0x0000FFFF;
938 
939 			phys = desc_get_phys_addr(lp, cur_p);
940 			dma_unmap_single(lp->dev, phys, lp->max_frm_size,
941 					 DMA_FROM_DEVICE);
942 
943 			skb_put(skb, length);
944 			skb->protocol = eth_type_trans(skb, lp->ndev);
945 			/*skb_checksum_none_assert(skb);*/
946 			skb->ip_summed = CHECKSUM_NONE;
947 
948 			/* if we're doing Rx csum offload, set it up */
949 			if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
950 				csumstatus = (cur_p->app2 &
951 					      XAE_FULL_CSUM_STATUS_MASK) >> 3;
952 				if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
953 				    csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
954 					skb->ip_summed = CHECKSUM_UNNECESSARY;
955 				}
956 			} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
957 				   skb->protocol == htons(ETH_P_IP) &&
958 				   skb->len > 64) {
959 				skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
960 				skb->ip_summed = CHECKSUM_COMPLETE;
961 			}
962 
963 			napi_gro_receive(napi, skb);
964 
965 			size += length;
966 			packets++;
967 		}
968 
969 		new_skb = napi_alloc_skb(napi, lp->max_frm_size);
970 		if (!new_skb)
971 			break;
972 
973 		phys = dma_map_single(lp->dev, new_skb->data,
974 				      lp->max_frm_size,
975 				      DMA_FROM_DEVICE);
976 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
977 			if (net_ratelimit())
978 				netdev_err(lp->ndev, "RX DMA mapping error\n");
979 			dev_kfree_skb(new_skb);
980 			break;
981 		}
982 		desc_set_phys_addr(lp, phys, cur_p);
983 
984 		cur_p->cntrl = lp->max_frm_size;
985 		cur_p->status = 0;
986 		cur_p->skb = new_skb;
987 
988 		/* Only update tail_p to mark this slot as usable after it has
989 		 * been successfully refilled.
990 		 */
991 		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
992 
993 		if (++lp->rx_bd_ci >= lp->rx_bd_num)
994 			lp->rx_bd_ci = 0;
995 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
996 	}
997 
998 	u64_stats_update_begin(&lp->rx_stat_sync);
999 	u64_stats_add(&lp->rx_packets, packets);
1000 	u64_stats_add(&lp->rx_bytes, size);
1001 	u64_stats_update_end(&lp->rx_stat_sync);
1002 
1003 	if (tail_p)
1004 		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
1005 
1006 	if (packets < budget && napi_complete_done(napi, packets)) {
1007 		/* Re-enable RX completion interrupts. This should
1008 		 * cause an immediate interrupt if any RX packets are
1009 		 * already pending.
1010 		 */
1011 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
1012 	}
1013 	return packets;
1014 }
1015 
1016 /**
1017  * axienet_tx_irq - Tx Done Isr.
1018  * @irq:	irq number
1019  * @_ndev:	net_device pointer
1020  *
1021  * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1022  *
1023  * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
1024  * TX BD processing.
1025  */
axienet_tx_irq(int irq,void * _ndev)1026 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
1027 {
1028 	unsigned int status;
1029 	struct net_device *ndev = _ndev;
1030 	struct axienet_local *lp = netdev_priv(ndev);
1031 
1032 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1033 
1034 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1035 		return IRQ_NONE;
1036 
1037 	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
1038 
1039 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1040 		netdev_err(ndev, "DMA Tx error 0x%x\n", status);
1041 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1042 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
1043 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1044 		schedule_work(&lp->dma_err_task);
1045 	} else {
1046 		/* Disable further TX completion interrupts and schedule
1047 		 * NAPI to handle the completions.
1048 		 */
1049 		u32 cr = lp->tx_dma_cr;
1050 
1051 		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1052 		if (napi_schedule_prep(&lp->napi_tx)) {
1053 			axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1054 			__napi_schedule(&lp->napi_tx);
1055 		}
1056 	}
1057 
1058 	return IRQ_HANDLED;
1059 }
1060 
1061 /**
1062  * axienet_rx_irq - Rx Isr.
1063  * @irq:	irq number
1064  * @_ndev:	net_device pointer
1065  *
1066  * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1067  *
1068  * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1069  * processing.
1070  */
axienet_rx_irq(int irq,void * _ndev)1071 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1072 {
1073 	unsigned int status;
1074 	struct net_device *ndev = _ndev;
1075 	struct axienet_local *lp = netdev_priv(ndev);
1076 
1077 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1078 
1079 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1080 		return IRQ_NONE;
1081 
1082 	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1083 
1084 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1085 		netdev_err(ndev, "DMA Rx error 0x%x\n", status);
1086 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1087 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1088 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1089 		schedule_work(&lp->dma_err_task);
1090 	} else {
1091 		/* Disable further RX completion interrupts and schedule
1092 		 * NAPI receive.
1093 		 */
1094 		u32 cr = lp->rx_dma_cr;
1095 
1096 		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1097 		if (napi_schedule_prep(&lp->napi_rx)) {
1098 			axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1099 			__napi_schedule(&lp->napi_rx);
1100 		}
1101 	}
1102 
1103 	return IRQ_HANDLED;
1104 }
1105 
1106 /**
1107  * axienet_eth_irq - Ethernet core Isr.
1108  * @irq:	irq number
1109  * @_ndev:	net_device pointer
1110  *
1111  * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1112  *
1113  * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1114  */
axienet_eth_irq(int irq,void * _ndev)1115 static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1116 {
1117 	struct net_device *ndev = _ndev;
1118 	struct axienet_local *lp = netdev_priv(ndev);
1119 	unsigned int pending;
1120 
1121 	pending = axienet_ior(lp, XAE_IP_OFFSET);
1122 	if (!pending)
1123 		return IRQ_NONE;
1124 
1125 	if (pending & XAE_INT_RXFIFOOVR_MASK)
1126 		ndev->stats.rx_missed_errors++;
1127 
1128 	if (pending & XAE_INT_RXRJECT_MASK)
1129 		ndev->stats.rx_frame_errors++;
1130 
1131 	axienet_iow(lp, XAE_IS_OFFSET, pending);
1132 	return IRQ_HANDLED;
1133 }
1134 
1135 static void axienet_dma_err_handler(struct work_struct *work);
1136 
1137 /**
1138  * axienet_open - Driver open routine.
