xref: /openbmc/linux/kernel/bpf/verifier.c (revision 9144f784f852f9a125cabe9927b986d909bfa439)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43 
44 /* bpf_check() is a static code analyzer that walks eBPF program
45  * instruction by instruction and updates register/stack state.
46  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47  *
48  * The first pass is depth-first-search to check that the program is a DAG.
49  * It rejects the following programs:
50  * - larger than BPF_MAXINSNS insns
51  * - if loop is present (detected via back-edge)
52  * - unreachable insns exist (shouldn't be a forest. program = one function)
53  * - out of bounds or malformed jumps
54  * The second pass is all possible path descent from the 1st insn.
55  * Since it's analyzing all paths through the program, the length of the
56  * analysis is limited to 64k insn, which may be hit even if total number of
57  * insn is less then 4K, but there are too many branches that change stack/regs.
58  * Number of 'branches to be analyzed' is limited to 1k
59  *
60  * On entry to each instruction, each register has a type, and the instruction
61  * changes the types of the registers depending on instruction semantics.
62  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63  * copied to R1.
64  *
65  * All registers are 64-bit.
66  * R0 - return register
67  * R1-R5 argument passing registers
68  * R6-R9 callee saved registers
69  * R10 - frame pointer read-only
70  *
71  * At the start of BPF program the register R1 contains a pointer to bpf_context
72  * and has type PTR_TO_CTX.
73  *
74  * Verifier tracks arithmetic operations on pointers in case:
75  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77  * 1st insn copies R10 (which has FRAME_PTR) type into R1
78  * and 2nd arithmetic instruction is pattern matched to recognize
79  * that it wants to construct a pointer to some element within stack.
80  * So after 2nd insn, the register R1 has type PTR_TO_STACK
81  * (and -20 constant is saved for further stack bounds checking).
82  * Meaning that this reg is a pointer to stack plus known immediate constant.
83  *
84  * Most of the time the registers have SCALAR_VALUE type, which
85  * means the register has some value, but it's not a valid pointer.
86  * (like pointer plus pointer becomes SCALAR_VALUE type)
87  *
88  * When verifier sees load or store instructions the type of base register
89  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90  * four pointer types recognized by check_mem_access() function.
91  *
92  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93  * and the range of [ptr, ptr + map's value_size) is accessible.
94  *
95  * registers used to pass values to function calls are checked against
96  * function argument constraints.
97  *
98  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99  * It means that the register type passed to this function must be
100  * PTR_TO_STACK and it will be used inside the function as
101  * 'pointer to map element key'
102  *
103  * For example the argument constraints for bpf_map_lookup_elem():
104  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105  *   .arg1_type = ARG_CONST_MAP_PTR,
106  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
107  *
108  * ret_type says that this function returns 'pointer to map elem value or null'
109  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110  * 2nd argument should be a pointer to stack, which will be used inside
111  * the helper function as a pointer to map element key.
112  *
113  * On the kernel side the helper function looks like:
114  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115  * {
116  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117  *    void *key = (void *) (unsigned long) r2;
118  *    void *value;
119  *
120  *    here kernel can access 'key' and 'map' pointers safely, knowing that
121  *    [key, key + map->key_size) bytes are valid and were initialized on
122  *    the stack of eBPF program.
123  * }
124  *
125  * Corresponding eBPF program may look like:
126  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
127  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
129  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130  * here verifier looks at prototype of map_lookup_elem() and sees:
131  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133  *
134  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136  * and were initialized prior to this call.
137  * If it's ok, then verifier allows this BPF_CALL insn and looks at
138  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140  * returns either pointer to map value or NULL.
141  *
142  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143  * insn, the register holding that pointer in the true branch changes state to
144  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145  * branch. See check_cond_jmp_op().
146  *
147  * After the call R0 is set to return type of the function and registers R1-R5
148  * are set to NOT_INIT to indicate that they are no longer readable.
149  *
150  * The following reference types represent a potential reference to a kernel
151  * resource which, after first being allocated, must be checked and freed by
152  * the BPF program:
153  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154  *
155  * When the verifier sees a helper call return a reference type, it allocates a
156  * pointer id for the reference and stores it in the current function state.
157  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159  * passes through a NULL-check conditional. For the branch wherein the state is
160  * changed to CONST_IMM, the verifier releases the reference.
161  *
162  * For each helper function that allocates a reference, such as
163  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164  * bpf_sk_release(). When a reference type passes into the release function,
165  * the verifier also releases the reference. If any unchecked or unreleased
166  * reference remains at the end of the program, the verifier rejects it.
167  */
168 
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 	/* verifer state is 'st'
172 	 * before processing instruction 'insn_idx'
173 	 * and after processing instruction 'prev_insn_idx'
174 	 */
175 	struct bpf_verifier_state st;
176 	int insn_idx;
177 	int prev_insn_idx;
178 	struct bpf_verifier_stack_elem *next;
179 	/* length of verifier log at the time this state was pushed on stack */
180 	u32 log_pos;
181 };
182 
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
184 #define BPF_COMPLEXITY_LIMIT_STATES	64
185 
186 #define BPF_MAP_KEY_POISON	(1ULL << 63)
187 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
188 
189 #define BPF_MAP_PTR_UNPRIV	1UL
190 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
191 					  POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193 
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 			      struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 			     u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203 
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208 
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213 
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 			      const struct bpf_map *map, bool unpriv)
216 {
217 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 	unpriv |= bpf_map_ptr_unpriv(aux);
219 	aux->map_ptr_state = (unsigned long)map |
220 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222 
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227 
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232 
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237 
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240 	bool poisoned = bpf_map_key_poisoned(aux);
241 
242 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245 
bpf_helper_call(const struct bpf_insn * insn)246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248 	return insn->code == (BPF_JMP | BPF_CALL) &&
249 	       insn->src_reg == 0;
250 }
251 
bpf_pseudo_call(const struct bpf_insn * insn)252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == BPF_PSEUDO_CALL;
256 }
257 
bpf_pseudo_kfunc_call(const struct bpf_insn * insn)258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263 
264 struct bpf_call_arg_meta {
265 	struct bpf_map *map_ptr;
266 	bool raw_mode;
267 	bool pkt_access;
268 	u8 release_regno;
269 	int regno;
270 	int access_size;
271 	int mem_size;
272 	u64 msize_max_value;
273 	int ref_obj_id;
274 	int dynptr_id;
275 	int map_uid;
276 	int func_id;
277 	struct btf *btf;
278 	u32 btf_id;
279 	struct btf *ret_btf;
280 	u32 ret_btf_id;
281 	u32 subprogno;
282 	struct btf_field *kptr_field;
283 };
284 
285 struct bpf_kfunc_call_arg_meta {
286 	/* In parameters */
287 	struct btf *btf;
288 	u32 func_id;
289 	u32 kfunc_flags;
290 	const struct btf_type *func_proto;
291 	const char *func_name;
292 	/* Out parameters */
293 	u32 ref_obj_id;
294 	u8 release_regno;
295 	bool r0_rdonly;
296 	u32 ret_btf_id;
297 	u64 r0_size;
298 	u32 subprogno;
299 	struct {
300 		u64 value;
301 		bool found;
302 	} arg_constant;
303 
304 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 	 * generally to pass info about user-defined local kptr types to later
306 	 * verification logic
307 	 *   bpf_obj_drop
308 	 *     Record the local kptr type to be drop'd
309 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 	 *     Record the local kptr type to be refcount_incr'd and use
311 	 *     arg_owning_ref to determine whether refcount_acquire should be
312 	 *     fallible
313 	 */
314 	struct btf *arg_btf;
315 	u32 arg_btf_id;
316 	bool arg_owning_ref;
317 
318 	struct {
319 		struct btf_field *field;
320 	} arg_list_head;
321 	struct {
322 		struct btf_field *field;
323 	} arg_rbtree_root;
324 	struct {
325 		enum bpf_dynptr_type type;
326 		u32 id;
327 		u32 ref_obj_id;
328 	} initialized_dynptr;
329 	struct {
330 		u8 spi;
331 		u8 frameno;
332 	} iter;
333 	u64 mem_size;
334 };
335 
336 struct btf *btf_vmlinux;
337 
338 static DEFINE_MUTEX(bpf_verifier_lock);
339 
340 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343 	const struct bpf_line_info *linfo;
344 	const struct bpf_prog *prog;
345 	u32 i, nr_linfo;
346 
347 	prog = env->prog;
348 	nr_linfo = prog->aux->nr_linfo;
349 
350 	if (!nr_linfo || insn_off >= prog->len)
351 		return NULL;
352 
353 	linfo = prog->aux->linfo;
354 	for (i = 1; i < nr_linfo; i++)
355 		if (insn_off < linfo[i].insn_off)
356 			break;
357 
358 	return &linfo[i - 1];
359 }
360 
verbose(void * private_data,const char * fmt,...)361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363 	struct bpf_verifier_env *env = private_data;
364 	va_list args;
365 
366 	if (!bpf_verifier_log_needed(&env->log))
367 		return;
368 
369 	va_start(args, fmt);
370 	bpf_verifier_vlog(&env->log, fmt, args);
371 	va_end(args);
372 }
373 
ltrim(const char * s)374 static const char *ltrim(const char *s)
375 {
376 	while (isspace(*s))
377 		s++;
378 
379 	return s;
380 }
381 
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 					 u32 insn_off,
384 					 const char *prefix_fmt, ...)
385 {
386 	const struct bpf_line_info *linfo;
387 
388 	if (!bpf_verifier_log_needed(&env->log))
389 		return;
390 
391 	linfo = find_linfo(env, insn_off);
392 	if (!linfo || linfo == env->prev_linfo)
393 		return;
394 
395 	if (prefix_fmt) {
396 		va_list args;
397 
398 		va_start(args, prefix_fmt);
399 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 		va_end(args);
401 	}
402 
403 	verbose(env, "%s\n",
404 		ltrim(btf_name_by_offset(env->prog->aux->btf,
405 					 linfo->line_off)));
406 
407 	env->prev_linfo = linfo;
408 }
409 
verbose_invalid_scalar(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct tnum * range,const char * ctx,const char * reg_name)410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 				   struct bpf_reg_state *reg,
412 				   struct tnum *range, const char *ctx,
413 				   const char *reg_name)
414 {
415 	char tn_buf[48];
416 
417 	verbose(env, "At %s the register %s ", ctx, reg_name);
418 	if (!tnum_is_unknown(reg->var_off)) {
419 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 		verbose(env, "has value %s", tn_buf);
421 	} else {
422 		verbose(env, "has unknown scalar value");
423 	}
424 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 	verbose(env, " should have been in %s\n", tn_buf);
426 }
427 
type_is_pkt_pointer(enum bpf_reg_type type)428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 	type = base_type(type);
431 	return type == PTR_TO_PACKET ||
432 	       type == PTR_TO_PACKET_META;
433 }
434 
type_is_sk_pointer(enum bpf_reg_type type)435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437 	return type == PTR_TO_SOCKET ||
438 		type == PTR_TO_SOCK_COMMON ||
439 		type == PTR_TO_TCP_SOCK ||
440 		type == PTR_TO_XDP_SOCK;
441 }
442 
type_may_be_null(u32 type)443 static bool type_may_be_null(u32 type)
444 {
445 	return type & PTR_MAYBE_NULL;
446 }
447 
reg_not_null(const struct bpf_reg_state * reg)448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450 	enum bpf_reg_type type;
451 
452 	type = reg->type;
453 	if (type_may_be_null(type))
454 		return false;
455 
456 	type = base_type(type);
457 	return type == PTR_TO_SOCKET ||
458 		type == PTR_TO_TCP_SOCK ||
459 		type == PTR_TO_MAP_VALUE ||
460 		type == PTR_TO_MAP_KEY ||
461 		type == PTR_TO_SOCK_COMMON ||
462 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463 		type == PTR_TO_MEM;
464 }
465 
type_is_ptr_alloc_obj(u32 type)466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470 
type_is_non_owning_ref(u32 type)471 static bool type_is_non_owning_ref(u32 type)
472 {
473 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475 
reg_btf_record(const struct bpf_reg_state * reg)476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478 	struct btf_record *rec = NULL;
479 	struct btf_struct_meta *meta;
480 
481 	if (reg->type == PTR_TO_MAP_VALUE) {
482 		rec = reg->map_ptr->record;
483 	} else if (type_is_ptr_alloc_obj(reg->type)) {
484 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 		if (meta)
486 			rec = meta->record;
487 	}
488 	return rec;
489 }
490 
subprog_is_global(const struct bpf_verifier_env * env,int subprog)491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494 
495 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497 
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502 
type_is_rdonly_mem(u32 type)503 static bool type_is_rdonly_mem(u32 type)
504 {
505 	return type & MEM_RDONLY;
506 }
507 
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)508 static bool is_acquire_function(enum bpf_func_id func_id,
509 				const struct bpf_map *map)
510 {
511 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512 
513 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 	    func_id == BPF_FUNC_sk_lookup_udp ||
515 	    func_id == BPF_FUNC_skc_lookup_tcp ||
516 	    func_id == BPF_FUNC_ringbuf_reserve ||
517 	    func_id == BPF_FUNC_kptr_xchg)
518 		return true;
519 
520 	if (func_id == BPF_FUNC_map_lookup_elem &&
521 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 	     map_type == BPF_MAP_TYPE_SOCKHASH))
523 		return true;
524 
525 	return false;
526 }
527 
is_ptr_cast_function(enum bpf_func_id func_id)528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530 	return func_id == BPF_FUNC_tcp_sock ||
531 		func_id == BPF_FUNC_sk_fullsock ||
532 		func_id == BPF_FUNC_skc_to_tcp_sock ||
533 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 		func_id == BPF_FUNC_skc_to_udp6_sock ||
535 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
is_dynptr_ref_function(enum bpf_func_id func_id)540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542 	return func_id == BPF_FUNC_dynptr_data;
543 }
544 
545 static bool is_sync_callback_calling_kfunc(u32 btf_id);
546 
is_sync_callback_calling_function(enum bpf_func_id func_id)547 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
548 {
549 	return func_id == BPF_FUNC_for_each_map_elem ||
550 	       func_id == BPF_FUNC_find_vma ||
551 	       func_id == BPF_FUNC_loop ||
552 	       func_id == BPF_FUNC_user_ringbuf_drain;
553 }
554 
is_async_callback_calling_function(enum bpf_func_id func_id)555 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
556 {
557 	return func_id == BPF_FUNC_timer_set_callback;
558 }
559 
is_callback_calling_function(enum bpf_func_id func_id)560 static bool is_callback_calling_function(enum bpf_func_id func_id)
561 {
562 	return is_sync_callback_calling_function(func_id) ||
563 	       is_async_callback_calling_function(func_id);
564 }
565 
is_sync_callback_calling_insn(struct bpf_insn * insn)566 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
567 {
568 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
569 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
570 }
571 
is_storage_get_function(enum bpf_func_id func_id)572 static bool is_storage_get_function(enum bpf_func_id func_id)
573 {
574 	return func_id == BPF_FUNC_sk_storage_get ||
575 	       func_id == BPF_FUNC_inode_storage_get ||
576 	       func_id == BPF_FUNC_task_storage_get ||
577 	       func_id == BPF_FUNC_cgrp_storage_get;
578 }
579 
helper_multiple_ref_obj_use(enum bpf_func_id func_id,const struct bpf_map * map)580 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
581 					const struct bpf_map *map)
582 {
583 	int ref_obj_uses = 0;
584 
585 	if (is_ptr_cast_function(func_id))
586 		ref_obj_uses++;
587 	if (is_acquire_function(func_id, map))
588 		ref_obj_uses++;
589 	if (is_dynptr_ref_function(func_id))
590 		ref_obj_uses++;
591 
592 	return ref_obj_uses > 1;
593 }
594 
is_cmpxchg_insn(const struct bpf_insn * insn)595 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
596 {
597 	return BPF_CLASS(insn->code) == BPF_STX &&
598 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
599 	       insn->imm == BPF_CMPXCHG;
600 }
601 
602 /* string representation of 'enum bpf_reg_type'
603  *
604  * Note that reg_type_str() can not appear more than once in a single verbose()
605  * statement.
606  */
reg_type_str(struct bpf_verifier_env * env,enum bpf_reg_type type)607 static const char *reg_type_str(struct bpf_verifier_env *env,
608 				enum bpf_reg_type type)
609 {
610 	char postfix[16] = {0}, prefix[64] = {0};
611 	static const char * const str[] = {
612 		[NOT_INIT]		= "?",
613 		[SCALAR_VALUE]		= "scalar",
614 		[PTR_TO_CTX]		= "ctx",
615 		[CONST_PTR_TO_MAP]	= "map_ptr",
616 		[PTR_TO_MAP_VALUE]	= "map_value",
617 		[PTR_TO_STACK]		= "fp",
618 		[PTR_TO_PACKET]		= "pkt",
619 		[PTR_TO_PACKET_META]	= "pkt_meta",
620 		[PTR_TO_PACKET_END]	= "pkt_end",
621 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
622 		[PTR_TO_SOCKET]		= "sock",
623 		[PTR_TO_SOCK_COMMON]	= "sock_common",
624 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
625 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
626 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
627 		[PTR_TO_BTF_ID]		= "ptr_",
628 		[PTR_TO_MEM]		= "mem",
629 		[PTR_TO_BUF]		= "buf",
630 		[PTR_TO_FUNC]		= "func",
631 		[PTR_TO_MAP_KEY]	= "map_key",
632 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
633 	};
634 
635 	if (type & PTR_MAYBE_NULL) {
636 		if (base_type(type) == PTR_TO_BTF_ID)
637 			strncpy(postfix, "or_null_", 16);
638 		else
639 			strncpy(postfix, "_or_null", 16);
640 	}
641 
642 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
643 		 type & MEM_RDONLY ? "rdonly_" : "",
644 		 type & MEM_RINGBUF ? "ringbuf_" : "",
645 		 type & MEM_USER ? "user_" : "",
646 		 type & MEM_PERCPU ? "percpu_" : "",
647 		 type & MEM_RCU ? "rcu_" : "",
648 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
649 		 type & PTR_TRUSTED ? "trusted_" : ""
650 	);
651 
652 	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
653 		 prefix, str[base_type(type)], postfix);
654 	return env->tmp_str_buf;
655 }
656 
657 static char slot_type_char[] = {
658 	[STACK_INVALID]	= '?',
659 	[STACK_SPILL]	= 'r',
660 	[STACK_MISC]	= 'm',
661 	[STACK_ZERO]	= '0',
662 	[STACK_DYNPTR]	= 'd',
663 	[STACK_ITER]	= 'i',
664 };
665 
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)666 static void print_liveness(struct bpf_verifier_env *env,
667 			   enum bpf_reg_liveness live)
668 {
669 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
670 	    verbose(env, "_");
671 	if (live & REG_LIVE_READ)
672 		verbose(env, "r");
673 	if (live & REG_LIVE_WRITTEN)
674 		verbose(env, "w");
675 	if (live & REG_LIVE_DONE)
676 		verbose(env, "D");
677 }
678 
__get_spi(s32 off)679 static int __get_spi(s32 off)
680 {
681 	return (-off - 1) / BPF_REG_SIZE;
682 }
683 
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)684 static struct bpf_func_state *func(struct bpf_verifier_env *env,
685 				   const struct bpf_reg_state *reg)
686 {
687 	struct bpf_verifier_state *cur = env->cur_state;
688 
689 	return cur->frame[reg->frameno];
690 }
691 
is_spi_bounds_valid(struct bpf_func_state * state,int spi,int nr_slots)692 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
693 {
694        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
695 
696        /* We need to check that slots between [spi - nr_slots + 1, spi] are
697 	* within [0, allocated_stack).
698 	*
699 	* Please note that the spi grows downwards. For example, a dynptr
700 	* takes the size of two stack slots; the first slot will be at
701 	* spi and the second slot will be at spi - 1.
702 	*/
703        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
704 }
705 
stack_slot_obj_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * obj_kind,int nr_slots)706 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
707 			          const char *obj_kind, int nr_slots)
708 {
709 	int off, spi;
710 
711 	if (!tnum_is_const(reg->var_off)) {
712 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
713 		return -EINVAL;
714 	}
715 
716 	off = reg->off + reg->var_off.value;
717 	if (off % BPF_REG_SIZE) {
718 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
719 		return -EINVAL;
720 	}
721 
722 	spi = __get_spi(off);
723 	if (spi + 1 < nr_slots) {
724 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
725 		return -EINVAL;
726 	}
727 
728 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
729 		return -ERANGE;
730 	return spi;
731 }
732 
dynptr_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg)733 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
734 {
735 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
736 }
737 
iter_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)738 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
739 {
740 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
741 }
742 
btf_type_name(const struct btf * btf,u32 id)743 static const char *btf_type_name(const struct btf *btf, u32 id)
744 {
745 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
746 }
747 
dynptr_type_str(enum bpf_dynptr_type type)748 static const char *dynptr_type_str(enum bpf_dynptr_type type)
749 {
750 	switch (type) {
751 	case BPF_DYNPTR_TYPE_LOCAL:
752 		return "local";
753 	case BPF_DYNPTR_TYPE_RINGBUF:
754 		return "ringbuf";
755 	case BPF_DYNPTR_TYPE_SKB:
756 		return "skb";
757 	case BPF_DYNPTR_TYPE_XDP:
758 		return "xdp";
759 	case BPF_DYNPTR_TYPE_INVALID:
760 		return "<invalid>";
761 	default:
762 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
763 		return "<unknown>";
764 	}
765 }
766 
iter_type_str(const struct btf * btf,u32 btf_id)767 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
768 {
769 	if (!btf || btf_id == 0)
770 		return "<invalid>";
771 
772 	/* we already validated that type is valid and has conforming name */
773 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
774 }
775 
iter_state_str(enum bpf_iter_state state)776 static const char *iter_state_str(enum bpf_iter_state state)
777 {
778 	switch (state) {
779 	case BPF_ITER_STATE_ACTIVE:
780 		return "active";
781 	case BPF_ITER_STATE_DRAINED:
782 		return "drained";
783 	case BPF_ITER_STATE_INVALID:
784 		return "<invalid>";
785 	default:
786 		WARN_ONCE(1, "unknown iter state %d\n", state);
787 		return "<unknown>";
788 	}
789 }
790 
mark_reg_scratched(struct bpf_verifier_env * env,u32 regno)791 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
792 {
793 	env->scratched_regs |= 1U << regno;
794 }
795 
mark_stack_slot_scratched(struct bpf_verifier_env * env,u32 spi)796 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
797 {
798 	env->scratched_stack_slots |= 1ULL << spi;
799 }
800 
reg_scratched(const struct bpf_verifier_env * env,u32 regno)801 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
802 {
803 	return (env->scratched_regs >> regno) & 1;
804 }
805 
stack_slot_scratched(const struct bpf_verifier_env * env,u64 regno)806 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
807 {
808 	return (env->scratched_stack_slots >> regno) & 1;
809 }
810 
verifier_state_scratched(const struct bpf_verifier_env * env)811 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
812 {
813 	return env->scratched_regs || env->scratched_stack_slots;
814 }
815 
mark_verifier_state_clean(struct bpf_verifier_env * env)816 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
817 {
818 	env->scratched_regs = 0U;
819 	env->scratched_stack_slots = 0ULL;
820 }
821 
822 /* Used for printing the entire verifier state. */
mark_verifier_state_scratched(struct bpf_verifier_env * env)823 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
824 {
825 	env->scratched_regs = ~0U;
826 	env->scratched_stack_slots = ~0ULL;
827 }
828 
arg_to_dynptr_type(enum bpf_arg_type arg_type)829 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
830 {
831 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
832 	case DYNPTR_TYPE_LOCAL:
833 		return BPF_DYNPTR_TYPE_LOCAL;
834 	case DYNPTR_TYPE_RINGBUF:
835 		return BPF_DYNPTR_TYPE_RINGBUF;
836 	case DYNPTR_TYPE_SKB:
837 		return BPF_DYNPTR_TYPE_SKB;
838 	case DYNPTR_TYPE_XDP:
839 		return BPF_DYNPTR_TYPE_XDP;
840 	default:
841 		return BPF_DYNPTR_TYPE_INVALID;
842 	}
843 }
844 
get_dynptr_type_flag(enum bpf_dynptr_type type)845 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
846 {
847 	switch (type) {
848 	case BPF_DYNPTR_TYPE_LOCAL:
849 		return DYNPTR_TYPE_LOCAL;
850 	case BPF_DYNPTR_TYPE_RINGBUF:
851 		return DYNPTR_TYPE_RINGBUF;
852 	case BPF_DYNPTR_TYPE_SKB:
853 		return DYNPTR_TYPE_SKB;
854 	case BPF_DYNPTR_TYPE_XDP:
855 		return DYNPTR_TYPE_XDP;
856 	default:
857 		return 0;
858 	}
859 }
860 
dynptr_type_refcounted(enum bpf_dynptr_type type)861 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
862 {
863 	return type == BPF_DYNPTR_TYPE_RINGBUF;
864 }
865 
866 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
867 			      enum bpf_dynptr_type type,
868 			      bool first_slot, int dynptr_id);
869 
870 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
871 				struct bpf_reg_state *reg);
872 
mark_dynptr_stack_regs(struct bpf_verifier_env * env,struct bpf_reg_state * sreg1,struct bpf_reg_state * sreg2,enum bpf_dynptr_type type)873 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
874 				   struct bpf_reg_state *sreg1,
875 				   struct bpf_reg_state *sreg2,
876 				   enum bpf_dynptr_type type)
877 {
878 	int id = ++env->id_gen;
879 
880 	__mark_dynptr_reg(sreg1, type, true, id);
881 	__mark_dynptr_reg(sreg2, type, false, id);
882 }
883 
mark_dynptr_cb_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_dynptr_type type)884 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
885 			       struct bpf_reg_state *reg,
886 			       enum bpf_dynptr_type type)
887 {
888 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
889 }
890 
891 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
892 				        struct bpf_func_state *state, int spi);
893 
mark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type,int insn_idx,int clone_ref_obj_id)894 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
895 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
896 {
897 	struct bpf_func_state *state = func(env, reg);
898 	enum bpf_dynptr_type type;
899 	int spi, i, err;
900 
901 	spi = dynptr_get_spi(env, reg);
902 	if (spi < 0)
903 		return spi;
904 
905 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
906 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
907 	 * to ensure that for the following example:
908 	 *	[d1][d1][d2][d2]
909 	 * spi    3   2   1   0
910 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
911 	 * case they do belong to same dynptr, second call won't see slot_type
912 	 * as STACK_DYNPTR and will simply skip destruction.
913 	 */
914 	err = destroy_if_dynptr_stack_slot(env, state, spi);
915 	if (err)
916 		return err;
917 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
918 	if (err)
919 		return err;
920 
921 	for (i = 0; i < BPF_REG_SIZE; i++) {
922 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
923 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
924 	}
925 
926 	type = arg_to_dynptr_type(arg_type);
927 	if (type == BPF_DYNPTR_TYPE_INVALID)
928 		return -EINVAL;
929 
930 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
931 			       &state->stack[spi - 1].spilled_ptr, type);
932 
933 	if (dynptr_type_refcounted(type)) {
934 		/* The id is used to track proper releasing */
935 		int id;
936 
937 		if (clone_ref_obj_id)
938 			id = clone_ref_obj_id;
939 		else
940 			id = acquire_reference_state(env, insn_idx);
941 
942 		if (id < 0)
943 			return id;
944 
945 		state->stack[spi].spilled_ptr.ref_obj_id = id;
946 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
947 	}
948 
949 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
950 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
951 
952 	return 0;
953 }
954 
invalidate_dynptr(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)955 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
956 {
957 	int i;
958 
959 	for (i = 0; i < BPF_REG_SIZE; i++) {
960 		state->stack[spi].slot_type[i] = STACK_INVALID;
961 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
962 	}
963 
964 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
965 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
966 
967 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
968 	 *
969 	 * While we don't allow reading STACK_INVALID, it is still possible to
970 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
971 	 * helpers or insns can do partial read of that part without failing,
972 	 * but check_stack_range_initialized, check_stack_read_var_off, and
973 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
974 	 * the slot conservatively. Hence we need to prevent those liveness
975 	 * marking walks.
976 	 *
977 	 * This was not a problem before because STACK_INVALID is only set by
978 	 * default (where the default reg state has its reg->parent as NULL), or
979 	 * in clean_live_states after REG_LIVE_DONE (at which point
980 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
981 	 * verifier state exploration (like we did above). Hence, for our case
982 	 * parentage chain will still be live (i.e. reg->parent may be
983 	 * non-NULL), while earlier reg->parent was NULL, so we need
984 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
985 	 * done later on reads or by mark_dynptr_read as well to unnecessary
986 	 * mark registers in verifier state.
987 	 */
988 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
989 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
990 }
991 
unmark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg)992 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
993 {
994 	struct bpf_func_state *state = func(env, reg);
995 	int spi, ref_obj_id, i;
996 
997 	spi = dynptr_get_spi(env, reg);
998 	if (spi < 0)
999 		return spi;
1000 
1001 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1002 		invalidate_dynptr(env, state, spi);
1003 		return 0;
1004 	}
1005 
1006 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
1007 
1008 	/* If the dynptr has a ref_obj_id, then we need to invalidate
1009 	 * two things:
1010 	 *
1011 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
1012 	 * 2) Any slices derived from this dynptr.
1013 	 */
1014 
1015 	/* Invalidate any slices associated with this dynptr */
1016 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
1017 
1018 	/* Invalidate any dynptr clones */
1019 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1020 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1021 			continue;
1022 
1023 		/* it should always be the case that if the ref obj id
1024 		 * matches then the stack slot also belongs to a
1025 		 * dynptr
1026 		 */
1027 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1028 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1029 			return -EFAULT;
1030 		}
1031 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
1032 			invalidate_dynptr(env, state, i);
1033 	}
1034 
1035 	return 0;
1036 }
1037 
1038 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1039 			       struct bpf_reg_state *reg);
1040 
mark_reg_invalid(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1041 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1042 {
1043 	if (!env->allow_ptr_leaks)
1044 		__mark_reg_not_init(env, reg);
1045 	else
1046 		__mark_reg_unknown(env, reg);
1047 }
1048 
destroy_if_dynptr_stack_slot(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)1049 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1050 				        struct bpf_func_state *state, int spi)
1051 {
1052 	struct bpf_func_state *fstate;
1053 	struct bpf_reg_state *dreg;
1054 	int i, dynptr_id;
1055 
1056 	/* We always ensure that STACK_DYNPTR is never set partially,
1057 	 * hence just checking for slot_type[0] is enough. This is
1058 	 * different for STACK_SPILL, where it may be only set for
1059 	 * 1 byte, so code has to use is_spilled_reg.
1060 	 */
1061 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1062 		return 0;
1063 
1064 	/* Reposition spi to first slot */
1065 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1066 		spi = spi + 1;
1067 
1068 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1069 		verbose(env, "cannot overwrite referenced dynptr\n");
1070 		return -EINVAL;
1071 	}
1072 
1073 	mark_stack_slot_scratched(env, spi);
1074 	mark_stack_slot_scratched(env, spi - 1);
1075 
1076 	/* Writing partially to one dynptr stack slot destroys both. */
1077 	for (i = 0; i < BPF_REG_SIZE; i++) {
1078 		state->stack[spi].slot_type[i] = STACK_INVALID;
1079 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1080 	}
1081 
1082 	dynptr_id = state->stack[spi].spilled_ptr.id;
1083 	/* Invalidate any slices associated with this dynptr */
1084 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1085 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1086 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1087 			continue;
1088 		if (dreg->dynptr_id == dynptr_id)
1089 			mark_reg_invalid(env, dreg);
1090 	}));
1091 
1092 	/* Do not release reference state, we are destroying dynptr on stack,
1093 	 * not using some helper to release it. Just reset register.
1094 	 */
1095 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1096 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1097 
1098 	/* Same reason as unmark_stack_slots_dynptr above */
1099 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1100 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1101 
1102 	return 0;
1103 }
1104 
is_dynptr_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1105 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1106 {
1107 	int spi;
1108 
1109 	if (reg->type == CONST_PTR_TO_DYNPTR)
1110 		return false;
1111 
1112 	spi = dynptr_get_spi(env, reg);
1113 
1114 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1115 	 * error because this just means the stack state hasn't been updated yet.
1116 	 * We will do check_mem_access to check and update stack bounds later.
1117 	 */
1118 	if (spi < 0 && spi != -ERANGE)
1119 		return false;
1120 
1121 	/* We don't need to check if the stack slots are marked by previous
1122 	 * dynptr initializations because we allow overwriting existing unreferenced
1123 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1124 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1125 	 * touching are completely destructed before we reinitialize them for a new
1126 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1127 	 * instead of delaying it until the end where the user will get "Unreleased
1128 	 * reference" error.
1129 	 */
1130 	return true;
1131 }
1132 
is_dynptr_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1133 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1134 {
1135 	struct bpf_func_state *state = func(env, reg);
1136 	int i, spi;
1137 
1138 	/* This already represents first slot of initialized bpf_dynptr.
1139 	 *
1140 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1141 	 * check_func_arg_reg_off's logic, so we don't need to check its
1142 	 * offset and alignment.
1143 	 */
1144 	if (reg->type == CONST_PTR_TO_DYNPTR)
1145 		return true;
1146 
1147 	spi = dynptr_get_spi(env, reg);
1148 	if (spi < 0)
1149 		return false;
1150 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1151 		return false;
1152 
1153 	for (i = 0; i < BPF_REG_SIZE; i++) {
1154 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1155 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1156 			return false;
1157 	}
1158 
1159 	return true;
1160 }
1161 
is_dynptr_type_expected(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type)1162 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1163 				    enum bpf_arg_type arg_type)
1164 {
1165 	struct bpf_func_state *state = func(env, reg);
1166 	enum bpf_dynptr_type dynptr_type;
1167 	int spi;
1168 
1169 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1170 	if (arg_type == ARG_PTR_TO_DYNPTR)
1171 		return true;
1172 
1173 	dynptr_type = arg_to_dynptr_type(arg_type);
1174 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1175 		return reg->dynptr.type == dynptr_type;
1176 	} else {
1177 		spi = dynptr_get_spi(env, reg);
1178 		if (spi < 0)
1179 			return false;
1180 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1181 	}
1182 }
1183 
1184 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1185 
mark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int insn_idx,struct btf * btf,u32 btf_id,int nr_slots)1186 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1187 				 struct bpf_reg_state *reg, int insn_idx,
1188 				 struct btf *btf, u32 btf_id, int nr_slots)
1189 {
1190 	struct bpf_func_state *state = func(env, reg);
1191 	int spi, i, j, id;
1192 
1193 	spi = iter_get_spi(env, reg, nr_slots);
1194 	if (spi < 0)
1195 		return spi;
1196 
1197 	id = acquire_reference_state(env, insn_idx);
1198 	if (id < 0)
1199 		return id;
1200 
1201 	for (i = 0; i < nr_slots; i++) {
1202 		struct bpf_stack_state *slot = &state->stack[spi - i];
1203 		struct bpf_reg_state *st = &slot->spilled_ptr;
1204 
1205 		__mark_reg_known_zero(st);
1206 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1207 		st->live |= REG_LIVE_WRITTEN;
1208 		st->ref_obj_id = i == 0 ? id : 0;
1209 		st->iter.btf = btf;
1210 		st->iter.btf_id = btf_id;
1211 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1212 		st->iter.depth = 0;
1213 
1214 		for (j = 0; j < BPF_REG_SIZE; j++)
1215 			slot->slot_type[j] = STACK_ITER;
1216 
1217 		mark_stack_slot_scratched(env, spi - i);
1218 	}
1219 
1220 	return 0;
1221 }
1222 
unmark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1223 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1224 				   struct bpf_reg_state *reg, int nr_slots)
1225 {
1226 	struct bpf_func_state *state = func(env, reg);
1227 	int spi, i, j;
1228 
1229 	spi = iter_get_spi(env, reg, nr_slots);
1230 	if (spi < 0)
1231 		return spi;
1232 
1233 	for (i = 0; i < nr_slots; i++) {
1234 		struct bpf_stack_state *slot = &state->stack[spi - i];
1235 		struct bpf_reg_state *st = &slot->spilled_ptr;
1236 
1237 		if (i == 0)
1238 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1239 
1240 		__mark_reg_not_init(env, st);
1241 
1242 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1243 		st->live |= REG_LIVE_WRITTEN;
1244 
1245 		for (j = 0; j < BPF_REG_SIZE; j++)
1246 			slot->slot_type[j] = STACK_INVALID;
1247 
1248 		mark_stack_slot_scratched(env, spi - i);
1249 	}
1250 
1251 	return 0;
1252 }
1253 
is_iter_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1254 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1255 				     struct bpf_reg_state *reg, int nr_slots)
1256 {
1257 	struct bpf_func_state *state = func(env, reg);
1258 	int spi, i, j;
1259 
1260 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1261 	 * will do check_mem_access to check and update stack bounds later, so
1262 	 * return true for that case.
1263 	 */
1264 	spi = iter_get_spi(env, reg, nr_slots);
1265 	if (spi == -ERANGE)
1266 		return true;
1267 	if (spi < 0)
1268 		return false;
1269 
1270 	for (i = 0; i < nr_slots; i++) {
1271 		struct bpf_stack_state *slot = &state->stack[spi - i];
1272 
1273 		for (j = 0; j < BPF_REG_SIZE; j++)
1274 			if (slot->slot_type[j] == STACK_ITER)
1275 				return false;
1276 	}
1277 
1278 	return true;
1279 }
1280 
is_iter_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct btf * btf,u32 btf_id,int nr_slots)1281 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1282 				   struct btf *btf, u32 btf_id, int nr_slots)
1283 {
1284 	struct bpf_func_state *state = func(env, reg);
1285 	int spi, i, j;
1286 
1287 	spi = iter_get_spi(env, reg, nr_slots);
1288 	if (spi < 0)
1289 		return false;
1290 
1291 	for (i = 0; i < nr_slots; i++) {
1292 		struct bpf_stack_state *slot = &state->stack[spi - i];
1293 		struct bpf_reg_state *st = &slot->spilled_ptr;
1294 
1295 		/* only main (first) slot has ref_obj_id set */
1296 		if (i == 0 && !st->ref_obj_id)
1297 			return false;
1298 		if (i != 0 && st->ref_obj_id)
1299 			return false;
1300 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1301 			return false;
1302 
1303 		for (j = 0; j < BPF_REG_SIZE; j++)
1304 			if (slot->slot_type[j] != STACK_ITER)
1305 				return false;
1306 	}
1307 
1308 	return true;
1309 }
1310 
1311 /* Check if given stack slot is "special":
1312  *   - spilled register state (STACK_SPILL);
1313  *   - dynptr state (STACK_DYNPTR);
1314  *   - iter state (STACK_ITER).
1315  */
is_stack_slot_special(const struct bpf_stack_state * stack)1316 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1317 {
1318 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1319 
1320 	switch (type) {
1321 	case STACK_SPILL:
1322 	case STACK_DYNPTR:
1323 	case STACK_ITER:
1324 		return true;
1325 	case STACK_INVALID:
1326 	case STACK_MISC:
1327 	case STACK_ZERO:
1328 		return false;
1329 	default:
1330 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1331 		return true;
1332 	}
1333 }
1334 
1335 /* The reg state of a pointer or a bounded scalar was saved when
1336  * it was spilled to the stack.
1337  */
is_spilled_reg(const struct bpf_stack_state * stack)1338 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1339 {
1340 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1341 }
1342 
is_spilled_scalar_reg(const struct bpf_stack_state * stack)1343 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1344 {
1345 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1346 	       stack->spilled_ptr.type == SCALAR_VALUE;
1347 }
1348 
scrub_spilled_slot(u8 * stype)1349 static void scrub_spilled_slot(u8 *stype)
1350 {
1351 	if (*stype != STACK_INVALID)
1352 		*stype = STACK_MISC;
1353 }
1354 
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state,bool print_all)1355 static void print_verifier_state(struct bpf_verifier_env *env,
1356 				 const struct bpf_func_state *state,
1357 				 bool print_all)
1358 {
1359 	const struct bpf_reg_state *reg;
1360 	enum bpf_reg_type t;
1361 	int i;
1362 
1363 	if (state->frameno)
1364 		verbose(env, " frame%d:", state->frameno);
1365 	for (i = 0; i < MAX_BPF_REG; i++) {
1366 		reg = &state->regs[i];
1367 		t = reg->type;
1368 		if (t == NOT_INIT)
1369 			continue;
1370 		if (!print_all && !reg_scratched(env, i))
1371 			continue;
1372 		verbose(env, " R%d", i);
1373 		print_liveness(env, reg->live);
1374 		verbose(env, "=");
1375 		if (t == SCALAR_VALUE && reg->precise)
1376 			verbose(env, "P");
1377 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1378 		    tnum_is_const(reg->var_off)) {
1379 			/* reg->off should be 0 for SCALAR_VALUE */
1380 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1381 			verbose(env, "%lld", reg->var_off.value + reg->off);
1382 		} else {
1383 			const char *sep = "";
1384 
1385 			verbose(env, "%s", reg_type_str(env, t));
1386 			if (base_type(t) == PTR_TO_BTF_ID)
1387 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1388 			verbose(env, "(");
1389 /*
1390  * _a stands for append, was shortened to avoid multiline statements below.
1391  * This macro is used to output a comma separated list of attributes.
1392  */
1393 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1394 
1395 			if (reg->id)
1396 				verbose_a("id=%d", reg->id);
1397 			if (reg->ref_obj_id)
1398 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1399 			if (type_is_non_owning_ref(reg->type))
1400 				verbose_a("%s", "non_own_ref");
1401 			if (t != SCALAR_VALUE)
1402 				verbose_a("off=%d", reg->off);
1403 			if (type_is_pkt_pointer(t))
1404 				verbose_a("r=%d", reg->range);
1405 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1406 				 base_type(t) == PTR_TO_MAP_KEY ||
1407 				 base_type(t) == PTR_TO_MAP_VALUE)
1408 				verbose_a("ks=%d,vs=%d",
1409 					  reg->map_ptr->key_size,
1410 					  reg->map_ptr->value_size);
1411 			if (tnum_is_const(reg->var_off)) {
1412 				/* Typically an immediate SCALAR_VALUE, but
1413 				 * could be a pointer whose offset is too big
1414 				 * for reg->off
1415 				 */
1416 				verbose_a("imm=%llx", reg->var_off.value);
1417 			} else {
1418 				if (reg->smin_value != reg->umin_value &&
1419 				    reg->smin_value != S64_MIN)
1420 					verbose_a("smin=%lld", (long long)reg->smin_value);
1421 				if (reg->smax_value != reg->umax_value &&
1422 				    reg->smax_value != S64_MAX)
1423 					verbose_a("smax=%lld", (long long)reg->smax_value);
1424 				if (reg->umin_value != 0)
1425 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1426 				if (reg->umax_value != U64_MAX)
1427 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1428 				if (!tnum_is_unknown(reg->var_off)) {
1429 					char tn_buf[48];
1430 
1431 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1432 					verbose_a("var_off=%s", tn_buf);
1433 				}
1434 				if (reg->s32_min_value != reg->smin_value &&
1435 				    reg->s32_min_value != S32_MIN)
1436 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1437 				if (reg->s32_max_value != reg->smax_value &&
1438 				    reg->s32_max_value != S32_MAX)
1439 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1440 				if (reg->u32_min_value != reg->umin_value &&
1441 				    reg->u32_min_value != U32_MIN)
1442 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1443 				if (reg->u32_max_value != reg->umax_value &&
1444 				    reg->u32_max_value != U32_MAX)
1445 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1446 			}
1447 #undef verbose_a
1448 
1449 			verbose(env, ")");
1450 		}
1451 	}
1452 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1453 		char types_buf[BPF_REG_SIZE + 1];
1454 		bool valid = false;
1455 		int j;
1456 
1457 		for (j = 0; j < BPF_REG_SIZE; j++) {
1458 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1459 				valid = true;
1460 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1461 		}
1462 		types_buf[BPF_REG_SIZE] = 0;
1463 		if (!valid)
1464 			continue;
1465 		if (!print_all && !stack_slot_scratched(env, i))
1466 			continue;
1467 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1468 		case STACK_SPILL:
1469 			reg = &state->stack[i].spilled_ptr;
1470 			t = reg->type;
1471 
1472 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1473 			print_liveness(env, reg->live);
1474 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1475 			if (t == SCALAR_VALUE && reg->precise)
1476 				verbose(env, "P");
1477 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1478 				verbose(env, "%lld", reg->var_off.value + reg->off);
1479 			break;
1480 		case STACK_DYNPTR:
1481 			i += BPF_DYNPTR_NR_SLOTS - 1;
1482 			reg = &state->stack[i].spilled_ptr;
1483 
1484 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1485 			print_liveness(env, reg->live);
1486 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1487 			if (reg->ref_obj_id)
1488 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1489 			break;
1490 		case STACK_ITER:
1491 			/* only main slot has ref_obj_id set; skip others */
1492 			reg = &state->stack[i].spilled_ptr;
1493 			if (!reg->ref_obj_id)
1494 				continue;
1495 
1496 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1497 			print_liveness(env, reg->live);
1498 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1499 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1500 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1501 				reg->iter.depth);
1502 			break;
1503 		case STACK_MISC:
1504 		case STACK_ZERO:
1505 		default:
1506 			reg = &state->stack[i].spilled_ptr;
1507 
1508 			for (j = 0; j < BPF_REG_SIZE; j++)
1509 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1510 			types_buf[BPF_REG_SIZE] = 0;
1511 
1512 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1513 			print_liveness(env, reg->live);
1514 			verbose(env, "=%s", types_buf);
1515 			break;
1516 		}
1517 	}
1518 	if (state->acquired_refs && state->refs[0].id) {
1519 		verbose(env, " refs=%d", state->refs[0].id);
1520 		for (i = 1; i < state->acquired_refs; i++)
1521 			if (state->refs[i].id)
1522 				verbose(env, ",%d", state->refs[i].id);
1523 	}
1524 	if (state->in_callback_fn)
1525 		verbose(env, " cb");
1526 	if (state->in_async_callback_fn)
1527 		verbose(env, " async_cb");
1528 	verbose(env, "\n");
1529 	if (!print_all)
1530 		mark_verifier_state_clean(env);
1531 }
1532 
vlog_alignment(u32 pos)1533 static inline u32 vlog_alignment(u32 pos)
1534 {
1535 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1536 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1537 }
1538 
print_insn_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)1539 static void print_insn_state(struct bpf_verifier_env *env,
1540 			     const struct bpf_func_state *state)
1541 {
1542 	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1543 		/* remove new line character */
1544 		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1545 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1546 	} else {
1547 		verbose(env, "%d:", env->insn_idx);
1548 	}
1549 	print_verifier_state(env, state, false);
1550 }
1551 
1552 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1553  * small to hold src. This is different from krealloc since we don't want to preserve
1554  * the contents of dst.
1555  *
1556  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1557  * not be allocated.
1558  */
copy_array(void * dst,const void * src,size_t n,size_t size,gfp_t flags)1559 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1560 {
1561 	size_t alloc_bytes;
1562 	void *orig = dst;
1563 	size_t bytes;
1564 
1565 	if (ZERO_OR_NULL_PTR(src))
1566 		goto out;
1567 
1568 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1569 		return NULL;
1570 
1571 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1572 	dst = krealloc(orig, alloc_bytes, flags);
1573 	if (!dst) {
1574 		kfree(orig);
1575 		return NULL;
1576 	}
1577 
1578 	memcpy(dst, src, bytes);
1579 out:
1580 	return dst ? dst : ZERO_SIZE_PTR;
1581 }
1582 
1583 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1584  * small to hold new_n items. new items are zeroed out if the array grows.
1585  *
1586  * Contrary to krealloc_array, does not free arr if new_n is zero.
1587  */
realloc_array(void * arr,size_t old_n,size_t new_n,size_t size)1588 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1589 {
1590 	size_t alloc_size;
1591 	void *new_arr;
1592 
1593 	if (!new_n || old_n == new_n)
1594 		goto out;
1595 
1596 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1597 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1598 	if (!new_arr) {
1599 		kfree(arr);
1600 		return NULL;
1601 	}
1602 	arr = new_arr;
1603 
1604 	if (new_n > old_n)
1605 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1606 
1607 out:
1608 	return arr ? arr : ZERO_SIZE_PTR;
1609 }
1610 
copy_reference_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1611 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1612 {
1613 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1614 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1615 	if (!dst->refs)
1616 		return -ENOMEM;
1617 
1618 	dst->acquired_refs = src->acquired_refs;
1619 	return 0;
1620 }
1621 
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1622 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1623 {
1624 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1625 
1626 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1627 				GFP_KERNEL);
1628 	if (!dst->stack)
1629 		return -ENOMEM;
1630 
1631 	dst->allocated_stack = src->allocated_stack;
1632 	return 0;
1633 }
1634 
resize_reference_state(struct bpf_func_state * state,size_t n)1635 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1636 {
1637 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1638 				    sizeof(struct bpf_reference_state));
1639 	if (!state->refs)
1640 		return -ENOMEM;
1641 
1642 	state->acquired_refs = n;
1643 	return 0;
1644 }
1645 
1646 /* Possibly update state->allocated_stack to be at least size bytes. Also
1647  * possibly update the function's high-water mark in its bpf_subprog_info.
1648  */
grow_stack_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int size)1649 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1650 {
1651 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1652 
1653 	if (old_n >= n)
1654 		return 0;
1655 
1656 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1657 	if (!state->stack)
1658 		return -ENOMEM;
1659 
1660 	state->allocated_stack = size;
1661 
1662 	/* update known max for given subprogram */
1663 	if (env->subprog_info[state->subprogno].stack_depth < size)
1664 		env->subprog_info[state->subprogno].stack_depth = size;
1665 
1666 	return 0;
1667 }
1668 
1669 /* Acquire a pointer id from the env and update the state->refs to include
1670  * this new pointer reference.
1671  * On success, returns a valid pointer id to associate with the register
1672  * On failure, returns a negative errno.
1673  */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)1674 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1675 {
1676 	struct bpf_func_state *state = cur_func(env);
1677 	int new_ofs = state->acquired_refs;
1678 	int id, err;
1679 
1680 	err = resize_reference_state(state, state->acquired_refs + 1);
1681 	if (err)
1682 		return err;
1683 	id = ++env->id_gen;
1684 	state->refs[new_ofs].id = id;
1685 	state->refs[new_ofs].insn_idx = insn_idx;
1686 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1687 
1688 	return id;
1689 }
1690 
1691 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)1692 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1693 {
1694 	int i, last_idx;
1695 
1696 	last_idx = state->acquired_refs - 1;
1697 	for (i = 0; i < state->acquired_refs; i++) {
1698 		if (state->refs[i].id == ptr_id) {
1699 			/* Cannot release caller references in callbacks */
1700 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1701 				return -EINVAL;
1702 			if (last_idx && i != last_idx)
1703 				memcpy(&state->refs[i], &state->refs[last_idx],
1704 				       sizeof(*state->refs));
1705 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1706 			state->acquired_refs--;
1707 			return 0;
1708 		}
1709 	}
1710 	return -EINVAL;
1711 }
1712 
free_func_state(struct bpf_func_state * state)1713 static void free_func_state(struct bpf_func_state *state)
1714 {
1715 	if (!state)
1716 		return;
1717 	kfree(state->refs);
1718 	kfree(state->stack);
1719 	kfree(state);
1720 }
1721 
clear_jmp_history(struct bpf_verifier_state * state)1722 static void clear_jmp_history(struct bpf_verifier_state *state)
1723 {
1724 	kfree(state->jmp_history);
1725 	state->jmp_history = NULL;
1726 	state->jmp_history_cnt = 0;
1727 }
1728 
free_verifier_state(struct bpf_verifier_state * state,bool free_self)1729 static void free_verifier_state(struct bpf_verifier_state *state,
1730 				bool free_self)
1731 {
1732 	int i;
1733 
1734 	for (i = 0; i <= state->curframe; i++) {
1735 		free_func_state(state->frame[i]);
1736 		state->frame[i] = NULL;
1737 	}
1738 	clear_jmp_history(state);
1739 	if (free_self)
1740 		kfree(state);
1741 }
1742 
1743 /* copy verifier state from src to dst growing dst stack space
1744  * when necessary to accommodate larger src stack
1745  */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1746 static int copy_func_state(struct bpf_func_state *dst,
1747 			   const struct bpf_func_state *src)
1748 {
1749 	int err;
1750 
1751 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1752 	err = copy_reference_state(dst, src);
1753 	if (err)
1754 		return err;
1755 	return copy_stack_state(dst, src);
1756 }
1757 
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)1758 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1759 			       const struct bpf_verifier_state *src)
1760 {
1761 	struct bpf_func_state *dst;
1762 	int i, err;
1763 
1764 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1765 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1766 					    GFP_USER);
1767 	if (!dst_state->jmp_history)
1768 		return -ENOMEM;
1769 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1770 
1771 	/* if dst has more stack frames then src frame, free them */
1772 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1773 		free_func_state(dst_state->frame[i]);
1774 		dst_state->frame[i] = NULL;
1775 	}
1776 	dst_state->speculative = src->speculative;
1777 	dst_state->active_rcu_lock = src->active_rcu_lock;
1778 	dst_state->curframe = src->curframe;
1779 	dst_state->active_lock.ptr = src->active_lock.ptr;
1780 	dst_state->active_lock.id = src->active_lock.id;
1781 	dst_state->branches = src->branches;
1782 	dst_state->parent = src->parent;
1783 	dst_state->first_insn_idx = src->first_insn_idx;
1784 	dst_state->last_insn_idx = src->last_insn_idx;
1785 	dst_state->dfs_depth = src->dfs_depth;
1786 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1787 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1788 	for (i = 0; i <= src->curframe; i++) {
1789 		dst = dst_state->frame[i];
1790 		if (!dst) {
1791 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1792 			if (!dst)
1793 				return -ENOMEM;
1794 			dst_state->frame[i] = dst;
1795 		}
1796 		err = copy_func_state(dst, src->frame[i]);
1797 		if (err)
1798 			return err;
1799 	}
1800 	return 0;
1801 }
1802 
state_htab_size(struct bpf_verifier_env * env)1803 static u32 state_htab_size(struct bpf_verifier_env *env)
1804 {
1805 	return env->prog->len;
1806 }
1807 
explored_state(struct bpf_verifier_env * env,int idx)1808 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1809 {
1810 	struct bpf_verifier_state *cur = env->cur_state;
1811 	struct bpf_func_state *state = cur->frame[cur->curframe];
1812 
1813 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1814 }
1815 
same_callsites(struct bpf_verifier_state * a,struct bpf_verifier_state * b)1816 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1817 {
1818 	int fr;
1819 
1820 	if (a->curframe != b->curframe)
1821 		return false;
1822 
1823 	for (fr = a->curframe; fr >= 0; fr--)
1824 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1825 			return false;
1826 
1827 	return true;
1828 }
1829 
1830 /* Open coded iterators allow back-edges in the state graph in order to
1831  * check unbounded loops that iterators.
1832  *
1833  * In is_state_visited() it is necessary to know if explored states are
1834  * part of some loops in order to decide whether non-exact states
1835  * comparison could be used:
1836  * - non-exact states comparison establishes sub-state relation and uses
1837  *   read and precision marks to do so, these marks are propagated from
1838  *   children states and thus are not guaranteed to be final in a loop;
1839  * - exact states comparison just checks if current and explored states
1840  *   are identical (and thus form a back-edge).
1841  *
1842  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1843  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1844  * algorithm for loop structure detection and gives an overview of
1845  * relevant terminology. It also has helpful illustrations.
1846  *
1847  * [1] https://api.semanticscholar.org/CorpusID:15784067
1848  *
1849  * We use a similar algorithm but because loop nested structure is
1850  * irrelevant for verifier ours is significantly simpler and resembles
1851  * strongly connected components algorithm from Sedgewick's textbook.
1852  *
1853  * Define topmost loop entry as a first node of the loop traversed in a
1854  * depth first search starting from initial state. The goal of the loop
1855  * tracking algorithm is to associate topmost loop entries with states
1856  * derived from these entries.
1857  *
1858  * For each step in the DFS states traversal algorithm needs to identify
1859  * the following situations:
1860  *
1861  *          initial                     initial                   initial
1862  *            |                           |                         |
1863  *            V                           V                         V
1864  *           ...                         ...           .---------> hdr
1865  *            |                           |            |            |
1866  *            V                           V            |            V
1867  *           cur                     .-> succ          |    .------...
1868  *            |                      |    |            |    |       |
1869  *            V                      |    V            |    V       V
1870  *           succ                    '-- cur           |   ...     ...
1871  *                                                     |    |       |
1872  *                                                     |    V       V
1873  *                                                     |   succ <- cur
1874  *                                                     |    |
1875  *                                                     |    V
1876  *                                                     |   ...
1877  *                                                     |    |
1878  *                                                     '----'
1879  *
1880  *  (A) successor state of cur   (B) successor state of cur or it's entry
1881  *      not yet traversed            are in current DFS path, thus cur and succ
1882  *                                   are members of the same outermost loop
1883  *
1884  *                      initial                  initial
1885  *                        |                        |
1886  *                        V                        V
1887  *                       ...                      ...
1888  *                        |                        |
1889  *                        V                        V
1890  *                .------...               .------...
1891  *                |       |                |       |
1892  *                V       V                V       V
1893  *           .-> hdr     ...              ...     ...
1894  *           |    |       |                |       |
1895  *           |    V       V                V       V
1896  *           |   succ <- cur              succ <- cur
1897  *           |    |                        |
1898  *           |    V                        V
1899  *           |   ...                      ...
1900  *           |    |                        |
1901  *           '----'                       exit
1902  *
1903  * (C) successor state of cur is a part of some loop but this loop
1904  *     does not include cur or successor state is not in a loop at all.
1905  *
1906  * Algorithm could be described as the following python code:
1907  *
1908  *     traversed = set()   # Set of traversed nodes
1909  *     entries = {}        # Mapping from node to loop entry
1910  *     depths = {}         # Depth level assigned to graph node
1911  *     path = set()        # Current DFS path
1912  *
1913  *     # Find outermost loop entry known for n
1914  *     def get_loop_entry(n):
1915  *         h = entries.get(n, None)
1916  *         while h in entries and entries[h] != h:
1917  *             h = entries[h]
1918  *         return h
1919  *
1920  *     # Update n's loop entry if h's outermost entry comes
1921  *     # before n's outermost entry in current DFS path.
1922  *     def update_loop_entry(n, h):
1923  *         n1 = get_loop_entry(n) or n
1924  *         h1 = get_loop_entry(h) or h
1925  *         if h1 in path and depths[h1] <= depths[n1]:
1926  *             entries[n] = h1
1927  *
1928  *     def dfs(n, depth):
1929  *         traversed.add(n)
1930  *         path.add(n)
1931  *         depths[n] = depth
1932  *         for succ in G.successors(n):
1933  *             if succ not in traversed:
1934  *                 # Case A: explore succ and update cur's loop entry
1935  *                 #         only if succ's entry is in current DFS path.
1936  *                 dfs(succ, depth + 1)
1937  *                 h = get_loop_entry(succ)
1938  *                 update_loop_entry(n, h)
1939  *             else:
1940  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1941  *                 update_loop_entry(n, succ)
1942  *         path.remove(n)
1943  *
1944  * To adapt this algorithm for use with verifier:
1945  * - use st->branch == 0 as a signal that DFS of succ had been finished
1946  *   and cur's loop entry has to be updated (case A), handle this in
1947  *   update_branch_counts();
1948  * - use st->branch > 0 as a signal that st is in the current DFS path;
1949  * - handle cases B and C in is_state_visited();
1950  * - update topmost loop entry for intermediate states in get_loop_entry().
1951  */
get_loop_entry(struct bpf_verifier_state * st)1952 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1953 {
1954 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1955 
1956 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1957 		topmost = topmost->loop_entry;
1958 	/* Update loop entries for intermediate states to avoid this
1959 	 * traversal in future get_loop_entry() calls.
1960 	 */
1961 	while (st && st->loop_entry != topmost) {
1962 		old = st->loop_entry;
1963 		st->loop_entry = topmost;
1964 		st = old;
1965 	}
1966 	return topmost;
1967 }
1968 
update_loop_entry(struct bpf_verifier_state * cur,struct bpf_verifier_state * hdr)1969 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1970 {
1971 	struct bpf_verifier_state *cur1, *hdr1;
1972 
1973 	cur1 = get_loop_entry(cur) ?: cur;
1974 	hdr1 = get_loop_entry(hdr) ?: hdr;
1975 	/* The head1->branches check decides between cases B and C in
1976 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
1977 	 * head's topmost loop entry is not in current DFS path,
1978 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1979 	 * no need to update cur->loop_entry.
1980 	 */
1981 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1982 		cur->loop_entry = hdr;
1983 		hdr->used_as_loop_entry = true;
1984 	}
1985 }
1986 
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1987 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1988 {
1989 	while (st) {
1990 		u32 br = --st->branches;
1991 
1992 		/* br == 0 signals that DFS exploration for 'st' is finished,
1993 		 * thus it is necessary to update parent's loop entry if it
1994 		 * turned out that st is a part of some loop.
1995 		 * This is a part of 'case A' in get_loop_entry() comment.
1996 		 */
1997 		if (br == 0 && st->parent && st->loop_entry)
1998 			update_loop_entry(st->parent, st->loop_entry);
1999 
2000 		/* WARN_ON(br > 1) technically makes sense here,
2001 		 * but see comment in push_stack(), hence:
2002 		 */
2003 		WARN_ONCE((int)br < 0,
2004 			  "BUG update_branch_counts:branches_to_explore=%d\n",
2005 			  br);
2006 		if (br)
2007 			break;
2008 		st = st->parent;
2009 	}
2010 }
2011 
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)2012 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2013 		     int *insn_idx, bool pop_log)
2014 {
2015 	struct bpf_verifier_state *cur = env->cur_state;
2016 	struct bpf_verifier_stack_elem *elem, *head = env->head;
2017 	int err;
2018 
2019 	if (env->head == NULL)
2020 		return -ENOENT;
2021 
2022 	if (cur) {
2023 		err = copy_verifier_state(cur, &head->st);
2024 		if (err)
2025 			return err;
2026 	}
2027 	if (pop_log)
2028 		bpf_vlog_reset(&env->log, head->log_pos);
2029 	if (insn_idx)
2030 		*insn_idx = head->insn_idx;
2031 	if (prev_insn_idx)
2032 		*prev_insn_idx = head->prev_insn_idx;
2033 	elem = head->next;
2034 	free_verifier_state(&head->st, false);
2035 	kfree(head);
2036 	env->head = elem;
2037 	env->stack_size--;
2038 	return 0;
2039 }
2040 
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)2041 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2042 					     int insn_idx, int prev_insn_idx,
2043 					     bool speculative)
2044 {
2045 	struct bpf_verifier_state *cur = env->cur_state;
2046 	struct bpf_verifier_stack_elem *elem;
2047 	int err;
2048 
2049 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2050 	if (!elem)
2051 		goto err;
2052 
2053 	elem->insn_idx = insn_idx;
2054 	elem->prev_insn_idx = prev_insn_idx;
2055 	elem->next = env->head;
2056 	elem->log_pos = env->log.end_pos;
2057 	env->head = elem;
2058 	env->stack_size++;
2059 	err = copy_verifier_state(&elem->st, cur);
2060 	if (err)
2061 		goto err;
2062 	elem->st.speculative |= speculative;
2063 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2064 		verbose(env, "The sequence of %d jumps is too complex.\n",
2065 			env->stack_size);
2066 		goto err;
2067 	}
2068 	if (elem->st.parent) {
2069 		++elem->st.parent->branches;
2070 		/* WARN_ON(branches > 2) technically makes sense here,
2071 		 * but
2072 		 * 1. speculative states will bump 'branches' for non-branch
2073 		 * instructions
2074 		 * 2. is_state_visited() heuristics may decide not to create
2075 		 * a new state for a sequence of branches and all such current
2076 		 * and cloned states will be pointing to a single parent state
2077 		 * which might have large 'branches' count.
2078 		 */
2079 	}
2080 	return &elem->st;
2081 err:
2082 	free_verifier_state(env->cur_state, true);
2083 	env->cur_state = NULL;
2084 	/* pop all elements and return */
2085 	while (!pop_stack(env, NULL, NULL, false));
2086 	return NULL;
2087 }
2088 
2089 #define CALLER_SAVED_REGS 6
2090 static const int caller_saved[CALLER_SAVED_REGS] = {
2091 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2092 };
2093 
2094 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)2095 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2096 {
2097 	reg->var_off = tnum_const(imm);
2098 	reg->smin_value = (s64)imm;
2099 	reg->smax_value = (s64)imm;
2100 	reg->umin_value = imm;
2101 	reg->umax_value = imm;
2102 
2103 	reg->s32_min_value = (s32)imm;
2104 	reg->s32_max_value = (s32)imm;
2105 	reg->u32_min_value = (u32)imm;
2106 	reg->u32_max_value = (u32)imm;
2107 }
2108 
2109 /* Mark the unknown part of a register (variable offset or scalar value) as
2110  * known to have the value @imm.
2111  */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)2112 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2113 {
2114 	/* Clear off and union(map_ptr, range) */
2115 	memset(((u8 *)reg) + sizeof(reg->type), 0,
2116 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2117 	reg->id = 0;
2118 	reg->ref_obj_id = 0;
2119 	___mark_reg_known(reg, imm);
2120 }
2121 
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)2122 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2123 {
2124 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
2125 	reg->s32_min_value = (s32)imm;
2126 	reg->s32_max_value = (s32)imm;
2127 	reg->u32_min_value = (u32)imm;
2128 	reg->u32_max_value = (u32)imm;
2129 }
2130 
2131 /* Mark the 'variable offset' part of a register as zero.  This should be
2132  * used only on registers holding a pointer type.
2133  */
__mark_reg_known_zero(struct bpf_reg_state * reg)2134 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2135 {
2136 	__mark_reg_known(reg, 0);
2137 }
2138 
__mark_reg_const_zero(struct bpf_reg_state * reg)2139 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
2140 {
2141 	__mark_reg_known(reg, 0);
2142 	reg->type = SCALAR_VALUE;
2143 }
2144 
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2145 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2146 				struct bpf_reg_state *regs, u32 regno)
2147 {
2148 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2149 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2150 		/* Something bad happened, let's kill all regs */
2151 		for (regno = 0; regno < MAX_BPF_REG; regno++)
2152 			__mark_reg_not_init(env, regs + regno);
2153 		return;
2154 	}
2155 	__mark_reg_known_zero(regs + regno);
2156 }
2157 
__mark_dynptr_reg(struct bpf_reg_state * reg,enum bpf_dynptr_type type,bool first_slot,int dynptr_id)2158 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2159 			      bool first_slot, int dynptr_id)
2160 {
2161 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2162 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2163 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2164 	 */
2165 	__mark_reg_known_zero(reg);
2166 	reg->type = CONST_PTR_TO_DYNPTR;
2167 	/* Give each dynptr a unique id to uniquely associate slices to it. */
2168 	reg->id = dynptr_id;
2169 	reg->dynptr.type = type;
2170 	reg->dynptr.first_slot = first_slot;
2171 }
2172 
mark_ptr_not_null_reg(struct bpf_reg_state * reg)2173 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2174 {
2175 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2176 		const struct bpf_map *map = reg->map_ptr;
2177 
2178 		if (map->inner_map_meta) {
2179 			reg->type = CONST_PTR_TO_MAP;
2180 			reg->map_ptr = map->inner_map_meta;
2181 			/* transfer reg's id which is unique for every map_lookup_elem
2182 			 * as UID of the inner map.
2183 			 */
2184 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
2185 				reg->map_uid = reg->id;
2186 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2187 			reg->type = PTR_TO_XDP_SOCK;
2188 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2189 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2190 			reg->type = PTR_TO_SOCKET;
2191 		} else {
2192 			reg->type = PTR_TO_MAP_VALUE;
2193 		}
2194 		return;
2195 	}
2196 
2197 	reg->type &= ~PTR_MAYBE_NULL;
2198 }
2199 
mark_reg_graph_node(struct bpf_reg_state * regs,u32 regno,struct btf_field_graph_root * ds_head)2200 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2201 				struct btf_field_graph_root *ds_head)
2202 {
2203 	__mark_reg_known_zero(&regs[regno]);
2204 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2205 	regs[regno].btf = ds_head->btf;
2206 	regs[regno].btf_id = ds_head->value_btf_id;
2207 	regs[regno].off = ds_head->node_offset;
2208 }
2209 
reg_is_pkt_pointer(const struct bpf_reg_state * reg)2210 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2211 {
2212 	return type_is_pkt_pointer(reg->type);
2213 }
2214 
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)2215 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2216 {
2217 	return reg_is_pkt_pointer(reg) ||
2218 	       reg->type == PTR_TO_PACKET_END;
2219 }
2220 
reg_is_dynptr_slice_pkt(const struct bpf_reg_state * reg)2221 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2222 {
2223 	return base_type(reg->type) == PTR_TO_MEM &&
2224 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2225 }
2226 
2227 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)2228 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2229 				    enum bpf_reg_type which)
2230 {
2231 	/* The register can already have a range from prior markings.
2232 	 * This is fine as long as it hasn't been advanced from its
2233 	 * origin.
2234 	 */
2235 	return reg->type == which &&
2236 	       reg->id == 0 &&
2237 	       reg->off == 0 &&
2238 	       tnum_equals_const(reg->var_off, 0);
2239 }
2240 
2241 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)2242 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2243 {
2244 	reg->smin_value = S64_MIN;
2245 	reg->smax_value = S64_MAX;
2246 	reg->umin_value = 0;
2247 	reg->umax_value = U64_MAX;
2248 
2249 	reg->s32_min_value = S32_MIN;
2250 	reg->s32_max_value = S32_MAX;
2251 	reg->u32_min_value = 0;
2252 	reg->u32_max_value = U32_MAX;
2253 }
2254 
__mark_reg64_unbounded(struct bpf_reg_state * reg)2255 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2256 {
2257 	reg->smin_value = S64_MIN;
2258 	reg->smax_value = S64_MAX;
2259 	reg->umin_value = 0;
2260 	reg->umax_value = U64_MAX;
2261 }
2262 
__mark_reg32_unbounded(struct bpf_reg_state * reg)2263 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2264 {
2265 	reg->s32_min_value = S32_MIN;
2266 	reg->s32_max_value = S32_MAX;
2267 	reg->u32_min_value = 0;
2268 	reg->u32_max_value = U32_MAX;
2269 }
2270 
__update_reg32_bounds(struct bpf_reg_state * reg)2271 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2272 {
2273 	struct tnum var32_off = tnum_subreg(reg->var_off);
2274 
2275 	/* min signed is max(sign bit) | min(other bits) */
2276 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2277 			var32_off.value | (var32_off.mask & S32_MIN));
2278 	/* max signed is min(sign bit) | max(other bits) */
2279 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2280 			var32_off.value | (var32_off.mask & S32_MAX));
2281 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2282 	reg->u32_max_value = min(reg->u32_max_value,
2283 				 (u32)(var32_off.value | var32_off.mask));
2284 }
2285 
__update_reg64_bounds(struct bpf_reg_state * reg)2286 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2287 {
2288 	/* min signed is max(sign bit) | min(other bits) */
2289 	reg->smin_value = max_t(s64, reg->smin_value,
2290 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2291 	/* max signed is min(sign bit) | max(other bits) */
2292 	reg->smax_value = min_t(s64, reg->smax_value,
2293 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2294 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2295 	reg->umax_value = min(reg->umax_value,
2296 			      reg->var_off.value | reg->var_off.mask);
2297 }
2298 
__update_reg_bounds(struct bpf_reg_state * reg)2299 static void __update_reg_bounds(struct bpf_reg_state *reg)
2300 {
2301 	__update_reg32_bounds(reg);
2302 	__update_reg64_bounds(reg);
2303 }
2304 
2305 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)2306 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2307 {
2308 	/* Learn sign from signed bounds.
2309 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2310 	 * are the same, so combine.  This works even in the negative case, e.g.
2311 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2312 	 */
2313 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2314 		reg->s32_min_value = reg->u32_min_value =
2315 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2316 		reg->s32_max_value = reg->u32_max_value =
2317 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2318 		return;
2319 	}
2320 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2321 	 * boundary, so we must be careful.
2322 	 */
2323 	if ((s32)reg->u32_max_value >= 0) {
2324 		/* Positive.  We can't learn anything from the smin, but smax
2325 		 * is positive, hence safe.
2326 		 */
2327 		reg->s32_min_value = reg->u32_min_value;
2328 		reg->s32_max_value = reg->u32_max_value =
2329 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2330 	} else if ((s32)reg->u32_min_value < 0) {
2331 		/* Negative.  We can't learn anything from the smax, but smin
2332 		 * is negative, hence safe.
2333 		 */
2334 		reg->s32_min_value = reg->u32_min_value =
2335 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2336 		reg->s32_max_value = reg->u32_max_value;
2337 	}
2338 }
2339 
__reg64_deduce_bounds(struct bpf_reg_state * reg)2340 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2341 {
2342 	/* Learn sign from signed bounds.
2343 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2344 	 * are the same, so combine.  This works even in the negative case, e.g.
2345 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2346 	 */
2347 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2348 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2349 							  reg->umin_value);
2350 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2351 							  reg->umax_value);
2352 		return;
2353 	}
2354 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2355 	 * boundary, so we must be careful.
2356 	 */
2357 	if ((s64)reg->umax_value >= 0) {
2358 		/* Positive.  We can't learn anything from the smin, but smax
2359 		 * is positive, hence safe.
2360 		 */
2361 		reg->smin_value = reg->umin_value;
2362 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2363 							  reg->umax_value);
2364 	} else if ((s64)reg->umin_value < 0) {
2365 		/* Negative.  We can't learn anything from the smax, but smin
2366 		 * is negative, hence safe.
2367 		 */
2368 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2369 							  reg->umin_value);
2370 		reg->smax_value = reg->umax_value;
2371 	}
2372 }
2373 
__reg_deduce_bounds(struct bpf_reg_state * reg)2374 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2375 {
2376 	__reg32_deduce_bounds(reg);
2377 	__reg64_deduce_bounds(reg);
2378 }
2379 
2380 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)2381 static void __reg_bound_offset(struct bpf_reg_state *reg)
2382 {
2383 	struct tnum var64_off = tnum_intersect(reg->var_off,
2384 					       tnum_range(reg->umin_value,
2385 							  reg->umax_value));
2386 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2387 					       tnum_range(reg->u32_min_value,
2388 							  reg->u32_max_value));
2389 
2390 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2391 }
2392 
reg_bounds_sync(struct bpf_reg_state * reg)2393 static void reg_bounds_sync(struct bpf_reg_state *reg)
2394 {
2395 	/* We might have learned new bounds from the var_off. */
2396 	__update_reg_bounds(reg);
2397 	/* We might have learned something about the sign bit. */
2398 	__reg_deduce_bounds(reg);
2399 	/* We might have learned some bits from the bounds. */
2400 	__reg_bound_offset(reg);
2401 	/* Intersecting with the old var_off might have improved our bounds
2402 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2403 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2404 	 */
2405 	__update_reg_bounds(reg);
2406 }
2407 
__reg32_bound_s64(s32 a)2408 static bool __reg32_bound_s64(s32 a)
2409 {
2410 	return a >= 0 && a <= S32_MAX;
2411 }
2412 
__reg_assign_32_into_64(struct bpf_reg_state * reg)2413 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2414 {
2415 	reg->umin_value = reg->u32_min_value;
2416 	reg->umax_value = reg->u32_max_value;
2417 
2418 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2419 	 * be positive otherwise set to worse case bounds and refine later
2420 	 * from tnum.
2421 	 */
2422 	if (__reg32_bound_s64(reg->s32_min_value) &&
2423 	    __reg32_bound_s64(reg->s32_max_value)) {
2424 		reg->smin_value = reg->s32_min_value;
2425 		reg->smax_value = reg->s32_max_value;
2426 	} else {
2427 		reg->smin_value = 0;
2428 		reg->smax_value = U32_MAX;
2429 	}
2430 }
2431 
__reg_combine_32_into_64(struct bpf_reg_state * reg)2432 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2433 {
2434 	/* special case when 64-bit register has upper 32-bit register
2435 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2436 	 * allowing us to use 32-bit bounds directly,
2437 	 */
2438 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2439 		__reg_assign_32_into_64(reg);
2440 	} else {
2441 		/* Otherwise the best we can do is push lower 32bit known and
2442 		 * unknown bits into register (var_off set from jmp logic)
2443 		 * then learn as much as possible from the 64-bit tnum
2444 		 * known and unknown bits. The previous smin/smax bounds are
2445 		 * invalid here because of jmp32 compare so mark them unknown
2446 		 * so they do not impact tnum bounds calculation.
2447 		 */
2448 		__mark_reg64_unbounded(reg);
2449 	}
2450 	reg_bounds_sync(reg);
2451 }
2452 
__reg64_bound_s32(s64 a)2453 static bool __reg64_bound_s32(s64 a)
2454 {
2455 	return a >= S32_MIN && a <= S32_MAX;
2456 }
2457 
__reg64_bound_u32(u64 a)2458 static bool __reg64_bound_u32(u64 a)
2459 {
2460 	return a >= U32_MIN && a <= U32_MAX;
2461 }
2462 
__reg_combine_64_into_32(struct bpf_reg_state * reg)2463 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2464 {
2465 	__mark_reg32_unbounded(reg);
2466 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2467 		reg->s32_min_value = (s32)reg->smin_value;
2468 		reg->s32_max_value = (s32)reg->smax_value;
2469 	}
2470 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2471 		reg->u32_min_value = (u32)reg->umin_value;
2472 		reg->u32_max_value = (u32)reg->umax_value;
2473 	}
2474 	reg_bounds_sync(reg);
2475 }
2476 
2477 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2478 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2479 			       struct bpf_reg_state *reg)
2480 {
2481 	/*
2482 	 * Clear type, off, and union(map_ptr, range) and
2483 	 * padding between 'type' and union
2484 	 */
2485 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2486 	reg->type = SCALAR_VALUE;
2487 	reg->id = 0;
2488 	reg->ref_obj_id = 0;
2489 	reg->var_off = tnum_unknown;
2490 	reg->frameno = 0;
2491 	reg->precise = !env->bpf_capable;
2492 	__mark_reg_unbounded(reg);
2493 }
2494 
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2495 static void mark_reg_unknown(struct bpf_verifier_env *env,
2496 			     struct bpf_reg_state *regs, u32 regno)
2497 {
2498 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2499 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2500 		/* Something bad happened, let's kill all regs except FP */
2501 		for (regno = 0; regno < BPF_REG_FP; regno++)
2502 			__mark_reg_not_init(env, regs + regno);
2503 		return;
2504 	}
2505 	__mark_reg_unknown(env, regs + regno);
2506 }
2507 
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2508 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2509 				struct bpf_reg_state *reg)
2510 {
2511 	__mark_reg_unknown(env, reg);
2512 	reg->type = NOT_INIT;
2513 }
2514 
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2515 static void mark_reg_not_init(struct bpf_verifier_env *env,
2516 			      struct bpf_reg_state *regs, u32 regno)
2517 {
2518 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2519 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2520 		/* Something bad happened, let's kill all regs except FP */
2521 		for (regno = 0; regno < BPF_REG_FP; regno++)
2522 			__mark_reg_not_init(env, regs + regno);
2523 		return;
2524 	}
2525 	__mark_reg_not_init(env, regs + regno);
2526 }
2527 
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,struct btf * btf,u32 btf_id,enum bpf_type_flag flag)2528 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2529 			    struct bpf_reg_state *regs, u32 regno,
2530 			    enum bpf_reg_type reg_type,
2531 			    struct btf *btf, u32 btf_id,
2532 			    enum bpf_type_flag flag)
2533 {
2534 	if (reg_type == SCALAR_VALUE) {
2535 		mark_reg_unknown(env, regs, regno);
2536 		return;
2537 	}
2538 	mark_reg_known_zero(env, regs, regno);
2539 	regs[regno].type = PTR_TO_BTF_ID | flag;
2540 	regs[regno].btf = btf;
2541 	regs[regno].btf_id = btf_id;
2542 	if (type_may_be_null(flag))
2543 		regs[regno].id = ++env->id_gen;
2544 }
2545 
2546 #define DEF_NOT_SUBREG	(0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)2547 static void init_reg_state(struct bpf_verifier_env *env,
2548 			   struct bpf_func_state *state)
2549 {
2550 	struct bpf_reg_state *regs = state->regs;
2551 	int i;
2552 
2553 	for (i = 0; i < MAX_BPF_REG; i++) {
2554 		mark_reg_not_init(env, regs, i);
2555 		regs[i].live = REG_LIVE_NONE;
2556 		regs[i].parent = NULL;
2557 		regs[i].subreg_def = DEF_NOT_SUBREG;
2558 	}
2559 
2560 	/* frame pointer */
2561 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2562 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2563 	regs[BPF_REG_FP].frameno = state->frameno;
2564 }
2565 
2566 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)2567 static void init_func_state(struct bpf_verifier_env *env,
2568 			    struct bpf_func_state *state,
2569 			    int callsite, int frameno, int subprogno)
2570 {
2571 	state->callsite = callsite;
2572 	state->frameno = frameno;
2573 	state->subprogno = subprogno;
2574 	state->callback_ret_range = tnum_range(0, 0);
2575 	init_reg_state(env, state);
2576 	mark_verifier_state_scratched(env);
2577 }
2578 
2579 /* Similar to push_stack(), but for async callbacks */
push_async_cb(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,int subprog)2580 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2581 						int insn_idx, int prev_insn_idx,
2582 						int subprog)
2583 {
2584 	struct bpf_verifier_stack_elem *elem;
2585 	struct bpf_func_state *frame;
2586 
2587 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2588 	if (!elem)
2589 		goto err;
2590 
2591 	elem->insn_idx = insn_idx;
2592 	elem->prev_insn_idx = prev_insn_idx;
2593 	elem->next = env->head;
2594 	elem->log_pos = env->log.end_pos;
2595 	env->head = elem;
2596 	env->stack_size++;
2597 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2598 		verbose(env,
2599 			"The sequence of %d jumps is too complex for async cb.\n",
2600 			env->stack_size);
2601 		goto err;
2602 	}
2603 	/* Unlike push_stack() do not copy_verifier_state().
