1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "accel/tcg/cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/page-protection.h"
25 #include "exec/memory.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
28 #include "exec/tb-flush.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "exec/mmu-access-type.h"
32 #include "exec/tlb-common.h"
33 #include "exec/vaddr.h"
34 #include "tcg/tcg.h"
35 #include "qemu/error-report.h"
36 #include "exec/log.h"
37 #include "exec/helper-proto-common.h"
38 #include "qemu/atomic.h"
39 #include "qemu/atomic128.h"
40 #include "tb-internal.h"
41 #include "trace.h"
42 #include "tb-hash.h"
43 #include "tb-internal.h"
44 #include "internal-common.h"
45 #include "internal-target.h"
46 #ifdef CONFIG_PLUGIN
47 #include "qemu/plugin-memory.h"
48 #endif
49 #include "tcg/tcg-ldst.h"
50
51 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
52 /* #define DEBUG_TLB */
53 /* #define DEBUG_TLB_LOG */
54
55 #ifdef DEBUG_TLB
56 # define DEBUG_TLB_GATE 1
57 # ifdef DEBUG_TLB_LOG
58 # define DEBUG_TLB_LOG_GATE 1
59 # else
60 # define DEBUG_TLB_LOG_GATE 0
61 # endif
62 #else
63 # define DEBUG_TLB_GATE 0
64 # define DEBUG_TLB_LOG_GATE 0
65 #endif
66
67 #define tlb_debug(fmt, ...) do { \
68 if (DEBUG_TLB_LOG_GATE) { \
69 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
70 ## __VA_ARGS__); \
71 } else if (DEBUG_TLB_GATE) { \
72 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
73 } \
74 } while (0)
75
76 #define assert_cpu_is_self(cpu) do { \
77 if (DEBUG_TLB_GATE) { \
78 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
79 } \
80 } while (0)
81
82 /* run_on_cpu_data.target_ptr should always be big enough for a
83 * vaddr even on 32 bit builds
84 */
85 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
86
87 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
88 */
89 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
90 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
91
tlb_n_entries(CPUTLBDescFast * fast)92 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
93 {
94 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
95 }
96
sizeof_tlb(CPUTLBDescFast * fast)97 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
98 {
99 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
100 }
101
tlb_read_idx(const CPUTLBEntry * entry,MMUAccessType access_type)102 static inline uint64_t tlb_read_idx(const CPUTLBEntry *entry,
103 MMUAccessType access_type)
104 {
105 /* Do not rearrange the CPUTLBEntry structure members. */
106 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_read) !=
107 MMU_DATA_LOAD * sizeof(uintptr_t));
108 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_write) !=
109 MMU_DATA_STORE * sizeof(uintptr_t));
110 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_code) !=
111 MMU_INST_FETCH * sizeof(uintptr_t));
112
113 const uintptr_t *ptr = &entry->addr_idx[access_type];
114 /* ofs might correspond to .addr_write, so use qatomic_read */
115 return qatomic_read(ptr);
116 }
117
tlb_addr_write(const CPUTLBEntry * entry)118 static inline uint64_t tlb_addr_write(const CPUTLBEntry *entry)
119 {
120 return tlb_read_idx(entry, MMU_DATA_STORE);
121 }
122
123 /* Find the TLB index corresponding to the mmu_idx + address pair. */
tlb_index(CPUState * cpu,uintptr_t mmu_idx,vaddr addr)124 static inline uintptr_t tlb_index(CPUState *cpu, uintptr_t mmu_idx,
125 vaddr addr)
126 {
127 uintptr_t size_mask = cpu->neg.tlb.f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS;
128
129 return (addr >> TARGET_PAGE_BITS) & size_mask;
130 }
131
132 /* Find the TLB entry corresponding to the mmu_idx + address pair. */
tlb_entry(CPUState * cpu,uintptr_t mmu_idx,vaddr addr)133 static inline CPUTLBEntry *tlb_entry(CPUState *cpu, uintptr_t mmu_idx,
134 vaddr addr)
135 {
136 return &cpu->neg.tlb.f[mmu_idx].table[tlb_index(cpu, mmu_idx, addr)];
137 }
138
tlb_window_reset(CPUTLBDesc * desc,int64_t ns,size_t max_entries)139 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
140 size_t max_entries)
141 {
142 desc->window_begin_ns = ns;
143 desc->window_max_entries = max_entries;
144 }
145
tb_jmp_cache_clear_page(CPUState * cpu,vaddr page_addr)146 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
147 {
148 CPUJumpCache *jc = cpu->tb_jmp_cache;
149 int i, i0;
150
151 if (unlikely(!jc)) {
152 return;
153 }
154
155 i0 = tb_jmp_cache_hash_page(page_addr);
156 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
157 qatomic_set(&jc->array[i0 + i].tb, NULL);
158 }
159 }
160
161 /**
162 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
163 * @desc: The CPUTLBDesc portion of the TLB
164 * @fast: The CPUTLBDescFast portion of the same TLB
165 *
166 * Called with tlb_lock_held.
167 *
168 * We have two main constraints when resizing a TLB: (1) we only resize it
169 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
170 * the array or unnecessarily flushing it), which means we do not control how
171 * frequently the resizing can occur; (2) we don't have access to the guest's
172 * future scheduling decisions, and therefore have to decide the magnitude of
173 * the resize based on past observations.
174 *
175 * In general, a memory-hungry process can benefit greatly from an appropriately
176 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
177 * we just have to make the TLB as large as possible; while an oversized TLB
178 * results in minimal TLB miss rates, it also takes longer to be flushed
179 * (flushes can be _very_ frequent), and the reduced locality can also hurt
180 * performance.
181 *
182 * To achieve near-optimal performance for all kinds of workloads, we:
183 *
184 * 1. Aggressively increase the size of the TLB when the use rate of the
185 * TLB being flushed is high, since it is likely that in the near future this
186 * memory-hungry process will execute again, and its memory hungriness will
187 * probably be similar.
188 *
189 * 2. Slowly reduce the size of the TLB as the use rate declines over a
190 * reasonably large time window. The rationale is that if in such a time window
191 * we have not observed a high TLB use rate, it is likely that we won't observe
192 * it in the near future. In that case, once a time window expires we downsize
193 * the TLB to match the maximum use rate observed in the window.
194 *
195 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
196 * since in that range performance is likely near-optimal. Recall that the TLB
197 * is direct mapped, so we want the use rate to be low (or at least not too
198 * high), since otherwise we are likely to have a significant amount of
199 * conflict misses.
200 */
tlb_mmu_resize_locked(CPUTLBDesc * desc,CPUTLBDescFast * fast,int64_t now)201 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
202 int64_t now)
203 {
204 size_t old_size = tlb_n_entries(fast);
205 size_t rate;
206 size_t new_size = old_size;
207 int64_t window_len_ms = 100;
208 int64_t window_len_ns = window_len_ms * 1000 * 1000;
209 bool window_expired = now > desc->window_begin_ns + window_len_ns;
210
211 if (desc->n_used_entries > desc->window_max_entries) {
212 desc->window_max_entries = desc->n_used_entries;
213 }
214 rate = desc->window_max_entries * 100 / old_size;
215
216 if (rate > 70) {
217 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
218 } else if (rate < 30 && window_expired) {
219 size_t ceil = pow2ceil(desc->window_max_entries);
220 size_t expected_rate = desc->window_max_entries * 100 / ceil;
221
222 /*
223 * Avoid undersizing when the max number of entries seen is just below
224 * a pow2. For instance, if max_entries == 1025, the expected use rate
225 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
226 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
227 * later. Thus, make sure that the expected use rate remains below 70%.
228 * (and since we double the size, that means the lowest rate we'd
229 * expect to get is 35%, which is still in the 30-70% range where
230 * we consider that the size is appropriate.)
231 */
232 if (expected_rate > 70) {
233 ceil *= 2;
234 }
235 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
236 }
237
238 if (new_size == old_size) {
239 if (window_expired) {
240 tlb_window_reset(desc, now, desc->n_used_entries);
241 }
242 return;
243 }
244
245 g_free(fast->table);
246 g_free(desc->fulltlb);
247
248 tlb_window_reset(desc, now, 0);
249 /* desc->n_used_entries is cleared by the caller */
250 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
251 fast->table = g_try_new(CPUTLBEntry, new_size);
252 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
253
254 /*
255 * If the allocations fail, try smaller sizes. We just freed some
256 * memory, so going back to half of new_size has a good chance of working.
257 * Increased memory pressure elsewhere in the system might cause the
258 * allocations to fail though, so we progressively reduce the allocation
259 * size, aborting if we cannot even allocate the smallest TLB we support.
260 */
261 while (fast->table == NULL || desc->fulltlb == NULL) {
262 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
263 error_report("%s: %s", __func__, strerror(errno));
264 abort();
265 }
266 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
267 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
268
269 g_free(fast->table);
270 g_free(desc->fulltlb);
271 fast->table = g_try_new(CPUTLBEntry, new_size);
272 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
273 }
274 }
275
tlb_mmu_flush_locked(CPUTLBDesc * desc,CPUTLBDescFast * fast)276 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
277 {
278 desc->n_used_entries = 0;
279 desc->large_page_addr = -1;
280 desc->large_page_mask = -1;
281 desc->vindex = 0;
282 memset(fast->table, -1, sizeof_tlb(fast));
283 memset(desc->vtable, -1, sizeof(desc->vtable));
284 }
285
tlb_flush_one_mmuidx_locked(CPUState * cpu,int mmu_idx,int64_t now)286 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx,
287 int64_t now)
288 {
289 CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx];
290 CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx];
291
292 tlb_mmu_resize_locked(desc, fast, now);
293 tlb_mmu_flush_locked(desc, fast);
294 }
295
tlb_mmu_init(CPUTLBDesc * desc,CPUTLBDescFast * fast,int64_t now)296 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
297 {
298 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
299
300 tlb_window_reset(desc, now, 0);
301 desc->n_used_entries = 0;
302 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
303 fast->table = g_new(CPUTLBEntry, n_entries);
304 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
305 tlb_mmu_flush_locked(desc, fast);
306 }
307
tlb_n_used_entries_inc(CPUState * cpu,uintptr_t mmu_idx)308 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx)
309 {
310 cpu->neg.tlb.d[mmu_idx].n_used_entries++;
311 }
312
tlb_n_used_entries_dec(CPUState * cpu,uintptr_t mmu_idx)313 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx)
314 {
315 cpu->neg.tlb.d[mmu_idx].n_used_entries--;
316 }
317
tlb_init(CPUState * cpu)318 void tlb_init(CPUState *cpu)
319 {
320 int64_t now = get_clock_realtime();
321 int i;
322
323 qemu_spin_init(&cpu->neg.tlb.c.lock);
324
325 /* All tlbs are initialized flushed. */
326 cpu->neg.tlb.c.dirty = 0;
327
328 for (i = 0; i < NB_MMU_MODES; i++) {
329 tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now);
330 }
331 }
332
tlb_destroy(CPUState * cpu)333 void tlb_destroy(CPUState *cpu)
334 {
335 int i;
336
337 qemu_spin_destroy(&cpu->neg.tlb.c.lock);
338 for (i = 0; i < NB_MMU_MODES; i++) {
339 CPUTLBDesc *desc = &cpu->neg.tlb.d[i];
340 CPUTLBDescFast *fast = &cpu->neg.tlb.f[i];
341
342 g_free(fast->table);
343 g_free(desc->fulltlb);
344 }
345 }
346
347 /* flush_all_helper: run fn across all cpus
348 *
349 * If the wait flag is set then the src cpu's helper will be queued as
350 * "safe" work and the loop exited creating a synchronisation point
351 * where all queued work will be finished before execution starts
352 * again.