1139  * @ndev:	Pointer to net_device structure
1140  *
1141  * Return: 0, on success.
1142  *	    non-zero error value on failure
1143  *
1144  * This is the driver open routine. It calls phylink_start to start the
1145  * PHY device.
1146  * It also allocates interrupt service routines, enables the interrupt lines
1147  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1148  * descriptors are initialized.
1149  */
axienet_open(struct net_device * ndev)1150 static int axienet_open(struct net_device *ndev)
1151 {
1152 	int ret;
1153 	struct axienet_local *lp = netdev_priv(ndev);
1154 
1155 	dev_dbg(&ndev->dev, "axienet_open()\n");
1156 
1157 	/* When we do an Axi Ethernet reset, it resets the complete core
1158 	 * including the MDIO. MDIO must be disabled before resetting.
1159 	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1160 	 */
1161 	axienet_lock_mii(lp);
1162 	ret = axienet_device_reset(ndev);
1163 	axienet_unlock_mii(lp);
1164 
1165 	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1166 	if (ret) {
1167 		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1168 		return ret;
1169 	}
1170 
1171 	phylink_start(lp->phylink);
1172 
1173 	/* Enable worker thread for Axi DMA error handling */
1174 	lp->stopping = false;
1175 	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1176 
1177 	napi_enable(&lp->napi_rx);
1178 	napi_enable(&lp->napi_tx);
1179 
1180 	/* Enable interrupts for Axi DMA Tx */
1181 	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1182 			  ndev->name, ndev);
1183 	if (ret)
1184 		goto err_tx_irq;
1185 	/* Enable interrupts for Axi DMA Rx */
1186 	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1187 			  ndev->name, ndev);
1188 	if (ret)
1189 		goto err_rx_irq;
1190 	/* Enable interrupts for Axi Ethernet core (if defined) */
1191 	if (lp->eth_irq > 0) {
1192 		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1193 				  ndev->name, ndev);
1194 		if (ret)
1195 			goto err_eth_irq;
1196 	}
1197 
1198 	return 0;
1199 
1200 err_eth_irq:
1201 	free_irq(lp->rx_irq, ndev);
1202 err_rx_irq:
1203 	free_irq(lp->tx_irq, ndev);
1204 err_tx_irq:
1205 	napi_disable(&lp->napi_tx);
1206 	napi_disable(&lp->napi_rx);
1207 	phylink_stop(lp->phylink);
1208 	phylink_disconnect_phy(lp->phylink);
1209 	cancel_work_sync(&lp->dma_err_task);
1210 	dev_err(lp->dev, "request_irq() failed\n");
1211 	return ret;
1212 }
1213 
1214 /**
1215  * axienet_stop - Driver stop routine.
1216  * @ndev:	Pointer to net_device structure
1217  *
1218  * Return: 0, on success.
1219  *
1220  * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1221  * device. It also removes the interrupt handlers and disables the interrupts.
1222  * The Axi DMA Tx/Rx BDs are released.
1223  */
axienet_stop(struct net_device * ndev)1224 static int axienet_stop(struct net_device *ndev)
1225 {
1226 	struct axienet_local *lp = netdev_priv(ndev);
1227 
1228 	dev_dbg(&ndev->dev, "axienet_close()\n");
1229 
1230 	WRITE_ONCE(lp->stopping, true);
1231 	flush_work(&lp->dma_err_task);
1232 
1233 	napi_disable(&lp->napi_tx);
1234 	napi_disable(&lp->napi_rx);
1235 
1236 	phylink_stop(lp->phylink);
1237 	phylink_disconnect_phy(lp->phylink);
1238 
1239 	axienet_setoptions(ndev, lp->options &
1240 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1241 
1242 	axienet_dma_stop(lp);
1243 
1244 	axienet_iow(lp, XAE_IE_OFFSET, 0);
1245 
1246 	cancel_work_sync(&lp->dma_err_task);
1247 
1248 	if (lp->eth_irq > 0)
1249 		free_irq(lp->eth_irq, ndev);
1250 	free_irq(lp->tx_irq, ndev);
1251 	free_irq(lp->rx_irq, ndev);
1252 
1253 	axienet_dma_bd_release(ndev);
1254 	return 0;
1255 }
1256 
1257 /**
1258  * axienet_change_mtu - Driver change mtu routine.
1259  * @ndev:	Pointer to net_device structure
1260  * @new_mtu:	New mtu value to be applied
1261  *
1262  * Return: Always returns 0 (success).
1263  *
1264  * This is the change mtu driver routine. It checks if the Axi Ethernet
1265  * hardware supports jumbo frames before changing the mtu. This can be
1266  * called only when the device is not up.
1267  */
axienet_change_mtu(struct net_device * ndev,int new_mtu)1268 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1269 {
1270 	struct axienet_local *lp = netdev_priv(ndev);
1271 
1272 	if (netif_running(ndev))
1273 		return -EBUSY;
1274 
1275 	if ((new_mtu + VLAN_ETH_HLEN +
1276 		XAE_TRL_SIZE) > lp->rxmem)
1277 		return -EINVAL;
1278 
1279 	ndev->mtu = new_mtu;
1280 
1281 	return 0;
1282 }
1283 
1284 #ifdef CONFIG_NET_POLL_CONTROLLER
1285 /**
1286  * axienet_poll_controller - Axi Ethernet poll mechanism.
1287  * @ndev:	Pointer to net_device structure
1288  *
1289  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1290  * to polling the ISRs and are enabled back after the polling is done.