2604 	 * The caller state doesn't matter.
2605 	 * This is async callback. It starts in a fresh stack.
2606 	 * Initialize it similar to do_check_common().
2607 	 */
2608 	elem->st.branches = 1;
2609 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2610 	if (!frame)
2611 		goto err;
2612 	init_func_state(env, frame,
2613 			BPF_MAIN_FUNC /* callsite */,
2614 			0 /* frameno within this callchain */,
2615 			subprog /* subprog number within this prog */);
2616 	elem->st.frame[0] = frame;
2617 	return &elem->st;
2618 err:
2619 	free_verifier_state(env->cur_state, true);
2620 	env->cur_state = NULL;
2621 	/* pop all elements and return */
2622 	while (!pop_stack(env, NULL, NULL, false));
2623 	return NULL;
2624 }
2625 
2626 
2627 enum reg_arg_type {
2628 	SRC_OP,		/* register is used as source operand */
2629 	DST_OP,		/* register is used as destination operand */
2630 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2631 };
2632 
cmp_subprogs(const void * a,const void * b)2633 static int cmp_subprogs(const void *a, const void *b)
2634 {
2635 	return ((struct bpf_subprog_info *)a)->start -
2636 	       ((struct bpf_subprog_info *)b)->start;
2637 }
2638 
find_subprog(struct bpf_verifier_env * env,int off)2639 static int find_subprog(struct bpf_verifier_env *env, int off)
2640 {
2641 	struct bpf_subprog_info *p;
2642 
2643 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2644 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2645 	if (!p)
2646 		return -ENOENT;
2647 	return p - env->subprog_info;
2648 
2649 }
2650 
add_subprog(struct bpf_verifier_env * env,int off)2651 static int add_subprog(struct bpf_verifier_env *env, int off)
2652 {
2653 	int insn_cnt = env->prog->len;
2654 	int ret;
2655 
2656 	if (off >= insn_cnt || off < 0) {
2657 		verbose(env, "call to invalid destination\n");
2658 		return -EINVAL;
2659 	}
2660 	ret = find_subprog(env, off);
2661 	if (ret >= 0)
2662 		return ret;
2663 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2664 		verbose(env, "too many subprograms\n");
2665 		return -E2BIG;
2666 	}
2667 	/* determine subprog starts. The end is one before the next starts */
2668 	env->subprog_info[env->subprog_cnt++].start = off;
2669 	sort(env->subprog_info, env->subprog_cnt,
2670 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2671 	return env->subprog_cnt - 1;
2672 }
2673 
2674 #define MAX_KFUNC_DESCS 256
2675 #define MAX_KFUNC_BTFS	256
2676 
2677 struct bpf_kfunc_desc {
2678 	struct btf_func_model func_model;
2679 	u32 func_id;
2680 	s32 imm;
2681 	u16 offset;
2682 	unsigned long addr;
2683 };
2684 
2685 struct bpf_kfunc_btf {
2686 	struct btf *btf;
2687 	struct module *module;
2688 	u16 offset;
2689 };
2690 
2691 struct bpf_kfunc_desc_tab {
2692 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2693 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2694 	 * available, therefore at the end of verification do_misc_fixups()
2695 	 * sorts this by imm and offset.
2696 	 */
2697 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2698 	u32 nr_descs;
2699 };
2700 
2701 struct bpf_kfunc_btf_tab {
2702 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2703 	u32 nr_descs;
2704 };
2705 
kfunc_desc_cmp_by_id_off(const void * a,const void * b)2706 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2707 {
2708 	const struct bpf_kfunc_desc *d0 = a;
2709 	const struct bpf_kfunc_desc *d1 = b;
2710 
2711 	/* func_id is not greater than BTF_MAX_TYPE */
2712 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2713 }
2714 
kfunc_btf_cmp_by_off(const void * a,const void * b)2715 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2716 {
2717 	const struct bpf_kfunc_btf *d0 = a;
2718 	const struct bpf_kfunc_btf *d1 = b;
2719 
2720 	return d0->offset - d1->offset;
2721 }
2722 
2723 static const struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog * prog,u32 func_id,u16 offset)2724 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2725 {
2726 	struct bpf_kfunc_desc desc = {
2727 		.func_id = func_id,
2728 		.offset = offset,
2729 	};
2730 	struct bpf_kfunc_desc_tab *tab;
2731 
2732 	tab = prog->aux->kfunc_tab;
2733 	return bsearch(&desc, tab->descs, tab->nr_descs,
2734 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2735 }
2736 
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)2737 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2738 		       u16 btf_fd_idx, u8 **func_addr)
2739 {
2740 	const struct bpf_kfunc_desc *desc;
2741 
2742 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2743 	if (!desc)
2744 		return -EFAULT;
2745 
2746 	*func_addr = (u8 *)desc->addr;
2747 	return 0;
2748 }
2749 
__find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2750 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2751 					 s16 offset)
2752 {
2753 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2754 	struct bpf_kfunc_btf_tab *tab;
2755 	struct bpf_kfunc_btf *b;
2756 	struct module *mod;
2757 	struct btf *btf;
2758 	int btf_fd;
2759 
2760 	tab = env->prog->aux->kfunc_btf_tab;
2761 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2762 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2763 	if (!b) {
2764 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2765 			verbose(env, "too many different module BTFs\n");
2766 			return ERR_PTR(-E2BIG);
2767 		}
2768 
2769 		if (bpfptr_is_null(env->fd_array)) {
2770 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2771 			return ERR_PTR(-EPROTO);
2772 		}
2773 
2774 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2775 					    offset * sizeof(btf_fd),
2776 					    sizeof(btf_fd)))
2777 			return ERR_PTR(-EFAULT);
2778 
2779 		btf = btf_get_by_fd(btf_fd);
2780 		if (IS_ERR(btf)) {
2781 			verbose(env, "invalid module BTF fd specified\n");
2782 			return btf;
2783 		}
2784 
2785 		if (!btf_is_module(btf)) {
2786 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2787 			btf_put(btf);
2788 			return ERR_PTR(-EINVAL);
2789 		}
2790 
2791 		mod = btf_try_get_module(btf);
2792 		if (!mod) {
2793 			btf_put(btf);
2794 			return ERR_PTR(-ENXIO);
2795 		}
2796 
2797 		b = &tab->descs[tab->nr_descs++];
2798 		b->btf = btf;
2799 		b->module = mod;
2800 		b->offset = offset;
2801 
2802 		/* sort() reorders entries by value, so b may no longer point
2803 		 * to the right entry after this
2804 		 */
2805 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2806 		     kfunc_btf_cmp_by_off, NULL);
2807 	} else {
2808 		btf = b->btf;
2809 	}
2810 
2811 	return btf;
2812 }
2813 
bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab * tab)2814 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2815 {
2816 	if (!tab)
2817 		return;
2818 
2819 	while (tab->nr_descs--) {
2820 		module_put(tab->descs[tab->nr_descs].module);
2821 		btf_put(tab->descs[tab->nr_descs].btf);
2822 	}
2823 	kfree(tab);
2824 }
2825 
find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2826 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2827 {
2828 	if (offset) {
2829 		if (offset < 0) {
2830 			/* In the future, this can be allowed to increase limit
2831 			 * of fd index into fd_array, interpreted as u16.
2832 			 */
2833 			verbose(env, "negative offset disallowed for kernel module function call\n");
2834 			return ERR_PTR(-EINVAL);
2835 		}
2836 
2837 		return __find_kfunc_desc_btf(env, offset);
2838 	}
2839 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2840 }
2841 
add_kfunc_call(struct bpf_verifier_env * env,u32 func_id,s16 offset)2842 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2843 {
2844 	const struct btf_type *func, *func_proto;
2845 	struct bpf_kfunc_btf_tab *btf_tab;
2846 	struct bpf_kfunc_desc_tab *tab;
2847 	struct bpf_prog_aux *prog_aux;
2848 	struct bpf_kfunc_desc *desc;
2849 	const char *func_name;
2850 	struct btf *desc_btf;
2851 	unsigned long call_imm;
2852 	unsigned long addr;
2853 	int err;
2854 
2855 	prog_aux = env->prog->aux;
2856 	tab = prog_aux->kfunc_tab;
2857 	btf_tab = prog_aux->kfunc_btf_tab;
2858 	if (!tab) {
2859 		if (!btf_vmlinux) {
2860 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2861 			return -ENOTSUPP;
2862 		}
2863 
2864 		if (!env->prog->jit_requested) {
2865 			verbose(env, "JIT is required for calling kernel function\n");
2866 			return -ENOTSUPP;
2867 		}
2868 
2869 		if (!bpf_jit_supports_kfunc_call()) {
2870 			verbose(env, "JIT does not support calling kernel function\n");
2871 			return -ENOTSUPP;
2872 		}
2873 
2874 		if (!env->prog->gpl_compatible) {
2875 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2876 			return -EINVAL;
2877 		}
2878 
2879 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2880 		if (!tab)
2881 			return -ENOMEM;
2882 		prog_aux->kfunc_tab = tab;
2883 	}
2884 
2885 	/* func_id == 0 is always invalid, but instead of returning an error, be
2886 	 * conservative and wait until the code elimination pass before returning
2887 	 * error, so that invalid calls that get pruned out can be in BPF programs
2888 	 * loaded from userspace.  It is also required that offset be untouched
2889 	 * for such calls.
2890 	 */
2891 	if (!func_id && !offset)
2892 		return 0;
2893 
2894 	if (!btf_tab && offset) {
2895 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2896 		if (!btf_tab)
2897 			return -ENOMEM;
2898 		prog_aux->kfunc_btf_tab = btf_tab;
2899 	}
2900 
2901 	desc_btf = find_kfunc_desc_btf(env, offset);
2902 	if (IS_ERR(desc_btf)) {
2903 		verbose(env, "failed to find BTF for kernel function\n");
2904 		return PTR_ERR(desc_btf);
2905 	}
2906 
2907 	if (find_kfunc_desc(env->prog, func_id, offset))
2908 		return 0;
2909 
2910 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2911 		verbose(env, "too many different kernel function calls\n");
2912 		return -E2BIG;
2913 	}
2914 
2915 	func = btf_type_by_id(desc_btf, func_id);
2916 	if (!func || !btf_type_is_func(func)) {
2917 		verbose(env, "kernel btf_id %u is not a function\n",
2918 			func_id);
2919 		return -EINVAL;
2920 	}
2921 	func_proto = btf_type_by_id(desc_btf, func->type);
2922 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2923 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2924 			func_id);
2925 		return -EINVAL;
2926 	}
2927 
2928 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2929 	addr = kallsyms_lookup_name(func_name);
2930 	if (!addr) {
2931 		verbose(env, "cannot find address for kernel function %s\n",
2932 			func_name);
2933 		return -EINVAL;
2934 	}
2935 	specialize_kfunc(env, func_id, offset, &addr);
2936 
2937 	if (bpf_jit_supports_far_kfunc_call()) {
2938 		call_imm = func_id;
2939 	} else {
2940 		call_imm = BPF_CALL_IMM(addr);
2941 		/* Check whether the relative offset overflows desc->imm */
2942 		if ((unsigned long)(s32)call_imm != call_imm) {
2943 			verbose(env, "address of kernel function %s is out of range\n",
2944 				func_name);
2945 			return -EINVAL;
2946 		}
2947 	}
2948 
2949 	if (bpf_dev_bound_kfunc_id(func_id)) {
2950 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2951 		if (err)
2952 			return err;
2953 	}
2954 
2955 	desc = &tab->descs[tab->nr_descs++];
2956 	desc->func_id = func_id;
2957 	desc->imm = call_imm;
2958 	desc->offset = offset;
2959 	desc->addr = addr;
2960 	err = btf_distill_func_proto(&env->log, desc_btf,
2961 				     func_proto, func_name,
2962 				     &desc->func_model);
2963 	if (!err)
2964 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2965 		     kfunc_desc_cmp_by_id_off, NULL);
2966 	return err;
2967 }
2968 
kfunc_desc_cmp_by_imm_off(const void * a,const void * b)2969 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2970 {
2971 	const struct bpf_kfunc_desc *d0 = a;
2972 	const struct bpf_kfunc_desc *d1 = b;
2973 
2974 	if (d0->imm != d1->imm)
2975 		return d0->imm < d1->imm ? -1 : 1;
2976 	if (d0->offset != d1->offset)
2977 		return d0->offset < d1->offset ? -1 : 1;
2978 	return 0;
2979 }
2980 
sort_kfunc_descs_by_imm_off(struct bpf_prog * prog)2981 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2982 {
2983 	struct bpf_kfunc_desc_tab *tab;
2984 
2985 	tab = prog->aux->kfunc_tab;
2986 	if (!tab)
2987 		return;
2988 
2989 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2990 	     kfunc_desc_cmp_by_imm_off, NULL);
2991 }
2992 
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)2993 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2994 {
2995 	return !!prog->aux->kfunc_tab;
2996 }
2997 
2998 const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)2999 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3000 			 const struct bpf_insn *insn)
3001 {
3002 	const struct bpf_kfunc_desc desc = {
3003 		.imm = insn->imm,
3004 		.offset = insn->off,
3005 	};
3006 	const struct bpf_kfunc_desc *res;
3007 	struct bpf_kfunc_desc_tab *tab;
3008 
3009 	tab = prog->aux->kfunc_tab;
3010 	res = bsearch(&desc, tab->descs, tab->nr_descs,
3011 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3012 
3013 	return res ? &res->func_model : NULL;
3014 }
3015 
add_subprog_and_kfunc(struct bpf_verifier_env * env)3016 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3017 {
3018 	struct bpf_subprog_info *subprog = env->subprog_info;
3019 	struct bpf_insn *insn = env->prog->insnsi;
3020 	int i, ret, insn_cnt = env->prog->len;
3021 
3022 	/* Add entry function. */
3023 	ret = add_subprog(env, 0);
3024 	if (ret)
3025 		return ret;
3026 
3027 	for (i = 0; i < insn_cnt; i++, insn++) {
3028 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3029 		    !bpf_pseudo_kfunc_call(insn))
3030 			continue;
3031 
3032 		if (!env->bpf_capable) {
3033 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3034 			return -EPERM;
3035 		}
3036 
3037 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3038 			ret = add_subprog(env, i + insn->imm + 1);
3039 		else
3040 			ret = add_kfunc_call(env, insn->imm, insn->off);
3041 
3042 		if (ret < 0)
3043 			return ret;
3044 	}
3045 
3046 	/* Add a fake 'exit' subprog which could simplify subprog iteration
3047 	 * logic. 'subprog_cnt' should not be increased.
3048 	 */
3049 	subprog[env->subprog_cnt].start = insn_cnt;
3050 
3051 	if (env->log.level & BPF_LOG_LEVEL2)
3052 		for (i = 0; i < env->subprog_cnt; i++)
3053 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
3054 
3055 	return 0;
3056 }
3057 
check_subprogs(struct bpf_verifier_env * env)3058 static int check_subprogs(struct bpf_verifier_env *env)
3059 {
3060 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
3061 	struct bpf_subprog_info *subprog = env->subprog_info;
3062 	struct bpf_insn *insn = env->prog->insnsi;
3063 	int insn_cnt = env->prog->len;
3064 
3065 	/* now check that all jumps are within the same subprog */
3066 	subprog_start = subprog[cur_subprog].start;
3067 	subprog_end = subprog[cur_subprog + 1].start;
3068 	for (i = 0; i < insn_cnt; i++) {
3069 		u8 code = insn[i].code;
3070 
3071 		if (code == (BPF_JMP | BPF_CALL) &&
3072 		    insn[i].src_reg == 0 &&
3073 		    insn[i].imm == BPF_FUNC_tail_call) {
3074 			subprog[cur_subprog].has_tail_call = true;
3075 			subprog[cur_subprog].tail_call_reachable = true;
3076 		}
3077 		if (BPF_CLASS(code) == BPF_LD &&
3078 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3079 			subprog[cur_subprog].has_ld_abs = true;
3080 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3081 			goto next;
3082 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3083 			goto next;
3084 		if (code == (BPF_JMP32 | BPF_JA))
3085 			off = i + insn[i].imm + 1;
3086 		else
3087 			off = i + insn[i].off + 1;
3088 		if (off < subprog_start || off >= subprog_end) {
3089 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3090 			return -EINVAL;
3091 		}
3092 next:
3093 		if (i == subprog_end - 1) {
3094 			/* to avoid fall-through from one subprog into another
3095 			 * the last insn of the subprog should be either exit
3096 			 * or unconditional jump back
3097 			 */
3098 			if (code != (BPF_JMP | BPF_EXIT) &&
3099 			    code != (BPF_JMP32 | BPF_JA) &&
3100 			    code != (BPF_JMP | BPF_JA)) {
3101 				verbose(env, "last insn is not an exit or jmp\n");
3102 				return -EINVAL;
3103 			}
3104 			subprog_start = subprog_end;
3105 			cur_subprog++;
3106 			if (cur_subprog < env->subprog_cnt)
3107 				subprog_end = subprog[cur_subprog + 1].start;
3108 		}
3109 	}
3110 	return 0;
3111 }
3112 
3113 /* Parentage chain of this register (or stack slot) should take care of all
3114  * issues like callee-saved registers, stack slot allocation time, etc.
3115  */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)3116 static int mark_reg_read(struct bpf_verifier_env *env,
3117 			 const struct bpf_reg_state *state,
3118 			 struct bpf_reg_state *parent, u8 flag)
3119 {
3120 	bool writes = parent == state->parent; /* Observe write marks */
3121 	int cnt = 0;
3122 
3123 	while (parent) {
3124 		/* if read wasn't screened by an earlier write ... */
3125 		if (writes && state->live & REG_LIVE_WRITTEN)
3126 			break;
3127 		if (parent->live & REG_LIVE_DONE) {
3128 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3129 				reg_type_str(env, parent->type),
3130 				parent->var_off.value, parent->off);
3131 			return -EFAULT;
3132 		}
3133 		/* The first condition is more likely to be true than the
3134 		 * second, checked it first.
3135 		 */
3136 		if ((parent->live & REG_LIVE_READ) == flag ||
3137 		    parent->live & REG_LIVE_READ64)
3138 			/* The parentage chain never changes and
3139 			 * this parent was already marked as LIVE_READ.
3140 			 * There is no need to keep walking the chain again and
3141 			 * keep re-marking all parents as LIVE_READ.
3142 			 * This case happens when the same register is read
3143 			 * multiple times without writes into it in-between.
3144 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3145 			 * then no need to set the weak REG_LIVE_READ32.
3146 			 */
3147 			break;
3148 		/* ... then we depend on parent's value */
3149 		parent->live |= flag;
3150 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3151 		if (flag == REG_LIVE_READ64)
3152 			parent->live &= ~REG_LIVE_READ32;
3153 		state = parent;
3154 		parent = state->parent;
3155 		writes = true;
3156 		cnt++;
3157 	}
3158 
3159 	if (env->longest_mark_read_walk < cnt)
3160 		env->longest_mark_read_walk = cnt;
3161 	return 0;
3162 }
3163 
mark_dynptr_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3164 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3165 {
3166 	struct bpf_func_state *state = func(env, reg);
3167 	int spi, ret;
3168 
3169 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3170 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3171 	 * check_kfunc_call.
3172 	 */
3173 	if (reg->type == CONST_PTR_TO_DYNPTR)
3174 		return 0;
3175 	spi = dynptr_get_spi(env, reg);
3176 	if (spi < 0)
3177 		return spi;
3178 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3179 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3180 	 * read.
3181 	 */
3182 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3183 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3184 	if (ret)
3185 		return ret;
3186 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3187 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3188 }
3189 
mark_iter_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi,int nr_slots)3190 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3191 			  int spi, int nr_slots)
3192 {
3193 	struct bpf_func_state *state = func(env, reg);
3194 	int err, i;
3195 
3196 	for (i = 0; i < nr_slots; i++) {
3197 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3198 
3199 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3200 		if (err)
3201 			return err;
3202 
3203 		mark_stack_slot_scratched(env, spi - i);
3204 	}
3205 
3206 	return 0;
3207 }
3208 
3209 /* This function is supposed to be used by the following 32-bit optimization
3210  * code only. It returns TRUE if the source or destination register operates
3211  * on 64-bit, otherwise return FALSE.
3212  */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)3213 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3214 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3215 {
3216 	u8 code, class, op;
3217 
3218 	code = insn->code;
3219 	class = BPF_CLASS(code);
3220 	op = BPF_OP(code);
3221 	if (class == BPF_JMP) {
3222 		/* BPF_EXIT for "main" will reach here. Return TRUE
3223 		 * conservatively.
3224 		 */
3225 		if (op == BPF_EXIT)
3226 			return true;
3227 		if (op == BPF_CALL) {
3228 			/* BPF to BPF call will reach here because of marking
3229 			 * caller saved clobber with DST_OP_NO_MARK for which we
3230 			 * don't care the register def because they are anyway
3231 			 * marked as NOT_INIT already.
3232 			 */
3233 			if (insn->src_reg == BPF_PSEUDO_CALL)
3234 				return false;
3235 			/* Helper call will reach here because of arg type
3236 			 * check, conservatively return TRUE.
3237 			 */
3238 			if (t == SRC_OP)
3239 				return true;
3240 
3241 			return false;
3242 		}
3243 	}
3244 
3245 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3246 		return false;
3247 
3248 	if (class == BPF_ALU64 || class == BPF_JMP ||
3249 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3250 		return true;
3251 
3252 	if (class == BPF_ALU || class == BPF_JMP32)
3253 		return false;
3254 
3255 	if (class == BPF_LDX) {
3256 		if (t != SRC_OP)
3257 			return BPF_SIZE(code) == BPF_DW;
3258 		/* LDX source must be ptr. */
3259 		return true;
3260 	}
3261 
3262 	if (class == BPF_STX) {
3263 		/* BPF_STX (including atomic variants) has multiple source
3264 		 * operands, one of which is a ptr. Check whether the caller is
3265 		 * asking about it.
3266 		 */
3267 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3268 			return true;
3269 		return BPF_SIZE(code) == BPF_DW;
3270 	}
3271 
3272 	if (class == BPF_LD) {
3273 		u8 mode = BPF_MODE(code);
3274 
3275 		/* LD_IMM64 */
3276 		if (mode == BPF_IMM)
3277 			return true;
3278 
3279 		/* Both LD_IND and LD_ABS return 32-bit data. */
3280 		if (t != SRC_OP)
3281 			return  false;
3282 
3283 		/* Implicit ctx ptr. */
3284 		if (regno == BPF_REG_6)
3285 			return true;
3286 
3287 		/* Explicit source could be any width. */
3288 		return true;
3289 	}
3290 
3291 	if (class == BPF_ST)
3292 		/* The only source register for BPF_ST is a ptr. */
3293 		return true;
3294 
3295 	/* Conservatively return true at default. */
3296 	return true;
3297 }
3298 
3299 /* Return the regno defined by the insn, or -1. */
insn_def_regno(const struct bpf_insn * insn)3300 static int insn_def_regno(const struct bpf_insn *insn)
3301 {
3302 	switch (BPF_CLASS(insn->code)) {
3303 	case BPF_JMP:
3304 	case BPF_JMP32:
3305 	case BPF_ST:
3306 		return -1;
3307 	case BPF_STX:
3308 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3309 		    (insn->imm & BPF_FETCH)) {
3310 			if (insn->imm == BPF_CMPXCHG)
3311 				return BPF_REG_0;
3312 			else
3313 				return insn->src_reg;
3314 		} else {
3315 			return -1;
3316 		}
3317 	default:
3318 		return insn->dst_reg;
3319 	}
3320 }
3321 
3322 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)3323 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3324 {
3325 	int dst_reg = insn_def_regno(insn);
3326 
3327 	if (dst_reg == -1)
3328 		return false;
3329 
3330 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3331 }
3332 
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3333 static void mark_insn_zext(struct bpf_verifier_env *env,
3334 			   struct bpf_reg_state *reg)
3335 {
3336 	s32 def_idx = reg->subreg_def;
3337 
3338 	if (def_idx == DEF_NOT_SUBREG)
3339 		return;
3340 
3341 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3342 	/* The dst will be zero extended, so won't be sub-register anymore. */
3343 	reg->subreg_def = DEF_NOT_SUBREG;
3344 }
3345 
__check_reg_arg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum reg_arg_type t)3346 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3347 			   enum reg_arg_type t)
3348 {
3349 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3350 	struct bpf_reg_state *reg;
3351 	bool rw64;
3352 
3353 	if (regno >= MAX_BPF_REG) {
3354 		verbose(env, "R%d is invalid\n", regno);
3355 		return -EINVAL;
3356 	}
3357 
3358 	mark_reg_scratched(env, regno);
3359 
3360 	reg = &regs[regno];
3361 	rw64 = is_reg64(env, insn, regno, reg, t);
3362 	if (t == SRC_OP) {
3363 		/* check whether register used as source operand can be read */
3364 		if (reg->type == NOT_INIT) {
3365 			verbose(env, "R%d !read_ok\n", regno);
3366 			return -EACCES;
3367 		}
3368 		/* We don't need to worry about FP liveness because it's read-only */
3369 		if (regno == BPF_REG_FP)
3370 			return 0;
3371 
3372 		if (rw64)
3373 			mark_insn_zext(env, reg);
3374 
3375 		return mark_reg_read(env, reg, reg->parent,
3376 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3377 	} else {
3378 		/* check whether register used as dest operand can be written to */
3379 		if (regno == BPF_REG_FP) {
3380 			verbose(env, "frame pointer is read only\n");
3381 			return -EACCES;
3382 		}
3383 		reg->live |= REG_LIVE_WRITTEN;
3384 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3385 		if (t == DST_OP)
3386 			mark_reg_unknown(env, regs, regno);
3387 	}
3388 	return 0;
3389 }
3390 
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)3391 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3392 			 enum reg_arg_type t)
3393 {
3394 	struct bpf_verifier_state *vstate = env->cur_state;
3395 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3396 
3397 	return __check_reg_arg(env, state->regs, regno, t);
3398 }
3399 
mark_jmp_point(struct bpf_verifier_env * env,int idx)3400 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3401 {
3402 	env->insn_aux_data[idx].jmp_point = true;
3403 }
3404 
is_jmp_point(struct bpf_verifier_env * env,int insn_idx)3405 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3406 {
3407 	return env->insn_aux_data[insn_idx].jmp_point;
3408 }
3409 
3410 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur)3411 static int push_jmp_history(struct bpf_verifier_env *env,
3412 			    struct bpf_verifier_state *cur)
3413 {
3414 	u32 cnt = cur->jmp_history_cnt;
3415 	struct bpf_idx_pair *p;
3416 	size_t alloc_size;
3417 
3418 	if (!is_jmp_point(env, env->insn_idx))
3419 		return 0;
3420 
3421 	cnt++;
3422 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3423 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3424 	if (!p)
3425 		return -ENOMEM;
3426 	p[cnt - 1].idx = env->insn_idx;
3427 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3428 	cur->jmp_history = p;
3429 	cur->jmp_history_cnt = cnt;
3430 	return 0;
3431 }
3432 
3433 /* Backtrack one insn at a time. If idx is not at the top of recorded
3434  * history then previous instruction came from straight line execution.
3435  * Return -ENOENT if we exhausted all instructions within given state.
3436  *
3437  * It's legal to have a bit of a looping with the same starting and ending
3438  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3439  * instruction index is the same as state's first_idx doesn't mean we are
3440  * done. If there is still some jump history left, we should keep going. We
3441  * need to take into account that we might have a jump history between given
3442  * state's parent and itself, due to checkpointing. In this case, we'll have
3443  * history entry recording a jump from last instruction of parent state and
3444  * first instruction of given state.
3445  */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)3446 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3447 			     u32 *history)
3448 {
3449 	u32 cnt = *history;
3450 
3451 	if (i == st->first_insn_idx) {
3452 		if (cnt == 0)
3453 			return -ENOENT;
3454 		if (cnt == 1 && st->jmp_history[0].idx == i)
3455 			return -ENOENT;
3456 	}
3457 
3458 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3459 		i = st->jmp_history[cnt - 1].prev_idx;
3460 		(*history)--;
3461 	} else {
3462 		i--;
3463 	}
3464 	return i;
3465 }
3466 
disasm_kfunc_name(void * data,const struct bpf_insn * insn)3467 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3468 {
3469 	const struct btf_type *func;
3470 	struct btf *desc_btf;
3471 
3472 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3473 		return NULL;
3474 
3475 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3476 	if (IS_ERR(desc_btf))
3477 		return "<error>";
3478 
3479 	func = btf_type_by_id(desc_btf, insn->imm);
3480 	return btf_name_by_offset(desc_btf, func->name_off);
3481 }
3482 
bt_init(struct backtrack_state * bt,u32 frame)3483 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3484 {
3485 	bt->frame = frame;
3486 }
3487 
bt_reset(struct backtrack_state * bt)3488 static inline void bt_reset(struct backtrack_state *bt)
3489 {
3490 	struct bpf_verifier_env *env = bt->env;
3491 
3492 	memset(bt, 0, sizeof(*bt));
3493 	bt->env = env;
3494 }
3495 
bt_empty(struct backtrack_state * bt)3496 static inline u32 bt_empty(struct backtrack_state *bt)
3497 {
3498 	u64 mask = 0;
3499 	int i;
3500 
3501 	for (i = 0; i <= bt->frame; i++)
3502 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3503 
3504 	return mask == 0;
3505 }
3506 
bt_subprog_enter(struct backtrack_state * bt)3507 static inline int bt_subprog_enter(struct backtrack_state *bt)
3508 {
3509 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3510 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3511 		WARN_ONCE(1, "verifier backtracking bug");
3512 		return -EFAULT;
3513 	}
3514 	bt->frame++;
3515 	return 0;
3516 }
3517 
bt_subprog_exit(struct backtrack_state * bt)3518 static inline int bt_subprog_exit(struct backtrack_state *bt)
3519 {
3520 	if (bt->frame == 0) {
3521 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3522 		WARN_ONCE(1, "verifier backtracking bug");
3523 		return -EFAULT;
3524 	}
3525 	bt->frame--;
3526 	return 0;
3527 }
3528 
bt_set_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)3529 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3530 {
3531 	bt->reg_masks[frame] |= 1 << reg;
3532 }
3533 
bt_clear_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)3534 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3535 {
3536 	bt->reg_masks[frame] &= ~(1 << reg);
3537 }
3538 
bt_set_reg(struct backtrack_state * bt,u32 reg)3539 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3540 {
3541 	bt_set_frame_reg(bt, bt->frame, reg);
3542 }
3543 
bt_clear_reg(struct backtrack_state * bt,u32 reg)3544 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3545 {
3546 	bt_clear_frame_reg(bt, bt->frame, reg);
3547 }
3548 
bt_set_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)3549 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3550 {
3551 	bt->stack_masks[frame] |= 1ull << slot;
3552 }
3553 
bt_clear_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)3554 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3555 {
3556 	bt->stack_masks[frame] &= ~(1ull << slot);
3557 }
3558 
bt_set_slot(struct backtrack_state * bt,u32 slot)3559 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3560 {
3561 	bt_set_frame_slot(bt, bt->frame, slot);
3562 }
3563 
bt_clear_slot(struct backtrack_state * bt,u32 slot)3564 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3565 {
3566 	bt_clear_frame_slot(bt, bt->frame, slot);
3567 }
3568 
bt_frame_reg_mask(struct backtrack_state * bt,u32 frame)3569 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3570 {
3571 	return bt->reg_masks[frame];
3572 }
3573 
bt_reg_mask(struct backtrack_state * bt)3574 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3575 {
3576 	return bt->reg_masks[bt->frame];
3577 }
3578 
bt_frame_stack_mask(struct backtrack_state * bt,u32 frame)3579 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3580 {
3581 	return bt->stack_masks[frame];
3582 }
3583 
bt_stack_mask(struct backtrack_state * bt)3584 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3585 {
3586 	return bt->stack_masks[bt->frame];
3587 }
3588 
bt_is_reg_set(struct backtrack_state * bt,u32 reg)3589 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3590 {
3591 	return bt->reg_masks[bt->frame] & (1 << reg);
3592 }
3593 
bt_is_slot_set(struct backtrack_state * bt,u32 slot)3594 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3595 {
3596 	return bt->stack_masks[bt->frame] & (1ull << slot);
3597 }
3598 
3599 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
fmt_reg_mask(char * buf,ssize_t buf_sz,u32 reg_mask)3600 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3601 {
3602 	DECLARE_BITMAP(mask, 64);
3603 	bool first = true;
3604 	int i, n;
3605 
3606 	buf[0] = '\0';
3607 
3608 	bitmap_from_u64(mask, reg_mask);
3609 	for_each_set_bit(i, mask, 32) {
3610 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3611 		first = false;
3612 		buf += n;
3613 		buf_sz -= n;
3614 		if (buf_sz < 0)
3615 			break;
3616 	}
3617 }
3618 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
fmt_stack_mask(char * buf,ssize_t buf_sz,u64 stack_mask)3619 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3620 {
3621 	DECLARE_BITMAP(mask, 64);
3622 	bool first = true;
3623 	int i, n;
3624 
3625 	buf[0] = '\0';
3626 
3627 	bitmap_from_u64(mask, stack_mask);
3628 	for_each_set_bit(i, mask, 64) {
3629 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3630 		first = false;
3631 		buf += n;
3632 		buf_sz -= n;
3633 		if (buf_sz < 0)
3634 			break;
3635 	}
3636 }
3637 
3638 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3639 
3640 /* For given verifier state backtrack_insn() is called from the last insn to
3641  * the first insn. Its purpose is to compute a bitmask of registers and
3642  * stack slots that needs precision in the parent verifier state.
3643  *
3644  * @idx is an index of the instruction we are currently processing;
3645  * @subseq_idx is an index of the subsequent instruction that:
3646  *   - *would be* executed next, if jump history is viewed in forward order;
3647  *   - *was* processed previously during backtracking.
3648  */
backtrack_insn(struct bpf_verifier_env * env,int idx,int subseq_idx,struct backtrack_state * bt)3649 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3650 			  struct backtrack_state *bt)
3651 {
3652 	const struct bpf_insn_cbs cbs = {
3653 		.cb_call	= disasm_kfunc_name,
3654 		.cb_print	= verbose,
3655 		.private_data	= env,
3656 	};
3657 	struct bpf_insn *insn = env->prog->insnsi + idx;
3658 	u8 class = BPF_CLASS(insn->code);
3659 	u8 opcode = BPF_OP(insn->code);
3660 	u8 mode = BPF_MODE(insn->code);
3661 	u32 dreg = insn->dst_reg;
3662 	u32 sreg = insn->src_reg;
3663 	u32 spi, i;
3664 
3665 	if (insn->code == 0)
3666 		return 0;
3667 	if (env->log.level & BPF_LOG_LEVEL2) {
3668 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3669 		verbose(env, "mark_precise: frame%d: regs=%s ",
3670 			bt->frame, env->tmp_str_buf);
3671 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3672 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3673 		verbose(env, "%d: ", idx);
3674 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3675 	}
3676 
3677 	if (class == BPF_ALU || class == BPF_ALU64) {
3678 		if (!bt_is_reg_set(bt, dreg))
3679 			return 0;
3680 		if (opcode == BPF_END || opcode == BPF_NEG) {
3681 			/* sreg is reserved and unused
3682 			 * dreg still need precision before this insn
3683 			 */
3684 			return 0;
3685 		} else if (opcode == BPF_MOV) {
3686 			if (BPF_SRC(insn->code) == BPF_X) {
3687 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3688 				 * dreg needs precision after this insn
3689 				 * sreg needs precision before this insn
3690 				 */
3691 				bt_clear_reg(bt, dreg);
3692 				if (sreg != BPF_REG_FP)
3693 					bt_set_reg(bt, sreg);
3694 			} else {
3695 				/* dreg = K
3696 				 * dreg needs precision after this insn.
3697 				 * Corresponding register is already marked
3698 				 * as precise=true in this verifier state.
3699 				 * No further markings in parent are necessary
3700 				 */
3701 				bt_clear_reg(bt, dreg);
3702 			}
3703 		} else {
3704 			if (BPF_SRC(insn->code) == BPF_X) {
3705 				/* dreg += sreg
3706 				 * both dreg and sreg need precision
3707 				 * before this insn
3708 				 */
3709 				if (sreg != BPF_REG_FP)
3710 					bt_set_reg(bt, sreg);
3711 			} /* else dreg += K
3712 			   * dreg still needs precision before this insn
3713 			   */
3714 		}
3715 	} else if (class == BPF_LDX) {
3716 		if (!bt_is_reg_set(bt, dreg))
3717 			return 0;
3718 		bt_clear_reg(bt, dreg);
3719 
3720 		/* scalars can only be spilled into stack w/o losing precision.
3721 		 * Load from any other memory can be zero extended.
3722 		 * The desire to keep that precision is already indicated
3723 		 * by 'precise' mark in corresponding register of this state.
3724 		 * No further tracking necessary.
3725 		 */
3726 		if (insn->src_reg != BPF_REG_FP)
3727 			return 0;
3728 
3729 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3730 		 * that [fp - off] slot contains scalar that needs to be
3731 		 * tracked with precision
3732 		 */
3733 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3734 		if (spi >= 64) {
3735 			verbose(env, "BUG spi %d\n", spi);
3736 			WARN_ONCE(1, "verifier backtracking bug");
3737 			return -EFAULT;
3738 		}
3739 		bt_set_slot(bt, spi);
3740 	} else if (class == BPF_STX || class == BPF_ST) {
3741 		if (bt_is_reg_set(bt, dreg))
3742 			/* stx & st shouldn't be using _scalar_ dst_reg
3743 			 * to access memory. It means backtracking
3744 			 * encountered a case of pointer subtraction.
3745 			 */
3746 			return -ENOTSUPP;
3747 		/* scalars can only be spilled into stack */
3748 		if (insn->dst_reg != BPF_REG_FP)
3749 			return 0;
3750 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3751 		if (spi >= 64) {
3752 			verbose(env, "BUG spi %d\n", spi);
3753 			WARN_ONCE(1, "verifier backtracking bug");
3754 			return -EFAULT;
3755 		}
3756 		if (!bt_is_slot_set(bt, spi))
3757 			return 0;
3758 		bt_clear_slot(bt, spi);
3759 		if (class == BPF_STX)
3760 			bt_set_reg(bt, sreg);
3761 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3762 		if (bpf_pseudo_call(insn)) {
3763 			int subprog_insn_idx, subprog;
3764 
3765 			subprog_insn_idx = idx + insn->imm + 1;
3766 			subprog = find_subprog(env, subprog_insn_idx);
3767 			if (subprog < 0)
3768 				return -EFAULT;
3769 
3770 			if (subprog_is_global(env, subprog)) {
3771 				/* check that jump history doesn't have any
3772 				 * extra instructions from subprog; the next
3773 				 * instruction after call to global subprog
3774 				 * should be literally next instruction in
3775 				 * caller program
3776 				 */
3777 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3778 				/* r1-r5 are invalidated after subprog call,
3779 				 * so for global func call it shouldn't be set
3780 				 * anymore
3781 				 */
3782 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3783 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3784 					WARN_ONCE(1, "verifier backtracking bug");
3785 					return -EFAULT;
3786 				}
3787 				/* global subprog always sets R0 */
3788 				bt_clear_reg(bt, BPF_REG_0);
3789 				return 0;
3790 			} else {
3791 				/* static subprog call instruction, which
3792 				 * means that we are exiting current subprog,
3793 				 * so only r1-r5 could be still requested as
3794 				 * precise, r0 and r6-r10 or any stack slot in
3795 				 * the current frame should be zero by now
3796 				 */
3797 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3798 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3799 					WARN_ONCE(1, "verifier backtracking bug");
3800 					return -EFAULT;
3801 				}
3802 				/* we don't track register spills perfectly,
3803 				 * so fallback to force-precise instead of failing */
3804 				if (bt_stack_mask(bt) != 0)
3805 					return -ENOTSUPP;
3806 				/* propagate r1-r5 to the caller */
3807 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3808 					if (bt_is_reg_set(bt, i)) {
3809 						bt_clear_reg(bt, i);
3810 						bt_set_frame_reg(bt, bt->frame - 1, i);
3811 					}
3812 				}
3813 				if (bt_subprog_exit(bt))
3814 					return -EFAULT;
3815 				return 0;
3816 			}
3817 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3818 			/* exit from callback subprog to callback-calling helper or
3819 			 * kfunc call. Use idx/subseq_idx check to discern it from
3820 			 * straight line code backtracking.
3821 			 * Unlike the subprog call handling above, we shouldn't
3822 			 * propagate precision of r1-r5 (if any requested), as they are
3823 			 * not actually arguments passed directly to callback subprogs
3824 			 */
3825 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3826 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3827 				WARN_ONCE(1, "verifier backtracking bug");
3828 				return -EFAULT;
3829 			}
3830 			if (bt_stack_mask(bt) != 0)
3831 				return -ENOTSUPP;
3832 			/* clear r1-r5 in callback subprog's mask */
3833 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3834 				bt_clear_reg(bt, i);
3835 			if (bt_subprog_exit(bt))
3836 				return -EFAULT;
3837 			return 0;
3838 		} else if (opcode == BPF_CALL) {
3839 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3840 			 * catch this error later. Make backtracking conservative
3841 			 * with ENOTSUPP.
3842 			 */
3843 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3844 				return -ENOTSUPP;
3845 			/* regular helper call sets R0 */
3846 			bt_clear_reg(bt, BPF_REG_0);
3847 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3848 				/* if backtracing was looking for registers R1-R5
3849 				 * they should have been found already.
3850 				 */
3851 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3852 				WARN_ONCE(1, "verifier backtracking bug");
3853 				return -EFAULT;
3854 			}
3855 		} else if (opcode == BPF_EXIT) {
3856 			bool r0_precise;
3857 
3858 			/* Backtracking to a nested function call, 'idx' is a part of
3859 			 * the inner frame 'subseq_idx' is a part of the outer frame.
3860 			 * In case of a regular function call, instructions giving
3861 			 * precision to registers R1-R5 should have been found already.
3862 			 * In case of a callback, it is ok to have R1-R5 marked for
3863 			 * backtracking, as these registers are set by the function
3864 			 * invoking callback.
3865 			 */
3866 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3867 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3868 					bt_clear_reg(bt, i);
3869 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3870 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3871 				WARN_ONCE(1, "verifier backtracking bug");
3872 				return -EFAULT;
3873 			}
3874 
3875 			/* BPF_EXIT in subprog or callback always returns
3876 			 * right after the call instruction, so by checking
3877 			 * whether the instruction at subseq_idx-1 is subprog
3878 			 * call or not we can distinguish actual exit from
3879 			 * *subprog* from exit from *callback*. In the former
3880 			 * case, we need to propagate r0 precision, if
3881 			 * necessary. In the former we never do that.
3882 			 */
3883 			r0_precise = subseq_idx - 1 >= 0 &&
3884 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3885 				     bt_is_reg_set(bt, BPF_REG_0);
3886 
3887 			bt_clear_reg(bt, BPF_REG_0);
3888 			if (bt_subprog_enter(bt))
3889 				return -EFAULT;
3890 
3891 			if (r0_precise)
3892 				bt_set_reg(bt, BPF_REG_0);
3893 			/* r6-r9 and stack slots will stay set in caller frame
3894 			 * bitmasks until we return back from callee(s)
3895 			 */
3896 			return 0;
3897 		} else if (BPF_SRC(insn->code) == BPF_X) {
3898 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3899 				return 0;
3900 			/* dreg <cond> sreg
3901 			 * Both dreg and sreg need precision before
3902 			 * this insn. If only sreg was marked precise
3903 			 * before it would be equally necessary to
3904 			 * propagate it to dreg.
3905 			 */
3906 			bt_set_reg(bt, dreg);
3907 			bt_set_reg(bt, sreg);
3908 			 /* else dreg <cond> K
3909 			  * Only dreg still needs precision before
3910 			  * this insn, so for the K-based conditional
3911 			  * there is nothing new to be marked.
3912 			  */
3913 		}
3914 	} else if (class == BPF_LD) {
3915 		if (!bt_is_reg_set(bt, dreg))
3916 			return 0;
3917 		bt_clear_reg(bt, dreg);
3918 		/* It's ld_imm64 or ld_abs or ld_ind.
3919 		 * For ld_imm64 no further tracking of precision
3920 		 * into parent is necessary
3921 		 */
3922 		if (mode == BPF_IND || mode == BPF_ABS)
3923 			/* to be analyzed */
3924 			return -ENOTSUPP;
3925 	}
3926 	return 0;
3927 }
3928 
3929 /* the scalar precision tracking algorithm:
3930  * . at the start all registers have precise=false.
3931  * . scalar ranges are tracked as normal through alu and jmp insns.
3932  * . once precise value of the scalar register is used in:
3933  *   .  ptr + scalar alu
3934  *   . if (scalar cond K|scalar)
3935  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3936  *   backtrack through the verifier states and mark all registers and
3937  *   stack slots with spilled constants that these scalar regisers
3938  *   should be precise.
3939  * . during state pruning two registers (or spilled stack slots)
3940  *   are equivalent if both are not precise.
3941  *
3942  * Note the verifier cannot simply walk register parentage chain,
3943  * since many different registers and stack slots could have been
3944  * used to compute single precise scalar.
3945  *
3946  * The approach of starting with precise=true for all registers and then
3947  * backtrack to mark a register as not precise when the verifier detects
3948  * that program doesn't care about specific value (e.g., when helper
3949  * takes register as ARG_ANYTHING parameter) is not safe.
3950  *
3951  * It's ok to walk single parentage chain of the verifier states.
3952  * It's possible that this backtracking will go all the way till 1st insn.
3953  * All other branches will be explored for needing precision later.
3954  *
3955  * The backtracking needs to deal with cases like:
3956  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3957  * r9 -= r8
3958  * r5 = r9
3959  * if r5 > 0x79f goto pc+7
3960  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3961  * r5 += 1
3962  * ...
3963  * call bpf_perf_event_output#25
3964  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3965  *
3966  * and this case:
3967  * r6 = 1
3968  * call foo // uses callee's r6 inside to compute r0
3969  * r0 += r6
3970  * if r0 == 0 goto
3971  *
3972  * to track above reg_mask/stack_mask needs to be independent for each frame.
3973  *
3974  * Also if parent's curframe > frame where backtracking started,
3975  * the verifier need to mark registers in both frames, otherwise callees
3976  * may incorrectly prune callers. This is similar to
3977  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3978  *
3979  * For now backtracking falls back into conservative marking.
3980  */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)3981 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3982 				     struct bpf_verifier_state *st)
3983 {
3984 	struct bpf_func_state *func;
3985 	struct bpf_reg_state *reg;
3986 	int i, j;
3987 
3988 	if (env->log.level & BPF_LOG_LEVEL2) {
3989 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3990 			st->curframe);
3991 	}
3992 
3993 	/* big hammer: mark all scalars precise in this path.
3994 	 * pop_stack may still get !precise scalars.
3995 	 * We also skip current state and go straight to first parent state,
3996 	 * because precision markings in current non-checkpointed state are
3997 	 * not needed. See why in the comment in __mark_chain_precision below.
3998 	 */
3999 	for (st = st->parent; st; st = st->parent) {
4000 		for (i = 0; i <= st->curframe; i++) {
4001 			func = st->frame[i];
4002 			for (j = 0; j < BPF_REG_FP; j++) {
4003 				reg = &func->regs[j];
4004 				if (reg->type != SCALAR_VALUE || reg->precise)
4005 					continue;
4006 				reg->precise = true;
4007 				if (env->log.level & BPF_LOG_LEVEL2) {
4008 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4009 						i, j);
4010 				}
4011 			}
4012 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4013 				if (!is_spilled_reg(&func->stack[j]))
4014 					continue;
4015 				reg = &func->stack[j].spilled_ptr;
4016 				if (reg->type != SCALAR_VALUE || reg->precise)
4017 					continue;
4018 				reg->precise = true;
4019 				if (env->log.level & BPF_LOG_LEVEL2) {
4020 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4021 						i, -(j + 1) * 8);
4022 				}
4023 			}
4024 		}
4025 	}
4026 }
4027 
mark_all_scalars_imprecise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4028 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4029 {
4030 	struct bpf_func_state *func;
4031 	struct bpf_reg_state *reg;
4032 	int i, j;
4033 
4034 	for (i = 0; i <= st->curframe; i++) {
4035 		func = st->frame[i];
4036 		for (j = 0; j < BPF_REG_FP; j++) {
4037 			reg = &func->regs[j];
4038 			if (reg->type != SCALAR_VALUE)
4039 				continue;
4040 			reg->precise = false;
4041 		}
4042 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4043 			if (!is_spilled_reg(&func->stack[j]))
4044 				continue;
4045 			reg = &func->stack[j].spilled_ptr;
4046 			if (reg->type != SCALAR_VALUE)
4047 				continue;
4048 			reg->precise = false;
4049 		}
4050 	}
4051 }
4052 
idset_contains(struct bpf_idset * s,u32 id)4053 static bool idset_contains(struct bpf_idset *s, u32 id)
4054 {
4055 	u32 i;
4056 
4057 	for (i = 0; i < s->count; ++i)
4058 		if (s->ids[i] == id)
4059 			return true;
4060 
4061 	return false;
4062 }
4063 
idset_push(struct bpf_idset * s,u32 id)4064 static int idset_push(struct bpf_idset *s, u32 id)
4065 {
4066 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
4067 		return -EFAULT;
4068 	s->ids[s->count++] = id;
4069 	return 0;
4070 }
4071 
idset_reset(struct bpf_idset * s)4072 static void idset_reset(struct bpf_idset *s)
4073 {
4074 	s->count = 0;
4075 }
4076 
4077 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
4078  * Mark all registers with these IDs as precise.
4079  */
mark_precise_scalar_ids(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4080 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4081 {
4082 	struct bpf_idset *precise_ids = &env->idset_scratch;
4083 	struct backtrack_state *bt = &env->bt;
4084 	struct bpf_func_state *func;
4085 	struct bpf_reg_state *reg;
4086 	DECLARE_BITMAP(mask, 64);
4087 	int i, fr;
4088 
4089 	idset_reset(precise_ids);
4090 
4091 	for (fr = bt->frame; fr >= 0; fr--) {
4092 		func = st->frame[fr];
4093 
4094 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4095 		for_each_set_bit(i, mask, 32) {
4096 			reg = &func->regs[i];
4097 			if (!reg->id || reg->type != SCALAR_VALUE)
4098 				continue;
4099 			if (idset_push(precise_ids, reg->id))
4100 				return -EFAULT;
4101 		}
4102 
4103 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4104 		for_each_set_bit(i, mask, 64) {
4105 			if (i >= func->allocated_stack / BPF_REG_SIZE)
4106 				break;
4107 			if (!is_spilled_scalar_reg(&func->stack[i]))
4108 				continue;
4109 			reg = &func->stack[i].spilled_ptr;
4110 			if (!reg->id)
4111 				continue;
4112 			if (idset_push(precise_ids, reg->id))
4113 				return -EFAULT;
4114 		}
4115 	}
4116 
4117 	for (fr = 0; fr <= st->curframe; ++fr) {
4118 		func = st->frame[fr];
4119 
4120 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4121 			reg = &func->regs[i];
4122 			if (!reg->id)
4123 				continue;
4124 			if (!idset_contains(precise_ids, reg->id))
4125 				continue;
4126 			bt_set_frame_reg(bt, fr, i);
4127 		}
4128 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4129 			if (!is_spilled_scalar_reg(&func->stack[i]))
4130 				continue;
4131 			reg = &func->stack[i].spilled_ptr;
4132 			if (!reg->id)
4133 				continue;
4134 			if (!idset_contains(precise_ids, reg->id))
4135 				continue;
4136 			bt_set_frame_slot(bt, fr, i);
4137 		}
4138 	}
4139 
4140 	return 0;
4141 }
4142 
4143 /*
4144  * __mark_chain_precision() backtracks BPF program instruction sequence and
4145  * chain of verifier states making sure that register *regno* (if regno >= 0)
4146  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4147  * SCALARS, as well as any other registers and slots that contribute to
4148  * a tracked state of given registers/stack slots, depending on specific BPF
4149  * assembly instructions (see backtrack_insns() for exact instruction handling
4150  * logic). This backtracking relies on recorded jmp_history and is able to
4151  * traverse entire chain of parent states. This process ends only when all the
4152  * necessary registers/slots and their transitive dependencies are marked as
4153  * precise.
4154  *
4155  * One important and subtle aspect is that precise marks *do not matter* in
4156  * the currently verified state (current state). It is important to understand
4157  * why this is the case.
4158  *
4159  * First, note that current state is the state that is not yet "checkpointed",
4160  * i.e., it is not yet put into env->explored_states, and it has no children
4161  * states as well. It's ephemeral, and can end up either a) being discarded if
4162  * compatible explored state is found at some point or BPF_EXIT instruction is
4163  * reached or b) checkpointed and put into env->explored_states, branching out
4164  * into one or more children states.
4165  *
4166  * In the former case, precise markings in current state are completely
4167  * ignored by state comparison code (see regsafe() for details). Only
4168  * checkpointed ("old") state precise markings are important, and if old
4169  * state's register/slot is precise, regsafe() assumes current state's
4170  * register/slot as precise and checks value ranges exactly and precisely. If
4171  * states turn out to be compatible, current state's necessary precise
4172  * markings and any required parent states' precise markings are enforced
4173  * after the fact with propagate_precision() logic, after the fact. But it's
4174  * important to realize that in this case, even after marking current state
4175  * registers/slots as precise, we immediately discard current state. So what
4176  * actually matters is any of the precise markings propagated into current
4177  * state's parent states, which are always checkpointed (due to b) case above).
4178  * As such, for scenario a) it doesn't matter if current state has precise
4179  * markings set or not.
4180  *
4181  * Now, for the scenario b), checkpointing and forking into child(ren)
4182  * state(s). Note that before current state gets to checkpointing step, any
4183  * processed instruction always assumes precise SCALAR register/slot
4184  * knowledge: if precise value or range is useful to prune jump branch, BPF
4185  * verifier takes this opportunity enthusiastically. Similarly, when
4186  * register's value is used to calculate offset or memory address, exact
4187  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4188  * what we mentioned above about state comparison ignoring precise markings
4189  * during state comparison, BPF verifier ignores and also assumes precise
4190  * markings *at will* during instruction verification process. But as verifier
4191  * assumes precision, it also propagates any precision dependencies across
4192  * parent states, which are not yet finalized, so can be further restricted
4193  * based on new knowledge gained from restrictions enforced by their children
4194  * states. This is so that once those parent states are finalized, i.e., when
4195  * they have no more active children state, state comparison logic in
4196  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4197  * required for correctness.
4198  *
4199  * To build a bit more intuition, note also that once a state is checkpointed,
4200  * the path we took to get to that state is not important. This is crucial
4201  * property for state pruning. When state is checkpointed and finalized at
4202  * some instruction index, it can be correctly and safely used to "short
4203  * circuit" any *compatible* state that reaches exactly the same instruction
4204  * index. I.e., if we jumped to that instruction from a completely different
4205  * code path than original finalized state was derived from, it doesn't
4206  * matter, current state can be discarded because from that instruction
4207  * forward having a compatible state will ensure we will safely reach the
4208  * exit. States describe preconditions for further exploration, but completely
4209  * forget the history of how we got here.
4210  *
4211  * This also means that even if we needed precise SCALAR range to get to
4212  * finalized state, but from that point forward *that same* SCALAR register is
4213  * never used in a precise context (i.e., it's precise value is not needed for
4214  * correctness), it's correct and safe to mark such register as "imprecise"
4215  * (i.e., precise marking set to false). This is what we rely on when we do
4216  * not set precise marking in current state. If no child state requires
4217  * precision for any given SCALAR register, it's safe to dictate that it can
4218  * be imprecise. If any child state does require this register to be precise,
4219  * we'll mark it precise later retroactively during precise markings
4220  * propagation from child state to parent states.
4221  *
4222  * Skipping precise marking setting in current state is a mild version of
4223  * relying on the above observation. But we can utilize this property even
4224  * more aggressively by proactively forgetting any precise marking in the
4225  * current state (which we inherited from the parent state), right before we
4226  * checkpoint it and branch off into new child state. This is done by
4227  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4228  * finalized states which help in short circuiting more future states.
4229  */
__mark_chain_precision(struct bpf_verifier_env * env,int regno)4230 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4231 {
4232 	struct backtrack_state *bt = &env->bt;
4233 	struct bpf_verifier_state *st = env->cur_state;
4234 	int first_idx = st->first_insn_idx;
4235 	int last_idx = env->insn_idx;
4236 	int subseq_idx = -1;
4237 	struct bpf_func_state *func;
4238 	struct bpf_reg_state *reg;
4239 	bool skip_first = true;
4240 	int i, fr, err;
4241 
4242 	if (!env->bpf_capable)
4243 		return 0;
4244 
4245 	/* set frame number from which we are starting to backtrack */
4246 	bt_init(bt, env->cur_state->curframe);
4247 
4248 	/* Do sanity checks against current state of register and/or stack
4249 	 * slot, but don't set precise flag in current state, as precision
4250 	 * tracking in the current state is unnecessary.
4251 	 */
4252 	func = st->frame[bt->frame];
4253 	if (regno >= 0) {
4254 		reg = &func->regs[regno];
4255 		if (reg->type != SCALAR_VALUE) {
4256 			WARN_ONCE(1, "backtracing misuse");
4257 			return -EFAULT;
4258 		}
4259 		bt_set_reg(bt, regno);
4260 	}
4261 
4262 	if (bt_empty(bt))
4263 		return 0;
4264 
4265 	for (;;) {
4266 		DECLARE_BITMAP(mask, 64);
4267 		u32 history = st->jmp_history_cnt;
4268 
4269 		if (env->log.level & BPF_LOG_LEVEL2) {
4270 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4271 				bt->frame, last_idx, first_idx, subseq_idx);
4272 		}
4273 
4274 		/* If some register with scalar ID is marked as precise,
4275 		 * make sure that all registers sharing this ID are also precise.
4276 		 * This is needed to estimate effect of find_equal_scalars().
4277 		 * Do this at the last instruction of each state,
4278 		 * bpf_reg_state::id fields are valid for these instructions.
4279 		 *
4280 		 * Allows to track precision in situation like below:
4281 		 *
4282 		 *     r2 = unknown value
4283 		 *     ...
4284 		 *   --- state #0 ---
4285 		 *     ...
4286 		 *     r1 = r2                 // r1 and r2 now share the same ID
4287 		 *     ...
4288 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4289 		 *     ...
4290 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4291 		 *     ...
4292 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4293 		 *     r3 = r10
4294 		 *     r3 += r1                // need to mark both r1 and r2
4295 		 */
4296 		if (mark_precise_scalar_ids(env, st))
4297 			return -EFAULT;
4298 
4299 		if (last_idx < 0) {
4300 			/* we are at the entry into subprog, which
4301 			 * is expected for global funcs, but only if
4302 			 * requested precise registers are R1-R5
4303 			 * (which are global func's input arguments)
4304 			 */
4305 			if (st->curframe == 0 &&
4306 			    st->frame[0]->subprogno > 0 &&
4307 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4308 			    bt_stack_mask(bt) == 0 &&
4309 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4310 				bitmap_from_u64(mask, bt_reg_mask(bt));
4311 				for_each_set_bit(i, mask, 32) {
4312 					reg = &st->frame[0]->regs[i];
4313 					bt_clear_reg(bt, i);
4314 					if (reg->type == SCALAR_VALUE)
4315 						reg->precise = true;
4316 				}
4317 				return 0;
4318 			}
4319 
4320 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4321 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4322 			WARN_ONCE(1, "verifier backtracking bug");
4323 			return -EFAULT;
4324 		}
4325 
4326 		for (i = last_idx;;) {
4327 			if (skip_first) {
4328 				err = 0;
4329 				skip_first = false;
4330 			} else {
4331 				err = backtrack_insn(env, i, subseq_idx, bt);
4332 			}
4333 			if (err == -ENOTSUPP) {
4334 				mark_all_scalars_precise(env, env->cur_state);
4335 				bt_reset(bt);
4336 				return 0;
4337 			} else if (err) {
4338 				return err;
4339 			}
4340 			if (bt_empty(bt))
4341 				/* Found assignment(s) into tracked register in this state.
4342 				 * Since this state is already marked, just return.
4343 				 * Nothing to be tracked further in the parent state.
4344 				 */
4345 				return 0;
4346 			subseq_idx = i;
4347 			i = get_prev_insn_idx(st, i, &history);
4348 			if (i == -ENOENT)
4349 				break;
4350 			if (i >= env->prog->len) {
4351 				/* This can happen if backtracking reached insn 0
4352 				 * and there are still reg_mask or stack_mask
4353 				 * to backtrack.
4354 				 * It means the backtracking missed the spot where
4355 				 * particular register was initialized with a constant.
4356 				 */
4357 				verbose(env, "BUG backtracking idx %d\n", i);
4358 				WARN_ONCE(1, "verifier backtracking bug");
4359 				return -EFAULT;
4360 			}
4361 		}
4362 		st = st->parent;
4363 		if (!st)
4364 			break;
4365 
4366 		for (fr = bt->frame; fr >= 0; fr--) {
4367 			func = st->frame[fr];
4368 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4369 			for_each_set_bit(i, mask, 32) {
4370 				reg = &func->regs[i];
4371 				if (reg->type != SCALAR_VALUE) {
4372 					bt_clear_frame_reg(bt, fr, i);
4373 					continue;
4374 				}
4375 				if (reg->precise)
4376 					bt_clear_frame_reg(bt, fr, i);
4377 				else
4378 					reg->precise = true;
4379 			}
4380 
4381 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4382 			for_each_set_bit(i, mask, 64) {
4383 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4384 					/* the sequence of instructions:
4385 					 * 2: (bf) r3 = r10
4386 					 * 3: (7b) *(u64 *)(r3 -8) = r0
4387 					 * 4: (79) r4 = *(u64 *)(r10 -8)
4388 					 * doesn't contain jmps. It's backtracked
4389 					 * as a single block.
4390 					 * During backtracking insn 3 is not recognized as
4391 					 * stack access, so at the end of backtracking
4392 					 * stack slot fp-8 is still marked in stack_mask.
4393 					 * However the parent state may not have accessed
4394 					 * fp-8 and it's "unallocated" stack space.
4395 					 * In such case fallback to conservative.
4396 					 */
4397 					mark_all_scalars_precise(env, env->cur_state);
4398 					bt_reset(bt);
4399 					return 0;
4400 				}
4401 
4402 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4403 					bt_clear_frame_slot(bt, fr, i);
4404 					continue;
4405 				}
4406 				reg = &func->stack[i].spilled_ptr;
4407 				if (reg->precise)
4408 					bt_clear_frame_slot(bt, fr, i);
4409 				else
4410 					reg->precise = true;
4411 			}
4412 			if (env->log.level & BPF_LOG_LEVEL2) {
4413 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4414 					     bt_frame_reg_mask(bt, fr));
4415 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4416 					fr, env->tmp_str_buf);
4417 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4418 					       bt_frame_stack_mask(bt, fr));
4419 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4420 				print_verifier_state(env, func, true);
4421 			}
4422 		}
4423 
4424 		if (bt_empty(bt))
4425 			return 0;
4426 
4427 		subseq_idx = first_idx;
4428 		last_idx = st->last_insn_idx;
4429 		first_idx = st->first_insn_idx;
4430 	}
4431 
4432 	/* if we still have requested precise regs or slots, we missed
4433 	 * something (e.g., stack access through non-r10 register), so
4434 	 * fallback to marking all precise
4435 	 */
4436 	if (!bt_empty(bt)) {
4437 		mark_all_scalars_precise(env, env->cur_state);
4438 		bt_reset(bt);
4439 	}
4440 
4441 	return 0;
4442 }
4443 
mark_chain_precision(struct bpf_verifier_env * env,int regno)4444 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4445 {
4446 	return __mark_chain_precision(env, regno);
4447 }
4448 
4449 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4450  * desired reg and stack masks across all relevant frames
4451  */
mark_chain_precision_batch(struct bpf_verifier_env * env)4452 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4453 {
4454 	return __mark_chain_precision(env, -1);
4455 }
4456 
is_spillable_regtype(enum bpf_reg_type type)4457 static bool is_spillable_regtype(enum bpf_reg_type type)
4458 {
4459 	switch (base_type(type)) {
4460 	case PTR_TO_MAP_VALUE:
4461 	case PTR_TO_STACK:
4462 	case PTR_TO_CTX:
4463 	case PTR_TO_PACKET:
4464 	case PTR_TO_PACKET_META:
4465 	case PTR_TO_PACKET_END:
4466 	case PTR_TO_FLOW_KEYS:
4467 	case CONST_PTR_TO_MAP:
4468 	case PTR_TO_SOCKET:
4469 	case PTR_TO_SOCK_COMMON:
4470 	case PTR_TO_TCP_SOCK:
4471 	case PTR_TO_XDP_SOCK:
4472 	case PTR_TO_BTF_ID:
4473 	case PTR_TO_BUF:
4474 	case PTR_TO_MEM:
4475 	case PTR_TO_FUNC:
4476 	case PTR_TO_MAP_KEY:
4477 		return true;
4478 	default:
4479 		return false;
4480 	}
4481 }
4482 
4483 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)4484 static bool register_is_null(struct bpf_reg_state *reg)
4485 {
4486 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4487 }
4488 
register_is_const(struct bpf_reg_state * reg)4489 static bool register_is_const(struct bpf_reg_state *reg)
4490 {
4491 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4492 }
4493 
__is_scalar_unbounded(struct bpf_reg_state * reg)4494 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4495 {
4496 	return tnum_is_unknown(reg->var_off) &&
4497 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4498 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4499 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4500 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4501 }
4502 
register_is_bounded(struct bpf_reg_state * reg)4503 static bool register_is_bounded(struct bpf_reg_state *reg)
4504 {
4505 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4506 }
4507 
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)4508 static bool __is_pointer_value(bool allow_ptr_leaks,
4509 			       const struct bpf_reg_state *reg)
4510 {
4511 	if (allow_ptr_leaks)
4512 		return false;
4513 
4514 	return reg->type != SCALAR_VALUE;
4515 }
4516 
4517 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)4518 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4519 {
4520 	struct bpf_reg_state *parent = dst->parent;
4521 	enum bpf_reg_liveness live = dst->live;
4522 
4523 	*dst = *src;
4524 	dst->parent = parent;
4525 	dst->live = live;
4526 }
4527 
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)4528 static void save_register_state(struct bpf_func_state *state,
4529 				int spi, struct bpf_reg_state *reg,
4530 				int size)
4531 {
4532 	int i;
4533 
4534 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4535 	if (size == BPF_REG_SIZE)
4536 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4537 
4538 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4539 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4540 
4541 	/* size < 8 bytes spill */
4542 	for (; i; i--)
4543 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4544 }
4545 
is_bpf_st_mem(struct bpf_insn * insn)4546 static bool is_bpf_st_mem(struct bpf_insn *insn)
4547 {
4548 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4549 }
4550 
4551 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4552  * stack boundary and alignment are checked in check_mem_access()
4553  */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)4554 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4555 				       /* stack frame we're writing to */
4556 				       struct bpf_func_state *state,
4557 				       int off, int size, int value_regno,
4558 				       int insn_idx)
4559 {
4560 	struct bpf_func_state *cur; /* state of the current function */
4561 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4562 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4563 	struct bpf_reg_state *reg = NULL;
4564 	u32 dst_reg = insn->dst_reg;
4565 
4566 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4567 	 * so it's aligned access and [off, off + size) are within stack limits
4568 	 */
4569 	if (!env->allow_ptr_leaks &&
4570 	    is_spilled_reg(&state->stack[spi]) &&
4571 	    !is_spilled_scalar_reg(&state->stack[spi]) &&
4572 	    size != BPF_REG_SIZE) {
4573 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4574 		return -EACCES;
4575 	}
4576 
4577 	cur = env->cur_state->frame[env->cur_state->curframe];
4578 	if (value_regno >= 0)
4579 		reg = &cur->regs[value_regno];
4580 	if (!env->bypass_spec_v4) {
4581 		bool sanitize = reg && is_spillable_regtype(reg->type);
4582 
4583 		for (i = 0; i < size; i++) {
4584 			u8 type = state->stack[spi].slot_type[i];
4585 
4586 			if (type != STACK_MISC && type != STACK_ZERO) {
4587 				sanitize = true;
4588 				break;
4589 			}
4590 		}
4591 
4592 		if (sanitize)
4593 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4594 	}
4595 
4596 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4597 	if (err)
4598 		return err;
4599 
4600 	mark_stack_slot_scratched(env, spi);
4601 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4602 	    !register_is_null(reg) && env->bpf_capable) {
4603 		if (dst_reg != BPF_REG_FP) {
4604 			/* The backtracking logic can only recognize explicit
4605 			 * stack slot address like [fp - 8]. Other spill of
4606 			 * scalar via different register has to be conservative.
4607 			 * Backtrack from here and mark all registers as precise
4608 			 * that contributed into 'reg' being a constant.
4609 			 */
4610 			err = mark_chain_precision(env, value_regno);
4611 			if (err)
4612 				return err;
4613 		}
4614 		save_register_state(state, spi, reg, size);
4615 		/* Break the relation on a narrowing spill. */
4616 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4617 			state->stack[spi].spilled_ptr.id = 0;
4618 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4619 		   insn->imm != 0 && env->bpf_capable) {
4620 		struct bpf_reg_state fake_reg = {};
4621 
4622 		__mark_reg_known(&fake_reg, insn->imm);
4623 		fake_reg.type = SCALAR_VALUE;
4624 		save_register_state(state, spi, &fake_reg, size);
4625 	} else if (reg && is_spillable_regtype(reg->type)) {
4626 		/* register containing pointer is being spilled into stack */
4627 		if (size != BPF_REG_SIZE) {
4628 			verbose_linfo(env, insn_idx, "; ");
4629 			verbose(env, "invalid size of register spill\n");
4630 			return -EACCES;
4631 		}
4632 		if (state != cur && reg->type == PTR_TO_STACK) {
4633 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4634 			return -EINVAL;
4635 		}
4636 		save_register_state(state, spi, reg, size);
4637 	} else {
4638 		u8 type = STACK_MISC;
4639 
4640 		/* regular write of data into stack destroys any spilled ptr */
4641 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4642 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4643 		if (is_stack_slot_special(&state->stack[spi]))
4644 			for (i = 0; i < BPF_REG_SIZE; i++)
4645 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4646 
4647 		/* only mark the slot as written if all 8 bytes were written
4648 		 * otherwise read propagation may incorrectly stop too soon
4649 		 * when stack slots are partially written.
4650 		 * This heuristic means that read propagation will be
4651 		 * conservative, since it will add reg_live_read marks
4652 		 * to stack slots all the way to first state when programs
4653 		 * writes+reads less than 8 bytes
4654 		 */
4655 		if (size == BPF_REG_SIZE)
4656 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4657 
4658 		/* when we zero initialize stack slots mark them as such */
4659 		if ((reg && register_is_null(reg)) ||
4660 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4661 			/* backtracking doesn't work for STACK_ZERO yet. */
4662 			err = mark_chain_precision(env, value_regno);
4663 			if (err)
4664 				return err;
4665 			type = STACK_ZERO;
4666 		}
4667 
4668 		/* Mark slots affected by this stack write. */
4669 		for (i = 0; i < size; i++)
4670 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4671 				type;
4672 	}
4673 	return 0;
4674 }
4675 
4676 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4677  * known to contain a variable offset.
4678  * This function checks whether the write is permitted and conservatively
4679  * tracks the effects of the write, considering that each stack slot in the
4680  * dynamic range is potentially written to.
4681  *
4682  * 'off' includes 'regno->off'.
4683  * 'value_regno' can be -1, meaning that an unknown value is being written to
4684  * the stack.
4685  *
4686  * Spilled pointers in range are not marked as written because we don't know
4687  * what's going to be actually written. This means that read propagation for
4688  * future reads cannot be terminated by this write.
4689  *
4690  * For privileged programs, uninitialized stack slots are considered
4691  * initialized by this write (even though we don't know exactly what offsets
4692  * are going to be written to). The idea is that we don't want the verifier to
4693  * reject future reads that access slots written to through variable offsets.
4694  */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)4695 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4696 				     /* func where register points to */
4697 				     struct bpf_func_state *state,
4698 				     int ptr_regno, int off, int size,
4699 				     int value_regno, int insn_idx)
4700 {
4701 	struct bpf_func_state *cur; /* state of the current function */
4702 	int min_off, max_off;
4703 	int i, err;
4704 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4705 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4706 	bool writing_zero = false;
4707 	/* set if the fact that we're writing a zero is used to let any
4708 	 * stack slots remain STACK_ZERO
4709 	 */
4710 	bool zero_used = false;
4711 
4712 	cur = env->cur_state->frame[env->cur_state->curframe];
4713 	ptr_reg = &cur->regs[ptr_regno];
4714 	min_off = ptr_reg->smin_value + off;
4715 	max_off = ptr_reg->smax_value + off + size;
4716 	if (value_regno >= 0)
4717 		value_reg = &cur->regs[value_regno];
4718 	if ((value_reg && register_is_null(value_reg)) ||
4719 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4720 		writing_zero = true;
4721 
4722 	for (i = min_off; i < max_off; i++) {
4723 		int spi;
4724 
4725 		spi = __get_spi(i);
4726 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4727 		if (err)
4728 			return err;
4729 	}
4730 
4731 	/* Variable offset writes destroy any spilled pointers in range. */
4732 	for (i = min_off; i < max_off; i++) {
4733 		u8 new_type, *stype;
4734 		int slot, spi;
4735 
4736 		slot = -i - 1;
4737 		spi = slot / BPF_REG_SIZE;
4738 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4739 		mark_stack_slot_scratched(env, spi);
4740 
4741 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4742 			/* Reject the write if range we may write to has not
4743 			 * been initialized beforehand. If we didn't reject
4744 			 * here, the ptr status would be erased below (even
4745 			 * though not all slots are actually overwritten),
4746 			 * possibly opening the door to leaks.
4747 			 *
4748 			 * We do however catch STACK_INVALID case below, and
4749 			 * only allow reading possibly uninitialized memory
4750 			 * later for CAP_PERFMON, as the write may not happen to
4751 			 * that slot.
4752 			 */
4753 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4754 				insn_idx, i);
4755 			return -EINVAL;
4756 		}
4757 
4758 		/* Erase all spilled pointers. */
4759 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4760 
4761 		/* Update the slot type. */
4762 		new_type = STACK_MISC;
4763 		if (writing_zero && *stype == STACK_ZERO) {
4764 			new_type = STACK_ZERO;
4765 			zero_used = true;
4766 		}
4767 		/* If the slot is STACK_INVALID, we check whether it's OK to
4768 		 * pretend that it will be initialized by this write. The slot
4769 		 * might not actually be written to, and so if we mark it as
4770 		 * initialized future reads might leak uninitialized memory.
4771 		 * For privileged programs, we will accept such reads to slots
4772 		 * that may or may not be written because, if we're reject
4773 		 * them, the error would be too confusing.
4774 		 */
4775 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4776 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4777 					insn_idx, i);
4778 			return -EINVAL;
4779 		}
4780 		*stype = new_type;
4781 	}
4782 	if (zero_used) {
4783 		/* backtracking doesn't work for STACK_ZERO yet. */
4784 		err = mark_chain_precision(env, value_regno);
4785 		if (err)
4786 			return err;
4787 	}
4788 	return 0;
4789 }
4790 
4791 /* When register 'dst_regno' is assigned some values from stack[min_off,
4792  * max_off), we set the register's type according to the types of the
4793  * respective stack slots. If all the stack values are known to be zeros, then
4794  * so is the destination reg. Otherwise, the register is considered to be
4795  * SCALAR. This function does not deal with register filling; the caller must
4796  * ensure that all spilled registers in the stack range have been marked as
4797  * read.
4798  */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)4799 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4800 				/* func where src register points to */
4801 				struct bpf_func_state *ptr_state,
4802 				int min_off, int max_off, int dst_regno)
4803 {
4804 	struct bpf_verifier_state *vstate = env->cur_state;
4805 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4806 	int i, slot, spi;
4807 	u8 *stype;
4808 	int zeros = 0;
4809 
4810 	for (i = min_off; i < max_off; i++) {
4811 		slot = -i - 1;
4812 		spi = slot / BPF_REG_SIZE;
4813 		mark_stack_slot_scratched(env, spi);
4814 		stype = ptr_state->stack[spi].slot_type;
4815 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4816 			break;
4817 		zeros++;
4818 	}
4819 	if (zeros == max_off - min_off) {
4820 		/* any access_size read into register is zero extended,
4821 		 * so the whole register == const_zero
4822 		 */
4823 		__mark_reg_const_zero(&state->regs[dst_regno]);
4824 		/* backtracking doesn't support STACK_ZERO yet,
4825 		 * so mark it precise here, so that later
4826 		 * backtracking can stop here.
4827 		 * Backtracking may not need this if this register
4828 		 * doesn't participate in pointer adjustment.
4829 		 * Forward propagation of precise flag is not
4830 		 * necessary either. This mark is only to stop
4831 		 * backtracking. Any register that contributed
4832 		 * to const 0 was marked precise before spill.
4833 		 */
4834 		state->regs[dst_regno].precise = true;
4835 	} else {
4836 		/* have read misc data from the stack */
4837 		mark_reg_unknown(env, state->regs, dst_regno);
4838 	}
4839 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4840 }
4841 
4842 /* Read the stack at 'off' and put the results into the register indicated by
4843  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4844  * spilled reg.
4845  *
4846  * 'dst_regno' can be -1, meaning that the read value is not going to a
4847  * register.
4848  *
4849  * The access is assumed to be within the current stack bounds.
4850  */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)4851 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4852 				      /* func where src register points to */
4853 				      struct bpf_func_state *reg_state,
4854 				      int off, int size, int dst_regno)
4855 {
4856 	struct bpf_verifier_state *vstate = env->cur_state;
4857 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4858 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4859 	struct bpf_reg_state *reg;
4860 	u8 *stype, type;
4861 
4862 	stype = reg_state->stack[spi].slot_type;
4863 	reg = &reg_state->stack[spi].spilled_ptr;
4864 
4865 	mark_stack_slot_scratched(env, spi);
4866 
4867 	if (is_spilled_reg(&reg_state->stack[spi])) {
4868 		u8 spill_size = 1;
4869 
4870 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4871 			spill_size++;
4872 
4873 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4874 			if (reg->type != SCALAR_VALUE) {
4875 				verbose_linfo(env, env->insn_idx, "; ");
4876 				verbose(env, "invalid size of register fill\n");
4877 				return -EACCES;
4878 			}
4879 
4880 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4881 			if (dst_regno < 0)
4882 				return 0;
4883 
4884 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4885 				/* The earlier check_reg_arg() has decided the
4886 				 * subreg_def for this insn.  Save it first.