353 */
flush_all_helper(CPUState * src,run_on_cpu_func fn,run_on_cpu_data d)354 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
355 run_on_cpu_data d)
356 {
357 CPUState *cpu;
358
359 CPU_FOREACH(cpu) {
360 if (cpu != src) {
361 async_run_on_cpu(cpu, fn, d);
362 }
363 }
364 }
365
tlb_flush_by_mmuidx_async_work(CPUState * cpu,run_on_cpu_data data)366 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
367 {
368 uint16_t asked = data.host_int;
369 uint16_t all_dirty, work, to_clean;
370 int64_t now = get_clock_realtime();
371
372 assert_cpu_is_self(cpu);
373
374 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
375
376 qemu_spin_lock(&cpu->neg.tlb.c.lock);
377
378 all_dirty = cpu->neg.tlb.c.dirty;
379 to_clean = asked & all_dirty;
380 all_dirty &= ~to_clean;
381 cpu->neg.tlb.c.dirty = all_dirty;
382
383 for (work = to_clean; work != 0; work &= work - 1) {
384 int mmu_idx = ctz32(work);
385 tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now);
386 }
387
388 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
389
390 tcg_flush_jmp_cache(cpu);
391
392 if (to_clean == ALL_MMUIDX_BITS) {
393 qatomic_set(&cpu->neg.tlb.c.full_flush_count,
394 cpu->neg.tlb.c.full_flush_count + 1);
395 } else {
396 qatomic_set(&cpu->neg.tlb.c.part_flush_count,
397 cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean));
398 if (to_clean != asked) {
399 qatomic_set(&cpu->neg.tlb.c.elide_flush_count,
400 cpu->neg.tlb.c.elide_flush_count +
401 ctpop16(asked & ~to_clean));
402 }
403 }
404 }
405
tlb_flush_by_mmuidx(CPUState * cpu,uint16_t idxmap)406 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
407 {
408 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
409
410 assert_cpu_is_self(cpu);
411
412 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
413 }
414
tlb_flush(CPUState * cpu)415 void tlb_flush(CPUState *cpu)
416 {
417 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
418 }
419
tlb_flush_by_mmuidx_all_cpus_synced(CPUState * src_cpu,uint16_t idxmap)420 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
421 {
422 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
423
424 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
425
426 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
427 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
428 }
429
tlb_flush_all_cpus_synced(CPUState * src_cpu)430 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
431 {
432 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
433 }
434
tlb_hit_page_mask_anyprot(CPUTLBEntry * tlb_entry,vaddr page,vaddr mask)435 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
436 vaddr page, vaddr mask)
437 {
438 page &= mask;
439 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
440
441 return (page == (tlb_entry->addr_read & mask) ||
442 page == (tlb_addr_write(tlb_entry) & mask) ||
443 page == (tlb_entry->addr_code & mask));
444 }
445
tlb_hit_page_anyprot(CPUTLBEntry * tlb_entry,vaddr page)446 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
447 {
448 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
449 }
450
451 /**
452 * tlb_entry_is_empty - return true if the entry is not in use
453 * @te: pointer to CPUTLBEntry
454 */
tlb_entry_is_empty(const CPUTLBEntry * te)455 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
456 {
457 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
458 }
459
460 /* Called with tlb_c.lock held */
tlb_flush_entry_mask_locked(CPUTLBEntry * tlb_entry,vaddr page,vaddr mask)461 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
462 vaddr page,
463 vaddr mask)
464 {
465 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
466 memset(tlb_entry, -1, sizeof(*tlb_entry));
467 return true;
468 }
469 return false;
470 }
471
tlb_flush_entry_locked(CPUTLBEntry * tlb_entry,vaddr page)472 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
473 {
474 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
475 }
476
477 /* Called with tlb_c.lock held */
tlb_flush_vtlb_page_mask_locked(CPUState * cpu,int mmu_idx,vaddr page,vaddr mask)478 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx,
479 vaddr page,
480 vaddr mask)
481 {
482 CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx];
483 int k;
484
485 assert_cpu_is_self(cpu);
486 for (k = 0; k < CPU_VTLB_SIZE; k++) {
487 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
488 tlb_n_used_entries_dec(cpu, mmu_idx);
489 }
490 }
491 }
492
tlb_flush_vtlb_page_locked(CPUState * cpu,int mmu_idx,vaddr page)493 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx,
494 vaddr page)
495 {
496 tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1);
497 }
498
tlb_flush_page_locked(CPUState * cpu,int midx,vaddr page)499 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page)
500 {
501 vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr;
502 vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask;
503
504 /* Check if we need to flush due to large pages. */
505 if ((page & lp_mask) == lp_addr) {
506 tlb_debug("forcing full flush midx %d (%016"
507 VADDR_PRIx "/%016" VADDR_PRIx ")\n",
508 midx, lp_addr, lp_mask);
509 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
510 } else {
511 if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) {
512 tlb_n_used_entries_dec(cpu, midx);
513 }
514 tlb_flush_vtlb_page_locked(cpu, midx, page);
515 }
516 }
517
518 /**
519 * tlb_flush_page_by_mmuidx_async_0:
520 * @cpu: cpu on which to flush
521 * @addr: page of virtual address to flush
522 * @idxmap: set of mmu_idx to flush
523 *
524 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
525 * at @addr from the tlbs indicated by @idxmap from @cpu.
526 */
tlb_flush_page_by_mmuidx_async_0(CPUState * cpu,vaddr addr,uint16_t idxmap)527 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
528 vaddr addr,
529 uint16_t idxmap)
530 {
531 int mmu_idx;
532
533 assert_cpu_is_self(cpu);
534
535 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
536
537 qemu_spin_lock(&cpu->neg.tlb.c.lock);
538 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
539 if ((idxmap >> mmu_idx) & 1) {
540 tlb_flush_page_locked(cpu, mmu_idx, addr);
541 }
542 }
543 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
544
545 /*
546 * Discard jump cache entries for any tb which might potentially
547 * overlap the flushed page, which includes the previous.
548 */
549 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
550 tb_jmp_cache_clear_page(cpu, addr);
551 }
552
553 /**
554 * tlb_flush_page_by_mmuidx_async_1:
555 * @cpu: cpu on which to flush
556 * @data: encoded addr + idxmap
557 *
558 * Helper for tlb_flush_page_by_mmuidx and friends, called through
559 * async_run_on_cpu. The idxmap parameter is encoded in the page
560 * offset of the target_ptr field. This limits the set of mmu_idx
561 * that can be passed via this method.
562 */
tlb_flush_page_by_mmuidx_async_1(CPUState * cpu,run_on_cpu_data data)563 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
564 run_on_cpu_data data)
565 {
566 vaddr addr_and_idxmap = data.target_ptr;
567 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
568 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
569
570 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
571 }
572
573 typedef struct {
574 vaddr addr;
575 uint16_t idxmap;
576 } TLBFlushPageByMMUIdxData;
577
578 /**
579 * tlb_flush_page_by_mmuidx_async_2:
580 * @cpu: cpu on which to flush
581 * @data: allocated addr + idxmap
582 *
583 * Helper for tlb_flush_page_by_mmuidx and friends, called through
584 * async_run_on_cpu. The addr+idxmap parameters are stored in a
585 * TLBFlushPageByMMUIdxData structure that has been allocated
586 * specifically for this helper. Free the structure when done.
587 */
tlb_flush_page_by_mmuidx_async_2(CPUState * cpu,run_on_cpu_data data)588 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
589 run_on_cpu_data data)
590 {
591 TLBFlushPageByMMUIdxData *d = data.host_ptr;
592
593 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
594 g_free(d);
595 }
596
tlb_flush_page_by_mmuidx(CPUState * cpu,vaddr addr,uint16_t idxmap)597 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
598 {
599 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
600
601 assert_cpu_is_self(cpu);
602
603 /* This should already be page aligned */
604 addr &= TARGET_PAGE_MASK;
605
606 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
607 }
608
tlb_flush_page(CPUState * cpu,vaddr addr)609 void tlb_flush_page(CPUState *cpu, vaddr addr)
610 {
611 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
612 }
613
tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState * src_cpu,vaddr addr,uint16_t idxmap)614 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
615 vaddr addr,
616 uint16_t idxmap)
617 {
618 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
619
620 /* This should already be page aligned */
621 addr &= TARGET_PAGE_MASK;
622
623 /*
624 * Allocate memory to hold addr+idxmap only when needed.
625 * See tlb_flush_page_by_mmuidx for details.
626 */
627 if (idxmap < TARGET_PAGE_SIZE) {
628 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
629 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
630 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
631 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
632 } else {
633 CPUState *dst_cpu;
634 TLBFlushPageByMMUIdxData *d;
635
636 /* Allocate a separate data block for each destination cpu. */
637 CPU_FOREACH(dst_cpu) {
638 if (dst_cpu != src_cpu) {
639 d = g_new(TLBFlushPageByMMUIdxData, 1);
640 d->addr = addr;
641 d->idxmap = idxmap;
642 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
643 RUN_ON_CPU_HOST_PTR(d));
644 }
645 }
646
647 d = g_new(TLBFlushPageByMMUIdxData, 1);
648 d->addr = addr;
649 d->idxmap = idxmap;
650 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
651 RUN_ON_CPU_HOST_PTR(d));
652 }
653 }
654
tlb_flush_page_all_cpus_synced(CPUState * src,vaddr addr)655 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
656 {
657 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
658 }
659
tlb_flush_range_locked(CPUState * cpu,int midx,vaddr addr,vaddr len,unsigned bits)660 static void tlb_flush_range_locked(CPUState *cpu, int midx,
661 vaddr addr, vaddr len,
662 unsigned bits)
663 {
664 CPUTLBDesc *d = &cpu->neg.tlb.d[midx];
665 CPUTLBDescFast *f = &cpu->neg.tlb.f[midx];
666 vaddr mask = MAKE_64BIT_MASK(0, bits);
667
668 /*
669 * If @bits is smaller than the tlb size, there may be multiple entries
670 * within the TLB; otherwise all addresses that match under @mask hit
671 * the same TLB entry.
672 * TODO: Perhaps allow bits to be a few bits less than the size.
673 * For now, just flush the entire TLB.
674 *
675 * If @len is larger than the tlb size, then it will take longer to
676 * test all of the entries in the TLB than it will to flush it all.
677 */
678 if (mask < f->mask || len > f->mask) {
679 tlb_debug("forcing full flush midx %d ("
680 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
681 midx, addr, mask, len);
682 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
683 return;
684 }
685
686 /*
687 * Check if we need to flush due to large pages.
688 * Because large_page_mask contains all 1's from the msb,
689 * we only need to test the end of the range.
690 */
691 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
692 tlb_debug("forcing full flush midx %d ("
693 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
694 midx, d->large_page_addr, d->large_page_mask);
695 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
696 return;
697 }
698
699 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
700 vaddr page = addr + i;
701 CPUTLBEntry *entry = tlb_entry(cpu, midx, page);
702
703 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
704 tlb_n_used_entries_dec(cpu, midx);
705 }
706 tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask);
707 }
708 }
709
710 typedef struct {
711 vaddr addr;
712 vaddr len;
713 uint16_t idxmap;
714 uint16_t bits;
715 } TLBFlushRangeData;
716
tlb_flush_range_by_mmuidx_async_0(CPUState * cpu,TLBFlushRangeData d)717 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
718 TLBFlushRangeData d)
719 {
720 int mmu_idx;
721
722 assert_cpu_is_self(cpu);
723
724 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
725 d.addr, d.bits, d.len, d.idxmap);
726
727 qemu_spin_lock(&cpu->neg.tlb.c.lock);
728 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
729 if ((d.idxmap >> mmu_idx) & 1) {
730 tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits);
731 }
732 }
733 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
734
735 /*
736 * If the length is larger than the jump cache size, then it will take
737 * longer to clear each entry individually than it will to clear it all.
738 */
739 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
740 tcg_flush_jmp_cache(cpu);
741 return;
742 }
743
744 /*
745 * Discard jump cache entries for any tb which might potentially
746 * overlap the flushed pages, which includes the previous.
747 */
748 d.addr -= TARGET_PAGE_SIZE;
749 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
750 tb_jmp_cache_clear_page(cpu, d.addr);
751 d.addr += TARGET_PAGE_SIZE;
752 }
753 }
754
tlb_flush_range_by_mmuidx_async_1(CPUState * cpu,run_on_cpu_data data)755 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
756 run_on_cpu_data data)
757 {
758 TLBFlushRangeData *d = data.host_ptr;
759 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
760 g_free(d);
761 }
762
tlb_flush_range_by_mmuidx(CPUState * cpu,vaddr addr,vaddr len,uint16_t idxmap,unsigned bits)763 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
764 vaddr len, uint16_t idxmap,
765 unsigned bits)
766 {
767 TLBFlushRangeData d;
768
769 assert_cpu_is_self(cpu);
770
771 /*
772 * If all bits are significant, and len is small,
773 * this devolves to tlb_flush_page.
774 */
775 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
776 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
777 return;
778 }
779 /* If no page bits are significant, this devolves to tlb_flush. */
780 if (bits < TARGET_PAGE_BITS) {
781 tlb_flush_by_mmuidx(cpu, idxmap);
782 return;
783 }
784
785 /* This should already be page aligned */
786 d.addr = addr & TARGET_PAGE_MASK;
787 d.len = len;
788 d.idxmap = idxmap;
789 d.bits = bits;
790
791 tlb_flush_range_by_mmuidx_async_0(cpu, d);
792 }
793
tlb_flush_page_bits_by_mmuidx(CPUState * cpu,vaddr addr,uint16_t idxmap,unsigned bits)794 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
795 uint16_t idxmap, unsigned bits)
796 {
797 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
798 }
799
tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState * src_cpu,vaddr addr,vaddr len,uint16_t idxmap,unsigned bits)800 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
801 vaddr addr,
802 vaddr len,
803 uint16_t idxmap,
804 unsigned bits)
805 {
806 TLBFlushRangeData d, *p;
807 CPUState *dst_cpu;
808
809 /*
810 * If all bits are significant, and len is small,
811 * this devolves to tlb_flush_page.