1291  */
axienet_poll_controller(struct net_device * ndev)1292 static void axienet_poll_controller(struct net_device *ndev)
1293 {
1294 	struct axienet_local *lp = netdev_priv(ndev);
1295 	disable_irq(lp->tx_irq);
1296 	disable_irq(lp->rx_irq);
1297 	axienet_rx_irq(lp->tx_irq, ndev);
1298 	axienet_tx_irq(lp->rx_irq, ndev);
1299 	enable_irq(lp->tx_irq);
1300 	enable_irq(lp->rx_irq);
1301 }
1302 #endif
1303 
axienet_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1304 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1305 {
1306 	struct axienet_local *lp = netdev_priv(dev);
1307 
1308 	if (!netif_running(dev))
1309 		return -EINVAL;
1310 
1311 	return phylink_mii_ioctl(lp->phylink, rq, cmd);
1312 }
1313 
1314 static void
axienet_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)1315 axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1316 {
1317 	struct axienet_local *lp = netdev_priv(dev);
1318 	unsigned int start;
1319 
1320 	netdev_stats_to_stats64(stats, &dev->stats);
1321 
1322 	do {
1323 		start = u64_stats_fetch_begin(&lp->rx_stat_sync);
1324 		stats->rx_packets = u64_stats_read(&lp->rx_packets);
1325 		stats->rx_bytes = u64_stats_read(&lp->rx_bytes);
1326 	} while (u64_stats_fetch_retry(&lp->rx_stat_sync, start));
1327 
1328 	do {
1329 		start = u64_stats_fetch_begin(&lp->tx_stat_sync);
1330 		stats->tx_packets = u64_stats_read(&lp->tx_packets);
1331 		stats->tx_bytes = u64_stats_read(&lp->tx_bytes);
1332 	} while (u64_stats_fetch_retry(&lp->tx_stat_sync, start));
1333 }
1334 
1335 static const struct net_device_ops axienet_netdev_ops = {
1336 	.ndo_open = axienet_open,
1337 	.ndo_stop = axienet_stop,
1338 	.ndo_start_xmit = axienet_start_xmit,
1339 	.ndo_get_stats64 = axienet_get_stats64,
1340 	.ndo_change_mtu	= axienet_change_mtu,
1341 	.ndo_set_mac_address = netdev_set_mac_address,
1342 	.ndo_validate_addr = eth_validate_addr,
1343 	.ndo_eth_ioctl = axienet_ioctl,
1344 	.ndo_set_rx_mode = axienet_set_multicast_list,
1345 #ifdef CONFIG_NET_POLL_CONTROLLER
1346 	.ndo_poll_controller = axienet_poll_controller,
1347 #endif
1348 };
1349 
1350 /**
1351  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1352  * @ndev:	Pointer to net_device structure
1353  * @ed:		Pointer to ethtool_drvinfo structure
1354  *
1355  * This implements ethtool command for getting the driver information.
1356  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1357  */
axienet_ethtools_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * ed)1358 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1359 					 struct ethtool_drvinfo *ed)
1360 {
1361 	strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1362 	strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1363 }
1364 
1365 /**
1366  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1367  *				   AxiEthernet core.
1368  * @ndev:	Pointer to net_device structure
1369  *
1370  * This implements ethtool command for getting the total register length
1371  * information.
1372  *
1373  * Return: the total regs length
1374  */
axienet_ethtools_get_regs_len(struct net_device * ndev)1375 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1376 {
1377 	return sizeof(u32) * AXIENET_REGS_N;
1378 }
1379 
1380 /**
1381  * axienet_ethtools_get_regs - Dump the contents of all registers present
1382  *			       in AxiEthernet core.
1383  * @ndev:	Pointer to net_device structure
1384  * @regs:	Pointer to ethtool_regs structure
1385  * @ret:	Void pointer used to return the contents of the registers.
1386  *
1387  * This implements ethtool command for getting the Axi Ethernet register dump.
1388  * Issue "ethtool -d ethX" to execute this function.
1389  */
axienet_ethtools_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * ret)1390 static void axienet_ethtools_get_regs(struct net_device *ndev,
1391 				      struct ethtool_regs *regs, void *ret)
1392 {
1393 	u32 *data = (u32 *)ret;
1394 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1395 	struct axienet_local *lp = netdev_priv(ndev);
1396 
1397 	regs->version = 0;
1398 	regs->len = len;
1399 
1400 	memset(data, 0, len);
1401 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1402 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1403 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1404 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1405 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1406 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1407 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1408 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1409 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1410 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1411 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1412 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1413 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1414 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1415 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1416 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1417 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1418 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1419 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1420 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1421 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1422 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1423 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1424 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1425 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1426 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1427 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1428 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1429 	data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1430 	data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1431 	data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1432 	data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1433 	data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1434 	data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1435 	data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1436 	data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1437 }
1438 
1439 static void
axienet_ethtools_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering,struct kernel_ethtool_ringparam * kernel_ering,struct netlink_ext_ack * extack)1440 axienet_ethtools_get_ringparam(struct net_device *ndev,
1441 			       struct ethtool_ringparam *ering,
1442 			       struct kernel_ethtool_ringparam *kernel_ering,
1443 			       struct netlink_ext_ack *extack)
1444 {
1445 	struct axienet_local *lp = netdev_priv(ndev);
1446 
1447 	ering->rx_max_pending = RX_BD_NUM_MAX;
1448 	ering->rx_mini_max_pending = 0;
1449 	ering->rx_jumbo_max_pending = 0;
1450 	ering->tx_max_pending = TX_BD_NUM_MAX;
1451 	ering->rx_pending = lp->rx_bd_num;
1452 	ering->rx_mini_pending = 0;
1453 	ering->rx_jumbo_pending = 0;
1454 	ering->tx_pending = lp->tx_bd_num;
1455 }
1456 
1457 static int
axienet_ethtools_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering,struct kernel_ethtool_ringparam * kernel_ering,struct netlink_ext_ack * extack)1458 axienet_ethtools_set_ringparam(struct net_device *ndev,
1459 			       struct ethtool_ringparam *ering,
1460 			       struct kernel_ethtool_ringparam *kernel_ering,
1461 			       struct netlink_ext_ack *extack)
1462 {
1463 	struct axienet_local *lp = netdev_priv(ndev);
1464 
1465 	if (ering->rx_pending > RX_BD_NUM_MAX ||
1466 	    ering->rx_mini_pending ||
1467 	    ering->rx_jumbo_pending ||
1468 	    ering->tx_pending < TX_BD_NUM_MIN ||
1469 	    ering->tx_pending > TX_BD_NUM_MAX)
1470 		return -EINVAL;
1471 
1472 	if (netif_running(ndev))
1473 		return -EBUSY;
1474 
1475 	lp->rx_bd_num = ering->rx_pending;
1476 	lp->tx_bd_num = ering->tx_pending;
1477 	return 0;
1478 }
1479 
1480 /**
1481  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1482  *				     Tx and Rx paths.