4887 				 */
4888 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4889 
4890 				copy_register_state(&state->regs[dst_regno], reg);
4891 				state->regs[dst_regno].subreg_def = subreg_def;
4892 			} else {
4893 				for (i = 0; i < size; i++) {
4894 					type = stype[(slot - i) % BPF_REG_SIZE];
4895 					if (type == STACK_SPILL)
4896 						continue;
4897 					if (type == STACK_MISC)
4898 						continue;
4899 					if (type == STACK_INVALID && env->allow_uninit_stack)
4900 						continue;
4901 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4902 						off, i, size);
4903 					return -EACCES;
4904 				}
4905 				mark_reg_unknown(env, state->regs, dst_regno);
4906 			}
4907 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4908 			return 0;
4909 		}
4910 
4911 		if (dst_regno >= 0) {
4912 			/* restore register state from stack */
4913 			copy_register_state(&state->regs[dst_regno], reg);
4914 			/* mark reg as written since spilled pointer state likely
4915 			 * has its liveness marks cleared by is_state_visited()
4916 			 * which resets stack/reg liveness for state transitions
4917 			 */
4918 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4919 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4920 			/* If dst_regno==-1, the caller is asking us whether
4921 			 * it is acceptable to use this value as a SCALAR_VALUE
4922 			 * (e.g. for XADD).
4923 			 * We must not allow unprivileged callers to do that
4924 			 * with spilled pointers.
4925 			 */
4926 			verbose(env, "leaking pointer from stack off %d\n",
4927 				off);
4928 			return -EACCES;
4929 		}
4930 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4931 	} else {
4932 		for (i = 0; i < size; i++) {
4933 			type = stype[(slot - i) % BPF_REG_SIZE];
4934 			if (type == STACK_MISC)
4935 				continue;
4936 			if (type == STACK_ZERO)
4937 				continue;
4938 			if (type == STACK_INVALID && env->allow_uninit_stack)
4939 				continue;
4940 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4941 				off, i, size);
4942 			return -EACCES;
4943 		}
4944 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4945 		if (dst_regno >= 0)
4946 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4947 	}
4948 	return 0;
4949 }
4950 
4951 enum bpf_access_src {
4952 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4953 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4954 };
4955 
4956 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4957 					 int regno, int off, int access_size,
4958 					 bool zero_size_allowed,
4959 					 enum bpf_access_src type,
4960 					 struct bpf_call_arg_meta *meta);
4961 
reg_state(struct bpf_verifier_env * env,int regno)4962 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4963 {
4964 	return cur_regs(env) + regno;
4965 }
4966 
4967 /* Read the stack at 'ptr_regno + off' and put the result into the register
4968  * 'dst_regno'.
4969  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4970  * but not its variable offset.
4971  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4972  *
4973  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4974  * filling registers (i.e. reads of spilled register cannot be detected when
4975  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4976  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4977  * offset; for a fixed offset check_stack_read_fixed_off should be used
4978  * instead.
4979  */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)4980 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4981 				    int ptr_regno, int off, int size, int dst_regno)
4982 {
4983 	/* The state of the source register. */
4984 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4985 	struct bpf_func_state *ptr_state = func(env, reg);
4986 	int err;
4987 	int min_off, max_off;
4988 
4989 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4990 	 */
4991 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4992 					    false, ACCESS_DIRECT, NULL);
4993 	if (err)
4994 		return err;
4995 
4996 	min_off = reg->smin_value + off;
4997 	max_off = reg->smax_value + off;
4998 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4999 	return 0;
5000 }
5001 
5002 /* check_stack_read dispatches to check_stack_read_fixed_off or
5003  * check_stack_read_var_off.
5004  *
5005  * The caller must ensure that the offset falls within the allocated stack
5006  * bounds.
5007  *
5008  * 'dst_regno' is a register which will receive the value from the stack. It
5009  * can be -1, meaning that the read value is not going to a register.
5010  */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5011 static int check_stack_read(struct bpf_verifier_env *env,
5012 			    int ptr_regno, int off, int size,
5013 			    int dst_regno)
5014 {
5015 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5016 	struct bpf_func_state *state = func(env, reg);
5017 	int err;
5018 	/* Some accesses are only permitted with a static offset. */
5019 	bool var_off = !tnum_is_const(reg->var_off);
5020 
5021 	/* The offset is required to be static when reads don't go to a
5022 	 * register, in order to not leak pointers (see
5023 	 * check_stack_read_fixed_off).
5024 	 */
5025 	if (dst_regno < 0 && var_off) {
5026 		char tn_buf[48];
5027 
5028 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5029 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5030 			tn_buf, off, size);
5031 		return -EACCES;
5032 	}
5033 	/* Variable offset is prohibited for unprivileged mode for simplicity
5034 	 * since it requires corresponding support in Spectre masking for stack
5035 	 * ALU. See also retrieve_ptr_limit(). The check in
5036 	 * check_stack_access_for_ptr_arithmetic() called by
5037 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5038 	 * with variable offsets, therefore no check is required here. Further,
5039 	 * just checking it here would be insufficient as speculative stack
5040 	 * writes could still lead to unsafe speculative behaviour.
5041 	 */
5042 	if (!var_off) {
5043 		off += reg->var_off.value;
5044 		err = check_stack_read_fixed_off(env, state, off, size,
5045 						 dst_regno);
5046 	} else {
5047 		/* Variable offset stack reads need more conservative handling
5048 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5049 		 * branch.
5050 		 */
5051 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5052 					       dst_regno);
5053 	}
5054 	return err;
5055 }
5056 
5057 
5058 /* check_stack_write dispatches to check_stack_write_fixed_off or
5059  * check_stack_write_var_off.
5060  *
5061  * 'ptr_regno' is the register used as a pointer into the stack.
5062  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5063  * 'value_regno' is the register whose value we're writing to the stack. It can
5064  * be -1, meaning that we're not writing from a register.
5065  *
5066  * The caller must ensure that the offset falls within the maximum stack size.
5067  */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)5068 static int check_stack_write(struct bpf_verifier_env *env,
5069 			     int ptr_regno, int off, int size,
5070 			     int value_regno, int insn_idx)
5071 {
5072 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5073 	struct bpf_func_state *state = func(env, reg);
5074 	int err;
5075 
5076 	if (tnum_is_const(reg->var_off)) {
5077 		off += reg->var_off.value;
5078 		err = check_stack_write_fixed_off(env, state, off, size,
5079 						  value_regno, insn_idx);
5080 	} else {
5081 		/* Variable offset stack reads need more conservative handling
5082 		 * than fixed offset ones.
5083 		 */
5084 		err = check_stack_write_var_off(env, state,
5085 						ptr_regno, off, size,
5086 						value_regno, insn_idx);
5087 	}
5088 	return err;
5089 }
5090 
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)5091 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5092 				 int off, int size, enum bpf_access_type type)
5093 {
5094 	struct bpf_reg_state *regs = cur_regs(env);
5095 	struct bpf_map *map = regs[regno].map_ptr;
5096 	u32 cap = bpf_map_flags_to_cap(map);
5097 
5098 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5099 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5100 			map->value_size, off, size);
5101 		return -EACCES;
5102 	}
5103 
5104 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5105 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5106 			map->value_size, off, size);
5107 		return -EACCES;
5108 	}
5109 
5110 	return 0;
5111 }
5112 
5113 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)5114 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5115 			      int off, int size, u32 mem_size,
5116 			      bool zero_size_allowed)
5117 {
5118 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5119 	struct bpf_reg_state *reg;
5120 
5121 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5122 		return 0;
5123 
5124 	reg = &cur_regs(env)[regno];
5125 	switch (reg->type) {
5126 	case PTR_TO_MAP_KEY:
5127 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5128 			mem_size, off, size);
5129 		break;
5130 	case PTR_TO_MAP_VALUE:
5131 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5132 			mem_size, off, size);
5133 		break;
5134 	case PTR_TO_PACKET:
5135 	case PTR_TO_PACKET_META:
5136 	case PTR_TO_PACKET_END:
5137 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5138 			off, size, regno, reg->id, off, mem_size);
5139 		break;
5140 	case PTR_TO_MEM:
5141 	default:
5142 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5143 			mem_size, off, size);
5144 	}
5145 
5146 	return -EACCES;
5147 }
5148 
5149 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)5150 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5151 				   int off, int size, u32 mem_size,
5152 				   bool zero_size_allowed)
5153 {
5154 	struct bpf_verifier_state *vstate = env->cur_state;
5155 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5156 	struct bpf_reg_state *reg = &state->regs[regno];
5157 	int err;
5158 
5159 	/* We may have adjusted the register pointing to memory region, so we
5160 	 * need to try adding each of min_value and max_value to off
5161 	 * to make sure our theoretical access will be safe.
5162 	 *
5163 	 * The minimum value is only important with signed
5164 	 * comparisons where we can't assume the floor of a
5165 	 * value is 0.  If we are using signed variables for our
5166 	 * index'es we need to make sure that whatever we use
5167 	 * will have a set floor within our range.
5168 	 */
5169 	if (reg->smin_value < 0 &&
5170 	    (reg->smin_value == S64_MIN ||
5171 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5172 	      reg->smin_value + off < 0)) {
5173 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5174 			regno);
5175 		return -EACCES;
5176 	}
5177 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5178 				 mem_size, zero_size_allowed);
5179 	if (err) {
5180 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5181 			regno);
5182 		return err;
5183 	}
5184 
5185 	/* If we haven't set a max value then we need to bail since we can't be
5186 	 * sure we won't do bad things.
5187 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5188 	 */
5189 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5190 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5191 			regno);
5192 		return -EACCES;
5193 	}
5194 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5195 				 mem_size, zero_size_allowed);
5196 	if (err) {
5197 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5198 			regno);
5199 		return err;
5200 	}
5201 
5202 	return 0;
5203 }
5204 
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)5205 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5206 			       const struct bpf_reg_state *reg, int regno,
5207 			       bool fixed_off_ok)
5208 {
5209 	/* Access to this pointer-typed register or passing it to a helper
5210 	 * is only allowed in its original, unmodified form.
5211 	 */
5212 
5213 	if (reg->off < 0) {
5214 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5215 			reg_type_str(env, reg->type), regno, reg->off);
5216 		return -EACCES;
5217 	}
5218 
5219 	if (!fixed_off_ok && reg->off) {
5220 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5221 			reg_type_str(env, reg->type), regno, reg->off);
5222 		return -EACCES;
5223 	}
5224 
5225 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5226 		char tn_buf[48];
5227 
5228 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5229 		verbose(env, "variable %s access var_off=%s disallowed\n",
5230 			reg_type_str(env, reg->type), tn_buf);
5231 		return -EACCES;
5232 	}
5233 
5234 	return 0;
5235 }
5236 
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)5237 int check_ptr_off_reg(struct bpf_verifier_env *env,
5238 		      const struct bpf_reg_state *reg, int regno)
5239 {
5240 	return __check_ptr_off_reg(env, reg, regno, false);
5241 }
5242 
map_kptr_match_type(struct bpf_verifier_env * env,struct btf_field * kptr_field,struct bpf_reg_state * reg,u32 regno)5243 static int map_kptr_match_type(struct bpf_verifier_env *env,
5244 			       struct btf_field *kptr_field,
5245 			       struct bpf_reg_state *reg, u32 regno)
5246 {
5247 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5248 	int perm_flags;
5249 	const char *reg_name = "";
5250 
5251 	if (btf_is_kernel(reg->btf)) {
5252 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5253 
5254 		/* Only unreferenced case accepts untrusted pointers */
5255 		if (kptr_field->type == BPF_KPTR_UNREF)
5256 			perm_flags |= PTR_UNTRUSTED;
5257 	} else {
5258 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5259 	}
5260 
5261 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5262 		goto bad_type;
5263 
5264 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5265 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5266 
5267 	/* For ref_ptr case, release function check should ensure we get one
5268 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5269 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5270 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5271 	 * reg->off and reg->ref_obj_id are not needed here.
5272 	 */
5273 	if (__check_ptr_off_reg(env, reg, regno, true))
5274 		return -EACCES;
5275 
5276 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5277 	 * we also need to take into account the reg->off.
5278 	 *
5279 	 * We want to support cases like:
5280 	 *
5281 	 * struct foo {
5282 	 *         struct bar br;
5283 	 *         struct baz bz;
5284 	 * };
5285 	 *
5286 	 * struct foo *v;
5287 	 * v = func();	      // PTR_TO_BTF_ID
5288 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5289 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5290 	 *                    // first member type of struct after comparison fails
5291 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5292 	 *                    // to match type
5293 	 *
5294 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5295 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5296 	 * the struct to match type against first member of struct, i.e. reject
5297 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5298 	 * strict mode to true for type match.
5299 	 */
5300 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5301 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5302 				  kptr_field->type == BPF_KPTR_REF))
5303 		goto bad_type;
5304 	return 0;
5305 bad_type:
5306 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5307 		reg_type_str(env, reg->type), reg_name);
5308 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5309 	if (kptr_field->type == BPF_KPTR_UNREF)
5310 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5311 			targ_name);
5312 	else
5313 		verbose(env, "\n");
5314 	return -EINVAL;
5315 }
5316 
5317 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5318  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5319  */
in_rcu_cs(struct bpf_verifier_env * env)5320 static bool in_rcu_cs(struct bpf_verifier_env *env)
5321 {
5322 	return env->cur_state->active_rcu_lock ||
5323 	       env->cur_state->active_lock.ptr ||
5324 	       !env->prog->aux->sleepable;
5325 }
5326 
5327 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5328 BTF_SET_START(rcu_protected_types)
BTF_ID(struct,prog_test_ref_kfunc)5329 BTF_ID(struct, prog_test_ref_kfunc)
5330 BTF_ID(struct, cgroup)
5331 BTF_ID(struct, bpf_cpumask)
5332 BTF_ID(struct, task_struct)
5333 BTF_SET_END(rcu_protected_types)
5334 
5335 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5336 {
5337 	if (!btf_is_kernel(btf))
5338 		return false;
5339 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5340 }
5341 
rcu_safe_kptr(const struct btf_field * field)5342 static bool rcu_safe_kptr(const struct btf_field *field)
5343 {
5344 	const struct btf_field_kptr *kptr = &field->kptr;
5345 
5346 	return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
5347 }
5348 
check_map_kptr_access(struct bpf_verifier_env * env,u32 regno,int value_regno,int insn_idx,struct btf_field * kptr_field)5349 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5350 				 int value_regno, int insn_idx,
5351 				 struct btf_field *kptr_field)
5352 {
5353 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5354 	int class = BPF_CLASS(insn->code);
5355 	struct bpf_reg_state *val_reg;
5356 
5357 	/* Things we already checked for in check_map_access and caller:
5358 	 *  - Reject cases where variable offset may touch kptr
5359 	 *  - size of access (must be BPF_DW)
5360 	 *  - tnum_is_const(reg->var_off)
5361 	 *  - kptr_field->offset == off + reg->var_off.value
5362 	 */
5363 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5364 	if (BPF_MODE(insn->code) != BPF_MEM) {
5365 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5366 		return -EACCES;
5367 	}
5368 
5369 	/* We only allow loading referenced kptr, since it will be marked as
5370 	 * untrusted, similar to unreferenced kptr.
5371 	 */
5372 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
5373 		verbose(env, "store to referenced kptr disallowed\n");
5374 		return -EACCES;
5375 	}
5376 
5377 	if (class == BPF_LDX) {
5378 		val_reg = reg_state(env, value_regno);
5379 		/* We can simply mark the value_regno receiving the pointer
5380 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5381 		 */
5382 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5383 				kptr_field->kptr.btf_id,
5384 				rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
5385 				PTR_MAYBE_NULL | MEM_RCU :
5386 				PTR_MAYBE_NULL | PTR_UNTRUSTED);
5387 	} else if (class == BPF_STX) {
5388 		val_reg = reg_state(env, value_regno);
5389 		if (!register_is_null(val_reg) &&
5390 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5391 			return -EACCES;
5392 	} else if (class == BPF_ST) {
5393 		if (insn->imm) {
5394 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5395 				kptr_field->offset);
5396 			return -EACCES;
5397 		}
5398 	} else {
5399 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5400 		return -EACCES;
5401 	}
5402 	return 0;
5403 }
5404 
5405 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed,enum bpf_access_src src)5406 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5407 			    int off, int size, bool zero_size_allowed,
5408 			    enum bpf_access_src src)
5409 {
5410 	struct bpf_verifier_state *vstate = env->cur_state;
5411 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5412 	struct bpf_reg_state *reg = &state->regs[regno];
5413 	struct bpf_map *map = reg->map_ptr;
5414 	struct btf_record *rec;
5415 	int err, i;
5416 
5417 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5418 				      zero_size_allowed);
5419 	if (err)
5420 		return err;
5421 
5422 	if (IS_ERR_OR_NULL(map->record))
5423 		return 0;
5424 	rec = map->record;
5425 	for (i = 0; i < rec->cnt; i++) {
5426 		struct btf_field *field = &rec->fields[i];
5427 		u32 p = field->offset;
5428 
5429 		/* If any part of a field  can be touched by load/store, reject
5430 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5431 		 * it is sufficient to check x1 < y2 && y1 < x2.
5432 		 */
5433 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5434 		    p < reg->umax_value + off + size) {
5435 			switch (field->type) {
5436 			case BPF_KPTR_UNREF:
5437 			case BPF_KPTR_REF:
5438 				if (src != ACCESS_DIRECT) {
5439 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5440 					return -EACCES;
5441 				}
5442 				if (!tnum_is_const(reg->var_off)) {
5443 					verbose(env, "kptr access cannot have variable offset\n");
5444 					return -EACCES;
5445 				}
5446 				if (p != off + reg->var_off.value) {
5447 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5448 						p, off + reg->var_off.value);
5449 					return -EACCES;
5450 				}
5451 				if (size != bpf_size_to_bytes(BPF_DW)) {
5452 					verbose(env, "kptr access size must be BPF_DW\n");
5453 					return -EACCES;
5454 				}
5455 				break;
5456 			default:
5457 				verbose(env, "%s cannot be accessed directly by load/store\n",
5458 					btf_field_type_name(field->type));
5459 				return -EACCES;
5460 			}
5461 		}
5462 	}
5463 	return 0;
5464 }
5465 
5466 #define MAX_PACKET_OFF 0xffff
5467 
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)5468 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5469 				       const struct bpf_call_arg_meta *meta,
5470 				       enum bpf_access_type t)
5471 {
5472 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5473 
5474 	switch (prog_type) {
5475 	/* Program types only with direct read access go here! */
5476 	case BPF_PROG_TYPE_LWT_IN:
5477 	case BPF_PROG_TYPE_LWT_OUT:
5478 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5479 	case BPF_PROG_TYPE_SK_REUSEPORT:
5480 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5481 	case BPF_PROG_TYPE_CGROUP_SKB:
5482 		if (t == BPF_WRITE)
5483 			return false;
5484 		fallthrough;
5485 
5486 	/* Program types with direct read + write access go here! */
5487 	case BPF_PROG_TYPE_SCHED_CLS:
5488 	case BPF_PROG_TYPE_SCHED_ACT:
5489 	case BPF_PROG_TYPE_XDP:
5490 	case BPF_PROG_TYPE_LWT_XMIT:
5491 	case BPF_PROG_TYPE_SK_SKB:
5492 	case BPF_PROG_TYPE_SK_MSG:
5493 		if (meta)
5494 			return meta->pkt_access;
5495 
5496 		env->seen_direct_write = true;
5497 		return true;
5498 
5499 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5500 		if (t == BPF_WRITE)
5501 			env->seen_direct_write = true;
5502 
5503 		return true;
5504 
5505 	default:
5506 		return false;
5507 	}
5508 }
5509 
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)5510 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5511 			       int size, bool zero_size_allowed)
5512 {
5513 	struct bpf_reg_state *regs = cur_regs(env);
5514 	struct bpf_reg_state *reg = &regs[regno];
5515 	int err;
5516 
5517 	/* We may have added a variable offset to the packet pointer; but any
5518 	 * reg->range we have comes after that.  We are only checking the fixed
5519 	 * offset.
5520 	 */
5521 
5522 	/* We don't allow negative numbers, because we aren't tracking enough
5523 	 * detail to prove they're safe.
5524 	 */
5525 	if (reg->smin_value < 0) {
5526 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5527 			regno);
5528 		return -EACCES;
5529 	}
5530 
5531 	err = reg->range < 0 ? -EINVAL :
5532 	      __check_mem_access(env, regno, off, size, reg->range,
5533 				 zero_size_allowed);
5534 	if (err) {
5535 		verbose(env, "R%d offset is outside of the packet\n", regno);
5536 		return err;
5537 	}
5538 
5539 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5540 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5541 	 * otherwise find_good_pkt_pointers would have refused to set range info
5542 	 * that __check_mem_access would have rejected this pkt access.
5543 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5544 	 */
5545 	env->prog->aux->max_pkt_offset =
5546 		max_t(u32, env->prog->aux->max_pkt_offset,
5547 		      off + reg->umax_value + size - 1);
5548 
5549 	return err;
5550 }
5551 
5552 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,struct btf ** btf,u32 * btf_id)5553 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5554 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5555 			    struct btf **btf, u32 *btf_id)
5556 {
5557 	struct bpf_insn_access_aux info = {
5558 		.reg_type = *reg_type,
5559 		.log = &env->log,
5560 	};
5561 
5562 	if (env->ops->is_valid_access &&
5563 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5564 		/* A non zero info.ctx_field_size indicates that this field is a
5565 		 * candidate for later verifier transformation to load the whole
5566 		 * field and then apply a mask when accessed with a narrower
5567 		 * access than actual ctx access size. A zero info.ctx_field_size
5568 		 * will only allow for whole field access and rejects any other
5569 		 * type of narrower access.
5570 		 */
5571 		*reg_type = info.reg_type;
5572 
5573 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5574 			*btf = info.btf;
5575 			*btf_id = info.btf_id;
5576 		} else {
5577 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5578 		}
5579 		/* remember the offset of last byte accessed in ctx */
5580 		if (env->prog->aux->max_ctx_offset < off + size)
5581 			env->prog->aux->max_ctx_offset = off + size;
5582 		return 0;
5583 	}
5584 
5585 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5586 	return -EACCES;
5587 }
5588 
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)5589 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5590 				  int size)
5591 {
5592 	if (size < 0 || off < 0 ||
5593 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5594 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5595 			off, size);
5596 		return -EACCES;
5597 	}
5598 	return 0;
5599 }
5600 
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)5601 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5602 			     u32 regno, int off, int size,
5603 			     enum bpf_access_type t)
5604 {
5605 	struct bpf_reg_state *regs = cur_regs(env);
5606 	struct bpf_reg_state *reg = &regs[regno];
5607 	struct bpf_insn_access_aux info = {};
5608 	bool valid;
5609 
5610 	if (reg->smin_value < 0) {
5611 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5612 			regno);
5613 		return -EACCES;
5614 	}
5615 
5616 	switch (reg->type) {
5617 	case PTR_TO_SOCK_COMMON:
5618 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5619 		break;
5620 	case PTR_TO_SOCKET:
5621 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5622 		break;
5623 	case PTR_TO_TCP_SOCK:
5624 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5625 		break;
5626 	case PTR_TO_XDP_SOCK:
5627 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5628 		break;
5629 	default:
5630 		valid = false;
5631 	}
5632 
5633 
5634 	if (valid) {
5635 		env->insn_aux_data[insn_idx].ctx_field_size =
5636 			info.ctx_field_size;
5637 		return 0;
5638 	}
5639 
5640 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5641 		regno, reg_type_str(env, reg->type), off, size);
5642 
5643 	return -EACCES;
5644 }
5645 
is_pointer_value(struct bpf_verifier_env * env,int regno)5646 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5647 {
5648 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5649 }
5650 
is_ctx_reg(struct bpf_verifier_env * env,int regno)5651 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5652 {
5653 	const struct bpf_reg_state *reg = reg_state(env, regno);
5654 
5655 	return reg->type == PTR_TO_CTX;
5656 }
5657 
is_sk_reg(struct bpf_verifier_env * env,int regno)5658 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5659 {
5660 	const struct bpf_reg_state *reg = reg_state(env, regno);
5661 
5662 	return type_is_sk_pointer(reg->type);
5663 }
5664 
is_pkt_reg(struct bpf_verifier_env * env,int regno)5665 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5666 {
5667 	const struct bpf_reg_state *reg = reg_state(env, regno);
5668 
5669 	return type_is_pkt_pointer(reg->type);
5670 }
5671 
is_flow_key_reg(struct bpf_verifier_env * env,int regno)5672 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5673 {
5674 	const struct bpf_reg_state *reg = reg_state(env, regno);
5675 
5676 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5677 	return reg->type == PTR_TO_FLOW_KEYS;
5678 }
5679 
5680 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5681 #ifdef CONFIG_NET
5682 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5683 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5684 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5685 #endif
5686 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5687 };
5688 
is_trusted_reg(const struct bpf_reg_state * reg)5689 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5690 {
5691 	/* A referenced register is always trusted. */
5692 	if (reg->ref_obj_id)
5693 		return true;
5694 
5695 	/* Types listed in the reg2btf_ids are always trusted */
5696 	if (reg2btf_ids[base_type(reg->type)] &&
5697 	    !bpf_type_has_unsafe_modifiers(reg->type))
5698 		return true;
5699 
5700 	/* If a register is not referenced, it is trusted if it has the
5701 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5702 	 * other type modifiers may be safe, but we elect to take an opt-in
5703 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5704 	 * not.
5705 	 *
5706 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5707 	 * for whether a register is trusted.
5708 	 */
5709 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5710 	       !bpf_type_has_unsafe_modifiers(reg->type);
5711 }
5712 
is_rcu_reg(const struct bpf_reg_state * reg)5713 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5714 {
5715 	return reg->type & MEM_RCU;
5716 }
5717 
clear_trusted_flags(enum bpf_type_flag * flag)5718 static void clear_trusted_flags(enum bpf_type_flag *flag)
5719 {
5720 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5721 }
5722 
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)5723 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5724 				   const struct bpf_reg_state *reg,
5725 				   int off, int size, bool strict)
5726 {
5727 	struct tnum reg_off;
5728 	int ip_align;
5729 
5730 	/* Byte size accesses are always allowed. */
5731 	if (!strict || size == 1)
5732 		return 0;
5733 
5734 	/* For platforms that do not have a Kconfig enabling
5735 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5736 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5737 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5738 	 * to this code only in strict mode where we want to emulate
5739 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5740 	 * unconditional IP align value of '2'.
5741 	 */
5742 	ip_align = 2;
5743 
5744 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5745 	if (!tnum_is_aligned(reg_off, size)) {
5746 		char tn_buf[48];
5747 
5748 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5749 		verbose(env,
5750 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5751 			ip_align, tn_buf, reg->off, off, size);
5752 		return -EACCES;
5753 	}
5754 
5755 	return 0;
5756 }
5757 
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)5758 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5759 				       const struct bpf_reg_state *reg,
5760 				       const char *pointer_desc,
5761 				       int off, int size, bool strict)
5762 {
5763 	struct tnum reg_off;
5764 
5765 	/* Byte size accesses are always allowed. */
5766 	if (!strict || size == 1)
5767 		return 0;
5768 
5769 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5770 	if (!tnum_is_aligned(reg_off, size)) {
5771 		char tn_buf[48];
5772 
5773 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5774 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5775 			pointer_desc, tn_buf, reg->off, off, size);
5776 		return -EACCES;
5777 	}
5778 
5779 	return 0;
5780 }
5781 
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)5782 static int check_ptr_alignment(struct bpf_verifier_env *env,
5783 			       const struct bpf_reg_state *reg, int off,
5784 			       int size, bool strict_alignment_once)
5785 {
5786 	bool strict = env->strict_alignment || strict_alignment_once;
5787 	const char *pointer_desc = "";
5788 
5789 	switch (reg->type) {
5790 	case PTR_TO_PACKET:
5791 	case PTR_TO_PACKET_META:
5792 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5793 		 * right in front, treat it the very same way.
5794 		 */
5795 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5796 	case PTR_TO_FLOW_KEYS:
5797 		pointer_desc = "flow keys ";
5798 		break;
5799 	case PTR_TO_MAP_KEY:
5800 		pointer_desc = "key ";
5801 		break;
5802 	case PTR_TO_MAP_VALUE:
5803 		pointer_desc = "value ";
5804 		break;
5805 	case PTR_TO_CTX:
5806 		pointer_desc = "context ";
5807 		break;
5808 	case PTR_TO_STACK:
5809 		pointer_desc = "stack ";
5810 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5811 		 * and check_stack_read_fixed_off() relies on stack accesses being
5812 		 * aligned.
5813 		 */
5814 		strict = true;
5815 		break;
5816 	case PTR_TO_SOCKET:
5817 		pointer_desc = "sock ";
5818 		break;
5819 	case PTR_TO_SOCK_COMMON:
5820 		pointer_desc = "sock_common ";
5821 		break;
5822 	case PTR_TO_TCP_SOCK:
5823 		pointer_desc = "tcp_sock ";
5824 		break;
5825 	case PTR_TO_XDP_SOCK:
5826 		pointer_desc = "xdp_sock ";
5827 		break;
5828 	default:
5829 		break;
5830 	}
5831 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5832 					   strict);
5833 }
5834 
5835 /* starting from main bpf function walk all instructions of the function
5836  * and recursively walk all callees that given function can call.
5837  * Ignore jump and exit insns.
5838  * Since recursion is prevented by check_cfg() this algorithm
5839  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5840  */
check_max_stack_depth_subprog(struct bpf_verifier_env * env,int idx)5841 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5842 {
5843 	struct bpf_subprog_info *subprog = env->subprog_info;
5844 	struct bpf_insn *insn = env->prog->insnsi;
5845 	int depth = 0, frame = 0, i, subprog_end;
5846 	bool tail_call_reachable = false;
5847 	int ret_insn[MAX_CALL_FRAMES];
5848 	int ret_prog[MAX_CALL_FRAMES];
5849 	int j;
5850 
5851 	i = subprog[idx].start;
5852 process_func:
5853 	/* protect against potential stack overflow that might happen when
5854 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5855 	 * depth for such case down to 256 so that the worst case scenario
5856 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5857 	 * 8k).
5858 	 *
5859 	 * To get the idea what might happen, see an example:
5860 	 * func1 -> sub rsp, 128
5861 	 *  subfunc1 -> sub rsp, 256
5862 	 *  tailcall1 -> add rsp, 256
5863 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5864 	 *   subfunc2 -> sub rsp, 64
5865 	 *   subfunc22 -> sub rsp, 128
5866 	 *   tailcall2 -> add rsp, 128
5867 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5868 	 *
5869 	 * tailcall will unwind the current stack frame but it will not get rid
5870 	 * of caller's stack as shown on the example above.
5871 	 */
5872 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5873 		verbose(env,
5874 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5875 			depth);
5876 		return -EACCES;
5877 	}
5878 	/* round up to 32-bytes, since this is granularity
5879 	 * of interpreter stack size
5880 	 */
5881 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5882 	if (depth > MAX_BPF_STACK) {
5883 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5884 			frame + 1, depth);
5885 		return -EACCES;
5886 	}
5887 continue_func:
5888 	subprog_end = subprog[idx + 1].start;
5889 	for (; i < subprog_end; i++) {
5890 		int next_insn, sidx;
5891 
5892 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5893 			continue;
5894 		/* remember insn and function to return to */
5895 		ret_insn[frame] = i + 1;
5896 		ret_prog[frame] = idx;
5897 
5898 		/* find the callee */
5899 		next_insn = i + insn[i].imm + 1;
5900 		sidx = find_subprog(env, next_insn);
5901 		if (sidx < 0) {
5902 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5903 				  next_insn);
5904 			return -EFAULT;
5905 		}
5906 		if (subprog[sidx].is_async_cb) {
5907 			if (subprog[sidx].has_tail_call) {
5908 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5909 				return -EFAULT;
5910 			}
5911 			/* async callbacks don't increase bpf prog stack size unless called directly */
5912 			if (!bpf_pseudo_call(insn + i))
5913 				continue;
5914 		}
5915 		i = next_insn;
5916 		idx = sidx;
5917 
5918 		if (subprog[idx].has_tail_call)
5919 			tail_call_reachable = true;
5920 
5921 		frame++;
5922 		if (frame >= MAX_CALL_FRAMES) {
5923 			verbose(env, "the call stack of %d frames is too deep !\n",
5924 				frame);
5925 			return -E2BIG;
5926 		}
5927 		goto process_func;
5928 	}
5929 	/* if tail call got detected across bpf2bpf calls then mark each of the
5930 	 * currently present subprog frames as tail call reachable subprogs;
5931 	 * this info will be utilized by JIT so that we will be preserving the
5932 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5933 	 */
5934 	if (tail_call_reachable)
5935 		for (j = 0; j < frame; j++)
5936 			subprog[ret_prog[j]].tail_call_reachable = true;
5937 	if (subprog[0].tail_call_reachable)
5938 		env->prog->aux->tail_call_reachable = true;
5939 
5940 	/* end of for() loop means the last insn of the 'subprog'
5941 	 * was reached. Doesn't matter whether it was JA or EXIT
5942 	 */
5943 	if (frame == 0)
5944 		return 0;
5945 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5946 	frame--;
5947 	i = ret_insn[frame];
5948 	idx = ret_prog[frame];
5949 	goto continue_func;
5950 }
5951 
check_max_stack_depth(struct bpf_verifier_env * env)5952 static int check_max_stack_depth(struct bpf_verifier_env *env)
5953 {
5954 	struct bpf_subprog_info *si = env->subprog_info;
5955 	int ret;
5956 
5957 	for (int i = 0; i < env->subprog_cnt; i++) {
5958 		if (!i || si[i].is_async_cb) {
5959 			ret = check_max_stack_depth_subprog(env, i);
5960 			if (ret < 0)
5961 				return ret;
5962 		}
5963 		continue;
5964 	}
5965 	return 0;
5966 }
5967 
5968 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)5969 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5970 				  const struct bpf_insn *insn, int idx)
5971 {
5972 	int start = idx + insn->imm + 1, subprog;
5973 
5974 	subprog = find_subprog(env, start);
5975 	if (subprog < 0) {
5976 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5977 			  start);
5978 		return -EFAULT;
5979 	}
5980 	return env->subprog_info[subprog].stack_depth;
5981 }
5982 #endif
5983 
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)5984 static int __check_buffer_access(struct bpf_verifier_env *env,
5985 				 const char *buf_info,
5986 				 const struct bpf_reg_state *reg,
5987 				 int regno, int off, int size)
5988 {
5989 	if (off < 0) {
5990 		verbose(env,
5991 			"R%d invalid %s buffer access: off=%d, size=%d\n",
5992 			regno, buf_info, off, size);
5993 		return -EACCES;
5994 	}
5995 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5996 		char tn_buf[48];
5997 
5998 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5999 		verbose(env,
6000 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6001 			regno, off, tn_buf);
6002 		return -EACCES;
6003 	}
6004 
6005 	return 0;
6006 }
6007 
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)6008 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6009 				  const struct bpf_reg_state *reg,
6010 				  int regno, int off, int size)
6011 {
6012 	int err;
6013 
6014 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6015 	if (err)
6016 		return err;
6017 
6018 	if (off + size > env->prog->aux->max_tp_access)
6019 		env->prog->aux->max_tp_access = off + size;
6020 
6021 	return 0;
6022 }
6023 
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,u32 * max_access)6024 static int check_buffer_access(struct bpf_verifier_env *env,
6025 			       const struct bpf_reg_state *reg,
6026 			       int regno, int off, int size,
6027 			       bool zero_size_allowed,
6028 			       u32 *max_access)
6029 {
6030 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6031 	int err;
6032 
6033 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6034 	if (err)
6035 		return err;
6036 
6037 	if (off + size > *max_access)
6038 		*max_access = off + size;
6039 
6040 	return 0;
6041 }
6042 
6043 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)6044 static void zext_32_to_64(struct bpf_reg_state *reg)
6045 {
6046 	reg->var_off = tnum_subreg(reg->var_off);
6047 	__reg_assign_32_into_64(reg);
6048 }
6049 
6050 /* truncate register to smaller size (in bytes)
6051  * must be called with size < BPF_REG_SIZE
6052  */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)6053 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6054 {
6055 	u64 mask;
6056 
6057 	/* clear high bits in bit representation */
6058 	reg->var_off = tnum_cast(reg->var_off, size);
6059 
6060 	/* fix arithmetic bounds */
6061 	mask = ((u64)1 << (size * 8)) - 1;
6062 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6063 		reg->umin_value &= mask;
6064 		reg->umax_value &= mask;
6065 	} else {
6066 		reg->umin_value = 0;
6067 		reg->umax_value = mask;
6068 	}
6069 	reg->smin_value = reg->umin_value;
6070 	reg->smax_value = reg->umax_value;
6071 
6072 	/* If size is smaller than 32bit register the 32bit register
6073 	 * values are also truncated so we push 64-bit bounds into
6074 	 * 32-bit bounds. Above were truncated < 32-bits already.
6075 	 */
6076 	if (size >= 4)
6077 		return;
6078 	__reg_combine_64_into_32(reg);
6079 }
6080 
set_sext64_default_val(struct bpf_reg_state * reg,int size)6081 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6082 {
6083 	if (size == 1) {
6084 		reg->smin_value = reg->s32_min_value = S8_MIN;
6085 		reg->smax_value = reg->s32_max_value = S8_MAX;
6086 	} else if (size == 2) {
6087 		reg->smin_value = reg->s32_min_value = S16_MIN;
6088 		reg->smax_value = reg->s32_max_value = S16_MAX;
6089 	} else {
6090 		/* size == 4 */
6091 		reg->smin_value = reg->s32_min_value = S32_MIN;
6092 		reg->smax_value = reg->s32_max_value = S32_MAX;
6093 	}
6094 	reg->umin_value = reg->u32_min_value = 0;
6095 	reg->umax_value = U64_MAX;
6096 	reg->u32_max_value = U32_MAX;
6097 	reg->var_off = tnum_unknown;
6098 }
6099 
coerce_reg_to_size_sx(struct bpf_reg_state * reg,int size)6100 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6101 {
6102 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6103 	u64 top_smax_value, top_smin_value;
6104 	u64 num_bits = size * 8;
6105 
6106 	if (tnum_is_const(reg->var_off)) {
6107 		u64_cval = reg->var_off.value;
6108 		if (size == 1)
6109 			reg->var_off = tnum_const((s8)u64_cval);
6110 		else if (size == 2)
6111 			reg->var_off = tnum_const((s16)u64_cval);
6112 		else
6113 			/* size == 4 */
6114 			reg->var_off = tnum_const((s32)u64_cval);
6115 
6116 		u64_cval = reg->var_off.value;
6117 		reg->smax_value = reg->smin_value = u64_cval;
6118 		reg->umax_value = reg->umin_value = u64_cval;
6119 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6120 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6121 		return;
6122 	}
6123 
6124 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6125 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6126 
6127 	if (top_smax_value != top_smin_value)
6128 		goto out;
6129 
6130 	/* find the s64_min and s64_min after sign extension */
6131 	if (size == 1) {
6132 		init_s64_max = (s8)reg->smax_value;
6133 		init_s64_min = (s8)reg->smin_value;
6134 	} else if (size == 2) {
6135 		init_s64_max = (s16)reg->smax_value;
6136 		init_s64_min = (s16)reg->smin_value;
6137 	} else {
6138 		init_s64_max = (s32)reg->smax_value;
6139 		init_s64_min = (s32)reg->smin_value;
6140 	}
6141 
6142 	s64_max = max(init_s64_max, init_s64_min);
6143 	s64_min = min(init_s64_max, init_s64_min);
6144 
6145 	/* both of s64_max/s64_min positive or negative */
6146 	if ((s64_max >= 0) == (s64_min >= 0)) {
6147 		reg->s32_min_value = reg->smin_value = s64_min;
6148 		reg->s32_max_value = reg->smax_value = s64_max;
6149 		reg->u32_min_value = reg->umin_value = s64_min;
6150 		reg->u32_max_value = reg->umax_value = s64_max;
6151 		reg->var_off = tnum_range(s64_min, s64_max);
6152 		return;
6153 	}
6154 
6155 out:
6156 	set_sext64_default_val(reg, size);
6157 }
6158 
set_sext32_default_val(struct bpf_reg_state * reg,int size)6159 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6160 {
6161 	if (size == 1) {
6162 		reg->s32_min_value = S8_MIN;
6163 		reg->s32_max_value = S8_MAX;
6164 	} else {
6165 		/* size == 2 */
6166 		reg->s32_min_value = S16_MIN;
6167 		reg->s32_max_value = S16_MAX;
6168 	}
6169 	reg->u32_min_value = 0;
6170 	reg->u32_max_value = U32_MAX;
6171 	reg->var_off = tnum_subreg(tnum_unknown);
6172 }
6173 
coerce_subreg_to_size_sx(struct bpf_reg_state * reg,int size)6174 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6175 {
6176 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6177 	u32 top_smax_value, top_smin_value;
6178 	u32 num_bits = size * 8;
6179 
6180 	if (tnum_is_const(reg->var_off)) {
6181 		u32_val = reg->var_off.value;
6182 		if (size == 1)
6183 			reg->var_off = tnum_const((s8)u32_val);
6184 		else
6185 			reg->var_off = tnum_const((s16)u32_val);
6186 
6187 		u32_val = reg->var_off.value;
6188 		reg->s32_min_value = reg->s32_max_value = u32_val;
6189 		reg->u32_min_value = reg->u32_max_value = u32_val;
6190 		return;
6191 	}
6192 
6193 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6194 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6195 
6196 	if (top_smax_value != top_smin_value)
6197 		goto out;
6198 
6199 	/* find the s32_min and s32_min after sign extension */
6200 	if (size == 1) {
6201 		init_s32_max = (s8)reg->s32_max_value;
6202 		init_s32_min = (s8)reg->s32_min_value;
6203 	} else {
6204 		/* size == 2 */
6205 		init_s32_max = (s16)reg->s32_max_value;
6206 		init_s32_min = (s16)reg->s32_min_value;
6207 	}
6208 	s32_max = max(init_s32_max, init_s32_min);
6209 	s32_min = min(init_s32_max, init_s32_min);
6210 
6211 	if ((s32_min >= 0) == (s32_max >= 0)) {
6212 		reg->s32_min_value = s32_min;
6213 		reg->s32_max_value = s32_max;
6214 		reg->u32_min_value = (u32)s32_min;
6215 		reg->u32_max_value = (u32)s32_max;
6216 		reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
6217 		return;
6218 	}
6219 
6220 out:
6221 	set_sext32_default_val(reg, size);
6222 }
6223 
bpf_map_is_rdonly(const struct bpf_map * map)6224 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6225 {
6226 	/* A map is considered read-only if the following condition are true:
6227 	 *
6228 	 * 1) BPF program side cannot change any of the map content. The
6229 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6230 	 *    and was set at map creation time.
6231 	 * 2) The map value(s) have been initialized from user space by a
6232 	 *    loader and then "frozen", such that no new map update/delete
6233 	 *    operations from syscall side are possible for the rest of
6234 	 *    the map's lifetime from that point onwards.
6235 	 * 3) Any parallel/pending map update/delete operations from syscall
6236 	 *    side have been completed. Only after that point, it's safe to
6237 	 *    assume that map value(s) are immutable.
6238 	 */
6239 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6240 	       READ_ONCE(map->frozen) &&
6241 	       !bpf_map_write_active(map);
6242 }
6243 
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val,bool is_ldsx)6244 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6245 			       bool is_ldsx)
6246 {
6247 	void *ptr;
6248 	u64 addr;
6249 	int err;
6250 
6251 	err = map->ops->map_direct_value_addr(map, &addr, off);
6252 	if (err)
6253 		return err;
6254 	ptr = (void *)(long)addr + off;
6255 
6256 	switch (size) {
6257 	case sizeof(u8):
6258 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6259 		break;
6260 	case sizeof(u16):
6261 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6262 		break;
6263 	case sizeof(u32):
6264 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6265 		break;
6266 	case sizeof(u64):
6267 		*val = *(u64 *)ptr;
6268 		break;
6269 	default:
6270 		return -EINVAL;
6271 	}
6272 	return 0;
6273 }
6274 
6275 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6276 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6277 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6278 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type)  __PASTE(__type, __safe_trusted_or_null)
6279 
6280 /*
6281  * Allow list few fields as RCU trusted or full trusted.
6282  * This logic doesn't allow mix tagging and will be removed once GCC supports
6283  * btf_type_tag.
6284  */
6285 
6286 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
BTF_TYPE_SAFE_RCU(struct task_struct)6287 BTF_TYPE_SAFE_RCU(struct task_struct) {
6288 	const cpumask_t *cpus_ptr;
6289 	struct css_set __rcu *cgroups;
6290 	struct task_struct __rcu *real_parent;
6291 	struct task_struct *group_leader;
6292 };
6293 
BTF_TYPE_SAFE_RCU(struct cgroup)6294 BTF_TYPE_SAFE_RCU(struct cgroup) {
6295 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6296 	struct kernfs_node *kn;
6297 };
6298 
BTF_TYPE_SAFE_RCU(struct css_set)6299 BTF_TYPE_SAFE_RCU(struct css_set) {
6300 	struct cgroup *dfl_cgrp;
6301 };
6302 
6303 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)6304 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6305 	struct file __rcu *exe_file;
6306 };
6307 
6308 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6309  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6310  */
BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)6311 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6312 	struct sock *sk;
6313 };
6314 
BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)6315 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6316 	struct sock *sk;
6317 };
6318 
6319 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)6320 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6321 	struct seq_file *seq;
6322 };
6323 
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)6324 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6325 	struct bpf_iter_meta *meta;
6326 	struct task_struct *task;
6327 };
6328 
BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)6329 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6330 	struct file *file;
6331 };
6332 
BTF_TYPE_SAFE_TRUSTED(struct file)6333 BTF_TYPE_SAFE_TRUSTED(struct file) {
6334 	struct inode *f_inode;
6335 };
6336 
BTF_TYPE_SAFE_TRUSTED(struct dentry)6337 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6338 	/* no negative dentry-s in places where bpf can see it */
6339 	struct inode *d_inode;
6340 };
6341 
BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)6342 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
6343 	struct sock *sk;
6344 };
6345 
type_is_rcu(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6346 static bool type_is_rcu(struct bpf_verifier_env *env,
6347 			struct bpf_reg_state *reg,
6348 			const char *field_name, u32 btf_id)
6349 {
6350 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6351 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6352 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6353 
6354 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6355 }
6356 
type_is_rcu_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6357 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6358 				struct bpf_reg_state *reg,
6359 				const char *field_name, u32 btf_id)
6360 {
6361 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6362 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6363 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6364 
6365 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6366 }
6367 
type_is_trusted(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6368 static bool type_is_trusted(struct bpf_verifier_env *env,
6369 			    struct bpf_reg_state *reg,
6370 			    const char *field_name, u32 btf_id)
6371 {
6372 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6373 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6374 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6375 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6376 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6377 
6378 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6379 }
6380 
type_is_trusted_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6381 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
6382 				    struct bpf_reg_state *reg,
6383 				    const char *field_name, u32 btf_id)
6384 {
6385 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
6386 
6387 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
6388 					  "__safe_trusted_or_null");
6389 }
6390 
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)6391 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6392 				   struct bpf_reg_state *regs,
6393 				   int regno, int off, int size,
6394 				   enum bpf_access_type atype,
6395 				   int value_regno)
6396 {
6397 	struct bpf_reg_state *reg = regs + regno;
6398 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6399 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6400 	const char *field_name = NULL;
6401 	enum bpf_type_flag flag = 0;
6402 	u32 btf_id = 0;
6403 	int ret;
6404 
6405 	if (!env->allow_ptr_leaks) {
6406 		verbose(env,
6407 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6408 			tname);
6409 		return -EPERM;
6410 	}
6411 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6412 		verbose(env,
6413 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6414 			tname);
6415 		return -EINVAL;
6416 	}
6417 	if (off < 0) {
6418 		verbose(env,
6419 			"R%d is ptr_%s invalid negative access: off=%d\n",
6420 			regno, tname, off);
6421 		return -EACCES;
6422 	}
6423 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6424 		char tn_buf[48];
6425 
6426 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6427 		verbose(env,
6428 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6429 			regno, tname, off, tn_buf);
6430 		return -EACCES;
6431 	}
6432 
6433 	if (reg->type & MEM_USER) {
6434 		verbose(env,
6435 			"R%d is ptr_%s access user memory: off=%d\n",
6436 			regno, tname, off);
6437 		return -EACCES;
6438 	}
6439 
6440 	if (reg->type & MEM_PERCPU) {
6441 		verbose(env,
6442 			"R%d is ptr_%s access percpu memory: off=%d\n",
6443 			regno, tname, off);
6444 		return -EACCES;
6445 	}
6446 
6447 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6448 		if (!btf_is_kernel(reg->btf)) {
6449 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6450 			return -EFAULT;
6451 		}
6452 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6453 	} else {
6454 		/* Writes are permitted with default btf_struct_access for
6455 		 * program allocated objects (which always have ref_obj_id > 0),
6456 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6457 		 */
6458 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6459 			verbose(env, "only read is supported\n");
6460 			return -EACCES;
6461 		}
6462 
6463 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6464 		    !reg->ref_obj_id) {
6465 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6466 			return -EFAULT;
6467 		}
6468 
6469 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6470 	}
6471 
6472 	if (ret < 0)
6473 		return ret;
6474 
6475 	if (ret != PTR_TO_BTF_ID) {
6476 		/* just mark; */
6477 
6478 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6479 		/* If this is an untrusted pointer, all pointers formed by walking it
6480 		 * also inherit the untrusted flag.
6481 		 */
6482 		flag = PTR_UNTRUSTED;
6483 
6484 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6485 		/* By default any pointer obtained from walking a trusted pointer is no
6486 		 * longer trusted, unless the field being accessed has explicitly been
6487 		 * marked as inheriting its parent's state of trust (either full or RCU).
6488 		 * For example:
6489 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6490 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6491 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6492 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6493 		 *
6494 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6495 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6496 		 */
6497 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6498 			flag |= PTR_TRUSTED;
6499 		} else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
6500 			flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
6501 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6502 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6503 				/* ignore __rcu tag and mark it MEM_RCU */
6504 				flag |= MEM_RCU;
6505 			} else if (flag & MEM_RCU ||
6506 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6507 				/* __rcu tagged pointers can be NULL */
6508 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6509 
6510 				/* We always trust them */
6511 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6512 				    flag & PTR_UNTRUSTED)
6513 					flag &= ~PTR_UNTRUSTED;
6514 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6515 				/* keep as-is */
6516 			} else {
6517 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6518 				clear_trusted_flags(&flag);
6519 			}
6520 		} else {
6521 			/*
6522 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6523 			 * aggressively mark as untrusted otherwise such
6524 			 * pointers will be plain PTR_TO_BTF_ID without flags
6525 			 * and will be allowed to be passed into helpers for
6526 			 * compat reasons.
6527 			 */
6528 			flag = PTR_UNTRUSTED;
6529 		}
6530 	} else {
6531 		/* Old compat. Deprecated */
6532 		clear_trusted_flags(&flag);
6533 	}
6534 
6535 	if (atype == BPF_READ && value_regno >= 0)
6536 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6537 
6538 	return 0;
6539 }
6540 
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)6541 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6542 				   struct bpf_reg_state *regs,
6543 				   int regno, int off, int size,
6544 				   enum bpf_access_type atype,
6545 				   int value_regno)
6546 {
6547 	struct bpf_reg_state *reg = regs + regno;
6548 	struct bpf_map *map = reg->map_ptr;
6549 	struct bpf_reg_state map_reg;
6550 	enum bpf_type_flag flag = 0;
6551 	const struct btf_type *t;
6552 	const char *tname;
6553 	u32 btf_id;
6554 	int ret;
6555 
6556 	if (!btf_vmlinux) {
6557 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6558 		return -ENOTSUPP;
6559 	}
6560 
6561 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6562 		verbose(env, "map_ptr access not supported for map type %d\n",
6563 			map->map_type);
6564 		return -ENOTSUPP;
6565 	}
6566 
6567 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6568 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6569 
6570 	if (!env->allow_ptr_leaks) {
6571 		verbose(env,
6572 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6573 			tname);
6574 		return -EPERM;
6575 	}
6576 
6577 	if (off < 0) {
6578 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6579 			regno, tname, off);
6580 		return -EACCES;
6581 	}
6582 
6583 	if (atype != BPF_READ) {
6584 		verbose(env, "only read from %s is supported\n", tname);
6585 		return -EACCES;
6586 	}
6587 
6588 	/* Simulate access to a PTR_TO_BTF_ID */
6589 	memset(&map_reg, 0, sizeof(map_reg));
6590 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6591 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6592 	if (ret < 0)
6593 		return ret;
6594 
6595 	if (value_regno >= 0)
6596 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6597 
6598 	return 0;
6599 }
6600 
6601 /* Check that the stack access at the given offset is within bounds. The
6602  * maximum valid offset is -1.
6603  *
6604  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6605  * -state->allocated_stack for reads.
6606  */
check_stack_slot_within_bounds(struct bpf_verifier_env * env,s64 off,struct bpf_func_state * state,enum bpf_access_type t)6607 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6608                                           s64 off,
6609                                           struct bpf_func_state *state,
6610                                           enum bpf_access_type t)
6611 {
6612 	int min_valid_off;
6613 
6614 	if (t == BPF_WRITE || env->allow_uninit_stack)
6615 		min_valid_off = -MAX_BPF_STACK;
6616 	else
6617 		min_valid_off = -state->allocated_stack;
6618 
6619 	if (off < min_valid_off || off > -1)
6620 		return -EACCES;
6621 	return 0;
6622 }
6623 
6624 /* Check that the stack access at 'regno + off' falls within the maximum stack
6625  * bounds.
6626  *
6627  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6628  */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum bpf_access_src src,enum bpf_access_type type)6629 static int check_stack_access_within_bounds(
6630 		struct bpf_verifier_env *env,
6631 		int regno, int off, int access_size,
6632 		enum bpf_access_src src, enum bpf_access_type type)
6633 {
6634 	struct bpf_reg_state *regs = cur_regs(env);
6635 	struct bpf_reg_state *reg = regs + regno;
6636 	struct bpf_func_state *state = func(env, reg);
6637 	s64 min_off, max_off;
6638 	int err;
6639 	char *err_extra;
6640 
6641 	if (src == ACCESS_HELPER)
6642 		/* We don't know if helpers are reading or writing (or both). */
6643 		err_extra = " indirect access to";
6644 	else if (type == BPF_READ)
6645 		err_extra = " read from";
6646 	else
6647 		err_extra = " write to";
6648 
6649 	if (tnum_is_const(reg->var_off)) {
6650 		min_off = (s64)reg->var_off.value + off;
6651 		max_off = min_off + access_size;
6652 	} else {
6653 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6654 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6655 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6656 				err_extra, regno);
6657 			return -EACCES;
6658 		}
6659 		min_off = reg->smin_value + off;
6660 		max_off = reg->smax_value + off + access_size;
6661 	}
6662 
6663 	err = check_stack_slot_within_bounds(env, min_off, state, type);
6664 	if (!err && max_off > 0)
6665 		err = -EINVAL; /* out of stack access into non-negative offsets */
6666 	if (!err && access_size < 0)
6667 		/* access_size should not be negative (or overflow an int); others checks
6668 		 * along the way should have prevented such an access.
6669 		 */
6670 		err = -EFAULT; /* invalid negative access size; integer overflow? */
6671 
6672 	if (err) {
6673 		if (tnum_is_const(reg->var_off)) {
6674 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6675 				err_extra, regno, off, access_size);
6676 		} else {
6677 			char tn_buf[48];
6678 
6679 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6680 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6681 				err_extra, regno, tn_buf, access_size);
6682 		}
6683 		return err;
6684 	}
6685 
6686 	return grow_stack_state(env, state, round_up(-min_off, BPF_REG_SIZE));
6687 }
6688 
6689 /* check whether memory at (regno + off) is accessible for t = (read | write)
6690  * if t==write, value_regno is a register which value is stored into memory
6691  * if t==read, value_regno is a register which will receive the value from memory
6692  * if t==write && value_regno==-1, some unknown value is stored into memory
6693  * if t==read && value_regno==-1, don't care what we read from memory
6694  */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once,bool is_ldsx)6695 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6696 			    int off, int bpf_size, enum bpf_access_type t,
6697 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6698 {
6699 	struct bpf_reg_state *regs = cur_regs(env);
6700 	struct bpf_reg_state *reg = regs + regno;
6701 	int size, err = 0;
6702 
6703 	size = bpf_size_to_bytes(bpf_size);
6704 	if (size < 0)
6705 		return size;
6706 
6707 	/* alignment checks will add in reg->off themselves */
6708 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6709 	if (err)
6710 		return err;
6711 
6712 	/* for access checks, reg->off is just part of off */
6713 	off += reg->off;
6714 
6715 	if (reg->type == PTR_TO_MAP_KEY) {
6716 		if (t == BPF_WRITE) {
6717 			verbose(env, "write to change key R%d not allowed\n", regno);
6718 			return -EACCES;
6719 		}
6720 
6721 		err = check_mem_region_access(env, regno, off, size,
6722 					      reg->map_ptr->key_size, false);
6723 		if (err)
6724 			return err;
6725 		if (value_regno >= 0)
6726 			mark_reg_unknown(env, regs, value_regno);
6727 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6728 		struct btf_field *kptr_field = NULL;
6729 
6730 		if (t == BPF_WRITE && value_regno >= 0 &&
6731 		    is_pointer_value(env, value_regno)) {
6732 			verbose(env, "R%d leaks addr into map\n", value_regno);
6733 			return -EACCES;
6734 		}
6735 		err = check_map_access_type(env, regno, off, size, t);
6736 		if (err)
6737 			return err;
6738 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6739 		if (err)
6740 			return err;
6741 		if (tnum_is_const(reg->var_off))
6742 			kptr_field = btf_record_find(reg->map_ptr->record,
6743 						     off + reg->var_off.value, BPF_KPTR);
6744 		if (kptr_field) {
6745 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6746 		} else if (t == BPF_READ && value_regno >= 0) {
6747 			struct bpf_map *map = reg->map_ptr;
6748 
6749 			/* if map is read-only, track its contents as scalars */
6750 			if (tnum_is_const(reg->var_off) &&
6751 			    bpf_map_is_rdonly(map) &&
6752 			    map->ops->map_direct_value_addr) {
6753 				int map_off = off + reg->var_off.value;
6754 				u64 val = 0;
6755 
6756 				err = bpf_map_direct_read(map, map_off, size,
6757 							  &val, is_ldsx);
6758 				if (err)
6759 					return err;
6760 
6761 				regs[value_regno].type = SCALAR_VALUE;
6762 				__mark_reg_known(&regs[value_regno], val);
6763 			} else {
6764 				mark_reg_unknown(env, regs, value_regno);
6765 			}
6766 		}
6767 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6768 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6769 
6770 		if (type_may_be_null(reg->type)) {
6771 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6772 				reg_type_str(env, reg->type));
6773 			return -EACCES;
6774 		}
6775 
6776 		if (t == BPF_WRITE && rdonly_mem) {
6777 			verbose(env, "R%d cannot write into %s\n",
6778 				regno, reg_type_str(env, reg->type));
6779 			return -EACCES;
6780 		}
6781 
6782 		if (t == BPF_WRITE && value_regno >= 0 &&
6783 		    is_pointer_value(env, value_regno)) {
6784 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6785 			return -EACCES;
6786 		}
6787 
6788 		err = check_mem_region_access(env, regno, off, size,
6789 					      reg->mem_size, false);
6790 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6791 			mark_reg_unknown(env, regs, value_regno);
6792 	} else if (reg->type == PTR_TO_CTX) {
6793 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6794 		struct btf *btf = NULL;
6795 		u32 btf_id = 0;
6796 
6797 		if (t == BPF_WRITE && value_regno >= 0 &&
6798 		    is_pointer_value(env, value_regno)) {
6799 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6800 			return -EACCES;
6801 		}
6802 
6803 		err = check_ptr_off_reg(env, reg, regno);
6804 		if (err < 0)
6805 			return err;
6806 
6807 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6808 				       &btf_id);
6809 		if (err)
6810 			verbose_linfo(env, insn_idx, "; ");
6811 		if (!err && t == BPF_READ && value_regno >= 0) {
6812 			/* ctx access returns either a scalar, or a
6813 			 * PTR_TO_PACKET[_META,_END]. In the latter
6814 			 * case, we know the offset is zero.
6815 			 */
6816 			if (reg_type == SCALAR_VALUE) {
6817 				mark_reg_unknown(env, regs, value_regno);
6818 			} else {
6819 				mark_reg_known_zero(env, regs,
6820 						    value_regno);
6821 				if (type_may_be_null(reg_type))
6822 					regs[value_regno].id = ++env->id_gen;
6823 				/* A load of ctx field could have different
6824 				 * actual load size with the one encoded in the
6825 				 * insn. When the dst is PTR, it is for sure not
6826 				 * a sub-register.
6827 				 */
6828 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6829 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6830 					regs[value_regno].btf = btf;
6831 					regs[value_regno].btf_id = btf_id;
6832 				}
6833 			}
6834 			regs[value_regno].type = reg_type;
6835 		}
6836 
6837 	} else if (reg->type == PTR_TO_STACK) {
6838 		/* Basic bounds checks. */
6839 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6840 		if (err)
6841 			return err;
6842 
6843 		if (t == BPF_READ)
6844 			err = check_stack_read(env, regno, off, size,
6845 					       value_regno);
6846 		else
6847 			err = check_stack_write(env, regno, off, size,
6848 						value_regno, insn_idx);
6849 	} else if (reg_is_pkt_pointer(reg)) {
6850 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6851 			verbose(env, "cannot write into packet\n");
6852 			return -EACCES;
6853 		}
6854 		if (t == BPF_WRITE && value_regno >= 0 &&
6855 		    is_pointer_value(env, value_regno)) {
6856 			verbose(env, "R%d leaks addr into packet\n",
6857 				value_regno);
6858 			return -EACCES;
6859 		}
6860 		err = check_packet_access(env, regno, off, size, false);
6861 		if (!err && t == BPF_READ && value_regno >= 0)
6862 			mark_reg_unknown(env, regs, value_regno);
6863 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6864 		if (t == BPF_WRITE && value_regno >= 0 &&
6865 		    is_pointer_value(env, value_regno)) {
6866 			verbose(env, "R%d leaks addr into flow keys\n",
6867 				value_regno);
6868 			return -EACCES;
6869 		}
6870 
6871 		err = check_flow_keys_access(env, off, size);
6872 		if (!err && t == BPF_READ && value_regno >= 0)
6873 			mark_reg_unknown(env, regs, value_regno);
6874 	} else if (type_is_sk_pointer(reg->type)) {
6875 		if (t == BPF_WRITE) {
6876 			verbose(env, "R%d cannot write into %s\n",
6877 				regno, reg_type_str(env, reg->type));
6878 			return -EACCES;
6879 		}
6880 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6881 		if (!err && value_regno >= 0)
6882 			mark_reg_unknown(env, regs, value_regno);
6883 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6884 		err = check_tp_buffer_access(env, reg, regno, off, size);
6885 		if (!err && t == BPF_READ && value_regno >= 0)
6886 			mark_reg_unknown(env, regs, value_regno);
6887 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6888 		   !type_may_be_null(reg->type)) {
6889 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6890 					      value_regno);
6891 	} else if (reg->type == CONST_PTR_TO_MAP) {
6892 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6893 					      value_regno);
6894 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6895 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6896 		u32 *max_access;
6897 
6898 		if (rdonly_mem) {
6899 			if (t == BPF_WRITE) {
6900 				verbose(env, "R%d cannot write into %s\n",
6901 					regno, reg_type_str(env, reg->type));
6902 				return -EACCES;
6903 			}
6904 			max_access = &env->prog->aux->max_rdonly_access;
6905 		} else {
6906 			max_access = &env->prog->aux->max_rdwr_access;
6907 		}
6908 
6909 		err = check_buffer_access(env, reg, regno, off, size, false,
6910 					  max_access);
6911 
6912 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6913 			mark_reg_unknown(env, regs, value_regno);
6914 	} else {
6915 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6916 			reg_type_str(env, reg->type));
6917 		return -EACCES;
6918 	}
6919 
6920 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6921 	    regs[value_regno].type == SCALAR_VALUE) {
6922 		if (!is_ldsx)
6923 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6924 			coerce_reg_to_size(&regs[value_regno], size);
6925 		else
6926 			coerce_reg_to_size_sx(&regs[value_regno], size);
6927 	}
6928 	return err;
6929 }
6930 
check_atomic(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)6931 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6932 {
6933 	int load_reg;
6934 	int err;
6935 
6936 	switch (insn->imm) {
6937 	case BPF_ADD:
6938 	case BPF_ADD | BPF_FETCH:
6939 	case BPF_AND:
6940 	case BPF_AND | BPF_FETCH:
6941 	case BPF_OR:
6942 	case BPF_OR | BPF_FETCH:
6943 	case BPF_XOR:
6944 	case BPF_XOR | BPF_FETCH:
6945 	case BPF_XCHG:
6946 	case BPF_CMPXCHG:
6947 		break;
6948 	default:
6949 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6950 		return -EINVAL;
6951 	}
6952 
6953 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6954 		verbose(env, "invalid atomic operand size\n");
6955 		return -EINVAL;
6956 	}
6957 
6958 	/* check src1 operand */
6959 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6960 	if (err)
6961 		return err;
6962 
6963 	/* check src2 operand */
6964 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6965 	if (err)
6966 		return err;
6967 
6968 	if (insn->imm == BPF_CMPXCHG) {
6969 		/* Check comparison of R0 with memory location */
6970 		const u32 aux_reg = BPF_REG_0;
6971 
6972 		err = check_reg_arg(env, aux_reg, SRC_OP);
6973 		if (err)
6974 			return err;
6975 
6976 		if (is_pointer_value(env, aux_reg)) {
6977 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
6978 			return -EACCES;
6979 		}
6980 	}
6981 
6982 	if (is_pointer_value(env, insn->src_reg)) {
6983 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6984 		return -EACCES;
6985 	}
6986 
6987 	if (is_ctx_reg(env, insn->dst_reg) ||
6988 	    is_pkt_reg(env, insn->dst_reg) ||
6989 	    is_flow_key_reg(env, insn->dst_reg) ||
6990 	    is_sk_reg(env, insn->dst_reg)) {
6991 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6992 			insn->dst_reg,
6993 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6994 		return -EACCES;
6995 	}
6996 
6997 	if (insn->imm & BPF_FETCH) {
6998 		if (insn->imm == BPF_CMPXCHG)
6999 			load_reg = BPF_REG_0;
7000 		else
7001 			load_reg = insn->src_reg;
7002 
7003 		/* check and record load of old value */
7004 		err = check_reg_arg(env, load_reg, DST_OP);
7005 		if (err)
7006 			return err;
7007 	} else {
7008 		/* This instruction accesses a memory location but doesn't
7009 		 * actually load it into a register.
7010 		 */
7011 		load_reg = -1;
7012 	}
7013 
7014 	/* Check whether we can read the memory, with second call for fetch
7015 	 * case to simulate the register fill.
7016 	 */
7017 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7018 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7019 	if (!err && load_reg >= 0)
7020 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7021 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
7022 				       true, false);
7023 	if (err)
7024 		return err;
7025 
7026 	/* Check whether we can write into the same memory. */
7027 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7028 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7029 	if (err)
7030 		return err;
7031 
7032 	return 0;
7033 }
7034 
7035 /* When register 'regno' is used to read the stack (either directly or through
7036  * a helper function) make sure that it's within stack boundary and, depending
7037  * on the access type and privileges, that all elements of the stack are
7038  * initialized.
7039  *
7040  * 'off' includes 'regno->off', but not its dynamic part (if any).
7041  *
7042  * All registers that have been spilled on the stack in the slots within the
7043  * read offsets are marked as read.
7044  */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum bpf_access_src type,struct bpf_call_arg_meta * meta)7045 static int check_stack_range_initialized(
7046 		struct bpf_verifier_env *env, int regno, int off,
7047 		int access_size, bool zero_size_allowed,
7048 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7049 {
7050 	struct bpf_reg_state *reg = reg_state(env, regno);
7051 	struct bpf_func_state *state = func(env, reg);
7052 	int err, min_off, max_off, i, j, slot, spi;
7053 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7054 	enum bpf_access_type bounds_check_type;
7055 	/* Some accesses can write anything into the stack, others are
7056 	 * read-only.
7057 	 */
7058 	bool clobber = false;
7059 
7060 	if (access_size == 0 && !zero_size_allowed) {
7061 		verbose(env, "invalid zero-sized read\n");
7062 		return -EACCES;
7063 	}
7064 
7065 	if (type == ACCESS_HELPER) {
7066 		/* The bounds checks for writes are more permissive than for
7067 		 * reads. However, if raw_mode is not set, we'll do extra
7068 		 * checks below.
7069 		 */
7070 		bounds_check_type = BPF_WRITE;
7071 		clobber = true;
7072 	} else {
7073 		bounds_check_type = BPF_READ;
7074 	}
7075 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7076 					       type, bounds_check_type);
7077 	if (err)
7078 		return err;
7079 
7080 
7081 	if (tnum_is_const(reg->var_off)) {
7082 		min_off = max_off = reg->var_off.value + off;
7083 	} else {
7084 		/* Variable offset is prohibited for unprivileged mode for
7085 		 * simplicity since it requires corresponding support in
7086 		 * Spectre masking for stack ALU.
7087 		 * See also retrieve_ptr_limit().
7088 		 */
7089 		if (!env->bypass_spec_v1) {
7090 			char tn_buf[48];
7091 
7092 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7093 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7094 				regno, err_extra, tn_buf);
7095 			return -EACCES;
7096 		}
7097 		/* Only initialized buffer on stack is allowed to be accessed
7098 		 * with variable offset. With uninitialized buffer it's hard to
7099 		 * guarantee that whole memory is marked as initialized on
7100 		 * helper return since specific bounds are unknown what may
7101 		 * cause uninitialized stack leaking.
7102 		 */
7103 		if (meta && meta->raw_mode)
7104 			meta = NULL;
7105 
7106 		min_off = reg->smin_value + off;
7107 		max_off = reg->smax_value + off;
7108 	}
7109 
7110 	if (meta && meta->raw_mode) {
7111 		/* Ensure we won't be overwriting dynptrs when simulating byte
7112 		 * by byte access in check_helper_call using meta.access_size.
7113 		 * This would be a problem if we have a helper in the future
7114 		 * which takes:
7115 		 *
7116 		 *	helper(uninit_mem, len, dynptr)
7117 		 *
7118 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7119 		 * may end up writing to dynptr itself when touching memory from
7120 		 * arg 1. This can be relaxed on a case by case basis for known
7121 		 * safe cases, but reject due to the possibilitiy of aliasing by
7122 		 * default.
7123 		 */
7124 		for (i = min_off; i < max_off + access_size; i++) {
7125 			int stack_off = -i - 1;
7126 
7127 			spi = __get_spi(i);
7128 			/* raw_mode may write past allocated_stack */
7129 			if (state->allocated_stack <= stack_off)
7130 				continue;
7131 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7132 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7133 				return -EACCES;
7134 			}
7135 		}
7136 		meta->access_size = access_size;
7137 		meta->regno = regno;
7138 		return 0;
7139 	}
7140 
7141 	for (i = min_off; i < max_off + access_size; i++) {
7142 		u8 *stype;
7143 
7144 		slot = -i - 1;
7145 		spi = slot / BPF_REG_SIZE;
7146 		if (state->allocated_stack <= slot) {
7147 			verbose(env, "verifier bug: allocated_stack too small");
7148 			return -EFAULT;
7149 		}
7150 
7151 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7152 		if (*stype == STACK_MISC)
7153 			goto mark;
7154 		if ((*stype == STACK_ZERO) ||
7155 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7156 			if (clobber) {
7157 				/* helper can write anything into the stack */
7158 				*stype = STACK_MISC;
7159 			}
7160 			goto mark;
7161 		}
7162 
7163 		if (is_spilled_reg(&state->stack[spi]) &&
7164 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7165 		     env->allow_ptr_leaks)) {
7166 			if (clobber) {
7167 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7168 				for (j = 0; j < BPF_REG_SIZE; j++)
7169 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7170 			}
7171 			goto mark;
7172 		}
7173 
7174 		if (tnum_is_const(reg->var_off)) {
7175 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7176 				err_extra, regno, min_off, i - min_off, access_size);
7177 		} else {
7178 			char tn_buf[48];
7179 
7180 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7181 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7182 				err_extra, regno, tn_buf, i - min_off, access_size);
7183 		}
7184 		return -EACCES;
7185 mark:
7186 		/* reading any byte out of 8-byte 'spill_slot' will cause
7187 		 * the whole slot to be marked as 'read'
7188 		 */
7189 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7190 			      state->stack[spi].spilled_ptr.parent,
7191 			      REG_LIVE_READ64);
7192 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7193 		 * be sure that whether stack slot is written to or not. Hence,
7194 		 * we must still conservatively propagate reads upwards even if
7195 		 * helper may write to the entire memory range.
7196 		 */
7197 	}
7198 	return 0;
7199 }
7200 
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)7201 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7202 				   int access_size, enum bpf_access_type access_type,
7203 				   bool zero_size_allowed,
7204 				   struct bpf_call_arg_meta *meta)
7205 {
7206 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7207 	u32 *max_access;
7208 
7209 	switch (base_type(reg->type)) {
7210 	case PTR_TO_PACKET:
7211 	case PTR_TO_PACKET_META:
7212 		return check_packet_access(env, regno, reg->off, access_size,
7213 					   zero_size_allowed);
7214 	case PTR_TO_MAP_KEY:
7215 		if (access_type == BPF_WRITE) {
7216 			verbose(env, "R%d cannot write into %s\n", regno,
7217 				reg_type_str(env, reg->type));
7218 			return -EACCES;
7219 		}
7220 		return check_mem_region_access(env, regno, reg->off, access_size,
7221 					       reg->map_ptr->key_size, false);
7222 	case PTR_TO_MAP_VALUE:
7223 		if (check_map_access_type(env, regno, reg->off, access_size, access_type))
7224 			return -EACCES;
7225 		return check_map_access(env, regno, reg->off, access_size,
7226 					zero_size_allowed, ACCESS_HELPER);
7227 	case PTR_TO_MEM:
7228 		if (type_is_rdonly_mem(reg->type)) {
7229 			if (access_type == BPF_WRITE) {
7230 				verbose(env, "R%d cannot write into %s\n", regno,
7231 					reg_type_str(env, reg->type));
7232 				return -EACCES;
7233 			}
7234 		}
7235 		return check_mem_region_access(env, regno, reg->off,
7236 					       access_size, reg->mem_size,
7237 					       zero_size_allowed);
7238 	case PTR_TO_BUF:
7239 		if (type_is_rdonly_mem(reg->type)) {
7240 			if (access_type == BPF_WRITE) {
7241 				verbose(env, "R%d cannot write into %s\n", regno,
7242 					reg_type_str(env, reg->type));
7243 				return -EACCES;
7244 			}
7245 
7246 			max_access = &env->prog->aux->max_rdonly_access;
7247 		} else {
7248 			max_access = &env->prog->aux->max_rdwr_access;
7249 		}
7250 		return check_buffer_access(env, reg, regno, reg->off,
7251 					   access_size, zero_size_allowed,
7252 					   max_access);
7253 	case PTR_TO_STACK:
7254 		return check_stack_range_initialized(
7255 				env,
7256 				regno, reg->off, access_size,
7257 				zero_size_allowed, ACCESS_HELPER, meta);
7258 	case PTR_TO_BTF_ID:
7259 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7260 					       access_size, BPF_READ, -1);
7261 	case PTR_TO_CTX:
7262 		/* in case the function doesn't know how to access the context,
7263 		 * (because we are in a program of type SYSCALL for example), we
7264 		 * can not statically check its size.
7265 		 * Dynamically check it now.
7266 		 */
7267 		if (!env->ops->convert_ctx_access) {
7268 			int offset = access_size - 1;
7269 
7270 			/* Allow zero-byte read from PTR_TO_CTX */
7271 			if (access_size == 0)
7272 				return zero_size_allowed ? 0 : -EACCES;
7273 
7274 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7275 						access_type, -1, false, false);
7276 		}
7277 
7278 		fallthrough;
7279 	default: /* scalar_value or invalid ptr */
7280 		/* Allow zero-byte read from NULL, regardless of pointer type */
7281 		if (zero_size_allowed && access_size == 0 &&
7282 		    register_is_null(reg))
7283 			return 0;
7284 
7285 		verbose(env, "R%d type=%s ", regno,
7286 			reg_type_str(env, reg->type));
7287 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7288 		return -EACCES;
7289 	}
7290 }
7291 
check_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)7292 static int check_mem_size_reg(struct bpf_verifier_env *env,
7293 			      struct bpf_reg_state *reg, u32 regno,
7294 			      enum bpf_access_type access_type,
7295 			      bool zero_size_allowed,
7296 			      struct bpf_call_arg_meta *meta)
7297 {
7298 	int err;
7299 
7300 	/* This is used to refine r0 return value bounds for helpers
7301 	 * that enforce this value as an upper bound on return values.
7302 	 * See do_refine_retval_range() for helpers that can refine
7303 	 * the return value. C type of helper is u32 so we pull register
7304 	 * bound from umax_value however, if negative verifier errors
7305 	 * out. Only upper bounds can be learned because retval is an
7306 	 * int type and negative retvals are allowed.
7307 	 */
7308 	meta->msize_max_value = reg->umax_value;
7309 
7310 	/* The register is SCALAR_VALUE; the access check happens using
7311 	 * its boundaries. For unprivileged variable accesses, disable
7312 	 * raw mode so that the program is required to initialize all
7313 	 * the memory that the helper could just partially fill up.
7314 	 */
7315 	if (!tnum_is_const(reg->var_off))
7316 		meta = NULL;
7317 
7318 	if (reg->smin_value < 0) {
7319 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7320 			regno);
7321 		return -EACCES;
7322 	}
7323 
7324 	if (reg->umin_value == 0 && !zero_size_allowed) {
7325 		verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7326 			regno, reg->umin_value, reg->umax_value);
7327 		return -EACCES;
7328 	}
7329 
7330 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7331 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7332 			regno);
7333 		return -EACCES;
7334 	}
7335 	err = check_helper_mem_access(env, regno - 1, reg->umax_value,
7336 				      access_type, zero_size_allowed, meta);
7337 	if (!err)
7338 		err = mark_chain_precision(env, regno);
7339 	return err;
7340 }
7341 
check_mem_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,u32 mem_size)7342 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7343 		   u32 regno, u32 mem_size)
7344 {
7345 	bool may_be_null = type_may_be_null(reg->type);
7346 	struct bpf_reg_state saved_reg;
7347 	int err;
7348 
7349 	if (register_is_null(reg))
7350 		return 0;
7351 
7352 	/* Assuming that the register contains a value check if the memory
7353 	 * access is safe. Temporarily save and restore the register's state as
7354 	 * the conversion shouldn't be visible to a caller.
7355 	 */
7356 	if (may_be_null) {
7357 		saved_reg = *reg;
7358 		mark_ptr_not_null_reg(reg);
7359 	}
7360 
7361 	err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
7362 	err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
7363 
7364 	if (may_be_null)
7365 		*reg = saved_reg;
7366 
7367 	return err;
7368 }
7369 
check_kfunc_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)7370 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7371 				    u32 regno)
7372 {
7373 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7374 	bool may_be_null = type_may_be_null(mem_reg->type);
7375 	struct bpf_reg_state saved_reg;
7376 	struct bpf_call_arg_meta meta;
7377 	int err;
7378 
7379 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7380 
7381 	memset(&meta, 0, sizeof(meta));
7382 
7383 	if (may_be_null) {
7384 		saved_reg = *mem_reg;
7385 		mark_ptr_not_null_reg(mem_reg);
7386 	}
7387 
7388 	err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
7389 	err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
7390 
7391 	if (may_be_null)
7392 		*mem_reg = saved_reg;
7393 
7394 	return err;
7395 }
7396 
7397 /* Implementation details:
7398  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7399  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7400  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7401  * Two separate bpf_obj_new will also have different reg->id.
7402  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7403  * clears reg->id after value_or_null->value transition, since the verifier only
7404  * cares about the range of access to valid map value pointer and doesn't care
7405  * about actual address of the map element.
7406  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7407  * reg->id > 0 after value_or_null->value transition. By doing so
7408  * two bpf_map_lookups will be considered two different pointers that
7409  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7410  * returned from bpf_obj_new.
7411  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7412  * dead-locks.
7413  * Since only one bpf_spin_lock is allowed the checks are simpler than
7414  * reg_is_refcounted() logic. The verifier needs to remember only
7415  * one spin_lock instead of array of acquired_refs.
7416  * cur_state->active_lock remembers which map value element or allocated
7417  * object got locked and clears it after bpf_spin_unlock.