812 */
813 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
814 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
815 return;
816 }
817 /* If no page bits are significant, this devolves to tlb_flush. */
818 if (bits < TARGET_PAGE_BITS) {
819 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
820 return;
821 }
822
823 /* This should already be page aligned */
824 d.addr = addr & TARGET_PAGE_MASK;
825 d.len = len;
826 d.idxmap = idxmap;
827 d.bits = bits;
828
829 /* Allocate a separate data block for each destination cpu. */
830 CPU_FOREACH(dst_cpu) {
831 if (dst_cpu != src_cpu) {
832 p = g_memdup(&d, sizeof(d));
833 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
834 RUN_ON_CPU_HOST_PTR(p));
835 }
836 }
837
838 p = g_memdup(&d, sizeof(d));
839 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
840 RUN_ON_CPU_HOST_PTR(p));
841 }
842
tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState * src_cpu,vaddr addr,uint16_t idxmap,unsigned bits)843 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
844 vaddr addr,
845 uint16_t idxmap,
846 unsigned bits)
847 {
848 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
849 idxmap, bits);
850 }
851
852 /* update the TLBs so that writes to code in the virtual page 'addr'
853 can be detected */
tlb_protect_code(ram_addr_t ram_addr)854 void tlb_protect_code(ram_addr_t ram_addr)
855 {
856 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
857 TARGET_PAGE_SIZE,
858 DIRTY_MEMORY_CODE);
859 }
860
861 /* update the TLB so that writes in physical page 'phys_addr' are no longer
862 tested for self modifying code */
tlb_unprotect_code(ram_addr_t ram_addr)863 void tlb_unprotect_code(ram_addr_t ram_addr)
864 {
865 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
866 }
867
868
869 /*
870 * Dirty write flag handling
871 *
872 * When the TCG code writes to a location it looks up the address in
873 * the TLB and uses that data to compute the final address. If any of
874 * the lower bits of the address are set then the slow path is forced.
875 * There are a number of reasons to do this but for normal RAM the
876 * most usual is detecting writes to code regions which may invalidate
877 * generated code.
878 *
879 * Other vCPUs might be reading their TLBs during guest execution, so we update
880 * te->addr_write with qatomic_set. We don't need to worry about this for
881 * oversized guests as MTTCG is disabled for them.
882 *
883 * Called with tlb_c.lock held.
884 */
tlb_reset_dirty_range_locked(CPUTLBEntry * tlb_entry,uintptr_t start,uintptr_t length)885 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
886 uintptr_t start, uintptr_t length)
887 {
888 uintptr_t addr = tlb_entry->addr_write;
889
890 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
891 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
892 addr &= TARGET_PAGE_MASK;
893 addr += tlb_entry->addend;
894 if ((addr - start) < length) {
895 qatomic_set(&tlb_entry->addr_write,
896 tlb_entry->addr_write | TLB_NOTDIRTY);
897 }
898 }
899 }
900
901 /*
902 * Called with tlb_c.lock held.
903 * Called only from the vCPU context, i.e. the TLB's owner thread.
904 */
copy_tlb_helper_locked(CPUTLBEntry * d,const CPUTLBEntry * s)905 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
906 {
907 *d = *s;
908 }
909
910 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
911 * the target vCPU).
912 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
913 * thing actually updated is the target TLB entry ->addr_write flags.
914 */
tlb_reset_dirty(CPUState * cpu,ram_addr_t start1,ram_addr_t length)915 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
916 {
917 int mmu_idx;
918
919 qemu_spin_lock(&cpu->neg.tlb.c.lock);
920 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
921 unsigned int i;
922 unsigned int n = tlb_n_entries(&cpu->neg.tlb.f[mmu_idx]);
923
924 for (i = 0; i < n; i++) {
925 tlb_reset_dirty_range_locked(&cpu->neg.tlb.f[mmu_idx].table[i],
926 start1, length);
927 }
928
929 for (i = 0; i < CPU_VTLB_SIZE; i++) {
930 tlb_reset_dirty_range_locked(&cpu->neg.tlb.d[mmu_idx].vtable[i],
931 start1, length);
932 }
933 }
934 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
935 }
936
937 /* Called with tlb_c.lock held */
tlb_set_dirty1_locked(CPUTLBEntry * tlb_entry,vaddr addr)938 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
939 vaddr addr)
940 {
941 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
942 tlb_entry->addr_write = addr;
943 }
944 }
945
946 /* update the TLB corresponding to virtual page vaddr
947 so that it is no longer dirty */
tlb_set_dirty(CPUState * cpu,vaddr addr)948 static void tlb_set_dirty(CPUState *cpu, vaddr addr)
949 {
950 int mmu_idx;
951
952 assert_cpu_is_self(cpu);
953
954 addr &= TARGET_PAGE_MASK;
955 qemu_spin_lock(&cpu->neg.tlb.c.lock);
956 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
957 tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr);
958 }
959
960 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
961 int k;
962 for (k = 0; k < CPU_VTLB_SIZE; k++) {
963 tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr);
964 }
965 }
966 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
967 }
968
969 /* Our TLB does not support large pages, so remember the area covered by
970 large pages and trigger a full TLB flush if these are invalidated. */
tlb_add_large_page(CPUState * cpu,int mmu_idx,vaddr addr,uint64_t size)971 static void tlb_add_large_page(CPUState *cpu, int mmu_idx,
972 vaddr addr, uint64_t size)
973 {
974 vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr;
975 vaddr lp_mask = ~(size - 1);
976
977 if (lp_addr == (vaddr)-1) {
978 /* No previous large page. */
979 lp_addr = addr;
980 } else {
981 /* Extend the existing region to include the new page.
982 This is a compromise between unnecessary flushes and
983 the cost of maintaining a full variable size TLB. */
984 lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask;
985 while (((lp_addr ^ addr) & lp_mask) != 0) {
986 lp_mask <<= 1;
987 }
988 }
989 cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask;
990 cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask;
991 }
992
tlb_set_compare(CPUTLBEntryFull * full,CPUTLBEntry * ent,vaddr address,int flags,MMUAccessType access_type,bool enable)993 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
994 vaddr address, int flags,
995 MMUAccessType access_type, bool enable)
996 {
997 if (enable) {
998 address |= flags & TLB_FLAGS_MASK;
999 flags &= TLB_SLOW_FLAGS_MASK;
1000 if (flags) {
1001 address |= TLB_FORCE_SLOW;
1002 }
1003 } else {
1004 address = -1;
1005 flags = 0;
1006 }
1007 ent->addr_idx[access_type] = address;
1008 full->slow_flags[access_type] = flags;
1009 }
1010
1011 /*
1012 * Add a new TLB entry. At most one entry for a given virtual address
1013 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1014 * supplied size is only used by tlb_flush_page.
1015 *
1016 * Called from TCG-generated code, which is under an RCU read-side
1017 * critical section.
1018 */
tlb_set_page_full(CPUState * cpu,int mmu_idx,vaddr addr,CPUTLBEntryFull * full)1019 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1020 vaddr addr, CPUTLBEntryFull *full)
1021 {
1022 CPUTLB *tlb = &cpu->neg.tlb;
1023 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1024 MemoryRegionSection *section;
1025 unsigned int index, read_flags, write_flags;
1026 uintptr_t addend;
1027 CPUTLBEntry *te, tn;
1028 hwaddr iotlb, xlat, sz, paddr_page;
1029 vaddr addr_page;
1030 int asidx, wp_flags, prot;
1031 bool is_ram, is_romd;
1032
1033 assert_cpu_is_self(cpu);
1034
1035 if (full->lg_page_size <= TARGET_PAGE_BITS) {
1036 sz = TARGET_PAGE_SIZE;
1037 } else {
1038 sz = (hwaddr)1 << full->lg_page_size;
1039 tlb_add_large_page(cpu, mmu_idx, addr, sz);
1040 }
1041 addr_page = addr & TARGET_PAGE_MASK;
1042 paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1043
1044 prot = full->prot;
1045 asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1046 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1047 &xlat, &sz, full->attrs, &prot);
1048 assert(sz >= TARGET_PAGE_SIZE);
1049
1050 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1051 " prot=%x idx=%d\n",
1052 addr, full->phys_addr, prot, mmu_idx);
1053
1054 read_flags = full->tlb_fill_flags;
1055 if (full->lg_page_size < TARGET_PAGE_BITS) {
1056 /* Repeat the MMU check and TLB fill on every access. */
1057 read_flags |= TLB_INVALID_MASK;
1058 }
1059
1060 is_ram = memory_region_is_ram(section->mr);
1061 is_romd = memory_region_is_romd(section->mr);
1062
1063 if (is_ram || is_romd) {
1064 /* RAM and ROMD both have associated host memory. */
1065 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1066 } else {
1067 /* I/O does not; force the host address to NULL. */
1068 addend = 0;
1069 }
1070
1071 write_flags = read_flags;
1072 if (is_ram) {
1073 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1074 assert(!(iotlb & ~TARGET_PAGE_MASK));
1075 /*
1076 * Computing is_clean is expensive; avoid all that unless
1077 * the page is actually writable.
1078 */
1079 if (prot & PAGE_WRITE) {
1080 if (section->readonly) {
1081 write_flags |= TLB_DISCARD_WRITE;
1082 } else if (cpu_physical_memory_is_clean(iotlb)) {
1083 write_flags |= TLB_NOTDIRTY;
1084 }
1085 }
1086 } else {
1087 /* I/O or ROMD */
1088 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1089 /*
1090 * Writes to romd devices must go through MMIO to enable write.
1091 * Reads to romd devices go through the ram_ptr found above,
1092 * but of course reads to I/O must go through MMIO.
1093 */
1094 write_flags |= TLB_MMIO;
1095 if (!is_romd) {
1096 read_flags = write_flags;
1097 }
1098 }
1099
1100 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1101 TARGET_PAGE_SIZE);
1102
1103 index = tlb_index(cpu, mmu_idx, addr_page);
1104 te = tlb_entry(cpu, mmu_idx, addr_page);
1105
1106 /*
1107 * Hold the TLB lock for the rest of the function. We could acquire/release
1108 * the lock several times in the function, but it is faster to amortize the
1109 * acquisition cost by acquiring it just once. Note that this leads to
1110 * a longer critical section, but this is not a concern since the TLB lock
1111 * is unlikely to be contended.
1112 */
1113 qemu_spin_lock(&tlb->c.lock);
1114
1115 /* Note that the tlb is no longer clean. */
1116 tlb->c.dirty |= 1 << mmu_idx;
1117
1118 /* Make sure there's no cached translation for the new page. */
1119 tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page);
1120
1121 /*
1122 * Only evict the old entry to the victim tlb if it's for a
1123 * different page; otherwise just overwrite the stale data.
1124 */
1125 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1126 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1127 CPUTLBEntry *tv = &desc->vtable[vidx];
1128
1129 /* Evict the old entry into the victim tlb. */
1130 copy_tlb_helper_locked(tv, te);
1131 desc->vfulltlb[vidx] = desc->fulltlb[index];
1132 tlb_n_used_entries_dec(cpu, mmu_idx);
1133 }
1134
1135 /* refill the tlb */
1136 /*
1137 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS
1138 * aligned ram_addr_t of the page base of the target RAM.
1139 * Otherwise, iotlb contains
1140 * - a physical section number in the lower TARGET_PAGE_BITS
1141 * - the offset within section->mr of the page base (I/O, ROMD) with the
1142 * TARGET_PAGE_BITS masked off.
1143 * We subtract addr_page (which is page aligned and thus won't
1144 * disturb the low bits) to give an offset which can be added to the
1145 * (non-page-aligned) vaddr of the eventual memory access to get
1146 * the MemoryRegion offset for the access. Note that the vaddr we
1147 * subtract here is that of the page base, and not the same as the
1148 * vaddr we add back in io_prepare()/get_page_addr_code().