1483  * @ndev:	Pointer to net_device structure
1484  * @epauseparm:	Pointer to ethtool_pauseparam structure.
1485  *
1486  * This implements ethtool command for getting axi ethernet pause frame
1487  * setting. Issue "ethtool -a ethX" to execute this function.
1488  */
1489 static void
axienet_ethtools_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * epauseparm)1490 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1491 				struct ethtool_pauseparam *epauseparm)
1492 {
1493 	struct axienet_local *lp = netdev_priv(ndev);
1494 
1495 	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1496 }
1497 
1498 /**
1499  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1500  *				     settings.
1501  * @ndev:	Pointer to net_device structure
1502  * @epauseparm:Pointer to ethtool_pauseparam structure
1503  *
1504  * This implements ethtool command for enabling flow control on Rx and Tx
1505  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1506  * function.
1507  *
1508  * Return: 0 on success, -EFAULT if device is running
1509  */
1510 static int
axienet_ethtools_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * epauseparm)1511 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1512 				struct ethtool_pauseparam *epauseparm)
1513 {
1514 	struct axienet_local *lp = netdev_priv(ndev);
1515 
1516 	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1517 }
1518 
1519 /**
1520  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1521  * @ndev:	Pointer to net_device structure
1522  * @ecoalesce:	Pointer to ethtool_coalesce structure
1523  * @kernel_coal: ethtool CQE mode setting structure
1524  * @extack:	extack for reporting error messages
1525  *
1526  * This implements ethtool command for getting the DMA interrupt coalescing
1527  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1528  * execute this function.
1529  *
1530  * Return: 0 always
1531  */
1532 static int
axienet_ethtools_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ecoalesce,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1533 axienet_ethtools_get_coalesce(struct net_device *ndev,
1534 			      struct ethtool_coalesce *ecoalesce,
1535 			      struct kernel_ethtool_coalesce *kernel_coal,
1536 			      struct netlink_ext_ack *extack)
1537 {
1538 	struct axienet_local *lp = netdev_priv(ndev);
1539 
1540 	ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
1541 	ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
1542 	ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
1543 	ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
1544 	return 0;
1545 }
1546 
1547 /**
1548  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1549  * @ndev:	Pointer to net_device structure
1550  * @ecoalesce:	Pointer to ethtool_coalesce structure
1551  * @kernel_coal: ethtool CQE mode setting structure
1552  * @extack:	extack for reporting error messages
1553  *
1554  * This implements ethtool command for setting the DMA interrupt coalescing
1555  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1556  * prompt to execute this function.
1557  *
1558  * Return: 0, on success, Non-zero error value on failure.
1559  */
1560 static int
axienet_ethtools_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ecoalesce,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1561 axienet_ethtools_set_coalesce(struct net_device *ndev,
1562 			      struct ethtool_coalesce *ecoalesce,
1563 			      struct kernel_ethtool_coalesce *kernel_coal,
1564 			      struct netlink_ext_ack *extack)
1565 {
1566 	struct axienet_local *lp = netdev_priv(ndev);
1567 
1568 	if (netif_running(ndev)) {
1569 		netdev_err(ndev,
1570 			   "Please stop netif before applying configuration\n");
1571 		return -EFAULT;
1572 	}
1573 
1574 	if (ecoalesce->rx_max_coalesced_frames > 255 ||
1575 	    ecoalesce->tx_max_coalesced_frames > 255) {
1576 		NL_SET_ERR_MSG(extack, "frames must be less than 256");
1577 		return -EINVAL;
1578 	}
1579 
1580 	if (ecoalesce->rx_max_coalesced_frames)
1581 		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1582 	if (ecoalesce->rx_coalesce_usecs)
1583 		lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
1584 	if (ecoalesce->tx_max_coalesced_frames)
1585 		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1586 	if (ecoalesce->tx_coalesce_usecs)
1587 		lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
1588 
1589 	return 0;
1590 }
1591 
1592 static int
axienet_ethtools_get_link_ksettings(struct net_device * ndev,struct ethtool_link_ksettings * cmd)1593 axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1594 				    struct ethtool_link_ksettings *cmd)
1595 {
1596 	struct axienet_local *lp = netdev_priv(ndev);
1597 
1598 	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1599 }
1600 
1601 static int
axienet_ethtools_set_link_ksettings(struct net_device * ndev,const struct ethtool_link_ksettings * cmd)1602 axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1603 				    const struct ethtool_link_ksettings *cmd)
1604 {
1605 	struct axienet_local *lp = netdev_priv(ndev);
1606 
1607 	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1608 }
1609 
axienet_ethtools_nway_reset(struct net_device * dev)1610 static int axienet_ethtools_nway_reset(struct net_device *dev)
1611 {
1612 	struct axienet_local *lp = netdev_priv(dev);
1613 
1614 	return phylink_ethtool_nway_reset(lp->phylink);
1615 }
1616 
1617 static const struct ethtool_ops axienet_ethtool_ops = {
1618 	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
1619 				     ETHTOOL_COALESCE_USECS,