7418  */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)7419 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7420 			     bool is_lock)
7421 {
7422 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7423 	struct bpf_verifier_state *cur = env->cur_state;
7424 	bool is_const = tnum_is_const(reg->var_off);
7425 	u64 val = reg->var_off.value;
7426 	struct bpf_map *map = NULL;
7427 	struct btf *btf = NULL;
7428 	struct btf_record *rec;
7429 
7430 	if (!is_const) {
7431 		verbose(env,
7432 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7433 			regno);
7434 		return -EINVAL;
7435 	}
7436 	if (reg->type == PTR_TO_MAP_VALUE) {
7437 		map = reg->map_ptr;
7438 		if (!map->btf) {
7439 			verbose(env,
7440 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7441 				map->name);
7442 			return -EINVAL;
7443 		}
7444 	} else {
7445 		btf = reg->btf;
7446 	}
7447 
7448 	rec = reg_btf_record(reg);
7449 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7450 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7451 			map ? map->name : "kptr");
7452 		return -EINVAL;
7453 	}
7454 	if (rec->spin_lock_off != val + reg->off) {
7455 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7456 			val + reg->off, rec->spin_lock_off);
7457 		return -EINVAL;
7458 	}
7459 	if (is_lock) {
7460 		if (cur->active_lock.ptr) {
7461 			verbose(env,
7462 				"Locking two bpf_spin_locks are not allowed\n");
7463 			return -EINVAL;
7464 		}
7465 		if (map)
7466 			cur->active_lock.ptr = map;
7467 		else
7468 			cur->active_lock.ptr = btf;
7469 		cur->active_lock.id = reg->id;
7470 	} else {
7471 		void *ptr;
7472 
7473 		if (map)
7474 			ptr = map;
7475 		else
7476 			ptr = btf;
7477 
7478 		if (!cur->active_lock.ptr) {
7479 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7480 			return -EINVAL;
7481 		}
7482 		if (cur->active_lock.ptr != ptr ||
7483 		    cur->active_lock.id != reg->id) {
7484 			verbose(env, "bpf_spin_unlock of different lock\n");
7485 			return -EINVAL;
7486 		}
7487 
7488 		invalidate_non_owning_refs(env);
7489 
7490 		cur->active_lock.ptr = NULL;
7491 		cur->active_lock.id = 0;
7492 	}
7493 	return 0;
7494 }
7495 
process_timer_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)7496 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7497 			      struct bpf_call_arg_meta *meta)
7498 {
7499 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7500 	bool is_const = tnum_is_const(reg->var_off);
7501 	struct bpf_map *map = reg->map_ptr;
7502 	u64 val = reg->var_off.value;
7503 
7504 	if (!is_const) {
7505 		verbose(env,
7506 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7507 			regno);
7508 		return -EINVAL;
7509 	}
7510 	if (!map->btf) {
7511 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7512 			map->name);
7513 		return -EINVAL;
7514 	}
7515 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7516 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7517 		return -EINVAL;
7518 	}
7519 	if (map->record->timer_off != val + reg->off) {
7520 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7521 			val + reg->off, map->record->timer_off);
7522 		return -EINVAL;
7523 	}
7524 	if (meta->map_ptr) {
7525 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7526 		return -EFAULT;
7527 	}
7528 	meta->map_uid = reg->map_uid;
7529 	meta->map_ptr = map;
7530 	return 0;
7531 }
7532 
process_kptr_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)7533 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7534 			     struct bpf_call_arg_meta *meta)
7535 {
7536 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7537 	struct bpf_map *map_ptr = reg->map_ptr;
7538 	struct btf_field *kptr_field;
7539 	u32 kptr_off;
7540 
7541 	if (!tnum_is_const(reg->var_off)) {
7542 		verbose(env,
7543 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7544 			regno);
7545 		return -EINVAL;
7546 	}
7547 	if (!map_ptr->btf) {
7548 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7549 			map_ptr->name);
7550 		return -EINVAL;
7551 	}
7552 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7553 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7554 		return -EINVAL;
7555 	}
7556 
7557 	meta->map_ptr = map_ptr;
7558 	kptr_off = reg->off + reg->var_off.value;
7559 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7560 	if (!kptr_field) {
7561 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7562 		return -EACCES;
7563 	}
7564 	if (kptr_field->type != BPF_KPTR_REF) {
7565 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7566 		return -EACCES;
7567 	}
7568 	meta->kptr_field = kptr_field;
7569 	return 0;
7570 }
7571 
7572 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7573  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7574  *
7575  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7576  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7577  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7578  *
7579  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7580  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7581  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7582  * mutate the view of the dynptr and also possibly destroy it. In the latter
7583  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7584  * memory that dynptr points to.
7585  *
7586  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7587  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7588  * readonly dynptr view yet, hence only the first case is tracked and checked.
7589  *
7590  * This is consistent with how C applies the const modifier to a struct object,
7591  * where the pointer itself inside bpf_dynptr becomes const but not what it
7592  * points to.
7593  *
7594  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7595  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7596  */
process_dynptr_func(struct bpf_verifier_env * env,int regno,int insn_idx,enum bpf_arg_type arg_type,int clone_ref_obj_id)7597 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7598 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7599 {
7600 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7601 	int err;
7602 
7603 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7604 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7605 	 */
7606 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7607 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7608 		return -EFAULT;
7609 	}
7610 
7611 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7612 	 *		 constructing a mutable bpf_dynptr object.
7613 	 *
7614 	 *		 Currently, this is only possible with PTR_TO_STACK
7615 	 *		 pointing to a region of at least 16 bytes which doesn't
7616 	 *		 contain an existing bpf_dynptr.
7617 	 *
7618 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7619 	 *		 mutated or destroyed. However, the memory it points to
7620 	 *		 may be mutated.
7621 	 *
7622 	 *  None       - Points to a initialized dynptr that can be mutated and
7623 	 *		 destroyed, including mutation of the memory it points
7624 	 *		 to.
7625 	 */
7626 	if (arg_type & MEM_UNINIT) {
7627 		int i;
7628 
7629 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7630 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7631 			return -EINVAL;
7632 		}
7633 
7634 		/* we write BPF_DW bits (8 bytes) at a time */
7635 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7636 			err = check_mem_access(env, insn_idx, regno,
7637 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7638 			if (err)
7639 				return err;
7640 		}
7641 
7642 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7643 	} else /* MEM_RDONLY and None case from above */ {
7644 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7645 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7646 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7647 			return -EINVAL;
7648 		}
7649 
7650 		if (!is_dynptr_reg_valid_init(env, reg)) {
7651 			verbose(env,
7652 				"Expected an initialized dynptr as arg #%d\n",
7653 				regno);
7654 			return -EINVAL;
7655 		}
7656 
7657 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7658 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7659 			verbose(env,
7660 				"Expected a dynptr of type %s as arg #%d\n",
7661 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7662 			return -EINVAL;
7663 		}
7664 
7665 		err = mark_dynptr_read(env, reg);
7666 	}
7667 	return err;
7668 }
7669 
iter_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi)7670 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7671 {
7672 	struct bpf_func_state *state = func(env, reg);
7673 
7674 	return state->stack[spi].spilled_ptr.ref_obj_id;
7675 }
7676 
is_iter_kfunc(struct bpf_kfunc_call_arg_meta * meta)7677 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7678 {
7679 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7680 }
7681 
is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta * meta)7682 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7683 {
7684 	return meta->kfunc_flags & KF_ITER_NEW;
7685 }
7686 
is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta * meta)7687 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7688 {
7689 	return meta->kfunc_flags & KF_ITER_NEXT;
7690 }
7691 
is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta * meta)7692 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7693 {
7694 	return meta->kfunc_flags & KF_ITER_DESTROY;
7695 }
7696 
is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta * meta,int arg)7697 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7698 {
7699 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7700 	 * kfunc is iter state pointer
7701 	 */
7702 	return arg == 0 && is_iter_kfunc(meta);
7703 }
7704 
process_iter_arg(struct bpf_verifier_env * env,int regno,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)7705 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7706 			    struct bpf_kfunc_call_arg_meta *meta)
7707 {
7708 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7709 	const struct btf_type *t;
7710 	const struct btf_param *arg;
7711 	int spi, err, i, nr_slots;
7712 	u32 btf_id;
7713 
7714 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7715 	arg = &btf_params(meta->func_proto)[0];
7716 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7717 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7718 	nr_slots = t->size / BPF_REG_SIZE;
7719 
7720 	if (is_iter_new_kfunc(meta)) {
7721 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7722 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7723 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7724 				iter_type_str(meta->btf, btf_id), regno);
7725 			return -EINVAL;
7726 		}
7727 
7728 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7729 			err = check_mem_access(env, insn_idx, regno,
7730 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7731 			if (err)
7732 				return err;
7733 		}
7734 
7735 		err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7736 		if (err)
7737 			return err;
7738 	} else {
7739 		/* iter_next() or iter_destroy() expect initialized iter state*/
7740 		if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7741 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7742 				iter_type_str(meta->btf, btf_id), regno);
7743 			return -EINVAL;
7744 		}
7745 
7746 		spi = iter_get_spi(env, reg, nr_slots);
7747 		if (spi < 0)
7748 			return spi;
7749 
7750 		err = mark_iter_read(env, reg, spi, nr_slots);
7751 		if (err)
7752 			return err;
7753 
7754 		/* remember meta->iter info for process_iter_next_call() */
7755 		meta->iter.spi = spi;
7756 		meta->iter.frameno = reg->frameno;
7757 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7758 
7759 		if (is_iter_destroy_kfunc(meta)) {
7760 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7761 			if (err)
7762 				return err;
7763 		}
7764 	}
7765 
7766 	return 0;
7767 }
7768 
7769 /* Look for a previous loop entry at insn_idx: nearest parent state
7770  * stopped at insn_idx with callsites matching those in cur->frame.
7771  */
find_prev_entry(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_idx)7772 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7773 						  struct bpf_verifier_state *cur,
7774 						  int insn_idx)
7775 {
7776 	struct bpf_verifier_state_list *sl;
7777 	struct bpf_verifier_state *st;
7778 
7779 	/* Explored states are pushed in stack order, most recent states come first */
7780 	sl = *explored_state(env, insn_idx);
7781 	for (; sl; sl = sl->next) {
7782 		/* If st->branches != 0 state is a part of current DFS verification path,
7783 		 * hence cur & st for a loop.
7784 		 */
7785 		st = &sl->state;
7786 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7787 		    st->dfs_depth < cur->dfs_depth)
7788 			return st;
7789 	}
7790 
7791 	return NULL;
7792 }
7793 
7794 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7795 static bool regs_exact(const struct bpf_reg_state *rold,
7796 		       const struct bpf_reg_state *rcur,
7797 		       struct bpf_idmap *idmap);
7798 
maybe_widen_reg(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap)7799 static void maybe_widen_reg(struct bpf_verifier_env *env,
7800 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7801 			    struct bpf_idmap *idmap)
7802 {
7803 	if (rold->type != SCALAR_VALUE)
7804 		return;
7805 	if (rold->type != rcur->type)
7806 		return;
7807 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7808 		return;
7809 	__mark_reg_unknown(env, rcur);
7810 }
7811 
widen_imprecise_scalars(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)7812 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7813 				   struct bpf_verifier_state *old,
7814 				   struct bpf_verifier_state *cur)
7815 {
7816 	struct bpf_func_state *fold, *fcur;
7817 	int i, fr;
7818 
7819 	reset_idmap_scratch(env);
7820 	for (fr = old->curframe; fr >= 0; fr--) {
7821 		fold = old->frame[fr];
7822 		fcur = cur->frame[fr];
7823 
7824 		for (i = 0; i < MAX_BPF_REG; i++)
7825 			maybe_widen_reg(env,
7826 					&fold->regs[i],
7827 					&fcur->regs[i],
7828 					&env->idmap_scratch);
7829 
7830 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7831 			if (!is_spilled_reg(&fold->stack[i]) ||
7832 			    !is_spilled_reg(&fcur->stack[i]))
7833 				continue;
7834 
7835 			maybe_widen_reg(env,
7836 					&fold->stack[i].spilled_ptr,
7837 					&fcur->stack[i].spilled_ptr,
7838 					&env->idmap_scratch);
7839 		}
7840 	}
7841 	return 0;
7842 }
7843 
get_iter_from_state(struct bpf_verifier_state * cur_st,struct bpf_kfunc_call_arg_meta * meta)7844 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
7845 						 struct bpf_kfunc_call_arg_meta *meta)
7846 {
7847 	int iter_frameno = meta->iter.frameno;
7848 	int iter_spi = meta->iter.spi;
7849 
7850 	return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7851 }
7852 
7853 /* process_iter_next_call() is called when verifier gets to iterator's next
7854  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7855  * to it as just "iter_next()" in comments below.
7856  *
7857  * BPF verifier relies on a crucial contract for any iter_next()
7858  * implementation: it should *eventually* return NULL, and once that happens
7859  * it should keep returning NULL. That is, once iterator exhausts elements to
7860  * iterate, it should never reset or spuriously return new elements.
7861  *
7862  * With the assumption of such contract, process_iter_next_call() simulates
7863  * a fork in the verifier state to validate loop logic correctness and safety
7864  * without having to simulate infinite amount of iterations.
7865  *
7866  * In current state, we first assume that iter_next() returned NULL and
7867  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7868  * conditions we should not form an infinite loop and should eventually reach
7869  * exit.
7870  *
7871  * Besides that, we also fork current state and enqueue it for later
7872  * verification. In a forked state we keep iterator state as ACTIVE
7873  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7874  * also bump iteration depth to prevent erroneous infinite loop detection
7875  * later on (see iter_active_depths_differ() comment for details). In this
7876  * state we assume that we'll eventually loop back to another iter_next()
7877  * calls (it could be in exactly same location or in some other instruction,
7878  * it doesn't matter, we don't make any unnecessary assumptions about this,
7879  * everything revolves around iterator state in a stack slot, not which
7880  * instruction is calling iter_next()). When that happens, we either will come
7881  * to iter_next() with equivalent state and can conclude that next iteration
7882  * will proceed in exactly the same way as we just verified, so it's safe to
7883  * assume that loop converges. If not, we'll go on another iteration
7884  * simulation with a different input state, until all possible starting states
7885  * are validated or we reach maximum number of instructions limit.
7886  *
7887  * This way, we will either exhaustively discover all possible input states
7888  * that iterator loop can start with and eventually will converge, or we'll
7889  * effectively regress into bounded loop simulation logic and either reach
7890  * maximum number of instructions if loop is not provably convergent, or there
7891  * is some statically known limit on number of iterations (e.g., if there is
7892  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7893  *
7894  * Iteration convergence logic in is_state_visited() relies on exact
7895  * states comparison, which ignores read and precision marks.
7896  * This is necessary because read and precision marks are not finalized
7897  * while in the loop. Exact comparison might preclude convergence for
7898  * simple programs like below:
7899  *
7900  *     i = 0;
7901  *     while(iter_next(&it))
7902  *       i++;
7903  *
7904  * At each iteration step i++ would produce a new distinct state and
7905  * eventually instruction processing limit would be reached.
7906  *
7907  * To avoid such behavior speculatively forget (widen) range for
7908  * imprecise scalar registers, if those registers were not precise at the
7909  * end of the previous iteration and do not match exactly.
7910  *
7911  * This is a conservative heuristic that allows to verify wide range of programs,
7912  * however it precludes verification of programs that conjure an
7913  * imprecise value on the first loop iteration and use it as precise on a second.
7914  * For example, the following safe program would fail to verify:
7915  *
7916  *     struct bpf_num_iter it;
7917  *     int arr[10];
7918  *     int i = 0, a = 0;
7919  *     bpf_iter_num_new(&it, 0, 10);
7920  *     while (bpf_iter_num_next(&it)) {
7921  *       if (a == 0) {
7922  *         a = 1;
7923  *         i = 7; // Because i changed verifier would forget
7924  *                // it's range on second loop entry.
7925  *       } else {
7926  *         arr[i] = 42; // This would fail to verify.
7927  *       }
7928  *     }
7929  *     bpf_iter_num_destroy(&it);
7930  */
process_iter_next_call(struct bpf_verifier_env * env,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)7931 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7932 				  struct bpf_kfunc_call_arg_meta *meta)
7933 {
7934 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
7935 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7936 	struct bpf_reg_state *cur_iter, *queued_iter;
7937 
7938 	BTF_TYPE_EMIT(struct bpf_iter);
7939 
7940 	cur_iter = get_iter_from_state(cur_st, meta);
7941 
7942 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7943 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7944 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7945 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7946 		return -EFAULT;
7947 	}
7948 
7949 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7950 		/* Because iter_next() call is a checkpoint is_state_visitied()
7951 		 * should guarantee parent state with same call sites and insn_idx.
7952 		 */
7953 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
7954 		    !same_callsites(cur_st->parent, cur_st)) {
7955 			verbose(env, "bug: bad parent state for iter next call");
7956 			return -EFAULT;
7957 		}
7958 		/* Note cur_st->parent in the call below, it is necessary to skip
7959 		 * checkpoint created for cur_st by is_state_visited()
7960 		 * right at this instruction.
7961 		 */
7962 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
7963 		/* branch out active iter state */
7964 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7965 		if (!queued_st)
7966 			return -ENOMEM;
7967 
7968 		queued_iter = get_iter_from_state(queued_st, meta);
7969 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7970 		queued_iter->iter.depth++;
7971 		if (prev_st)
7972 			widen_imprecise_scalars(env, prev_st, queued_st);
7973 
7974 		queued_fr = queued_st->frame[queued_st->curframe];
7975 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7976 	}
7977 
7978 	/* switch to DRAINED state, but keep the depth unchanged */
7979 	/* mark current iter state as drained and assume returned NULL */
7980 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7981 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
7982 
7983 	return 0;
7984 }
7985 
arg_type_is_mem_size(enum bpf_arg_type type)7986 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7987 {
7988 	return type == ARG_CONST_SIZE ||
7989 	       type == ARG_CONST_SIZE_OR_ZERO;
7990 }
7991 
arg_type_is_raw_mem(enum bpf_arg_type type)7992 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
7993 {
7994 	return base_type(type) == ARG_PTR_TO_MEM &&
7995 	       type & MEM_UNINIT;
7996 }
7997 
arg_type_is_release(enum bpf_arg_type type)7998 static bool arg_type_is_release(enum bpf_arg_type type)
7999 {
8000 	return type & OBJ_RELEASE;
8001 }
8002 
arg_type_is_dynptr(enum bpf_arg_type type)8003 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8004 {
8005 	return base_type(type) == ARG_PTR_TO_DYNPTR;
8006 }
8007 
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)8008 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8009 				 const struct bpf_call_arg_meta *meta,
8010 				 enum bpf_arg_type *arg_type)
8011 {
8012 	if (!meta->map_ptr) {
8013 		/* kernel subsystem misconfigured verifier */
8014 		verbose(env, "invalid map_ptr to access map->type\n");
8015 		return -EACCES;
8016 	}
8017 
8018 	switch (meta->map_ptr->map_type) {
8019 	case BPF_MAP_TYPE_SOCKMAP:
8020 	case BPF_MAP_TYPE_SOCKHASH:
8021 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8022 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8023 		} else {
8024 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8025 			return -EINVAL;
8026 		}
8027 		break;
8028 	case BPF_MAP_TYPE_BLOOM_FILTER:
8029 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8030 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8031 		break;
8032 	default:
8033 		break;
8034 	}
8035 	return 0;
8036 }
8037 
8038 struct bpf_reg_types {
8039 	const enum bpf_reg_type types[10];
8040 	u32 *btf_id;
8041 };
8042 
8043 static const struct bpf_reg_types sock_types = {
8044 	.types = {
8045 		PTR_TO_SOCK_COMMON,
8046 		PTR_TO_SOCKET,
8047 		PTR_TO_TCP_SOCK,
8048 		PTR_TO_XDP_SOCK,
8049 	},
8050 };
8051 
8052 #ifdef CONFIG_NET
8053 static const struct bpf_reg_types btf_id_sock_common_types = {
8054 	.types = {
8055 		PTR_TO_SOCK_COMMON,
8056 		PTR_TO_SOCKET,
8057 		PTR_TO_TCP_SOCK,
8058 		PTR_TO_XDP_SOCK,
8059 		PTR_TO_BTF_ID,
8060 		PTR_TO_BTF_ID | PTR_TRUSTED,
8061 	},
8062 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8063 };
8064 #endif
8065 
8066 static const struct bpf_reg_types mem_types = {
8067 	.types = {
8068 		PTR_TO_STACK,
8069 		PTR_TO_PACKET,
8070 		PTR_TO_PACKET_META,
8071 		PTR_TO_MAP_KEY,
8072 		PTR_TO_MAP_VALUE,
8073 		PTR_TO_MEM,
8074 		PTR_TO_MEM | MEM_RINGBUF,
8075 		PTR_TO_BUF,
8076 		PTR_TO_BTF_ID | PTR_TRUSTED,
8077 	},
8078 };
8079 
8080 static const struct bpf_reg_types spin_lock_types = {
8081 	.types = {
8082 		PTR_TO_MAP_VALUE,
8083 		PTR_TO_BTF_ID | MEM_ALLOC,
8084 	}
8085 };
8086 
8087 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8088 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8089 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8090 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8091 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8092 static const struct bpf_reg_types btf_ptr_types = {
8093 	.types = {
8094 		PTR_TO_BTF_ID,
8095 		PTR_TO_BTF_ID | PTR_TRUSTED,
8096 		PTR_TO_BTF_ID | MEM_RCU,
8097 	},
8098 };
8099 static const struct bpf_reg_types percpu_btf_ptr_types = {
8100 	.types = {
8101 		PTR_TO_BTF_ID | MEM_PERCPU,
8102 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8103 	}
8104 };
8105 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8106 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8107 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8108 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8109 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8110 static const struct bpf_reg_types dynptr_types = {
8111 	.types = {
8112 		PTR_TO_STACK,
8113 		CONST_PTR_TO_DYNPTR,
8114 	}
8115 };
8116 
8117 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8118 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8119 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8120 	[ARG_CONST_SIZE]		= &scalar_types,
8121 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8122 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8123 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8124 	[ARG_PTR_TO_CTX]		= &context_types,
8125 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8126 #ifdef CONFIG_NET
8127 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8128 #endif
8129 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8130 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8131 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8132 	[ARG_PTR_TO_MEM]		= &mem_types,
8133 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8134 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8135 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8136 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8137 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8138 	[ARG_PTR_TO_TIMER]		= &timer_types,
8139 	[ARG_PTR_TO_KPTR]		= &kptr_types,
8140 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8141 };
8142 
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id,struct bpf_call_arg_meta * meta)8143 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8144 			  enum bpf_arg_type arg_type,
8145 			  const u32 *arg_btf_id,
8146 			  struct bpf_call_arg_meta *meta)
8147 {
8148 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8149 	enum bpf_reg_type expected, type = reg->type;
8150 	const struct bpf_reg_types *compatible;
8151 	int i, j;
8152 
8153 	compatible = compatible_reg_types[base_type(arg_type)];
8154 	if (!compatible) {
8155 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8156 		return -EFAULT;
8157 	}
8158 
8159 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8160 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8161 	 *
8162 	 * Same for MAYBE_NULL:
8163 	 *
8164 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8165 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8166 	 *
8167 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8168 	 *
8169 	 * Therefore we fold these flags depending on the arg_type before comparison.
8170 	 */
8171 	if (arg_type & MEM_RDONLY)
8172 		type &= ~MEM_RDONLY;
8173 	if (arg_type & PTR_MAYBE_NULL)
8174 		type &= ~PTR_MAYBE_NULL;
8175 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8176 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8177 
8178 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type))
8179 		type &= ~MEM_ALLOC;
8180 
8181 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8182 		expected = compatible->types[i];
8183 		if (expected == NOT_INIT)
8184 			break;
8185 
8186 		if (type == expected)
8187 			goto found;
8188 	}
8189 
8190 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8191 	for (j = 0; j + 1 < i; j++)
8192 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8193 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8194 	return -EACCES;
8195 
8196 found:
8197 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8198 		return 0;
8199 
8200 	if (compatible == &mem_types) {
8201 		if (!(arg_type & MEM_RDONLY)) {
8202 			verbose(env,
8203 				"%s() may write into memory pointed by R%d type=%s\n",
8204 				func_id_name(meta->func_id),
8205 				regno, reg_type_str(env, reg->type));
8206 			return -EACCES;
8207 		}
8208 		return 0;
8209 	}
8210 
8211 	switch ((int)reg->type) {
8212 	case PTR_TO_BTF_ID:
8213 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8214 	case PTR_TO_BTF_ID | MEM_RCU:
8215 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8216 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8217 	{
8218 		/* For bpf_sk_release, it needs to match against first member
8219 		 * 'struct sock_common', hence make an exception for it. This
8220 		 * allows bpf_sk_release to work for multiple socket types.
8221 		 */
8222 		bool strict_type_match = arg_type_is_release(arg_type) &&
8223 					 meta->func_id != BPF_FUNC_sk_release;
8224 
8225 		if (type_may_be_null(reg->type) &&
8226 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8227 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8228 			return -EACCES;
8229 		}
8230 
8231 		if (!arg_btf_id) {
8232 			if (!compatible->btf_id) {
8233 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8234 				return -EFAULT;
8235 			}
8236 			arg_btf_id = compatible->btf_id;
8237 		}
8238 
8239 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8240 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8241 				return -EACCES;
8242 		} else {
8243 			if (arg_btf_id == BPF_PTR_POISON) {
8244 				verbose(env, "verifier internal error:");
8245 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8246 					regno);
8247 				return -EACCES;
8248 			}
8249 
8250 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8251 						  btf_vmlinux, *arg_btf_id,
8252 						  strict_type_match)) {
8253 				verbose(env, "R%d is of type %s but %s is expected\n",
8254 					regno, btf_type_name(reg->btf, reg->btf_id),
8255 					btf_type_name(btf_vmlinux, *arg_btf_id));
8256 				return -EACCES;
8257 			}
8258 		}
8259 		break;
8260 	}
8261 	case PTR_TO_BTF_ID | MEM_ALLOC:
8262 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8263 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8264 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8265 			return -EFAULT;
8266 		}
8267 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8268 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8269 				return -EACCES;
8270 		}
8271 		break;
8272 	case PTR_TO_BTF_ID | MEM_PERCPU:
8273 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8274 		/* Handled by helper specific checks */
8275 		break;
8276 	default:
8277 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8278 		return -EFAULT;
8279 	}
8280 	return 0;
8281 }
8282 
8283 static struct btf_field *
reg_find_field_offset(const struct bpf_reg_state * reg,s32 off,u32 fields)8284 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8285 {
8286 	struct btf_field *field;
8287 	struct btf_record *rec;
8288 
8289 	rec = reg_btf_record(reg);
8290 	if (!rec)
8291 		return NULL;
8292 
8293 	field = btf_record_find(rec, off, fields);
8294 	if (!field)
8295 		return NULL;
8296 
8297 	return field;
8298 }
8299 
check_func_arg_reg_off(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,enum bpf_arg_type arg_type)8300 int check_func_arg_reg_off(struct bpf_verifier_env *env,
8301 			   const struct bpf_reg_state *reg, int regno,
8302 			   enum bpf_arg_type arg_type)
8303 {
8304 	u32 type = reg->type;
8305 
8306 	/* When referenced register is passed to release function, its fixed
8307 	 * offset must be 0.
8308 	 *
8309 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8310 	 * meta->release_regno.
8311 	 */
8312 	if (arg_type_is_release(arg_type)) {
8313 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8314 		 * may not directly point to the object being released, but to
8315 		 * dynptr pointing to such object, which might be at some offset
8316 		 * on the stack. In that case, we simply to fallback to the
8317 		 * default handling.
8318 		 */
8319 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8320 			return 0;
8321 
8322 		/* Doing check_ptr_off_reg check for the offset will catch this
8323 		 * because fixed_off_ok is false, but checking here allows us
8324 		 * to give the user a better error message.
8325 		 */
8326 		if (reg->off) {
8327 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8328 				regno);
8329 			return -EINVAL;
8330 		}
8331 		return __check_ptr_off_reg(env, reg, regno, false);
8332 	}
8333 
8334 	switch (type) {
8335 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8336 	case PTR_TO_STACK:
8337 	case PTR_TO_PACKET:
8338 	case PTR_TO_PACKET_META:
8339 	case PTR_TO_MAP_KEY:
8340 	case PTR_TO_MAP_VALUE:
8341 	case PTR_TO_MEM:
8342 	case PTR_TO_MEM | MEM_RDONLY:
8343 	case PTR_TO_MEM | MEM_RINGBUF:
8344 	case PTR_TO_BUF:
8345 	case PTR_TO_BUF | MEM_RDONLY:
8346 	case SCALAR_VALUE:
8347 		return 0;
8348 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8349 	 * fixed offset.
8350 	 */
8351 	case PTR_TO_BTF_ID:
8352 	case PTR_TO_BTF_ID | MEM_ALLOC:
8353 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8354 	case PTR_TO_BTF_ID | MEM_RCU:
8355 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8356 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8357 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8358 		 * its fixed offset must be 0. In the other cases, fixed offset
8359 		 * can be non-zero. This was already checked above. So pass
8360 		 * fixed_off_ok as true to allow fixed offset for all other
8361 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8362 		 * still need to do checks instead of returning.
8363 		 */
8364 		return __check_ptr_off_reg(env, reg, regno, true);
8365 	default:
8366 		return __check_ptr_off_reg(env, reg, regno, false);
8367 	}
8368 }
8369 
get_dynptr_arg_reg(struct bpf_verifier_env * env,const struct bpf_func_proto * fn,struct bpf_reg_state * regs)8370 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8371 						const struct bpf_func_proto *fn,
8372 						struct bpf_reg_state *regs)
8373 {
8374 	struct bpf_reg_state *state = NULL;
8375 	int i;
8376 
8377 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8378 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8379 			if (state) {
8380 				verbose(env, "verifier internal error: multiple dynptr args\n");
8381 				return NULL;
8382 			}
8383 			state = &regs[BPF_REG_1 + i];
8384 		}
8385 
8386 	if (!state)
8387 		verbose(env, "verifier internal error: no dynptr arg found\n");
8388 
8389 	return state;
8390 }
8391 
dynptr_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8392 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8393 {
8394 	struct bpf_func_state *state = func(env, reg);
8395 	int spi;
8396 
8397 	if (reg->type == CONST_PTR_TO_DYNPTR)
8398 		return reg->id;
8399 	spi = dynptr_get_spi(env, reg);
8400 	if (spi < 0)
8401 		return spi;
8402 	return state->stack[spi].spilled_ptr.id;
8403 }
8404 
dynptr_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8405 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8406 {
8407 	struct bpf_func_state *state = func(env, reg);
8408 	int spi;
8409 
8410 	if (reg->type == CONST_PTR_TO_DYNPTR)
8411 		return reg->ref_obj_id;
8412 	spi = dynptr_get_spi(env, reg);
8413 	if (spi < 0)
8414 		return spi;
8415 	return state->stack[spi].spilled_ptr.ref_obj_id;
8416 }
8417 
dynptr_get_type(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8418 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8419 					    struct bpf_reg_state *reg)
8420 {
8421 	struct bpf_func_state *state = func(env, reg);
8422 	int spi;
8423 
8424 	if (reg->type == CONST_PTR_TO_DYNPTR)
8425 		return reg->dynptr.type;
8426 
8427 	spi = __get_spi(reg->off);
8428 	if (spi < 0) {
8429 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8430 		return BPF_DYNPTR_TYPE_INVALID;
8431 	}
8432 
8433 	return state->stack[spi].spilled_ptr.dynptr.type;
8434 }
8435 
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn,int insn_idx)8436 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8437 			  struct bpf_call_arg_meta *meta,
8438 			  const struct bpf_func_proto *fn,
8439 			  int insn_idx)
8440 {
8441 	u32 regno = BPF_REG_1 + arg;
8442 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8443 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8444 	enum bpf_reg_type type = reg->type;
8445 	u32 *arg_btf_id = NULL;
8446 	int err = 0;
8447 
8448 	if (arg_type == ARG_DONTCARE)
8449 		return 0;
8450 
8451 	err = check_reg_arg(env, regno, SRC_OP);
8452 	if (err)
8453 		return err;
8454 
8455 	if (arg_type == ARG_ANYTHING) {
8456 		if (is_pointer_value(env, regno)) {
8457 			verbose(env, "R%d leaks addr into helper function\n",
8458 				regno);
8459 			return -EACCES;
8460 		}
8461 		return 0;
8462 	}
8463 
8464 	if (type_is_pkt_pointer(type) &&
8465 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8466 		verbose(env, "helper access to the packet is not allowed\n");
8467 		return -EACCES;
8468 	}
8469 
8470 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8471 		err = resolve_map_arg_type(env, meta, &arg_type);
8472 		if (err)
8473 			return err;
8474 	}
8475 
8476 	if (register_is_null(reg) && type_may_be_null(arg_type))
8477 		/* A NULL register has a SCALAR_VALUE type, so skip
8478 		 * type checking.
8479 		 */
8480 		goto skip_type_check;
8481 
8482 	/* arg_btf_id and arg_size are in a union. */
8483 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8484 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8485 		arg_btf_id = fn->arg_btf_id[arg];
8486 
8487 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8488 	if (err)
8489 		return err;
8490 
8491 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8492 	if (err)
8493 		return err;
8494 
8495 skip_type_check:
8496 	if (arg_type_is_release(arg_type)) {
8497 		if (arg_type_is_dynptr(arg_type)) {
8498 			struct bpf_func_state *state = func(env, reg);
8499 			int spi;
8500 
8501 			/* Only dynptr created on stack can be released, thus
8502 			 * the get_spi and stack state checks for spilled_ptr
8503 			 * should only be done before process_dynptr_func for
8504 			 * PTR_TO_STACK.
8505 			 */
8506 			if (reg->type == PTR_TO_STACK) {
8507 				spi = dynptr_get_spi(env, reg);
8508 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8509 					verbose(env, "arg %d is an unacquired reference\n", regno);
8510 					return -EINVAL;
8511 				}
8512 			} else {
8513 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8514 				return -EINVAL;
8515 			}
8516 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8517 			verbose(env, "R%d must be referenced when passed to release function\n",
8518 				regno);
8519 			return -EINVAL;
8520 		}
8521 		if (meta->release_regno) {
8522 			verbose(env, "verifier internal error: more than one release argument\n");
8523 			return -EFAULT;
8524 		}
8525 		meta->release_regno = regno;
8526 	}
8527 
8528 	if (reg->ref_obj_id) {
8529 		if (meta->ref_obj_id) {
8530 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8531 				regno, reg->ref_obj_id,
8532 				meta->ref_obj_id);
8533 			return -EFAULT;
8534 		}
8535 		meta->ref_obj_id = reg->ref_obj_id;
8536 	}
8537 
8538 	switch (base_type(arg_type)) {
8539 	case ARG_CONST_MAP_PTR:
8540 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8541 		if (meta->map_ptr) {
8542 			/* Use map_uid (which is unique id of inner map) to reject:
8543 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8544 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8545 			 * if (inner_map1 && inner_map2) {
8546 			 *     timer = bpf_map_lookup_elem(inner_map1);
8547 			 *     if (timer)
8548 			 *         // mismatch would have been allowed
8549 			 *         bpf_timer_init(timer, inner_map2);
8550 			 * }
8551 			 *
8552 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8553 			 */
8554 			if (meta->map_ptr != reg->map_ptr ||
8555 			    meta->map_uid != reg->map_uid) {
8556 				verbose(env,
8557 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8558 					meta->map_uid, reg->map_uid);
8559 				return -EINVAL;
8560 			}
8561 		}
8562 		meta->map_ptr = reg->map_ptr;
8563 		meta->map_uid = reg->map_uid;
8564 		break;
8565 	case ARG_PTR_TO_MAP_KEY:
8566 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8567 		 * check that [key, key + map->key_size) are within
8568 		 * stack limits and initialized
8569 		 */
8570 		if (!meta->map_ptr) {
8571 			/* in function declaration map_ptr must come before
8572 			 * map_key, so that it's verified and known before
8573 			 * we have to check map_key here. Otherwise it means
8574 			 * that kernel subsystem misconfigured verifier
8575 			 */
8576 			verbose(env, "invalid map_ptr to access map->key\n");
8577 			return -EACCES;
8578 		}
8579 		err = check_helper_mem_access(env, regno, meta->map_ptr->key_size,
8580 					      BPF_READ, false, NULL);
8581 		break;
8582 	case ARG_PTR_TO_MAP_VALUE:
8583 		if (type_may_be_null(arg_type) && register_is_null(reg))
8584 			return 0;
8585 
8586 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8587 		 * check [value, value + map->value_size) validity
8588 		 */
8589 		if (!meta->map_ptr) {
8590 			/* kernel subsystem misconfigured verifier */
8591 			verbose(env, "invalid map_ptr to access map->value\n");
8592 			return -EACCES;
8593 		}
8594 		meta->raw_mode = arg_type & MEM_UNINIT;
8595 		err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
8596 					      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
8597 					      false, meta);
8598 		break;
8599 	case ARG_PTR_TO_PERCPU_BTF_ID:
8600 		if (!reg->btf_id) {
8601 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8602 			return -EACCES;
8603 		}
8604 		meta->ret_btf = reg->btf;
8605 		meta->ret_btf_id = reg->btf_id;
8606 		break;
8607 	case ARG_PTR_TO_SPIN_LOCK:
8608 		if (in_rbtree_lock_required_cb(env)) {
8609 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8610 			return -EACCES;
8611 		}
8612 		if (meta->func_id == BPF_FUNC_spin_lock) {
8613 			err = process_spin_lock(env, regno, true);
8614 			if (err)
8615 				return err;
8616 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8617 			err = process_spin_lock(env, regno, false);
8618 			if (err)
8619 				return err;
8620 		} else {
8621 			verbose(env, "verifier internal error\n");
8622 			return -EFAULT;
8623 		}
8624 		break;
8625 	case ARG_PTR_TO_TIMER:
8626 		err = process_timer_func(env, regno, meta);
8627 		if (err)
8628 			return err;
8629 		break;
8630 	case ARG_PTR_TO_FUNC:
8631 		meta->subprogno = reg->subprogno;
8632 		break;
8633 	case ARG_PTR_TO_MEM:
8634 		/* The access to this pointer is only checked when we hit the
8635 		 * next is_mem_size argument below.
8636 		 */
8637 		meta->raw_mode = arg_type & MEM_UNINIT;
8638 		if (arg_type & MEM_FIXED_SIZE) {
8639 			err = check_helper_mem_access(env, regno, fn->arg_size[arg],
8640 						      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
8641 						      false, meta);
8642 			if (err)
8643 				return err;
8644 			if (arg_type & MEM_ALIGNED)
8645 				err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
8646 		}
8647 		break;
8648 	case ARG_CONST_SIZE:
8649 		err = check_mem_size_reg(env, reg, regno,
8650 					 fn->arg_type[arg - 1] & MEM_WRITE ?
8651 					 BPF_WRITE : BPF_READ,
8652 					 false, meta);
8653 		break;
8654 	case ARG_CONST_SIZE_OR_ZERO:
8655 		err = check_mem_size_reg(env, reg, regno,
8656 					 fn->arg_type[arg - 1] & MEM_WRITE ?
8657 					 BPF_WRITE : BPF_READ,
8658 					 true, meta);
8659 		break;
8660 	case ARG_PTR_TO_DYNPTR:
8661 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8662 		if (err)
8663 			return err;
8664 		break;
8665 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8666 		if (!tnum_is_const(reg->var_off)) {
8667 			verbose(env, "R%d is not a known constant'\n",
8668 				regno);
8669 			return -EACCES;
8670 		}
8671 		meta->mem_size = reg->var_off.value;
8672 		err = mark_chain_precision(env, regno);
8673 		if (err)
8674 			return err;
8675 		break;
8676 	case ARG_PTR_TO_CONST_STR:
8677 	{
8678 		struct bpf_map *map = reg->map_ptr;
8679 		int map_off;
8680 		u64 map_addr;
8681 		char *str_ptr;
8682 
8683 		if (!bpf_map_is_rdonly(map)) {
8684 			verbose(env, "R%d does not point to a readonly map'\n", regno);
8685 			return -EACCES;
8686 		}
8687 
8688 		if (!tnum_is_const(reg->var_off)) {
8689 			verbose(env, "R%d is not a constant address'\n", regno);
8690 			return -EACCES;
8691 		}
8692 
8693 		if (!map->ops->map_direct_value_addr) {
8694 			verbose(env, "no direct value access support for this map type\n");
8695 			return -EACCES;
8696 		}
8697 
8698 		err = check_map_access(env, regno, reg->off,
8699 				       map->value_size - reg->off, false,
8700 				       ACCESS_HELPER);
8701 		if (err)
8702 			return err;
8703 
8704 		map_off = reg->off + reg->var_off.value;
8705 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8706 		if (err) {
8707 			verbose(env, "direct value access on string failed\n");
8708 			return err;
8709 		}
8710 
8711 		str_ptr = (char *)(long)(map_addr);
8712 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8713 			verbose(env, "string is not zero-terminated\n");
8714 			return -EINVAL;
8715 		}
8716 		break;
8717 	}
8718 	case ARG_PTR_TO_KPTR:
8719 		err = process_kptr_func(env, regno, meta);
8720 		if (err)
8721 			return err;
8722 		break;
8723 	}
8724 
8725 	return err;
8726 }
8727 
may_update_sockmap(struct bpf_verifier_env * env,int func_id)8728 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8729 {
8730 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8731 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8732 
8733 	if (func_id != BPF_FUNC_map_update_elem &&
8734 	    func_id != BPF_FUNC_map_delete_elem)
8735 		return false;
8736 
8737 	/* It's not possible to get access to a locked struct sock in these
8738 	 * contexts, so updating is safe.
8739 	 */
8740 	switch (type) {
8741 	case BPF_PROG_TYPE_TRACING:
8742 		if (eatype == BPF_TRACE_ITER)
8743 			return true;
8744 		break;
8745 	case BPF_PROG_TYPE_SOCK_OPS:
8746 		/* map_update allowed only via dedicated helpers with event type checks */
8747 		if (func_id == BPF_FUNC_map_delete_elem)
8748 			return true;
8749 		break;
8750 	case BPF_PROG_TYPE_SOCKET_FILTER:
8751 	case BPF_PROG_TYPE_SCHED_CLS:
8752 	case BPF_PROG_TYPE_SCHED_ACT:
8753 	case BPF_PROG_TYPE_XDP:
8754 	case BPF_PROG_TYPE_SK_REUSEPORT:
8755 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8756 	case BPF_PROG_TYPE_SK_LOOKUP:
8757 		return true;
8758 	default:
8759 		break;
8760 	}
8761 
8762 	verbose(env, "cannot update sockmap in this context\n");
8763 	return false;
8764 }
8765 
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)8766 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8767 {
8768 	return env->prog->jit_requested &&
8769 	       bpf_jit_supports_subprog_tailcalls();
8770 }
8771 
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)8772 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8773 					struct bpf_map *map, int func_id)
8774 {
8775 	if (!map)
8776 		return 0;
8777 
8778 	/* We need a two way check, first is from map perspective ... */
8779 	switch (map->map_type) {
8780 	case BPF_MAP_TYPE_PROG_ARRAY:
8781 		if (func_id != BPF_FUNC_tail_call)
8782 			goto error;
8783 		break;
8784 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8785 		if (func_id != BPF_FUNC_perf_event_read &&
8786 		    func_id != BPF_FUNC_perf_event_output &&
8787 		    func_id != BPF_FUNC_skb_output &&
8788 		    func_id != BPF_FUNC_perf_event_read_value &&
8789 		    func_id != BPF_FUNC_xdp_output)
8790 			goto error;
8791 		break;
8792 	case BPF_MAP_TYPE_RINGBUF:
8793 		if (func_id != BPF_FUNC_ringbuf_output &&
8794 		    func_id != BPF_FUNC_ringbuf_reserve &&
8795 		    func_id != BPF_FUNC_ringbuf_query &&
8796 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8797 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8798 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8799 			goto error;
8800 		break;
8801 	case BPF_MAP_TYPE_USER_RINGBUF:
8802 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8803 			goto error;
8804 		break;
8805 	case BPF_MAP_TYPE_STACK_TRACE:
8806 		if (func_id != BPF_FUNC_get_stackid)
8807 			goto error;
8808 		break;
8809 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8810 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8811 		    func_id != BPF_FUNC_current_task_under_cgroup)
8812 			goto error;
8813 		break;
8814 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8815 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8816 		if (func_id != BPF_FUNC_get_local_storage)
8817 			goto error;
8818 		break;
8819 	case BPF_MAP_TYPE_DEVMAP:
8820 	case BPF_MAP_TYPE_DEVMAP_HASH:
8821 		if (func_id != BPF_FUNC_redirect_map &&
8822 		    func_id != BPF_FUNC_map_lookup_elem)
8823 			goto error;
8824 		break;
8825 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8826 	 * appear.
8827 	 */
8828 	case BPF_MAP_TYPE_CPUMAP:
8829 		if (func_id != BPF_FUNC_redirect_map)
8830 			goto error;
8831 		break;
8832 	case BPF_MAP_TYPE_XSKMAP:
8833 		if (func_id != BPF_FUNC_redirect_map &&
8834 		    func_id != BPF_FUNC_map_lookup_elem)
8835 			goto error;
8836 		break;
8837 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8838 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8839 		if (func_id != BPF_FUNC_map_lookup_elem)
8840 			goto error;
8841 		break;
8842 	case BPF_MAP_TYPE_SOCKMAP:
8843 		if (func_id != BPF_FUNC_sk_redirect_map &&
8844 		    func_id != BPF_FUNC_sock_map_update &&
8845 		    func_id != BPF_FUNC_msg_redirect_map &&
8846 		    func_id != BPF_FUNC_sk_select_reuseport &&
8847 		    func_id != BPF_FUNC_map_lookup_elem &&
8848 		    !may_update_sockmap(env, func_id))
8849 			goto error;
8850 		break;
8851 	case BPF_MAP_TYPE_SOCKHASH:
8852 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8853 		    func_id != BPF_FUNC_sock_hash_update &&
8854 		    func_id != BPF_FUNC_msg_redirect_hash &&
8855 		    func_id != BPF_FUNC_sk_select_reuseport &&
8856 		    func_id != BPF_FUNC_map_lookup_elem &&
8857 		    !may_update_sockmap(env, func_id))
8858 			goto error;
8859 		break;
8860 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8861 		if (func_id != BPF_FUNC_sk_select_reuseport)
8862 			goto error;
8863 		break;
8864 	case BPF_MAP_TYPE_QUEUE:
8865 	case BPF_MAP_TYPE_STACK:
8866 		if (func_id != BPF_FUNC_map_peek_elem &&
8867 		    func_id != BPF_FUNC_map_pop_elem &&
8868 		    func_id != BPF_FUNC_map_push_elem)
8869 			goto error;
8870 		break;
8871 	case BPF_MAP_TYPE_SK_STORAGE:
8872 		if (func_id != BPF_FUNC_sk_storage_get &&
8873 		    func_id != BPF_FUNC_sk_storage_delete &&
8874 		    func_id != BPF_FUNC_kptr_xchg)
8875 			goto error;
8876 		break;
8877 	case BPF_MAP_TYPE_INODE_STORAGE:
8878 		if (func_id != BPF_FUNC_inode_storage_get &&
8879 		    func_id != BPF_FUNC_inode_storage_delete &&
8880 		    func_id != BPF_FUNC_kptr_xchg)
8881 			goto error;
8882 		break;
8883 	case BPF_MAP_TYPE_TASK_STORAGE:
8884 		if (func_id != BPF_FUNC_task_storage_get &&
8885 		    func_id != BPF_FUNC_task_storage_delete &&
8886 		    func_id != BPF_FUNC_kptr_xchg)
8887 			goto error;
8888 		break;
8889 	case BPF_MAP_TYPE_CGRP_STORAGE:
8890 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8891 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8892 		    func_id != BPF_FUNC_kptr_xchg)
8893 			goto error;
8894 		break;
8895 	case BPF_MAP_TYPE_BLOOM_FILTER:
8896 		if (func_id != BPF_FUNC_map_peek_elem &&
8897 		    func_id != BPF_FUNC_map_push_elem)
8898 			goto error;
8899 		break;
8900 	default:
8901 		break;
8902 	}
8903 
8904 	/* ... and second from the function itself. */
8905 	switch (func_id) {
8906 	case BPF_FUNC_tail_call:
8907 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8908 			goto error;
8909 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8910 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8911 			return -EINVAL;
8912 		}
8913 		break;
8914 	case BPF_FUNC_perf_event_read:
8915 	case BPF_FUNC_perf_event_output:
8916 	case BPF_FUNC_perf_event_read_value:
8917 	case BPF_FUNC_skb_output:
8918 	case BPF_FUNC_xdp_output:
8919 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8920 			goto error;
8921 		break;
8922 	case BPF_FUNC_ringbuf_output:
8923 	case BPF_FUNC_ringbuf_reserve:
8924 	case BPF_FUNC_ringbuf_query:
8925 	case BPF_FUNC_ringbuf_reserve_dynptr:
8926 	case BPF_FUNC_ringbuf_submit_dynptr:
8927 	case BPF_FUNC_ringbuf_discard_dynptr:
8928 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8929 			goto error;
8930 		break;
8931 	case BPF_FUNC_user_ringbuf_drain:
8932 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8933 			goto error;
8934 		break;
8935 	case BPF_FUNC_get_stackid:
8936 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8937 			goto error;
8938 		break;
8939 	case BPF_FUNC_current_task_under_cgroup:
8940 	case BPF_FUNC_skb_under_cgroup:
8941 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8942 			goto error;
8943 		break;
8944 	case BPF_FUNC_redirect_map:
8945 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8946 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8947 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
8948 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
8949 			goto error;
8950 		break;
8951 	case BPF_FUNC_sk_redirect_map:
8952 	case BPF_FUNC_msg_redirect_map:
8953 	case BPF_FUNC_sock_map_update:
8954 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8955 			goto error;
8956 		break;
8957 	case BPF_FUNC_sk_redirect_hash:
8958 	case BPF_FUNC_msg_redirect_hash:
8959 	case BPF_FUNC_sock_hash_update:
8960 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8961 			goto error;
8962 		break;
8963 	case BPF_FUNC_get_local_storage:
8964 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8965 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8966 			goto error;
8967 		break;
8968 	case BPF_FUNC_sk_select_reuseport:
8969 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8970 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8971 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
8972 			goto error;
8973 		break;
8974 	case BPF_FUNC_map_pop_elem:
8975 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8976 		    map->map_type != BPF_MAP_TYPE_STACK)
8977 			goto error;
8978 		break;
8979 	case BPF_FUNC_map_peek_elem:
8980 	case BPF_FUNC_map_push_elem:
8981 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8982 		    map->map_type != BPF_MAP_TYPE_STACK &&
8983 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8984 			goto error;
8985 		break;
8986 	case BPF_FUNC_map_lookup_percpu_elem:
8987 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8988 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8989 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8990 			goto error;
8991 		break;
8992 	case BPF_FUNC_sk_storage_get:
8993 	case BPF_FUNC_sk_storage_delete:
8994 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8995 			goto error;
8996 		break;
8997 	case BPF_FUNC_inode_storage_get:
8998 	case BPF_FUNC_inode_storage_delete:
8999 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9000 			goto error;
9001 		break;
9002 	case BPF_FUNC_task_storage_get:
9003 	case BPF_FUNC_task_storage_delete:
9004 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9005 			goto error;
9006 		break;
9007 	case BPF_FUNC_cgrp_storage_get:
9008 	case BPF_FUNC_cgrp_storage_delete:
9009 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9010 			goto error;
9011 		break;
9012 	default:
9013 		break;
9014 	}
9015 
9016 	return 0;
9017 error:
9018 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9019 		map->map_type, func_id_name(func_id), func_id);
9020 	return -EINVAL;
9021 }
9022 
check_raw_mode_ok(const struct bpf_func_proto * fn)9023 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9024 {
9025 	int count = 0;
9026 
9027 	if (arg_type_is_raw_mem(fn->arg1_type))
9028 		count++;
9029 	if (arg_type_is_raw_mem(fn->arg2_type))
9030 		count++;
9031 	if (arg_type_is_raw_mem(fn->arg3_type))
9032 		count++;
9033 	if (arg_type_is_raw_mem(fn->arg4_type))
9034 		count++;
9035 	if (arg_type_is_raw_mem(fn->arg5_type))
9036 		count++;
9037 
9038 	/* We only support one arg being in raw mode at the moment,
9039 	 * which is sufficient for the helper functions we have
9040 	 * right now.
9041 	 */
9042 	return count <= 1;
9043 }
9044 
check_args_pair_invalid(const struct bpf_func_proto * fn,int arg)9045 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9046 {
9047 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9048 	bool has_size = fn->arg_size[arg] != 0;
9049 	bool is_next_size = false;
9050 
9051 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9052 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9053 
9054 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9055 		return is_next_size;
9056 
9057 	return has_size == is_next_size || is_next_size == is_fixed;
9058 }
9059 
check_arg_pair_ok(const struct bpf_func_proto * fn)9060 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9061 {
9062 	/* bpf_xxx(..., buf, len) call will access 'len'
9063 	 * bytes from memory 'buf'. Both arg types need
9064 	 * to be paired, so make sure there's no buggy
9065 	 * helper function specification.
9066 	 */
9067 	if (arg_type_is_mem_size(fn->arg1_type) ||
9068 	    check_args_pair_invalid(fn, 0) ||
9069 	    check_args_pair_invalid(fn, 1) ||
9070 	    check_args_pair_invalid(fn, 2) ||
9071 	    check_args_pair_invalid(fn, 3) ||
9072 	    check_args_pair_invalid(fn, 4))
9073 		return false;
9074 
9075 	return true;
9076 }
9077 
check_btf_id_ok(const struct bpf_func_proto * fn)9078 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9079 {
9080 	int i;
9081 
9082 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9083 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9084 			return !!fn->arg_btf_id[i];
9085 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9086 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9087 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9088 		    /* arg_btf_id and arg_size are in a union. */
9089 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9090 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9091 			return false;
9092 	}
9093 
9094 	return true;
9095 }
9096 
check_func_proto(const struct bpf_func_proto * fn,int func_id)9097 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9098 {
9099 	return check_raw_mode_ok(fn) &&
9100 	       check_arg_pair_ok(fn) &&
9101 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9102 }
9103 
9104 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9105  * are now invalid, so turn them into unknown SCALAR_VALUE.
9106  *
9107  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9108  * since these slices point to packet data.
9109  */
clear_all_pkt_pointers(struct bpf_verifier_env * env)9110 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9111 {
9112 	struct bpf_func_state *state;
9113 	struct bpf_reg_state *reg;
9114 
9115 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9116 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9117 			mark_reg_invalid(env, reg);
9118 	}));
9119 }
9120 
9121 enum {
9122 	AT_PKT_END = -1,
9123 	BEYOND_PKT_END = -2,
9124 };
9125 
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)9126 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9127 {
9128 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9129 	struct bpf_reg_state *reg = &state->regs[regn];
9130 
9131 	if (reg->type != PTR_TO_PACKET)
9132 		/* PTR_TO_PACKET_META is not supported yet */
9133 		return;
9134 
9135 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9136 	 * How far beyond pkt_end it goes is unknown.
9137 	 * if (!range_open) it's the case of pkt >= pkt_end
9138 	 * if (range_open) it's the case of pkt > pkt_end
9139 	 * hence this pointer is at least 1 byte bigger than pkt_end
9140 	 */
9141 	if (range_open)
9142 		reg->range = BEYOND_PKT_END;
9143 	else
9144 		reg->range = AT_PKT_END;
9145 }
9146 
9147 /* The pointer with the specified id has released its reference to kernel
9148  * resources. Identify all copies of the same pointer and clear the reference.
9149  */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)9150 static int release_reference(struct bpf_verifier_env *env,
9151 			     int ref_obj_id)
9152 {
9153 	struct bpf_func_state *state;
9154 	struct bpf_reg_state *reg;
9155 	int err;
9156 
9157 	err = release_reference_state(cur_func(env), ref_obj_id);
9158 	if (err)
9159 		return err;
9160 
9161 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9162 		if (reg->ref_obj_id == ref_obj_id)
9163 			mark_reg_invalid(env, reg);
9164 	}));
9165 
9166 	return 0;
9167 }
9168 
invalidate_non_owning_refs(struct bpf_verifier_env * env)9169 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9170 {
9171 	struct bpf_func_state *unused;
9172 	struct bpf_reg_state *reg;
9173 
9174 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9175 		if (type_is_non_owning_ref(reg->type))
9176 			mark_reg_invalid(env, reg);
9177 	}));
9178 }
9179 
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)9180 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9181 				    struct bpf_reg_state *regs)
9182 {
9183 	int i;
9184 
9185 	/* after the call registers r0 - r5 were scratched */
9186 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9187 		mark_reg_not_init(env, regs, caller_saved[i]);
9188 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9189 	}
9190 }
9191 
9192 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9193 				   struct bpf_func_state *caller,
9194 				   struct bpf_func_state *callee,
9195 				   int insn_idx);
9196 
9197 static int set_callee_state(struct bpf_verifier_env *env,
9198 			    struct bpf_func_state *caller,
9199 			    struct bpf_func_state *callee, int insn_idx);
9200 
setup_func_entry(struct bpf_verifier_env * env,int subprog,int callsite,set_callee_state_fn set_callee_state_cb,struct bpf_verifier_state * state)9201 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9202 			    set_callee_state_fn set_callee_state_cb,
9203 			    struct bpf_verifier_state *state)
9204 {
9205 	struct bpf_func_state *caller, *callee;
9206 	int err;
9207 
9208 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9209 		verbose(env, "the call stack of %d frames is too deep\n",
9210 			state->curframe + 2);
9211 		return -E2BIG;
9212 	}
9213 
9214 	if (state->frame[state->curframe + 1]) {
9215 		verbose(env, "verifier bug. Frame %d already allocated\n",
9216 			state->curframe + 1);
9217 		return -EFAULT;
9218 	}
9219 
9220 	caller = state->frame[state->curframe];
9221 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9222 	if (!callee)
9223 		return -ENOMEM;
9224 	state->frame[state->curframe + 1] = callee;
9225 
9226 	/* callee cannot access r0, r6 - r9 for reading and has to write
9227 	 * into its own stack before reading from it.
9228 	 * callee can read/write into caller's stack
9229 	 */
9230 	init_func_state(env, callee,
9231 			/* remember the callsite, it will be used by bpf_exit */
9232 			callsite,
9233 			state->curframe + 1 /* frameno within this callchain */,
9234 			subprog /* subprog number within this prog */);
9235 	/* Transfer references to the callee */
9236 	err = copy_reference_state(callee, caller);
9237 	err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9238 	if (err)
9239 		goto err_out;
9240 
9241 	/* only increment it after check_reg_arg() finished */
9242 	state->curframe++;
9243 
9244 	return 0;
9245 
9246 err_out:
9247 	free_func_state(callee);
9248 	state->frame[state->curframe + 1] = NULL;
9249 	return err;
9250 }
9251 
push_callback_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int insn_idx,int subprog,set_callee_state_fn set_callee_state_cb)9252 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9253 			      int insn_idx, int subprog,
9254 			      set_callee_state_fn set_callee_state_cb)
9255 {
9256 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
9257 	struct bpf_func_state *caller, *callee;
9258 	int err;
9259 
9260 	caller = state->frame[state->curframe];
9261 	err = btf_check_subprog_call(env, subprog, caller->regs);
9262 	if (err == -EFAULT)
9263 		return err;
9264 
9265 	/* set_callee_state is used for direct subprog calls, but we are
9266 	 * interested in validating only BPF helpers that can call subprogs as
9267 	 * callbacks
9268 	 */
9269 	if (bpf_pseudo_kfunc_call(insn) &&
9270 	    !is_sync_callback_calling_kfunc(insn->imm)) {
9271 		verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9272 			func_id_name(insn->imm), insn->imm);
9273 		return -EFAULT;
9274 	} else if (!bpf_pseudo_kfunc_call(insn) &&
9275 		   !is_callback_calling_function(insn->imm)) { /* helper */
9276 		verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9277 			func_id_name(insn->imm), insn->imm);
9278 		return -EFAULT;
9279 	}
9280 
9281 	if (insn->code == (BPF_JMP | BPF_CALL) &&
9282 	    insn->src_reg == 0 &&
9283 	    insn->imm == BPF_FUNC_timer_set_callback) {
9284 		struct bpf_verifier_state *async_cb;
9285 
9286 		/* there is no real recursion here. timer callbacks are async */
9287 		env->subprog_info[subprog].is_async_cb = true;
9288 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9289 					 insn_idx, subprog);
9290 		if (!async_cb)
9291 			return -EFAULT;
9292 		callee = async_cb->frame[0];
9293 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9294 
9295 		/* Convert bpf_timer_set_callback() args into timer callback args */
9296 		err = set_callee_state_cb(env, caller, callee, insn_idx);
9297 		if (err)
9298 			return err;
9299 
9300 		return 0;
9301 	}
9302 
9303 	/* for callback functions enqueue entry to callback and
9304 	 * proceed with next instruction within current frame.
9305 	 */
9306 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9307 	if (!callback_state)
9308 		return -ENOMEM;
9309 
9310 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9311 			       callback_state);
9312 	if (err)
9313 		return err;
9314 
9315 	callback_state->callback_unroll_depth++;
9316 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9317 	caller->callback_depth = 0;
9318 	return 0;
9319 }
9320 
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)9321 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9322 			   int *insn_idx)
9323 {
9324 	struct bpf_verifier_state *state = env->cur_state;
9325 	struct bpf_func_state *caller;
9326 	int err, subprog, target_insn;
9327 
9328 	target_insn = *insn_idx + insn->imm + 1;
9329 	subprog = find_subprog(env, target_insn);
9330 	if (subprog < 0) {
9331 		verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9332 		return -EFAULT;
9333 	}
9334 
9335 	caller = state->frame[state->curframe];
9336 	err = btf_check_subprog_call(env, subprog, caller->regs);
9337 	if (err == -EFAULT)
9338 		return err;
9339 	if (subprog_is_global(env, subprog)) {
9340 		if (err) {
9341 			verbose(env, "Caller passes invalid args into func#%d\n", subprog);
9342 			return err;
9343 		}
9344 
9345 		if (env->log.level & BPF_LOG_LEVEL)
9346 			verbose(env, "Func#%d is global and valid. Skipping.\n", subprog);
9347 		clear_caller_saved_regs(env, caller->regs);
9348 
9349 		/* All global functions return a 64-bit SCALAR_VALUE */
9350 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9351 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9352 
9353 		/* continue with next insn after call */
9354 		return 0;
9355 	}
9356 
9357 	/* for regular function entry setup new frame and continue
9358 	 * from that frame.
9359 	 */
9360 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9361 	if (err)
9362 		return err;
9363 
9364 	clear_caller_saved_regs(env, caller->regs);
9365 
9366 	/* and go analyze first insn of the callee */
9367 	*insn_idx = env->subprog_info[subprog].start - 1;
9368 
9369 	if (env->log.level & BPF_LOG_LEVEL) {
9370 		verbose(env, "caller:\n");
9371 		print_verifier_state(env, caller, true);
9372 		verbose(env, "callee:\n");
9373 		print_verifier_state(env, state->frame[state->curframe], true);
9374 	}
9375 
9376 	return 0;
9377 }
9378 
map_set_for_each_callback_args(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee)9379 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9380 				   struct bpf_func_state *caller,
9381 				   struct bpf_func_state *callee)
9382 {
9383 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9384 	 *      void *callback_ctx, u64 flags);
9385 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9386 	 *      void *callback_ctx);
9387 	 */
9388 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9389 
9390 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9391 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9392 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9393 
9394 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9395 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9396 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9397 
9398 	/* pointer to stack or null */
9399 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9400 
9401 	/* unused */
9402 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9403 	return 0;
9404 }
9405 
set_callee_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9406 static int set_callee_state(struct bpf_verifier_env *env,
9407 			    struct bpf_func_state *caller,
9408 			    struct bpf_func_state *callee, int insn_idx)
9409 {
9410 	int i;
9411 
9412 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9413 	 * pointers, which connects us up to the liveness chain
9414 	 */
9415 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9416 		callee->regs[i] = caller->regs[i];
9417 	return 0;
9418 }
9419 
set_map_elem_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9420 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9421 				       struct bpf_func_state *caller,
9422 				       struct bpf_func_state *callee,
9423 				       int insn_idx)
9424 {
9425 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9426 	struct bpf_map *map;
9427 	int err;
9428 
9429 	if (bpf_map_ptr_poisoned(insn_aux)) {
9430 		verbose(env, "tail_call abusing map_ptr\n");
9431 		return -EINVAL;
9432 	}
9433 
9434 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9435 	if (!map->ops->map_set_for_each_callback_args ||
9436 	    !map->ops->map_for_each_callback) {
9437 		verbose(env, "callback function not allowed for map\n");
9438 		return -ENOTSUPP;
9439 	}
9440 
9441 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9442 	if (err)
9443 		return err;
9444 
9445 	callee->in_callback_fn = true;
9446 	callee->callback_ret_range = tnum_range(0, 1);
9447 	return 0;
9448 }
9449 
set_loop_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9450 static int set_loop_callback_state(struct bpf_verifier_env *env,
9451 				   struct bpf_func_state *caller,
9452 				   struct bpf_func_state *callee,
9453 				   int insn_idx)
9454 {
9455 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9456 	 *	    u64 flags);
9457 	 * callback_fn(u32 index, void *callback_ctx);
9458 	 */
9459 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9460 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9461 
9462 	/* unused */
9463 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9464 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9465 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9466 
9467 	callee->in_callback_fn = true;
9468 	callee->callback_ret_range = tnum_range(0, 1);
9469 	return 0;
9470 }
9471 
set_timer_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9472 static int set_timer_callback_state(struct bpf_verifier_env *env,
9473 				    struct bpf_func_state *caller,
9474 				    struct bpf_func_state *callee,
9475 				    int insn_idx)
9476 {
9477 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9478 
9479 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9480 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9481 	 */
9482 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9483 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9484 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9485 
9486 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9487 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9488 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9489 
9490 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9491 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9492 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9493 
9494 	/* unused */
9495 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9496 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9497 	callee->in_async_callback_fn = true;
9498 	callee->callback_ret_range = tnum_range(0, 1);
9499 	return 0;
9500 }
9501 
set_find_vma_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9502 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9503 				       struct bpf_func_state *caller,
9504 				       struct bpf_func_state *callee,
9505 				       int insn_idx)
9506 {
9507 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9508 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9509 	 * (callback_fn)(struct task_struct *task,
9510 	 *               struct vm_area_struct *vma, void *callback_ctx);
9511 	 */
9512 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9513 
9514 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9515 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9516 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9517 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9518 
9519 	/* pointer to stack or null */
9520 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9521 
9522 	/* unused */
9523 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9524 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9525 	callee->in_callback_fn = true;
9526 	callee->callback_ret_range = tnum_range(0, 1);
9527 	return 0;
9528 }
9529 
set_user_ringbuf_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9530 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9531 					   struct bpf_func_state *caller,
9532 					   struct bpf_func_state *callee,
9533 					   int insn_idx)
9534 {
9535 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9536 	 *			  callback_ctx, u64 flags);
9537 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9538 	 */
9539 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9540 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9541 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9542 
9543 	/* unused */
9544 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9545 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9546 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9547 
9548 	callee->in_callback_fn = true;
9549 	callee->callback_ret_range = tnum_range(0, 1);
9550 	return 0;
9551 }
9552 
set_rbtree_add_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9553 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9554 					 struct bpf_func_state *caller,
9555 					 struct bpf_func_state *callee,
9556 					 int insn_idx)
9557 {
9558 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9559 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9560 	 *
9561 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9562 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9563 	 * by this point, so look at 'root'
9564 	 */
9565 	struct btf_field *field;
9566 
9567 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9568 				      BPF_RB_ROOT);
9569 	if (!field || !field->graph_root.value_btf_id)
9570 		return -EFAULT;
9571 
9572 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9573 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9574 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9575 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9576 
9577 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9578 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9579 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9580 	callee->in_callback_fn = true;
9581 	callee->callback_ret_range = tnum_range(0, 1);
9582 	return 0;
9583 }
9584 
9585 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9586 
9587 /* Are we currently verifying the callback for a rbtree helper that must
9588  * be called with lock held? If so, no need to complain about unreleased
9589  * lock
9590  */
in_rbtree_lock_required_cb(struct bpf_verifier_env * env)9591 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9592 {
9593 	struct bpf_verifier_state *state = env->cur_state;
9594 	struct bpf_insn *insn = env->prog->insnsi;
9595 	struct bpf_func_state *callee;
9596 	int kfunc_btf_id;
9597 
9598 	if (!state->curframe)
9599 		return false;
9600 
9601 	callee = state->frame[state->curframe];
9602 
9603 	if (!callee->in_callback_fn)
9604 		return false;
9605 
9606 	kfunc_btf_id = insn[callee->callsite].imm;
9607 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9608 }
9609 
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)9610 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9611 {
9612 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
9613 	struct bpf_func_state *caller, *callee;
9614 	struct bpf_reg_state *r0;
9615 	bool in_callback_fn;
9616 	int err;
9617 
9618 	callee = state->frame[state->curframe];
9619 	r0 = &callee->regs[BPF_REG_0];
9620 	if (r0->type == PTR_TO_STACK) {
9621 		/* technically it's ok to return caller's stack pointer
9622 		 * (or caller's caller's pointer) back to the caller,
9623 		 * since these pointers are valid. Only current stack
9624 		 * pointer will be invalid as soon as function exits,
9625 		 * but let's be conservative
9626 		 */
9627 		verbose(env, "cannot return stack pointer to the caller\n");
9628 		return -EINVAL;
9629 	}
9630 
9631 	caller = state->frame[state->curframe - 1];
9632 	if (callee->in_callback_fn) {
9633 		/* enforce R0 return value range [0, 1]. */
9634 		struct tnum range = callee->callback_ret_range;
9635 
9636 		if (r0->type != SCALAR_VALUE) {
9637 			verbose(env, "R0 not a scalar value\n");
9638 			return -EACCES;
9639 		}
9640 
9641 		/* we are going to rely on register's precise value */
9642 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
9643 		err = err ?: mark_chain_precision(env, BPF_REG_0);
9644 		if (err)
9645 			return err;
9646 
9647 		if (!tnum_in(range, r0->var_off)) {
9648 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9649 			return -EINVAL;
9650 		}
9651 		if (!calls_callback(env, callee->callsite)) {
9652 			verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
9653 				*insn_idx, callee->callsite);
9654 			return -EFAULT;
9655 		}
9656 	} else {
9657 		/* return to the caller whatever r0 had in the callee */
9658 		caller->regs[BPF_REG_0] = *r0;
9659 	}
9660 
9661 	/* callback_fn frame should have released its own additions to parent's
9662 	 * reference state at this point, or check_reference_leak would
9663 	 * complain, hence it must be the same as the caller. There is no need
9664 	 * to copy it back.
9665 	 */
9666 	if (!callee->in_callback_fn) {
9667 		/* Transfer references to the caller */
9668 		err = copy_reference_state(caller, callee);
9669 		if (err)
9670 			return err;
9671 	}
9672 
9673 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
9674 	 * there function call logic would reschedule callback visit. If iteration
9675 	 * converges is_state_visited() would prune that visit eventually.
9676 	 */
9677 	in_callback_fn = callee->in_callback_fn;
9678 	if (in_callback_fn)
9679 		*insn_idx = callee->callsite;
9680 	else
9681 		*insn_idx = callee->callsite + 1;
9682 
9683 	if (env->log.level & BPF_LOG_LEVEL) {
9684 		verbose(env, "returning from callee:\n");
9685 		print_verifier_state(env, callee, true);
9686 		verbose(env, "to caller at %d:\n", *insn_idx);
9687 		print_verifier_state(env, caller, true);
9688 	}
9689 	/* clear everything in the callee */
9690 	free_func_state(callee);
9691 	state->frame[state->curframe--] = NULL;
9692 
9693 	/* for callbacks widen imprecise scalars to make programs like below verify:
9694 	 *
9695 	 *   struct ctx { int i; }
9696 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
9697 	 *   ...
9698 	 *   struct ctx = { .i = 0; }
9699 	 *   bpf_loop(100, cb, &ctx, 0);
9700 	 *
9701 	 * This is similar to what is done in process_iter_next_call() for open
9702 	 * coded iterators.
9703 	 */
9704 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
9705 	if (prev_st) {
9706 		err = widen_imprecise_scalars(env, prev_st, state);
9707 		if (err)
9708 			return err;
9709 	}
9710 	return 0;
9711 }
9712 
do_refine_retval_range(struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)9713 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9714 				   int func_id,
9715 				   struct bpf_call_arg_meta *meta)
9716 {
9717 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9718 
9719 	if (ret_type != RET_INTEGER)
9720 		return;
9721 
9722 	switch (func_id) {
9723 	case BPF_FUNC_get_stack:
9724 	case BPF_FUNC_get_task_stack:
9725 	case BPF_FUNC_probe_read_str:
9726 	case BPF_FUNC_probe_read_kernel_str:
9727 	case BPF_FUNC_probe_read_user_str:
9728 		ret_reg->smax_value = meta->msize_max_value;
9729 		ret_reg->s32_max_value = meta->msize_max_value;
9730 		ret_reg->smin_value = -MAX_ERRNO;
9731 		ret_reg->s32_min_value = -MAX_ERRNO;
9732 		reg_bounds_sync(ret_reg);
9733 		break;
9734 	case BPF_FUNC_get_smp_processor_id:
9735 		ret_reg->umax_value = nr_cpu_ids - 1;
9736 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9737 		ret_reg->smax_value = nr_cpu_ids - 1;
9738 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9739 		ret_reg->umin_value = 0;
9740 		ret_reg->u32_min_value = 0;
9741 		ret_reg->smin_value = 0;
9742 		ret_reg->s32_min_value = 0;
9743 		reg_bounds_sync(ret_reg);
9744 		break;
9745 	}
9746 }
9747 
9748 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)9749 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9750 		int func_id, int insn_idx)
9751 {
9752 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9753 	struct bpf_map *map = meta->map_ptr;
9754 
9755 	if (func_id != BPF_FUNC_tail_call &&
9756 	    func_id != BPF_FUNC_map_lookup_elem &&
9757 	    func_id != BPF_FUNC_map_update_elem &&
9758 	    func_id != BPF_FUNC_map_delete_elem &&
9759 	    func_id != BPF_FUNC_map_push_elem &&
9760 	    func_id != BPF_FUNC_map_pop_elem &&
9761 	    func_id != BPF_FUNC_map_peek_elem &&
9762 	    func_id != BPF_FUNC_for_each_map_elem &&
9763 	    func_id != BPF_FUNC_redirect_map &&
9764 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9765 		return 0;
9766 
9767 	if (map == NULL) {
9768 		verbose(env, "kernel subsystem misconfigured verifier\n");
9769 		return -EINVAL;
9770 	}
9771 
9772 	/* In case of read-only, some additional restrictions
9773 	 * need to be applied in order to prevent altering the
9774 	 * state of the map from program side.
9775 	 */
9776 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9777 	    (func_id == BPF_FUNC_map_delete_elem ||
9778 	     func_id == BPF_FUNC_map_update_elem ||
9779 	     func_id == BPF_FUNC_map_push_elem ||
9780 	     func_id == BPF_FUNC_map_pop_elem)) {
9781 		verbose(env, "write into map forbidden\n");
9782 		return -EACCES;
9783 	}
9784 
9785 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9786 		bpf_map_ptr_store(aux, meta->map_ptr,
9787 				  !meta->map_ptr->bypass_spec_v1);
9788 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9789 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9790 				  !meta->map_ptr->bypass_spec_v1);
9791 	return 0;
9792 }
9793 
9794 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)9795 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9796 		int func_id, int insn_idx)
9797 {
9798 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9799 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9800 	struct bpf_map *map = meta->map_ptr;
9801 	u64 val, max;
9802 	int err;
9803 
9804 	if (func_id != BPF_FUNC_tail_call)
9805 		return 0;
9806 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9807 		verbose(env, "kernel subsystem misconfigured verifier\n");
9808 		return -EINVAL;
9809 	}
9810 
9811 	reg = &regs[BPF_REG_3];
9812 	val = reg->var_off.value;
9813 	max = map->max_entries;
9814 
9815 	if (!(register_is_const(reg) && val < max)) {
9816 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9817 		return 0;
9818 	}
9819 
9820 	err = mark_chain_precision(env, BPF_REG_3);
9821 	if (err)
9822 		return err;
9823 	if (bpf_map_key_unseen(aux))
9824 		bpf_map_key_store(aux, val);
9825 	else if (!bpf_map_key_poisoned(aux) &&
9826 		  bpf_map_key_immediate(aux) != val)
9827 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9828 	return 0;
9829 }
9830 
check_reference_leak(struct bpf_verifier_env * env)9831 static int check_reference_leak(struct bpf_verifier_env *env)
9832 {
9833 	struct bpf_func_state *state = cur_func(env);
9834 	bool refs_lingering = false;
9835 	int i;
9836 
9837 	if (state->frameno && !state->in_callback_fn)
9838 		return 0;
9839 
9840 	for (i = 0; i < state->acquired_refs; i++) {
9841 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9842 			continue;
9843 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9844 			state->refs[i].id, state->refs[i].insn_idx);
9845 		refs_lingering = true;
9846 	}
9847 	return refs_lingering ? -EINVAL : 0;
9848 }
9849 
check_bpf_snprintf_call(struct bpf_verifier_env * env,struct bpf_reg_state * regs)9850 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9851 				   struct bpf_reg_state *regs)
9852 {
9853 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9854 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9855 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9856 	struct bpf_bprintf_data data = {};
9857 	int err, fmt_map_off, num_args;
9858 	u64 fmt_addr;
9859 	char *fmt;
9860 
9861 	/* data must be an array of u64 */
9862 	if (data_len_reg->var_off.value % 8)
9863 		return -EINVAL;
9864 	num_args = data_len_reg->var_off.value / 8;
9865 
9866 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9867 	 * and map_direct_value_addr is set.
9868 	 */
9869 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9870 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9871 						  fmt_map_off);
9872 	if (err) {
9873 		verbose(env, "verifier bug\n");
9874 		return -EFAULT;
9875 	}
9876 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9877 
9878 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9879 	 * can focus on validating the format specifiers.
9880 	 */
9881 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9882 	if (err < 0)
9883 		verbose(env, "Invalid format string\n");
9884 
9885 	return err;
9886 }
9887 
check_get_func_ip(struct bpf_verifier_env * env)9888 static int check_get_func_ip(struct bpf_verifier_env *env)
9889 {
9890 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9891 	int func_id = BPF_FUNC_get_func_ip;
9892 
9893 	if (type == BPF_PROG_TYPE_TRACING) {
9894 		if (!bpf_prog_has_trampoline(env->prog)) {
9895 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9896 				func_id_name(func_id), func_id);
9897 			return -ENOTSUPP;
9898 		}
9899 		return 0;
9900 	} else if (type == BPF_PROG_TYPE_KPROBE) {
9901 		return 0;
9902 	}
9903 
9904 	verbose(env, "func %s#%d not supported for program type %d\n",
9905 		func_id_name(func_id), func_id, type);
9906 	return -ENOTSUPP;
9907 }
9908 
cur_aux(struct bpf_verifier_env * env)9909 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9910 {
9911 	return &env->insn_aux_data[env->insn_idx];
9912 }
9913 
loop_flag_is_zero(struct bpf_verifier_env * env)9914 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9915 {
9916 	struct bpf_reg_state *regs = cur_regs(env);
9917 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
9918 	bool reg_is_null = register_is_null(reg);
9919 
9920 	if (reg_is_null)
9921 		mark_chain_precision(env, BPF_REG_4);
9922 
9923 	return reg_is_null;
9924 }
9925 
update_loop_inline_state(struct bpf_verifier_env * env,u32 subprogno)9926 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9927 {
9928 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9929 
9930 	if (!state->initialized) {
9931 		state->initialized = 1;
9932 		state->fit_for_inline = loop_flag_is_zero(env);
9933 		state->callback_subprogno = subprogno;
9934 		return;
9935 	}
9936 
9937 	if (!state->fit_for_inline)
9938 		return;
9939 
9940 	state->fit_for_inline = (loop_flag_is_zero(env) &&
9941 				 state->callback_subprogno == subprogno);
9942 }
9943 
check_helper_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)9944 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9945 			     int *insn_idx_p)
9946 {
9947 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9948 	const struct bpf_func_proto *fn = NULL;
9949 	enum bpf_return_type ret_type;
9950 	enum bpf_type_flag ret_flag;
9951 	struct bpf_reg_state *regs;
9952 	struct bpf_call_arg_meta meta;
9953 	int insn_idx = *insn_idx_p;
9954 	bool changes_data;
9955 	int i, err, func_id;
9956 
9957 	/* find function prototype */
9958 	func_id = insn->imm;
9959 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9960 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9961 			func_id);
9962 		return -EINVAL;
9963 	}
9964 
9965 	if (env->ops->get_func_proto)
9966 		fn = env->ops->get_func_proto(func_id, env->prog);
9967 	if (!fn) {
9968 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9969 			func_id);
9970 		return -EINVAL;
9971 	}
9972 
9973 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
9974 	if (!env->prog->gpl_compatible && fn->gpl_only) {
9975 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
9976 		return -EINVAL;
9977 	}
9978 
9979 	if (fn->allowed && !fn->allowed(env->prog)) {
9980 		verbose(env, "helper call is not allowed in probe\n");
9981 		return -EINVAL;
9982 	}
9983 
9984 	if (!env->prog->aux->sleepable && fn->might_sleep) {
9985 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
9986 		return -EINVAL;
9987 	}
9988 
9989 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
9990 	changes_data = bpf_helper_changes_pkt_data(fn->func);
9991 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
9992 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
9993 			func_id_name(func_id), func_id);
9994 		return -EINVAL;
9995 	}
9996 
9997 	memset(&meta, 0, sizeof(meta));
9998 	meta.pkt_access = fn->pkt_access;
9999 
10000 	err = check_func_proto(fn, func_id);
10001 	if (err) {
10002 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10003 			func_id_name(func_id), func_id);
10004 		return err;
10005 	}
10006 
10007 	if (env->cur_state->active_rcu_lock) {
10008 		if (fn->might_sleep) {
10009 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10010 				func_id_name(func_id), func_id);
10011 			return -EINVAL;
10012 		}
10013 
10014 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
10015 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10016 	}
10017 
10018 	meta.func_id = func_id;
10019 	/* check args */
10020 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10021 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10022 		if (err)
10023 			return err;
10024 	}
10025 
10026 	err = record_func_map(env, &meta, func_id, insn_idx);
10027 	if (err)
10028 		return err;
10029 
10030 	err = record_func_key(env, &meta, func_id, insn_idx);
10031 	if (err)
10032 		return err;
10033 
10034 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10035 	 * is inferred from register state.