1149 */
1150 desc->fulltlb[index] = *full;
1151 full = &desc->fulltlb[index];
1152 full->xlat_section = iotlb - addr_page;
1153 full->phys_addr = paddr_page;
1154
1155 /* Now calculate the new entry */
1156 tn.addend = addend - addr_page;
1157
1158 tlb_set_compare(full, &tn, addr_page, read_flags,
1159 MMU_INST_FETCH, prot & PAGE_EXEC);
1160
1161 if (wp_flags & BP_MEM_READ) {
1162 read_flags |= TLB_WATCHPOINT;
1163 }
1164 tlb_set_compare(full, &tn, addr_page, read_flags,
1165 MMU_DATA_LOAD, prot & PAGE_READ);
1166
1167 if (prot & PAGE_WRITE_INV) {
1168 write_flags |= TLB_INVALID_MASK;
1169 }
1170 if (wp_flags & BP_MEM_WRITE) {
1171 write_flags |= TLB_WATCHPOINT;
1172 }
1173 tlb_set_compare(full, &tn, addr_page, write_flags,
1174 MMU_DATA_STORE, prot & PAGE_WRITE);
1175
1176 copy_tlb_helper_locked(te, &tn);
1177 tlb_n_used_entries_inc(cpu, mmu_idx);
1178 qemu_spin_unlock(&tlb->c.lock);
1179 }
1180
tlb_set_page_with_attrs(CPUState * cpu,vaddr addr,hwaddr paddr,MemTxAttrs attrs,int prot,int mmu_idx,vaddr size)1181 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1182 hwaddr paddr, MemTxAttrs attrs, int prot,
1183 int mmu_idx, vaddr size)
1184 {
1185 CPUTLBEntryFull full = {
1186 .phys_addr = paddr,
1187 .attrs = attrs,
1188 .prot = prot,
1189 .lg_page_size = ctz64(size)
1190 };
1191
1192 assert(is_power_of_2(size));
1193 tlb_set_page_full(cpu, mmu_idx, addr, &full);
1194 }
1195
tlb_set_page(CPUState * cpu,vaddr addr,hwaddr paddr,int prot,int mmu_idx,vaddr size)1196 void tlb_set_page(CPUState *cpu, vaddr addr,
1197 hwaddr paddr, int prot,
1198 int mmu_idx, vaddr size)
1199 {
1200 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1201 prot, mmu_idx, size);
1202 }
1203
1204 /**
1205 * tlb_hit_page: return true if page aligned @addr is a hit against the
1206 * TLB entry @tlb_addr
1207 *
1208 * @addr: virtual address to test (must be page aligned)
1209 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
1210 */
tlb_hit_page(uint64_t tlb_addr,vaddr addr)1211 static inline bool tlb_hit_page(uint64_t tlb_addr, vaddr addr)
1212 {
1213 return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK));
1214 }
1215
1216 /**
1217 * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr
1218 *
1219 * @addr: virtual address to test (need not be page aligned)
1220 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
1221 */
tlb_hit(uint64_t tlb_addr,vaddr addr)1222 static inline bool tlb_hit(uint64_t tlb_addr, vaddr addr)
1223 {
1224 return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK);
1225 }
1226
1227 /*
1228 * Note: tlb_fill_align() can trigger a resize of the TLB.
1229 * This means that all of the caller's prior references to the TLB table
1230 * (e.g. CPUTLBEntry pointers) must be discarded and looked up again
1231 * (e.g. via tlb_entry()).
1232 */
tlb_fill_align(CPUState * cpu,vaddr addr,MMUAccessType type,int mmu_idx,MemOp memop,int size,bool probe,uintptr_t ra)1233 static bool tlb_fill_align(CPUState *cpu, vaddr addr, MMUAccessType type,
1234 int mmu_idx, MemOp memop, int size,
1235 bool probe, uintptr_t ra)
1236 {
1237 const TCGCPUOps *ops = cpu->cc->tcg_ops;
1238 CPUTLBEntryFull full;
1239
1240 if (ops->tlb_fill_align) {
1241 if (ops->tlb_fill_align(cpu, &full, addr, type, mmu_idx,
1242 memop, size, probe, ra)) {
1243 tlb_set_page_full(cpu, mmu_idx, addr, &full);
1244 return true;
1245 }
1246 } else {
1247 /* Legacy behaviour is alignment before paging. */
1248 if (addr & ((1u << memop_alignment_bits(memop)) - 1)) {
1249 ops->do_unaligned_access(cpu, addr, type, mmu_idx, ra);
1250 }
1251 if (ops->tlb_fill(cpu, addr, size, type, mmu_idx, probe, ra)) {
1252 return true;
1253 }
1254 }
1255 assert(probe);
1256 return false;
1257 }
1258
cpu_unaligned_access(CPUState * cpu,vaddr addr,MMUAccessType access_type,int mmu_idx,uintptr_t retaddr)1259 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1260 MMUAccessType access_type,
1261 int mmu_idx, uintptr_t retaddr)
1262 {
1263 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1264 mmu_idx, retaddr);
1265 }
1266
1267 static MemoryRegionSection *
io_prepare(hwaddr * out_offset,CPUState * cpu,hwaddr xlat,MemTxAttrs attrs,vaddr addr,uintptr_t retaddr)1268 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat,
1269 MemTxAttrs attrs, vaddr addr, uintptr_t retaddr)
1270 {
1271 MemoryRegionSection *section;
1272 hwaddr mr_offset;
1273
1274 section = iotlb_to_section(cpu, xlat, attrs);
1275 mr_offset = (xlat & TARGET_PAGE_MASK) + addr;
1276 cpu->mem_io_pc = retaddr;
1277 if (!cpu->neg.can_do_io) {
1278 cpu_io_recompile(cpu, retaddr);
1279 }
1280
1281 *out_offset = mr_offset;
1282 return section;
1283 }
1284
io_failed(CPUState * cpu,CPUTLBEntryFull * full,vaddr addr,unsigned size,MMUAccessType access_type,int mmu_idx,MemTxResult response,uintptr_t retaddr)1285 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr,
1286 unsigned size, MMUAccessType access_type, int mmu_idx,
1287 MemTxResult response, uintptr_t retaddr)
1288 {
1289 if (!cpu->ignore_memory_transaction_failures
1290 && cpu->cc->tcg_ops->do_transaction_failed) {
1291 hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1292
1293 cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1294 access_type, mmu_idx,
1295 full->attrs, response, retaddr);
1296 }
1297 }
1298
1299 /* Return true if ADDR is present in the victim tlb, and has been copied
1300 back to the main tlb. */
victim_tlb_hit(CPUState * cpu,size_t mmu_idx,size_t index,MMUAccessType access_type,vaddr page)1301 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index,
1302 MMUAccessType access_type, vaddr page)
1303 {
1304 size_t vidx;
1305
1306 assert_cpu_is_self(cpu);
1307 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1308 CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx];
1309 uint64_t cmp = tlb_read_idx(vtlb, access_type);
1310
1311 if (cmp == page) {
1312 /* Found entry in victim tlb, swap tlb and iotlb. */
1313 CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index];
1314
1315 qemu_spin_lock(&cpu->neg.tlb.c.lock);
1316 copy_tlb_helper_locked(&tmptlb, tlb);
1317 copy_tlb_helper_locked(tlb, vtlb);
1318 copy_tlb_helper_locked(vtlb, &tmptlb);
1319 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
1320
1321 CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1322 CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx];
1323 CPUTLBEntryFull tmpf;
1324 tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1325 return true;
1326 }
1327 }
1328 return false;
1329 }
1330
notdirty_write(CPUState * cpu,vaddr mem_vaddr,unsigned size,CPUTLBEntryFull * full,uintptr_t retaddr)1331 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1332 CPUTLBEntryFull *full, uintptr_t retaddr)
1333 {
1334 ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1335
1336 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1337
1338 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1339 tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1340 }
1341
1342 /*
1343 * Set both VGA and migration bits for simplicity and to remove
1344 * the notdirty callback faster.
1345 */
1346 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1347
1348 /* We remove the notdirty callback only if the code has been flushed. */
1349 if (!cpu_physical_memory_is_clean(ram_addr)) {
1350 trace_memory_notdirty_set_dirty(mem_vaddr);
1351 tlb_set_dirty(cpu, mem_vaddr);
1352 }
1353 }
1354
probe_access_internal(CPUState * cpu,vaddr addr,int fault_size,MMUAccessType access_type,int mmu_idx,bool nonfault,void ** phost,CPUTLBEntryFull ** pfull,uintptr_t retaddr,bool check_mem_cbs)1355 static int probe_access_internal(CPUState *cpu, vaddr addr,
1356 int fault_size, MMUAccessType access_type,
1357 int mmu_idx, bool nonfault,
1358 void **phost, CPUTLBEntryFull **pfull,
1359 uintptr_t retaddr, bool check_mem_cbs)
1360 {
1361 uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1362 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1363 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1364 vaddr page_addr = addr & TARGET_PAGE_MASK;
1365 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1366 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu);
1367 CPUTLBEntryFull *full;
1368
1369 if (!tlb_hit_page(tlb_addr, page_addr)) {
1370 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) {
1371 if (!tlb_fill_align(cpu, addr, access_type, mmu_idx,
1372 0, fault_size, nonfault, retaddr)) {
1373 /* Non-faulting page table read failed. */
1374 *phost = NULL;
1375 *pfull = NULL;
1376 return TLB_INVALID_MASK;
1377 }
1378
1379 /* TLB resize via tlb_fill_align may have moved the entry. */
1380 index = tlb_index(cpu, mmu_idx, addr);
1381 entry = tlb_entry(cpu, mmu_idx, addr);
1382
1383 /*
1384 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1385 * to force the next access through tlb_fill_align. We've just
1386 * called tlb_fill_align, so we know that this entry *is* valid.
1387 */
1388 flags &= ~TLB_INVALID_MASK;
1389 }
1390 tlb_addr = tlb_read_idx(entry, access_type);
1391 }
1392 flags &= tlb_addr;
1393
1394 *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1395 flags |= full->slow_flags[access_type];
1396
1397 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1398 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY | TLB_CHECK_ALIGNED))
1399 || (access_type != MMU_INST_FETCH && force_mmio)) {
1400 *phost = NULL;
1401 return TLB_MMIO;
1402 }
1403
1404 /* Everything else is RAM. */
1405 *phost = (void *)((uintptr_t)addr + entry->addend);
1406 return flags;
1407 }
1408
probe_access_full(CPUArchState * env,vaddr addr,int size,MMUAccessType access_type,int mmu_idx,bool nonfault,void ** phost,CPUTLBEntryFull ** pfull,uintptr_t retaddr)1409 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1410 MMUAccessType access_type, int mmu_idx,
1411 bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1412 uintptr_t retaddr)
1413 {
1414 int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1415 mmu_idx, nonfault, phost, pfull, retaddr,
1416 true);
1417
1418 /* Handle clean RAM pages. */
1419 if (unlikely(flags & TLB_NOTDIRTY)) {
1420 int dirtysize = size == 0 ? 1 : size;
1421 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr);
1422 flags &= ~TLB_NOTDIRTY;
1423 }
1424
1425 return flags;
1426 }
1427
probe_access_full_mmu(CPUArchState * env,vaddr addr,int size,MMUAccessType access_type,int mmu_idx,void ** phost,CPUTLBEntryFull ** pfull)1428 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1429 MMUAccessType access_type, int mmu_idx,
1430 void **phost, CPUTLBEntryFull **pfull)
1431 {
1432 void *discard_phost;
1433 CPUTLBEntryFull *discard_tlb;
1434
1435 /* privately handle users that don't need full results */
1436 phost = phost ? phost : &discard_phost;
1437 pfull = pfull ? pfull : &discard_tlb;
1438
1439 int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1440 mmu_idx, true, phost, pfull, 0, false);
1441
1442 /* Handle clean RAM pages. */
1443 if (unlikely(flags & TLB_NOTDIRTY)) {
1444 int dirtysize = size == 0 ? 1 : size;
1445 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0);
1446 flags &= ~TLB_NOTDIRTY;
1447 }
1448
1449 return flags;
1450 }
1451
probe_access_flags(CPUArchState * env,vaddr addr,int size,MMUAccessType access_type,int mmu_idx,bool nonfault,void ** phost,uintptr_t retaddr)1452 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1453 MMUAccessType access_type, int mmu_idx,
1454 bool nonfault, void **phost, uintptr_t retaddr)
1455 {
1456 CPUTLBEntryFull *full;
1457 int flags;
1458
1459 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1460
1461 flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1462 mmu_idx, nonfault, phost, &full, retaddr,
1463 true);
1464
1465 /* Handle clean RAM pages. */
1466 if (unlikely(flags & TLB_NOTDIRTY)) {
1467 int dirtysize = size == 0 ? 1 : size;
1468 notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr);
1469 flags &= ~TLB_NOTDIRTY;
1470 }
1471
1472 return flags;
1473 }
1474
probe_access(CPUArchState * env,vaddr addr,int size,MMUAccessType access_type,int mmu_idx,uintptr_t retaddr)1475 void *probe_access(CPUArchState *env, vaddr addr, int size,
1476 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1477 {
1478 CPUTLBEntryFull *full;
1479 void *host;
1480 int flags;
1481
1482 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1483
1484 flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1485 mmu_idx, false, &host, &full, retaddr,
1486 true);
1487
1488 /* Per the interface, size == 0 merely faults the access. */
1489 if (size == 0) {
1490 return NULL;
1491 }
1492
1493 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1494 /* Handle watchpoints. */
1495 if (flags & TLB_WATCHPOINT) {
1496 int wp_access = (access_type == MMU_DATA_STORE
1497 ? BP_MEM_WRITE : BP_MEM_READ);
1498 cpu_check_watchpoint(env_cpu(env), addr, size,
1499 full->attrs, wp_access, retaddr);
1500 }
1501
1502 /* Handle clean RAM pages. */
1503 if (flags & TLB_NOTDIRTY) {
1504 notdirty_write(env_cpu(env), addr, size, full, retaddr);
1505 }
1506 }
1507
1508 return host;
1509 }
1510
tlb_vaddr_to_host(CPUArchState * env,vaddr addr,MMUAccessType access_type,int mmu_idx)1511 void *tlb_vaddr_to_host(CPUArchState *env, vaddr addr,
1512 MMUAccessType access_type, int mmu_idx)
1513 {
1514 CPUTLBEntryFull *full;
1515 void *host;
1516 int flags;
1517
1518 flags = probe_access_internal(env_cpu(env), addr, 0, access_type,
1519 mmu_idx, true, &host, &full, 0, false);
1520
1521 /* No combination of flags are expected by the caller. */
1522 return flags ? NULL : host;
1523 }
1524
1525 /*
1526 * Return a ram_addr_t for the virtual address for execution.