1620 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1621 	.get_regs_len   = axienet_ethtools_get_regs_len,
1622 	.get_regs       = axienet_ethtools_get_regs,
1623 	.get_link       = ethtool_op_get_link,
1624 	.get_ringparam	= axienet_ethtools_get_ringparam,
1625 	.set_ringparam	= axienet_ethtools_set_ringparam,
1626 	.get_pauseparam = axienet_ethtools_get_pauseparam,
1627 	.set_pauseparam = axienet_ethtools_set_pauseparam,
1628 	.get_coalesce   = axienet_ethtools_get_coalesce,
1629 	.set_coalesce   = axienet_ethtools_set_coalesce,
1630 	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
1631 	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
1632 	.nway_reset	= axienet_ethtools_nway_reset,
1633 };
1634 
pcs_to_axienet_local(struct phylink_pcs * pcs)1635 static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
1636 {
1637 	return container_of(pcs, struct axienet_local, pcs);
1638 }
1639 
axienet_pcs_get_state(struct phylink_pcs * pcs,struct phylink_link_state * state)1640 static void axienet_pcs_get_state(struct phylink_pcs *pcs,
1641 				  struct phylink_link_state *state)
1642 {
1643 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1644 
1645 	phylink_mii_c22_pcs_get_state(pcs_phy, state);
1646 }
1647 
axienet_pcs_an_restart(struct phylink_pcs * pcs)1648 static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
1649 {
1650 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1651 
1652 	phylink_mii_c22_pcs_an_restart(pcs_phy);
1653 }
1654 
axienet_pcs_config(struct phylink_pcs * pcs,unsigned int neg_mode,phy_interface_t interface,const unsigned long * advertising,bool permit_pause_to_mac)1655 static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
1656 			      phy_interface_t interface,
1657 			      const unsigned long *advertising,
1658 			      bool permit_pause_to_mac)
1659 {
1660 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1661 	struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
1662 	struct axienet_local *lp = netdev_priv(ndev);
1663 	int ret;
1664 
1665 	if (lp->switch_x_sgmii) {
1666 		ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
1667 				    interface == PHY_INTERFACE_MODE_SGMII ?
1668 					XLNX_MII_STD_SELECT_SGMII : 0);
1669 		if (ret < 0) {
1670 			netdev_warn(ndev,
1671 				    "Failed to switch PHY interface: %d\n",
1672 				    ret);
1673 			return ret;
1674 		}
1675 	}
1676 
1677 	ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising,
1678 					 neg_mode);
1679 	if (ret < 0)
1680 		netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
1681 
1682 	return ret;
1683 }
1684 
1685 static const struct phylink_pcs_ops axienet_pcs_ops = {
1686 	.pcs_get_state = axienet_pcs_get_state,
1687 	.pcs_config = axienet_pcs_config,
1688 	.pcs_an_restart = axienet_pcs_an_restart,
1689 };
1690 
axienet_mac_select_pcs(struct phylink_config * config,phy_interface_t interface)1691 static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
1692 						  phy_interface_t interface)
1693 {
1694 	struct net_device *ndev = to_net_dev(config->dev);
1695 	struct axienet_local *lp = netdev_priv(ndev);
1696 
1697 	if (interface == PHY_INTERFACE_MODE_1000BASEX ||
1698 	    interface ==  PHY_INTERFACE_MODE_SGMII)
1699 		return &lp->pcs;
1700 
1701 	return NULL;
1702 }
1703 
axienet_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)1704 static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1705 			       const struct phylink_link_state *state)
1706 {
1707 	/* nothing meaningful to do */
1708 }
1709 
axienet_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)1710 static void axienet_mac_link_down(struct phylink_config *config,
1711 				  unsigned int mode,
1712 				  phy_interface_t interface)
1713 {
1714 	/* nothing meaningful to do */
1715 }
1716 
axienet_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)1717 static void axienet_mac_link_up(struct phylink_config *config,
1718 				struct phy_device *phy,
1719 				unsigned int mode, phy_interface_t interface,
1720 				int speed, int duplex,
1721 				bool tx_pause, bool rx_pause)
1722 {
1723 	struct net_device *ndev = to_net_dev(config->dev);
1724 	struct axienet_local *lp = netdev_priv(ndev);
1725 	u32 emmc_reg, fcc_reg;
1726 
1727 	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1728 	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1729 
1730 	switch (speed) {
1731 	case SPEED_1000:
1732 		emmc_reg |= XAE_EMMC_LINKSPD_1000;
1733 		break;
1734 	case SPEED_100:
1735 		emmc_reg |= XAE_EMMC_LINKSPD_100;
1736 		break;
1737 	case SPEED_10:
1738 		emmc_reg |= XAE_EMMC_LINKSPD_10;
1739 		break;
1740 	default:
1741 		dev_err(&ndev->dev,
1742 			"Speed other than 10, 100 or 1Gbps is not supported\n");
1743 		break;
1744 	}
1745 
1746 	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1747 
1748 	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1749 	if (tx_pause)
1750 		fcc_reg |= XAE_FCC_FCTX_MASK;
1751 	else
1752 		fcc_reg &= ~XAE_FCC_FCTX_MASK;
1753 	if (rx_pause)
1754 		fcc_reg |= XAE_FCC_FCRX_MASK;
1755 	else
1756 		fcc_reg &= ~XAE_FCC_FCRX_MASK;
1757 	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1758 }
1759 
1760 static const struct phylink_mac_ops axienet_phylink_ops = {
1761 	.mac_select_pcs = axienet_mac_select_pcs,
1762 	.mac_config = axienet_mac_config,
1763 	.mac_link_down = axienet_mac_link_down,
1764 	.mac_link_up = axienet_mac_link_up,
1765 };
1766 
1767 /**
1768  * axienet_dma_err_handler - Work queue task for Axi DMA Error
1769  * @work:	pointer to work_struct
1770  *
1771  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1772  * Tx/Rx BDs.