10036 	 */
10037 	for (i = 0; i < meta.access_size; i++) {
10038 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10039 				       BPF_WRITE, -1, false, false);
10040 		if (err)
10041 			return err;
10042 	}
10043 
10044 	regs = cur_regs(env);
10045 
10046 	if (meta.release_regno) {
10047 		err = -EINVAL;
10048 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10049 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10050 		 * is safe to do directly.
10051 		 */
10052 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10053 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10054 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10055 				return -EFAULT;
10056 			}
10057 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10058 		} else if (meta.ref_obj_id) {
10059 			err = release_reference(env, meta.ref_obj_id);
10060 		} else if (register_is_null(&regs[meta.release_regno])) {
10061 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10062 			 * released is NULL, which must be > R0.
10063 			 */
10064 			err = 0;
10065 		}
10066 		if (err) {
10067 			verbose(env, "func %s#%d reference has not been acquired before\n",
10068 				func_id_name(func_id), func_id);
10069 			return err;
10070 		}
10071 	}
10072 
10073 	switch (func_id) {
10074 	case BPF_FUNC_tail_call:
10075 		err = check_reference_leak(env);
10076 		if (err) {
10077 			verbose(env, "tail_call would lead to reference leak\n");
10078 			return err;
10079 		}
10080 		break;
10081 	case BPF_FUNC_get_local_storage:
10082 		/* check that flags argument in get_local_storage(map, flags) is 0,
10083 		 * this is required because get_local_storage() can't return an error.
10084 		 */
10085 		if (!register_is_null(&regs[BPF_REG_2])) {
10086 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10087 			return -EINVAL;
10088 		}
10089 		break;
10090 	case BPF_FUNC_for_each_map_elem:
10091 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10092 					 set_map_elem_callback_state);
10093 		break;
10094 	case BPF_FUNC_timer_set_callback:
10095 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10096 					 set_timer_callback_state);
10097 		break;
10098 	case BPF_FUNC_find_vma:
10099 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10100 					 set_find_vma_callback_state);
10101 		break;
10102 	case BPF_FUNC_snprintf:
10103 		err = check_bpf_snprintf_call(env, regs);
10104 		break;
10105 	case BPF_FUNC_loop:
10106 		update_loop_inline_state(env, meta.subprogno);
10107 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
10108 		 * is finished, thus mark it precise.
10109 		 */
10110 		err = mark_chain_precision(env, BPF_REG_1);
10111 		if (err)
10112 			return err;
10113 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10114 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10115 						 set_loop_callback_state);
10116 		} else {
10117 			cur_func(env)->callback_depth = 0;
10118 			if (env->log.level & BPF_LOG_LEVEL2)
10119 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
10120 					env->cur_state->curframe);
10121 		}
10122 		break;
10123 	case BPF_FUNC_dynptr_from_mem:
10124 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10125 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10126 				reg_type_str(env, regs[BPF_REG_1].type));
10127 			return -EACCES;
10128 		}
10129 		break;
10130 	case BPF_FUNC_set_retval:
10131 		if (prog_type == BPF_PROG_TYPE_LSM &&
10132 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10133 			if (!env->prog->aux->attach_func_proto->type) {
10134 				/* Make sure programs that attach to void
10135 				 * hooks don't try to modify return value.
10136 				 */
10137 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10138 				return -EINVAL;
10139 			}
10140 		}
10141 		break;
10142 	case BPF_FUNC_dynptr_data:
10143 	{
10144 		struct bpf_reg_state *reg;
10145 		int id, ref_obj_id;
10146 
10147 		reg = get_dynptr_arg_reg(env, fn, regs);
10148 		if (!reg)
10149 			return -EFAULT;
10150 
10151 
10152 		if (meta.dynptr_id) {
10153 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10154 			return -EFAULT;
10155 		}
10156 		if (meta.ref_obj_id) {
10157 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10158 			return -EFAULT;
10159 		}
10160 
10161 		id = dynptr_id(env, reg);
10162 		if (id < 0) {
10163 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10164 			return id;
10165 		}
10166 
10167 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10168 		if (ref_obj_id < 0) {
10169 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10170 			return ref_obj_id;
10171 		}
10172 
10173 		meta.dynptr_id = id;
10174 		meta.ref_obj_id = ref_obj_id;
10175 
10176 		break;
10177 	}
10178 	case BPF_FUNC_dynptr_write:
10179 	{
10180 		enum bpf_dynptr_type dynptr_type;
10181 		struct bpf_reg_state *reg;
10182 
10183 		reg = get_dynptr_arg_reg(env, fn, regs);
10184 		if (!reg)
10185 			return -EFAULT;
10186 
10187 		dynptr_type = dynptr_get_type(env, reg);
10188 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10189 			return -EFAULT;
10190 
10191 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10192 			/* this will trigger clear_all_pkt_pointers(), which will
10193 			 * invalidate all dynptr slices associated with the skb
10194 			 */
10195 			changes_data = true;
10196 
10197 		break;
10198 	}
10199 	case BPF_FUNC_user_ringbuf_drain:
10200 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10201 					 set_user_ringbuf_callback_state);
10202 		break;
10203 	}
10204 
10205 	if (err)
10206 		return err;
10207 
10208 	/* reset caller saved regs */
10209 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10210 		mark_reg_not_init(env, regs, caller_saved[i]);
10211 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10212 	}
10213 
10214 	/* helper call returns 64-bit value. */
10215 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10216 
10217 	/* update return register (already marked as written above) */
10218 	ret_type = fn->ret_type;
10219 	ret_flag = type_flag(ret_type);
10220 
10221 	switch (base_type(ret_type)) {
10222 	case RET_INTEGER:
10223 		/* sets type to SCALAR_VALUE */
10224 		mark_reg_unknown(env, regs, BPF_REG_0);
10225 		break;
10226 	case RET_VOID:
10227 		regs[BPF_REG_0].type = NOT_INIT;
10228 		break;
10229 	case RET_PTR_TO_MAP_VALUE:
10230 		/* There is no offset yet applied, variable or fixed */
10231 		mark_reg_known_zero(env, regs, BPF_REG_0);
10232 		/* remember map_ptr, so that check_map_access()
10233 		 * can check 'value_size' boundary of memory access
10234 		 * to map element returned from bpf_map_lookup_elem()
10235 		 */
10236 		if (meta.map_ptr == NULL) {
10237 			verbose(env,
10238 				"kernel subsystem misconfigured verifier\n");
10239 			return -EINVAL;
10240 		}
10241 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10242 		regs[BPF_REG_0].map_uid = meta.map_uid;
10243 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10244 		if (!type_may_be_null(ret_type) &&
10245 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10246 			regs[BPF_REG_0].id = ++env->id_gen;
10247 		}
10248 		break;
10249 	case RET_PTR_TO_SOCKET:
10250 		mark_reg_known_zero(env, regs, BPF_REG_0);
10251 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10252 		break;
10253 	case RET_PTR_TO_SOCK_COMMON:
10254 		mark_reg_known_zero(env, regs, BPF_REG_0);
10255 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10256 		break;
10257 	case RET_PTR_TO_TCP_SOCK:
10258 		mark_reg_known_zero(env, regs, BPF_REG_0);
10259 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10260 		break;
10261 	case RET_PTR_TO_MEM:
10262 		mark_reg_known_zero(env, regs, BPF_REG_0);
10263 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10264 		regs[BPF_REG_0].mem_size = meta.mem_size;
10265 		break;
10266 	case RET_PTR_TO_MEM_OR_BTF_ID:
10267 	{
10268 		const struct btf_type *t;
10269 
10270 		mark_reg_known_zero(env, regs, BPF_REG_0);
10271 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10272 		if (!btf_type_is_struct(t)) {
10273 			u32 tsize;
10274 			const struct btf_type *ret;
10275 			const char *tname;
10276 
10277 			/* resolve the type size of ksym. */
10278 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10279 			if (IS_ERR(ret)) {
10280 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10281 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10282 					tname, PTR_ERR(ret));
10283 				return -EINVAL;
10284 			}
10285 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10286 			regs[BPF_REG_0].mem_size = tsize;
10287 		} else {
10288 			/* MEM_RDONLY may be carried from ret_flag, but it
10289 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10290 			 * it will confuse the check of PTR_TO_BTF_ID in
10291 			 * check_mem_access().
10292 			 */
10293 			ret_flag &= ~MEM_RDONLY;
10294 
10295 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10296 			regs[BPF_REG_0].btf = meta.ret_btf;
10297 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10298 		}
10299 		break;
10300 	}
10301 	case RET_PTR_TO_BTF_ID:
10302 	{
10303 		struct btf *ret_btf;
10304 		int ret_btf_id;
10305 
10306 		mark_reg_known_zero(env, regs, BPF_REG_0);
10307 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10308 		if (func_id == BPF_FUNC_kptr_xchg) {
10309 			ret_btf = meta.kptr_field->kptr.btf;
10310 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10311 			if (!btf_is_kernel(ret_btf))
10312 				regs[BPF_REG_0].type |= MEM_ALLOC;
10313 		} else {
10314 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10315 				verbose(env, "verifier internal error:");
10316 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10317 					func_id_name(func_id));
10318 				return -EINVAL;
10319 			}
10320 			ret_btf = btf_vmlinux;
10321 			ret_btf_id = *fn->ret_btf_id;
10322 		}
10323 		if (ret_btf_id == 0) {
10324 			verbose(env, "invalid return type %u of func %s#%d\n",
10325 				base_type(ret_type), func_id_name(func_id),
10326 				func_id);
10327 			return -EINVAL;
10328 		}
10329 		regs[BPF_REG_0].btf = ret_btf;
10330 		regs[BPF_REG_0].btf_id = ret_btf_id;
10331 		break;
10332 	}
10333 	default:
10334 		verbose(env, "unknown return type %u of func %s#%d\n",
10335 			base_type(ret_type), func_id_name(func_id), func_id);
10336 		return -EINVAL;
10337 	}
10338 
10339 	if (type_may_be_null(regs[BPF_REG_0].type))
10340 		regs[BPF_REG_0].id = ++env->id_gen;
10341 
10342 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10343 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10344 			func_id_name(func_id), func_id);
10345 		return -EFAULT;
10346 	}
10347 
10348 	if (is_dynptr_ref_function(func_id))
10349 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10350 
10351 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10352 		/* For release_reference() */
10353 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10354 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10355 		int id = acquire_reference_state(env, insn_idx);
10356 
10357 		if (id < 0)
10358 			return id;
10359 		/* For mark_ptr_or_null_reg() */
10360 		regs[BPF_REG_0].id = id;
10361 		/* For release_reference() */
10362 		regs[BPF_REG_0].ref_obj_id = id;
10363 	}
10364 
10365 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
10366 
10367 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10368 	if (err)
10369 		return err;
10370 
10371 	if ((func_id == BPF_FUNC_get_stack ||
10372 	     func_id == BPF_FUNC_get_task_stack) &&
10373 	    !env->prog->has_callchain_buf) {
10374 		const char *err_str;
10375 
10376 #ifdef CONFIG_PERF_EVENTS
10377 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10378 		err_str = "cannot get callchain buffer for func %s#%d\n";
10379 #else
10380 		err = -ENOTSUPP;
10381 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10382 #endif
10383 		if (err) {
10384 			verbose(env, err_str, func_id_name(func_id), func_id);
10385 			return err;
10386 		}
10387 
10388 		env->prog->has_callchain_buf = true;
10389 	}
10390 
10391 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10392 		env->prog->call_get_stack = true;
10393 
10394 	if (func_id == BPF_FUNC_get_func_ip) {
10395 		if (check_get_func_ip(env))
10396 			return -ENOTSUPP;
10397 		env->prog->call_get_func_ip = true;
10398 	}
10399 
10400 	if (changes_data)
10401 		clear_all_pkt_pointers(env);
10402 	return 0;
10403 }
10404 
10405 /* mark_btf_func_reg_size() is used when the reg size is determined by
10406  * the BTF func_proto's return value size and argument.
10407  */
mark_btf_func_reg_size(struct bpf_verifier_env * env,u32 regno,size_t reg_size)10408 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10409 				   size_t reg_size)
10410 {
10411 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10412 
10413 	if (regno == BPF_REG_0) {
10414 		/* Function return value */
10415 		reg->live |= REG_LIVE_WRITTEN;
10416 		reg->subreg_def = reg_size == sizeof(u64) ?
10417 			DEF_NOT_SUBREG : env->insn_idx + 1;
10418 	} else {
10419 		/* Function argument */
10420 		if (reg_size == sizeof(u64)) {
10421 			mark_insn_zext(env, reg);
10422 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10423 		} else {
10424 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10425 		}
10426 	}
10427 }
10428 
is_kfunc_acquire(struct bpf_kfunc_call_arg_meta * meta)10429 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10430 {
10431 	return meta->kfunc_flags & KF_ACQUIRE;
10432 }
10433 
is_kfunc_release(struct bpf_kfunc_call_arg_meta * meta)10434 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10435 {
10436 	return meta->kfunc_flags & KF_RELEASE;
10437 }
10438 
is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta * meta)10439 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10440 {
10441 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10442 }
10443 
is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta * meta)10444 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10445 {
10446 	return meta->kfunc_flags & KF_SLEEPABLE;
10447 }
10448 
is_kfunc_destructive(struct bpf_kfunc_call_arg_meta * meta)10449 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10450 {
10451 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10452 }
10453 
is_kfunc_rcu(struct bpf_kfunc_call_arg_meta * meta)10454 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10455 {
10456 	return meta->kfunc_flags & KF_RCU;
10457 }
10458 
__kfunc_param_match_suffix(const struct btf * btf,const struct btf_param * arg,const char * suffix)10459 static bool __kfunc_param_match_suffix(const struct btf *btf,
10460 				       const struct btf_param *arg,
10461 				       const char *suffix)
10462 {
10463 	int suffix_len = strlen(suffix), len;
10464 	const char *param_name;
10465 
10466 	/* In the future, this can be ported to use BTF tagging */
10467 	param_name = btf_name_by_offset(btf, arg->name_off);
10468 	if (str_is_empty(param_name))
10469 		return false;
10470 	len = strlen(param_name);
10471 	if (len < suffix_len)
10472 		return false;
10473 	param_name += len - suffix_len;
10474 	return !strncmp(param_name, suffix, suffix_len);
10475 }
10476 
is_kfunc_arg_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)10477 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10478 				  const struct btf_param *arg,
10479 				  const struct bpf_reg_state *reg)
10480 {
10481 	const struct btf_type *t;
10482 
10483 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10484 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10485 		return false;
10486 
10487 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10488 }
10489 
is_kfunc_arg_const_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)10490 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10491 					const struct btf_param *arg,
10492 					const struct bpf_reg_state *reg)
10493 {
10494 	const struct btf_type *t;
10495 
10496 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10497 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10498 		return false;
10499 
10500 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10501 }
10502 
is_kfunc_arg_optional(const struct btf * btf,const struct btf_param * arg)10503 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10504 {
10505 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10506 }
10507 
is_kfunc_arg_constant(const struct btf * btf,const struct btf_param * arg)10508 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10509 {
10510 	return __kfunc_param_match_suffix(btf, arg, "__k");
10511 }
10512 
is_kfunc_arg_ignore(const struct btf * btf,const struct btf_param * arg)10513 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10514 {
10515 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10516 }
10517 
is_kfunc_arg_alloc_obj(const struct btf * btf,const struct btf_param * arg)10518 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10519 {
10520 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10521 }
10522 
is_kfunc_arg_uninit(const struct btf * btf,const struct btf_param * arg)10523 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10524 {
10525 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10526 }
10527 
is_kfunc_arg_refcounted_kptr(const struct btf * btf,const struct btf_param * arg)10528 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10529 {
10530 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10531 }
10532 
is_kfunc_arg_scalar_with_name(const struct btf * btf,const struct btf_param * arg,const char * name)10533 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10534 					  const struct btf_param *arg,
10535 					  const char *name)
10536 {
10537 	int len, target_len = strlen(name);
10538 	const char *param_name;
10539 
10540 	param_name = btf_name_by_offset(btf, arg->name_off);
10541 	if (str_is_empty(param_name))
10542 		return false;
10543 	len = strlen(param_name);
10544 	if (len != target_len)
10545 		return false;
10546 	if (strcmp(param_name, name))
10547 		return false;
10548 
10549 	return true;
10550 }
10551 
10552 enum {
10553 	KF_ARG_DYNPTR_ID,
10554 	KF_ARG_LIST_HEAD_ID,
10555 	KF_ARG_LIST_NODE_ID,
10556 	KF_ARG_RB_ROOT_ID,
10557 	KF_ARG_RB_NODE_ID,
10558 };
10559 
10560 BTF_ID_LIST(kf_arg_btf_ids)
BTF_ID(struct,bpf_dynptr_kern)10561 BTF_ID(struct, bpf_dynptr_kern)
10562 BTF_ID(struct, bpf_list_head)
10563 BTF_ID(struct, bpf_list_node)
10564 BTF_ID(struct, bpf_rb_root)
10565 BTF_ID(struct, bpf_rb_node)
10566 
10567 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10568 				    const struct btf_param *arg, int type)
10569 {
10570 	const struct btf_type *t;
10571 	u32 res_id;
10572 
10573 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10574 	if (!t)
10575 		return false;
10576 	if (!btf_type_is_ptr(t))
10577 		return false;
10578 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10579 	if (!t)
10580 		return false;
10581 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10582 }
10583 
is_kfunc_arg_dynptr(const struct btf * btf,const struct btf_param * arg)10584 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10585 {
10586 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10587 }
10588 
is_kfunc_arg_list_head(const struct btf * btf,const struct btf_param * arg)10589 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10590 {
10591 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10592 }
10593 
is_kfunc_arg_list_node(const struct btf * btf,const struct btf_param * arg)10594 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10595 {
10596 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10597 }
10598 
is_kfunc_arg_rbtree_root(const struct btf * btf,const struct btf_param * arg)10599 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10600 {
10601 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10602 }
10603 
is_kfunc_arg_rbtree_node(const struct btf * btf,const struct btf_param * arg)10604 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10605 {
10606 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10607 }
10608 
is_kfunc_arg_callback(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_param * arg)10609 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10610 				  const struct btf_param *arg)
10611 {
10612 	const struct btf_type *t;
10613 
10614 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10615 	if (!t)
10616 		return false;
10617 
10618 	return true;
10619 }
10620 
10621 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
__btf_type_is_scalar_struct(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_type * t,int rec)10622 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10623 					const struct btf *btf,
10624 					const struct btf_type *t, int rec)
10625 {
10626 	const struct btf_type *member_type;
10627 	const struct btf_member *member;
10628 	u32 i;
10629 
10630 	if (!btf_type_is_struct(t))
10631 		return false;
10632 
10633 	for_each_member(i, t, member) {
10634 		const struct btf_array *array;
10635 
10636 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10637 		if (btf_type_is_struct(member_type)) {
10638 			if (rec >= 3) {
10639 				verbose(env, "max struct nesting depth exceeded\n");
10640 				return false;
10641 			}
10642 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10643 				return false;
10644 			continue;
10645 		}
10646 		if (btf_type_is_array(member_type)) {
10647 			array = btf_array(member_type);
10648 			if (!array->nelems)
10649 				return false;
10650 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10651 			if (!btf_type_is_scalar(member_type))
10652 				return false;
10653 			continue;
10654 		}
10655 		if (!btf_type_is_scalar(member_type))
10656 			return false;
10657 	}
10658 	return true;
10659 }
10660 
10661 enum kfunc_ptr_arg_type {
10662 	KF_ARG_PTR_TO_CTX,
10663 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10664 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10665 	KF_ARG_PTR_TO_DYNPTR,
10666 	KF_ARG_PTR_TO_ITER,
10667 	KF_ARG_PTR_TO_LIST_HEAD,
10668 	KF_ARG_PTR_TO_LIST_NODE,
10669 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10670 	KF_ARG_PTR_TO_MEM,
10671 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10672 	KF_ARG_PTR_TO_CALLBACK,
10673 	KF_ARG_PTR_TO_RB_ROOT,
10674 	KF_ARG_PTR_TO_RB_NODE,
10675 };
10676 
10677 enum special_kfunc_type {
10678 	KF_bpf_obj_new_impl,
10679 	KF_bpf_obj_drop_impl,
10680 	KF_bpf_refcount_acquire_impl,
10681 	KF_bpf_list_push_front_impl,
10682 	KF_bpf_list_push_back_impl,
10683 	KF_bpf_list_pop_front,
10684 	KF_bpf_list_pop_back,
10685 	KF_bpf_cast_to_kern_ctx,
10686 	KF_bpf_rdonly_cast,
10687 	KF_bpf_rcu_read_lock,
10688 	KF_bpf_rcu_read_unlock,
10689 	KF_bpf_rbtree_remove,
10690 	KF_bpf_rbtree_add_impl,
10691 	KF_bpf_rbtree_first,
10692 	KF_bpf_dynptr_from_skb,
10693 	KF_bpf_dynptr_from_xdp,
10694 	KF_bpf_dynptr_slice,
10695 	KF_bpf_dynptr_slice_rdwr,
10696 	KF_bpf_dynptr_clone,
10697 };
10698 
10699 BTF_SET_START(special_kfunc_set)
BTF_ID(func,bpf_obj_new_impl)10700 BTF_ID(func, bpf_obj_new_impl)
10701 BTF_ID(func, bpf_obj_drop_impl)
10702 BTF_ID(func, bpf_refcount_acquire_impl)
10703 BTF_ID(func, bpf_list_push_front_impl)
10704 BTF_ID(func, bpf_list_push_back_impl)
10705 BTF_ID(func, bpf_list_pop_front)
10706 BTF_ID(func, bpf_list_pop_back)
10707 BTF_ID(func, bpf_cast_to_kern_ctx)
10708 BTF_ID(func, bpf_rdonly_cast)
10709 BTF_ID(func, bpf_rbtree_remove)
10710 BTF_ID(func, bpf_rbtree_add_impl)
10711 BTF_ID(func, bpf_rbtree_first)
10712 BTF_ID(func, bpf_dynptr_from_skb)
10713 BTF_ID(func, bpf_dynptr_from_xdp)
10714 BTF_ID(func, bpf_dynptr_slice)
10715 BTF_ID(func, bpf_dynptr_slice_rdwr)
10716 BTF_ID(func, bpf_dynptr_clone)
10717 BTF_SET_END(special_kfunc_set)
10718 
10719 BTF_ID_LIST(special_kfunc_list)
10720 BTF_ID(func, bpf_obj_new_impl)
10721 BTF_ID(func, bpf_obj_drop_impl)
10722 BTF_ID(func, bpf_refcount_acquire_impl)
10723 BTF_ID(func, bpf_list_push_front_impl)
10724 BTF_ID(func, bpf_list_push_back_impl)
10725 BTF_ID(func, bpf_list_pop_front)
10726 BTF_ID(func, bpf_list_pop_back)
10727 BTF_ID(func, bpf_cast_to_kern_ctx)
10728 BTF_ID(func, bpf_rdonly_cast)
10729 BTF_ID(func, bpf_rcu_read_lock)
10730 BTF_ID(func, bpf_rcu_read_unlock)
10731 BTF_ID(func, bpf_rbtree_remove)
10732 BTF_ID(func, bpf_rbtree_add_impl)
10733 BTF_ID(func, bpf_rbtree_first)
10734 BTF_ID(func, bpf_dynptr_from_skb)
10735 BTF_ID(func, bpf_dynptr_from_xdp)
10736 BTF_ID(func, bpf_dynptr_slice)
10737 BTF_ID(func, bpf_dynptr_slice_rdwr)
10738 BTF_ID(func, bpf_dynptr_clone)
10739 
10740 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10741 {
10742 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10743 	    meta->arg_owning_ref) {
10744 		return false;
10745 	}
10746 
10747 	return meta->kfunc_flags & KF_RET_NULL;
10748 }
10749 
is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta * meta)10750 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10751 {
10752 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10753 }
10754 
is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta * meta)10755 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10756 {
10757 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10758 }
10759 
10760 static enum kfunc_ptr_arg_type
get_kfunc_ptr_arg_type(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,const struct btf_type * t,const struct btf_type * ref_t,const char * ref_tname,const struct btf_param * args,int argno,int nargs)10761 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10762 		       struct bpf_kfunc_call_arg_meta *meta,
10763 		       const struct btf_type *t, const struct btf_type *ref_t,
10764 		       const char *ref_tname, const struct btf_param *args,
10765 		       int argno, int nargs)
10766 {
10767 	u32 regno = argno + 1;
10768 	struct bpf_reg_state *regs = cur_regs(env);
10769 	struct bpf_reg_state *reg = &regs[regno];
10770 	bool arg_mem_size = false;
10771 
10772 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10773 		return KF_ARG_PTR_TO_CTX;
10774 
10775 	/* In this function, we verify the kfunc's BTF as per the argument type,
10776 	 * leaving the rest of the verification with respect to the register
10777 	 * type to our caller. When a set of conditions hold in the BTF type of
10778 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10779 	 */
10780 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10781 		return KF_ARG_PTR_TO_CTX;
10782 
10783 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10784 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10785 
10786 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10787 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10788 
10789 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10790 		return KF_ARG_PTR_TO_DYNPTR;
10791 
10792 	if (is_kfunc_arg_iter(meta, argno))
10793 		return KF_ARG_PTR_TO_ITER;
10794 
10795 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10796 		return KF_ARG_PTR_TO_LIST_HEAD;
10797 
10798 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10799 		return KF_ARG_PTR_TO_LIST_NODE;
10800 
10801 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10802 		return KF_ARG_PTR_TO_RB_ROOT;
10803 
10804 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10805 		return KF_ARG_PTR_TO_RB_NODE;
10806 
10807 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10808 		if (!btf_type_is_struct(ref_t)) {
10809 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10810 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10811 			return -EINVAL;
10812 		}
10813 		return KF_ARG_PTR_TO_BTF_ID;
10814 	}
10815 
10816 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10817 		return KF_ARG_PTR_TO_CALLBACK;
10818 
10819 
10820 	if (argno + 1 < nargs &&
10821 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10822 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10823 		arg_mem_size = true;
10824 
10825 	/* This is the catch all argument type of register types supported by
10826 	 * check_helper_mem_access. However, we only allow when argument type is
10827 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10828 	 * arg_mem_size is true, the pointer can be void *.
10829 	 */
10830 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10831 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10832 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10833 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10834 		return -EINVAL;
10835 	}
10836 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10837 }
10838 
process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const struct btf_type * ref_t,const char * ref_tname,u32 ref_id,struct bpf_kfunc_call_arg_meta * meta,int argno)10839 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10840 					struct bpf_reg_state *reg,
10841 					const struct btf_type *ref_t,
10842 					const char *ref_tname, u32 ref_id,
10843 					struct bpf_kfunc_call_arg_meta *meta,
10844 					int argno)
10845 {
10846 	const struct btf_type *reg_ref_t;
10847 	bool strict_type_match = false;
10848 	const struct btf *reg_btf;
10849 	const char *reg_ref_tname;
10850 	u32 reg_ref_id;
10851 
10852 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
10853 		reg_btf = reg->btf;
10854 		reg_ref_id = reg->btf_id;
10855 	} else {
10856 		reg_btf = btf_vmlinux;
10857 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10858 	}
10859 
10860 	/* Enforce strict type matching for calls to kfuncs that are acquiring
10861 	 * or releasing a reference, or are no-cast aliases. We do _not_
10862 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10863 	 * as we want to enable BPF programs to pass types that are bitwise
10864 	 * equivalent without forcing them to explicitly cast with something
10865 	 * like bpf_cast_to_kern_ctx().
10866 	 *
10867 	 * For example, say we had a type like the following:
10868 	 *
10869 	 * struct bpf_cpumask {
10870 	 *	cpumask_t cpumask;
10871 	 *	refcount_t usage;
10872 	 * };
10873 	 *
10874 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10875 	 * to a struct cpumask, so it would be safe to pass a struct
10876 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10877 	 *
10878 	 * The philosophy here is similar to how we allow scalars of different
10879 	 * types to be passed to kfuncs as long as the size is the same. The
10880 	 * only difference here is that we're simply allowing
10881 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10882 	 * resolve types.
10883 	 */
10884 	if (is_kfunc_acquire(meta) ||
10885 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
10886 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10887 		strict_type_match = true;
10888 
10889 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10890 
10891 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
10892 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10893 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10894 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10895 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10896 			btf_type_str(reg_ref_t), reg_ref_tname);
10897 		return -EINVAL;
10898 	}
10899 	return 0;
10900 }
10901 
ref_set_non_owning(struct bpf_verifier_env * env,struct bpf_reg_state * reg)10902 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10903 {
10904 	struct bpf_verifier_state *state = env->cur_state;
10905 	struct btf_record *rec = reg_btf_record(reg);
10906 
10907 	if (!state->active_lock.ptr) {
10908 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10909 		return -EFAULT;
10910 	}
10911 
10912 	if (type_flag(reg->type) & NON_OWN_REF) {
10913 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10914 		return -EFAULT;
10915 	}
10916 
10917 	reg->type |= NON_OWN_REF;
10918 	if (rec->refcount_off >= 0)
10919 		reg->type |= MEM_RCU;
10920 
10921 	return 0;
10922 }
10923 
ref_convert_owning_non_owning(struct bpf_verifier_env * env,u32 ref_obj_id)10924 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10925 {
10926 	struct bpf_func_state *state, *unused;
10927 	struct bpf_reg_state *reg;
10928 	int i;
10929 
10930 	state = cur_func(env);
10931 
10932 	if (!ref_obj_id) {
10933 		verbose(env, "verifier internal error: ref_obj_id is zero for "
10934 			     "owning -> non-owning conversion\n");
10935 		return -EFAULT;
10936 	}
10937 
10938 	for (i = 0; i < state->acquired_refs; i++) {
10939 		if (state->refs[i].id != ref_obj_id)
10940 			continue;
10941 
10942 		/* Clear ref_obj_id here so release_reference doesn't clobber
10943 		 * the whole reg
10944 		 */
10945 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10946 			if (reg->ref_obj_id == ref_obj_id) {
10947 				reg->ref_obj_id = 0;
10948 				ref_set_non_owning(env, reg);
10949 			}
10950 		}));
10951 		return 0;
10952 	}
10953 
10954 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10955 	return -EFAULT;
10956 }
10957 
10958 /* Implementation details:
10959  *
10960  * Each register points to some region of memory, which we define as an
10961  * allocation. Each allocation may embed a bpf_spin_lock which protects any
10962  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10963  * allocation. The lock and the data it protects are colocated in the same
10964  * memory region.
10965  *
10966  * Hence, everytime a register holds a pointer value pointing to such
10967  * allocation, the verifier preserves a unique reg->id for it.
10968  *
10969  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10970  * bpf_spin_lock is called.
10971  *
10972  * To enable this, lock state in the verifier captures two values:
10973  *	active_lock.ptr = Register's type specific pointer
10974  *	active_lock.id  = A unique ID for each register pointer value
10975  *
10976  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10977  * supported register types.
10978  *
10979  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
10980  * allocated objects is the reg->btf pointer.
10981  *
10982  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
10983  * can establish the provenance of the map value statically for each distinct
10984  * lookup into such maps. They always contain a single map value hence unique
10985  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
10986  *
10987  * So, in case of global variables, they use array maps with max_entries = 1,
10988  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
10989  * into the same map value as max_entries is 1, as described above).
10990  *
10991  * In case of inner map lookups, the inner map pointer has same map_ptr as the
10992  * outer map pointer (in verifier context), but each lookup into an inner map
10993  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
10994  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
10995  * will get different reg->id assigned to each lookup, hence different
10996  * active_lock.id.
10997  *
10998  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
10999  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11000  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11001  */
check_reg_allocation_locked(struct bpf_verifier_env * env,struct bpf_reg_state * reg)11002 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11003 {
11004 	void *ptr;
11005 	u32 id;
11006 
11007 	switch ((int)reg->type) {
11008 	case PTR_TO_MAP_VALUE:
11009 		ptr = reg->map_ptr;
11010 		break;
11011 	case PTR_TO_BTF_ID | MEM_ALLOC:
11012 		ptr = reg->btf;
11013 		break;
11014 	default:
11015 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11016 		return -EFAULT;
11017 	}
11018 	id = reg->id;
11019 
11020 	if (!env->cur_state->active_lock.ptr)
11021 		return -EINVAL;
11022 	if (env->cur_state->active_lock.ptr != ptr ||
11023 	    env->cur_state->active_lock.id != id) {
11024 		verbose(env, "held lock and object are not in the same allocation\n");
11025 		return -EINVAL;
11026 	}
11027 	return 0;
11028 }
11029 
is_bpf_list_api_kfunc(u32 btf_id)11030 static bool is_bpf_list_api_kfunc(u32 btf_id)
11031 {
11032 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11033 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11034 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11035 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11036 }
11037 
is_bpf_rbtree_api_kfunc(u32 btf_id)11038 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11039 {
11040 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11041 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11042 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11043 }
11044 
is_bpf_graph_api_kfunc(u32 btf_id)11045 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11046 {
11047 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11048 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11049 }
11050 
is_sync_callback_calling_kfunc(u32 btf_id)11051 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11052 {
11053 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11054 }
11055 
is_rbtree_lock_required_kfunc(u32 btf_id)11056 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11057 {
11058 	return is_bpf_rbtree_api_kfunc(btf_id);
11059 }
11060 
check_kfunc_is_graph_root_api(struct bpf_verifier_env * env,enum btf_field_type head_field_type,u32 kfunc_btf_id)11061 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11062 					  enum btf_field_type head_field_type,
11063 					  u32 kfunc_btf_id)
11064 {
11065 	bool ret;
11066 
11067 	switch (head_field_type) {
11068 	case BPF_LIST_HEAD:
11069 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11070 		break;
11071 	case BPF_RB_ROOT:
11072 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11073 		break;
11074 	default:
11075 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11076 			btf_field_type_name(head_field_type));
11077 		return false;
11078 	}
11079 
11080 	if (!ret)
11081 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11082 			btf_field_type_name(head_field_type));
11083 	return ret;
11084 }
11085 
check_kfunc_is_graph_node_api(struct bpf_verifier_env * env,enum btf_field_type node_field_type,u32 kfunc_btf_id)11086 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11087 					  enum btf_field_type node_field_type,
11088 					  u32 kfunc_btf_id)
11089 {
11090 	bool ret;
11091 
11092 	switch (node_field_type) {
11093 	case BPF_LIST_NODE:
11094 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11095 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11096 		break;
11097 	case BPF_RB_NODE:
11098 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11099 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11100 		break;
11101 	default:
11102 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11103 			btf_field_type_name(node_field_type));
11104 		return false;
11105 	}
11106 
11107 	if (!ret)
11108 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11109 			btf_field_type_name(node_field_type));
11110 	return ret;
11111 }
11112 
11113 static int
__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,struct btf_field ** head_field)11114 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11115 				   struct bpf_reg_state *reg, u32 regno,
11116 				   struct bpf_kfunc_call_arg_meta *meta,
11117 				   enum btf_field_type head_field_type,
11118 				   struct btf_field **head_field)
11119 {
11120 	const char *head_type_name;
11121 	struct btf_field *field;
11122 	struct btf_record *rec;
11123 	u32 head_off;
11124 
11125 	if (meta->btf != btf_vmlinux) {
11126 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11127 		return -EFAULT;
11128 	}
11129 
11130 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11131 		return -EFAULT;
11132 
11133 	head_type_name = btf_field_type_name(head_field_type);
11134 	if (!tnum_is_const(reg->var_off)) {
11135 		verbose(env,
11136 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11137 			regno, head_type_name);
11138 		return -EINVAL;
11139 	}
11140 
11141 	rec = reg_btf_record(reg);
11142 	head_off = reg->off + reg->var_off.value;
11143 	field = btf_record_find(rec, head_off, head_field_type);
11144 	if (!field) {
11145 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11146 		return -EINVAL;
11147 	}
11148 
11149 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11150 	if (check_reg_allocation_locked(env, reg)) {
11151 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11152 			rec->spin_lock_off, head_type_name);
11153 		return -EINVAL;
11154 	}
11155 
11156 	if (*head_field) {
11157 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11158 		return -EFAULT;
11159 	}
11160 	*head_field = field;
11161 	return 0;
11162 }
11163 
process_kf_arg_ptr_to_list_head(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11164 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11165 					   struct bpf_reg_state *reg, u32 regno,
11166 					   struct bpf_kfunc_call_arg_meta *meta)
11167 {
11168 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11169 							  &meta->arg_list_head.field);
11170 }
11171 
process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11172 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11173 					     struct bpf_reg_state *reg, u32 regno,
11174 					     struct bpf_kfunc_call_arg_meta *meta)
11175 {
11176 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11177 							  &meta->arg_rbtree_root.field);
11178 }
11179 
11180 static int
__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,enum btf_field_type node_field_type,struct btf_field ** node_field)11181 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11182 				   struct bpf_reg_state *reg, u32 regno,
11183 				   struct bpf_kfunc_call_arg_meta *meta,
11184 				   enum btf_field_type head_field_type,
11185 				   enum btf_field_type node_field_type,
11186 				   struct btf_field **node_field)
11187 {
11188 	const char *node_type_name;
11189 	const struct btf_type *et, *t;
11190 	struct btf_field *field;
11191 	u32 node_off;
11192 
11193 	if (meta->btf != btf_vmlinux) {
11194 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11195 		return -EFAULT;
11196 	}
11197 
11198 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11199 		return -EFAULT;
11200 
11201 	node_type_name = btf_field_type_name(node_field_type);
11202 	if (!tnum_is_const(reg->var_off)) {
11203 		verbose(env,
11204 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11205 			regno, node_type_name);
11206 		return -EINVAL;
11207 	}
11208 
11209 	node_off = reg->off + reg->var_off.value;
11210 	field = reg_find_field_offset(reg, node_off, node_field_type);
11211 	if (!field || field->offset != node_off) {
11212 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11213 		return -EINVAL;
11214 	}
11215 
11216 	field = *node_field;
11217 
11218 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11219 	t = btf_type_by_id(reg->btf, reg->btf_id);
11220 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11221 				  field->graph_root.value_btf_id, true)) {
11222 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11223 			"in struct %s, but arg is at offset=%d in struct %s\n",
11224 			btf_field_type_name(head_field_type),
11225 			btf_field_type_name(node_field_type),
11226 			field->graph_root.node_offset,
11227 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11228 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11229 		return -EINVAL;
11230 	}
11231 	meta->arg_btf = reg->btf;
11232 	meta->arg_btf_id = reg->btf_id;
11233 
11234 	if (node_off != field->graph_root.node_offset) {
11235 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11236 			node_off, btf_field_type_name(node_field_type),
11237 			field->graph_root.node_offset,
11238 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11239 		return -EINVAL;
11240 	}
11241 
11242 	return 0;
11243 }
11244 
process_kf_arg_ptr_to_list_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11245 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11246 					   struct bpf_reg_state *reg, u32 regno,
11247 					   struct bpf_kfunc_call_arg_meta *meta)
11248 {
11249 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11250 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11251 						  &meta->arg_list_head.field);
11252 }
11253 
process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11254 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11255 					     struct bpf_reg_state *reg, u32 regno,
11256 					     struct bpf_kfunc_call_arg_meta *meta)
11257 {
11258 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11259 						  BPF_RB_ROOT, BPF_RB_NODE,
11260 						  &meta->arg_rbtree_root.field);
11261 }
11262 
check_kfunc_args(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,int insn_idx)11263 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11264 			    int insn_idx)
11265 {
11266 	const char *func_name = meta->func_name, *ref_tname;
11267 	const struct btf *btf = meta->btf;
11268 	const struct btf_param *args;
11269 	struct btf_record *rec;
11270 	u32 i, nargs;
11271 	int ret;
11272 
11273 	args = (const struct btf_param *)(meta->func_proto + 1);
11274 	nargs = btf_type_vlen(meta->func_proto);
11275 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11276 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11277 			MAX_BPF_FUNC_REG_ARGS);
11278 		return -EINVAL;
11279 	}
11280 
11281 	/* Check that BTF function arguments match actual types that the
11282 	 * verifier sees.
11283 	 */
11284 	for (i = 0; i < nargs; i++) {
11285 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11286 		const struct btf_type *t, *ref_t, *resolve_ret;
11287 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11288 		u32 regno = i + 1, ref_id, type_size;
11289 		bool is_ret_buf_sz = false;
11290 		int kf_arg_type;
11291 
11292 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11293 
11294 		if (is_kfunc_arg_ignore(btf, &args[i]))
11295 			continue;
11296 
11297 		if (btf_type_is_scalar(t)) {
11298 			if (reg->type != SCALAR_VALUE) {
11299 				verbose(env, "R%d is not a scalar\n", regno);
11300 				return -EINVAL;
11301 			}
11302 
11303 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11304 				if (meta->arg_constant.found) {
11305 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11306 					return -EFAULT;
11307 				}
11308 				if (!tnum_is_const(reg->var_off)) {
11309 					verbose(env, "R%d must be a known constant\n", regno);
11310 					return -EINVAL;
11311 				}
11312 				ret = mark_chain_precision(env, regno);
11313 				if (ret < 0)
11314 					return ret;
11315 				meta->arg_constant.found = true;
11316 				meta->arg_constant.value = reg->var_off.value;
11317 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11318 				meta->r0_rdonly = true;
11319 				is_ret_buf_sz = true;
11320 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11321 				is_ret_buf_sz = true;
11322 			}
11323 
11324 			if (is_ret_buf_sz) {
11325 				if (meta->r0_size) {
11326 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11327 					return -EINVAL;
11328 				}
11329 
11330 				if (!tnum_is_const(reg->var_off)) {
11331 					verbose(env, "R%d is not a const\n", regno);
11332 					return -EINVAL;
11333 				}
11334 
11335 				meta->r0_size = reg->var_off.value;
11336 				ret = mark_chain_precision(env, regno);
11337 				if (ret)
11338 					return ret;
11339 			}
11340 			continue;
11341 		}
11342 
11343 		if (!btf_type_is_ptr(t)) {
11344 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11345 			return -EINVAL;
11346 		}
11347 
11348 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11349 		    (register_is_null(reg) || type_may_be_null(reg->type))) {
11350 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11351 			return -EACCES;
11352 		}
11353 
11354 		if (reg->ref_obj_id) {
11355 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
11356 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11357 					regno, reg->ref_obj_id,
11358 					meta->ref_obj_id);
11359 				return -EFAULT;
11360 			}
11361 			meta->ref_obj_id = reg->ref_obj_id;
11362 			if (is_kfunc_release(meta))
11363 				meta->release_regno = regno;
11364 		}
11365 
11366 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11367 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11368 
11369 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11370 		if (kf_arg_type < 0)
11371 			return kf_arg_type;
11372 
11373 		switch (kf_arg_type) {
11374 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11375 		case KF_ARG_PTR_TO_BTF_ID:
11376 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11377 				break;
11378 
11379 			if (!is_trusted_reg(reg)) {
11380 				if (!is_kfunc_rcu(meta)) {
11381 					verbose(env, "R%d must be referenced or trusted\n", regno);
11382 					return -EINVAL;
11383 				}
11384 				if (!is_rcu_reg(reg)) {
11385 					verbose(env, "R%d must be a rcu pointer\n", regno);
11386 					return -EINVAL;
11387 				}
11388 			}
11389 
11390 			fallthrough;
11391 		case KF_ARG_PTR_TO_CTX:
11392 			/* Trusted arguments have the same offset checks as release arguments */
11393 			arg_type |= OBJ_RELEASE;
11394 			break;
11395 		case KF_ARG_PTR_TO_DYNPTR:
11396 		case KF_ARG_PTR_TO_ITER:
11397 		case KF_ARG_PTR_TO_LIST_HEAD:
11398 		case KF_ARG_PTR_TO_LIST_NODE:
11399 		case KF_ARG_PTR_TO_RB_ROOT:
11400 		case KF_ARG_PTR_TO_RB_NODE:
11401 		case KF_ARG_PTR_TO_MEM:
11402 		case KF_ARG_PTR_TO_MEM_SIZE:
11403 		case KF_ARG_PTR_TO_CALLBACK:
11404 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11405 			/* Trusted by default */
11406 			break;
11407 		default:
11408 			WARN_ON_ONCE(1);
11409 			return -EFAULT;
11410 		}
11411 
11412 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11413 			arg_type |= OBJ_RELEASE;
11414 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11415 		if (ret < 0)
11416 			return ret;
11417 
11418 		switch (kf_arg_type) {
11419 		case KF_ARG_PTR_TO_CTX:
11420 			if (reg->type != PTR_TO_CTX) {
11421 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11422 				return -EINVAL;
11423 			}
11424 
11425 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11426 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11427 				if (ret < 0)
11428 					return -EINVAL;
11429 				meta->ret_btf_id  = ret;
11430 			}
11431 			break;
11432 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11433 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11434 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11435 				return -EINVAL;
11436 			}
11437 			if (!reg->ref_obj_id) {
11438 				verbose(env, "allocated object must be referenced\n");
11439 				return -EINVAL;
11440 			}
11441 			if (meta->btf == btf_vmlinux &&
11442 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11443 				meta->arg_btf = reg->btf;
11444 				meta->arg_btf_id = reg->btf_id;
11445 			}
11446 			break;
11447 		case KF_ARG_PTR_TO_DYNPTR:
11448 		{
11449 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11450 			int clone_ref_obj_id = 0;
11451 
11452 			if (reg->type != PTR_TO_STACK &&
11453 			    reg->type != CONST_PTR_TO_DYNPTR) {
11454 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11455 				return -EINVAL;
11456 			}
11457 
11458 			if (reg->type == CONST_PTR_TO_DYNPTR)
11459 				dynptr_arg_type |= MEM_RDONLY;
11460 
11461 			if (is_kfunc_arg_uninit(btf, &args[i]))
11462 				dynptr_arg_type |= MEM_UNINIT;
11463 
11464 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11465 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11466 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11467 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11468 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11469 				   (dynptr_arg_type & MEM_UNINIT)) {
11470 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11471 
11472 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11473 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11474 					return -EFAULT;
11475 				}
11476 
11477 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11478 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11479 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11480 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11481 					return -EFAULT;
11482 				}
11483 			}
11484 
11485 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11486 			if (ret < 0)
11487 				return ret;
11488 
11489 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11490 				int id = dynptr_id(env, reg);
11491 
11492 				if (id < 0) {
11493 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11494 					return id;
11495 				}
11496 				meta->initialized_dynptr.id = id;
11497 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11498 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11499 			}
11500 
11501 			break;
11502 		}
11503 		case KF_ARG_PTR_TO_ITER:
11504 			ret = process_iter_arg(env, regno, insn_idx, meta);
11505 			if (ret < 0)
11506 				return ret;
11507 			break;
11508 		case KF_ARG_PTR_TO_LIST_HEAD:
11509 			if (reg->type != PTR_TO_MAP_VALUE &&
11510 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11511 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11512 				return -EINVAL;
11513 			}
11514 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11515 				verbose(env, "allocated object must be referenced\n");
11516 				return -EINVAL;
11517 			}
11518 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11519 			if (ret < 0)
11520 				return ret;
11521 			break;
11522 		case KF_ARG_PTR_TO_RB_ROOT:
11523 			if (reg->type != PTR_TO_MAP_VALUE &&
11524 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11525 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11526 				return -EINVAL;
11527 			}
11528 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11529 				verbose(env, "allocated object must be referenced\n");
11530 				return -EINVAL;
11531 			}
11532 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11533 			if (ret < 0)
11534 				return ret;
11535 			break;
11536 		case KF_ARG_PTR_TO_LIST_NODE:
11537 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11538 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11539 				return -EINVAL;
11540 			}
11541 			if (!reg->ref_obj_id) {
11542 				verbose(env, "allocated object must be referenced\n");
11543 				return -EINVAL;
11544 			}
11545 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11546 			if (ret < 0)
11547 				return ret;
11548 			break;
11549 		case KF_ARG_PTR_TO_RB_NODE:
11550 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11551 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11552 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11553 					return -EINVAL;
11554 				}
11555 				if (in_rbtree_lock_required_cb(env)) {
11556 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11557 					return -EINVAL;
11558 				}
11559 			} else {
11560 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11561 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11562 					return -EINVAL;
11563 				}
11564 				if (!reg->ref_obj_id) {
11565 					verbose(env, "allocated object must be referenced\n");
11566 					return -EINVAL;
11567 				}
11568 			}
11569 
11570 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11571 			if (ret < 0)
11572 				return ret;
11573 			break;
11574 		case KF_ARG_PTR_TO_BTF_ID:
11575 			/* Only base_type is checked, further checks are done here */
11576 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11577 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11578 			    !reg2btf_ids[base_type(reg->type)]) {
11579 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11580 				verbose(env, "expected %s or socket\n",
11581 					reg_type_str(env, base_type(reg->type) |
11582 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11583 				return -EINVAL;
11584 			}
11585 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11586 			if (ret < 0)
11587 				return ret;
11588 			break;
11589 		case KF_ARG_PTR_TO_MEM:
11590 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11591 			if (IS_ERR(resolve_ret)) {
11592 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11593 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11594 				return -EINVAL;
11595 			}
11596 			ret = check_mem_reg(env, reg, regno, type_size);
11597 			if (ret < 0)
11598 				return ret;
11599 			break;
11600 		case KF_ARG_PTR_TO_MEM_SIZE:
11601 		{
11602 			struct bpf_reg_state *buff_reg = &regs[regno];
11603 			const struct btf_param *buff_arg = &args[i];
11604 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11605 			const struct btf_param *size_arg = &args[i + 1];
11606 
11607 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11608 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11609 				if (ret < 0) {
11610 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11611 					return ret;
11612 				}
11613 			}
11614 
11615 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11616 				if (meta->arg_constant.found) {
11617 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11618 					return -EFAULT;
11619 				}
11620 				if (!tnum_is_const(size_reg->var_off)) {
11621 					verbose(env, "R%d must be a known constant\n", regno + 1);
11622 					return -EINVAL;
11623 				}
11624 				meta->arg_constant.found = true;
11625 				meta->arg_constant.value = size_reg->var_off.value;
11626 			}
11627 
11628 			/* Skip next '__sz' or '__szk' argument */
11629 			i++;
11630 			break;
11631 		}
11632 		case KF_ARG_PTR_TO_CALLBACK:
11633 			if (reg->type != PTR_TO_FUNC) {
11634 				verbose(env, "arg%d expected pointer to func\n", i);
11635 				return -EINVAL;
11636 			}
11637 			meta->subprogno = reg->subprogno;
11638 			break;
11639 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11640 			if (!type_is_ptr_alloc_obj(reg->type)) {
11641 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11642 				return -EINVAL;
11643 			}
11644 			if (!type_is_non_owning_ref(reg->type))
11645 				meta->arg_owning_ref = true;
11646 
11647 			rec = reg_btf_record(reg);
11648 			if (!rec) {
11649 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11650 				return -EFAULT;
11651 			}
11652 
11653 			if (rec->refcount_off < 0) {
11654 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11655 				return -EINVAL;
11656 			}
11657 
11658 			meta->arg_btf = reg->btf;
11659 			meta->arg_btf_id = reg->btf_id;
11660 			break;
11661 		}
11662 	}
11663 
11664 	if (is_kfunc_release(meta) && !meta->release_regno) {
11665 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11666 			func_name);
11667 		return -EINVAL;
11668 	}
11669 
11670 	return 0;
11671 }
11672 
fetch_kfunc_meta(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_kfunc_call_arg_meta * meta,const char ** kfunc_name)11673 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11674 			    struct bpf_insn *insn,
11675 			    struct bpf_kfunc_call_arg_meta *meta,
11676 			    const char **kfunc_name)
11677 {
11678 	const struct btf_type *func, *func_proto;
11679 	u32 func_id, *kfunc_flags;
11680 	const char *func_name;
11681 	struct btf *desc_btf;
11682 
11683 	if (kfunc_name)
11684 		*kfunc_name = NULL;
11685 
11686 	if (!insn->imm)
11687 		return -EINVAL;
11688 
11689 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11690 	if (IS_ERR(desc_btf))
11691 		return PTR_ERR(desc_btf);
11692 
11693 	func_id = insn->imm;
11694 	func = btf_type_by_id(desc_btf, func_id);
11695 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11696 	if (kfunc_name)
11697 		*kfunc_name = func_name;
11698 	func_proto = btf_type_by_id(desc_btf, func->type);
11699 
11700 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11701 	if (!kfunc_flags) {
11702 		return -EACCES;
11703 	}
11704 
11705 	memset(meta, 0, sizeof(*meta));
11706 	meta->btf = desc_btf;
11707 	meta->func_id = func_id;
11708 	meta->kfunc_flags = *kfunc_flags;
11709 	meta->func_proto = func_proto;
11710 	meta->func_name = func_name;
11711 
11712 	return 0;
11713 }
11714 
check_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)11715 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11716 			    int *insn_idx_p)
11717 {
11718 	const struct btf_type *t, *ptr_type;
11719 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11720 	struct bpf_reg_state *regs = cur_regs(env);
11721 	const char *func_name, *ptr_type_name;
11722 	bool sleepable, rcu_lock, rcu_unlock;
11723 	struct bpf_kfunc_call_arg_meta meta;
11724 	struct bpf_insn_aux_data *insn_aux;
11725 	int err, insn_idx = *insn_idx_p;
11726 	const struct btf_param *args;
11727 	const struct btf_type *ret_t;
11728 	struct btf *desc_btf;
11729 
11730 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11731 	if (!insn->imm)
11732 		return 0;
11733 
11734 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11735 	if (err == -EACCES && func_name)
11736 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11737 	if (err)
11738 		return err;
11739 	desc_btf = meta.btf;
11740 	insn_aux = &env->insn_aux_data[insn_idx];
11741 
11742 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11743 
11744 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11745 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11746 		return -EACCES;
11747 	}
11748 
11749 	sleepable = is_kfunc_sleepable(&meta);
11750 	if (sleepable && !env->prog->aux->sleepable) {
11751 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11752 		return -EACCES;
11753 	}
11754 
11755 	/* Check the arguments */
11756 	err = check_kfunc_args(env, &meta, insn_idx);
11757 	if (err < 0)
11758 		return err;
11759 
11760 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11761 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11762 					 set_rbtree_add_callback_state);
11763 		if (err) {
11764 			verbose(env, "kfunc %s#%d failed callback verification\n",
11765 				func_name, meta.func_id);
11766 			return err;
11767 		}
11768 	}
11769 
11770 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11771 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11772 
11773 	if (env->cur_state->active_rcu_lock) {
11774 		struct bpf_func_state *state;
11775 		struct bpf_reg_state *reg;
11776 
11777 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11778 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11779 			return -EACCES;
11780 		}
11781 
11782 		if (rcu_lock) {
11783 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11784 			return -EINVAL;
11785 		} else if (rcu_unlock) {
11786 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11787 				if (reg->type & MEM_RCU) {
11788 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11789 					reg->type |= PTR_UNTRUSTED;
11790 				}
11791 			}));
11792 			env->cur_state->active_rcu_lock = false;
11793 		} else if (sleepable) {
11794 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11795 			return -EACCES;
11796 		}
11797 	} else if (rcu_lock) {
11798 		env->cur_state->active_rcu_lock = true;
11799 	} else if (rcu_unlock) {
11800 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11801 		return -EINVAL;
11802 	}
11803 
11804 	/* In case of release function, we get register number of refcounted
11805 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11806 	 */
11807 	if (meta.release_regno) {
11808 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11809 		if (err) {
11810 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11811 				func_name, meta.func_id);
11812 			return err;
11813 		}
11814 	}
11815 
11816 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11817 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11818 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11819 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11820 		insn_aux->insert_off = regs[BPF_REG_2].off;
11821 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11822 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11823 		if (err) {
11824 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11825 				func_name, meta.func_id);
11826 			return err;
11827 		}
11828 
11829 		err = release_reference(env, release_ref_obj_id);
11830 		if (err) {
11831 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11832 				func_name, meta.func_id);
11833 			return err;
11834 		}
11835 	}
11836 
11837 	for (i = 0; i < CALLER_SAVED_REGS; i++)
11838 		mark_reg_not_init(env, regs, caller_saved[i]);
11839 
11840 	/* Check return type */
11841 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11842 
11843 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11844 		/* Only exception is bpf_obj_new_impl */
11845 		if (meta.btf != btf_vmlinux ||
11846 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11847 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11848 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11849 			return -EINVAL;
11850 		}
11851 	}
11852 
11853 	if (btf_type_is_scalar(t)) {
11854 		mark_reg_unknown(env, regs, BPF_REG_0);
11855 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11856 	} else if (btf_type_is_ptr(t)) {
11857 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11858 
11859 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11860 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
11861 				struct btf *ret_btf;
11862 				u32 ret_btf_id;
11863 
11864 				if (unlikely(!bpf_global_ma_set))
11865 					return -ENOMEM;
11866 
11867 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11868 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11869 					return -EINVAL;
11870 				}
11871 
11872 				ret_btf = env->prog->aux->btf;
11873 				ret_btf_id = meta.arg_constant.value;
11874 
11875 				/* This may be NULL due to user not supplying a BTF */
11876 				if (!ret_btf) {
11877 					verbose(env, "bpf_obj_new requires prog BTF\n");
11878 					return -EINVAL;
11879 				}
11880 
11881 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11882 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
11883 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11884 					return -EINVAL;
11885 				}
11886 
11887 				mark_reg_known_zero(env, regs, BPF_REG_0);
11888 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11889 				regs[BPF_REG_0].btf = ret_btf;
11890 				regs[BPF_REG_0].btf_id = ret_btf_id;
11891 
11892 				insn_aux->obj_new_size = ret_t->size;
11893 				insn_aux->kptr_struct_meta =
11894 					btf_find_struct_meta(ret_btf, ret_btf_id);
11895 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11896 				mark_reg_known_zero(env, regs, BPF_REG_0);
11897 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11898 				regs[BPF_REG_0].btf = meta.arg_btf;
11899 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11900 
11901 				insn_aux->kptr_struct_meta =
11902 					btf_find_struct_meta(meta.arg_btf,
11903 							     meta.arg_btf_id);
11904 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11905 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11906 				struct btf_field *field = meta.arg_list_head.field;
11907 
11908 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11909 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11910 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11911 				struct btf_field *field = meta.arg_rbtree_root.field;
11912 
11913 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11914 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11915 				mark_reg_known_zero(env, regs, BPF_REG_0);
11916 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11917 				regs[BPF_REG_0].btf = desc_btf;
11918 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11919 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11920 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11921 				if (!ret_t || !btf_type_is_struct(ret_t)) {
11922 					verbose(env,
11923 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11924 					return -EINVAL;
11925 				}
11926 
11927 				mark_reg_known_zero(env, regs, BPF_REG_0);
11928 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11929 				regs[BPF_REG_0].btf = desc_btf;
11930 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11931 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11932 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11933 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11934 
11935 				mark_reg_known_zero(env, regs, BPF_REG_0);
11936 
11937 				if (!meta.arg_constant.found) {
11938 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11939 					return -EFAULT;
11940 				}
11941 
11942 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11943 
11944 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11945 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11946 
11947 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11948 					regs[BPF_REG_0].type |= MEM_RDONLY;
11949 				} else {
11950 					/* this will set env->seen_direct_write to true */
11951 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11952 						verbose(env, "the prog does not allow writes to packet data\n");
11953 						return -EINVAL;
11954 					}
11955 				}
11956 
11957 				if (!meta.initialized_dynptr.id) {
11958 					verbose(env, "verifier internal error: no dynptr id\n");
11959 					return -EFAULT;
11960 				}
11961 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11962 
11963 				/* we don't need to set BPF_REG_0's ref obj id
11964 				 * because packet slices are not refcounted (see
11965 				 * dynptr_type_refcounted)
11966 				 */
11967 			} else {
11968 				verbose(env, "kernel function %s unhandled dynamic return type\n",
11969 					meta.func_name);
11970 				return -EFAULT;
11971 			}
11972 		} else if (!__btf_type_is_struct(ptr_type)) {
11973 			if (!meta.r0_size) {
11974 				__u32 sz;
11975 
11976 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
11977 					meta.r0_size = sz;
11978 					meta.r0_rdonly = true;
11979 				}
11980 			}
11981 			if (!meta.r0_size) {
11982 				ptr_type_name = btf_name_by_offset(desc_btf,
11983 								   ptr_type->name_off);
11984 				verbose(env,
11985 					"kernel function %s returns pointer type %s %s is not supported\n",
11986 					func_name,
11987 					btf_type_str(ptr_type),
11988 					ptr_type_name);
11989 				return -EINVAL;
11990 			}
11991 
11992 			mark_reg_known_zero(env, regs, BPF_REG_0);
11993 			regs[BPF_REG_0].type = PTR_TO_MEM;
11994 			regs[BPF_REG_0].mem_size = meta.r0_size;
11995 
11996 			if (meta.r0_rdonly)
11997 				regs[BPF_REG_0].type |= MEM_RDONLY;
11998 
11999 			/* Ensures we don't access the memory after a release_reference() */
12000 			if (meta.ref_obj_id)
12001 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12002 		} else {
12003 			mark_reg_known_zero(env, regs, BPF_REG_0);
12004 			regs[BPF_REG_0].btf = desc_btf;
12005 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12006 			regs[BPF_REG_0].btf_id = ptr_type_id;
12007 
12008 			if (is_iter_next_kfunc(&meta)) {
12009 				struct bpf_reg_state *cur_iter;
12010 
12011 				cur_iter = get_iter_from_state(env->cur_state, &meta);
12012 
12013 				if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
12014 					regs[BPF_REG_0].type |= MEM_RCU;
12015 				else
12016 					regs[BPF_REG_0].type |= PTR_TRUSTED;
12017 			}
12018 		}
12019 
12020 		if (is_kfunc_ret_null(&meta)) {
12021 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12022 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12023 			regs[BPF_REG_0].id = ++env->id_gen;
12024 		}
12025 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12026 		if (is_kfunc_acquire(&meta)) {
12027 			int id = acquire_reference_state(env, insn_idx);
12028 
12029 			if (id < 0)
12030 				return id;
12031 			if (is_kfunc_ret_null(&meta))
12032 				regs[BPF_REG_0].id = id;
12033 			regs[BPF_REG_0].ref_obj_id = id;
12034 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12035 			ref_set_non_owning(env, &regs[BPF_REG_0]);
12036 		}
12037 
12038 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12039 			regs[BPF_REG_0].id = ++env->id_gen;
12040 	} else if (btf_type_is_void(t)) {
12041 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12042 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
12043 				insn_aux->kptr_struct_meta =
12044 					btf_find_struct_meta(meta.arg_btf,
12045 							     meta.arg_btf_id);
12046 			}
12047 		}
12048 	}
12049 
12050 	nargs = btf_type_vlen(meta.func_proto);
12051 	args = (const struct btf_param *)(meta.func_proto + 1);
12052 	for (i = 0; i < nargs; i++) {
12053 		u32 regno = i + 1;
12054 
12055 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12056 		if (btf_type_is_ptr(t))
12057 			mark_btf_func_reg_size(env, regno, sizeof(void *));
12058 		else
12059 			/* scalar. ensured by btf_check_kfunc_arg_match() */
12060 			mark_btf_func_reg_size(env, regno, t->size);
12061 	}
12062 
12063 	if (is_iter_next_kfunc(&meta)) {
12064 		err = process_iter_next_call(env, insn_idx, &meta);
12065 		if (err)
12066 			return err;
12067 	}
12068 
12069 	return 0;
12070 }
12071 
signed_add_overflows(s64 a,s64 b)12072 static bool signed_add_overflows(s64 a, s64 b)
12073 {
12074 	/* Do the add in u64, where overflow is well-defined */
12075 	s64 res = (s64)((u64)a + (u64)b);
12076 
12077 	if (b < 0)
12078 		return res > a;
12079 	return res < a;
12080 }
12081 
signed_add32_overflows(s32 a,s32 b)12082 static bool signed_add32_overflows(s32 a, s32 b)
12083 {
12084 	/* Do the add in u32, where overflow is well-defined */
12085 	s32 res = (s32)((u32)a + (u32)b);
12086 
12087 	if (b < 0)
12088 		return res > a;
12089 	return res < a;
12090 }
12091 
signed_sub_overflows(s64 a,s64 b)12092 static bool signed_sub_overflows(s64 a, s64 b)
12093 {
12094 	/* Do the sub in u64, where overflow is well-defined */
12095 	s64 res = (s64)((u64)a - (u64)b);
12096 
12097 	if (b < 0)
12098 		return res < a;
12099 	return res > a;
12100 }
12101 
signed_sub32_overflows(s32 a,s32 b)12102 static bool signed_sub32_overflows(s32 a, s32 b)
12103 {
12104 	/* Do the sub in u32, where overflow is well-defined */
12105 	s32 res = (s32)((u32)a - (u32)b);
12106 
12107 	if (b < 0)
12108 		return res < a;
12109 	return res > a;
12110 }
12111 
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)12112 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12113 				  const struct bpf_reg_state *reg,
12114 				  enum bpf_reg_type type)
12115 {
12116 	bool known = tnum_is_const(reg->var_off);
12117 	s64 val = reg->var_off.value;
12118 	s64 smin = reg->smin_value;
12119 
12120 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12121 		verbose(env, "math between %s pointer and %lld is not allowed\n",
12122 			reg_type_str(env, type), val);
12123 		return false;
12124 	}
12125 
12126 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12127 		verbose(env, "%s pointer offset %d is not allowed\n",
12128 			reg_type_str(env, type), reg->off);
12129 		return false;
12130 	}
12131 
12132 	if (smin == S64_MIN) {
12133 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12134 			reg_type_str(env, type));
12135 		return false;
12136 	}
12137 
12138 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12139 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
12140 			smin, reg_type_str(env, type));
12141 		return false;
12142 	}
12143 
12144 	return true;
12145 }
12146 
12147 enum {
12148 	REASON_BOUNDS	= -1,
12149 	REASON_TYPE	= -2,
12150 	REASON_PATHS	= -3,
12151 	REASON_LIMIT	= -4,
12152 	REASON_STACK	= -5,
12153 };
12154 
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)12155 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12156 			      u32 *alu_limit, bool mask_to_left)
12157 {
12158 	u32 max = 0, ptr_limit = 0;
12159 
12160 	switch (ptr_reg->type) {
12161 	case PTR_TO_STACK:
12162 		/* Offset 0 is out-of-bounds, but acceptable start for the
12163 		 * left direction, see BPF_REG_FP. Also, unknown scalar
12164 		 * offset where we would need to deal with min/max bounds is
12165 		 * currently prohibited for unprivileged.
12166 		 */
12167 		max = MAX_BPF_STACK + mask_to_left;
12168 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12169 		break;
12170 	case PTR_TO_MAP_VALUE:
12171 		max = ptr_reg->map_ptr->value_size;
12172 		ptr_limit = (mask_to_left ?
12173 			     ptr_reg->smin_value :
12174 			     ptr_reg->umax_value) + ptr_reg->off;
12175 		break;
12176 	default:
12177 		return REASON_TYPE;
12178 	}
12179 
12180 	if (ptr_limit >= max)
12181 		return REASON_LIMIT;
12182 	*alu_limit = ptr_limit;
12183 	return 0;
12184 }
12185 
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)12186 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12187 				    const struct bpf_insn *insn)
12188 {
12189 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12190 }
12191 
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)12192 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12193 				       u32 alu_state, u32 alu_limit)
12194 {
12195 	/* If we arrived here from different branches with different
12196 	 * state or limits to sanitize, then this won't work.
12197 	 */
12198 	if (aux->alu_state &&
12199 	    (aux->alu_state != alu_state ||
12200 	     aux->alu_limit != alu_limit))
12201 		return REASON_PATHS;
12202 
12203 	/* Corresponding fixup done in do_misc_fixups(). */
12204 	aux->alu_state = alu_state;
12205 	aux->alu_limit = alu_limit;
12206 	return 0;
12207 }
12208 
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)12209 static int sanitize_val_alu(struct bpf_verifier_env *env,
12210 			    struct bpf_insn *insn)
12211 {
12212 	struct bpf_insn_aux_data *aux = cur_aux(env);
12213 
12214 	if (can_skip_alu_sanitation(env, insn))
12215 		return 0;
12216 
12217 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12218 }
12219 
sanitize_needed(u8 opcode)12220 static bool sanitize_needed(u8 opcode)
12221 {
12222 	return opcode == BPF_ADD || opcode == BPF_SUB;
12223 }
12224 
12225 struct bpf_sanitize_info {
12226 	struct bpf_insn_aux_data aux;
12227 	bool mask_to_left;
12228 };
12229 
12230 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)12231 sanitize_speculative_path(struct bpf_verifier_env *env,
12232 			  const struct bpf_insn *insn,
12233 			  u32 next_idx, u32 curr_idx)
12234 {
12235 	struct bpf_verifier_state *branch;
12236 	struct bpf_reg_state *regs;
12237 
12238 	branch = push_stack(env, next_idx, curr_idx, true);
12239 	if (branch && insn) {
12240 		regs = branch->frame[branch->curframe]->regs;
12241 		if (BPF_SRC(insn->code) == BPF_K) {
12242 			mark_reg_unknown(env, regs, insn->dst_reg);
12243 		} else if (BPF_SRC(insn->code) == BPF_X) {
12244 			mark_reg_unknown(env, regs, insn->dst_reg);
12245 			mark_reg_unknown(env, regs, insn->src_reg);
12246 		}
12247 	}
12248 	return branch;
12249 }
12250 
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)12251 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12252 			    struct bpf_insn *insn,
12253 			    const struct bpf_reg_state *ptr_reg,
12254 			    const struct bpf_reg_state *off_reg,
12255 			    struct bpf_reg_state *dst_reg,
12256 			    struct bpf_sanitize_info *info,
12257 			    const bool commit_window)
12258 {
12259 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12260 	struct bpf_verifier_state *vstate = env->cur_state;
12261 	bool off_is_imm = tnum_is_const(off_reg->var_off);
12262 	bool off_is_neg = off_reg->smin_value < 0;
12263 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
12264 	u8 opcode = BPF_OP(insn->code);
12265 	u32 alu_state, alu_limit;
12266 	struct bpf_reg_state tmp;
12267 	bool ret;
12268 	int err;
12269 
12270 	if (can_skip_alu_sanitation(env, insn))
12271 		return 0;
12272 
12273 	/* We already marked aux for masking from non-speculative
12274 	 * paths, thus we got here in the first place. We only care
12275 	 * to explore bad access from here.
12276 	 */
12277 	if (vstate->speculative)
12278 		goto do_sim;
12279 
12280 	if (!commit_window) {
12281 		if (!tnum_is_const(off_reg->var_off) &&
12282 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12283 			return REASON_BOUNDS;
12284 
12285 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12286 				     (opcode == BPF_SUB && !off_is_neg);
12287 	}
12288 
12289 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12290 	if (err < 0)
12291 		return err;
12292 
12293 	if (commit_window) {
12294 		/* In commit phase we narrow the masking window based on
12295 		 * the observed pointer move after the simulated operation.
12296 		 */
12297 		alu_state = info->aux.alu_state;
12298 		alu_limit = abs(info->aux.alu_limit - alu_limit);
12299 	} else {
12300 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12301 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12302 		alu_state |= ptr_is_dst_reg ?
12303 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12304 
12305 		/* Limit pruning on unknown scalars to enable deep search for
12306 		 * potential masking differences from other program paths.
12307 		 */
12308 		if (!off_is_imm)
12309 			env->explore_alu_limits = true;
12310 	}
12311 
12312 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12313 	if (err < 0)
12314 		return err;
12315 do_sim:
12316 	/* If we're in commit phase, we're done here given we already
12317 	 * pushed the truncated dst_reg into the speculative verification
12318 	 * stack.
12319 	 *
12320 	 * Also, when register is a known constant, we rewrite register-based
12321 	 * operation to immediate-based, and thus do not need masking (and as
12322 	 * a consequence, do not need to simulate the zero-truncation either).
12323 	 */
12324 	if (commit_window || off_is_imm)
12325 		return 0;
12326 
12327 	/* Simulate and find potential out-of-bounds access under
12328 	 * speculative execution from truncation as a result of
12329 	 * masking when off was not within expected range. If off
12330 	 * sits in dst, then we temporarily need to move ptr there
12331 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12332 	 * for cases where we use K-based arithmetic in one direction
12333 	 * and truncated reg-based in the other in order to explore
12334 	 * bad access.
12335 	 */
12336 	if (!ptr_is_dst_reg) {
12337 		tmp = *dst_reg;
12338 		copy_register_state(dst_reg, ptr_reg);
12339 	}
12340 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12341 					env->insn_idx);
12342 	if (!ptr_is_dst_reg && ret)
12343 		*dst_reg = tmp;
12344 	return !ret ? REASON_STACK : 0;
12345 }
12346 
sanitize_mark_insn_seen(struct bpf_verifier_env * env)12347 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12348 {
12349 	struct bpf_verifier_state *vstate = env->cur_state;
12350 
12351 	/* If we simulate paths under speculation, we don't update the
12352 	 * insn as 'seen' such that when we verify unreachable paths in
12353 	 * the non-speculative domain, sanitize_dead_code() can still
12354 	 * rewrite/sanitize them.
12355 	 */
12356 	if (!vstate->speculative)
12357 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12358 }
12359 
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)12360 static int sanitize_err(struct bpf_verifier_env *env,
12361 			const struct bpf_insn *insn, int reason,
12362 			const struct bpf_reg_state *off_reg,
12363 			const struct bpf_reg_state *dst_reg)
12364 {
12365 	static const char *err = "pointer arithmetic with it prohibited for !root";
12366 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12367 	u32 dst = insn->dst_reg, src = insn->src_reg;
12368 
12369 	switch (reason) {
12370 	case REASON_BOUNDS:
12371 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12372 			off_reg == dst_reg ? dst : src, err);
12373 		break;
12374 	case REASON_TYPE:
12375 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12376 			off_reg == dst_reg ? src : dst, err);
12377 		break;
12378 	case REASON_PATHS:
12379 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12380 			dst, op, err);
12381 		break;
12382 	case REASON_LIMIT:
12383 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12384 			dst, op, err);
12385 		break;
12386 	case REASON_STACK:
12387 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12388 			dst, err);
12389 		break;
12390 	default:
12391 		verbose(env, "verifier internal error: unknown reason (%d)\n",
12392 			reason);
12393 		break;
12394 	}
12395 
12396 	return -EACCES;
12397 }
12398 
12399 /* check that stack access falls within stack limits and that 'reg' doesn't
12400  * have a variable offset.
12401  *
12402  * Variable offset is prohibited for unprivileged mode for simplicity since it
12403  * requires corresponding support in Spectre masking for stack ALU.  See also
12404  * retrieve_ptr_limit().
12405  *
12406  *
12407  * 'off' includes 'reg->off'.
12408  */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)12409 static int check_stack_access_for_ptr_arithmetic(
12410 				struct bpf_verifier_env *env,
12411 				int regno,
12412 				const struct bpf_reg_state *reg,
12413 				int off)
12414 {
12415 	if (!tnum_is_const(reg->var_off)) {
12416 		char tn_buf[48];
12417 
12418 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12419 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12420 			regno, tn_buf, off);
12421 		return -EACCES;
12422 	}
12423 
12424 	if (off >= 0 || off < -MAX_BPF_STACK) {
12425 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
12426 			"prohibited for !root; off=%d\n", regno, off);
12427 		return -EACCES;
12428 	}
12429 
12430 	return 0;
12431 }
12432 
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)12433 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12434 				 const struct bpf_insn *insn,
12435 				 const struct bpf_reg_state *dst_reg)
12436 {
12437 	u32 dst = insn->dst_reg;
12438 
12439 	/* For unprivileged we require that resulting offset must be in bounds
12440 	 * in order to be able to sanitize access later on.
12441 	 */
12442 	if (env->bypass_spec_v1)
12443 		return 0;
12444 
12445 	switch (dst_reg->type) {
12446 	case PTR_TO_STACK:
12447 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12448 					dst_reg->off + dst_reg->var_off.value))
12449 			return -EACCES;
12450 		break;
12451 	case PTR_TO_MAP_VALUE:
12452 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12453 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12454 				"prohibited for !root\n", dst);
12455 			return -EACCES;
12456 		}
12457 		break;
12458 	default:
12459 		break;
12460 	}
12461 
12462 	return 0;
12463 }
12464 
12465 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12466  * Caller should also handle BPF_MOV case separately.
12467  * If we return -EACCES, caller may want to try again treating pointer as a
12468  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12469  */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)12470 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12471 				   struct bpf_insn *insn,
12472 				   const struct bpf_reg_state *ptr_reg,
12473 				   const struct bpf_reg_state *off_reg)
12474 {
12475 	struct bpf_verifier_state *vstate = env->cur_state;
12476 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12477 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12478 	bool known = tnum_is_const(off_reg->var_off);
12479 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12480 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12481 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12482 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12483 	struct bpf_sanitize_info info = {};
12484 	u8 opcode = BPF_OP(insn->code);
12485 	u32 dst = insn->dst_reg;
12486 	int ret;
12487 
12488 	dst_reg = &regs[dst];
12489 
12490 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12491 	    smin_val > smax_val || umin_val > umax_val) {
12492 		/* Taint dst register if offset had invalid bounds derived from
12493 		 * e.g. dead branches.
12494 		 */
12495 		__mark_reg_unknown(env, dst_reg);
12496 		return 0;
12497 	}
12498 
12499 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12500 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12501 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12502 			__mark_reg_unknown(env, dst_reg);
12503 			return 0;
12504 		}
12505 
12506 		verbose(env,
12507 			"R%d 32-bit pointer arithmetic prohibited\n",
12508 			dst);
12509 		return -EACCES;
12510 	}
12511 
12512 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12513 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12514 			dst, reg_type_str(env, ptr_reg->type));
12515 		return -EACCES;
12516 	}
12517 
12518 	switch (base_type(ptr_reg->type)) {
12519 	case PTR_TO_FLOW_KEYS:
12520 		if (known)
12521 			break;
12522 		fallthrough;
12523 	case CONST_PTR_TO_MAP:
12524 		/* smin_val represents the known value */
12525 		if (known && smin_val == 0 && opcode == BPF_ADD)
12526 			break;
12527 		fallthrough;
12528 	case PTR_TO_PACKET_END:
12529 	case PTR_TO_SOCKET:
12530 	case PTR_TO_SOCK_COMMON:
12531 	case PTR_TO_TCP_SOCK:
12532 	case PTR_TO_XDP_SOCK:
12533 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12534 			dst, reg_type_str(env, ptr_reg->type));
12535 		return -EACCES;
12536 	default:
12537 		break;
12538 	}
12539 
12540 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12541 	 * The id may be overwritten later if we create a new variable offset.