1527 *
1528 * Return -1 if we can't translate and execute from an entire page
1529 * of RAM. This will force us to execute by loading and translating
1530 * one insn at a time, without caching.
1531 *
1532 * NOTE: This function will trigger an exception if the page is
1533 * not executable.
1534 */
get_page_addr_code_hostp(CPUArchState * env,vaddr addr,void ** hostp)1535 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1536 void **hostp)
1537 {
1538 CPUTLBEntryFull *full;
1539 void *p;
1540
1541 (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH,
1542 cpu_mmu_index(env_cpu(env), true), false,
1543 &p, &full, 0, false);
1544 if (p == NULL) {
1545 return -1;
1546 }
1547
1548 if (full->lg_page_size < TARGET_PAGE_BITS) {
1549 return -1;
1550 }
1551
1552 if (hostp) {
1553 *hostp = p;
1554 }
1555 return qemu_ram_addr_from_host_nofail(p);
1556 }
1557
1558 /* Load/store with atomicity primitives. */
1559 #include "ldst_atomicity.c.inc"
1560
1561 #ifdef CONFIG_PLUGIN
1562 /*
1563 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1564 * This should be a hot path as we will have just looked this path up
1565 * in the softmmu lookup code (or helper). We don't handle re-fills or
1566 * checking the victim table. This is purely informational.
1567 *
1568 * The one corner case is i/o write, which can cause changes to the
1569 * address space. Those changes, and the corresponding tlb flush,
1570 * should be delayed until the next TB, so even then this ought not fail.
1571 * But check, Just in Case.
1572 */
tlb_plugin_lookup(CPUState * cpu,vaddr addr,int mmu_idx,bool is_store,struct qemu_plugin_hwaddr * data)1573 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1574 bool is_store, struct qemu_plugin_hwaddr *data)
1575 {
1576 CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr);
1577 uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1578 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD;
1579 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type);
1580 CPUTLBEntryFull *full;
1581
1582 if (unlikely(!tlb_hit(tlb_addr, addr))) {
1583 return false;
1584 }
1585
1586 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1587 data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1588
1589 /* We must have an iotlb entry for MMIO */
1590 if (tlb_addr & TLB_MMIO) {
1591 MemoryRegionSection *section =
1592 iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK,
1593 full->attrs);
1594 data->is_io = true;
1595 data->mr = section->mr;
1596 } else {
1597 data->is_io = false;
1598 data->mr = NULL;
1599 }
1600 return true;
1601 }
1602 #endif
1603
1604 /*
1605 * Probe for a load/store operation.
1606 * Return the host address and into @flags.
1607 */
1608
1609 typedef struct MMULookupPageData {
1610 CPUTLBEntryFull *full;
1611 void *haddr;
1612 vaddr addr;
1613 int flags;
1614 int size;
1615 } MMULookupPageData;
1616
1617 typedef struct MMULookupLocals {
1618 MMULookupPageData page[2];
1619 MemOp memop;
1620 int mmu_idx;
1621 } MMULookupLocals;
1622
1623 /**
1624 * mmu_lookup1: translate one page
1625 * @cpu: generic cpu state
1626 * @data: lookup parameters
1627 * @memop: memory operation for the access, or 0
1628 * @mmu_idx: virtual address context
1629 * @access_type: load/store/code
1630 * @ra: return address into tcg generated code, or 0
1631 *
1632 * Resolve the translation for the one page at @data.addr, filling in
1633 * the rest of @data with the results. If the translation fails,
1634 * tlb_fill_align will longjmp out. Return true if the softmmu tlb for
1635 * @mmu_idx may have resized.
1636 */
mmu_lookup1(CPUState * cpu,MMULookupPageData * data,MemOp memop,int mmu_idx,MMUAccessType access_type,uintptr_t ra)1637 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data, MemOp memop,
1638 int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1639 {
1640 vaddr addr = data->addr;
1641 uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1642 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1643 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1644 bool maybe_resized = false;
1645 CPUTLBEntryFull *full;
1646 int flags;
1647
1648 /* If the TLB entry is for a different page, reload and try again. */
1649 if (!tlb_hit(tlb_addr, addr)) {
1650 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type,
1651 addr & TARGET_PAGE_MASK)) {
1652 tlb_fill_align(cpu, addr, access_type, mmu_idx,
1653 memop, data->size, false, ra);
1654 maybe_resized = true;
1655 index = tlb_index(cpu, mmu_idx, addr);
1656 entry = tlb_entry(cpu, mmu_idx, addr);
1657 }
1658 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1659 }
1660
1661 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1662 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1663 flags |= full->slow_flags[access_type];
1664
1665 if (likely(!maybe_resized)) {
1666 /* Alignment has not been checked by tlb_fill_align. */
1667 int a_bits = memop_alignment_bits(memop);
1668
1669 /*
1670 * This alignment check differs from the one above, in that this is
1671 * based on the atomicity of the operation. The intended use case is
1672 * the ARM memory type field of each PTE, where access to pages with
1673 * Device memory type require alignment.
1674 */
1675 if (unlikely(flags & TLB_CHECK_ALIGNED)) {
1676 int at_bits = memop_atomicity_bits(memop);
1677 a_bits = MAX(a_bits, at_bits);
1678 }
1679 if (unlikely(addr & ((1 << a_bits) - 1))) {
1680 cpu_unaligned_access(cpu, addr, access_type, mmu_idx, ra);
1681 }
1682 }
1683
1684 data->full = full;
1685 data->flags = flags;
1686 /* Compute haddr speculatively; depending on flags it might be invalid. */
1687 data->haddr = (void *)((uintptr_t)addr + entry->addend);
1688
1689 return maybe_resized;
1690 }
1691
1692 /**
1693 * mmu_watch_or_dirty
1694 * @cpu: generic cpu state
1695 * @data: lookup parameters
1696 * @access_type: load/store/code
1697 * @ra: return address into tcg generated code, or 0
1698 *
1699 * Trigger watchpoints for @data.addr:@data.size;
1700 * record writes to protected clean pages.
1701 */
mmu_watch_or_dirty(CPUState * cpu,MMULookupPageData * data,MMUAccessType access_type,uintptr_t ra)1702 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data,
1703 MMUAccessType access_type, uintptr_t ra)
1704 {
1705 CPUTLBEntryFull *full = data->full;
1706 vaddr addr = data->addr;
1707 int flags = data->flags;
1708 int size = data->size;
1709
1710 /* On watchpoint hit, this will longjmp out. */
1711 if (flags & TLB_WATCHPOINT) {
1712 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1713 cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra);
1714 flags &= ~TLB_WATCHPOINT;
1715 }
1716
1717 /* Note that notdirty is only set for writes. */
1718 if (flags & TLB_NOTDIRTY) {
1719 notdirty_write(cpu, addr, size, full, ra);
1720 flags &= ~TLB_NOTDIRTY;
1721 }
1722 data->flags = flags;
1723 }
1724
1725 /**
1726 * mmu_lookup: translate page(s)
1727 * @cpu: generic cpu state
1728 * @addr: virtual address
1729 * @oi: combined mmu_idx and MemOp
1730 * @ra: return address into tcg generated code, or 0
1731 * @access_type: load/store/code
1732 * @l: output result
1733 *
1734 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1735 * bytes. Return true if the lookup crosses a page boundary.
1736 */
mmu_lookup(CPUState * cpu,vaddr addr,MemOpIdx oi,uintptr_t ra,MMUAccessType type,MMULookupLocals * l)1737 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1738 uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1739 {
1740 bool crosspage;
1741 int flags;
1742
1743 l->memop = get_memop(oi);
1744 l->mmu_idx = get_mmuidx(oi);
1745
1746 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1747
1748 l->page[0].addr = addr;
1749 l->page[0].size = memop_size(l->memop);
1750 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1751 l->page[1].size = 0;
1752 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1753
1754 if (likely(!crosspage)) {
1755 mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra);
1756
1757 flags = l->page[0].flags;
1758 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1759 mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1760 }
1761 if (unlikely(flags & TLB_BSWAP)) {
1762 l->memop ^= MO_BSWAP;
1763 }
1764 } else {
1765 /* Finish compute of page crossing. */
1766 int size0 = l->page[1].addr - addr;
1767 l->page[1].size = l->page[0].size - size0;
1768 l->page[0].size = size0;
1769
1770 /*
1771 * Lookup both pages, recognizing exceptions from either. If the
1772 * second lookup potentially resized, refresh first CPUTLBEntryFull.
1773 */
1774 mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra);
1775 if (mmu_lookup1(cpu, &l->page[1], 0, l->mmu_idx, type, ra)) {
1776 uintptr_t index = tlb_index(cpu, l->mmu_idx, addr);
1777 l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index];
1778 }
1779
1780 flags = l->page[0].flags | l->page[1].flags;
1781 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1782 mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1783 mmu_watch_or_dirty(cpu, &l->page[1], type, ra);
1784 }
1785
1786 /*
1787 * Since target/sparc is the only user of TLB_BSWAP, and all
1788 * Sparc accesses are aligned, any treatment across two pages
1789 * would be arbitrary. Refuse it until there's a use.
1790 */
1791 tcg_debug_assert((flags & TLB_BSWAP) == 0);
1792 }
1793
1794 return crosspage;
1795 }
1796
1797 /*
1798 * Probe for an atomic operation. Do not allow unaligned operations,
1799 * or io operations to proceed. Return the host address.
1800 */
atomic_mmu_lookup(CPUState * cpu,vaddr addr,MemOpIdx oi,int size,uintptr_t retaddr)1801 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1802 int size, uintptr_t retaddr)
1803 {
1804 uintptr_t mmu_idx = get_mmuidx(oi);
1805 MemOp mop = get_memop(oi);
1806 uintptr_t index;
1807 CPUTLBEntry *tlbe;
1808 vaddr tlb_addr;
1809 void *hostaddr;
1810 CPUTLBEntryFull *full;
1811 bool did_tlb_fill = false;
1812
1813 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1814
1815 /* Adjust the given return address. */
1816 retaddr -= GETPC_ADJ;
1817
1818 index = tlb_index(cpu, mmu_idx, addr);
1819 tlbe = tlb_entry(cpu, mmu_idx, addr);
1820
1821 /* Check TLB entry and enforce page permissions. */
1822 tlb_addr = tlb_addr_write(tlbe);
1823 if (!tlb_hit(tlb_addr, addr)) {
1824 if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE,
1825 addr & TARGET_PAGE_MASK)) {
1826 tlb_fill_align(cpu, addr, MMU_DATA_STORE, mmu_idx,
1827 mop, size, false, retaddr);
1828 did_tlb_fill = true;
1829 index = tlb_index(cpu, mmu_idx, addr);
1830 tlbe = tlb_entry(cpu, mmu_idx, addr);
1831 }
1832 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1833 }
1834
1835 /*
1836 * Let the guest notice RMW on a write-only page.
1837 * We have just verified that the page is writable.
1838 * Subpage lookups may have left TLB_INVALID_MASK set,
1839 * but addr_read will only be -1 if PAGE_READ was unset.