1773  */
axienet_dma_err_handler(struct work_struct * work)1774 static void axienet_dma_err_handler(struct work_struct *work)
1775 {
1776 	u32 i;
1777 	u32 axienet_status;
1778 	struct axidma_bd *cur_p;
1779 	struct axienet_local *lp = container_of(work, struct axienet_local,
1780 						dma_err_task);
1781 	struct net_device *ndev = lp->ndev;
1782 
1783 	/* Don't bother if we are going to stop anyway */
1784 	if (READ_ONCE(lp->stopping))
1785 		return;
1786 
1787 	napi_disable(&lp->napi_tx);
1788 	napi_disable(&lp->napi_rx);
1789 
1790 	axienet_setoptions(ndev, lp->options &
1791 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1792 
1793 	axienet_dma_stop(lp);
1794 
1795 	for (i = 0; i < lp->tx_bd_num; i++) {
1796 		cur_p = &lp->tx_bd_v[i];
1797 		if (cur_p->cntrl) {
1798 			dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
1799 
1800 			dma_unmap_single(lp->dev, addr,
1801 					 (cur_p->cntrl &
1802 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1803 					 DMA_TO_DEVICE);
1804 		}
1805 		if (cur_p->skb)
1806 			dev_kfree_skb_irq(cur_p->skb);
1807 		cur_p->phys = 0;
1808 		cur_p->phys_msb = 0;
1809 		cur_p->cntrl = 0;
1810 		cur_p->status = 0;
1811 		cur_p->app0 = 0;
1812 		cur_p->app1 = 0;
1813 		cur_p->app2 = 0;
1814 		cur_p->app3 = 0;
1815 		cur_p->app4 = 0;
1816 		cur_p->skb = NULL;
1817 	}
1818 
1819 	for (i = 0; i < lp->rx_bd_num; i++) {
1820 		cur_p = &lp->rx_bd_v[i];
1821 		cur_p->status = 0;
1822 		cur_p->app0 = 0;
1823 		cur_p->app1 = 0;
1824 		cur_p->app2 = 0;
1825 		cur_p->app3 = 0;
1826 		cur_p->app4 = 0;
1827 	}
1828 
1829 	lp->tx_bd_ci = 0;
1830 	lp->tx_bd_tail = 0;
1831 	lp->rx_bd_ci = 0;
1832 
1833 	axienet_dma_start(lp);
1834 
1835 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1836 	axienet_status &= ~XAE_RCW1_RX_MASK;
1837 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1838 
1839 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1840 	if (axienet_status & XAE_INT_RXRJECT_MASK)
1841 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1842 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1843 		    XAE_INT_RECV_ERROR_MASK : 0);
1844 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1845 
1846 	/* Sync default options with HW but leave receiver and
1847 	 * transmitter disabled.
1848 	 */
1849 	axienet_setoptions(ndev, lp->options &
1850 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1851 	axienet_set_mac_address(ndev, NULL);
1852 	axienet_set_multicast_list(ndev);
1853 	napi_enable(&lp->napi_rx);
1854 	napi_enable(&lp->napi_tx);
1855 	axienet_setoptions(ndev, lp->options);
1856 }
1857 
1858 /**
1859  * axienet_probe - Axi Ethernet probe function.
1860  * @pdev:	Pointer to platform device structure.
1861  *
1862  * Return: 0, on success
1863  *	    Non-zero error value on failure.
1864  *
1865  * This is the probe routine for Axi Ethernet driver. This is called before
1866  * any other driver routines are invoked. It allocates and sets up the Ethernet
1867  * device. Parses through device tree and populates fields of
1868  * axienet_local. It registers the Ethernet device.
1869  */
axienet_probe(struct platform_device * pdev)1870 static int axienet_probe(struct platform_device *pdev)
1871 {
1872 	int ret;
1873 	struct device_node *np;
1874 	struct axienet_local *lp;
1875 	struct net_device *ndev;
1876 	struct resource *ethres;
1877 	u8 mac_addr[ETH_ALEN];
1878 	int addr_width = 32;
1879 	u32 value;
1880 
1881 	ndev = alloc_etherdev(sizeof(*lp));
1882 	if (!ndev)
1883 		return -ENOMEM;
1884 
1885 	platform_set_drvdata(pdev, ndev);
1886 
1887 	SET_NETDEV_DEV(ndev, &pdev->dev);
1888 	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1889 	ndev->features = NETIF_F_SG;
1890 	ndev->netdev_ops = &axienet_netdev_ops;
1891 	ndev->ethtool_ops = &axienet_ethtool_ops;
1892 
1893 	/* MTU range: 64 - 9000 */
1894 	ndev->min_mtu = 64;
1895 	ndev->max_mtu = XAE_JUMBO_MTU;
1896 
1897 	lp = netdev_priv(ndev);
1898 	lp->ndev = ndev;
1899 	lp->dev = &pdev->dev;
1900 	lp->options = XAE_OPTION_DEFAULTS;
1901 	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1902 	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1903 
1904 	u64_stats_init(&lp->rx_stat_sync);
1905 	u64_stats_init(&lp->tx_stat_sync);
1906 
1907 	netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll);
1908 	netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll);
1909 
1910 	lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
1911 	if (!lp->axi_clk) {
1912 		/* For backward compatibility, if named AXI clock is not present,
1913 		 * treat the first clock specified as the AXI clock.