12542 	 */
12543 	dst_reg->type = ptr_reg->type;
12544 	dst_reg->id = ptr_reg->id;
12545 
12546 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12547 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12548 		return -EINVAL;
12549 
12550 	/* pointer types do not carry 32-bit bounds at the moment. */
12551 	__mark_reg32_unbounded(dst_reg);
12552 
12553 	if (sanitize_needed(opcode)) {
12554 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12555 				       &info, false);
12556 		if (ret < 0)
12557 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12558 	}
12559 
12560 	switch (opcode) {
12561 	case BPF_ADD:
12562 		/* We can take a fixed offset as long as it doesn't overflow
12563 		 * the s32 'off' field
12564 		 */
12565 		if (known && (ptr_reg->off + smin_val ==
12566 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12567 			/* pointer += K.  Accumulate it into fixed offset */
12568 			dst_reg->smin_value = smin_ptr;
12569 			dst_reg->smax_value = smax_ptr;
12570 			dst_reg->umin_value = umin_ptr;
12571 			dst_reg->umax_value = umax_ptr;
12572 			dst_reg->var_off = ptr_reg->var_off;
12573 			dst_reg->off = ptr_reg->off + smin_val;
12574 			dst_reg->raw = ptr_reg->raw;
12575 			break;
12576 		}
12577 		/* A new variable offset is created.  Note that off_reg->off
12578 		 * == 0, since it's a scalar.
12579 		 * dst_reg gets the pointer type and since some positive
12580 		 * integer value was added to the pointer, give it a new 'id'
12581 		 * if it's a PTR_TO_PACKET.
12582 		 * this creates a new 'base' pointer, off_reg (variable) gets
12583 		 * added into the variable offset, and we copy the fixed offset
12584 		 * from ptr_reg.
12585 		 */
12586 		if (signed_add_overflows(smin_ptr, smin_val) ||
12587 		    signed_add_overflows(smax_ptr, smax_val)) {
12588 			dst_reg->smin_value = S64_MIN;
12589 			dst_reg->smax_value = S64_MAX;
12590 		} else {
12591 			dst_reg->smin_value = smin_ptr + smin_val;
12592 			dst_reg->smax_value = smax_ptr + smax_val;
12593 		}
12594 		if (umin_ptr + umin_val < umin_ptr ||
12595 		    umax_ptr + umax_val < umax_ptr) {
12596 			dst_reg->umin_value = 0;
12597 			dst_reg->umax_value = U64_MAX;
12598 		} else {
12599 			dst_reg->umin_value = umin_ptr + umin_val;
12600 			dst_reg->umax_value = umax_ptr + umax_val;
12601 		}
12602 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12603 		dst_reg->off = ptr_reg->off;
12604 		dst_reg->raw = ptr_reg->raw;
12605 		if (reg_is_pkt_pointer(ptr_reg)) {
12606 			dst_reg->id = ++env->id_gen;
12607 			/* something was added to pkt_ptr, set range to zero */
12608 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12609 		}
12610 		break;
12611 	case BPF_SUB:
12612 		if (dst_reg == off_reg) {
12613 			/* scalar -= pointer.  Creates an unknown scalar */
12614 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12615 				dst);
12616 			return -EACCES;
12617 		}
12618 		/* We don't allow subtraction from FP, because (according to
12619 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12620 		 * be able to deal with it.
12621 		 */
12622 		if (ptr_reg->type == PTR_TO_STACK) {
12623 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12624 				dst);
12625 			return -EACCES;
12626 		}
12627 		if (known && (ptr_reg->off - smin_val ==
12628 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12629 			/* pointer -= K.  Subtract it from fixed offset */
12630 			dst_reg->smin_value = smin_ptr;
12631 			dst_reg->smax_value = smax_ptr;
12632 			dst_reg->umin_value = umin_ptr;
12633 			dst_reg->umax_value = umax_ptr;
12634 			dst_reg->var_off = ptr_reg->var_off;
12635 			dst_reg->id = ptr_reg->id;
12636 			dst_reg->off = ptr_reg->off - smin_val;
12637 			dst_reg->raw = ptr_reg->raw;
12638 			break;
12639 		}
12640 		/* A new variable offset is created.  If the subtrahend is known
12641 		 * nonnegative, then any reg->range we had before is still good.
12642 		 */
12643 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12644 		    signed_sub_overflows(smax_ptr, smin_val)) {
12645 			/* Overflow possible, we know nothing */
12646 			dst_reg->smin_value = S64_MIN;
12647 			dst_reg->smax_value = S64_MAX;
12648 		} else {
12649 			dst_reg->smin_value = smin_ptr - smax_val;
12650 			dst_reg->smax_value = smax_ptr - smin_val;
12651 		}
12652 		if (umin_ptr < umax_val) {
12653 			/* Overflow possible, we know nothing */
12654 			dst_reg->umin_value = 0;
12655 			dst_reg->umax_value = U64_MAX;
12656 		} else {
12657 			/* Cannot overflow (as long as bounds are consistent) */
12658 			dst_reg->umin_value = umin_ptr - umax_val;
12659 			dst_reg->umax_value = umax_ptr - umin_val;
12660 		}
12661 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12662 		dst_reg->off = ptr_reg->off;
12663 		dst_reg->raw = ptr_reg->raw;
12664 		if (reg_is_pkt_pointer(ptr_reg)) {
12665 			dst_reg->id = ++env->id_gen;
12666 			/* something was added to pkt_ptr, set range to zero */
12667 			if (smin_val < 0)
12668 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12669 		}
12670 		break;
12671 	case BPF_AND:
12672 	case BPF_OR:
12673 	case BPF_XOR:
12674 		/* bitwise ops on pointers are troublesome, prohibit. */
12675 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12676 			dst, bpf_alu_string[opcode >> 4]);
12677 		return -EACCES;
12678 	default:
12679 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12680 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12681 			dst, bpf_alu_string[opcode >> 4]);
12682 		return -EACCES;
12683 	}
12684 
12685 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12686 		return -EINVAL;
12687 	reg_bounds_sync(dst_reg);
12688 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12689 		return -EACCES;
12690 	if (sanitize_needed(opcode)) {
12691 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12692 				       &info, true);
12693 		if (ret < 0)
12694 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12695 	}
12696 
12697 	return 0;
12698 }
12699 
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12700 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12701 				 struct bpf_reg_state *src_reg)
12702 {
12703 	s32 smin_val = src_reg->s32_min_value;
12704 	s32 smax_val = src_reg->s32_max_value;
12705 	u32 umin_val = src_reg->u32_min_value;
12706 	u32 umax_val = src_reg->u32_max_value;
12707 
12708 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12709 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12710 		dst_reg->s32_min_value = S32_MIN;
12711 		dst_reg->s32_max_value = S32_MAX;
12712 	} else {
12713 		dst_reg->s32_min_value += smin_val;
12714 		dst_reg->s32_max_value += smax_val;
12715 	}
12716 	if (dst_reg->u32_min_value + umin_val < umin_val ||
12717 	    dst_reg->u32_max_value + umax_val < umax_val) {
12718 		dst_reg->u32_min_value = 0;
12719 		dst_reg->u32_max_value = U32_MAX;
12720 	} else {
12721 		dst_reg->u32_min_value += umin_val;
12722 		dst_reg->u32_max_value += umax_val;
12723 	}
12724 }
12725 
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12726 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12727 			       struct bpf_reg_state *src_reg)
12728 {
12729 	s64 smin_val = src_reg->smin_value;
12730 	s64 smax_val = src_reg->smax_value;
12731 	u64 umin_val = src_reg->umin_value;
12732 	u64 umax_val = src_reg->umax_value;
12733 
12734 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12735 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
12736 		dst_reg->smin_value = S64_MIN;
12737 		dst_reg->smax_value = S64_MAX;
12738 	} else {
12739 		dst_reg->smin_value += smin_val;
12740 		dst_reg->smax_value += smax_val;
12741 	}
12742 	if (dst_reg->umin_value + umin_val < umin_val ||
12743 	    dst_reg->umax_value + umax_val < umax_val) {
12744 		dst_reg->umin_value = 0;
12745 		dst_reg->umax_value = U64_MAX;
12746 	} else {
12747 		dst_reg->umin_value += umin_val;
12748 		dst_reg->umax_value += umax_val;
12749 	}
12750 }
12751 
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12752 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12753 				 struct bpf_reg_state *src_reg)
12754 {
12755 	s32 smin_val = src_reg->s32_min_value;
12756 	s32 smax_val = src_reg->s32_max_value;
12757 	u32 umin_val = src_reg->u32_min_value;
12758 	u32 umax_val = src_reg->u32_max_value;
12759 
12760 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12761 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12762 		/* Overflow possible, we know nothing */
12763 		dst_reg->s32_min_value = S32_MIN;
12764 		dst_reg->s32_max_value = S32_MAX;
12765 	} else {
12766 		dst_reg->s32_min_value -= smax_val;
12767 		dst_reg->s32_max_value -= smin_val;
12768 	}
12769 	if (dst_reg->u32_min_value < umax_val) {
12770 		/* Overflow possible, we know nothing */
12771 		dst_reg->u32_min_value = 0;
12772 		dst_reg->u32_max_value = U32_MAX;
12773 	} else {
12774 		/* Cannot overflow (as long as bounds are consistent) */
12775 		dst_reg->u32_min_value -= umax_val;
12776 		dst_reg->u32_max_value -= umin_val;
12777 	}
12778 }
12779 
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12780 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12781 			       struct bpf_reg_state *src_reg)
12782 {
12783 	s64 smin_val = src_reg->smin_value;
12784 	s64 smax_val = src_reg->smax_value;
12785 	u64 umin_val = src_reg->umin_value;
12786 	u64 umax_val = src_reg->umax_value;
12787 
12788 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12789 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12790 		/* Overflow possible, we know nothing */
12791 		dst_reg->smin_value = S64_MIN;
12792 		dst_reg->smax_value = S64_MAX;
12793 	} else {
12794 		dst_reg->smin_value -= smax_val;
12795 		dst_reg->smax_value -= smin_val;
12796 	}
12797 	if (dst_reg->umin_value < umax_val) {
12798 		/* Overflow possible, we know nothing */
12799 		dst_reg->umin_value = 0;
12800 		dst_reg->umax_value = U64_MAX;
12801 	} else {
12802 		/* Cannot overflow (as long as bounds are consistent) */
12803 		dst_reg->umin_value -= umax_val;
12804 		dst_reg->umax_value -= umin_val;
12805 	}
12806 }
12807 
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12808 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12809 				 struct bpf_reg_state *src_reg)
12810 {
12811 	s32 smin_val = src_reg->s32_min_value;
12812 	u32 umin_val = src_reg->u32_min_value;
12813 	u32 umax_val = src_reg->u32_max_value;
12814 
12815 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12816 		/* Ain't nobody got time to multiply that sign */
12817 		__mark_reg32_unbounded(dst_reg);
12818 		return;
12819 	}
12820 	/* Both values are positive, so we can work with unsigned and
12821 	 * copy the result to signed (unless it exceeds S32_MAX).
12822 	 */
12823 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12824 		/* Potential overflow, we know nothing */
12825 		__mark_reg32_unbounded(dst_reg);
12826 		return;
12827 	}
12828 	dst_reg->u32_min_value *= umin_val;
12829 	dst_reg->u32_max_value *= umax_val;
12830 	if (dst_reg->u32_max_value > S32_MAX) {
12831 		/* Overflow possible, we know nothing */
12832 		dst_reg->s32_min_value = S32_MIN;
12833 		dst_reg->s32_max_value = S32_MAX;
12834 	} else {
12835 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12836 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12837 	}
12838 }
12839 
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12840 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12841 			       struct bpf_reg_state *src_reg)
12842 {
12843 	s64 smin_val = src_reg->smin_value;
12844 	u64 umin_val = src_reg->umin_value;
12845 	u64 umax_val = src_reg->umax_value;
12846 
12847 	if (smin_val < 0 || dst_reg->smin_value < 0) {
12848 		/* Ain't nobody got time to multiply that sign */
12849 		__mark_reg64_unbounded(dst_reg);
12850 		return;
12851 	}
12852 	/* Both values are positive, so we can work with unsigned and
12853 	 * copy the result to signed (unless it exceeds S64_MAX).
12854 	 */
12855 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12856 		/* Potential overflow, we know nothing */
12857 		__mark_reg64_unbounded(dst_reg);
12858 		return;
12859 	}
12860 	dst_reg->umin_value *= umin_val;
12861 	dst_reg->umax_value *= umax_val;
12862 	if (dst_reg->umax_value > S64_MAX) {
12863 		/* Overflow possible, we know nothing */
12864 		dst_reg->smin_value = S64_MIN;
12865 		dst_reg->smax_value = S64_MAX;
12866 	} else {
12867 		dst_reg->smin_value = dst_reg->umin_value;
12868 		dst_reg->smax_value = dst_reg->umax_value;
12869 	}
12870 }
12871 
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12872 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12873 				 struct bpf_reg_state *src_reg)
12874 {
12875 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12876 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12877 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12878 	s32 smin_val = src_reg->s32_min_value;
12879 	u32 umax_val = src_reg->u32_max_value;
12880 
12881 	if (src_known && dst_known) {
12882 		__mark_reg32_known(dst_reg, var32_off.value);
12883 		return;
12884 	}
12885 
12886 	/* We get our minimum from the var_off, since that's inherently
12887 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12888 	 */
12889 	dst_reg->u32_min_value = var32_off.value;
12890 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12891 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12892 		/* Lose signed bounds when ANDing negative numbers,
12893 		 * ain't nobody got time for that.
12894 		 */
12895 		dst_reg->s32_min_value = S32_MIN;
12896 		dst_reg->s32_max_value = S32_MAX;
12897 	} else {
12898 		/* ANDing two positives gives a positive, so safe to
12899 		 * cast result into s64.
12900 		 */
12901 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12902 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12903 	}
12904 }
12905 
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12906 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12907 			       struct bpf_reg_state *src_reg)
12908 {
12909 	bool src_known = tnum_is_const(src_reg->var_off);
12910 	bool dst_known = tnum_is_const(dst_reg->var_off);
12911 	s64 smin_val = src_reg->smin_value;
12912 	u64 umax_val = src_reg->umax_value;
12913 
12914 	if (src_known && dst_known) {
12915 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12916 		return;
12917 	}
12918 
12919 	/* We get our minimum from the var_off, since that's inherently
12920 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12921 	 */
12922 	dst_reg->umin_value = dst_reg->var_off.value;
12923 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12924 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12925 		/* Lose signed bounds when ANDing negative numbers,
12926 		 * ain't nobody got time for that.
12927 		 */
12928 		dst_reg->smin_value = S64_MIN;
12929 		dst_reg->smax_value = S64_MAX;
12930 	} else {
12931 		/* ANDing two positives gives a positive, so safe to
12932 		 * cast result into s64.
12933 		 */
12934 		dst_reg->smin_value = dst_reg->umin_value;
12935 		dst_reg->smax_value = dst_reg->umax_value;
12936 	}
12937 	/* We may learn something more from the var_off */
12938 	__update_reg_bounds(dst_reg);
12939 }
12940 
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12941 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12942 				struct bpf_reg_state *src_reg)
12943 {
12944 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12945 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12946 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12947 	s32 smin_val = src_reg->s32_min_value;
12948 	u32 umin_val = src_reg->u32_min_value;
12949 
12950 	if (src_known && dst_known) {
12951 		__mark_reg32_known(dst_reg, var32_off.value);
12952 		return;
12953 	}
12954 
12955 	/* We get our maximum from the var_off, and our minimum is the
12956 	 * maximum of the operands' minima
12957 	 */
12958 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12959 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12960 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12961 		/* Lose signed bounds when ORing negative numbers,
12962 		 * ain't nobody got time for that.
12963 		 */
12964 		dst_reg->s32_min_value = S32_MIN;
12965 		dst_reg->s32_max_value = S32_MAX;
12966 	} else {
12967 		/* ORing two positives gives a positive, so safe to
12968 		 * cast result into s64.
12969 		 */
12970 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12971 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12972 	}
12973 }
12974 
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12975 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
12976 			      struct bpf_reg_state *src_reg)
12977 {
12978 	bool src_known = tnum_is_const(src_reg->var_off);
12979 	bool dst_known = tnum_is_const(dst_reg->var_off);
12980 	s64 smin_val = src_reg->smin_value;
12981 	u64 umin_val = src_reg->umin_value;
12982 
12983 	if (src_known && dst_known) {
12984 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12985 		return;
12986 	}
12987 
12988 	/* We get our maximum from the var_off, and our minimum is the
12989 	 * maximum of the operands' minima
12990 	 */
12991 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
12992 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12993 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12994 		/* Lose signed bounds when ORing negative numbers,
12995 		 * ain't nobody got time for that.
12996 		 */
12997 		dst_reg->smin_value = S64_MIN;
12998 		dst_reg->smax_value = S64_MAX;
12999 	} else {
13000 		/* ORing two positives gives a positive, so safe to
13001 		 * cast result into s64.
13002 		 */
13003 		dst_reg->smin_value = dst_reg->umin_value;
13004 		dst_reg->smax_value = dst_reg->umax_value;
13005 	}
13006 	/* We may learn something more from the var_off */
13007 	__update_reg_bounds(dst_reg);
13008 }
13009 
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13010 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13011 				 struct bpf_reg_state *src_reg)
13012 {
13013 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13014 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13015 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13016 	s32 smin_val = src_reg->s32_min_value;
13017 
13018 	if (src_known && dst_known) {
13019 		__mark_reg32_known(dst_reg, var32_off.value);
13020 		return;
13021 	}
13022 
13023 	/* We get both minimum and maximum from the var32_off. */
13024 	dst_reg->u32_min_value = var32_off.value;
13025 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13026 
13027 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13028 		/* XORing two positive sign numbers gives a positive,
13029 		 * so safe to cast u32 result into s32.
13030 		 */
13031 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13032 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13033 	} else {
13034 		dst_reg->s32_min_value = S32_MIN;
13035 		dst_reg->s32_max_value = S32_MAX;
13036 	}
13037 }
13038 
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13039 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13040 			       struct bpf_reg_state *src_reg)
13041 {
13042 	bool src_known = tnum_is_const(src_reg->var_off);
13043 	bool dst_known = tnum_is_const(dst_reg->var_off);
13044 	s64 smin_val = src_reg->smin_value;
13045 
13046 	if (src_known && dst_known) {
13047 		/* dst_reg->var_off.value has been updated earlier */
13048 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13049 		return;
13050 	}
13051 
13052 	/* We get both minimum and maximum from the var_off. */
13053 	dst_reg->umin_value = dst_reg->var_off.value;
13054 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13055 
13056 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13057 		/* XORing two positive sign numbers gives a positive,
13058 		 * so safe to cast u64 result into s64.
13059 		 */
13060 		dst_reg->smin_value = dst_reg->umin_value;
13061 		dst_reg->smax_value = dst_reg->umax_value;
13062 	} else {
13063 		dst_reg->smin_value = S64_MIN;
13064 		dst_reg->smax_value = S64_MAX;
13065 	}
13066 
13067 	__update_reg_bounds(dst_reg);
13068 }
13069 
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)13070 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13071 				   u64 umin_val, u64 umax_val)
13072 {
13073 	/* We lose all sign bit information (except what we can pick
13074 	 * up from var_off)
13075 	 */
13076 	dst_reg->s32_min_value = S32_MIN;
13077 	dst_reg->s32_max_value = S32_MAX;
13078 	/* If we might shift our top bit out, then we know nothing */
13079 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13080 		dst_reg->u32_min_value = 0;
13081 		dst_reg->u32_max_value = U32_MAX;
13082 	} else {
13083 		dst_reg->u32_min_value <<= umin_val;
13084 		dst_reg->u32_max_value <<= umax_val;
13085 	}
13086 }
13087 
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13088 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13089 				 struct bpf_reg_state *src_reg)
13090 {
13091 	u32 umax_val = src_reg->u32_max_value;
13092 	u32 umin_val = src_reg->u32_min_value;
13093 	/* u32 alu operation will zext upper bits */
13094 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13095 
13096 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13097 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13098 	/* Not required but being careful mark reg64 bounds as unknown so
13099 	 * that we are forced to pick them up from tnum and zext later and
13100 	 * if some path skips this step we are still safe.
13101 	 */
13102 	__mark_reg64_unbounded(dst_reg);
13103 	__update_reg32_bounds(dst_reg);
13104 }
13105 
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)13106 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13107 				   u64 umin_val, u64 umax_val)
13108 {
13109 	/* Special case <<32 because it is a common compiler pattern to sign
13110 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13111 	 * positive we know this shift will also be positive so we can track
13112 	 * bounds correctly. Otherwise we lose all sign bit information except
13113 	 * what we can pick up from var_off. Perhaps we can generalize this
13114 	 * later to shifts of any length.
13115 	 */
13116 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13117 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13118 	else
13119 		dst_reg->smax_value = S64_MAX;
13120 
13121 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13122 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13123 	else
13124 		dst_reg->smin_value = S64_MIN;
13125 
13126 	/* If we might shift our top bit out, then we know nothing */
13127 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13128 		dst_reg->umin_value = 0;
13129 		dst_reg->umax_value = U64_MAX;
13130 	} else {
13131 		dst_reg->umin_value <<= umin_val;
13132 		dst_reg->umax_value <<= umax_val;
13133 	}
13134 }
13135 
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13136 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13137 			       struct bpf_reg_state *src_reg)
13138 {
13139 	u64 umax_val = src_reg->umax_value;
13140 	u64 umin_val = src_reg->umin_value;
13141 
13142 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
13143 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13144 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13145 
13146 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13147 	/* We may learn something more from the var_off */
13148 	__update_reg_bounds(dst_reg);
13149 }
13150 
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13151 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13152 				 struct bpf_reg_state *src_reg)
13153 {
13154 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13155 	u32 umax_val = src_reg->u32_max_value;
13156 	u32 umin_val = src_reg->u32_min_value;
13157 
13158 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13159 	 * be negative, then either:
13160 	 * 1) src_reg might be zero, so the sign bit of the result is
13161 	 *    unknown, so we lose our signed bounds
13162 	 * 2) it's known negative, thus the unsigned bounds capture the
13163 	 *    signed bounds
13164 	 * 3) the signed bounds cross zero, so they tell us nothing
13165 	 *    about the result
13166 	 * If the value in dst_reg is known nonnegative, then again the
13167 	 * unsigned bounds capture the signed bounds.
13168 	 * Thus, in all cases it suffices to blow away our signed bounds
13169 	 * and rely on inferring new ones from the unsigned bounds and
13170 	 * var_off of the result.
13171 	 */
13172 	dst_reg->s32_min_value = S32_MIN;
13173 	dst_reg->s32_max_value = S32_MAX;
13174 
13175 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13176 	dst_reg->u32_min_value >>= umax_val;
13177 	dst_reg->u32_max_value >>= umin_val;
13178 
13179 	__mark_reg64_unbounded(dst_reg);
13180 	__update_reg32_bounds(dst_reg);
13181 }
13182 
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13183 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13184 			       struct bpf_reg_state *src_reg)
13185 {
13186 	u64 umax_val = src_reg->umax_value;
13187 	u64 umin_val = src_reg->umin_value;
13188 
13189 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13190 	 * be negative, then either:
13191 	 * 1) src_reg might be zero, so the sign bit of the result is
13192 	 *    unknown, so we lose our signed bounds
13193 	 * 2) it's known negative, thus the unsigned bounds capture the
13194 	 *    signed bounds
13195 	 * 3) the signed bounds cross zero, so they tell us nothing
13196 	 *    about the result
13197 	 * If the value in dst_reg is known nonnegative, then again the
13198 	 * unsigned bounds capture the signed bounds.
13199 	 * Thus, in all cases it suffices to blow away our signed bounds
13200 	 * and rely on inferring new ones from the unsigned bounds and
13201 	 * var_off of the result.
13202 	 */
13203 	dst_reg->smin_value = S64_MIN;
13204 	dst_reg->smax_value = S64_MAX;
13205 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13206 	dst_reg->umin_value >>= umax_val;
13207 	dst_reg->umax_value >>= umin_val;
13208 
13209 	/* Its not easy to operate on alu32 bounds here because it depends
13210 	 * on bits being shifted in. Take easy way out and mark unbounded
13211 	 * so we can recalculate later from tnum.
13212 	 */
13213 	__mark_reg32_unbounded(dst_reg);
13214 	__update_reg_bounds(dst_reg);
13215 }
13216 
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13217 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13218 				  struct bpf_reg_state *src_reg)
13219 {
13220 	u64 umin_val = src_reg->u32_min_value;
13221 
13222 	/* Upon reaching here, src_known is true and
13223 	 * umax_val is equal to umin_val.
13224 	 */
13225 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13226 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13227 
13228 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13229 
13230 	/* blow away the dst_reg umin_value/umax_value and rely on
13231 	 * dst_reg var_off to refine the result.
13232 	 */
13233 	dst_reg->u32_min_value = 0;
13234 	dst_reg->u32_max_value = U32_MAX;
13235 
13236 	__mark_reg64_unbounded(dst_reg);
13237 	__update_reg32_bounds(dst_reg);
13238 }
13239 
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13240 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13241 				struct bpf_reg_state *src_reg)
13242 {
13243 	u64 umin_val = src_reg->umin_value;
13244 
13245 	/* Upon reaching here, src_known is true and umax_val is equal
13246 	 * to umin_val.
13247 	 */
13248 	dst_reg->smin_value >>= umin_val;
13249 	dst_reg->smax_value >>= umin_val;
13250 
13251 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13252 
13253 	/* blow away the dst_reg umin_value/umax_value and rely on
13254 	 * dst_reg var_off to refine the result.
13255 	 */
13256 	dst_reg->umin_value = 0;
13257 	dst_reg->umax_value = U64_MAX;
13258 
13259 	/* Its not easy to operate on alu32 bounds here because it depends
13260 	 * on bits being shifted in from upper 32-bits. Take easy way out
13261 	 * and mark unbounded so we can recalculate later from tnum.
13262 	 */
13263 	__mark_reg32_unbounded(dst_reg);
13264 	__update_reg_bounds(dst_reg);
13265 }
13266 
13267 /* WARNING: This function does calculations on 64-bit values, but the actual
13268  * execution may occur on 32-bit values. Therefore, things like bitshifts
13269  * need extra checks in the 32-bit case.
13270  */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)13271 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13272 				      struct bpf_insn *insn,
13273 				      struct bpf_reg_state *dst_reg,
13274 				      struct bpf_reg_state src_reg)
13275 {
13276 	struct bpf_reg_state *regs = cur_regs(env);
13277 	u8 opcode = BPF_OP(insn->code);
13278 	bool src_known;
13279 	s64 smin_val, smax_val;
13280 	u64 umin_val, umax_val;
13281 	s32 s32_min_val, s32_max_val;
13282 	u32 u32_min_val, u32_max_val;
13283 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13284 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13285 	int ret;
13286 
13287 	smin_val = src_reg.smin_value;
13288 	smax_val = src_reg.smax_value;
13289 	umin_val = src_reg.umin_value;
13290 	umax_val = src_reg.umax_value;
13291 
13292 	s32_min_val = src_reg.s32_min_value;
13293 	s32_max_val = src_reg.s32_max_value;
13294 	u32_min_val = src_reg.u32_min_value;
13295 	u32_max_val = src_reg.u32_max_value;
13296 
13297 	if (alu32) {
13298 		src_known = tnum_subreg_is_const(src_reg.var_off);
13299 		if ((src_known &&
13300 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13301 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13302 			/* Taint dst register if offset had invalid bounds
13303 			 * derived from e.g. dead branches.
13304 			 */
13305 			__mark_reg_unknown(env, dst_reg);
13306 			return 0;
13307 		}
13308 	} else {
13309 		src_known = tnum_is_const(src_reg.var_off);
13310 		if ((src_known &&
13311 		     (smin_val != smax_val || umin_val != umax_val)) ||
13312 		    smin_val > smax_val || umin_val > umax_val) {
13313 			/* Taint dst register if offset had invalid bounds
13314 			 * derived from e.g. dead branches.
13315 			 */
13316 			__mark_reg_unknown(env, dst_reg);
13317 			return 0;
13318 		}
13319 	}
13320 
13321 	if (!src_known &&
13322 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13323 		__mark_reg_unknown(env, dst_reg);
13324 		return 0;
13325 	}
13326 
13327 	if (sanitize_needed(opcode)) {
13328 		ret = sanitize_val_alu(env, insn);
13329 		if (ret < 0)
13330 			return sanitize_err(env, insn, ret, NULL, NULL);
13331 	}
13332 
13333 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13334 	 * There are two classes of instructions: The first class we track both
13335 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
13336 	 * greatest amount of precision when alu operations are mixed with jmp32
13337 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13338 	 * and BPF_OR. This is possible because these ops have fairly easy to
13339 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13340 	 * See alu32 verifier tests for examples. The second class of
13341 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13342 	 * with regards to tracking sign/unsigned bounds because the bits may
13343 	 * cross subreg boundaries in the alu64 case. When this happens we mark
13344 	 * the reg unbounded in the subreg bound space and use the resulting
13345 	 * tnum to calculate an approximation of the sign/unsigned bounds.
13346 	 */
13347 	switch (opcode) {
13348 	case BPF_ADD:
13349 		scalar32_min_max_add(dst_reg, &src_reg);
13350 		scalar_min_max_add(dst_reg, &src_reg);
13351 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13352 		break;
13353 	case BPF_SUB:
13354 		scalar32_min_max_sub(dst_reg, &src_reg);
13355 		scalar_min_max_sub(dst_reg, &src_reg);
13356 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13357 		break;
13358 	case BPF_MUL:
13359 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13360 		scalar32_min_max_mul(dst_reg, &src_reg);
13361 		scalar_min_max_mul(dst_reg, &src_reg);
13362 		break;
13363 	case BPF_AND:
13364 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13365 		scalar32_min_max_and(dst_reg, &src_reg);
13366 		scalar_min_max_and(dst_reg, &src_reg);
13367 		break;
13368 	case BPF_OR:
13369 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13370 		scalar32_min_max_or(dst_reg, &src_reg);
13371 		scalar_min_max_or(dst_reg, &src_reg);
13372 		break;
13373 	case BPF_XOR:
13374 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13375 		scalar32_min_max_xor(dst_reg, &src_reg);
13376 		scalar_min_max_xor(dst_reg, &src_reg);
13377 		break;
13378 	case BPF_LSH:
13379 		if (umax_val >= insn_bitness) {
13380 			/* Shifts greater than 31 or 63 are undefined.
13381 			 * This includes shifts by a negative number.
13382 			 */
13383 			mark_reg_unknown(env, regs, insn->dst_reg);
13384 			break;
13385 		}
13386 		if (alu32)
13387 			scalar32_min_max_lsh(dst_reg, &src_reg);
13388 		else
13389 			scalar_min_max_lsh(dst_reg, &src_reg);
13390 		break;
13391 	case BPF_RSH:
13392 		if (umax_val >= insn_bitness) {
13393 			/* Shifts greater than 31 or 63 are undefined.
13394 			 * This includes shifts by a negative number.
13395 			 */
13396 			mark_reg_unknown(env, regs, insn->dst_reg);
13397 			break;
13398 		}
13399 		if (alu32)
13400 			scalar32_min_max_rsh(dst_reg, &src_reg);
13401 		else
13402 			scalar_min_max_rsh(dst_reg, &src_reg);
13403 		break;
13404 	case BPF_ARSH:
13405 		if (umax_val >= insn_bitness) {
13406 			/* Shifts greater than 31 or 63 are undefined.
13407 			 * This includes shifts by a negative number.
13408 			 */
13409 			mark_reg_unknown(env, regs, insn->dst_reg);
13410 			break;
13411 		}
13412 		if (alu32)
13413 			scalar32_min_max_arsh(dst_reg, &src_reg);
13414 		else
13415 			scalar_min_max_arsh(dst_reg, &src_reg);
13416 		break;
13417 	default:
13418 		mark_reg_unknown(env, regs, insn->dst_reg);
13419 		break;
13420 	}
13421 
13422 	/* ALU32 ops are zero extended into 64bit register */
13423 	if (alu32)
13424 		zext_32_to_64(dst_reg);
13425 	reg_bounds_sync(dst_reg);
13426 	return 0;
13427 }
13428 
13429 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13430  * and var_off.
13431  */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)13432 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13433 				   struct bpf_insn *insn)
13434 {
13435 	struct bpf_verifier_state *vstate = env->cur_state;
13436 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13437 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13438 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13439 	u8 opcode = BPF_OP(insn->code);
13440 	int err;
13441 
13442 	dst_reg = &regs[insn->dst_reg];
13443 	src_reg = NULL;
13444 	if (dst_reg->type != SCALAR_VALUE)
13445 		ptr_reg = dst_reg;
13446 	else
13447 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13448 		 * incorrectly propagated into other registers by find_equal_scalars()
13449 		 */
13450 		dst_reg->id = 0;
13451 	if (BPF_SRC(insn->code) == BPF_X) {
13452 		src_reg = &regs[insn->src_reg];
13453 		if (src_reg->type != SCALAR_VALUE) {
13454 			if (dst_reg->type != SCALAR_VALUE) {
13455 				/* Combining two pointers by any ALU op yields
13456 				 * an arbitrary scalar. Disallow all math except
13457 				 * pointer subtraction
13458 				 */
13459 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13460 					mark_reg_unknown(env, regs, insn->dst_reg);
13461 					return 0;
13462 				}
13463 				verbose(env, "R%d pointer %s pointer prohibited\n",
13464 					insn->dst_reg,
13465 					bpf_alu_string[opcode >> 4]);
13466 				return -EACCES;
13467 			} else {
13468 				/* scalar += pointer
13469 				 * This is legal, but we have to reverse our
13470 				 * src/dest handling in computing the range
13471 				 */
13472 				err = mark_chain_precision(env, insn->dst_reg);
13473 				if (err)
13474 					return err;
13475 				return adjust_ptr_min_max_vals(env, insn,
13476 							       src_reg, dst_reg);
13477 			}
13478 		} else if (ptr_reg) {
13479 			/* pointer += scalar */
13480 			err = mark_chain_precision(env, insn->src_reg);
13481 			if (err)
13482 				return err;
13483 			return adjust_ptr_min_max_vals(env, insn,
13484 						       dst_reg, src_reg);
13485 		} else if (dst_reg->precise) {
13486 			/* if dst_reg is precise, src_reg should be precise as well */
13487 			err = mark_chain_precision(env, insn->src_reg);
13488 			if (err)
13489 				return err;
13490 		}
13491 	} else {
13492 		/* Pretend the src is a reg with a known value, since we only
13493 		 * need to be able to read from this state.
13494 		 */
13495 		off_reg.type = SCALAR_VALUE;
13496 		__mark_reg_known(&off_reg, insn->imm);
13497 		src_reg = &off_reg;
13498 		if (ptr_reg) /* pointer += K */
13499 			return adjust_ptr_min_max_vals(env, insn,
13500 						       ptr_reg, src_reg);
13501 	}
13502 
13503 	/* Got here implies adding two SCALAR_VALUEs */
13504 	if (WARN_ON_ONCE(ptr_reg)) {
13505 		print_verifier_state(env, state, true);
13506 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13507 		return -EINVAL;
13508 	}
13509 	if (WARN_ON(!src_reg)) {
13510 		print_verifier_state(env, state, true);
13511 		verbose(env, "verifier internal error: no src_reg\n");
13512 		return -EINVAL;
13513 	}
13514 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13515 }
13516 
13517 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)13518 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13519 {
13520 	struct bpf_reg_state *regs = cur_regs(env);
13521 	u8 opcode = BPF_OP(insn->code);
13522 	int err;
13523 
13524 	if (opcode == BPF_END || opcode == BPF_NEG) {
13525 		if (opcode == BPF_NEG) {
13526 			if (BPF_SRC(insn->code) != BPF_K ||
13527 			    insn->src_reg != BPF_REG_0 ||
13528 			    insn->off != 0 || insn->imm != 0) {
13529 				verbose(env, "BPF_NEG uses reserved fields\n");
13530 				return -EINVAL;
13531 			}
13532 		} else {
13533 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13534 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13535 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13536 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13537 				verbose(env, "BPF_END uses reserved fields\n");
13538 				return -EINVAL;
13539 			}
13540 		}
13541 
13542 		/* check src operand */
13543 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13544 		if (err)
13545 			return err;
13546 
13547 		if (is_pointer_value(env, insn->dst_reg)) {
13548 			verbose(env, "R%d pointer arithmetic prohibited\n",
13549 				insn->dst_reg);
13550 			return -EACCES;
13551 		}
13552 
13553 		/* check dest operand */
13554 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13555 		if (err)
13556 			return err;
13557 
13558 	} else if (opcode == BPF_MOV) {
13559 
13560 		if (BPF_SRC(insn->code) == BPF_X) {
13561 			if (insn->imm != 0) {
13562 				verbose(env, "BPF_MOV uses reserved fields\n");
13563 				return -EINVAL;
13564 			}
13565 
13566 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13567 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13568 					verbose(env, "BPF_MOV uses reserved fields\n");
13569 					return -EINVAL;
13570 				}
13571 			} else {
13572 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13573 				    insn->off != 32) {
13574 					verbose(env, "BPF_MOV uses reserved fields\n");
13575 					return -EINVAL;
13576 				}
13577 			}
13578 
13579 			/* check src operand */
13580 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13581 			if (err)
13582 				return err;
13583 		} else {
13584 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13585 				verbose(env, "BPF_MOV uses reserved fields\n");
13586 				return -EINVAL;
13587 			}
13588 		}
13589 
13590 		/* check dest operand, mark as required later */
13591 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13592 		if (err)
13593 			return err;
13594 
13595 		if (BPF_SRC(insn->code) == BPF_X) {
13596 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13597 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13598 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13599 				       !tnum_is_const(src_reg->var_off);
13600 
13601 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13602 				if (insn->off == 0) {
13603 					/* case: R1 = R2
13604 					 * copy register state to dest reg
13605 					 */
13606 					if (need_id)
13607 						/* Assign src and dst registers the same ID
13608 						 * that will be used by find_equal_scalars()
13609 						 * to propagate min/max range.
13610 						 */
13611 						src_reg->id = ++env->id_gen;
13612 					copy_register_state(dst_reg, src_reg);
13613 					dst_reg->live |= REG_LIVE_WRITTEN;
13614 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13615 				} else {
13616 					/* case: R1 = (s8, s16 s32)R2 */
13617 					if (is_pointer_value(env, insn->src_reg)) {
13618 						verbose(env,
13619 							"R%d sign-extension part of pointer\n",
13620 							insn->src_reg);
13621 						return -EACCES;
13622 					} else if (src_reg->type == SCALAR_VALUE) {
13623 						bool no_sext;
13624 
13625 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13626 						if (no_sext && need_id)
13627 							src_reg->id = ++env->id_gen;
13628 						copy_register_state(dst_reg, src_reg);
13629 						if (!no_sext)
13630 							dst_reg->id = 0;
13631 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13632 						dst_reg->live |= REG_LIVE_WRITTEN;
13633 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13634 					} else {
13635 						mark_reg_unknown(env, regs, insn->dst_reg);
13636 					}
13637 				}
13638 			} else {
13639 				/* R1 = (u32) R2 */
13640 				if (is_pointer_value(env, insn->src_reg)) {
13641 					verbose(env,
13642 						"R%d partial copy of pointer\n",
13643 						insn->src_reg);
13644 					return -EACCES;
13645 				} else if (src_reg->type == SCALAR_VALUE) {
13646 					if (insn->off == 0) {
13647 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13648 
13649 						if (is_src_reg_u32 && need_id)
13650 							src_reg->id = ++env->id_gen;
13651 						copy_register_state(dst_reg, src_reg);
13652 						/* Make sure ID is cleared if src_reg is not in u32
13653 						 * range otherwise dst_reg min/max could be incorrectly
13654 						 * propagated into src_reg by find_equal_scalars()
13655 						 */
13656 						if (!is_src_reg_u32)
13657 							dst_reg->id = 0;
13658 						dst_reg->live |= REG_LIVE_WRITTEN;
13659 						dst_reg->subreg_def = env->insn_idx + 1;
13660 					} else {
13661 						/* case: W1 = (s8, s16)W2 */
13662 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13663 
13664 						if (no_sext && need_id)
13665 							src_reg->id = ++env->id_gen;
13666 						copy_register_state(dst_reg, src_reg);
13667 						if (!no_sext)
13668 							dst_reg->id = 0;
13669 						dst_reg->live |= REG_LIVE_WRITTEN;
13670 						dst_reg->subreg_def = env->insn_idx + 1;
13671 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13672 					}
13673 				} else {
13674 					mark_reg_unknown(env, regs,
13675 							 insn->dst_reg);
13676 				}
13677 				zext_32_to_64(dst_reg);
13678 				reg_bounds_sync(dst_reg);
13679 			}
13680 		} else {
13681 			/* case: R = imm
13682 			 * remember the value we stored into this reg
13683 			 */
13684 			/* clear any state __mark_reg_known doesn't set */
13685 			mark_reg_unknown(env, regs, insn->dst_reg);
13686 			regs[insn->dst_reg].type = SCALAR_VALUE;
13687 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13688 				__mark_reg_known(regs + insn->dst_reg,
13689 						 insn->imm);
13690 			} else {
13691 				__mark_reg_known(regs + insn->dst_reg,
13692 						 (u32)insn->imm);
13693 			}
13694 		}
13695 
13696 	} else if (opcode > BPF_END) {
13697 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13698 		return -EINVAL;
13699 
13700 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
13701 
13702 		if (BPF_SRC(insn->code) == BPF_X) {
13703 			if (insn->imm != 0 || insn->off > 1 ||
13704 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13705 				verbose(env, "BPF_ALU uses reserved fields\n");
13706 				return -EINVAL;
13707 			}
13708 			/* check src1 operand */
13709 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13710 			if (err)
13711 				return err;
13712 		} else {
13713 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13714 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13715 				verbose(env, "BPF_ALU uses reserved fields\n");
13716 				return -EINVAL;
13717 			}
13718 		}
13719 
13720 		/* check src2 operand */
13721 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13722 		if (err)
13723 			return err;
13724 
13725 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13726 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13727 			verbose(env, "div by zero\n");
13728 			return -EINVAL;
13729 		}
13730 
13731 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13732 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13733 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13734 
13735 			if (insn->imm < 0 || insn->imm >= size) {
13736 				verbose(env, "invalid shift %d\n", insn->imm);
13737 				return -EINVAL;
13738 			}
13739 		}
13740 
13741 		/* check dest operand */
13742 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13743 		if (err)
13744 			return err;
13745 
13746 		return adjust_reg_min_max_vals(env, insn);
13747 	}
13748 
13749 	return 0;
13750 }
13751 
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)13752 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13753 				   struct bpf_reg_state *dst_reg,
13754 				   enum bpf_reg_type type,
13755 				   bool range_right_open)
13756 {
13757 	struct bpf_func_state *state;
13758 	struct bpf_reg_state *reg;
13759 	int new_range;
13760 
13761 	if (dst_reg->off < 0 ||
13762 	    (dst_reg->off == 0 && range_right_open))
13763 		/* This doesn't give us any range */
13764 		return;
13765 
13766 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
13767 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13768 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
13769 		 * than pkt_end, but that's because it's also less than pkt.
13770 		 */
13771 		return;
13772 
13773 	new_range = dst_reg->off;
13774 	if (range_right_open)
13775 		new_range++;
13776 
13777 	/* Examples for register markings:
13778 	 *
13779 	 * pkt_data in dst register:
13780 	 *
13781 	 *   r2 = r3;
13782 	 *   r2 += 8;
13783 	 *   if (r2 > pkt_end) goto <handle exception>
13784 	 *   <access okay>
13785 	 *
13786 	 *   r2 = r3;
13787 	 *   r2 += 8;
13788 	 *   if (r2 < pkt_end) goto <access okay>
13789 	 *   <handle exception>
13790 	 *
13791 	 *   Where:
13792 	 *     r2 == dst_reg, pkt_end == src_reg
13793 	 *     r2=pkt(id=n,off=8,r=0)
13794 	 *     r3=pkt(id=n,off=0,r=0)
13795 	 *
13796 	 * pkt_data in src register:
13797 	 *
13798 	 *   r2 = r3;
13799 	 *   r2 += 8;
13800 	 *   if (pkt_end >= r2) goto <access okay>
13801 	 *   <handle exception>
13802 	 *
13803 	 *   r2 = r3;
13804 	 *   r2 += 8;
13805 	 *   if (pkt_end <= r2) goto <handle exception>
13806 	 *   <access okay>
13807 	 *
13808 	 *   Where:
13809 	 *     pkt_end == dst_reg, r2 == src_reg
13810 	 *     r2=pkt(id=n,off=8,r=0)
13811 	 *     r3=pkt(id=n,off=0,r=0)
13812 	 *
13813 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13814 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13815 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
13816 	 * the check.
13817 	 */
13818 
13819 	/* If our ids match, then we must have the same max_value.  And we
13820 	 * don't care about the other reg's fixed offset, since if it's too big
13821 	 * the range won't allow anything.
13822 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13823 	 */
13824 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13825 		if (reg->type == type && reg->id == dst_reg->id)
13826 			/* keep the maximum range already checked */
13827 			reg->range = max(reg->range, new_range);
13828 	}));
13829 }
13830 
is_branch32_taken(struct bpf_reg_state * reg,u32 val,u8 opcode)13831 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13832 {
13833 	struct tnum subreg = tnum_subreg(reg->var_off);
13834 	s32 sval = (s32)val;
13835 
13836 	switch (opcode) {
13837 	case BPF_JEQ:
13838 		if (tnum_is_const(subreg))
13839 			return !!tnum_equals_const(subreg, val);
13840 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13841 			return 0;
13842 		break;
13843 	case BPF_JNE:
13844 		if (tnum_is_const(subreg))
13845 			return !tnum_equals_const(subreg, val);
13846 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13847 			return 1;
13848 		break;
13849 	case BPF_JSET:
13850 		if ((~subreg.mask & subreg.value) & val)
13851 			return 1;
13852 		if (!((subreg.mask | subreg.value) & val))
13853 			return 0;
13854 		break;
13855 	case BPF_JGT:
13856 		if (reg->u32_min_value > val)
13857 			return 1;
13858 		else if (reg->u32_max_value <= val)
13859 			return 0;
13860 		break;
13861 	case BPF_JSGT:
13862 		if (reg->s32_min_value > sval)
13863 			return 1;
13864 		else if (reg->s32_max_value <= sval)
13865 			return 0;
13866 		break;
13867 	case BPF_JLT:
13868 		if (reg->u32_max_value < val)
13869 			return 1;
13870 		else if (reg->u32_min_value >= val)
13871 			return 0;
13872 		break;
13873 	case BPF_JSLT:
13874 		if (reg->s32_max_value < sval)
13875 			return 1;
13876 		else if (reg->s32_min_value >= sval)
13877 			return 0;
13878 		break;
13879 	case BPF_JGE:
13880 		if (reg->u32_min_value >= val)
13881 			return 1;
13882 		else if (reg->u32_max_value < val)
13883 			return 0;
13884 		break;
13885 	case BPF_JSGE:
13886 		if (reg->s32_min_value >= sval)
13887 			return 1;
13888 		else if (reg->s32_max_value < sval)
13889 			return 0;
13890 		break;
13891 	case BPF_JLE:
13892 		if (reg->u32_max_value <= val)
13893 			return 1;
13894 		else if (reg->u32_min_value > val)
13895 			return 0;
13896 		break;
13897 	case BPF_JSLE:
13898 		if (reg->s32_max_value <= sval)
13899 			return 1;
13900 		else if (reg->s32_min_value > sval)
13901 			return 0;
13902 		break;
13903 	}
13904 
13905 	return -1;
13906 }
13907 
13908 
is_branch64_taken(struct bpf_reg_state * reg,u64 val,u8 opcode)13909 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13910 {
13911 	s64 sval = (s64)val;
13912 
13913 	switch (opcode) {
13914 	case BPF_JEQ:
13915 		if (tnum_is_const(reg->var_off))
13916 			return !!tnum_equals_const(reg->var_off, val);
13917 		else if (val < reg->umin_value || val > reg->umax_value)
13918 			return 0;
13919 		break;
13920 	case BPF_JNE:
13921 		if (tnum_is_const(reg->var_off))
13922 			return !tnum_equals_const(reg->var_off, val);
13923 		else if (val < reg->umin_value || val > reg->umax_value)
13924 			return 1;
13925 		break;
13926 	case BPF_JSET:
13927 		if ((~reg->var_off.mask & reg->var_off.value) & val)
13928 			return 1;
13929 		if (!((reg->var_off.mask | reg->var_off.value) & val))
13930 			return 0;
13931 		break;
13932 	case BPF_JGT:
13933 		if (reg->umin_value > val)
13934 			return 1;
13935 		else if (reg->umax_value <= val)
13936 			return 0;
13937 		break;
13938 	case BPF_JSGT:
13939 		if (reg->smin_value > sval)
13940 			return 1;
13941 		else if (reg->smax_value <= sval)
13942 			return 0;
13943 		break;
13944 	case BPF_JLT:
13945 		if (reg->umax_value < val)
13946 			return 1;
13947 		else if (reg->umin_value >= val)
13948 			return 0;
13949 		break;
13950 	case BPF_JSLT:
13951 		if (reg->smax_value < sval)
13952 			return 1;
13953 		else if (reg->smin_value >= sval)
13954 			return 0;
13955 		break;
13956 	case BPF_JGE:
13957 		if (reg->umin_value >= val)
13958 			return 1;
13959 		else if (reg->umax_value < val)
13960 			return 0;
13961 		break;
13962 	case BPF_JSGE:
13963 		if (reg->smin_value >= sval)
13964 			return 1;
13965 		else if (reg->smax_value < sval)
13966 			return 0;
13967 		break;
13968 	case BPF_JLE:
13969 		if (reg->umax_value <= val)
13970 			return 1;
13971 		else if (reg->umin_value > val)
13972 			return 0;
13973 		break;
13974 	case BPF_JSLE:
13975 		if (reg->smax_value <= sval)
13976 			return 1;
13977 		else if (reg->smin_value > sval)
13978 			return 0;
13979 		break;
13980 	}
13981 
13982 	return -1;
13983 }
13984 
13985 /* compute branch direction of the expression "if (reg opcode val) goto target;"
13986  * and return:
13987  *  1 - branch will be taken and "goto target" will be executed
13988  *  0 - branch will not be taken and fall-through to next insn
13989  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
13990  *      range [0,10]
13991  */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)13992 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
13993 			   bool is_jmp32)
13994 {
13995 	if (__is_pointer_value(false, reg)) {
13996 		if (!reg_not_null(reg))
13997 			return -1;
13998 
13999 		/* If pointer is valid tests against zero will fail so we can
14000 		 * use this to direct branch taken.
14001 		 */
14002 		if (val != 0)
14003 			return -1;
14004 
14005 		switch (opcode) {
14006 		case BPF_JEQ:
14007 			return 0;
14008 		case BPF_JNE:
14009 			return 1;
14010 		default:
14011 			return -1;
14012 		}
14013 	}
14014 
14015 	if (is_jmp32)
14016 		return is_branch32_taken(reg, val, opcode);
14017 	return is_branch64_taken(reg, val, opcode);
14018 }
14019 
flip_opcode(u32 opcode)14020 static int flip_opcode(u32 opcode)
14021 {
14022 	/* How can we transform "a <op> b" into "b <op> a"? */
14023 	static const u8 opcode_flip[16] = {
14024 		/* these stay the same */
14025 		[BPF_JEQ  >> 4] = BPF_JEQ,
14026 		[BPF_JNE  >> 4] = BPF_JNE,
14027 		[BPF_JSET >> 4] = BPF_JSET,
14028 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14029 		[BPF_JGE  >> 4] = BPF_JLE,
14030 		[BPF_JGT  >> 4] = BPF_JLT,
14031 		[BPF_JLE  >> 4] = BPF_JGE,
14032 		[BPF_JLT  >> 4] = BPF_JGT,
14033 		[BPF_JSGE >> 4] = BPF_JSLE,
14034 		[BPF_JSGT >> 4] = BPF_JSLT,
14035 		[BPF_JSLE >> 4] = BPF_JSGE,
14036 		[BPF_JSLT >> 4] = BPF_JSGT
14037 	};
14038 	return opcode_flip[opcode >> 4];
14039 }
14040 
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)14041 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14042 				   struct bpf_reg_state *src_reg,
14043 				   u8 opcode)
14044 {
14045 	struct bpf_reg_state *pkt;
14046 
14047 	if (src_reg->type == PTR_TO_PACKET_END) {
14048 		pkt = dst_reg;
14049 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14050 		pkt = src_reg;
14051 		opcode = flip_opcode(opcode);
14052 	} else {
14053 		return -1;
14054 	}
14055 
14056 	if (pkt->range >= 0)
14057 		return -1;
14058 
14059 	switch (opcode) {
14060 	case BPF_JLE:
14061 		/* pkt <= pkt_end */
14062 		fallthrough;
14063 	case BPF_JGT:
14064 		/* pkt > pkt_end */
14065 		if (pkt->range == BEYOND_PKT_END)
14066 			/* pkt has at last one extra byte beyond pkt_end */
14067 			return opcode == BPF_JGT;
14068 		break;
14069 	case BPF_JLT:
14070 		/* pkt < pkt_end */
14071 		fallthrough;
14072 	case BPF_JGE:
14073 		/* pkt >= pkt_end */
14074 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14075 			return opcode == BPF_JGE;
14076 		break;
14077 	}
14078 	return -1;
14079 }
14080 
14081 /* Adjusts the register min/max values in the case that the dst_reg is the
14082  * variable register that we are working on, and src_reg is a constant or we're
14083  * simply doing a BPF_K check.
14084  * In JEQ/JNE cases we also adjust the var_off values.
14085  */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)14086 static void reg_set_min_max(struct bpf_reg_state *true_reg,
14087 			    struct bpf_reg_state *false_reg,
14088 			    u64 val, u32 val32,
14089 			    u8 opcode, bool is_jmp32)
14090 {
14091 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
14092 	struct tnum false_64off = false_reg->var_off;
14093 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
14094 	struct tnum true_64off = true_reg->var_off;
14095 	s64 sval = (s64)val;
14096 	s32 sval32 = (s32)val32;
14097 
14098 	/* If the dst_reg is a pointer, we can't learn anything about its
14099 	 * variable offset from the compare (unless src_reg were a pointer into
14100 	 * the same object, but we don't bother with that.
14101 	 * Since false_reg and true_reg have the same type by construction, we
14102 	 * only need to check one of them for pointerness.
14103 	 */
14104 	if (__is_pointer_value(false, false_reg))
14105 		return;
14106 
14107 	switch (opcode) {
14108 	/* JEQ/JNE comparison doesn't change the register equivalence.
14109 	 *
14110 	 * r1 = r2;
14111 	 * if (r1 == 42) goto label;
14112 	 * ...
14113 	 * label: // here both r1 and r2 are known to be 42.
14114 	 *
14115 	 * Hence when marking register as known preserve it's ID.
14116 	 */
14117 	case BPF_JEQ:
14118 		if (is_jmp32) {
14119 			__mark_reg32_known(true_reg, val32);
14120 			true_32off = tnum_subreg(true_reg->var_off);
14121 		} else {
14122 			___mark_reg_known(true_reg, val);
14123 			true_64off = true_reg->var_off;
14124 		}
14125 		break;
14126 	case BPF_JNE:
14127 		if (is_jmp32) {
14128 			__mark_reg32_known(false_reg, val32);
14129 			false_32off = tnum_subreg(false_reg->var_off);
14130 		} else {
14131 			___mark_reg_known(false_reg, val);
14132 			false_64off = false_reg->var_off;
14133 		}
14134 		break;
14135 	case BPF_JSET:
14136 		if (is_jmp32) {
14137 			false_32off = tnum_and(false_32off, tnum_const(~val32));
14138 			if (is_power_of_2(val32))
14139 				true_32off = tnum_or(true_32off,
14140 						     tnum_const(val32));
14141 		} else {
14142 			false_64off = tnum_and(false_64off, tnum_const(~val));
14143 			if (is_power_of_2(val))
14144 				true_64off = tnum_or(true_64off,
14145 						     tnum_const(val));
14146 		}
14147 		break;
14148 	case BPF_JGE:
14149 	case BPF_JGT:
14150 	{
14151 		if (is_jmp32) {
14152 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
14153 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
14154 
14155 			false_reg->u32_max_value = min(false_reg->u32_max_value,
14156 						       false_umax);
14157 			true_reg->u32_min_value = max(true_reg->u32_min_value,
14158 						      true_umin);
14159 		} else {
14160 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
14161 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
14162 
14163 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
14164 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
14165 		}
14166 		break;
14167 	}
14168 	case BPF_JSGE:
14169 	case BPF_JSGT:
14170 	{
14171 		if (is_jmp32) {
14172 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
14173 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
14174 
14175 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
14176 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
14177 		} else {
14178 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
14179 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
14180 
14181 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
14182 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
14183 		}
14184 		break;
14185 	}
14186 	case BPF_JLE:
14187 	case BPF_JLT:
14188 	{
14189 		if (is_jmp32) {
14190 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
14191 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
14192 
14193 			false_reg->u32_min_value = max(false_reg->u32_min_value,
14194 						       false_umin);
14195 			true_reg->u32_max_value = min(true_reg->u32_max_value,
14196 						      true_umax);
14197 		} else {
14198 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
14199 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
14200 
14201 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
14202 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
14203 		}
14204 		break;
14205 	}
14206 	case BPF_JSLE:
14207 	case BPF_JSLT:
14208 	{
14209 		if (is_jmp32) {
14210 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
14211 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
14212 
14213 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
14214 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
14215 		} else {
14216 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
14217 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
14218 
14219 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
14220 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
14221 		}
14222 		break;
14223 	}
14224 	default:
14225 		return;
14226 	}
14227 
14228 	if (is_jmp32) {
14229 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
14230 					     tnum_subreg(false_32off));
14231 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
14232 					    tnum_subreg(true_32off));
14233 		__reg_combine_32_into_64(false_reg);
14234 		__reg_combine_32_into_64(true_reg);
14235 	} else {
14236 		false_reg->var_off = false_64off;
14237 		true_reg->var_off = true_64off;
14238 		__reg_combine_64_into_32(false_reg);
14239 		__reg_combine_64_into_32(true_reg);
14240 	}
14241 }
14242 
14243 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
14244  * the variable reg.
14245  */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)14246 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
14247 				struct bpf_reg_state *false_reg,
14248 				u64 val, u32 val32,
14249 				u8 opcode, bool is_jmp32)
14250 {
14251 	opcode = flip_opcode(opcode);
14252 	/* This uses zero as "not present in table"; luckily the zero opcode,
14253 	 * BPF_JA, can't get here.
14254 	 */
14255 	if (opcode)
14256 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
14257 }
14258 
14259 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)14260 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
14261 				  struct bpf_reg_state *dst_reg)
14262 {
14263 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
14264 							dst_reg->umin_value);
14265 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
14266 							dst_reg->umax_value);
14267 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
14268 							dst_reg->smin_value);
14269 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
14270 							dst_reg->smax_value);
14271 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
14272 							     dst_reg->var_off);
14273 	reg_bounds_sync(src_reg);
14274 	reg_bounds_sync(dst_reg);
14275 }
14276 
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)14277 static void reg_combine_min_max(struct bpf_reg_state *true_src,
14278 				struct bpf_reg_state *true_dst,
14279 				struct bpf_reg_state *false_src,
14280 				struct bpf_reg_state *false_dst,
14281 				u8 opcode)
14282 {
14283 	switch (opcode) {
14284 	case BPF_JEQ:
14285 		__reg_combine_min_max(true_src, true_dst);
14286 		break;
14287 	case BPF_JNE:
14288 		__reg_combine_min_max(false_src, false_dst);
14289 		break;
14290 	}
14291 }
14292 
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)14293 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14294 				 struct bpf_reg_state *reg, u32 id,
14295 				 bool is_null)
14296 {
14297 	if (type_may_be_null(reg->type) && reg->id == id &&
14298 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14299 		/* Old offset (both fixed and variable parts) should have been
14300 		 * known-zero, because we don't allow pointer arithmetic on
14301 		 * pointers that might be NULL. If we see this happening, don't
14302 		 * convert the register.
14303 		 *
14304 		 * But in some cases, some helpers that return local kptrs
14305 		 * advance offset for the returned pointer. In those cases, it
14306 		 * is fine to expect to see reg->off.
14307 		 */
14308 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14309 			return;
14310 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14311 		    WARN_ON_ONCE(reg->off))
14312 			return;
14313 
14314 		if (is_null) {
14315 			reg->type = SCALAR_VALUE;
14316 			/* We don't need id and ref_obj_id from this point
14317 			 * onwards anymore, thus we should better reset it,
14318 			 * so that state pruning has chances to take effect.
14319 			 */
14320 			reg->id = 0;
14321 			reg->ref_obj_id = 0;
14322 
14323 			return;
14324 		}
14325 
14326 		mark_ptr_not_null_reg(reg);
14327 
14328 		if (!reg_may_point_to_spin_lock(reg)) {
14329 			/* For not-NULL ptr, reg->ref_obj_id will be reset
14330 			 * in release_reference().
14331 			 *
14332 			 * reg->id is still used by spin_lock ptr. Other
14333 			 * than spin_lock ptr type, reg->id can be reset.
14334 			 */
14335 			reg->id = 0;
14336 		}
14337 	}
14338 }
14339 
14340 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14341  * be folded together at some point.
14342  */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)14343 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14344 				  bool is_null)
14345 {
14346 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14347 	struct bpf_reg_state *regs = state->regs, *reg;
14348 	u32 ref_obj_id = regs[regno].ref_obj_id;
14349 	u32 id = regs[regno].id;
14350 
14351 	if (ref_obj_id && ref_obj_id == id && is_null)
14352 		/* regs[regno] is in the " == NULL" branch.
14353 		 * No one could have freed the reference state before
14354 		 * doing the NULL check.
14355 		 */
14356 		WARN_ON_ONCE(release_reference_state(state, id));
14357 
14358 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14359 		mark_ptr_or_null_reg(state, reg, id, is_null);
14360 	}));
14361 }
14362 
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)14363 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14364 				   struct bpf_reg_state *dst_reg,
14365 				   struct bpf_reg_state *src_reg,
14366 				   struct bpf_verifier_state *this_branch,
14367 				   struct bpf_verifier_state *other_branch)
14368 {
14369 	if (BPF_SRC(insn->code) != BPF_X)
14370 		return false;
14371 
14372 	/* Pointers are always 64-bit. */
14373 	if (BPF_CLASS(insn->code) == BPF_JMP32)
14374 		return false;
14375 
14376 	switch (BPF_OP(insn->code)) {
14377 	case BPF_JGT:
14378 		if ((dst_reg->type == PTR_TO_PACKET &&
14379 		     src_reg->type == PTR_TO_PACKET_END) ||
14380 		    (dst_reg->type == PTR_TO_PACKET_META &&
14381 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14382 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14383 			find_good_pkt_pointers(this_branch, dst_reg,
14384 					       dst_reg->type, false);
14385 			mark_pkt_end(other_branch, insn->dst_reg, true);
14386 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14387 			    src_reg->type == PTR_TO_PACKET) ||
14388 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14389 			    src_reg->type == PTR_TO_PACKET_META)) {
14390 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
14391 			find_good_pkt_pointers(other_branch, src_reg,
14392 					       src_reg->type, true);
14393 			mark_pkt_end(this_branch, insn->src_reg, false);
14394 		} else {
14395 			return false;
14396 		}
14397 		break;
14398 	case BPF_JLT:
14399 		if ((dst_reg->type == PTR_TO_PACKET &&
14400 		     src_reg->type == PTR_TO_PACKET_END) ||
14401 		    (dst_reg->type == PTR_TO_PACKET_META &&
14402 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14403 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14404 			find_good_pkt_pointers(other_branch, dst_reg,
14405 					       dst_reg->type, true);
14406 			mark_pkt_end(this_branch, insn->dst_reg, false);
14407 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14408 			    src_reg->type == PTR_TO_PACKET) ||
14409 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14410 			    src_reg->type == PTR_TO_PACKET_META)) {
14411 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
14412 			find_good_pkt_pointers(this_branch, src_reg,
14413 					       src_reg->type, false);
14414 			mark_pkt_end(other_branch, insn->src_reg, true);
14415 		} else {
14416 			return false;
14417 		}
14418 		break;
14419 	case BPF_JGE:
14420 		if ((dst_reg->type == PTR_TO_PACKET &&
14421 		     src_reg->type == PTR_TO_PACKET_END) ||
14422 		    (dst_reg->type == PTR_TO_PACKET_META &&
14423 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14424 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14425 			find_good_pkt_pointers(this_branch, dst_reg,
14426 					       dst_reg->type, true);
14427 			mark_pkt_end(other_branch, insn->dst_reg, false);
14428 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14429 			    src_reg->type == PTR_TO_PACKET) ||
14430 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14431 			    src_reg->type == PTR_TO_PACKET_META)) {
14432 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14433 			find_good_pkt_pointers(other_branch, src_reg,
14434 					       src_reg->type, false);
14435 			mark_pkt_end(this_branch, insn->src_reg, true);
14436 		} else {
14437 			return false;
14438 		}
14439 		break;
14440 	case BPF_JLE:
14441 		if ((dst_reg->type == PTR_TO_PACKET &&
14442 		     src_reg->type == PTR_TO_PACKET_END) ||
14443 		    (dst_reg->type == PTR_TO_PACKET_META &&
14444 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14445 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14446 			find_good_pkt_pointers(other_branch, dst_reg,
14447 					       dst_reg->type, false);
14448 			mark_pkt_end(this_branch, insn->dst_reg, true);
14449 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14450 			    src_reg->type == PTR_TO_PACKET) ||
14451 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14452 			    src_reg->type == PTR_TO_PACKET_META)) {
14453 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14454 			find_good_pkt_pointers(this_branch, src_reg,
14455 					       src_reg->type, true);
14456 			mark_pkt_end(other_branch, insn->src_reg, false);
14457 		} else {
14458 			return false;
14459 		}
14460 		break;
14461 	default:
14462 		return false;
14463 	}
14464 
14465 	return true;
14466 }
14467 
find_equal_scalars(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg)14468 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14469 			       struct bpf_reg_state *known_reg)
14470 {
14471 	struct bpf_func_state *state;
14472 	struct bpf_reg_state *reg;
14473 
14474 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14475 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) {
14476 			s32 saved_subreg_def = reg->subreg_def;
14477 			copy_register_state(reg, known_reg);
14478 			reg->subreg_def = saved_subreg_def;
14479 		}
14480 	}));
14481 }
14482 
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)14483 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14484 			     struct bpf_insn *insn, int *insn_idx)
14485 {
14486 	struct bpf_verifier_state *this_branch = env->cur_state;
14487 	struct bpf_verifier_state *other_branch;
14488 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14489 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14490 	struct bpf_reg_state *eq_branch_regs;
14491 	u8 opcode = BPF_OP(insn->code);
14492 	bool is_jmp32;
14493 	int pred = -1;
14494 	int err;
14495 
14496 	/* Only conditional jumps are expected to reach here. */
14497 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14498 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14499 		return -EINVAL;
14500 	}
14501 
14502 	/* check src2 operand */
14503 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14504 	if (err)
14505 		return err;
14506 
14507 	dst_reg = &regs[insn->dst_reg];
14508 	if (BPF_SRC(insn->code) == BPF_X) {
14509 		if (insn->imm != 0) {
14510 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14511 			return -EINVAL;
14512 		}
14513 
14514 		/* check src1 operand */
14515 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14516 		if (err)
14517 			return err;
14518 
14519 		src_reg = &regs[insn->src_reg];
14520 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14521 		    is_pointer_value(env, insn->src_reg)) {
14522 			verbose(env, "R%d pointer comparison prohibited\n",
14523 				insn->src_reg);
14524 			return -EACCES;
14525 		}
14526 	} else {
14527 		if (insn->src_reg != BPF_REG_0) {
14528 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14529 			return -EINVAL;
14530 		}
14531 	}
14532 
14533 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14534 
14535 	if (BPF_SRC(insn->code) == BPF_K) {
14536 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14537 	} else if (src_reg->type == SCALAR_VALUE &&
14538 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14539 		pred = is_branch_taken(dst_reg,
14540 				       tnum_subreg(src_reg->var_off).value,
14541 				       opcode,
14542 				       is_jmp32);
14543 	} else if (src_reg->type == SCALAR_VALUE &&
14544 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14545 		pred = is_branch_taken(dst_reg,
14546 				       src_reg->var_off.value,
14547 				       opcode,
14548 				       is_jmp32);
14549 	} else if (dst_reg->type == SCALAR_VALUE &&
14550 		   is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14551 		pred = is_branch_taken(src_reg,
14552 				       tnum_subreg(dst_reg->var_off).value,
14553 				       flip_opcode(opcode),
14554 				       is_jmp32);
14555 	} else if (dst_reg->type == SCALAR_VALUE &&
14556 		   !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14557 		pred = is_branch_taken(src_reg,
14558 				       dst_reg->var_off.value,
14559 				       flip_opcode(opcode),
14560 				       is_jmp32);
14561 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
14562 		   reg_is_pkt_pointer_any(src_reg) &&
14563 		   !is_jmp32) {
14564 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14565 	}
14566 
14567 	if (pred >= 0) {
14568 		/* If we get here with a dst_reg pointer type it is because
14569 		 * above is_branch_taken() special cased the 0 comparison.
14570 		 */
14571 		if (!__is_pointer_value(false, dst_reg))
14572 			err = mark_chain_precision(env, insn->dst_reg);
14573 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14574 		    !__is_pointer_value(false, src_reg))
14575 			err = mark_chain_precision(env, insn->src_reg);
14576 		if (err)
14577 			return err;
14578 	}
14579 
14580 	if (pred == 1) {
14581 		/* Only follow the goto, ignore fall-through. If needed, push
14582 		 * the fall-through branch for simulation under speculative
14583 		 * execution.
14584 		 */
14585 		if (!env->bypass_spec_v1 &&
14586 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14587 					       *insn_idx))
14588 			return -EFAULT;
14589 		if (env->log.level & BPF_LOG_LEVEL)
14590 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14591 		*insn_idx += insn->off;
14592 		return 0;
14593 	} else if (pred == 0) {
14594 		/* Only follow the fall-through branch, since that's where the
14595 		 * program will go. If needed, push the goto branch for
14596 		 * simulation under speculative execution.
14597 		 */
14598 		if (!env->bypass_spec_v1 &&
14599 		    !sanitize_speculative_path(env, insn,
14600 					       *insn_idx + insn->off + 1,
14601 					       *insn_idx))
14602 			return -EFAULT;
14603 		if (env->log.level & BPF_LOG_LEVEL)
14604 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14605 		return 0;
14606 	}
14607 
14608 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14609 				  false);
14610 	if (!other_branch)
14611 		return -EFAULT;
14612 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14613 
14614 	/* detect if we are comparing against a constant value so we can adjust
14615 	 * our min/max values for our dst register.
14616 	 * this is only legit if both are scalars (or pointers to the same
14617 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14618 	 * because otherwise the different base pointers mean the offsets aren't
14619 	 * comparable.
14620 	 */
14621 	if (BPF_SRC(insn->code) == BPF_X) {
14622 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
14623 
14624 		if (dst_reg->type == SCALAR_VALUE &&
14625 		    src_reg->type == SCALAR_VALUE) {
14626 			if (tnum_is_const(src_reg->var_off) ||
14627 			    (is_jmp32 &&
14628 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
14629 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
14630 						dst_reg,
14631 						src_reg->var_off.value,
14632 						tnum_subreg(src_reg->var_off).value,
14633 						opcode, is_jmp32);
14634 			else if (tnum_is_const(dst_reg->var_off) ||
14635 				 (is_jmp32 &&
14636 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
14637 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14638 						    src_reg,
14639 						    dst_reg->var_off.value,
14640 						    tnum_subreg(dst_reg->var_off).value,
14641 						    opcode, is_jmp32);
14642 			else if (!is_jmp32 &&
14643 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
14644 				/* Comparing for equality, we can combine knowledge */
14645 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
14646 						    &other_branch_regs[insn->dst_reg],
14647 						    src_reg, dst_reg, opcode);
14648 			if (src_reg->id &&
14649 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14650 				find_equal_scalars(this_branch, src_reg);
14651 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14652 			}
14653 
14654 		}
14655 	} else if (dst_reg->type == SCALAR_VALUE) {
14656 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
14657 					dst_reg, insn->imm, (u32)insn->imm,
14658 					opcode, is_jmp32);
14659 	}
14660 
14661 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14662 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14663 		find_equal_scalars(this_branch, dst_reg);
14664 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14665 	}
14666 
14667 	/* if one pointer register is compared to another pointer
14668 	 * register check if PTR_MAYBE_NULL could be lifted.
14669 	 * E.g. register A - maybe null
14670 	 *      register B - not null
14671 	 * for JNE A, B, ... - A is not null in the false branch;
14672 	 * for JEQ A, B, ... - A is not null in the true branch.
14673 	 *
14674 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14675 	 * not need to be null checked by the BPF program, i.e.,
14676 	 * could be null even without PTR_MAYBE_NULL marking, so
14677 	 * only propagate nullness when neither reg is that type.
14678 	 */
14679 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14680 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14681 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14682 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14683 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14684 		eq_branch_regs = NULL;
14685 		switch (opcode) {
14686 		case BPF_JEQ:
14687 			eq_branch_regs = other_branch_regs;
14688 			break;
14689 		case BPF_JNE:
14690 			eq_branch_regs = regs;
14691 			break;
14692 		default:
14693 			/* do nothing */
14694 			break;
14695 		}
14696 		if (eq_branch_regs) {
14697 			if (type_may_be_null(src_reg->type))
14698 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14699 			else
14700 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14701 		}
14702 	}
14703 
14704 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14705 	 * NOTE: these optimizations below are related with pointer comparison
14706 	 *       which will never be JMP32.
14707 	 */
14708 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14709 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14710 	    type_may_be_null(dst_reg->type)) {
14711 		/* Mark all identical registers in each branch as either
14712 		 * safe or unknown depending R == 0 or R != 0 conditional.
14713 		 */
14714 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14715 				      opcode == BPF_JNE);
14716 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14717 				      opcode == BPF_JEQ);
14718 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14719 					   this_branch, other_branch) &&
14720 		   is_pointer_value(env, insn->dst_reg)) {
14721 		verbose(env, "R%d pointer comparison prohibited\n",
14722 			insn->dst_reg);
14723 		return -EACCES;
14724 	}
14725 	if (env->log.level & BPF_LOG_LEVEL)
14726 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14727 	return 0;
14728 }
14729 
14730 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)14731 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14732 {
14733 	struct bpf_insn_aux_data *aux = cur_aux(env);
14734 	struct bpf_reg_state *regs = cur_regs(env);
14735 	struct bpf_reg_state *dst_reg;
14736 	struct bpf_map *map;
14737 	int err;
14738 
14739 	if (BPF_SIZE(insn->code) != BPF_DW) {
14740 		verbose(env, "invalid BPF_LD_IMM insn\n");
14741 		return -EINVAL;
14742 	}
14743 	if (insn->off != 0) {
14744 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14745 		return -EINVAL;
14746 	}
14747 
14748 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
14749 	if (err)
14750 		return err;
14751 
14752 	dst_reg = &regs[insn->dst_reg];
14753 	if (insn->src_reg == 0) {
14754 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14755 
14756 		dst_reg->type = SCALAR_VALUE;
14757 		__mark_reg_known(&regs[insn->dst_reg], imm);
14758 		return 0;
14759 	}
14760 
14761 	/* All special src_reg cases are listed below. From this point onwards
14762 	 * we either succeed and assign a corresponding dst_reg->type after
14763 	 * zeroing the offset, or fail and reject the program.
14764 	 */
14765 	mark_reg_known_zero(env, regs, insn->dst_reg);
14766 
14767 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14768 		dst_reg->type = aux->btf_var.reg_type;
14769 		switch (base_type(dst_reg->type)) {
14770 		case PTR_TO_MEM:
14771 			dst_reg->mem_size = aux->btf_var.mem_size;
14772 			break;
14773 		case PTR_TO_BTF_ID:
14774 			dst_reg->btf = aux->btf_var.btf;
14775 			dst_reg->btf_id = aux->btf_var.btf_id;
14776 			break;
14777 		default:
14778 			verbose(env, "bpf verifier is misconfigured\n");
14779 			return -EFAULT;
14780 		}
14781 		return 0;
14782 	}
14783 
14784 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
14785 		struct bpf_prog_aux *aux = env->prog->aux;
14786 		u32 subprogno = find_subprog(env,
14787 					     env->insn_idx + insn->imm + 1);
14788 
14789 		if (!aux->func_info) {
14790 			verbose(env, "missing btf func_info\n");
14791 			return -EINVAL;
14792 		}
14793 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14794 			verbose(env, "callback function not static\n");
14795 			return -EINVAL;
14796 		}
14797 
14798 		dst_reg->type = PTR_TO_FUNC;
14799 		dst_reg->subprogno = subprogno;
14800 		return 0;
14801 	}
14802 
14803 	map = env->used_maps[aux->map_index];
14804 	dst_reg->map_ptr = map;
14805 
14806 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14807 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14808 		dst_reg->type = PTR_TO_MAP_VALUE;
14809 		dst_reg->off = aux->map_off;
14810 		WARN_ON_ONCE(map->max_entries != 1);
14811 		/* We want reg->id to be same (0) as map_value is not distinct */
14812 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14813 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14814 		dst_reg->type = CONST_PTR_TO_MAP;
14815 	} else {
14816 		verbose(env, "bpf verifier is misconfigured\n");
14817 		return -EINVAL;
14818 	}
14819 
14820 	return 0;
14821 }
14822 
may_access_skb(enum bpf_prog_type type)14823 static bool may_access_skb(enum bpf_prog_type type)
14824 {
14825 	switch (type) {
14826 	case BPF_PROG_TYPE_SOCKET_FILTER:
14827 	case BPF_PROG_TYPE_SCHED_CLS:
14828 	case BPF_PROG_TYPE_SCHED_ACT:
14829 		return true;
14830 	default:
14831 		return false;
14832 	}
14833 }
14834 
14835 /* verify safety of LD_ABS|LD_IND instructions:
14836  * - they can only appear in the programs where ctx == skb
14837  * - since they are wrappers of function calls, they scratch R1-R5 registers,
14838  *   preserve R6-R9, and store return value into R0
14839  *
14840  * Implicit input:
14841  *   ctx == skb == R6 == CTX
14842  *
14843  * Explicit input:
14844  *   SRC == any register
14845  *   IMM == 32-bit immediate
14846  *
14847  * Output:
14848  *   R0 - 8/16/32-bit skb data converted to cpu endianness
14849  */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)14850 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14851 {
14852 	struct bpf_reg_state *regs = cur_regs(env);
14853 	static const int ctx_reg = BPF_REG_6;
14854 	u8 mode = BPF_MODE(insn->code);
14855 	int i, err;
14856 
14857 	if (!may_access_skb(resolve_prog_type(env->prog))) {
14858 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14859 		return -EINVAL;
14860 	}
14861 
14862 	if (!env->ops->gen_ld_abs) {
14863 		verbose(env, "bpf verifier is misconfigured\n");
14864 		return -EINVAL;
14865 	}
14866 
14867 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14868 	    BPF_SIZE(insn->code) == BPF_DW ||
14869 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14870 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14871 		return -EINVAL;
14872 	}
14873 
14874 	/* check whether implicit source operand (register R6) is readable */
14875 	err = check_reg_arg(env, ctx_reg, SRC_OP);
14876 	if (err)
14877 		return err;
14878 
14879 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14880 	 * gen_ld_abs() may terminate the program at runtime, leading to
14881 	 * reference leak.
14882 	 */
14883 	err = check_reference_leak(env);
14884 	if (err) {
14885 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14886 		return err;
14887 	}
14888 
14889 	if (env->cur_state->active_lock.ptr) {
14890 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14891 		return -EINVAL;
14892 	}
14893 
14894 	if (env->cur_state->active_rcu_lock) {
14895 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14896 		return -EINVAL;
14897 	}
14898 
14899 	if (regs[ctx_reg].type != PTR_TO_CTX) {
14900 		verbose(env,
14901 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14902 		return -EINVAL;
14903 	}
14904 
14905 	if (mode == BPF_IND) {
14906 		/* check explicit source operand */
14907 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14908 		if (err)
14909 			return err;
14910 	}
14911 
14912 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
14913 	if (err < 0)
14914 		return err;
14915 
14916 	/* reset caller saved regs to unreadable */
14917 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
14918 		mark_reg_not_init(env, regs, caller_saved[i]);
14919 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14920 	}
14921 
14922 	/* mark destination R0 register as readable, since it contains
14923 	 * the value fetched from the packet.