1840 */
1841 if (unlikely(tlbe->addr_read == -1)) {
1842 tlb_fill_align(cpu, addr, MMU_DATA_LOAD, mmu_idx,
1843 0, size, false, retaddr);
1844 /*
1845 * Since we don't support reads and writes to different
1846 * addresses, and we do have the proper page loaded for
1847 * write, this shouldn't ever return.
1848 */
1849 g_assert_not_reached();
1850 }
1851
1852 /* Enforce guest required alignment, if not handled by tlb_fill_align. */
1853 if (!did_tlb_fill && (addr & ((1 << memop_alignment_bits(mop)) - 1))) {
1854 cpu_unaligned_access(cpu, addr, MMU_DATA_STORE, mmu_idx, retaddr);
1855 }
1856
1857 /* Enforce qemu required alignment. */
1858 if (unlikely(addr & (size - 1))) {
1859 /*
1860 * We get here if guest alignment was not requested, or was not
1861 * enforced by cpu_unaligned_access or tlb_fill_align above.
1862 * We might widen the access and emulate, but for now
1863 * mark an exception and exit the cpu loop.
1864 */
1865 goto stop_the_world;
1866 }
1867
1868 /* Collect tlb flags for read. */
1869 tlb_addr |= tlbe->addr_read;
1870
1871 /* Notice an IO access or a needs-MMU-lookup access */
1872 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1873 /* There's really nothing that can be done to
1874 support this apart from stop-the-world. */
1875 goto stop_the_world;
1876 }
1877
1878 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1879 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1880
1881 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1882 notdirty_write(cpu, addr, size, full, retaddr);
1883 }
1884
1885 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
1886 int wp_flags = 0;
1887
1888 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
1889 wp_flags |= BP_MEM_WRITE;
1890 }
1891 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
1892 wp_flags |= BP_MEM_READ;
1893 }
1894 if (wp_flags) {
1895 cpu_check_watchpoint(cpu, addr, size,
1896 full->attrs, wp_flags, retaddr);
1897 }
1898 }
1899
1900 return hostaddr;
1901
1902 stop_the_world:
1903 cpu_loop_exit_atomic(cpu, retaddr);
1904 }
1905
1906 /*
1907 * Load Helpers
1908 *
1909 * We support two different access types. SOFTMMU_CODE_ACCESS is
1910 * specifically for reading instructions from system memory. It is
1911 * called by the translation loop and in some helpers where the code
1912 * is disassembled. It shouldn't be called directly by guest code.
1913 *
1914 * For the benefit of TCG generated code, we want to avoid the
1915 * complication of ABI-specific return type promotion and always
1916 * return a value extended to the register size of the host. This is
1917 * tcg_target_long, except in the case of a 32-bit host and 64-bit
1918 * data, and for that we always have uint64_t.
1919 *
1920 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1921 */
1922
1923 /**
1924 * do_ld_mmio_beN:
1925 * @cpu: generic cpu state
1926 * @full: page parameters
1927 * @ret_be: accumulated data
1928 * @addr: virtual address
1929 * @size: number of bytes
1930 * @mmu_idx: virtual address context
1931 * @ra: return address into tcg generated code, or 0
1932 * Context: BQL held
1933 *
1934 * Load @size bytes from @addr, which is memory-mapped i/o.
1935 * The bytes are concatenated in big-endian order with @ret_be.
1936 */
int_ld_mmio_beN(CPUState * cpu,CPUTLBEntryFull * full,uint64_t ret_be,vaddr addr,int size,int mmu_idx,MMUAccessType type,uintptr_t ra,MemoryRegion * mr,hwaddr mr_offset)1937 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1938 uint64_t ret_be, vaddr addr, int size,
1939 int mmu_idx, MMUAccessType type, uintptr_t ra,
1940 MemoryRegion *mr, hwaddr mr_offset)
1941 {
1942 do {
1943 MemOp this_mop;
1944 unsigned this_size;
1945 uint64_t val;
1946 MemTxResult r;
1947
1948 /* Read aligned pieces up to 8 bytes. */
1949 this_mop = ctz32(size | (int)addr | 8);
1950 this_size = 1 << this_mop;
1951 this_mop |= MO_BE;
1952
1953 r = memory_region_dispatch_read(mr, mr_offset, &val,
1954 this_mop, full->attrs);
1955 if (unlikely(r != MEMTX_OK)) {
1956 io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra);
1957 }
1958 if (this_size == 8) {
1959 return val;
1960 }
1961
1962 ret_be = (ret_be << (this_size * 8)) | val;
1963 addr += this_size;
1964 mr_offset += this_size;
1965 size -= this_size;
1966 } while (size);
1967
1968 return ret_be;
1969 }
1970
do_ld_mmio_beN(CPUState * cpu,CPUTLBEntryFull * full,uint64_t ret_be,vaddr addr,int size,int mmu_idx,MMUAccessType type,uintptr_t ra)1971 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1972 uint64_t ret_be, vaddr addr, int size,
1973 int mmu_idx, MMUAccessType type, uintptr_t ra)
1974 {
1975 MemoryRegionSection *section;
1976 MemoryRegion *mr;
1977 hwaddr mr_offset;
1978 MemTxAttrs attrs;
1979
1980 tcg_debug_assert(size > 0 && size <= 8);
1981
1982 attrs = full->attrs;
1983 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
1984 mr = section->mr;
1985
1986 BQL_LOCK_GUARD();
1987 return int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx,
1988 type, ra, mr, mr_offset);
1989 }
1990
do_ld16_mmio_beN(CPUState * cpu,CPUTLBEntryFull * full,uint64_t ret_be,vaddr addr,int size,int mmu_idx,uintptr_t ra)1991 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1992 uint64_t ret_be, vaddr addr, int size,
1993 int mmu_idx, uintptr_t ra)
1994 {
1995 MemoryRegionSection *section;
1996 MemoryRegion *mr;
1997 hwaddr mr_offset;
1998 MemTxAttrs attrs;
1999 uint64_t a, b;
2000
2001 tcg_debug_assert(size > 8 && size <= 16);
2002
2003 attrs = full->attrs;
2004 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2005 mr = section->mr;
2006
2007 BQL_LOCK_GUARD();
2008 a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx,
2009 MMU_DATA_LOAD, ra, mr, mr_offset);
2010 b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx,
2011 MMU_DATA_LOAD, ra, mr, mr_offset + size - 8);
2012 return int128_make128(b, a);
2013 }
2014
2015 /**
2016 * do_ld_bytes_beN
2017 * @p: translation parameters
2018 * @ret_be: accumulated data
2019 *
2020 * Load @p->size bytes from @p->haddr, which is RAM.
2021 * The bytes to concatenated in big-endian order with @ret_be.
2022 */
do_ld_bytes_beN(MMULookupPageData * p,uint64_t ret_be)2023 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2024 {
2025 uint8_t *haddr = p->haddr;
2026 int i, size = p->size;
2027
2028 for (i = 0; i < size; i++) {
2029 ret_be = (ret_be << 8) | haddr[i];
2030 }
2031 return ret_be;
2032 }
2033
2034 /**
2035 * do_ld_parts_beN
2036 * @p: translation parameters
2037 * @ret_be: accumulated data
2038 *
2039 * As do_ld_bytes_beN, but atomically on each aligned part.
2040 */
do_ld_parts_beN(MMULookupPageData * p,uint64_t ret_be)2041 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2042 {
2043 void *haddr = p->haddr;
2044 int size = p->size;
2045
2046 do {
2047 uint64_t x;
2048 int n;
2049
2050 /*
2051 * Find minimum of alignment and size.
2052 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2053 * would have only checked the low bits of addr|size once at the start,
2054 * but is just as easy.
2055 */
2056 switch (((uintptr_t)haddr | size) & 7) {
2057 case 4:
2058 x = cpu_to_be32(load_atomic4(haddr));
2059 ret_be = (ret_be << 32) | x;
2060 n = 4;
2061 break;
2062 case 2:
2063 case 6:
2064 x = cpu_to_be16(load_atomic2(haddr));
2065 ret_be = (ret_be << 16) | x;
2066 n = 2;
2067 break;
2068 default:
2069 x = *(uint8_t *)haddr;
2070 ret_be = (ret_be << 8) | x;
2071 n = 1;
2072 break;
2073 case 0:
2074 g_assert_not_reached();
2075 }
2076 haddr += n;
2077 size -= n;
2078 } while (size != 0);
2079 return ret_be;
2080 }
2081
2082 /**
2083 * do_ld_parts_be4
2084 * @p: translation parameters
2085 * @ret_be: accumulated data
2086 *
2087 * As do_ld_bytes_beN, but with one atomic load.
2088 * Four aligned bytes are guaranteed to cover the load.
2089 */
do_ld_whole_be4(MMULookupPageData * p,uint64_t ret_be)2090 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2091 {
2092 int o = p->addr & 3;
2093 uint32_t x = load_atomic4(p->haddr - o);
2094
2095 x = cpu_to_be32(x);
2096 x <<= o * 8;
2097 x >>= (4 - p->size) * 8;
2098 return (ret_be << (p->size * 8)) | x;
2099 }
2100
2101 /**
2102 * do_ld_parts_be8
2103 * @p: translation parameters
2104 * @ret_be: accumulated data
2105 *
2106 * As do_ld_bytes_beN, but with one atomic load.
2107 * Eight aligned bytes are guaranteed to cover the load.
2108 */
do_ld_whole_be8(CPUState * cpu,uintptr_t ra,MMULookupPageData * p,uint64_t ret_be)2109 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra,
2110 MMULookupPageData *p, uint64_t ret_be)
2111 {
2112 int o = p->addr & 7;
2113 uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o);
2114
2115 x = cpu_to_be64(x);
2116 x <<= o * 8;
2117 x >>= (8 - p->size) * 8;
2118 return (ret_be << (p->size * 8)) | x;
2119 }
2120
2121 /**
2122 * do_ld_parts_be16
2123 * @p: translation parameters
2124 * @ret_be: accumulated data
2125 *
2126 * As do_ld_bytes_beN, but with one atomic load.
2127 * 16 aligned bytes are guaranteed to cover the load.
2128 */
do_ld_whole_be16(CPUState * cpu,uintptr_t ra,MMULookupPageData * p,uint64_t ret_be)2129 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra,
2130 MMULookupPageData *p, uint64_t ret_be)
2131 {
2132 int o = p->addr & 15;
2133 Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o);
2134 int size = p->size;
2135
2136 if (!HOST_BIG_ENDIAN) {
2137 y = bswap128(y);
2138 }
2139 y = int128_lshift(y, o * 8);
2140 y = int128_urshift(y, (16 - size) * 8);
2141 x = int128_make64(ret_be);
2142 x = int128_lshift(x, size * 8);
2143 return int128_or(x, y);
2144 }
2145
2146 /*
2147 * Wrapper for the above.
2148 */
do_ld_beN(CPUState * cpu,MMULookupPageData * p,uint64_t ret_be,int mmu_idx,MMUAccessType type,MemOp mop,uintptr_t ra)2149 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p,
2150 uint64_t ret_be, int mmu_idx, MMUAccessType type,
2151 MemOp mop, uintptr_t ra)
2152 {
2153 MemOp atom;
2154 unsigned tmp, half_size;
2155
2156 if (unlikely(p->flags & TLB_MMIO)) {
2157 return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size,
2158 mmu_idx, type, ra);
2159 }
2160
2161 /*
2162 * It is a given that we cross a page and therefore there is no
2163 * atomicity for the load as a whole, but subobjects may need attention.
2164 */
2165 atom = mop & MO_ATOM_MASK;
2166 switch (atom) {
2167 case MO_ATOM_SUBALIGN:
2168 return do_ld_parts_beN(p, ret_be);
2169
2170 case MO_ATOM_IFALIGN_PAIR:
2171 case MO_ATOM_WITHIN16_PAIR:
2172 tmp = mop & MO_SIZE;
2173 tmp = tmp ? tmp - 1 : 0;
2174 half_size = 1 << tmp;
2175 if (atom == MO_ATOM_IFALIGN_PAIR
2176 ? p->size == half_size
2177 : p->size >= half_size) {
2178 if (!HAVE_al8_fast && p->size < 4) {
2179 return do_ld_whole_be4(p, ret_be);
2180 } else {
2181 return do_ld_whole_be8(cpu, ra, p, ret_be);
2182 }
2183 }
2184 /* fall through */
2185
2186 case MO_ATOM_IFALIGN:
2187 case MO_ATOM_WITHIN16:
2188 case MO_ATOM_NONE:
2189 return do_ld_bytes_beN(p, ret_be);
2190
2191 default:
2192 g_assert_not_reached();
2193 }
2194 }
2195
2196 /*
2197 * Wrapper for the above, for 8 < size < 16.