1914 		 */
1915 		lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
1916 	}
1917 	if (IS_ERR(lp->axi_clk)) {
1918 		ret = PTR_ERR(lp->axi_clk);
1919 		goto free_netdev;
1920 	}
1921 	ret = clk_prepare_enable(lp->axi_clk);
1922 	if (ret) {
1923 		dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
1924 		goto free_netdev;
1925 	}
1926 
1927 	lp->misc_clks[0].id = "axis_clk";
1928 	lp->misc_clks[1].id = "ref_clk";
1929 	lp->misc_clks[2].id = "mgt_clk";
1930 
1931 	ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1932 	if (ret)
1933 		goto cleanup_clk;
1934 
1935 	ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1936 	if (ret)
1937 		goto cleanup_clk;
1938 
1939 	/* Map device registers */
1940 	lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ethres);
1941 	if (IS_ERR(lp->regs)) {
1942 		ret = PTR_ERR(lp->regs);
1943 		goto cleanup_clk;
1944 	}
1945 	lp->regs_start = ethres->start;
1946 
1947 	/* Setup checksum offload, but default to off if not specified */
1948 	lp->features = 0;
1949 
1950 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1951 	if (!ret) {
1952 		switch (value) {
1953 		case 1:
1954 			lp->csum_offload_on_tx_path =
1955 				XAE_FEATURE_PARTIAL_TX_CSUM;
1956 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1957 			/* Can checksum TCP/UDP over IPv4. */
1958 			ndev->features |= NETIF_F_IP_CSUM;
1959 			break;
1960 		case 2:
1961 			lp->csum_offload_on_tx_path =
1962 				XAE_FEATURE_FULL_TX_CSUM;
1963 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1964 			/* Can checksum TCP/UDP over IPv4. */
1965 			ndev->features |= NETIF_F_IP_CSUM;
1966 			break;
1967 		default:
1968 			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1969 		}
1970 	}
1971 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1972 	if (!ret) {
1973 		switch (value) {
1974 		case 1:
1975 			lp->csum_offload_on_rx_path =
1976 				XAE_FEATURE_PARTIAL_RX_CSUM;
1977 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1978 			break;
1979 		case 2:
1980 			lp->csum_offload_on_rx_path =
1981 				XAE_FEATURE_FULL_RX_CSUM;
1982 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1983 			break;
1984 		default:
1985 			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1986 		}
1987 	}
1988 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1989 	 * a larger Rx/Tx Memory. Typically, the size must be large so that
1990 	 * we can enable jumbo option and start supporting jumbo frames.
1991 	 * Here we check for memory allocated for Rx/Tx in the hardware from
1992 	 * the device-tree and accordingly set flags.
1993 	 */
1994 	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1995 
1996 	lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
1997 						   "xlnx,switch-x-sgmii");
1998 
1999 	/* Start with the proprietary, and broken phy_type */
2000 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
2001 	if (!ret) {
2002 		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
2003 		switch (value) {
2004 		case XAE_PHY_TYPE_MII:
2005 			lp->phy_mode = PHY_INTERFACE_MODE_MII;
2006 			break;
2007 		case XAE_PHY_TYPE_GMII:
2008 			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
2009 			break;
2010 		case XAE_PHY_TYPE_RGMII_2_0:
2011 			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
2012 			break;
2013 		case XAE_PHY_TYPE_SGMII:
2014 			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
2015 			break;
2016 		case XAE_PHY_TYPE_1000BASE_X:
2017 			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
2018 			break;
2019 		default:
2020 			ret = -EINVAL;
2021 			goto cleanup_clk;
2022 		}
2023 	} else {
2024 		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
2025 		if (ret)
2026 			goto cleanup_clk;
2027 	}
2028 	if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
2029 	    lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
2030 		dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
2031 		ret = -EINVAL;
2032 		goto cleanup_clk;
2033 	}
2034 
2035 	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
2036 	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
2037 	if (np) {
2038 		struct resource dmares;
2039 
2040 		ret = of_address_to_resource(np, 0, &dmares);
2041 		if (ret) {
2042 			dev_err(&pdev->dev,
2043 				"unable to get DMA resource\n");
2044 			of_node_put(np);
2045 			goto cleanup_clk;
2046 		}
2047 		lp->dma_regs = devm_ioremap_resource(&pdev->dev,
2048 						     &dmares);
2049 		lp->rx_irq = irq_of_parse_and_map(np, 1);
2050 		lp->tx_irq = irq_of_parse_and_map(np, 0);
2051 		of_node_put(np);
2052 		lp->eth_irq = platform_get_irq_optional(pdev, 0);
2053 	} else {
2054 		/* Check for these resources directly on the Ethernet node. */
2055 		lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2056 		lp->rx_irq = platform_get_irq(pdev, 1);
2057 		lp->tx_irq = platform_get_irq(pdev, 0);
2058 		lp->eth_irq = platform_get_irq_optional(pdev, 2);
2059 	}
2060 	if (IS_ERR(lp->dma_regs)) {
2061 		dev_err(&pdev->dev, "could not map DMA regs\n");
2062 		ret = PTR_ERR(lp->dma_regs);
2063 		goto cleanup_clk;
2064 	}
2065 	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
2066 		dev_err(&pdev->dev, "could not determine irqs\n");
2067 		ret = -ENOMEM;
2068 		goto cleanup_clk;
2069 	}
2070 
2071 	/* Reset core now that clocks are enabled, prior to accessing MDIO */
2072 	ret = __axienet_device_reset(lp);
2073 	if (ret)
2074 		goto cleanup_clk;
2075 
2076 	/* Autodetect the need for 64-bit DMA pointers.
2077 	 * When the IP is configured for a bus width bigger than 32 bits,
2078 	 * writing the MSB registers is mandatory, even if they are all 0.
2079 	 * We can detect this case by writing all 1's to one such register
2080 	 * and see if that sticks: when the IP is configured for 32 bits
2081 	 * only, those registers are RES0.
2082 	 * Those MSB registers were introduced in IP v7.1, which we check first.