14924 	 * Already marked as written above.
14925 	 */
14926 	mark_reg_unknown(env, regs, BPF_REG_0);
14927 	/* ld_abs load up to 32-bit skb data. */
14928 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14929 	return 0;
14930 }
14931 
check_return_code(struct bpf_verifier_env * env)14932 static int check_return_code(struct bpf_verifier_env *env)
14933 {
14934 	struct tnum enforce_attach_type_range = tnum_unknown;
14935 	const struct bpf_prog *prog = env->prog;
14936 	struct bpf_reg_state *reg;
14937 	struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
14938 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14939 	int err;
14940 	struct bpf_func_state *frame = env->cur_state->frame[0];
14941 	const bool is_subprog = frame->subprogno;
14942 
14943 	/* LSM and struct_ops func-ptr's return type could be "void" */
14944 	if (!is_subprog) {
14945 		switch (prog_type) {
14946 		case BPF_PROG_TYPE_LSM:
14947 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
14948 				/* See below, can be 0 or 0-1 depending on hook. */
14949 				break;
14950 			fallthrough;
14951 		case BPF_PROG_TYPE_STRUCT_OPS:
14952 			if (!prog->aux->attach_func_proto->type)
14953 				return 0;
14954 			break;
14955 		default:
14956 			break;
14957 		}
14958 	}
14959 
14960 	/* eBPF calling convention is such that R0 is used
14961 	 * to return the value from eBPF program.
14962 	 * Make sure that it's readable at this time
14963 	 * of bpf_exit, which means that program wrote
14964 	 * something into it earlier
14965 	 */
14966 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14967 	if (err)
14968 		return err;
14969 
14970 	if (is_pointer_value(env, BPF_REG_0)) {
14971 		verbose(env, "R0 leaks addr as return value\n");
14972 		return -EACCES;
14973 	}
14974 
14975 	reg = cur_regs(env) + BPF_REG_0;
14976 
14977 	if (frame->in_async_callback_fn) {
14978 		/* enforce return zero from async callbacks like timer */
14979 		if (reg->type != SCALAR_VALUE) {
14980 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
14981 				reg_type_str(env, reg->type));
14982 			return -EINVAL;
14983 		}
14984 
14985 		if (!tnum_in(const_0, reg->var_off)) {
14986 			verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
14987 			return -EINVAL;
14988 		}
14989 		return 0;
14990 	}
14991 
14992 	if (is_subprog) {
14993 		if (reg->type != SCALAR_VALUE) {
14994 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
14995 				reg_type_str(env, reg->type));
14996 			return -EINVAL;
14997 		}
14998 		return 0;
14999 	}
15000 
15001 	switch (prog_type) {
15002 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15003 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15004 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15005 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15006 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15007 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15008 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
15009 			range = tnum_range(1, 1);
15010 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15011 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15012 			range = tnum_range(0, 3);
15013 		break;
15014 	case BPF_PROG_TYPE_CGROUP_SKB:
15015 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15016 			range = tnum_range(0, 3);
15017 			enforce_attach_type_range = tnum_range(2, 3);
15018 		}
15019 		break;
15020 	case BPF_PROG_TYPE_CGROUP_SOCK:
15021 	case BPF_PROG_TYPE_SOCK_OPS:
15022 	case BPF_PROG_TYPE_CGROUP_DEVICE:
15023 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
15024 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15025 		break;
15026 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
15027 		if (!env->prog->aux->attach_btf_id)
15028 			return 0;
15029 		range = tnum_const(0);
15030 		break;
15031 	case BPF_PROG_TYPE_TRACING:
15032 		switch (env->prog->expected_attach_type) {
15033 		case BPF_TRACE_FENTRY:
15034 		case BPF_TRACE_FEXIT:
15035 			range = tnum_const(0);
15036 			break;
15037 		case BPF_TRACE_RAW_TP:
15038 		case BPF_MODIFY_RETURN:
15039 			return 0;
15040 		case BPF_TRACE_ITER:
15041 			break;
15042 		default:
15043 			return -ENOTSUPP;
15044 		}
15045 		break;
15046 	case BPF_PROG_TYPE_SK_LOOKUP:
15047 		range = tnum_range(SK_DROP, SK_PASS);
15048 		break;
15049 
15050 	case BPF_PROG_TYPE_LSM:
15051 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15052 			/* Regular BPF_PROG_TYPE_LSM programs can return
15053 			 * any value.
15054 			 */
15055 			return 0;
15056 		}
15057 		if (!env->prog->aux->attach_func_proto->type) {
15058 			/* Make sure programs that attach to void
15059 			 * hooks don't try to modify return value.
15060 			 */
15061 			range = tnum_range(1, 1);
15062 		}
15063 		break;
15064 
15065 	case BPF_PROG_TYPE_NETFILTER:
15066 		range = tnum_range(NF_DROP, NF_ACCEPT);
15067 		break;
15068 	case BPF_PROG_TYPE_EXT:
15069 		/* freplace program can return anything as its return value
15070 		 * depends on the to-be-replaced kernel func or bpf program.
15071 		 */
15072 	default:
15073 		return 0;
15074 	}
15075 
15076 	if (reg->type != SCALAR_VALUE) {
15077 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
15078 			reg_type_str(env, reg->type));
15079 		return -EINVAL;
15080 	}
15081 
15082 	if (!tnum_in(range, reg->var_off)) {
15083 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
15084 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
15085 		    prog_type == BPF_PROG_TYPE_LSM &&
15086 		    !prog->aux->attach_func_proto->type)
15087 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15088 		return -EINVAL;
15089 	}
15090 
15091 	if (!tnum_is_unknown(enforce_attach_type_range) &&
15092 	    tnum_in(enforce_attach_type_range, reg->var_off))
15093 		env->prog->enforce_expected_attach_type = 1;
15094 	return 0;
15095 }
15096 
15097 /* non-recursive DFS pseudo code
15098  * 1  procedure DFS-iterative(G,v):
15099  * 2      label v as discovered
15100  * 3      let S be a stack
15101  * 4      S.push(v)
15102  * 5      while S is not empty
15103  * 6            t <- S.peek()
15104  * 7            if t is what we're looking for:
15105  * 8                return t
15106  * 9            for all edges e in G.adjacentEdges(t) do
15107  * 10               if edge e is already labelled
15108  * 11                   continue with the next edge
15109  * 12               w <- G.adjacentVertex(t,e)
15110  * 13               if vertex w is not discovered and not explored
15111  * 14                   label e as tree-edge
15112  * 15                   label w as discovered
15113  * 16                   S.push(w)
15114  * 17                   continue at 5
15115  * 18               else if vertex w is discovered
15116  * 19                   label e as back-edge
15117  * 20               else
15118  * 21                   // vertex w is explored
15119  * 22                   label e as forward- or cross-edge
15120  * 23           label t as explored
15121  * 24           S.pop()
15122  *
15123  * convention:
15124  * 0x10 - discovered
15125  * 0x11 - discovered and fall-through edge labelled
15126  * 0x12 - discovered and fall-through and branch edges labelled
15127  * 0x20 - explored
15128  */
15129 
15130 enum {
15131 	DISCOVERED = 0x10,
15132 	EXPLORED = 0x20,
15133 	FALLTHROUGH = 1,
15134 	BRANCH = 2,
15135 };
15136 
mark_prune_point(struct bpf_verifier_env * env,int idx)15137 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15138 {
15139 	env->insn_aux_data[idx].prune_point = true;
15140 }
15141 
is_prune_point(struct bpf_verifier_env * env,int insn_idx)15142 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15143 {
15144 	return env->insn_aux_data[insn_idx].prune_point;
15145 }
15146 
mark_force_checkpoint(struct bpf_verifier_env * env,int idx)15147 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15148 {
15149 	env->insn_aux_data[idx].force_checkpoint = true;
15150 }
15151 
is_force_checkpoint(struct bpf_verifier_env * env,int insn_idx)15152 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15153 {
15154 	return env->insn_aux_data[insn_idx].force_checkpoint;
15155 }
15156 
mark_calls_callback(struct bpf_verifier_env * env,int idx)15157 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
15158 {
15159 	env->insn_aux_data[idx].calls_callback = true;
15160 }
15161 
calls_callback(struct bpf_verifier_env * env,int insn_idx)15162 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
15163 {
15164 	return env->insn_aux_data[insn_idx].calls_callback;
15165 }
15166 
15167 enum {
15168 	DONE_EXPLORING = 0,
15169 	KEEP_EXPLORING = 1,
15170 };
15171 
15172 /* t, w, e - match pseudo-code above:
15173  * t - index of current instruction
15174  * w - next instruction
15175  * e - edge
15176  */
push_insn(int t,int w,int e,struct bpf_verifier_env * env)15177 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
15178 {
15179 	int *insn_stack = env->cfg.insn_stack;
15180 	int *insn_state = env->cfg.insn_state;
15181 
15182 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15183 		return DONE_EXPLORING;
15184 
15185 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15186 		return DONE_EXPLORING;
15187 
15188 	if (w < 0 || w >= env->prog->len) {
15189 		verbose_linfo(env, t, "%d: ", t);
15190 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
15191 		return -EINVAL;
15192 	}
15193 
15194 	if (e == BRANCH) {
15195 		/* mark branch target for state pruning */
15196 		mark_prune_point(env, w);
15197 		mark_jmp_point(env, w);
15198 	}
15199 
15200 	if (insn_state[w] == 0) {
15201 		/* tree-edge */
15202 		insn_state[t] = DISCOVERED | e;
15203 		insn_state[w] = DISCOVERED;
15204 		if (env->cfg.cur_stack >= env->prog->len)
15205 			return -E2BIG;
15206 		insn_stack[env->cfg.cur_stack++] = w;
15207 		return KEEP_EXPLORING;
15208 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15209 		if (env->bpf_capable)
15210 			return DONE_EXPLORING;
15211 		verbose_linfo(env, t, "%d: ", t);
15212 		verbose_linfo(env, w, "%d: ", w);
15213 		verbose(env, "back-edge from insn %d to %d\n", t, w);
15214 		return -EINVAL;
15215 	} else if (insn_state[w] == EXPLORED) {
15216 		/* forward- or cross-edge */
15217 		insn_state[t] = DISCOVERED | e;
15218 	} else {
15219 		verbose(env, "insn state internal bug\n");
15220 		return -EFAULT;
15221 	}
15222 	return DONE_EXPLORING;
15223 }
15224 
visit_func_call_insn(int t,struct bpf_insn * insns,struct bpf_verifier_env * env,bool visit_callee)15225 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15226 				struct bpf_verifier_env *env,
15227 				bool visit_callee)
15228 {
15229 	int ret, insn_sz;
15230 
15231 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
15232 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
15233 	if (ret)
15234 		return ret;
15235 
15236 	mark_prune_point(env, t + insn_sz);
15237 	/* when we exit from subprog, we need to record non-linear history */
15238 	mark_jmp_point(env, t + insn_sz);
15239 
15240 	if (visit_callee) {
15241 		mark_prune_point(env, t);
15242 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
15243 	}
15244 	return ret;
15245 }
15246 
15247 /* Visits the instruction at index t and returns one of the following:
15248  *  < 0 - an error occurred
15249  *  DONE_EXPLORING - the instruction was fully explored
15250  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15251  */
visit_insn(int t,struct bpf_verifier_env * env)15252 static int visit_insn(int t, struct bpf_verifier_env *env)
15253 {
15254 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15255 	int ret, off, insn_sz;
15256 
15257 	if (bpf_pseudo_func(insn))
15258 		return visit_func_call_insn(t, insns, env, true);
15259 
15260 	/* All non-branch instructions have a single fall-through edge. */
15261 	if (BPF_CLASS(insn->code) != BPF_JMP &&
15262 	    BPF_CLASS(insn->code) != BPF_JMP32) {
15263 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
15264 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
15265 	}
15266 
15267 	switch (BPF_OP(insn->code)) {
15268 	case BPF_EXIT:
15269 		return DONE_EXPLORING;
15270 
15271 	case BPF_CALL:
15272 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15273 			/* Mark this call insn as a prune point to trigger
15274 			 * is_state_visited() check before call itself is
15275 			 * processed by __check_func_call(). Otherwise new
15276 			 * async state will be pushed for further exploration.
15277 			 */
15278 			mark_prune_point(env, t);
15279 		/* For functions that invoke callbacks it is not known how many times
15280 		 * callback would be called. Verifier models callback calling functions
15281 		 * by repeatedly visiting callback bodies and returning to origin call
15282 		 * instruction.
15283 		 * In order to stop such iteration verifier needs to identify when a
15284 		 * state identical some state from a previous iteration is reached.
15285 		 * Check below forces creation of checkpoint before callback calling
15286 		 * instruction to allow search for such identical states.
15287 		 */
15288 		if (is_sync_callback_calling_insn(insn)) {
15289 			mark_calls_callback(env, t);
15290 			mark_force_checkpoint(env, t);
15291 			mark_prune_point(env, t);
15292 			mark_jmp_point(env, t);
15293 		}
15294 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15295 			struct bpf_kfunc_call_arg_meta meta;
15296 
15297 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15298 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
15299 				mark_prune_point(env, t);
15300 				/* Checking and saving state checkpoints at iter_next() call
15301 				 * is crucial for fast convergence of open-coded iterator loop
15302 				 * logic, so we need to force it. If we don't do that,
15303 				 * is_state_visited() might skip saving a checkpoint, causing
15304 				 * unnecessarily long sequence of not checkpointed
15305 				 * instructions and jumps, leading to exhaustion of jump
15306 				 * history buffer, and potentially other undesired outcomes.
15307 				 * It is expected that with correct open-coded iterators
15308 				 * convergence will happen quickly, so we don't run a risk of
15309 				 * exhausting memory.
15310 				 */
15311 				mark_force_checkpoint(env, t);
15312 			}
15313 		}
15314 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15315 
15316 	case BPF_JA:
15317 		if (BPF_SRC(insn->code) != BPF_K)
15318 			return -EINVAL;
15319 
15320 		if (BPF_CLASS(insn->code) == BPF_JMP)
15321 			off = insn->off;
15322 		else
15323 			off = insn->imm;
15324 
15325 		/* unconditional jump with single edge */
15326 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
15327 		if (ret)
15328 			return ret;
15329 
15330 		mark_prune_point(env, t + off + 1);
15331 		mark_jmp_point(env, t + off + 1);
15332 
15333 		return ret;
15334 
15335 	default:
15336 		/* conditional jump with two edges */
15337 		mark_prune_point(env, t);
15338 
15339 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
15340 		if (ret)
15341 			return ret;
15342 
15343 		return push_insn(t, t + insn->off + 1, BRANCH, env);
15344 	}
15345 }
15346 
15347 /* non-recursive depth-first-search to detect loops in BPF program
15348  * loop == back-edge in directed graph
15349  */
check_cfg(struct bpf_verifier_env * env)15350 static int check_cfg(struct bpf_verifier_env *env)
15351 {
15352 	int insn_cnt = env->prog->len;
15353 	int *insn_stack, *insn_state;
15354 	int ret = 0;
15355 	int i;
15356 
15357 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15358 	if (!insn_state)
15359 		return -ENOMEM;
15360 
15361 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15362 	if (!insn_stack) {
15363 		kvfree(insn_state);
15364 		return -ENOMEM;
15365 	}
15366 
15367 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15368 	insn_stack[0] = 0; /* 0 is the first instruction */
15369 	env->cfg.cur_stack = 1;
15370 
15371 	while (env->cfg.cur_stack > 0) {
15372 		int t = insn_stack[env->cfg.cur_stack - 1];
15373 
15374 		ret = visit_insn(t, env);
15375 		switch (ret) {
15376 		case DONE_EXPLORING:
15377 			insn_state[t] = EXPLORED;
15378 			env->cfg.cur_stack--;
15379 			break;
15380 		case KEEP_EXPLORING:
15381 			break;
15382 		default:
15383 			if (ret > 0) {
15384 				verbose(env, "visit_insn internal bug\n");
15385 				ret = -EFAULT;
15386 			}
15387 			goto err_free;
15388 		}
15389 	}
15390 
15391 	if (env->cfg.cur_stack < 0) {
15392 		verbose(env, "pop stack internal bug\n");
15393 		ret = -EFAULT;
15394 		goto err_free;
15395 	}
15396 
15397 	for (i = 0; i < insn_cnt; i++) {
15398 		struct bpf_insn *insn = &env->prog->insnsi[i];
15399 
15400 		if (insn_state[i] != EXPLORED) {
15401 			verbose(env, "unreachable insn %d\n", i);
15402 			ret = -EINVAL;
15403 			goto err_free;
15404 		}
15405 		if (bpf_is_ldimm64(insn)) {
15406 			if (insn_state[i + 1] != 0) {
15407 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
15408 				ret = -EINVAL;
15409 				goto err_free;
15410 			}
15411 			i++; /* skip second half of ldimm64 */
15412 		}
15413 	}
15414 	ret = 0; /* cfg looks good */
15415 
15416 err_free:
15417 	kvfree(insn_state);
15418 	kvfree(insn_stack);
15419 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
15420 	return ret;
15421 }
15422 
check_abnormal_return(struct bpf_verifier_env * env)15423 static int check_abnormal_return(struct bpf_verifier_env *env)
15424 {
15425 	int i;
15426 
15427 	for (i = 1; i < env->subprog_cnt; i++) {
15428 		if (env->subprog_info[i].has_ld_abs) {
15429 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15430 			return -EINVAL;
15431 		}
15432 		if (env->subprog_info[i].has_tail_call) {
15433 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15434 			return -EINVAL;
15435 		}
15436 	}
15437 	return 0;
15438 }
15439 
15440 /* The minimum supported BTF func info size */
15441 #define MIN_BPF_FUNCINFO_SIZE	8
15442 #define MAX_FUNCINFO_REC_SIZE	252
15443 
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15444 static int check_btf_func(struct bpf_verifier_env *env,
15445 			  const union bpf_attr *attr,
15446 			  bpfptr_t uattr)
15447 {
15448 	const struct btf_type *type, *func_proto, *ret_type;
15449 	u32 i, nfuncs, urec_size, min_size;
15450 	u32 krec_size = sizeof(struct bpf_func_info);
15451 	struct bpf_func_info *krecord;
15452 	struct bpf_func_info_aux *info_aux = NULL;
15453 	struct bpf_prog *prog;
15454 	const struct btf *btf;
15455 	bpfptr_t urecord;
15456 	u32 prev_offset = 0;
15457 	bool scalar_return;
15458 	int ret = -ENOMEM;
15459 
15460 	nfuncs = attr->func_info_cnt;
15461 	if (!nfuncs) {
15462 		if (check_abnormal_return(env))
15463 			return -EINVAL;
15464 		return 0;
15465 	}
15466 
15467 	if (nfuncs != env->subprog_cnt) {
15468 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15469 		return -EINVAL;
15470 	}
15471 
15472 	urec_size = attr->func_info_rec_size;
15473 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15474 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15475 	    urec_size % sizeof(u32)) {
15476 		verbose(env, "invalid func info rec size %u\n", urec_size);
15477 		return -EINVAL;
15478 	}
15479 
15480 	prog = env->prog;
15481 	btf = prog->aux->btf;
15482 
15483 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15484 	min_size = min_t(u32, krec_size, urec_size);
15485 
15486 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15487 	if (!krecord)
15488 		return -ENOMEM;
15489 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15490 	if (!info_aux)
15491 		goto err_free;
15492 
15493 	for (i = 0; i < nfuncs; i++) {
15494 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15495 		if (ret) {
15496 			if (ret == -E2BIG) {
15497 				verbose(env, "nonzero tailing record in func info");
15498 				/* set the size kernel expects so loader can zero
15499 				 * out the rest of the record.
15500 				 */
15501 				if (copy_to_bpfptr_offset(uattr,
15502 							  offsetof(union bpf_attr, func_info_rec_size),
15503 							  &min_size, sizeof(min_size)))
15504 					ret = -EFAULT;
15505 			}
15506 			goto err_free;
15507 		}
15508 
15509 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15510 			ret = -EFAULT;
15511 			goto err_free;
15512 		}
15513 
15514 		/* check insn_off */
15515 		ret = -EINVAL;
15516 		if (i == 0) {
15517 			if (krecord[i].insn_off) {
15518 				verbose(env,
15519 					"nonzero insn_off %u for the first func info record",
15520 					krecord[i].insn_off);
15521 				goto err_free;
15522 			}
15523 		} else if (krecord[i].insn_off <= prev_offset) {
15524 			verbose(env,
15525 				"same or smaller insn offset (%u) than previous func info record (%u)",
15526 				krecord[i].insn_off, prev_offset);
15527 			goto err_free;
15528 		}
15529 
15530 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15531 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15532 			goto err_free;
15533 		}
15534 
15535 		/* check type_id */
15536 		type = btf_type_by_id(btf, krecord[i].type_id);
15537 		if (!type || !btf_type_is_func(type)) {
15538 			verbose(env, "invalid type id %d in func info",
15539 				krecord[i].type_id);
15540 			goto err_free;
15541 		}
15542 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15543 
15544 		func_proto = btf_type_by_id(btf, type->type);
15545 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15546 			/* btf_func_check() already verified it during BTF load */
15547 			goto err_free;
15548 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15549 		scalar_return =
15550 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15551 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15552 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15553 			goto err_free;
15554 		}
15555 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15556 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15557 			goto err_free;
15558 		}
15559 
15560 		prev_offset = krecord[i].insn_off;
15561 		bpfptr_add(&urecord, urec_size);
15562 	}
15563 
15564 	prog->aux->func_info = krecord;
15565 	prog->aux->func_info_cnt = nfuncs;
15566 	prog->aux->func_info_aux = info_aux;
15567 	return 0;
15568 
15569 err_free:
15570 	kvfree(krecord);
15571 	kfree(info_aux);
15572 	return ret;
15573 }
15574 
adjust_btf_func(struct bpf_verifier_env * env)15575 static void adjust_btf_func(struct bpf_verifier_env *env)
15576 {
15577 	struct bpf_prog_aux *aux = env->prog->aux;
15578 	int i;
15579 
15580 	if (!aux->func_info)
15581 		return;
15582 
15583 	for (i = 0; i < env->subprog_cnt; i++)
15584 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15585 }
15586 
15587 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15588 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15589 
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15590 static int check_btf_line(struct bpf_verifier_env *env,
15591 			  const union bpf_attr *attr,
15592 			  bpfptr_t uattr)
15593 {
15594 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15595 	struct bpf_subprog_info *sub;
15596 	struct bpf_line_info *linfo;
15597 	struct bpf_prog *prog;
15598 	const struct btf *btf;
15599 	bpfptr_t ulinfo;
15600 	int err;
15601 
15602 	nr_linfo = attr->line_info_cnt;
15603 	if (!nr_linfo)
15604 		return 0;
15605 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15606 		return -EINVAL;
15607 
15608 	rec_size = attr->line_info_rec_size;
15609 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15610 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15611 	    rec_size & (sizeof(u32) - 1))
15612 		return -EINVAL;
15613 
15614 	/* Need to zero it in case the userspace may
15615 	 * pass in a smaller bpf_line_info object.
15616 	 */
15617 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15618 			 GFP_KERNEL | __GFP_NOWARN);
15619 	if (!linfo)
15620 		return -ENOMEM;
15621 
15622 	prog = env->prog;
15623 	btf = prog->aux->btf;
15624 
15625 	s = 0;
15626 	sub = env->subprog_info;
15627 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15628 	expected_size = sizeof(struct bpf_line_info);
15629 	ncopy = min_t(u32, expected_size, rec_size);
15630 	for (i = 0; i < nr_linfo; i++) {
15631 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15632 		if (err) {
15633 			if (err == -E2BIG) {
15634 				verbose(env, "nonzero tailing record in line_info");
15635 				if (copy_to_bpfptr_offset(uattr,
15636 							  offsetof(union bpf_attr, line_info_rec_size),
15637 							  &expected_size, sizeof(expected_size)))
15638 					err = -EFAULT;
15639 			}
15640 			goto err_free;
15641 		}
15642 
15643 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15644 			err = -EFAULT;
15645 			goto err_free;
15646 		}
15647 
15648 		/*
15649 		 * Check insn_off to ensure
15650 		 * 1) strictly increasing AND
15651 		 * 2) bounded by prog->len
15652 		 *
15653 		 * The linfo[0].insn_off == 0 check logically falls into
15654 		 * the later "missing bpf_line_info for func..." case
15655 		 * because the first linfo[0].insn_off must be the
15656 		 * first sub also and the first sub must have
15657 		 * subprog_info[0].start == 0.
15658 		 */
15659 		if ((i && linfo[i].insn_off <= prev_offset) ||
15660 		    linfo[i].insn_off >= prog->len) {
15661 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15662 				i, linfo[i].insn_off, prev_offset,
15663 				prog->len);
15664 			err = -EINVAL;
15665 			goto err_free;
15666 		}
15667 
15668 		if (!prog->insnsi[linfo[i].insn_off].code) {
15669 			verbose(env,
15670 				"Invalid insn code at line_info[%u].insn_off\n",
15671 				i);
15672 			err = -EINVAL;
15673 			goto err_free;
15674 		}
15675 
15676 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15677 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15678 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15679 			err = -EINVAL;
15680 			goto err_free;
15681 		}
15682 
15683 		if (s != env->subprog_cnt) {
15684 			if (linfo[i].insn_off == sub[s].start) {
15685 				sub[s].linfo_idx = i;
15686 				s++;
15687 			} else if (sub[s].start < linfo[i].insn_off) {
15688 				verbose(env, "missing bpf_line_info for func#%u\n", s);
15689 				err = -EINVAL;
15690 				goto err_free;
15691 			}
15692 		}
15693 
15694 		prev_offset = linfo[i].insn_off;
15695 		bpfptr_add(&ulinfo, rec_size);
15696 	}
15697 
15698 	if (s != env->subprog_cnt) {
15699 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15700 			env->subprog_cnt - s, s);
15701 		err = -EINVAL;
15702 		goto err_free;
15703 	}
15704 
15705 	prog->aux->linfo = linfo;
15706 	prog->aux->nr_linfo = nr_linfo;
15707 
15708 	return 0;
15709 
15710 err_free:
15711 	kvfree(linfo);
15712 	return err;
15713 }
15714 
15715 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
15716 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
15717 
check_core_relo(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15718 static int check_core_relo(struct bpf_verifier_env *env,
15719 			   const union bpf_attr *attr,
15720 			   bpfptr_t uattr)
15721 {
15722 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15723 	struct bpf_core_relo core_relo = {};
15724 	struct bpf_prog *prog = env->prog;
15725 	const struct btf *btf = prog->aux->btf;
15726 	struct bpf_core_ctx ctx = {
15727 		.log = &env->log,
15728 		.btf = btf,
15729 	};
15730 	bpfptr_t u_core_relo;
15731 	int err;
15732 
15733 	nr_core_relo = attr->core_relo_cnt;
15734 	if (!nr_core_relo)
15735 		return 0;
15736 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15737 		return -EINVAL;
15738 
15739 	rec_size = attr->core_relo_rec_size;
15740 	if (rec_size < MIN_CORE_RELO_SIZE ||
15741 	    rec_size > MAX_CORE_RELO_SIZE ||
15742 	    rec_size % sizeof(u32))
15743 		return -EINVAL;
15744 
15745 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15746 	expected_size = sizeof(struct bpf_core_relo);
15747 	ncopy = min_t(u32, expected_size, rec_size);
15748 
15749 	/* Unlike func_info and line_info, copy and apply each CO-RE
15750 	 * relocation record one at a time.
15751 	 */
15752 	for (i = 0; i < nr_core_relo; i++) {
15753 		/* future proofing when sizeof(bpf_core_relo) changes */
15754 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15755 		if (err) {
15756 			if (err == -E2BIG) {
15757 				verbose(env, "nonzero tailing record in core_relo");
15758 				if (copy_to_bpfptr_offset(uattr,
15759 							  offsetof(union bpf_attr, core_relo_rec_size),
15760 							  &expected_size, sizeof(expected_size)))
15761 					err = -EFAULT;
15762 			}
15763 			break;
15764 		}
15765 
15766 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15767 			err = -EFAULT;
15768 			break;
15769 		}
15770 
15771 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15772 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15773 				i, core_relo.insn_off, prog->len);
15774 			err = -EINVAL;
15775 			break;
15776 		}
15777 
15778 		err = bpf_core_apply(&ctx, &core_relo, i,
15779 				     &prog->insnsi[core_relo.insn_off / 8]);
15780 		if (err)
15781 			break;
15782 		bpfptr_add(&u_core_relo, rec_size);
15783 	}
15784 	return err;
15785 }
15786 
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15787 static int check_btf_info(struct bpf_verifier_env *env,
15788 			  const union bpf_attr *attr,
15789 			  bpfptr_t uattr)
15790 {
15791 	struct btf *btf;
15792 	int err;
15793 
15794 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15795 		if (check_abnormal_return(env))
15796 			return -EINVAL;
15797 		return 0;
15798 	}
15799 
15800 	btf = btf_get_by_fd(attr->prog_btf_fd);
15801 	if (IS_ERR(btf))
15802 		return PTR_ERR(btf);
15803 	if (btf_is_kernel(btf)) {
15804 		btf_put(btf);
15805 		return -EACCES;
15806 	}
15807 	env->prog->aux->btf = btf;
15808 
15809 	err = check_btf_func(env, attr, uattr);
15810 	if (err)
15811 		return err;
15812 
15813 	err = check_btf_line(env, attr, uattr);
15814 	if (err)
15815 		return err;
15816 
15817 	err = check_core_relo(env, attr, uattr);
15818 	if (err)
15819 		return err;
15820 
15821 	return 0;
15822 }
15823 
15824 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)15825 static bool range_within(struct bpf_reg_state *old,
15826 			 struct bpf_reg_state *cur)
15827 {
15828 	return old->umin_value <= cur->umin_value &&
15829 	       old->umax_value >= cur->umax_value &&
15830 	       old->smin_value <= cur->smin_value &&
15831 	       old->smax_value >= cur->smax_value &&
15832 	       old->u32_min_value <= cur->u32_min_value &&
15833 	       old->u32_max_value >= cur->u32_max_value &&
15834 	       old->s32_min_value <= cur->s32_min_value &&
15835 	       old->s32_max_value >= cur->s32_max_value;
15836 }
15837 
15838 /* If in the old state two registers had the same id, then they need to have
15839  * the same id in the new state as well.  But that id could be different from
15840  * the old state, so we need to track the mapping from old to new ids.
15841  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15842  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
15843  * regs with a different old id could still have new id 9, we don't care about
15844  * that.
15845  * So we look through our idmap to see if this old id has been seen before.  If
15846  * so, we require the new id to match; otherwise, we add the id pair to the map.
15847  */
check_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)15848 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15849 {
15850 	struct bpf_id_pair *map = idmap->map;
15851 	unsigned int i;
15852 
15853 	/* either both IDs should be set or both should be zero */
15854 	if (!!old_id != !!cur_id)
15855 		return false;
15856 
15857 	if (old_id == 0) /* cur_id == 0 as well */
15858 		return true;
15859 
15860 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15861 		if (!map[i].old) {
15862 			/* Reached an empty slot; haven't seen this id before */
15863 			map[i].old = old_id;
15864 			map[i].cur = cur_id;
15865 			return true;
15866 		}
15867 		if (map[i].old == old_id)
15868 			return map[i].cur == cur_id;
15869 		if (map[i].cur == cur_id)
15870 			return false;
15871 	}
15872 	/* We ran out of idmap slots, which should be impossible */
15873 	WARN_ON_ONCE(1);
15874 	return false;
15875 }
15876 
15877 /* Similar to check_ids(), but allocate a unique temporary ID
15878  * for 'old_id' or 'cur_id' of zero.
15879  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15880  */
check_scalar_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)15881 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15882 {
15883 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15884 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15885 
15886 	return check_ids(old_id, cur_id, idmap);
15887 }
15888 
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)15889 static void clean_func_state(struct bpf_verifier_env *env,
15890 			     struct bpf_func_state *st)
15891 {
15892 	enum bpf_reg_liveness live;
15893 	int i, j;
15894 
15895 	for (i = 0; i < BPF_REG_FP; i++) {
15896 		live = st->regs[i].live;
15897 		/* liveness must not touch this register anymore */
15898 		st->regs[i].live |= REG_LIVE_DONE;
15899 		if (!(live & REG_LIVE_READ))
15900 			/* since the register is unused, clear its state
15901 			 * to make further comparison simpler
15902 			 */
15903 			__mark_reg_not_init(env, &st->regs[i]);
15904 	}
15905 
15906 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15907 		live = st->stack[i].spilled_ptr.live;
15908 		/* liveness must not touch this stack slot anymore */
15909 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15910 		if (!(live & REG_LIVE_READ)) {
15911 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15912 			for (j = 0; j < BPF_REG_SIZE; j++)
15913 				st->stack[i].slot_type[j] = STACK_INVALID;
15914 		}
15915 	}
15916 }
15917 
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)15918 static void clean_verifier_state(struct bpf_verifier_env *env,
15919 				 struct bpf_verifier_state *st)
15920 {
15921 	int i;
15922 
15923 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15924 		/* all regs in this state in all frames were already marked */
15925 		return;
15926 
15927 	for (i = 0; i <= st->curframe; i++)
15928 		clean_func_state(env, st->frame[i]);
15929 }
15930 
15931 /* the parentage chains form a tree.
15932  * the verifier states are added to state lists at given insn and
15933  * pushed into state stack for future exploration.
15934  * when the verifier reaches bpf_exit insn some of the verifer states
15935  * stored in the state lists have their final liveness state already,
15936  * but a lot of states will get revised from liveness point of view when
15937  * the verifier explores other branches.
15938  * Example:
15939  * 1: r0 = 1
15940  * 2: if r1 == 100 goto pc+1
15941  * 3: r0 = 2
15942  * 4: exit
15943  * when the verifier reaches exit insn the register r0 in the state list of
15944  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15945  * of insn 2 and goes exploring further. At the insn 4 it will walk the
15946  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15947  *
15948  * Since the verifier pushes the branch states as it sees them while exploring
15949  * the program the condition of walking the branch instruction for the second
15950  * time means that all states below this branch were already explored and
15951  * their final liveness marks are already propagated.
15952  * Hence when the verifier completes the search of state list in is_state_visited()
15953  * we can call this clean_live_states() function to mark all liveness states
15954  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15955  * will not be used.
15956  * This function also clears the registers and stack for states that !READ
15957  * to simplify state merging.
15958  *
15959  * Important note here that walking the same branch instruction in the callee
15960  * doesn't meant that the states are DONE. The verifier has to compare
15961  * the callsites
15962  */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)15963 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15964 			      struct bpf_verifier_state *cur)
15965 {
15966 	struct bpf_verifier_state_list *sl;
15967 
15968 	sl = *explored_state(env, insn);
15969 	while (sl) {
15970 		if (sl->state.branches)
15971 			goto next;
15972 		if (sl->state.insn_idx != insn ||
15973 		    !same_callsites(&sl->state, cur))
15974 			goto next;
15975 		clean_verifier_state(env, &sl->state);
15976 next:
15977 		sl = sl->next;
15978 	}
15979 }
15980 
regs_exact(const struct bpf_reg_state * rold,const struct bpf_reg_state * rcur,struct bpf_idmap * idmap)15981 static bool regs_exact(const struct bpf_reg_state *rold,
15982 		       const struct bpf_reg_state *rcur,
15983 		       struct bpf_idmap *idmap)
15984 {
15985 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15986 	       check_ids(rold->id, rcur->id, idmap) &&
15987 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15988 }
15989 
15990 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap,bool exact)15991 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
15992 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
15993 {
15994 	if (exact)
15995 		return regs_exact(rold, rcur, idmap);
15996 
15997 	if (!(rold->live & REG_LIVE_READ))
15998 		/* explored state didn't use this */
15999 		return true;
16000 	if (rold->type == NOT_INIT)
16001 		/* explored state can't have used this */
16002 		return true;
16003 	if (rcur->type == NOT_INIT)
16004 		return false;
16005 
16006 	/* Enforce that register types have to match exactly, including their
16007 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16008 	 * rule.
16009 	 *
16010 	 * One can make a point that using a pointer register as unbounded
16011 	 * SCALAR would be technically acceptable, but this could lead to
16012 	 * pointer leaks because scalars are allowed to leak while pointers
16013 	 * are not. We could make this safe in special cases if root is
16014 	 * calling us, but it's probably not worth the hassle.
16015 	 *
16016 	 * Also, register types that are *not* MAYBE_NULL could technically be
16017 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16018 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16019 	 * to the same map).
16020 	 * However, if the old MAYBE_NULL register then got NULL checked,
16021 	 * doing so could have affected others with the same id, and we can't
16022 	 * check for that because we lost the id when we converted to
16023 	 * a non-MAYBE_NULL variant.
16024 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
16025 	 * non-MAYBE_NULL registers as well.
16026 	 */
16027 	if (rold->type != rcur->type)
16028 		return false;
16029 
16030 	switch (base_type(rold->type)) {
16031 	case SCALAR_VALUE:
16032 		if (env->explore_alu_limits) {
16033 			/* explore_alu_limits disables tnum_in() and range_within()
16034 			 * logic and requires everything to be strict
16035 			 */
16036 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16037 			       check_scalar_ids(rold->id, rcur->id, idmap);
16038 		}
16039 		if (!rold->precise)
16040 			return true;
16041 		/* Why check_ids() for scalar registers?
16042 		 *
16043 		 * Consider the following BPF code:
16044 		 *   1: r6 = ... unbound scalar, ID=a ...
16045 		 *   2: r7 = ... unbound scalar, ID=b ...
16046 		 *   3: if (r6 > r7) goto +1
16047 		 *   4: r6 = r7
16048 		 *   5: if (r6 > X) goto ...
16049 		 *   6: ... memory operation using r7 ...
16050 		 *
16051 		 * First verification path is [1-6]:
16052 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16053 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16054 		 *   r7 <= X, because r6 and r7 share same id.
16055 		 * Next verification path is [1-4, 6].
16056 		 *
16057 		 * Instruction (6) would be reached in two states:
16058 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
16059 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16060 		 *
16061 		 * Use check_ids() to distinguish these states.
16062 		 * ---
16063 		 * Also verify that new value satisfies old value range knowledge.
16064 		 */
16065 		return range_within(rold, rcur) &&
16066 		       tnum_in(rold->var_off, rcur->var_off) &&
16067 		       check_scalar_ids(rold->id, rcur->id, idmap);
16068 	case PTR_TO_MAP_KEY:
16069 	case PTR_TO_MAP_VALUE:
16070 	case PTR_TO_MEM:
16071 	case PTR_TO_BUF:
16072 	case PTR_TO_TP_BUFFER:
16073 		/* If the new min/max/var_off satisfy the old ones and
16074 		 * everything else matches, we are OK.
16075 		 */
16076 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16077 		       range_within(rold, rcur) &&
16078 		       tnum_in(rold->var_off, rcur->var_off) &&
16079 		       check_ids(rold->id, rcur->id, idmap) &&
16080 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16081 	case PTR_TO_PACKET_META:
16082 	case PTR_TO_PACKET:
16083 		/* We must have at least as much range as the old ptr
16084 		 * did, so that any accesses which were safe before are
16085 		 * still safe.  This is true even if old range < old off,
16086 		 * since someone could have accessed through (ptr - k), or
16087 		 * even done ptr -= k in a register, to get a safe access.
16088 		 */
16089 		if (rold->range > rcur->range)
16090 			return false;
16091 		/* If the offsets don't match, we can't trust our alignment;
16092 		 * nor can we be sure that we won't fall out of range.
16093 		 */
16094 		if (rold->off != rcur->off)
16095 			return false;
16096 		/* id relations must be preserved */
16097 		if (!check_ids(rold->id, rcur->id, idmap))
16098 			return false;
16099 		/* new val must satisfy old val knowledge */
16100 		return range_within(rold, rcur) &&
16101 		       tnum_in(rold->var_off, rcur->var_off);
16102 	case PTR_TO_STACK:
16103 		/* two stack pointers are equal only if they're pointing to
16104 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
16105 		 */
16106 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16107 	default:
16108 		return regs_exact(rold, rcur, idmap);
16109 	}
16110 }
16111 
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap,bool exact)16112 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16113 		      struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
16114 {
16115 	int i, spi;
16116 
16117 	/* walk slots of the explored stack and ignore any additional
16118 	 * slots in the current stack, since explored(safe) state
16119 	 * didn't use them
16120 	 */
16121 	for (i = 0; i < old->allocated_stack; i++) {
16122 		struct bpf_reg_state *old_reg, *cur_reg;
16123 
16124 		spi = i / BPF_REG_SIZE;
16125 
16126 		if (exact &&
16127 		    (i >= cur->allocated_stack ||
16128 		     old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16129 		     cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
16130 			return false;
16131 
16132 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
16133 			i += BPF_REG_SIZE - 1;
16134 			/* explored state didn't use this */
16135 			continue;
16136 		}
16137 
16138 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16139 			continue;
16140 
16141 		if (env->allow_uninit_stack &&
16142 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16143 			continue;
16144 
16145 		/* explored stack has more populated slots than current stack
16146 		 * and these slots were used
16147 		 */
16148 		if (i >= cur->allocated_stack)
16149 			return false;
16150 
16151 		/* if old state was safe with misc data in the stack
16152 		 * it will be safe with zero-initialized stack.
16153 		 * The opposite is not true
16154 		 */
16155 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16156 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16157 			continue;
16158 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16159 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16160 			/* Ex: old explored (safe) state has STACK_SPILL in
16161 			 * this stack slot, but current has STACK_MISC ->
16162 			 * this verifier states are not equivalent,
16163 			 * return false to continue verification of this path
16164 			 */
16165 			return false;
16166 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16167 			continue;
16168 		/* Both old and cur are having same slot_type */
16169 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16170 		case STACK_SPILL:
16171 			/* when explored and current stack slot are both storing
16172 			 * spilled registers, check that stored pointers types
16173 			 * are the same as well.
16174 			 * Ex: explored safe path could have stored
16175 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16176 			 * but current path has stored:
16177 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16178 			 * such verifier states are not equivalent.
16179 			 * return false to continue verification of this path
16180 			 */
16181 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
16182 				     &cur->stack[spi].spilled_ptr, idmap, exact))
16183 				return false;
16184 			break;
16185 		case STACK_DYNPTR:
16186 			old_reg = &old->stack[spi].spilled_ptr;
16187 			cur_reg = &cur->stack[spi].spilled_ptr;
16188 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16189 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16190 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16191 				return false;
16192 			break;
16193 		case STACK_ITER:
16194 			old_reg = &old->stack[spi].spilled_ptr;
16195 			cur_reg = &cur->stack[spi].spilled_ptr;
16196 			/* iter.depth is not compared between states as it
16197 			 * doesn't matter for correctness and would otherwise
16198 			 * prevent convergence; we maintain it only to prevent
16199 			 * infinite loop check triggering, see
16200 			 * iter_active_depths_differ()
16201 			 */
16202 			if (old_reg->iter.btf != cur_reg->iter.btf ||
16203 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16204 			    old_reg->iter.state != cur_reg->iter.state ||
16205 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
16206 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16207 				return false;
16208 			break;
16209 		case STACK_MISC:
16210 		case STACK_ZERO:
16211 		case STACK_INVALID:
16212 			continue;
16213 		/* Ensure that new unhandled slot types return false by default */
16214 		default:
16215 			return false;
16216 		}
16217 	}
16218 	return true;
16219 }
16220 
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap)16221 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16222 		    struct bpf_idmap *idmap)
16223 {
16224 	int i;
16225 
16226 	if (old->acquired_refs != cur->acquired_refs)
16227 		return false;
16228 
16229 	for (i = 0; i < old->acquired_refs; i++) {
16230 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16231 			return false;
16232 	}
16233 
16234 	return true;
16235 }
16236 
16237 /* compare two verifier states
16238  *
16239  * all states stored in state_list are known to be valid, since
16240  * verifier reached 'bpf_exit' instruction through them
16241  *
16242  * this function is called when verifier exploring different branches of
16243  * execution popped from the state stack. If it sees an old state that has
16244  * more strict register state and more strict stack state then this execution
16245  * branch doesn't need to be explored further, since verifier already
16246  * concluded that more strict state leads to valid finish.
16247  *
16248  * Therefore two states are equivalent if register state is more conservative
16249  * and explored stack state is more conservative than the current one.
16250  * Example:
16251  *       explored                   current
16252  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16253  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16254  *
16255  * In other words if current stack state (one being explored) has more
16256  * valid slots than old one that already passed validation, it means
16257  * the verifier can stop exploring and conclude that current state is valid too
16258  *
16259  * Similarly with registers. If explored state has register type as invalid
16260  * whereas register type in current state is meaningful, it means that
16261  * the current state will reach 'bpf_exit' instruction safely
16262  */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,bool exact)16263 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16264 			      struct bpf_func_state *cur, bool exact)
16265 {
16266 	int i;
16267 
16268 	if (old->callback_depth > cur->callback_depth)
16269 		return false;
16270 
16271 	for (i = 0; i < MAX_BPF_REG; i++)
16272 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
16273 			     &env->idmap_scratch, exact))
16274 			return false;
16275 
16276 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16277 		return false;
16278 
16279 	if (!refsafe(old, cur, &env->idmap_scratch))
16280 		return false;
16281 
16282 	return true;
16283 }
16284 
reset_idmap_scratch(struct bpf_verifier_env * env)16285 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16286 {
16287 	env->idmap_scratch.tmp_id_gen = env->id_gen;
16288 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16289 }
16290 
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur,bool exact)16291 static bool states_equal(struct bpf_verifier_env *env,
16292 			 struct bpf_verifier_state *old,
16293 			 struct bpf_verifier_state *cur,
16294 			 bool exact)
16295 {
16296 	int i;
16297 
16298 	if (old->curframe != cur->curframe)
16299 		return false;
16300 
16301 	reset_idmap_scratch(env);
16302 
16303 	/* Verification state from speculative execution simulation
16304 	 * must never prune a non-speculative execution one.
16305 	 */
16306 	if (old->speculative && !cur->speculative)
16307 		return false;
16308 
16309 	if (old->active_lock.ptr != cur->active_lock.ptr)
16310 		return false;
16311 
16312 	/* Old and cur active_lock's have to be either both present
16313 	 * or both absent.
16314 	 */
16315 	if (!!old->active_lock.id != !!cur->active_lock.id)
16316 		return false;
16317 
16318 	if (old->active_lock.id &&
16319 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16320 		return false;
16321 
16322 	if (old->active_rcu_lock != cur->active_rcu_lock)
16323 		return false;
16324 
16325 	/* for states to be equal callsites have to be the same
16326 	 * and all frame states need to be equivalent
16327 	 */
16328 	for (i = 0; i <= old->curframe; i++) {
16329 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
16330 			return false;
16331 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16332 			return false;
16333 	}
16334 	return true;
16335 }
16336 
16337 /* Return 0 if no propagation happened. Return negative error code if error
16338  * happened. Otherwise, return the propagated bit.
16339  */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)16340 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16341 				  struct bpf_reg_state *reg,
16342 				  struct bpf_reg_state *parent_reg)
16343 {
16344 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16345 	u8 flag = reg->live & REG_LIVE_READ;
16346 	int err;
16347 
16348 	/* When comes here, read flags of PARENT_REG or REG could be any of
16349 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16350 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16351 	 */
16352 	if (parent_flag == REG_LIVE_READ64 ||
16353 	    /* Or if there is no read flag from REG. */
16354 	    !flag ||
16355 	    /* Or if the read flag from REG is the same as PARENT_REG. */
16356 	    parent_flag == flag)
16357 		return 0;
16358 
16359 	err = mark_reg_read(env, reg, parent_reg, flag);
16360 	if (err)
16361 		return err;
16362 
16363 	return flag;
16364 }
16365 
16366 /* A write screens off any subsequent reads; but write marks come from the
16367  * straight-line code between a state and its parent.  When we arrive at an
16368  * equivalent state (jump target or such) we didn't arrive by the straight-line
16369  * code, so read marks in the state must propagate to the parent regardless
16370  * of the state's write marks. That's what 'parent == state->parent' comparison
16371  * in mark_reg_read() is for.
16372  */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)16373 static int propagate_liveness(struct bpf_verifier_env *env,
16374 			      const struct bpf_verifier_state *vstate,
16375 			      struct bpf_verifier_state *vparent)
16376 {
16377 	struct bpf_reg_state *state_reg, *parent_reg;
16378 	struct bpf_func_state *state, *parent;
16379 	int i, frame, err = 0;
16380 
16381 	if (vparent->curframe != vstate->curframe) {
16382 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
16383 		     vparent->curframe, vstate->curframe);
16384 		return -EFAULT;
16385 	}
16386 	/* Propagate read liveness of registers... */
16387 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16388 	for (frame = 0; frame <= vstate->curframe; frame++) {
16389 		parent = vparent->frame[frame];
16390 		state = vstate->frame[frame];
16391 		parent_reg = parent->regs;
16392 		state_reg = state->regs;
16393 		/* We don't need to worry about FP liveness, it's read-only */
16394 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16395 			err = propagate_liveness_reg(env, &state_reg[i],
16396 						     &parent_reg[i]);
16397 			if (err < 0)
16398 				return err;
16399 			if (err == REG_LIVE_READ64)
16400 				mark_insn_zext(env, &parent_reg[i]);
16401 		}
16402 
16403 		/* Propagate stack slots. */
16404 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16405 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16406 			parent_reg = &parent->stack[i].spilled_ptr;
16407 			state_reg = &state->stack[i].spilled_ptr;
16408 			err = propagate_liveness_reg(env, state_reg,
16409 						     parent_reg);
16410 			if (err < 0)
16411 				return err;
16412 		}
16413 	}
16414 	return 0;
16415 }
16416 
16417 /* find precise scalars in the previous equivalent state and
16418  * propagate them into the current state
16419  */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)16420 static int propagate_precision(struct bpf_verifier_env *env,
16421 			       const struct bpf_verifier_state *old)
16422 {
16423 	struct bpf_reg_state *state_reg;
16424 	struct bpf_func_state *state;
16425 	int i, err = 0, fr;
16426 	bool first;
16427 
16428 	for (fr = old->curframe; fr >= 0; fr--) {
16429 		state = old->frame[fr];
16430 		state_reg = state->regs;
16431 		first = true;
16432 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16433 			if (state_reg->type != SCALAR_VALUE ||
16434 			    !state_reg->precise ||
16435 			    !(state_reg->live & REG_LIVE_READ))
16436 				continue;
16437 			if (env->log.level & BPF_LOG_LEVEL2) {
16438 				if (first)
16439 					verbose(env, "frame %d: propagating r%d", fr, i);
16440 				else
16441 					verbose(env, ",r%d", i);
16442 			}
16443 			bt_set_frame_reg(&env->bt, fr, i);
16444 			first = false;
16445 		}
16446 
16447 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16448 			if (!is_spilled_reg(&state->stack[i]))
16449 				continue;
16450 			state_reg = &state->stack[i].spilled_ptr;
16451 			if (state_reg->type != SCALAR_VALUE ||
16452 			    !state_reg->precise ||
16453 			    !(state_reg->live & REG_LIVE_READ))
16454 				continue;
16455 			if (env->log.level & BPF_LOG_LEVEL2) {
16456 				if (first)
16457 					verbose(env, "frame %d: propagating fp%d",
16458 						fr, (-i - 1) * BPF_REG_SIZE);
16459 				else
16460 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16461 			}
16462 			bt_set_frame_slot(&env->bt, fr, i);
16463 			first = false;
16464 		}
16465 		if (!first)
16466 			verbose(env, "\n");
16467 	}
16468 
16469 	err = mark_chain_precision_batch(env);
16470 	if (err < 0)
16471 		return err;
16472 
16473 	return 0;
16474 }
16475 
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)16476 static bool states_maybe_looping(struct bpf_verifier_state *old,
16477 				 struct bpf_verifier_state *cur)
16478 {
16479 	struct bpf_func_state *fold, *fcur;
16480 	int i, fr = cur->curframe;
16481 
16482 	if (old->curframe != fr)
16483 		return false;
16484 
16485 	fold = old->frame[fr];
16486 	fcur = cur->frame[fr];
16487 	for (i = 0; i < MAX_BPF_REG; i++)
16488 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16489 			   offsetof(struct bpf_reg_state, parent)))
16490 			return false;
16491 	return true;
16492 }
16493 
is_iter_next_insn(struct bpf_verifier_env * env,int insn_idx)16494 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16495 {
16496 	return env->insn_aux_data[insn_idx].is_iter_next;
16497 }
16498 
16499 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16500  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16501  * states to match, which otherwise would look like an infinite loop. So while
16502  * iter_next() calls are taken care of, we still need to be careful and
16503  * prevent erroneous and too eager declaration of "ininite loop", when
16504  * iterators are involved.
16505  *
16506  * Here's a situation in pseudo-BPF assembly form:
16507  *
16508  *   0: again:                          ; set up iter_next() call args
16509  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16510  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16511  *   3:   if r0 == 0 goto done
16512  *   4:   ... something useful here ...
16513  *   5:   goto again                    ; another iteration
16514  *   6: done:
16515  *   7:   r1 = &it
16516  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16517  *   9:   exit
16518  *
16519  * This is a typical loop. Let's assume that we have a prune point at 1:,
16520  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16521  * again`, assuming other heuristics don't get in a way).
16522  *
16523  * When we first time come to 1:, let's say we have some state X. We proceed
16524  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16525  * Now we come back to validate that forked ACTIVE state. We proceed through
16526  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16527  * are converging. But the problem is that we don't know that yet, as this
16528  * convergence has to happen at iter_next() call site only. So if nothing is
16529  * done, at 1: verifier will use bounded loop logic and declare infinite
16530  * looping (and would be *technically* correct, if not for iterator's
16531  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16532  * don't want that. So what we do in process_iter_next_call() when we go on
16533  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16534  * a different iteration. So when we suspect an infinite loop, we additionally
16535  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16536  * pretend we are not looping and wait for next iter_next() call.
16537  *
16538  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16539  * loop, because that would actually mean infinite loop, as DRAINED state is
16540  * "sticky", and so we'll keep returning into the same instruction with the
16541  * same state (at least in one of possible code paths).
16542  *
16543  * This approach allows to keep infinite loop heuristic even in the face of
16544  * active iterator. E.g., C snippet below is and will be detected as
16545  * inifintely looping:
16546  *
16547  *   struct bpf_iter_num it;
16548  *   int *p, x;
16549  *
16550  *   bpf_iter_num_new(&it, 0, 10);
16551  *   while ((p = bpf_iter_num_next(&t))) {
16552  *       x = p;
16553  *       while (x--) {} // <<-- infinite loop here
16554  *   }
16555  *
16556  */
iter_active_depths_differ(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)16557 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16558 {
16559 	struct bpf_reg_state *slot, *cur_slot;
16560 	struct bpf_func_state *state;
16561 	int i, fr;
16562 
16563 	for (fr = old->curframe; fr >= 0; fr--) {
16564 		state = old->frame[fr];
16565 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16566 			if (state->stack[i].slot_type[0] != STACK_ITER)
16567 				continue;
16568 
16569 			slot = &state->stack[i].spilled_ptr;
16570 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16571 				continue;
16572 
16573 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16574 			if (cur_slot->iter.depth != slot->iter.depth)
16575 				return true;
16576 		}
16577 	}
16578 	return false;
16579 }
16580 
is_state_visited(struct bpf_verifier_env * env,int insn_idx)16581 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16582 {
16583 	struct bpf_verifier_state_list *new_sl;
16584 	struct bpf_verifier_state_list *sl, **pprev;
16585 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
16586 	int i, j, n, err, states_cnt = 0;
16587 	bool force_new_state, add_new_state, force_exact;
16588 
16589 	force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
16590 			  /* Avoid accumulating infinitely long jmp history */
16591 			  cur->jmp_history_cnt > 40;
16592 
16593 	/* bpf progs typically have pruning point every 4 instructions
16594 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16595 	 * Do not add new state for future pruning if the verifier hasn't seen
16596 	 * at least 2 jumps and at least 8 instructions.
16597 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16598 	 * In tests that amounts to up to 50% reduction into total verifier
16599 	 * memory consumption and 20% verifier time speedup.
16600 	 */
16601 	add_new_state = force_new_state;
16602 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16603 	    env->insn_processed - env->prev_insn_processed >= 8)
16604 		add_new_state = true;
16605 
16606 	pprev = explored_state(env, insn_idx);
16607 	sl = *pprev;
16608 
16609 	clean_live_states(env, insn_idx, cur);
16610 
16611 	while (sl) {
16612 		states_cnt++;
16613 		if (sl->state.insn_idx != insn_idx)
16614 			goto next;
16615 
16616 		if (sl->state.branches) {
16617 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16618 
16619 			if (frame->in_async_callback_fn &&
16620 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16621 				/* Different async_entry_cnt means that the verifier is
16622 				 * processing another entry into async callback.
16623 				 * Seeing the same state is not an indication of infinite
16624 				 * loop or infinite recursion.
16625 				 * But finding the same state doesn't mean that it's safe
16626 				 * to stop processing the current state. The previous state
16627 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16628 				 * Checking in_async_callback_fn alone is not enough either.
16629 				 * Since the verifier still needs to catch infinite loops
16630 				 * inside async callbacks.
16631 				 */
16632 				goto skip_inf_loop_check;
16633 			}
16634 			/* BPF open-coded iterators loop detection is special.
16635 			 * states_maybe_looping() logic is too simplistic in detecting
16636 			 * states that *might* be equivalent, because it doesn't know
16637 			 * about ID remapping, so don't even perform it.
16638 			 * See process_iter_next_call() and iter_active_depths_differ()
16639 			 * for overview of the logic. When current and one of parent
16640 			 * states are detected as equivalent, it's a good thing: we prove
16641 			 * convergence and can stop simulating further iterations.
16642 			 * It's safe to assume that iterator loop will finish, taking into
16643 			 * account iter_next() contract of eventually returning
16644 			 * sticky NULL result.
16645 			 *
16646 			 * Note, that states have to be compared exactly in this case because
16647 			 * read and precision marks might not be finalized inside the loop.
16648 			 * E.g. as in the program below:
16649 			 *
16650 			 *     1. r7 = -16
16651 			 *     2. r6 = bpf_get_prandom_u32()
16652 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
16653 			 *     4.   if (r6 != 42) {
16654 			 *     5.     r7 = -32
16655 			 *     6.     r6 = bpf_get_prandom_u32()
16656 			 *     7.     continue
16657 			 *     8.   }
16658 			 *     9.   r0 = r10
16659 			 *    10.   r0 += r7
16660 			 *    11.   r8 = *(u64 *)(r0 + 0)
16661 			 *    12.   r6 = bpf_get_prandom_u32()
16662 			 *    13. }
16663 			 *
16664 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
16665 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
16666 			 * not have read or precision mark for r7 yet, thus inexact states
16667 			 * comparison would discard current state with r7=-32
16668 			 * => unsafe memory access at 11 would not be caught.
16669 			 */
16670 			if (is_iter_next_insn(env, insn_idx)) {
16671 				if (states_equal(env, &sl->state, cur, true)) {
16672 					struct bpf_func_state *cur_frame;
16673 					struct bpf_reg_state *iter_state, *iter_reg;
16674 					int spi;
16675 
16676 					cur_frame = cur->frame[cur->curframe];
16677 					/* btf_check_iter_kfuncs() enforces that
16678 					 * iter state pointer is always the first arg
16679 					 */
16680 					iter_reg = &cur_frame->regs[BPF_REG_1];
16681 					/* current state is valid due to states_equal(),
16682 					 * so we can assume valid iter and reg state,
16683 					 * no need for extra (re-)validations
16684 					 */
16685 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16686 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16687 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
16688 						update_loop_entry(cur, &sl->state);
16689 						goto hit;
16690 					}
16691 				}
16692 				goto skip_inf_loop_check;
16693 			}
16694 			if (calls_callback(env, insn_idx)) {
16695 				if (states_equal(env, &sl->state, cur, true))
16696 					goto hit;
16697 				goto skip_inf_loop_check;
16698 			}
16699 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
16700 			if (states_maybe_looping(&sl->state, cur) &&
16701 			    states_equal(env, &sl->state, cur, false) &&
16702 			    !iter_active_depths_differ(&sl->state, cur) &&
16703 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
16704 				verbose_linfo(env, insn_idx, "; ");
16705 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16706 				verbose(env, "cur state:");
16707 				print_verifier_state(env, cur->frame[cur->curframe], true);
16708 				verbose(env, "old state:");
16709 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
16710 				return -EINVAL;
16711 			}
16712 			/* if the verifier is processing a loop, avoid adding new state
16713 			 * too often, since different loop iterations have distinct
16714 			 * states and may not help future pruning.
16715 			 * This threshold shouldn't be too low to make sure that
16716 			 * a loop with large bound will be rejected quickly.
16717 			 * The most abusive loop will be:
16718 			 * r1 += 1
16719 			 * if r1 < 1000000 goto pc-2
16720 			 * 1M insn_procssed limit / 100 == 10k peak states.
16721 			 * This threshold shouldn't be too high either, since states
16722 			 * at the end of the loop are likely to be useful in pruning.
16723 			 */
16724 skip_inf_loop_check:
16725 			if (!force_new_state &&
16726 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
16727 			    env->insn_processed - env->prev_insn_processed < 100)
16728 				add_new_state = false;
16729 			goto miss;
16730 		}
16731 		/* If sl->state is a part of a loop and this loop's entry is a part of
16732 		 * current verification path then states have to be compared exactly.
16733 		 * 'force_exact' is needed to catch the following case:
16734 		 *
16735 		 *                initial     Here state 'succ' was processed first,
16736 		 *                  |         it was eventually tracked to produce a
16737 		 *                  V         state identical to 'hdr'.
16738 		 *     .---------> hdr        All branches from 'succ' had been explored
16739 		 *     |            |         and thus 'succ' has its .branches == 0.
16740 		 *     |            V
16741 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
16742 		 *     |    |       |         to the same instruction + callsites.
16743 		 *     |    V       V         In such case it is necessary to check
16744 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
16745 		 *     |    |       |         If 'succ' and 'cur' are a part of the
16746 		 *     |    V       V         same loop exact flag has to be set.
16747 		 *     |   succ <- cur        To check if that is the case, verify
16748 		 *     |    |                 if loop entry of 'succ' is in current
16749 		 *     |    V                 DFS path.
16750 		 *     |   ...
16751 		 *     |    |
16752 		 *     '----'
16753 		 *
16754 		 * Additional details are in the comment before get_loop_entry().
16755 		 */
16756 		loop_entry = get_loop_entry(&sl->state);
16757 		force_exact = loop_entry && loop_entry->branches > 0;
16758 		if (states_equal(env, &sl->state, cur, force_exact)) {
16759 			if (force_exact)
16760 				update_loop_entry(cur, loop_entry);
16761 hit:
16762 			sl->hit_cnt++;
16763 			/* reached equivalent register/stack state,
16764 			 * prune the search.
16765 			 * Registers read by the continuation are read by us.
16766 			 * If we have any write marks in env->cur_state, they
16767 			 * will prevent corresponding reads in the continuation
16768 			 * from reaching our parent (an explored_state).  Our
16769 			 * own state will get the read marks recorded, but
16770 			 * they'll be immediately forgotten as we're pruning
16771 			 * this state and will pop a new one.
16772 			 */
16773 			err = propagate_liveness(env, &sl->state, cur);
16774 
16775 			/* if previous state reached the exit with precision and
16776 			 * current state is equivalent to it (except precsion marks)
16777 			 * the precision needs to be propagated back in
16778 			 * the current state.
16779 			 */
16780 			err = err ? : push_jmp_history(env, cur);
16781 			err = err ? : propagate_precision(env, &sl->state);
16782 			if (err)
16783 				return err;
16784 			return 1;
16785 		}
16786 miss:
16787 		/* when new state is not going to be added do not increase miss count.
16788 		 * Otherwise several loop iterations will remove the state
16789 		 * recorded earlier. The goal of these heuristics is to have
16790 		 * states from some iterations of the loop (some in the beginning
16791 		 * and some at the end) to help pruning.
16792 		 */
16793 		if (add_new_state)
16794 			sl->miss_cnt++;
16795 		/* heuristic to determine whether this state is beneficial
16796 		 * to keep checking from state equivalence point of view.
16797 		 * Higher numbers increase max_states_per_insn and verification time,
16798 		 * but do not meaningfully decrease insn_processed.
16799 		 * 'n' controls how many times state could miss before eviction.
16800 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
16801 		 * too early would hinder iterator convergence.
16802 		 */
16803 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
16804 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
16805 			/* the state is unlikely to be useful. Remove it to
16806 			 * speed up verification
16807 			 */
16808 			*pprev = sl->next;
16809 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
16810 			    !sl->state.used_as_loop_entry) {
16811 				u32 br = sl->state.branches;
16812 
16813 				WARN_ONCE(br,
16814 					  "BUG live_done but branches_to_explore %d\n",
16815 					  br);
16816 				free_verifier_state(&sl->state, false);
16817 				kfree(sl);
16818 				env->peak_states--;
16819 			} else {
16820 				/* cannot free this state, since parentage chain may
16821 				 * walk it later. Add it for free_list instead to
16822 				 * be freed at the end of verification
16823 				 */
16824 				sl->next = env->free_list;
16825 				env->free_list = sl;
16826 			}
16827 			sl = *pprev;
16828 			continue;
16829 		}
16830 next:
16831 		pprev = &sl->next;
16832 		sl = *pprev;
16833 	}
16834 
16835 	if (env->max_states_per_insn < states_cnt)
16836 		env->max_states_per_insn = states_cnt;
16837 
16838 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16839 		return 0;
16840 
16841 	if (!add_new_state)
16842 		return 0;
16843 
16844 	/* There were no equivalent states, remember the current one.
16845 	 * Technically the current state is not proven to be safe yet,
16846 	 * but it will either reach outer most bpf_exit (which means it's safe)
16847 	 * or it will be rejected. When there are no loops the verifier won't be
16848 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16849 	 * again on the way to bpf_exit.
16850 	 * When looping the sl->state.branches will be > 0 and this state
16851 	 * will not be considered for equivalence until branches == 0.
16852 	 */
16853 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16854 	if (!new_sl)
16855 		return -ENOMEM;
16856 	env->total_states++;
16857 	env->peak_states++;
16858 	env->prev_jmps_processed = env->jmps_processed;
16859 	env->prev_insn_processed = env->insn_processed;
16860 
16861 	/* forget precise markings we inherited, see __mark_chain_precision */
16862 	if (env->bpf_capable)
16863 		mark_all_scalars_imprecise(env, cur);
16864 
16865 	/* add new state to the head of linked list */
16866 	new = &new_sl->state;
16867 	err = copy_verifier_state(new, cur);
16868 	if (err) {
16869 		free_verifier_state(new, false);
16870 		kfree(new_sl);
16871 		return err;
16872 	}
16873 	new->insn_idx = insn_idx;
16874 	WARN_ONCE(new->branches != 1,
16875 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16876 
16877 	cur->parent = new;
16878 	cur->first_insn_idx = insn_idx;
16879 	cur->dfs_depth = new->dfs_depth + 1;
16880 	clear_jmp_history(cur);
16881 	new_sl->next = *explored_state(env, insn_idx);
16882 	*explored_state(env, insn_idx) = new_sl;
16883 	/* connect new state to parentage chain. Current frame needs all
16884 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
16885 	 * to the stack implicitly by JITs) so in callers' frames connect just
16886 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16887 	 * the state of the call instruction (with WRITTEN set), and r0 comes
16888 	 * from callee with its full parentage chain, anyway.
16889 	 */
16890 	/* clear write marks in current state: the writes we did are not writes
16891 	 * our child did, so they don't screen off its reads from us.
16892 	 * (There are no read marks in current state, because reads always mark
16893 	 * their parent and current state never has children yet.  Only
16894 	 * explored_states can get read marks.)
16895 	 */
16896 	for (j = 0; j <= cur->curframe; j++) {
16897 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16898 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16899 		for (i = 0; i < BPF_REG_FP; i++)
16900 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16901 	}
16902 
16903 	/* all stack frames are accessible from callee, clear them all */
16904 	for (j = 0; j <= cur->curframe; j++) {
16905 		struct bpf_func_state *frame = cur->frame[j];
16906 		struct bpf_func_state *newframe = new->frame[j];
16907 
16908 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16909 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16910 			frame->stack[i].spilled_ptr.parent =
16911 						&newframe->stack[i].spilled_ptr;
16912 		}
16913 	}
16914 	return 0;
16915 }
16916 
16917 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)16918 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16919 {
16920 	switch (base_type(type)) {
16921 	case PTR_TO_CTX:
16922 	case PTR_TO_SOCKET:
16923 	case PTR_TO_SOCK_COMMON:
16924 	case PTR_TO_TCP_SOCK:
16925 	case PTR_TO_XDP_SOCK:
16926 	case PTR_TO_BTF_ID:
16927 		return false;
16928 	default:
16929 		return true;
16930 	}
16931 }
16932 
16933 /* If an instruction was previously used with particular pointer types, then we
16934  * need to be careful to avoid cases such as the below, where it may be ok
16935  * for one branch accessing the pointer, but not ok for the other branch:
16936  *
16937  * R1 = sock_ptr
16938  * goto X;
16939  * ...
16940  * R1 = some_other_valid_ptr;
16941  * goto X;
16942  * ...
16943  * R2 = *(u32 *)(R1 + 0);
16944  */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)16945 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16946 {
16947 	return src != prev && (!reg_type_mismatch_ok(src) ||
16948 			       !reg_type_mismatch_ok(prev));
16949 }
16950 
save_aux_ptr_type(struct bpf_verifier_env * env,enum bpf_reg_type type,bool allow_trust_missmatch)16951 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16952 			     bool allow_trust_missmatch)
16953 {
16954 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16955 
16956 	if (*prev_type == NOT_INIT) {
16957 		/* Saw a valid insn
16958 		 * dst_reg = *(u32 *)(src_reg + off)
16959 		 * save type to validate intersecting paths
16960 		 */
16961 		*prev_type = type;
16962 	} else if (reg_type_mismatch(type, *prev_type)) {
16963 		/* Abuser program is trying to use the same insn
16964 		 * dst_reg = *(u32*) (src_reg + off)
16965 		 * with different pointer types:
16966 		 * src_reg == ctx in one branch and
16967 		 * src_reg == stack|map in some other branch.
16968 		 * Reject it.
16969 		 */
16970 		if (allow_trust_missmatch &&
16971 		    base_type(type) == PTR_TO_BTF_ID &&
16972 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
16973 			/*
16974 			 * Have to support a use case when one path through
16975 			 * the program yields TRUSTED pointer while another
16976 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
16977 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
16978 			 */
16979 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
16980 		} else {
16981 			verbose(env, "same insn cannot be used with different pointers\n");
16982 			return -EINVAL;
16983 		}
16984 	}
16985 
16986 	return 0;
16987 }
16988 
do_check(struct bpf_verifier_env * env)16989 static int do_check(struct bpf_verifier_env *env)
16990 {
16991 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16992 	struct bpf_verifier_state *state = env->cur_state;
16993 	struct bpf_insn *insns = env->prog->insnsi;
16994 	struct bpf_reg_state *regs;
16995 	int insn_cnt = env->prog->len;
16996 	bool do_print_state = false;
16997 	int prev_insn_idx = -1;
16998 
16999 	for (;;) {
17000 		struct bpf_insn *insn;
17001 		u8 class;
17002 		int err;
17003 
17004 		env->prev_insn_idx = prev_insn_idx;
17005 		if (env->insn_idx >= insn_cnt) {
17006 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
17007 				env->insn_idx, insn_cnt);
17008 			return -EFAULT;
17009 		}
17010 
17011 		insn = &insns[env->insn_idx];
17012 		class = BPF_CLASS(insn->code);
17013 
17014 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17015 			verbose(env,
17016 				"BPF program is too large. Processed %d insn\n",
17017 				env->insn_processed);
17018 			return -E2BIG;
17019 		}
17020 
17021 		state->last_insn_idx = env->prev_insn_idx;
17022 
17023 		if (is_prune_point(env, env->insn_idx)) {
17024 			err = is_state_visited(env, env->insn_idx);
17025 			if (err < 0)
17026 				return err;
17027 			if (err == 1) {
17028 				/* found equivalent state, can prune the search */
17029 				if (env->log.level & BPF_LOG_LEVEL) {
17030 					if (do_print_state)
17031 						verbose(env, "\nfrom %d to %d%s: safe\n",
17032 							env->prev_insn_idx, env->insn_idx,
17033 							env->cur_state->speculative ?
17034 							" (speculative execution)" : "");
17035 					else
17036 						verbose(env, "%d: safe\n", env->insn_idx);
17037 				}
17038 				goto process_bpf_exit;
17039 			}
17040 		}
17041 
17042 		if (is_jmp_point(env, env->insn_idx)) {
17043 			err = push_jmp_history(env, state);
17044 			if (err)
17045 				return err;
17046 		}
17047 
17048 		if (signal_pending(current))
17049 			return -EAGAIN;
17050 
17051 		if (need_resched())
17052 			cond_resched();
17053 
17054 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17055 			verbose(env, "\nfrom %d to %d%s:",
17056 				env->prev_insn_idx, env->insn_idx,
17057 				env->cur_state->speculative ?
17058 				" (speculative execution)" : "");
17059 			print_verifier_state(env, state->frame[state->curframe], true);
17060 			do_print_state = false;
17061 		}
17062 
17063 		if (env->log.level & BPF_LOG_LEVEL) {
17064 			const struct bpf_insn_cbs cbs = {
17065 				.cb_call	= disasm_kfunc_name,
17066 				.cb_print	= verbose,
17067 				.private_data	= env,
17068 			};
17069 
17070 			if (verifier_state_scratched(env))
17071 				print_insn_state(env, state->frame[state->curframe]);
17072 
17073 			verbose_linfo(env, env->insn_idx, "; ");
17074 			env->prev_log_pos = env->log.end_pos;
17075 			verbose(env, "%d: ", env->insn_idx);
17076 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17077 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17078 			env->prev_log_pos = env->log.end_pos;
17079 		}
17080 
17081 		if (bpf_prog_is_offloaded(env->prog->aux)) {
17082 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17083 							   env->prev_insn_idx);
17084 			if (err)
17085 				return err;
17086 		}
17087 
17088 		regs = cur_regs(env);
17089 		sanitize_mark_insn_seen(env);
17090 		prev_insn_idx = env->insn_idx;
17091 
17092 		if (class == BPF_ALU || class == BPF_ALU64) {
17093 			err = check_alu_op(env, insn);
17094 			if (err)
17095 				return err;
17096 
17097 		} else if (class == BPF_LDX) {
17098 			enum bpf_reg_type src_reg_type;
17099 
17100 			/* check for reserved fields is already done */
17101 
17102 			/* check src operand */
17103 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17104 			if (err)
17105 				return err;
17106 
17107 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17108 			if (err)
17109 				return err;
17110 
17111 			src_reg_type = regs[insn->src_reg].type;
17112 
17113 			/* check that memory (src_reg + off) is readable,
17114 			 * the state of dst_reg will be updated by this func
17115 			 */
17116 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
17117 					       insn->off, BPF_SIZE(insn->code),
17118 					       BPF_READ, insn->dst_reg, false,
17119 					       BPF_MODE(insn->code) == BPF_MEMSX);
17120 			if (err)
17121 				return err;
17122 
17123 			err = save_aux_ptr_type(env, src_reg_type, true);
17124 			if (err)
17125 				return err;
17126 		} else if (class == BPF_STX) {
17127 			enum bpf_reg_type dst_reg_type;
17128 
17129 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17130 				err = check_atomic(env, env->insn_idx, insn);
17131 				if (err)
17132 					return err;
17133 				env->insn_idx++;
17134 				continue;
17135 			}
17136 
17137 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17138 				verbose(env, "BPF_STX uses reserved fields\n");
17139 				return -EINVAL;
17140 			}
17141 
17142 			/* check src1 operand */
17143 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17144 			if (err)
17145 				return err;
17146 			/* check src2 operand */
17147 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17148 			if (err)
17149 				return err;
17150 
17151 			dst_reg_type = regs[insn->dst_reg].type;
17152 
17153 			/* check that memory (dst_reg + off) is writeable */
17154 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17155 					       insn->off, BPF_SIZE(insn->code),
17156 					       BPF_WRITE, insn->src_reg, false, false);
17157 			if (err)
17158 				return err;
17159 
17160 			err = save_aux_ptr_type(env, dst_reg_type, false);
17161 			if (err)
17162 				return err;
17163 		} else if (class == BPF_ST) {
17164 			enum bpf_reg_type dst_reg_type;
17165 
17166 			if (BPF_MODE(insn->code) != BPF_MEM ||
17167 			    insn->src_reg != BPF_REG_0) {
17168 				verbose(env, "BPF_ST uses reserved fields\n");
17169 				return -EINVAL;
17170 			}
17171 			/* check src operand */
17172 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17173 			if (err)
17174 				return err;
17175 
17176 			dst_reg_type = regs[insn->dst_reg].type;
17177 
17178 			/* check that memory (dst_reg + off) is writeable */
17179 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17180 					       insn->off, BPF_SIZE(insn->code),
17181 					       BPF_WRITE, -1, false, false);
17182 			if (err)
17183 				return err;
17184 
17185 			err = save_aux_ptr_type(env, dst_reg_type, false);
17186 			if (err)
17187 				return err;
17188 		} else if (class == BPF_JMP || class == BPF_JMP32) {
17189 			u8 opcode = BPF_OP(insn->code);
17190 
17191 			env->jmps_processed++;
17192 			if (opcode == BPF_CALL) {
17193 				if (BPF_SRC(insn->code) != BPF_K ||
17194 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17195 				     && insn->off != 0) ||
17196 				    (insn->src_reg != BPF_REG_0 &&
17197 				     insn->src_reg != BPF_PSEUDO_CALL &&
17198 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17199 				    insn->dst_reg != BPF_REG_0 ||
17200 				    class == BPF_JMP32) {
17201 					verbose(env, "BPF_CALL uses reserved fields\n");
17202 					return -EINVAL;
17203 				}
17204 
17205 				if (env->cur_state->active_lock.ptr) {
17206 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17207 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
17208 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17209 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17210 						verbose(env, "function calls are not allowed while holding a lock\n");
17211 						return -EINVAL;
17212 					}
17213 				}
17214 				if (insn->src_reg == BPF_PSEUDO_CALL)
17215 					err = check_func_call(env, insn, &env->insn_idx);
17216 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
17217 					err = check_kfunc_call(env, insn, &env->insn_idx);
17218 				else
17219 					err = check_helper_call(env, insn, &env->insn_idx);
17220 				if (err)
17221 					return err;
17222 
17223 				mark_reg_scratched(env, BPF_REG_0);
17224 			} else if (opcode == BPF_JA) {
17225 				if (BPF_SRC(insn->code) != BPF_K ||
17226 				    insn->src_reg != BPF_REG_0 ||
17227 				    insn->dst_reg != BPF_REG_0 ||
17228 				    (class == BPF_JMP && insn->imm != 0) ||
17229 				    (class == BPF_JMP32 && insn->off != 0)) {
17230 					verbose(env, "BPF_JA uses reserved fields\n");
17231 					return -EINVAL;
17232 				}
17233 
17234 				if (class == BPF_JMP)
17235 					env->insn_idx += insn->off + 1;
17236 				else
17237 					env->insn_idx += insn->imm + 1;
17238 				continue;
17239 
17240 			} else if (opcode == BPF_EXIT) {
17241 				if (BPF_SRC(insn->code) != BPF_K ||
17242 				    insn->imm != 0 ||
17243 				    insn->src_reg != BPF_REG_0 ||
17244 				    insn->dst_reg != BPF_REG_0 ||
17245 				    class == BPF_JMP32) {
17246 					verbose(env, "BPF_EXIT uses reserved fields\n");
17247 					return -EINVAL;
17248 				}
17249 
17250 				if (env->cur_state->active_lock.ptr &&
17251 				    !in_rbtree_lock_required_cb(env)) {
17252 					verbose(env, "bpf_spin_unlock is missing\n");
17253 					return -EINVAL;
17254 				}
17255 
17256 				if (env->cur_state->active_rcu_lock &&
17257 				    !in_rbtree_lock_required_cb(env)) {
17258 					verbose(env, "bpf_rcu_read_unlock is missing\n");
17259 					return -EINVAL;
17260 				}
17261 
17262 				/* We must do check_reference_leak here before
17263 				 * prepare_func_exit to handle the case when
17264 				 * state->curframe > 0, it may be a callback
17265 				 * function, for which reference_state must
17266 				 * match caller reference state when it exits.