2198 */
do_ld16_beN(CPUState * cpu,MMULookupPageData * p,uint64_t a,int mmu_idx,MemOp mop,uintptr_t ra)2199 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p,
2200 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2201 {
2202 int size = p->size;
2203 uint64_t b;
2204 MemOp atom;
2205
2206 if (unlikely(p->flags & TLB_MMIO)) {
2207 return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra);
2208 }
2209
2210 /*
2211 * It is a given that we cross a page and therefore there is no
2212 * atomicity for the load as a whole, but subobjects may need attention.
2213 */
2214 atom = mop & MO_ATOM_MASK;
2215 switch (atom) {
2216 case MO_ATOM_SUBALIGN:
2217 p->size = size - 8;
2218 a = do_ld_parts_beN(p, a);
2219 p->haddr += size - 8;
2220 p->size = 8;
2221 b = do_ld_parts_beN(p, 0);
2222 break;
2223
2224 case MO_ATOM_WITHIN16_PAIR:
2225 /* Since size > 8, this is the half that must be atomic. */
2226 return do_ld_whole_be16(cpu, ra, p, a);
2227
2228 case MO_ATOM_IFALIGN_PAIR:
2229 /*
2230 * Since size > 8, both halves are misaligned,
2231 * and so neither is atomic.
2232 */
2233 case MO_ATOM_IFALIGN:
2234 case MO_ATOM_WITHIN16:
2235 case MO_ATOM_NONE:
2236 p->size = size - 8;
2237 a = do_ld_bytes_beN(p, a);
2238 b = ldq_be_p(p->haddr + size - 8);
2239 break;
2240
2241 default:
2242 g_assert_not_reached();
2243 }
2244
2245 return int128_make128(b, a);
2246 }
2247
do_ld_1(CPUState * cpu,MMULookupPageData * p,int mmu_idx,MMUAccessType type,uintptr_t ra)2248 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2249 MMUAccessType type, uintptr_t ra)
2250 {
2251 if (unlikely(p->flags & TLB_MMIO)) {
2252 return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra);
2253 } else {
2254 return *(uint8_t *)p->haddr;
2255 }
2256 }
2257
do_ld_2(CPUState * cpu,MMULookupPageData * p,int mmu_idx,MMUAccessType type,MemOp memop,uintptr_t ra)2258 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2259 MMUAccessType type, MemOp memop, uintptr_t ra)
2260 {
2261 uint16_t ret;
2262
2263 if (unlikely(p->flags & TLB_MMIO)) {
2264 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2265 if ((memop & MO_BSWAP) == MO_LE) {
2266 ret = bswap16(ret);
2267 }
2268 } else {
2269 /* Perform the load host endian, then swap if necessary. */
2270 ret = load_atom_2(cpu, ra, p->haddr, memop);
2271 if (memop & MO_BSWAP) {
2272 ret = bswap16(ret);
2273 }
2274 }
2275 return ret;
2276 }
2277
do_ld_4(CPUState * cpu,MMULookupPageData * p,int mmu_idx,MMUAccessType type,MemOp memop,uintptr_t ra)2278 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2279 MMUAccessType type, MemOp memop, uintptr_t ra)
2280 {
2281 uint32_t ret;
2282
2283 if (unlikely(p->flags & TLB_MMIO)) {
2284 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2285 if ((memop & MO_BSWAP) == MO_LE) {
2286 ret = bswap32(ret);
2287 }
2288 } else {
2289 /* Perform the load host endian. */
2290 ret = load_atom_4(cpu, ra, p->haddr, memop);
2291 if (memop & MO_BSWAP) {
2292 ret = bswap32(ret);
2293 }
2294 }
2295 return ret;
2296 }
2297
do_ld_8(CPUState * cpu,MMULookupPageData * p,int mmu_idx,MMUAccessType type,MemOp memop,uintptr_t ra)2298 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2299 MMUAccessType type, MemOp memop, uintptr_t ra)
2300 {
2301 uint64_t ret;
2302
2303 if (unlikely(p->flags & TLB_MMIO)) {
2304 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2305 if ((memop & MO_BSWAP) == MO_LE) {
2306 ret = bswap64(ret);
2307 }
2308 } else {
2309 /* Perform the load host endian. */
2310 ret = load_atom_8(cpu, ra, p->haddr, memop);
2311 if (memop & MO_BSWAP) {
2312 ret = bswap64(ret);
2313 }
2314 }
2315 return ret;
2316 }
2317
do_ld1_mmu(CPUState * cpu,vaddr addr,MemOpIdx oi,uintptr_t ra,MMUAccessType access_type)2318 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2319 uintptr_t ra, MMUAccessType access_type)
2320 {
2321 MMULookupLocals l;
2322 bool crosspage;
2323
2324 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2325 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2326 tcg_debug_assert(!crosspage);
2327
2328 return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2329 }
2330
do_ld2_mmu(CPUState * cpu,vaddr addr,MemOpIdx oi,uintptr_t ra,MMUAccessType access_type)2331 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2332 uintptr_t ra, MMUAccessType access_type)
2333 {
2334 MMULookupLocals l;
2335 bool crosspage;
2336 uint16_t ret;
2337 uint8_t a, b;
2338
2339 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2340 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2341 if (likely(!crosspage)) {
2342 return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2343 }
2344
2345 a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2346 b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra);
2347
2348 if ((l.memop & MO_BSWAP) == MO_LE) {
2349 ret = a | (b << 8);
2350 } else {
2351 ret = b | (a << 8);
2352 }
2353 return ret;
2354 }
2355
do_ld4_mmu(CPUState * cpu,vaddr addr,MemOpIdx oi,uintptr_t ra,MMUAccessType access_type)2356 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2357 uintptr_t ra, MMUAccessType access_type)
2358 {
2359 MMULookupLocals l;
2360 bool crosspage;
2361 uint32_t ret;
2362
2363 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2364 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2365 if (likely(!crosspage)) {
2366 return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2367 }
2368
2369 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2370 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2371 if ((l.memop & MO_BSWAP) == MO_LE) {
2372 ret = bswap32(ret);
2373 }
2374 return ret;
2375 }
2376
do_ld8_mmu(CPUState * cpu,vaddr addr,MemOpIdx oi,uintptr_t ra,MMUAccessType access_type)2377 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2378 uintptr_t ra, MMUAccessType access_type)
2379 {
2380 MMULookupLocals l;
2381 bool crosspage;
2382 uint64_t ret;
2383
2384 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2385 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2386 if (likely(!crosspage)) {
2387 return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2388 }
2389
2390 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2391 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2392 if ((l.memop & MO_BSWAP) == MO_LE) {
2393 ret = bswap64(ret);
2394 }
2395 return ret;
2396 }
2397
do_ld16_mmu(CPUState * cpu,vaddr addr,MemOpIdx oi,uintptr_t ra)2398 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr,
2399 MemOpIdx oi, uintptr_t ra)
2400 {
2401 MMULookupLocals l;
2402 bool crosspage;
2403 uint64_t a, b;
2404 Int128 ret;
2405 int first;
2406
2407 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2408 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l);
2409 if (likely(!crosspage)) {
2410 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2411 ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16,
2412 l.mmu_idx, ra);
2413 if ((l.memop & MO_BSWAP) == MO_LE) {
2414 ret = bswap128(ret);
2415 }
2416 } else {
2417 /* Perform the load host endian. */
2418 ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop);
2419 if (l.memop & MO_BSWAP) {
2420 ret = bswap128(ret);
2421 }
2422 }
2423 return ret;
2424 }
2425
2426 first = l.page[0].size;
2427 if (first == 8) {
2428 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2429
2430 a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2431 b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2432 if ((mop8 & MO_BSWAP) == MO_LE) {
2433 ret = int128_make128(a, b);
2434 } else {
2435 ret = int128_make128(b, a);
2436 }
2437 return ret;
2438 }
2439
2440 if (first < 8) {
2441 a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx,
2442 MMU_DATA_LOAD, l.memop, ra);
2443 ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra);
2444 } else {
2445 ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2446 b = int128_getlo(ret);
2447 ret = int128_lshift(ret, l.page[1].size * 8);
2448 a = int128_gethi(ret);
2449 b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx,
2450 MMU_DATA_LOAD, l.memop, ra);
2451 ret = int128_make128(b, a);
2452 }
2453 if ((l.memop & MO_BSWAP) == MO_LE) {
2454 ret = bswap128(ret);
2455 }
2456 return ret;
2457 }
2458
2459 /*
2460 * Store Helpers
2461 */
2462
2463 /**
2464 * do_st_mmio_leN:
2465 * @cpu: generic cpu state
2466 * @full: page parameters
2467 * @val_le: data to store
2468 * @addr: virtual address
2469 * @size: number of bytes
2470 * @mmu_idx: virtual address context
2471 * @ra: return address into tcg generated code, or 0
2472 * Context: BQL held
2473 *
2474 * Store @size bytes at @addr, which is memory-mapped i/o.
2475 * The bytes to store are extracted in little-endian order from @val_le;
2476 * return the bytes of @val_le beyond @p->size that have not been stored.
2477 */
int_st_mmio_leN(CPUState * cpu,CPUTLBEntryFull * full,uint64_t val_le,vaddr addr,int size,int mmu_idx,uintptr_t ra,MemoryRegion * mr,hwaddr mr_offset)2478 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2479 uint64_t val_le, vaddr addr, int size,
2480 int mmu_idx, uintptr_t ra,
2481 MemoryRegion *mr, hwaddr mr_offset)
2482 {
2483 do {
2484 MemOp this_mop;
2485 unsigned this_size;
2486 MemTxResult r;
2487
2488 /* Store aligned pieces up to 8 bytes. */
2489 this_mop = ctz32(size | (int)addr | 8);
2490 this_size = 1 << this_mop;
2491 this_mop |= MO_LE;
2492
2493 r = memory_region_dispatch_write(mr, mr_offset, val_le,
2494 this_mop, full->attrs);
2495 if (unlikely(r != MEMTX_OK)) {
2496 io_failed(cpu, full, addr, this_size, MMU_DATA_STORE,
2497 mmu_idx, r, ra);
2498 }
2499 if (this_size == 8) {
2500 return 0;
2501 }
2502
2503 val_le >>= this_size * 8;
2504 addr += this_size;
2505 mr_offset += this_size;
2506 size -= this_size;
2507 } while (size);
2508
2509 return val_le;
2510 }
2511
do_st_mmio_leN(CPUState * cpu,CPUTLBEntryFull * full,uint64_t val_le,vaddr addr,int size,int mmu_idx,uintptr_t ra)2512 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2513 uint64_t val_le, vaddr addr, int size,
2514 int mmu_idx, uintptr_t ra)
2515 {
2516 MemoryRegionSection *section;
2517 hwaddr mr_offset;
2518 MemoryRegion *mr;
2519 MemTxAttrs attrs;
2520
2521 tcg_debug_assert(size > 0 && size <= 8);
2522
2523 attrs = full->attrs;
2524 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2525 mr = section->mr;
2526
2527 BQL_LOCK_GUARD();
2528 return int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx,
2529 ra, mr, mr_offset);
2530 }
2531
do_st16_mmio_leN(CPUState * cpu,CPUTLBEntryFull * full,Int128 val_le,vaddr addr,int size,int mmu_idx,uintptr_t ra)2532 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2533 Int128 val_le, vaddr addr, int size,
2534 int mmu_idx, uintptr_t ra)
2535 {
2536 MemoryRegionSection *section;
2537 MemoryRegion *mr;
2538 hwaddr mr_offset;
2539 MemTxAttrs attrs;
2540
2541 tcg_debug_assert(size > 8 && size <= 16);
2542
2543 attrs = full->attrs;
2544 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2545 mr = section->mr;
2546
2547 BQL_LOCK_GUARD();
2548 int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8,
2549 mmu_idx, ra, mr, mr_offset);
2550 return int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8,
2551 size - 8, mmu_idx, ra, mr, mr_offset + 8);
2552 }
2553
2554 /*
2555 * Wrapper for the above.
2556 */
do_st_leN(CPUState * cpu,MMULookupPageData * p,uint64_t val_le,int mmu_idx,MemOp mop,uintptr_t ra)2557 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p,
2558 uint64_t val_le, int mmu_idx,
2559 MemOp mop, uintptr_t ra)
2560 {
2561 MemOp atom;
2562 unsigned tmp, half_size;
2563
2564 if (unlikely(p->flags & TLB_MMIO)) {
2565 return do_st_mmio_leN(cpu, p->full, val_le, p->addr,
2566 p->size, mmu_idx, ra);
2567 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2568 return val_le >> (p->size * 8);
2569 }
2570
2571 /*
2572 * It is a given that we cross a page and therefore there is no atomicity
2573 * for the store as a whole, but subobjects may need attention.