2083 	 */
2084 	if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2085 		void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2086 
2087 		iowrite32(0x0, desc);
2088 		if (ioread32(desc) == 0) {	/* sanity check */
2089 			iowrite32(0xffffffff, desc);
2090 			if (ioread32(desc) > 0) {
2091 				lp->features |= XAE_FEATURE_DMA_64BIT;
2092 				addr_width = 64;
2093 				dev_info(&pdev->dev,
2094 					 "autodetected 64-bit DMA range\n");
2095 			}
2096 			iowrite32(0x0, desc);
2097 		}
2098 	}
2099 	if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
2100 		dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n");
2101 		ret = -EINVAL;
2102 		goto cleanup_clk;
2103 	}
2104 
2105 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2106 	if (ret) {
2107 		dev_err(&pdev->dev, "No suitable DMA available\n");
2108 		goto cleanup_clk;
2109 	}
2110 
2111 	/* Check for Ethernet core IRQ (optional) */
2112 	if (lp->eth_irq <= 0)
2113 		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2114 
2115 	/* Retrieve the MAC address */
2116 	ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2117 	if (!ret) {
2118 		axienet_set_mac_address(ndev, mac_addr);
2119 	} else {
2120 		dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2121 			 ret);
2122 		axienet_set_mac_address(ndev, NULL);
2123 	}
2124 
2125 	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2126 	lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
2127 	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2128 	lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
2129 
2130 	ret = axienet_mdio_setup(lp);
2131 	if (ret)
2132 		dev_warn(&pdev->dev,
2133 			 "error registering MDIO bus: %d\n", ret);
2134 
2135 	if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2136 	    lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2137 		np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
2138 		if (!np) {
2139 			/* Deprecated: Always use "pcs-handle" for pcs_phy.
2140 			 * Falling back to "phy-handle" here is only for
2141 			 * backward compatibility with old device trees.
2142 			 */
2143 			np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2144 		}
2145 		if (!np) {
2146 			dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
2147 			ret = -EINVAL;
2148 			goto cleanup_mdio;
2149 		}
2150 		lp->pcs_phy = of_mdio_find_device(np);
2151 		if (!lp->pcs_phy) {
2152 			ret = -EPROBE_DEFER;
2153 			of_node_put(np);
2154 			goto cleanup_mdio;
2155 		}
2156 		of_node_put(np);
2157 		lp->pcs.ops = &axienet_pcs_ops;
2158 		lp->pcs.neg_mode = true;
2159 		lp->pcs.poll = true;
2160 	}
2161 
2162 	lp->phylink_config.dev = &ndev->dev;
2163 	lp->phylink_config.type = PHYLINK_NETDEV;
2164 	lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
2165 		MAC_10FD | MAC_100FD | MAC_1000FD;
2166 
2167 	__set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
2168 	if (lp->switch_x_sgmii) {
2169 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2170 			  lp->phylink_config.supported_interfaces);
2171 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2172 			  lp->phylink_config.supported_interfaces);
2173 	}
2174 
2175 	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2176 				     lp->phy_mode,
2177 				     &axienet_phylink_ops);
2178 	if (IS_ERR(lp->phylink)) {
2179 		ret = PTR_ERR(lp->phylink);
2180 		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2181 		goto cleanup_mdio;
2182 	}
2183 
2184 	ret = register_netdev(lp->ndev);
2185 	if (ret) {
2186 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2187 		goto cleanup_phylink;
2188 	}
2189 
2190 	return 0;
2191 
2192 cleanup_phylink:
2193 	phylink_destroy(lp->phylink);
2194 
2195 cleanup_mdio:
2196 	if (lp->pcs_phy)
2197 		put_device(&lp->pcs_phy->dev);
2198 	if (lp->mii_bus)
2199 		axienet_mdio_teardown(lp);
2200 cleanup_clk:
2201 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2202 	clk_disable_unprepare(lp->axi_clk);
2203 
2204 free_netdev:
2205 	free_netdev(ndev);
2206 
2207 	return ret;
2208 }
2209 
axienet_remove(struct platform_device * pdev)2210 static int axienet_remove(struct platform_device *pdev)
2211 {
2212 	struct net_device *ndev = platform_get_drvdata(pdev);
2213 	struct axienet_local *lp = netdev_priv(ndev);
2214 
2215 	unregister_netdev(ndev);
2216 
2217 	if (lp->phylink)
2218 		phylink_destroy(lp->phylink);
2219 
2220 	if (lp->pcs_phy)
2221 		put_device(&lp->pcs_phy->dev);
2222 
2223 	axienet_mdio_teardown(lp);
2224 
2225 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2226 	clk_disable_unprepare(lp->axi_clk);
2227 
2228 	free_netdev(ndev);
2229 
2230 	return 0;
2231 }
2232 
axienet_shutdown(struct platform_device * pdev)2233 static void axienet_shutdown(struct platform_device *pdev)
2234 {
2235 	struct net_device *ndev = platform_get_drvdata(pdev);
2236 
2237 	rtnl_lock();
2238 	netif_device_detach(ndev);
2239 
2240 	if (netif_running(ndev))
2241 		dev_close(ndev);
2242 
2243 	rtnl_unlock();
2244 }
2245 
axienet_suspend(struct device * dev)2246 static int axienet_suspend(struct device *dev)
2247 {
2248 	struct net_device *ndev = dev_get_drvdata(dev);
2249 
2250 	if (!netif_running(ndev))
2251 		return 0;
2252 
2253 	netif_device_detach(ndev);
2254 
2255 	rtnl_lock();
2256 	axienet_stop(ndev);
2257 	rtnl_unlock();
2258 
2259 	return 0;
2260 }
2261 
axienet_resume(struct device * dev)2262 static int axienet_resume(struct device *dev)
2263 {
2264 	struct net_device *ndev = dev_get_drvdata(dev);
2265 
2266 	if (!netif_running(ndev))
2267 		return 0;
2268 
2269 	rtnl_lock();
2270 	axienet_open(ndev);
2271 	rtnl_unlock();
2272 
2273 	netif_device_attach(ndev);
2274 
2275 	return 0;
2276 }
2277 
2278 static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops,
2279 				axienet_suspend, axienet_resume);
2280 
2281 static struct platform_driver axienet_driver = {
2282 	.probe = axienet_probe,
2283 	.remove = axienet_remove,
2284 	.shutdown = axienet_shutdown,
2285 	.driver = {
2286 		 .name = "xilinx_axienet",
2287 		 .pm = &axienet_pm_ops,
2288 		 .of_match_table = axienet_of_match,
2289 	},
2290 };
2291 
2292 module_platform_driver(axienet_driver);
2293 
2294 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2295 MODULE_AUTHOR("Xilinx");
2296 MODULE_LICENSE("GPL");
2297