2574 */
2575 atom = mop & MO_ATOM_MASK;
2576 switch (atom) {
2577 case MO_ATOM_SUBALIGN:
2578 return store_parts_leN(p->haddr, p->size, val_le);
2579
2580 case MO_ATOM_IFALIGN_PAIR:
2581 case MO_ATOM_WITHIN16_PAIR:
2582 tmp = mop & MO_SIZE;
2583 tmp = tmp ? tmp - 1 : 0;
2584 half_size = 1 << tmp;
2585 if (atom == MO_ATOM_IFALIGN_PAIR
2586 ? p->size == half_size
2587 : p->size >= half_size) {
2588 if (!HAVE_al8_fast && p->size <= 4) {
2589 return store_whole_le4(p->haddr, p->size, val_le);
2590 } else if (HAVE_al8) {
2591 return store_whole_le8(p->haddr, p->size, val_le);
2592 } else {
2593 cpu_loop_exit_atomic(cpu, ra);
2594 }
2595 }
2596 /* fall through */
2597
2598 case MO_ATOM_IFALIGN:
2599 case MO_ATOM_WITHIN16:
2600 case MO_ATOM_NONE:
2601 return store_bytes_leN(p->haddr, p->size, val_le);
2602
2603 default:
2604 g_assert_not_reached();
2605 }
2606 }
2607
2608 /*
2609 * Wrapper for the above, for 8 < size < 16.
2610 */
do_st16_leN(CPUState * cpu,MMULookupPageData * p,Int128 val_le,int mmu_idx,MemOp mop,uintptr_t ra)2611 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p,
2612 Int128 val_le, int mmu_idx,
2613 MemOp mop, uintptr_t ra)
2614 {
2615 int size = p->size;
2616 MemOp atom;
2617
2618 if (unlikely(p->flags & TLB_MMIO)) {
2619 return do_st16_mmio_leN(cpu, p->full, val_le, p->addr,
2620 size, mmu_idx, ra);
2621 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2622 return int128_gethi(val_le) >> ((size - 8) * 8);
2623 }
2624
2625 /*
2626 * It is a given that we cross a page and therefore there is no atomicity
2627 * for the store as a whole, but subobjects may need attention.
2628 */
2629 atom = mop & MO_ATOM_MASK;
2630 switch (atom) {
2631 case MO_ATOM_SUBALIGN:
2632 store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2633 return store_parts_leN(p->haddr + 8, p->size - 8,
2634 int128_gethi(val_le));
2635
2636 case MO_ATOM_WITHIN16_PAIR:
2637 /* Since size > 8, this is the half that must be atomic. */
2638 if (!HAVE_CMPXCHG128) {
2639 cpu_loop_exit_atomic(cpu, ra);
2640 }
2641 return store_whole_le16(p->haddr, p->size, val_le);
2642
2643 case MO_ATOM_IFALIGN_PAIR:
2644 /*
2645 * Since size > 8, both halves are misaligned,
2646 * and so neither is atomic.
2647 */
2648 case MO_ATOM_IFALIGN:
2649 case MO_ATOM_WITHIN16:
2650 case MO_ATOM_NONE:
2651 stq_le_p(p->haddr, int128_getlo(val_le));
2652 return store_bytes_leN(p->haddr + 8, p->size - 8,
2653 int128_gethi(val_le));
2654
2655 default:
2656 g_assert_not_reached();
2657 }
2658 }
2659
do_st_1(CPUState * cpu,MMULookupPageData * p,uint8_t val,int mmu_idx,uintptr_t ra)2660 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val,
2661 int mmu_idx, uintptr_t ra)
2662 {
2663 if (unlikely(p->flags & TLB_MMIO)) {
2664 do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra);
2665 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2666 /* nothing */
2667 } else {
2668 *(uint8_t *)p->haddr = val;
2669 }
2670 }
2671
do_st_2(CPUState * cpu,MMULookupPageData * p,uint16_t val,int mmu_idx,MemOp memop,uintptr_t ra)2672 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val,
2673 int mmu_idx, MemOp memop, uintptr_t ra)
2674 {
2675 if (unlikely(p->flags & TLB_MMIO)) {
2676 if ((memop & MO_BSWAP) != MO_LE) {
2677 val = bswap16(val);
2678 }
2679 do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra);
2680 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2681 /* nothing */
2682 } else {
2683 /* Swap to host endian if necessary, then store. */
2684 if (memop & MO_BSWAP) {
2685 val = bswap16(val);
2686 }
2687 store_atom_2(cpu, ra, p->haddr, memop, val);
2688 }
2689 }
2690
do_st_4(CPUState * cpu,MMULookupPageData * p,uint32_t val,int mmu_idx,MemOp memop,uintptr_t ra)2691 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val,
2692 int mmu_idx, MemOp memop, uintptr_t ra)
2693 {
2694 if (unlikely(p->flags & TLB_MMIO)) {
2695 if ((memop & MO_BSWAP) != MO_LE) {
2696 val = bswap32(val);
2697 }
2698 do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra);
2699 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2700 /* nothing */
2701 } else {
2702 /* Swap to host endian if necessary, then store. */
2703 if (memop & MO_BSWAP) {
2704 val = bswap32(val);
2705 }
2706 store_atom_4(cpu, ra, p->haddr, memop, val);
2707 }
2708 }
2709
do_st_8(CPUState * cpu,MMULookupPageData * p,uint64_t val,int mmu_idx,MemOp memop,uintptr_t ra)2710 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val,
2711 int mmu_idx, MemOp memop, uintptr_t ra)
2712 {
2713 if (unlikely(p->flags & TLB_MMIO)) {
2714 if ((memop & MO_BSWAP) != MO_LE) {
2715 val = bswap64(val);
2716 }
2717 do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra);
2718 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2719 /* nothing */
2720 } else {
2721 /* Swap to host endian if necessary, then store. */
2722 if (memop & MO_BSWAP) {
2723 val = bswap64(val);
2724 }
2725 store_atom_8(cpu, ra, p->haddr, memop, val);
2726 }
2727 }
2728
do_st1_mmu(CPUState * cpu,vaddr addr,uint8_t val,MemOpIdx oi,uintptr_t ra)2729 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val,
2730 MemOpIdx oi, uintptr_t ra)
2731 {
2732 MMULookupLocals l;
2733 bool crosspage;
2734
2735 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2736 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2737 tcg_debug_assert(!crosspage);
2738
2739 do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra);
2740 }
2741
do_st2_mmu(CPUState * cpu,vaddr addr,uint16_t val,MemOpIdx oi,uintptr_t ra)2742 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val,
2743 MemOpIdx oi, uintptr_t ra)
2744 {
2745 MMULookupLocals l;
2746 bool crosspage;
2747 uint8_t a, b;
2748
2749 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2750 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2751 if (likely(!crosspage)) {
2752 do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2753 return;
2754 }
2755
2756 if ((l.memop & MO_BSWAP) == MO_LE) {
2757 a = val, b = val >> 8;
2758 } else {
2759 b = val, a = val >> 8;
2760 }
2761 do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra);
2762 do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra);
2763 }
2764
do_st4_mmu(CPUState * cpu,vaddr addr,uint32_t val,MemOpIdx oi,uintptr_t ra)2765 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val,
2766 MemOpIdx oi, uintptr_t ra)
2767 {
2768 MMULookupLocals l;
2769 bool crosspage;
2770
2771 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2772 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2773 if (likely(!crosspage)) {
2774 do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2775 return;
2776 }
2777
2778 /* Swap to little endian for simplicity, then store by bytes. */
2779 if ((l.memop & MO_BSWAP) != MO_LE) {
2780 val = bswap32(val);
2781 }
2782 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2783 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2784 }
2785
do_st8_mmu(CPUState * cpu,vaddr addr,uint64_t val,MemOpIdx oi,uintptr_t ra)2786 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val,
2787 MemOpIdx oi, uintptr_t ra)
2788 {
2789 MMULookupLocals l;
2790 bool crosspage;
2791
2792 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2793 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2794 if (likely(!crosspage)) {
2795 do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2796 return;
2797 }
2798
2799 /* Swap to little endian for simplicity, then store by bytes. */
2800 if ((l.memop & MO_BSWAP) != MO_LE) {
2801 val = bswap64(val);
2802 }
2803 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2804 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2805 }
2806
do_st16_mmu(CPUState * cpu,vaddr addr,Int128 val,MemOpIdx oi,uintptr_t ra)2807 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val,
2808 MemOpIdx oi, uintptr_t ra)
2809 {
2810 MMULookupLocals l;
2811 bool crosspage;
2812 uint64_t a, b;
2813 int first;
2814
2815 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2816 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2817 if (likely(!crosspage)) {
2818 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2819 if ((l.memop & MO_BSWAP) != MO_LE) {
2820 val = bswap128(val);
2821 }
2822 do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra);
2823 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
2824 /* nothing */
2825 } else {
2826 /* Swap to host endian if necessary, then store. */
2827 if (l.memop & MO_BSWAP) {
2828 val = bswap128(val);
2829 }
2830 store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val);
2831 }
2832 return;
2833 }
2834
2835 first = l.page[0].size;
2836 if (first == 8) {
2837 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
2838
2839 if (l.memop & MO_BSWAP) {
2840 val = bswap128(val);
2841 }
2842 if (HOST_BIG_ENDIAN) {
2843 b = int128_getlo(val), a = int128_gethi(val);
2844 } else {
2845 a = int128_getlo(val), b = int128_gethi(val);
2846 }
2847 do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra);
2848 do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra);
2849 return;
2850 }
2851
2852 if ((l.memop & MO_BSWAP) != MO_LE) {
2853 val = bswap128(val);
2854 }
2855 if (first < 8) {
2856 do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
2857 val = int128_urshift(val, first * 8);
2858 do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2859 } else {
2860 b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2861 do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra);
2862 }
2863 }
2864
2865 #include "ldst_common.c.inc"
2866
2867 /*
2868 * First set of functions passes in OI and RETADDR.
2869 * This makes them callable from other helpers.
2870 */
2871
2872 #define ATOMIC_NAME(X) \
2873 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2874
2875 #define ATOMIC_MMU_CLEANUP
2876
2877 #include "atomic_common.c.inc"
2878
2879 #define DATA_SIZE 1
2880 #include "atomic_template.h"
2881
2882 #define DATA_SIZE 2
2883 #include "atomic_template.h"
2884
2885 #define DATA_SIZE 4
2886 #include "atomic_template.h"
2887
2888 #ifdef CONFIG_ATOMIC64
2889 #define DATA_SIZE 8
2890 #include "atomic_template.h"
2891 #endif
2892
2893 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
2894 #define DATA_SIZE 16
2895 #include "atomic_template.h"
2896 #endif
2897
2898 /* Code access functions. */
2899
cpu_ldub_code(CPUArchState * env,abi_ptr addr)2900 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2901 {
2902 CPUState *cs = env_cpu(env);
2903 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(cs, true));
2904 return do_ld1_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2905 }
2906
cpu_lduw_code(CPUArchState * env,abi_ptr addr)2907 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2908 {
2909 CPUState *cs = env_cpu(env);
2910 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(cs, true));
2911 return do_ld2_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2912 }
2913
cpu_ldl_code(CPUArchState * env,abi_ptr addr)2914 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2915 {
2916 CPUState *cs = env_cpu(env);
2917 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(cs, true));
2918 return do_ld4_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2919 }
2920
cpu_ldq_code(CPUArchState * env,abi_ptr addr)2921 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2922 {
2923 CPUState *cs = env_cpu(env);
2924 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(cs, true));
2925 return do_ld8_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2926 }
2927
cpu_ldb_code_mmu(CPUArchState * env,abi_ptr addr,MemOpIdx oi,uintptr_t retaddr)2928 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
2929 MemOpIdx oi, uintptr_t retaddr)
2930 {
2931 return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2932 }
2933
cpu_ldw_code_mmu(CPUArchState * env,abi_ptr addr,MemOpIdx oi,uintptr_t retaddr)2934 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
2935 MemOpIdx oi, uintptr_t retaddr)
2936 {
2937 return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2938 }
2939
cpu_ldl_code_mmu(CPUArchState * env,abi_ptr addr,MemOpIdx oi,uintptr_t retaddr)2940 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
2941 MemOpIdx oi, uintptr_t retaddr)
2942 {
2943 return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2944 }
2945
cpu_ldq_code_mmu(CPUArchState * env,abi_ptr addr,MemOpIdx oi,uintptr_t retaddr)2946 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
2947 MemOpIdx oi, uintptr_t retaddr)
2948 {
2949 return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2950 }
2951