17267 				 */
17268 				err = check_reference_leak(env);
17269 				if (err)
17270 					return err;
17271 
17272 				if (state->curframe) {
17273 					/* exit from nested function */
17274 					err = prepare_func_exit(env, &env->insn_idx);
17275 					if (err)
17276 						return err;
17277 					do_print_state = true;
17278 					continue;
17279 				}
17280 
17281 				err = check_return_code(env);
17282 				if (err)
17283 					return err;
17284 process_bpf_exit:
17285 				mark_verifier_state_scratched(env);
17286 				update_branch_counts(env, env->cur_state);
17287 				err = pop_stack(env, &prev_insn_idx,
17288 						&env->insn_idx, pop_log);
17289 				if (err < 0) {
17290 					if (err != -ENOENT)
17291 						return err;
17292 					break;
17293 				} else {
17294 					do_print_state = true;
17295 					continue;
17296 				}
17297 			} else {
17298 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
17299 				if (err)
17300 					return err;
17301 			}
17302 		} else if (class == BPF_LD) {
17303 			u8 mode = BPF_MODE(insn->code);
17304 
17305 			if (mode == BPF_ABS || mode == BPF_IND) {
17306 				err = check_ld_abs(env, insn);
17307 				if (err)
17308 					return err;
17309 
17310 			} else if (mode == BPF_IMM) {
17311 				err = check_ld_imm(env, insn);
17312 				if (err)
17313 					return err;
17314 
17315 				env->insn_idx++;
17316 				sanitize_mark_insn_seen(env);
17317 			} else {
17318 				verbose(env, "invalid BPF_LD mode\n");
17319 				return -EINVAL;
17320 			}
17321 		} else {
17322 			verbose(env, "unknown insn class %d\n", class);
17323 			return -EINVAL;
17324 		}
17325 
17326 		env->insn_idx++;
17327 	}
17328 
17329 	return 0;
17330 }
17331 
find_btf_percpu_datasec(struct btf * btf)17332 static int find_btf_percpu_datasec(struct btf *btf)
17333 {
17334 	const struct btf_type *t;
17335 	const char *tname;
17336 	int i, n;
17337 
17338 	/*
17339 	 * Both vmlinux and module each have their own ".data..percpu"
17340 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17341 	 * types to look at only module's own BTF types.
17342 	 */
17343 	n = btf_nr_types(btf);
17344 	if (btf_is_module(btf))
17345 		i = btf_nr_types(btf_vmlinux);
17346 	else
17347 		i = 1;
17348 
17349 	for(; i < n; i++) {
17350 		t = btf_type_by_id(btf, i);
17351 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17352 			continue;
17353 
17354 		tname = btf_name_by_offset(btf, t->name_off);
17355 		if (!strcmp(tname, ".data..percpu"))
17356 			return i;
17357 	}
17358 
17359 	return -ENOENT;
17360 }
17361 
17362 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)17363 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17364 			       struct bpf_insn *insn,
17365 			       struct bpf_insn_aux_data *aux)
17366 {
17367 	const struct btf_var_secinfo *vsi;
17368 	const struct btf_type *datasec;
17369 	struct btf_mod_pair *btf_mod;
17370 	const struct btf_type *t;
17371 	const char *sym_name;
17372 	bool percpu = false;
17373 	u32 type, id = insn->imm;
17374 	struct btf *btf;
17375 	s32 datasec_id;
17376 	u64 addr;
17377 	int i, btf_fd, err;
17378 
17379 	btf_fd = insn[1].imm;
17380 	if (btf_fd) {
17381 		btf = btf_get_by_fd(btf_fd);
17382 		if (IS_ERR(btf)) {
17383 			verbose(env, "invalid module BTF object FD specified.\n");
17384 			return -EINVAL;
17385 		}
17386 	} else {
17387 		if (!btf_vmlinux) {
17388 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17389 			return -EINVAL;
17390 		}
17391 		btf = btf_vmlinux;
17392 		btf_get(btf);
17393 	}
17394 
17395 	t = btf_type_by_id(btf, id);
17396 	if (!t) {
17397 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17398 		err = -ENOENT;
17399 		goto err_put;
17400 	}
17401 
17402 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17403 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17404 		err = -EINVAL;
17405 		goto err_put;
17406 	}
17407 
17408 	sym_name = btf_name_by_offset(btf, t->name_off);
17409 	addr = kallsyms_lookup_name(sym_name);
17410 	if (!addr) {
17411 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17412 			sym_name);
17413 		err = -ENOENT;
17414 		goto err_put;
17415 	}
17416 	insn[0].imm = (u32)addr;
17417 	insn[1].imm = addr >> 32;
17418 
17419 	if (btf_type_is_func(t)) {
17420 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17421 		aux->btf_var.mem_size = 0;
17422 		goto check_btf;
17423 	}
17424 
17425 	datasec_id = find_btf_percpu_datasec(btf);
17426 	if (datasec_id > 0) {
17427 		datasec = btf_type_by_id(btf, datasec_id);
17428 		for_each_vsi(i, datasec, vsi) {
17429 			if (vsi->type == id) {
17430 				percpu = true;
17431 				break;
17432 			}
17433 		}
17434 	}
17435 
17436 	type = t->type;
17437 	t = btf_type_skip_modifiers(btf, type, NULL);
17438 	if (percpu) {
17439 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17440 		aux->btf_var.btf = btf;
17441 		aux->btf_var.btf_id = type;
17442 	} else if (!btf_type_is_struct(t)) {
17443 		const struct btf_type *ret;
17444 		const char *tname;
17445 		u32 tsize;
17446 
17447 		/* resolve the type size of ksym. */
17448 		ret = btf_resolve_size(btf, t, &tsize);
17449 		if (IS_ERR(ret)) {
17450 			tname = btf_name_by_offset(btf, t->name_off);
17451 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17452 				tname, PTR_ERR(ret));
17453 			err = -EINVAL;
17454 			goto err_put;
17455 		}
17456 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17457 		aux->btf_var.mem_size = tsize;
17458 	} else {
17459 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
17460 		aux->btf_var.btf = btf;
17461 		aux->btf_var.btf_id = type;
17462 	}
17463 check_btf:
17464 	/* check whether we recorded this BTF (and maybe module) already */
17465 	for (i = 0; i < env->used_btf_cnt; i++) {
17466 		if (env->used_btfs[i].btf == btf) {
17467 			btf_put(btf);
17468 			return 0;
17469 		}
17470 	}
17471 
17472 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
17473 		err = -E2BIG;
17474 		goto err_put;
17475 	}
17476 
17477 	btf_mod = &env->used_btfs[env->used_btf_cnt];
17478 	btf_mod->btf = btf;
17479 	btf_mod->module = NULL;
17480 
17481 	/* if we reference variables from kernel module, bump its refcount */
17482 	if (btf_is_module(btf)) {
17483 		btf_mod->module = btf_try_get_module(btf);
17484 		if (!btf_mod->module) {
17485 			err = -ENXIO;
17486 			goto err_put;
17487 		}
17488 	}
17489 
17490 	env->used_btf_cnt++;
17491 
17492 	return 0;
17493 err_put:
17494 	btf_put(btf);
17495 	return err;
17496 }
17497 
is_tracing_prog_type(enum bpf_prog_type type)17498 static bool is_tracing_prog_type(enum bpf_prog_type type)
17499 {
17500 	switch (type) {
17501 	case BPF_PROG_TYPE_KPROBE:
17502 	case BPF_PROG_TYPE_TRACEPOINT:
17503 	case BPF_PROG_TYPE_PERF_EVENT:
17504 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
17505 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17506 		return true;
17507 	default:
17508 		return false;
17509 	}
17510 }
17511 
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)17512 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17513 					struct bpf_map *map,
17514 					struct bpf_prog *prog)
17515 
17516 {
17517 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
17518 
17519 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17520 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
17521 		if (is_tracing_prog_type(prog_type)) {
17522 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17523 			return -EINVAL;
17524 		}
17525 	}
17526 
17527 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17528 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17529 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17530 			return -EINVAL;
17531 		}
17532 
17533 		if (is_tracing_prog_type(prog_type)) {
17534 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17535 			return -EINVAL;
17536 		}
17537 	}
17538 
17539 	if (btf_record_has_field(map->record, BPF_TIMER)) {
17540 		if (is_tracing_prog_type(prog_type)) {
17541 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
17542 			return -EINVAL;
17543 		}
17544 	}
17545 
17546 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17547 	    !bpf_offload_prog_map_match(prog, map)) {
17548 		verbose(env, "offload device mismatch between prog and map\n");
17549 		return -EINVAL;
17550 	}
17551 
17552 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17553 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17554 		return -EINVAL;
17555 	}
17556 
17557 	if (prog->aux->sleepable)
17558 		switch (map->map_type) {
17559 		case BPF_MAP_TYPE_HASH:
17560 		case BPF_MAP_TYPE_LRU_HASH:
17561 		case BPF_MAP_TYPE_ARRAY:
17562 		case BPF_MAP_TYPE_PERCPU_HASH:
17563 		case BPF_MAP_TYPE_PERCPU_ARRAY:
17564 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17565 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17566 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17567 		case BPF_MAP_TYPE_RINGBUF:
17568 		case BPF_MAP_TYPE_USER_RINGBUF:
17569 		case BPF_MAP_TYPE_INODE_STORAGE:
17570 		case BPF_MAP_TYPE_SK_STORAGE:
17571 		case BPF_MAP_TYPE_TASK_STORAGE:
17572 		case BPF_MAP_TYPE_CGRP_STORAGE:
17573 			break;
17574 		default:
17575 			verbose(env,
17576 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17577 			return -EINVAL;
17578 		}
17579 
17580 	return 0;
17581 }
17582 
bpf_map_is_cgroup_storage(struct bpf_map * map)17583 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17584 {
17585 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17586 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17587 }
17588 
17589 /* find and rewrite pseudo imm in ld_imm64 instructions:
17590  *
17591  * 1. if it accesses map FD, replace it with actual map pointer.
17592  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17593  *
17594  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17595  */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)17596 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17597 {
17598 	struct bpf_insn *insn = env->prog->insnsi;
17599 	int insn_cnt = env->prog->len;
17600 	int i, j, err;
17601 
17602 	err = bpf_prog_calc_tag(env->prog);
17603 	if (err)
17604 		return err;
17605 
17606 	for (i = 0; i < insn_cnt; i++, insn++) {
17607 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17608 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17609 		    insn->imm != 0)) {
17610 			verbose(env, "BPF_LDX uses reserved fields\n");
17611 			return -EINVAL;
17612 		}
17613 
17614 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17615 			struct bpf_insn_aux_data *aux;
17616 			struct bpf_map *map;
17617 			struct fd f;
17618 			u64 addr;
17619 			u32 fd;
17620 
17621 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
17622 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17623 			    insn[1].off != 0) {
17624 				verbose(env, "invalid bpf_ld_imm64 insn\n");
17625 				return -EINVAL;
17626 			}
17627 
17628 			if (insn[0].src_reg == 0)
17629 				/* valid generic load 64-bit imm */
17630 				goto next_insn;
17631 
17632 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17633 				aux = &env->insn_aux_data[i];
17634 				err = check_pseudo_btf_id(env, insn, aux);
17635 				if (err)
17636 					return err;
17637 				goto next_insn;
17638 			}
17639 
17640 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17641 				aux = &env->insn_aux_data[i];
17642 				aux->ptr_type = PTR_TO_FUNC;
17643 				goto next_insn;
17644 			}
17645 
17646 			/* In final convert_pseudo_ld_imm64() step, this is
17647 			 * converted into regular 64-bit imm load insn.
17648 			 */
17649 			switch (insn[0].src_reg) {
17650 			case BPF_PSEUDO_MAP_VALUE:
17651 			case BPF_PSEUDO_MAP_IDX_VALUE:
17652 				break;
17653 			case BPF_PSEUDO_MAP_FD:
17654 			case BPF_PSEUDO_MAP_IDX:
17655 				if (insn[1].imm == 0)
17656 					break;
17657 				fallthrough;
17658 			default:
17659 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17660 				return -EINVAL;
17661 			}
17662 
17663 			switch (insn[0].src_reg) {
17664 			case BPF_PSEUDO_MAP_IDX_VALUE:
17665 			case BPF_PSEUDO_MAP_IDX:
17666 				if (bpfptr_is_null(env->fd_array)) {
17667 					verbose(env, "fd_idx without fd_array is invalid\n");
17668 					return -EPROTO;
17669 				}
17670 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
17671 							    insn[0].imm * sizeof(fd),
17672 							    sizeof(fd)))
17673 					return -EFAULT;
17674 				break;
17675 			default:
17676 				fd = insn[0].imm;
17677 				break;
17678 			}
17679 
17680 			f = fdget(fd);
17681 			map = __bpf_map_get(f);
17682 			if (IS_ERR(map)) {
17683 				verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
17684 				return PTR_ERR(map);
17685 			}
17686 
17687 			err = check_map_prog_compatibility(env, map, env->prog);
17688 			if (err) {
17689 				fdput(f);
17690 				return err;
17691 			}
17692 
17693 			aux = &env->insn_aux_data[i];
17694 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17695 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17696 				addr = (unsigned long)map;
17697 			} else {
17698 				u32 off = insn[1].imm;
17699 
17700 				if (off >= BPF_MAX_VAR_OFF) {
17701 					verbose(env, "direct value offset of %u is not allowed\n", off);
17702 					fdput(f);
17703 					return -EINVAL;
17704 				}
17705 
17706 				if (!map->ops->map_direct_value_addr) {
17707 					verbose(env, "no direct value access support for this map type\n");
17708 					fdput(f);
17709 					return -EINVAL;
17710 				}
17711 
17712 				err = map->ops->map_direct_value_addr(map, &addr, off);
17713 				if (err) {
17714 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17715 						map->value_size, off);
17716 					fdput(f);
17717 					return err;
17718 				}
17719 
17720 				aux->map_off = off;
17721 				addr += off;
17722 			}
17723 
17724 			insn[0].imm = (u32)addr;
17725 			insn[1].imm = addr >> 32;
17726 
17727 			/* check whether we recorded this map already */
17728 			for (j = 0; j < env->used_map_cnt; j++) {
17729 				if (env->used_maps[j] == map) {
17730 					aux->map_index = j;
17731 					fdput(f);
17732 					goto next_insn;
17733 				}
17734 			}
17735 
17736 			if (env->used_map_cnt >= MAX_USED_MAPS) {
17737 				fdput(f);
17738 				return -E2BIG;
17739 			}
17740 
17741 			if (env->prog->aux->sleepable)
17742 				atomic64_inc(&map->sleepable_refcnt);
17743 			/* hold the map. If the program is rejected by verifier,
17744 			 * the map will be released by release_maps() or it
17745 			 * will be used by the valid program until it's unloaded
17746 			 * and all maps are released in bpf_free_used_maps()
17747 			 */
17748 			bpf_map_inc(map);
17749 
17750 			aux->map_index = env->used_map_cnt;
17751 			env->used_maps[env->used_map_cnt++] = map;
17752 
17753 			if (bpf_map_is_cgroup_storage(map) &&
17754 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
17755 				verbose(env, "only one cgroup storage of each type is allowed\n");
17756 				fdput(f);
17757 				return -EBUSY;
17758 			}
17759 
17760 			fdput(f);
17761 next_insn:
17762 			insn++;
17763 			i++;
17764 			continue;
17765 		}
17766 
17767 		/* Basic sanity check before we invest more work here. */
17768 		if (!bpf_opcode_in_insntable(insn->code)) {
17769 			verbose(env, "unknown opcode %02x\n", insn->code);
17770 			return -EINVAL;
17771 		}
17772 	}
17773 
17774 	/* now all pseudo BPF_LD_IMM64 instructions load valid
17775 	 * 'struct bpf_map *' into a register instead of user map_fd.
17776 	 * These pointers will be used later by verifier to validate map access.
17777 	 */
17778 	return 0;
17779 }
17780 
17781 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)17782 static void release_maps(struct bpf_verifier_env *env)
17783 {
17784 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
17785 			     env->used_map_cnt);
17786 }
17787 
17788 /* drop refcnt of maps used by the rejected program */
release_btfs(struct bpf_verifier_env * env)17789 static void release_btfs(struct bpf_verifier_env *env)
17790 {
17791 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17792 			     env->used_btf_cnt);
17793 }
17794 
17795 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)17796 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17797 {
17798 	struct bpf_insn *insn = env->prog->insnsi;
17799 	int insn_cnt = env->prog->len;
17800 	int i;
17801 
17802 	for (i = 0; i < insn_cnt; i++, insn++) {
17803 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17804 			continue;
17805 		if (insn->src_reg == BPF_PSEUDO_FUNC)
17806 			continue;
17807 		insn->src_reg = 0;
17808 	}
17809 }
17810 
17811 /* single env->prog->insni[off] instruction was replaced with the range
17812  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
17813  * [0, off) and [off, end) to new locations, so the patched range stays zero
17814  */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)17815 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17816 				 struct bpf_insn_aux_data *new_data,
17817 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
17818 {
17819 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17820 	struct bpf_insn *insn = new_prog->insnsi;
17821 	u32 old_seen = old_data[off].seen;
17822 	u32 prog_len;
17823 	int i;
17824 
17825 	/* aux info at OFF always needs adjustment, no matter fast path
17826 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17827 	 * original insn at old prog.
17828 	 */
17829 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17830 
17831 	if (cnt == 1)
17832 		return;
17833 	prog_len = new_prog->len;
17834 
17835 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17836 	memcpy(new_data + off + cnt - 1, old_data + off,
17837 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17838 	for (i = off; i < off + cnt - 1; i++) {
17839 		/* Expand insni[off]'s seen count to the patched range. */
17840 		new_data[i].seen = old_seen;
17841 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
17842 	}
17843 	env->insn_aux_data = new_data;
17844 	vfree(old_data);
17845 }
17846 
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)17847 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17848 {
17849 	int i;
17850 
17851 	if (len == 1)
17852 		return;
17853 	/* NOTE: fake 'exit' subprog should be updated as well. */
17854 	for (i = 0; i <= env->subprog_cnt; i++) {
17855 		if (env->subprog_info[i].start <= off)
17856 			continue;
17857 		env->subprog_info[i].start += len - 1;
17858 	}
17859 }
17860 
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)17861 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17862 {
17863 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17864 	int i, sz = prog->aux->size_poke_tab;
17865 	struct bpf_jit_poke_descriptor *desc;
17866 
17867 	for (i = 0; i < sz; i++) {
17868 		desc = &tab[i];
17869 		if (desc->insn_idx <= off)
17870 			continue;
17871 		desc->insn_idx += len - 1;
17872 	}
17873 }
17874 
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)17875 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17876 					    const struct bpf_insn *patch, u32 len)
17877 {
17878 	struct bpf_prog *new_prog;
17879 	struct bpf_insn_aux_data *new_data = NULL;
17880 
17881 	if (len > 1) {
17882 		new_data = vzalloc(array_size(env->prog->len + len - 1,
17883 					      sizeof(struct bpf_insn_aux_data)));
17884 		if (!new_data)
17885 			return NULL;
17886 	}
17887 
17888 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17889 	if (IS_ERR(new_prog)) {
17890 		if (PTR_ERR(new_prog) == -ERANGE)
17891 			verbose(env,
17892 				"insn %d cannot be patched due to 16-bit range\n",
17893 				env->insn_aux_data[off].orig_idx);
17894 		vfree(new_data);
17895 		return NULL;
17896 	}
17897 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
17898 	adjust_subprog_starts(env, off, len);
17899 	adjust_poke_descs(new_prog, off, len);
17900 	return new_prog;
17901 }
17902 
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)17903 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17904 					      u32 off, u32 cnt)
17905 {
17906 	int i, j;
17907 
17908 	/* find first prog starting at or after off (first to remove) */
17909 	for (i = 0; i < env->subprog_cnt; i++)
17910 		if (env->subprog_info[i].start >= off)
17911 			break;
17912 	/* find first prog starting at or after off + cnt (first to stay) */
17913 	for (j = i; j < env->subprog_cnt; j++)
17914 		if (env->subprog_info[j].start >= off + cnt)
17915 			break;
17916 	/* if j doesn't start exactly at off + cnt, we are just removing
17917 	 * the front of previous prog
17918 	 */
17919 	if (env->subprog_info[j].start != off + cnt)
17920 		j--;
17921 
17922 	if (j > i) {
17923 		struct bpf_prog_aux *aux = env->prog->aux;
17924 		int move;
17925 
17926 		/* move fake 'exit' subprog as well */
17927 		move = env->subprog_cnt + 1 - j;
17928 
17929 		memmove(env->subprog_info + i,
17930 			env->subprog_info + j,
17931 			sizeof(*env->subprog_info) * move);
17932 		env->subprog_cnt -= j - i;
17933 
17934 		/* remove func_info */
17935 		if (aux->func_info) {
17936 			move = aux->func_info_cnt - j;
17937 
17938 			memmove(aux->func_info + i,
17939 				aux->func_info + j,
17940 				sizeof(*aux->func_info) * move);
17941 			aux->func_info_cnt -= j - i;
17942 			/* func_info->insn_off is set after all code rewrites,
17943 			 * in adjust_btf_func() - no need to adjust
17944 			 */
17945 		}
17946 	} else {
17947 		/* convert i from "first prog to remove" to "first to adjust" */
17948 		if (env->subprog_info[i].start == off)
17949 			i++;
17950 	}
17951 
17952 	/* update fake 'exit' subprog as well */
17953 	for (; i <= env->subprog_cnt; i++)
17954 		env->subprog_info[i].start -= cnt;
17955 
17956 	return 0;
17957 }
17958 
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)17959 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17960 				      u32 cnt)
17961 {
17962 	struct bpf_prog *prog = env->prog;
17963 	u32 i, l_off, l_cnt, nr_linfo;
17964 	struct bpf_line_info *linfo;
17965 
17966 	nr_linfo = prog->aux->nr_linfo;
17967 	if (!nr_linfo)
17968 		return 0;
17969 
17970 	linfo = prog->aux->linfo;
17971 
17972 	/* find first line info to remove, count lines to be removed */
17973 	for (i = 0; i < nr_linfo; i++)
17974 		if (linfo[i].insn_off >= off)
17975 			break;
17976 
17977 	l_off = i;
17978 	l_cnt = 0;
17979 	for (; i < nr_linfo; i++)
17980 		if (linfo[i].insn_off < off + cnt)
17981 			l_cnt++;
17982 		else
17983 			break;
17984 
17985 	/* First live insn doesn't match first live linfo, it needs to "inherit"
17986 	 * last removed linfo.  prog is already modified, so prog->len == off
17987 	 * means no live instructions after (tail of the program was removed).
17988 	 */
17989 	if (prog->len != off && l_cnt &&
17990 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
17991 		l_cnt--;
17992 		linfo[--i].insn_off = off + cnt;
17993 	}
17994 
17995 	/* remove the line info which refer to the removed instructions */
17996 	if (l_cnt) {
17997 		memmove(linfo + l_off, linfo + i,
17998 			sizeof(*linfo) * (nr_linfo - i));
17999 
18000 		prog->aux->nr_linfo -= l_cnt;
18001 		nr_linfo = prog->aux->nr_linfo;
18002 	}
18003 
18004 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
18005 	for (i = l_off; i < nr_linfo; i++)
18006 		linfo[i].insn_off -= cnt;
18007 
18008 	/* fix up all subprogs (incl. 'exit') which start >= off */
18009 	for (i = 0; i <= env->subprog_cnt; i++)
18010 		if (env->subprog_info[i].linfo_idx > l_off) {
18011 			/* program may have started in the removed region but
18012 			 * may not be fully removed
18013 			 */
18014 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18015 				env->subprog_info[i].linfo_idx -= l_cnt;
18016 			else
18017 				env->subprog_info[i].linfo_idx = l_off;
18018 		}
18019 
18020 	return 0;
18021 }
18022 
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)18023 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18024 {
18025 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18026 	unsigned int orig_prog_len = env->prog->len;
18027 	int err;
18028 
18029 	if (bpf_prog_is_offloaded(env->prog->aux))
18030 		bpf_prog_offload_remove_insns(env, off, cnt);
18031 
18032 	err = bpf_remove_insns(env->prog, off, cnt);
18033 	if (err)
18034 		return err;
18035 
18036 	err = adjust_subprog_starts_after_remove(env, off, cnt);
18037 	if (err)
18038 		return err;
18039 
18040 	err = bpf_adj_linfo_after_remove(env, off, cnt);
18041 	if (err)
18042 		return err;
18043 
18044 	memmove(aux_data + off,	aux_data + off + cnt,
18045 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
18046 
18047 	return 0;
18048 }
18049 
18050 /* The verifier does more data flow analysis than llvm and will not
18051  * explore branches that are dead at run time. Malicious programs can
18052  * have dead code too. Therefore replace all dead at-run-time code
18053  * with 'ja -1'.
18054  *
18055  * Just nops are not optimal, e.g. if they would sit at the end of the
18056  * program and through another bug we would manage to jump there, then
18057  * we'd execute beyond program memory otherwise. Returning exception
18058  * code also wouldn't work since we can have subprogs where the dead
18059  * code could be located.
18060  */
sanitize_dead_code(struct bpf_verifier_env * env)18061 static void sanitize_dead_code(struct bpf_verifier_env *env)
18062 {
18063 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18064 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18065 	struct bpf_insn *insn = env->prog->insnsi;
18066 	const int insn_cnt = env->prog->len;
18067 	int i;
18068 
18069 	for (i = 0; i < insn_cnt; i++) {
18070 		if (aux_data[i].seen)
18071 			continue;
18072 		memcpy(insn + i, &trap, sizeof(trap));
18073 		aux_data[i].zext_dst = false;
18074 	}
18075 }
18076 
insn_is_cond_jump(u8 code)18077 static bool insn_is_cond_jump(u8 code)
18078 {
18079 	u8 op;
18080 
18081 	op = BPF_OP(code);
18082 	if (BPF_CLASS(code) == BPF_JMP32)
18083 		return op != BPF_JA;
18084 
18085 	if (BPF_CLASS(code) != BPF_JMP)
18086 		return false;
18087 
18088 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18089 }
18090 
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)18091 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18092 {
18093 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18094 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18095 	struct bpf_insn *insn = env->prog->insnsi;
18096 	const int insn_cnt = env->prog->len;
18097 	int i;
18098 
18099 	for (i = 0; i < insn_cnt; i++, insn++) {
18100 		if (!insn_is_cond_jump(insn->code))
18101 			continue;
18102 
18103 		if (!aux_data[i + 1].seen)
18104 			ja.off = insn->off;
18105 		else if (!aux_data[i + 1 + insn->off].seen)
18106 			ja.off = 0;
18107 		else
18108 			continue;
18109 
18110 		if (bpf_prog_is_offloaded(env->prog->aux))
18111 			bpf_prog_offload_replace_insn(env, i, &ja);
18112 
18113 		memcpy(insn, &ja, sizeof(ja));
18114 	}
18115 }
18116 
opt_remove_dead_code(struct bpf_verifier_env * env)18117 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18118 {
18119 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18120 	int insn_cnt = env->prog->len;
18121 	int i, err;
18122 
18123 	for (i = 0; i < insn_cnt; i++) {
18124 		int j;
18125 
18126 		j = 0;
18127 		while (i + j < insn_cnt && !aux_data[i + j].seen)
18128 			j++;
18129 		if (!j)
18130 			continue;
18131 
18132 		err = verifier_remove_insns(env, i, j);
18133 		if (err)
18134 			return err;
18135 		insn_cnt = env->prog->len;
18136 	}
18137 
18138 	return 0;
18139 }
18140 
opt_remove_nops(struct bpf_verifier_env * env)18141 static int opt_remove_nops(struct bpf_verifier_env *env)
18142 {
18143 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18144 	struct bpf_insn *insn = env->prog->insnsi;
18145 	int insn_cnt = env->prog->len;
18146 	int i, err;
18147 
18148 	for (i = 0; i < insn_cnt; i++) {
18149 		if (memcmp(&insn[i], &ja, sizeof(ja)))
18150 			continue;
18151 
18152 		err = verifier_remove_insns(env, i, 1);
18153 		if (err)
18154 			return err;
18155 		insn_cnt--;
18156 		i--;
18157 	}
18158 
18159 	return 0;
18160 }
18161 
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)18162 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18163 					 const union bpf_attr *attr)
18164 {
18165 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18166 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
18167 	int i, patch_len, delta = 0, len = env->prog->len;
18168 	struct bpf_insn *insns = env->prog->insnsi;
18169 	struct bpf_prog *new_prog;
18170 	bool rnd_hi32;
18171 
18172 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18173 	zext_patch[1] = BPF_ZEXT_REG(0);
18174 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18175 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18176 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18177 	for (i = 0; i < len; i++) {
18178 		int adj_idx = i + delta;
18179 		struct bpf_insn insn;
18180 		int load_reg;
18181 
18182 		insn = insns[adj_idx];
18183 		load_reg = insn_def_regno(&insn);
18184 		if (!aux[adj_idx].zext_dst) {
18185 			u8 code, class;
18186 			u32 imm_rnd;
18187 
18188 			if (!rnd_hi32)
18189 				continue;
18190 
18191 			code = insn.code;
18192 			class = BPF_CLASS(code);
18193 			if (load_reg == -1)
18194 				continue;
18195 
18196 			/* NOTE: arg "reg" (the fourth one) is only used for
18197 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
18198 			 *       here.
18199 			 */
18200 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18201 				if (class == BPF_LD &&
18202 				    BPF_MODE(code) == BPF_IMM)
18203 					i++;
18204 				continue;
18205 			}
18206 
18207 			/* ctx load could be transformed into wider load. */
18208 			if (class == BPF_LDX &&
18209 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
18210 				continue;
18211 
18212 			imm_rnd = get_random_u32();
18213 			rnd_hi32_patch[0] = insn;
18214 			rnd_hi32_patch[1].imm = imm_rnd;
18215 			rnd_hi32_patch[3].dst_reg = load_reg;
18216 			patch = rnd_hi32_patch;
18217 			patch_len = 4;
18218 			goto apply_patch_buffer;
18219 		}
18220 
18221 		/* Add in an zero-extend instruction if a) the JIT has requested
18222 		 * it or b) it's a CMPXCHG.
18223 		 *
18224 		 * The latter is because: BPF_CMPXCHG always loads a value into
18225 		 * R0, therefore always zero-extends. However some archs'
18226 		 * equivalent instruction only does this load when the
18227 		 * comparison is successful. This detail of CMPXCHG is
18228 		 * orthogonal to the general zero-extension behaviour of the
18229 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
18230 		 */
18231 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18232 			continue;
18233 
18234 		/* Zero-extension is done by the caller. */
18235 		if (bpf_pseudo_kfunc_call(&insn))
18236 			continue;
18237 
18238 		if (WARN_ON(load_reg == -1)) {
18239 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18240 			return -EFAULT;
18241 		}
18242 
18243 		zext_patch[0] = insn;
18244 		zext_patch[1].dst_reg = load_reg;
18245 		zext_patch[1].src_reg = load_reg;
18246 		patch = zext_patch;
18247 		patch_len = 2;
18248 apply_patch_buffer:
18249 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18250 		if (!new_prog)
18251 			return -ENOMEM;
18252 		env->prog = new_prog;
18253 		insns = new_prog->insnsi;
18254 		aux = env->insn_aux_data;
18255 		delta += patch_len - 1;
18256 	}
18257 
18258 	return 0;
18259 }
18260 
18261 /* convert load instructions that access fields of a context type into a
18262  * sequence of instructions that access fields of the underlying structure:
18263  *     struct __sk_buff    -> struct sk_buff
18264  *     struct bpf_sock_ops -> struct sock
18265  */
convert_ctx_accesses(struct bpf_verifier_env * env)18266 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18267 {
18268 	const struct bpf_verifier_ops *ops = env->ops;
18269 	int i, cnt, size, ctx_field_size, delta = 0;
18270 	const int insn_cnt = env->prog->len;
18271 	struct bpf_insn insn_buf[16], *insn;
18272 	u32 target_size, size_default, off;
18273 	struct bpf_prog *new_prog;
18274 	enum bpf_access_type type;
18275 	bool is_narrower_load;
18276 
18277 	if (ops->gen_prologue || env->seen_direct_write) {
18278 		if (!ops->gen_prologue) {
18279 			verbose(env, "bpf verifier is misconfigured\n");
18280 			return -EINVAL;
18281 		}
18282 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18283 					env->prog);
18284 		if (cnt >= ARRAY_SIZE(insn_buf)) {
18285 			verbose(env, "bpf verifier is misconfigured\n");
18286 			return -EINVAL;
18287 		} else if (cnt) {
18288 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18289 			if (!new_prog)
18290 				return -ENOMEM;
18291 
18292 			env->prog = new_prog;
18293 			delta += cnt - 1;
18294 		}
18295 	}
18296 
18297 	if (bpf_prog_is_offloaded(env->prog->aux))
18298 		return 0;
18299 
18300 	insn = env->prog->insnsi + delta;
18301 
18302 	for (i = 0; i < insn_cnt; i++, insn++) {
18303 		bpf_convert_ctx_access_t convert_ctx_access;
18304 		u8 mode;
18305 
18306 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18307 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18308 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18309 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18310 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18311 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18312 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18313 			type = BPF_READ;
18314 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18315 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18316 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18317 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18318 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18319 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18320 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18321 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18322 			type = BPF_WRITE;
18323 		} else {
18324 			continue;
18325 		}
18326 
18327 		if (type == BPF_WRITE &&
18328 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
18329 			struct bpf_insn patch[] = {
18330 				*insn,
18331 				BPF_ST_NOSPEC(),
18332 			};
18333 
18334 			cnt = ARRAY_SIZE(patch);
18335 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18336 			if (!new_prog)
18337 				return -ENOMEM;
18338 
18339 			delta    += cnt - 1;
18340 			env->prog = new_prog;
18341 			insn      = new_prog->insnsi + i + delta;
18342 			continue;
18343 		}
18344 
18345 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18346 		case PTR_TO_CTX:
18347 			if (!ops->convert_ctx_access)
18348 				continue;
18349 			convert_ctx_access = ops->convert_ctx_access;
18350 			break;
18351 		case PTR_TO_SOCKET:
18352 		case PTR_TO_SOCK_COMMON:
18353 			convert_ctx_access = bpf_sock_convert_ctx_access;
18354 			break;
18355 		case PTR_TO_TCP_SOCK:
18356 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18357 			break;
18358 		case PTR_TO_XDP_SOCK:
18359 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18360 			break;
18361 		case PTR_TO_BTF_ID:
18362 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18363 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18364 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18365 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18366 		 * any faults for loads into such types. BPF_WRITE is disallowed
18367 		 * for this case.
18368 		 */
18369 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18370 			if (type == BPF_READ) {
18371 				if (BPF_MODE(insn->code) == BPF_MEM)
18372 					insn->code = BPF_LDX | BPF_PROBE_MEM |
18373 						     BPF_SIZE((insn)->code);
18374 				else
18375 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18376 						     BPF_SIZE((insn)->code);
18377 				env->prog->aux->num_exentries++;
18378 			}
18379 			continue;
18380 		default:
18381 			continue;
18382 		}
18383 
18384 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18385 		size = BPF_LDST_BYTES(insn);
18386 		mode = BPF_MODE(insn->code);
18387 
18388 		/* If the read access is a narrower load of the field,
18389 		 * convert to a 4/8-byte load, to minimum program type specific
18390 		 * convert_ctx_access changes. If conversion is successful,
18391 		 * we will apply proper mask to the result.
18392 		 */
18393 		is_narrower_load = size < ctx_field_size;
18394 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18395 		off = insn->off;
18396 		if (is_narrower_load) {
18397 			u8 size_code;
18398 
18399 			if (type == BPF_WRITE) {
18400 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18401 				return -EINVAL;
18402 			}
18403 
18404 			size_code = BPF_H;
18405 			if (ctx_field_size == 4)
18406 				size_code = BPF_W;
18407 			else if (ctx_field_size == 8)
18408 				size_code = BPF_DW;
18409 
18410 			insn->off = off & ~(size_default - 1);
18411 			insn->code = BPF_LDX | BPF_MEM | size_code;
18412 		}
18413 
18414 		target_size = 0;
18415 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18416 					 &target_size);
18417 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18418 		    (ctx_field_size && !target_size)) {
18419 			verbose(env, "bpf verifier is misconfigured\n");
18420 			return -EINVAL;
18421 		}
18422 
18423 		if (is_narrower_load && size < target_size) {
18424 			u8 shift = bpf_ctx_narrow_access_offset(
18425 				off, size, size_default) * 8;
18426 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18427 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18428 				return -EINVAL;
18429 			}
18430 			if (ctx_field_size <= 4) {
18431 				if (shift)
18432 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18433 									insn->dst_reg,
18434 									shift);
18435 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18436 								(1 << size * 8) - 1);
18437 			} else {
18438 				if (shift)
18439 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18440 									insn->dst_reg,
18441 									shift);
18442 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18443 								(1ULL << size * 8) - 1);
18444 			}
18445 		}
18446 		if (mode == BPF_MEMSX)
18447 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18448 						       insn->dst_reg, insn->dst_reg,
18449 						       size * 8, 0);
18450 
18451 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18452 		if (!new_prog)
18453 			return -ENOMEM;
18454 
18455 		delta += cnt - 1;
18456 
18457 		/* keep walking new program and skip insns we just inserted */
18458 		env->prog = new_prog;
18459 		insn      = new_prog->insnsi + i + delta;
18460 	}
18461 
18462 	return 0;
18463 }
18464 
jit_subprogs(struct bpf_verifier_env * env)18465 static int jit_subprogs(struct bpf_verifier_env *env)
18466 {
18467 	struct bpf_prog *prog = env->prog, **func, *tmp;
18468 	int i, j, subprog_start, subprog_end = 0, len, subprog;
18469 	struct bpf_map *map_ptr;
18470 	struct bpf_insn *insn;
18471 	void *old_bpf_func;
18472 	int err, num_exentries;
18473 
18474 	if (env->subprog_cnt <= 1)
18475 		return 0;
18476 
18477 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18478 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18479 			continue;
18480 
18481 		/* Upon error here we cannot fall back to interpreter but
18482 		 * need a hard reject of the program. Thus -EFAULT is
18483 		 * propagated in any case.
18484 		 */
18485 		subprog = find_subprog(env, i + insn->imm + 1);
18486 		if (subprog < 0) {
18487 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18488 				  i + insn->imm + 1);
18489 			return -EFAULT;
18490 		}
18491 		/* temporarily remember subprog id inside insn instead of
18492 		 * aux_data, since next loop will split up all insns into funcs
18493 		 */
18494 		insn->off = subprog;
18495 		/* remember original imm in case JIT fails and fallback
18496 		 * to interpreter will be needed
18497 		 */
18498 		env->insn_aux_data[i].call_imm = insn->imm;
18499 		/* point imm to __bpf_call_base+1 from JITs point of view */
18500 		insn->imm = 1;
18501 		if (bpf_pseudo_func(insn))
18502 			/* jit (e.g. x86_64) may emit fewer instructions
18503 			 * if it learns a u32 imm is the same as a u64 imm.
18504 			 * Force a non zero here.
18505 			 */
18506 			insn[1].imm = 1;
18507 	}
18508 
18509 	err = bpf_prog_alloc_jited_linfo(prog);
18510 	if (err)
18511 		goto out_undo_insn;
18512 
18513 	err = -ENOMEM;
18514 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18515 	if (!func)
18516 		goto out_undo_insn;
18517 
18518 	for (i = 0; i < env->subprog_cnt; i++) {
18519 		subprog_start = subprog_end;
18520 		subprog_end = env->subprog_info[i + 1].start;
18521 
18522 		len = subprog_end - subprog_start;
18523 		/* bpf_prog_run() doesn't call subprogs directly,
18524 		 * hence main prog stats include the runtime of subprogs.
18525 		 * subprogs don't have IDs and not reachable via prog_get_next_id
18526 		 * func[i]->stats will never be accessed and stays NULL
18527 		 */
18528 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18529 		if (!func[i])
18530 			goto out_free;
18531 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18532 		       len * sizeof(struct bpf_insn));
18533 		func[i]->type = prog->type;
18534 		func[i]->len = len;
18535 		if (bpf_prog_calc_tag(func[i]))
18536 			goto out_free;
18537 		func[i]->is_func = 1;
18538 		func[i]->aux->func_idx = i;
18539 		/* Below members will be freed only at prog->aux */
18540 		func[i]->aux->btf = prog->aux->btf;
18541 		func[i]->aux->func_info = prog->aux->func_info;
18542 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18543 		func[i]->aux->poke_tab = prog->aux->poke_tab;
18544 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18545 
18546 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
18547 			struct bpf_jit_poke_descriptor *poke;
18548 
18549 			poke = &prog->aux->poke_tab[j];
18550 			if (poke->insn_idx < subprog_end &&
18551 			    poke->insn_idx >= subprog_start)
18552 				poke->aux = func[i]->aux;
18553 		}
18554 
18555 		func[i]->aux->name[0] = 'F';
18556 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18557 		func[i]->jit_requested = 1;
18558 		func[i]->blinding_requested = prog->blinding_requested;
18559 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18560 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18561 		func[i]->aux->linfo = prog->aux->linfo;
18562 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18563 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18564 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18565 		num_exentries = 0;
18566 		insn = func[i]->insnsi;
18567 		for (j = 0; j < func[i]->len; j++, insn++) {
18568 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18569 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18570 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18571 				num_exentries++;
18572 		}
18573 		func[i]->aux->num_exentries = num_exentries;
18574 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18575 		func[i] = bpf_int_jit_compile(func[i]);
18576 		if (!func[i]->jited) {
18577 			err = -ENOTSUPP;
18578 			goto out_free;
18579 		}
18580 		cond_resched();
18581 	}
18582 
18583 	/* at this point all bpf functions were successfully JITed
18584 	 * now populate all bpf_calls with correct addresses and
18585 	 * run last pass of JIT
18586 	 */
18587 	for (i = 0; i < env->subprog_cnt; i++) {
18588 		insn = func[i]->insnsi;
18589 		for (j = 0; j < func[i]->len; j++, insn++) {
18590 			if (bpf_pseudo_func(insn)) {
18591 				subprog = insn->off;
18592 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18593 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18594 				continue;
18595 			}
18596 			if (!bpf_pseudo_call(insn))
18597 				continue;
18598 			subprog = insn->off;
18599 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18600 		}
18601 
18602 		/* we use the aux data to keep a list of the start addresses
18603 		 * of the JITed images for each function in the program
18604 		 *
18605 		 * for some architectures, such as powerpc64, the imm field
18606 		 * might not be large enough to hold the offset of the start
18607 		 * address of the callee's JITed image from __bpf_call_base
18608 		 *
18609 		 * in such cases, we can lookup the start address of a callee
18610 		 * by using its subprog id, available from the off field of
18611 		 * the call instruction, as an index for this list
18612 		 */
18613 		func[i]->aux->func = func;
18614 		func[i]->aux->func_cnt = env->subprog_cnt;
18615 	}
18616 	for (i = 0; i < env->subprog_cnt; i++) {
18617 		old_bpf_func = func[i]->bpf_func;
18618 		tmp = bpf_int_jit_compile(func[i]);
18619 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18620 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18621 			err = -ENOTSUPP;
18622 			goto out_free;
18623 		}
18624 		cond_resched();
18625 	}
18626 
18627 	/* finally lock prog and jit images for all functions and
18628 	 * populate kallsysm. Begin at the first subprogram, since
18629 	 * bpf_prog_load will add the kallsyms for the main program.
18630 	 */
18631 	for (i = 1; i < env->subprog_cnt; i++) {
18632 		bpf_prog_lock_ro(func[i]);
18633 		bpf_prog_kallsyms_add(func[i]);
18634 	}
18635 
18636 	/* Last step: make now unused interpreter insns from main
18637 	 * prog consistent for later dump requests, so they can
18638 	 * later look the same as if they were interpreted only.
18639 	 */
18640 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18641 		if (bpf_pseudo_func(insn)) {
18642 			insn[0].imm = env->insn_aux_data[i].call_imm;
18643 			insn[1].imm = insn->off;
18644 			insn->off = 0;
18645 			continue;
18646 		}
18647 		if (!bpf_pseudo_call(insn))
18648 			continue;
18649 		insn->off = env->insn_aux_data[i].call_imm;
18650 		subprog = find_subprog(env, i + insn->off + 1);
18651 		insn->imm = subprog;
18652 	}
18653 
18654 	prog->jited = 1;
18655 	prog->bpf_func = func[0]->bpf_func;
18656 	prog->jited_len = func[0]->jited_len;
18657 	prog->aux->extable = func[0]->aux->extable;
18658 	prog->aux->num_exentries = func[0]->aux->num_exentries;
18659 	prog->aux->func = func;
18660 	prog->aux->func_cnt = env->subprog_cnt;
18661 	bpf_prog_jit_attempt_done(prog);
18662 	return 0;
18663 out_free:
18664 	/* We failed JIT'ing, so at this point we need to unregister poke
18665 	 * descriptors from subprogs, so that kernel is not attempting to
18666 	 * patch it anymore as we're freeing the subprog JIT memory.
18667 	 */
18668 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18669 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18670 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18671 	}
18672 	/* At this point we're guaranteed that poke descriptors are not
18673 	 * live anymore. We can just unlink its descriptor table as it's
18674 	 * released with the main prog.
18675 	 */
18676 	for (i = 0; i < env->subprog_cnt; i++) {
18677 		if (!func[i])
18678 			continue;
18679 		func[i]->aux->poke_tab = NULL;
18680 		bpf_jit_free(func[i]);
18681 	}
18682 	kfree(func);
18683 out_undo_insn:
18684 	/* cleanup main prog to be interpreted */
18685 	prog->jit_requested = 0;
18686 	prog->blinding_requested = 0;
18687 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18688 		if (!bpf_pseudo_call(insn))
18689 			continue;
18690 		insn->off = 0;
18691 		insn->imm = env->insn_aux_data[i].call_imm;
18692 	}
18693 	bpf_prog_jit_attempt_done(prog);
18694 	return err;
18695 }
18696 
fixup_call_args(struct bpf_verifier_env * env)18697 static int fixup_call_args(struct bpf_verifier_env *env)
18698 {
18699 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18700 	struct bpf_prog *prog = env->prog;
18701 	struct bpf_insn *insn = prog->insnsi;
18702 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18703 	int i, depth;
18704 #endif
18705 	int err = 0;
18706 
18707 	if (env->prog->jit_requested &&
18708 	    !bpf_prog_is_offloaded(env->prog->aux)) {
18709 		err = jit_subprogs(env);
18710 		if (err == 0)
18711 			return 0;
18712 		if (err == -EFAULT)
18713 			return err;
18714 	}
18715 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18716 	if (has_kfunc_call) {
18717 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18718 		return -EINVAL;
18719 	}
18720 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18721 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
18722 		 * have to be rejected, since interpreter doesn't support them yet.
18723 		 */
18724 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18725 		return -EINVAL;
18726 	}
18727 	for (i = 0; i < prog->len; i++, insn++) {
18728 		if (bpf_pseudo_func(insn)) {
18729 			/* When JIT fails the progs with callback calls
18730 			 * have to be rejected, since interpreter doesn't support them yet.
18731 			 */
18732 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
18733 			return -EINVAL;
18734 		}
18735 
18736 		if (!bpf_pseudo_call(insn))
18737 			continue;
18738 		depth = get_callee_stack_depth(env, insn, i);
18739 		if (depth < 0)
18740 			return depth;
18741 		bpf_patch_call_args(insn, depth);
18742 	}
18743 	err = 0;
18744 #endif
18745 	return err;
18746 }
18747 
18748 /* replace a generic kfunc with a specialized version if necessary */
specialize_kfunc(struct bpf_verifier_env * env,u32 func_id,u16 offset,unsigned long * addr)18749 static void specialize_kfunc(struct bpf_verifier_env *env,
18750 			     u32 func_id, u16 offset, unsigned long *addr)
18751 {
18752 	struct bpf_prog *prog = env->prog;
18753 	bool seen_direct_write;
18754 	void *xdp_kfunc;
18755 	bool is_rdonly;
18756 
18757 	if (bpf_dev_bound_kfunc_id(func_id)) {
18758 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18759 		if (xdp_kfunc) {
18760 			*addr = (unsigned long)xdp_kfunc;
18761 			return;
18762 		}
18763 		/* fallback to default kfunc when not supported by netdev */
18764 	}
18765 
18766 	if (offset)
18767 		return;
18768 
18769 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18770 		seen_direct_write = env->seen_direct_write;
18771 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18772 
18773 		if (is_rdonly)
18774 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18775 
18776 		/* restore env->seen_direct_write to its original value, since
18777 		 * may_access_direct_pkt_data mutates it
18778 		 */
18779 		env->seen_direct_write = seen_direct_write;
18780 	}
18781 }
18782 
__fixup_collection_insert_kfunc(struct bpf_insn_aux_data * insn_aux,u16 struct_meta_reg,u16 node_offset_reg,struct bpf_insn * insn,struct bpf_insn * insn_buf,int * cnt)18783 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18784 					    u16 struct_meta_reg,
18785 					    u16 node_offset_reg,
18786 					    struct bpf_insn *insn,
18787 					    struct bpf_insn *insn_buf,
18788 					    int *cnt)
18789 {
18790 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18791 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18792 
18793 	insn_buf[0] = addr[0];
18794 	insn_buf[1] = addr[1];
18795 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18796 	insn_buf[3] = *insn;
18797 	*cnt = 4;
18798 }
18799 
fixup_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn * insn_buf,int insn_idx,int * cnt)18800 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18801 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18802 {
18803 	const struct bpf_kfunc_desc *desc;
18804 
18805 	if (!insn->imm) {
18806 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18807 		return -EINVAL;
18808 	}
18809 
18810 	*cnt = 0;
18811 
18812 	/* insn->imm has the btf func_id. Replace it with an offset relative to
18813 	 * __bpf_call_base, unless the JIT needs to call functions that are
18814 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18815 	 */
18816 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18817 	if (!desc) {
18818 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18819 			insn->imm);
18820 		return -EFAULT;
18821 	}
18822 
18823 	if (!bpf_jit_supports_far_kfunc_call())
18824 		insn->imm = BPF_CALL_IMM(desc->addr);
18825 	if (insn->off)
18826 		return 0;
18827 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
18828 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18829 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18830 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18831 
18832 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18833 		insn_buf[1] = addr[0];
18834 		insn_buf[2] = addr[1];
18835 		insn_buf[3] = *insn;
18836 		*cnt = 4;
18837 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18838 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18839 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18840 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18841 
18842 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18843 		    !kptr_struct_meta) {
18844 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18845 				insn_idx);
18846 			return -EFAULT;
18847 		}
18848 
18849 		insn_buf[0] = addr[0];
18850 		insn_buf[1] = addr[1];
18851 		insn_buf[2] = *insn;
18852 		*cnt = 3;
18853 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18854 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18855 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18856 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18857 		int struct_meta_reg = BPF_REG_3;
18858 		int node_offset_reg = BPF_REG_4;
18859 
18860 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18861 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18862 			struct_meta_reg = BPF_REG_4;
18863 			node_offset_reg = BPF_REG_5;
18864 		}
18865 
18866 		if (!kptr_struct_meta) {
18867 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18868 				insn_idx);
18869 			return -EFAULT;
18870 		}
18871 
18872 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18873 						node_offset_reg, insn, insn_buf, cnt);
18874 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18875 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18876 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18877 		*cnt = 1;
18878 	}
18879 	return 0;
18880 }
18881 
18882 /* Do various post-verification rewrites in a single program pass.
18883  * These rewrites simplify JIT and interpreter implementations.
18884  */
do_misc_fixups(struct bpf_verifier_env * env)18885 static int do_misc_fixups(struct bpf_verifier_env *env)
18886 {
18887 	struct bpf_prog *prog = env->prog;
18888 	enum bpf_attach_type eatype = prog->expected_attach_type;
18889 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
18890 	struct bpf_insn *insn = prog->insnsi;
18891 	const struct bpf_func_proto *fn;
18892 	const int insn_cnt = prog->len;
18893 	const struct bpf_map_ops *ops;
18894 	struct bpf_insn_aux_data *aux;
18895 	struct bpf_insn insn_buf[16];
18896 	struct bpf_prog *new_prog;
18897 	struct bpf_map *map_ptr;
18898 	int i, ret, cnt, delta = 0;
18899 
18900 	for (i = 0; i < insn_cnt; i++, insn++) {
18901 		/* Make divide-by-zero exceptions impossible. */
18902 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18903 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18904 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18905 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18906 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18907 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18908 			struct bpf_insn *patchlet;
18909 			struct bpf_insn chk_and_div[] = {
18910 				/* [R,W]x div 0 -> 0 */
18911 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18912 					     BPF_JNE | BPF_K, insn->src_reg,
18913 					     0, 2, 0),
18914 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18915 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18916 				*insn,
18917 			};
18918 			struct bpf_insn chk_and_mod[] = {
18919 				/* [R,W]x mod 0 -> [R,W]x */
18920 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18921 					     BPF_JEQ | BPF_K, insn->src_reg,
18922 					     0, 1 + (is64 ? 0 : 1), 0),
18923 				*insn,
18924 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18925 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18926 			};
18927 
18928 			patchlet = isdiv ? chk_and_div : chk_and_mod;
18929 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18930 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18931 
18932 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18933 			if (!new_prog)
18934 				return -ENOMEM;
18935 
18936 			delta    += cnt - 1;
18937 			env->prog = prog = new_prog;
18938 			insn      = new_prog->insnsi + i + delta;
18939 			continue;
18940 		}
18941 
18942 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18943 		if (BPF_CLASS(insn->code) == BPF_LD &&
18944 		    (BPF_MODE(insn->code) == BPF_ABS ||
18945 		     BPF_MODE(insn->code) == BPF_IND)) {
18946 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
18947 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18948 				verbose(env, "bpf verifier is misconfigured\n");
18949 				return -EINVAL;
18950 			}
18951 
18952 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18953 			if (!new_prog)
18954 				return -ENOMEM;
18955 
18956 			delta    += cnt - 1;
18957 			env->prog = prog = new_prog;
18958 			insn      = new_prog->insnsi + i + delta;
18959 			continue;
18960 		}
18961 
18962 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
18963 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18964 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18965 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18966 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
18967 			struct bpf_insn *patch = &insn_buf[0];
18968 			bool issrc, isneg, isimm;
18969 			u32 off_reg;
18970 
18971 			aux = &env->insn_aux_data[i + delta];
18972 			if (!aux->alu_state ||
18973 			    aux->alu_state == BPF_ALU_NON_POINTER)
18974 				continue;
18975 
18976 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
18977 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
18978 				BPF_ALU_SANITIZE_SRC;
18979 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
18980 
18981 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
18982 			if (isimm) {
18983 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18984 			} else {
18985 				if (isneg)
18986 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18987 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18988 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
18989 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
18990 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
18991 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
18992 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
18993 			}
18994 			if (!issrc)
18995 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
18996 			insn->src_reg = BPF_REG_AX;
18997 			if (isneg)
18998 				insn->code = insn->code == code_add ?
18999 					     code_sub : code_add;
19000 			*patch++ = *insn;
19001 			if (issrc && isneg && !isimm)
19002 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19003 			cnt = patch - insn_buf;
19004 
19005 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19006 			if (!new_prog)
19007 				return -ENOMEM;
19008 
19009 			delta    += cnt - 1;
19010 			env->prog = prog = new_prog;
19011 			insn      = new_prog->insnsi + i + delta;
19012 			continue;
19013 		}
19014 
19015 		if (insn->code != (BPF_JMP | BPF_CALL))
19016 			continue;
19017 		if (insn->src_reg == BPF_PSEUDO_CALL)
19018 			continue;
19019 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19020 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
19021 			if (ret)
19022 				return ret;
19023 			if (cnt == 0)
19024 				continue;
19025 
19026 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19027 			if (!new_prog)
19028 				return -ENOMEM;
19029 
19030 			delta	 += cnt - 1;
19031 			env->prog = prog = new_prog;
19032 			insn	  = new_prog->insnsi + i + delta;
19033 			continue;
19034 		}
19035 
19036 		if (insn->imm == BPF_FUNC_get_route_realm)
19037 			prog->dst_needed = 1;
19038 		if (insn->imm == BPF_FUNC_get_prandom_u32)
19039 			bpf_user_rnd_init_once();
19040 		if (insn->imm == BPF_FUNC_override_return)
19041 			prog->kprobe_override = 1;
19042 		if (insn->imm == BPF_FUNC_tail_call) {
19043 			/* If we tail call into other programs, we
19044 			 * cannot make any assumptions since they can
19045 			 * be replaced dynamically during runtime in
19046 			 * the program array.
19047 			 */
19048 			prog->cb_access = 1;
19049 			if (!allow_tail_call_in_subprogs(env))
19050 				prog->aux->stack_depth = MAX_BPF_STACK;
19051 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19052 
19053 			/* mark bpf_tail_call as different opcode to avoid
19054 			 * conditional branch in the interpreter for every normal
19055 			 * call and to prevent accidental JITing by JIT compiler
19056 			 * that doesn't support bpf_tail_call yet
19057 			 */
19058 			insn->imm = 0;
19059 			insn->code = BPF_JMP | BPF_TAIL_CALL;
19060 
19061 			aux = &env->insn_aux_data[i + delta];
19062 			if (env->bpf_capable && !prog->blinding_requested &&
19063 			    prog->jit_requested &&
19064 			    !bpf_map_key_poisoned(aux) &&
19065 			    !bpf_map_ptr_poisoned(aux) &&
19066 			    !bpf_map_ptr_unpriv(aux)) {
19067 				struct bpf_jit_poke_descriptor desc = {
19068 					.reason = BPF_POKE_REASON_TAIL_CALL,
19069 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19070 					.tail_call.key = bpf_map_key_immediate(aux),
19071 					.insn_idx = i + delta,
19072 				};
19073 
19074 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
19075 				if (ret < 0) {
19076 					verbose(env, "adding tail call poke descriptor failed\n");
19077 					return ret;
19078 				}
19079 
19080 				insn->imm = ret + 1;
19081 				continue;
19082 			}
19083 
19084 			if (!bpf_map_ptr_unpriv(aux))
19085 				continue;
19086 
19087 			/* instead of changing every JIT dealing with tail_call
19088 			 * emit two extra insns:
19089 			 * if (index >= max_entries) goto out;
19090 			 * index &= array->index_mask;
19091 			 * to avoid out-of-bounds cpu speculation
19092 			 */
19093 			if (bpf_map_ptr_poisoned(aux)) {
19094 				verbose(env, "tail_call abusing map_ptr\n");
19095 				return -EINVAL;
19096 			}
19097 
19098 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19099 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19100 						  map_ptr->max_entries, 2);
19101 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19102 						    container_of(map_ptr,
19103 								 struct bpf_array,
19104 								 map)->index_mask);
19105 			insn_buf[2] = *insn;
19106 			cnt = 3;
19107 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19108 			if (!new_prog)
19109 				return -ENOMEM;
19110 
19111 			delta    += cnt - 1;
19112 			env->prog = prog = new_prog;
19113 			insn      = new_prog->insnsi + i + delta;
19114 			continue;
19115 		}
19116 
19117 		if (insn->imm == BPF_FUNC_timer_set_callback) {
19118 			/* The verifier will process callback_fn as many times as necessary
19119 			 * with different maps and the register states prepared by
19120 			 * set_timer_callback_state will be accurate.
19121 			 *
19122 			 * The following use case is valid:
19123 			 *   map1 is shared by prog1, prog2, prog3.
19124 			 *   prog1 calls bpf_timer_init for some map1 elements
19125 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
19126 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
19127 			 *   prog3 calls bpf_timer_start for some map1 elements.
19128 			 *     Those that were not both bpf_timer_init-ed and
19129 			 *     bpf_timer_set_callback-ed will return -EINVAL.
19130 			 */
19131 			struct bpf_insn ld_addrs[2] = {
19132 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19133 			};
19134 
19135 			insn_buf[0] = ld_addrs[0];
19136 			insn_buf[1] = ld_addrs[1];
19137 			insn_buf[2] = *insn;
19138 			cnt = 3;
19139 
19140 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19141 			if (!new_prog)
19142 				return -ENOMEM;
19143 
19144 			delta    += cnt - 1;
19145 			env->prog = prog = new_prog;
19146 			insn      = new_prog->insnsi + i + delta;
19147 			goto patch_call_imm;
19148 		}
19149 
19150 		if (is_storage_get_function(insn->imm)) {
19151 			if (!env->prog->aux->sleepable ||
19152 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
19153 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19154 			else
19155 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19156 			insn_buf[1] = *insn;
19157 			cnt = 2;
19158 
19159 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19160 			if (!new_prog)
19161 				return -ENOMEM;
19162 
19163 			delta += cnt - 1;
19164 			env->prog = prog = new_prog;
19165 			insn = new_prog->insnsi + i + delta;
19166 			goto patch_call_imm;
19167 		}
19168 
19169 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19170 		 * and other inlining handlers are currently limited to 64 bit
19171 		 * only.
19172 		 */
19173 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19174 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
19175 		     insn->imm == BPF_FUNC_map_update_elem ||
19176 		     insn->imm == BPF_FUNC_map_delete_elem ||
19177 		     insn->imm == BPF_FUNC_map_push_elem   ||
19178 		     insn->imm == BPF_FUNC_map_pop_elem    ||
19179 		     insn->imm == BPF_FUNC_map_peek_elem   ||
19180 		     insn->imm == BPF_FUNC_redirect_map    ||
19181 		     insn->imm == BPF_FUNC_for_each_map_elem ||
19182 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19183 			aux = &env->insn_aux_data[i + delta];
19184 			if (bpf_map_ptr_poisoned(aux))
19185 				goto patch_call_imm;
19186 
19187 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19188 			ops = map_ptr->ops;
19189 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
19190 			    ops->map_gen_lookup) {
19191 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19192 				if (cnt == -EOPNOTSUPP)
19193 					goto patch_map_ops_generic;
19194 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19195 					verbose(env, "bpf verifier is misconfigured\n");
19196 					return -EINVAL;
19197 				}
19198 
19199 				new_prog = bpf_patch_insn_data(env, i + delta,
19200 							       insn_buf, cnt);
19201 				if (!new_prog)
19202 					return -ENOMEM;
19203 
19204 				delta    += cnt - 1;
19205 				env->prog = prog = new_prog;
19206 				insn      = new_prog->insnsi + i + delta;
19207 				continue;
19208 			}
19209 
19210 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19211 				     (void *(*)(struct bpf_map *map, void *key))NULL));
19212 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19213 				     (long (*)(struct bpf_map *map, void *key))NULL));
19214 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19215 				     (long (*)(struct bpf_map *map, void *key, void *value,
19216 					      u64 flags))NULL));
19217 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19218 				     (long (*)(struct bpf_map *map, void *value,
19219 					      u64 flags))NULL));
19220 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19221 				     (long (*)(struct bpf_map *map, void *value))NULL));
19222 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19223 				     (long (*)(struct bpf_map *map, void *value))NULL));
19224 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
19225 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19226 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19227 				     (long (*)(struct bpf_map *map,
19228 					      bpf_callback_t callback_fn,
19229 					      void *callback_ctx,
19230 					      u64 flags))NULL));
19231 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19232 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19233 
19234 patch_map_ops_generic:
19235 			switch (insn->imm) {
19236 			case BPF_FUNC_map_lookup_elem:
19237 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19238 				continue;
19239 			case BPF_FUNC_map_update_elem:
19240 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19241 				continue;
19242 			case BPF_FUNC_map_delete_elem:
19243 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19244 				continue;
19245 			case BPF_FUNC_map_push_elem:
19246 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19247 				continue;
19248 			case BPF_FUNC_map_pop_elem:
19249 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19250 				continue;
19251 			case BPF_FUNC_map_peek_elem:
19252 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19253 				continue;
19254 			case BPF_FUNC_redirect_map:
19255 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
19256 				continue;
19257 			case BPF_FUNC_for_each_map_elem:
19258 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19259 				continue;
19260 			case BPF_FUNC_map_lookup_percpu_elem:
19261 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19262 				continue;
19263 			}
19264 
19265 			goto patch_call_imm;
19266 		}
19267 
19268 		/* Implement bpf_jiffies64 inline. */
19269 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19270 		    insn->imm == BPF_FUNC_jiffies64) {
19271 			struct bpf_insn ld_jiffies_addr[2] = {
19272 				BPF_LD_IMM64(BPF_REG_0,
19273 					     (unsigned long)&jiffies),
19274 			};
19275 
19276 			insn_buf[0] = ld_jiffies_addr[0];
19277 			insn_buf[1] = ld_jiffies_addr[1];
19278 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19279 						  BPF_REG_0, 0);
19280 			cnt = 3;
19281 
19282 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19283 						       cnt);
19284 			if (!new_prog)
19285 				return -ENOMEM;
19286 
19287 			delta    += cnt - 1;
19288 			env->prog = prog = new_prog;
19289 			insn      = new_prog->insnsi + i + delta;
19290 			continue;
19291 		}
19292 
19293 		/* Implement bpf_get_func_arg inline. */
19294 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19295 		    insn->imm == BPF_FUNC_get_func_arg) {
19296 			/* Load nr_args from ctx - 8 */
19297 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19298 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19299 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19300 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19301 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19302 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19303 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19304 			insn_buf[7] = BPF_JMP_A(1);
19305 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19306 			cnt = 9;
19307 
19308 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19309 			if (!new_prog)
19310 				return -ENOMEM;
19311 
19312 			delta    += cnt - 1;
19313 			env->prog = prog = new_prog;
19314 			insn      = new_prog->insnsi + i + delta;
19315 			continue;
19316 		}
19317 
19318 		/* Implement bpf_get_func_ret inline. */
19319 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19320 		    insn->imm == BPF_FUNC_get_func_ret) {
19321 			if (eatype == BPF_TRACE_FEXIT ||
19322 			    eatype == BPF_MODIFY_RETURN) {
19323 				/* Load nr_args from ctx - 8 */
19324 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19325 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19326 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19327 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19328 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19329 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19330 				cnt = 6;
19331 			} else {
19332 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19333 				cnt = 1;
19334 			}
19335 
19336 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19337 			if (!new_prog)
19338 				return -ENOMEM;
19339 
19340 			delta    += cnt - 1;
19341 			env->prog = prog = new_prog;
19342 			insn      = new_prog->insnsi + i + delta;
19343 			continue;
19344 		}
19345 
19346 		/* Implement get_func_arg_cnt inline. */
19347 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19348 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
19349 			/* Load nr_args from ctx - 8 */
19350 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19351 
19352 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19353 			if (!new_prog)
19354 				return -ENOMEM;
19355 
19356 			env->prog = prog = new_prog;
19357 			insn      = new_prog->insnsi + i + delta;
19358 			continue;
19359 		}
19360 
19361 		/* Implement bpf_get_func_ip inline. */
19362 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19363 		    insn->imm == BPF_FUNC_get_func_ip) {
19364 			/* Load IP address from ctx - 16 */
19365 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19366 
19367 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19368 			if (!new_prog)
19369 				return -ENOMEM;
19370 
19371 			env->prog = prog = new_prog;
19372 			insn      = new_prog->insnsi + i + delta;
19373 			continue;
19374 		}
19375 
19376 patch_call_imm:
19377 		fn = env->ops->get_func_proto(insn->imm, env->prog);
19378 		/* all functions that have prototype and verifier allowed
19379 		 * programs to call them, must be real in-kernel functions
19380 		 */
19381 		if (!fn->func) {
19382 			verbose(env,
19383 				"kernel subsystem misconfigured func %s#%d\n",
19384 				func_id_name(insn->imm), insn->imm);
19385 			return -EFAULT;
19386 		}
19387 		insn->imm = fn->func - __bpf_call_base;
19388 	}
19389 
19390 	/* Since poke tab is now finalized, publish aux to tracker. */
19391 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19392 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19393 		if (!map_ptr->ops->map_poke_track ||
19394 		    !map_ptr->ops->map_poke_untrack ||
19395 		    !map_ptr->ops->map_poke_run) {
19396 			verbose(env, "bpf verifier is misconfigured\n");
19397 			return -EINVAL;
19398 		}
19399 
19400 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19401 		if (ret < 0) {
19402 			verbose(env, "tracking tail call prog failed\n");
19403 			return ret;
19404 		}
19405 	}
19406 
19407 	sort_kfunc_descs_by_imm_off(env->prog);
19408 
19409 	return 0;
19410 }
19411 
inline_bpf_loop(struct bpf_verifier_env * env,int position,s32 stack_base,u32 callback_subprogno,u32 * cnt)19412 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19413 					int position,
19414 					s32 stack_base,
19415 					u32 callback_subprogno,
19416 					u32 *cnt)
19417 {
19418 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19419 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19420 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19421 	int reg_loop_max = BPF_REG_6;
19422 	int reg_loop_cnt = BPF_REG_7;
19423 	int reg_loop_ctx = BPF_REG_8;
19424 
19425 	struct bpf_prog *new_prog;
19426 	u32 callback_start;
19427 	u32 call_insn_offset;
19428 	s32 callback_offset;
19429 
19430 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
19431 	 * be careful to modify this code in sync.
19432 	 */
19433 	struct bpf_insn insn_buf[] = {
19434 		/* Return error and jump to the end of the patch if
19435 		 * expected number of iterations is too big.
19436 		 */
19437 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19438 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19439 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19440 		/* spill R6, R7, R8 to use these as loop vars */
19441 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19442 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19443 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19444 		/* initialize loop vars */
19445 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19446 		BPF_MOV32_IMM(reg_loop_cnt, 0),
19447 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19448 		/* loop header,
19449 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
19450 		 */
19451 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19452 		/* callback call,
19453 		 * correct callback offset would be set after patching
19454 		 */
19455 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19456 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19457 		BPF_CALL_REL(0),
19458 		/* increment loop counter */
19459 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19460 		/* jump to loop header if callback returned 0 */
19461 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19462 		/* return value of bpf_loop,
19463 		 * set R0 to the number of iterations
19464 		 */
19465 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19466 		/* restore original values of R6, R7, R8 */
19467 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19468 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19469 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19470 	};
19471 
19472 	*cnt = ARRAY_SIZE(insn_buf);
19473 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19474 	if (!new_prog)
19475 		return new_prog;
19476 
19477 	/* callback start is known only after patching */
19478 	callback_start = env->subprog_info[callback_subprogno].start;
19479 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19480 	call_insn_offset = position + 12;
19481 	callback_offset = callback_start - call_insn_offset - 1;
19482 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
19483 
19484 	return new_prog;
19485 }
19486 
is_bpf_loop_call(struct bpf_insn * insn)19487 static bool is_bpf_loop_call(struct bpf_insn *insn)
19488 {
19489 	return insn->code == (BPF_JMP | BPF_CALL) &&
19490 		insn->src_reg == 0 &&
19491 		insn->imm == BPF_FUNC_loop;
19492 }
19493 
19494 /* For all sub-programs in the program (including main) check
19495  * insn_aux_data to see if there are bpf_loop calls that require
19496  * inlining. If such calls are found the calls are replaced with a
19497  * sequence of instructions produced by `inline_bpf_loop` function and
19498  * subprog stack_depth is increased by the size of 3 registers.
19499  * This stack space is used to spill values of the R6, R7, R8.  These
19500  * registers are used to store the loop bound, counter and context
19501  * variables.
19502  */
optimize_bpf_loop(struct bpf_verifier_env * env)19503 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19504 {
19505 	struct bpf_subprog_info *subprogs = env->subprog_info;
19506 	int i, cur_subprog = 0, cnt, delta = 0;
19507 	struct bpf_insn *insn = env->prog->insnsi;
19508 	int insn_cnt = env->prog->len;
19509 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
19510 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19511 	u16 stack_depth_extra = 0;
19512 
19513 	for (i = 0; i < insn_cnt; i++, insn++) {
19514 		struct bpf_loop_inline_state *inline_state =
19515 			&env->insn_aux_data[i + delta].loop_inline_state;
19516 
19517 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
19518 			struct bpf_prog *new_prog;
19519 
19520 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
19521 			new_prog = inline_bpf_loop(env,
19522 						   i + delta,
19523 						   -(stack_depth + stack_depth_extra),
19524 						   inline_state->callback_subprogno,
19525 						   &cnt);
19526 			if (!new_prog)
19527 				return -ENOMEM;
19528 
19529 			delta     += cnt - 1;
19530 			env->prog  = new_prog;
19531 			insn       = new_prog->insnsi + i + delta;
19532 		}
19533 
19534 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19535 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
19536 			cur_subprog++;
19537 			stack_depth = subprogs[cur_subprog].stack_depth;
19538 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19539 			stack_depth_extra = 0;
19540 		}
19541 	}
19542 
19543 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19544 
19545 	return 0;
19546 }
19547 
free_states(struct bpf_verifier_env * env)19548 static void free_states(struct bpf_verifier_env *env)
19549 {
19550 	struct bpf_verifier_state_list *sl, *sln;
19551 	int i;
19552 
19553 	sl = env->free_list;
19554 	while (sl) {
19555 		sln = sl->next;
19556 		free_verifier_state(&sl->state, false);
19557 		kfree(sl);
19558 		sl = sln;
19559 	}
19560 	env->free_list = NULL;
19561 
19562 	if (!env->explored_states)
19563 		return;
19564 
19565 	for (i = 0; i < state_htab_size(env); i++) {
19566 		sl = env->explored_states[i];
19567 
19568 		while (sl) {
19569 			sln = sl->next;
19570 			free_verifier_state(&sl->state, false);
19571 			kfree(sl);
19572 			sl = sln;
19573 		}
19574 		env->explored_states[i] = NULL;
19575 	}
19576 }
19577 
do_check_common(struct bpf_verifier_env * env,int subprog)19578 static int do_check_common(struct bpf_verifier_env *env, int subprog)
19579 {
19580 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19581 	struct bpf_verifier_state *state;
19582 	struct bpf_reg_state *regs;
19583 	int ret, i;
19584 
19585 	env->prev_linfo = NULL;
19586 	env->pass_cnt++;
19587 
19588 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19589 	if (!state)
19590 		return -ENOMEM;
19591 	state->curframe = 0;
19592 	state->speculative = false;
19593 	state->branches = 1;
19594 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19595 	if (!state->frame[0]) {
19596 		kfree(state);
19597 		return -ENOMEM;
19598 	}
19599 	env->cur_state = state;
19600 	init_func_state(env, state->frame[0],
19601 			BPF_MAIN_FUNC /* callsite */,
19602 			0 /* frameno */,
19603 			subprog);
19604 	state->first_insn_idx = env->subprog_info[subprog].start;
19605 	state->last_insn_idx = -1;
19606 
19607 	regs = state->frame[state->curframe]->regs;
19608 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19609 		ret = btf_prepare_func_args(env, subprog, regs);
19610 		if (ret)
19611 			goto out;
19612 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19613 			if (regs[i].type == PTR_TO_CTX)
19614 				mark_reg_known_zero(env, regs, i);
19615 			else if (regs[i].type == SCALAR_VALUE)
19616 				mark_reg_unknown(env, regs, i);
19617 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
19618 				const u32 mem_size = regs[i].mem_size;
19619 
19620 				mark_reg_known_zero(env, regs, i);
19621 				regs[i].mem_size = mem_size;
19622 				regs[i].id = ++env->id_gen;
19623 			}
19624 		}
19625 	} else {
19626 		/* 1st arg to a function */
19627 		regs[BPF_REG_1].type = PTR_TO_CTX;
19628 		mark_reg_known_zero(env, regs, BPF_REG_1);
19629 		ret = btf_check_subprog_arg_match(env, subprog, regs);
19630 		if (ret == -EFAULT)
19631 			/* unlikely verifier bug. abort.
19632 			 * ret == 0 and ret < 0 are sadly acceptable for
19633 			 * main() function due to backward compatibility.
19634 			 * Like socket filter program may be written as:
19635 			 * int bpf_prog(struct pt_regs *ctx)
19636 			 * and never dereference that ctx in the program.
19637 			 * 'struct pt_regs' is a type mismatch for socket
19638 			 * filter that should be using 'struct __sk_buff'.
19639 			 */
19640 			goto out;
19641 	}
19642 
19643 	ret = do_check(env);
19644 out:
19645 	/* check for NULL is necessary, since cur_state can be freed inside
19646 	 * do_check() under memory pressure.
19647 	 */
19648 	if (env->cur_state) {
19649 		free_verifier_state(env->cur_state, true);
19650 		env->cur_state = NULL;
19651 	}
19652 	while (!pop_stack(env, NULL, NULL, false));
19653 	if (!ret && pop_log)
19654 		bpf_vlog_reset(&env->log, 0);
19655 	free_states(env);
19656 	return ret;
19657 }
19658 
19659 /* Verify all global functions in a BPF program one by one based on their BTF.
19660  * All global functions must pass verification. Otherwise the whole program is rejected.
19661  * Consider:
19662  * int bar(int);
19663  * int foo(int f)
19664  * {
19665  *    return bar(f);
19666  * }
19667  * int bar(int b)
19668  * {
19669  *    ...
19670  * }
19671  * foo() will be verified first for R1=any_scalar_value. During verification it
19672  * will be assumed that bar() already verified successfully and call to bar()
19673  * from foo() will be checked for type match only. Later bar() will be verified
19674  * independently to check that it's safe for R1=any_scalar_value.
19675  */
do_check_subprogs(struct bpf_verifier_env * env)19676 static int do_check_subprogs(struct bpf_verifier_env *env)
19677 {
19678 	struct bpf_prog_aux *aux = env->prog->aux;
19679 	int i, ret;
19680 
19681 	if (!aux->func_info)
19682 		return 0;
19683 
19684 	for (i = 1; i < env->subprog_cnt; i++) {
19685 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19686 			continue;
19687 		env->insn_idx = env->subprog_info[i].start;
19688 		WARN_ON_ONCE(env->insn_idx == 0);
19689 		ret = do_check_common(env, i);
19690 		if (ret) {
19691 			return ret;
19692 		} else if (env->log.level & BPF_LOG_LEVEL) {
19693 			verbose(env,
19694 				"Func#%d is safe for any args that match its prototype\n",
19695 				i);
19696 		}
19697 	}
19698 	return 0;
19699 }
19700 
do_check_main(struct bpf_verifier_env * env)19701 static int do_check_main(struct bpf_verifier_env *env)
19702 {
19703 	int ret;
19704 
19705 	env->insn_idx = 0;
19706 	ret = do_check_common(env, 0);
19707 	if (!ret)
19708 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19709 	return ret;
19710 }
19711 
19712 
print_verification_stats(struct bpf_verifier_env * env)19713 static void print_verification_stats(struct bpf_verifier_env *env)
19714 {
19715 	int i;
19716 
19717 	if (env->log.level & BPF_LOG_STATS) {
19718 		verbose(env, "verification time %lld usec\n",
19719 			div_u64(env->verification_time, 1000));
19720 		verbose(env, "stack depth ");
19721 		for (i = 0; i < env->subprog_cnt; i++) {
19722 			u32 depth = env->subprog_info[i].stack_depth;
19723 
19724 			verbose(env, "%d", depth);
19725 			if (i + 1 < env->subprog_cnt)
19726 				verbose(env, "+");
19727 		}
19728 		verbose(env, "\n");
19729 	}
19730 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19731 		"total_states %d peak_states %d mark_read %d\n",
19732 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19733 		env->max_states_per_insn, env->total_states,
19734 		env->peak_states, env->longest_mark_read_walk);
19735 }
19736 
check_struct_ops_btf_id(struct bpf_verifier_env * env)19737 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19738 {
19739 	const struct btf_type *t, *func_proto;
19740 	const struct bpf_struct_ops *st_ops;
19741 	const struct btf_member *member;
19742 	struct bpf_prog *prog = env->prog;
19743 	u32 btf_id, member_idx;
19744 	const char *mname;
19745 
19746 	if (!prog->gpl_compatible) {
19747 		verbose(env, "struct ops programs must have a GPL compatible license\n");
19748 		return -EINVAL;
19749 	}
19750 
19751 	btf_id = prog->aux->attach_btf_id;
19752 	st_ops = bpf_struct_ops_find(btf_id);
19753 	if (!st_ops) {
19754 		verbose(env, "attach_btf_id %u is not a supported struct\n",
19755 			btf_id);
19756 		return -ENOTSUPP;
19757 	}
19758 
19759 	t = st_ops->type;
19760 	member_idx = prog->expected_attach_type;
19761 	if (member_idx >= btf_type_vlen(t)) {
19762 		verbose(env, "attach to invalid member idx %u of struct %s\n",
19763 			member_idx, st_ops->name);
19764 		return -EINVAL;
19765 	}
19766 
19767 	member = &btf_type_member(t)[member_idx];
19768 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19769 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19770 					       NULL);
19771 	if (!func_proto) {
19772 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19773 			mname, member_idx, st_ops->name);
19774 		return -EINVAL;
19775 	}
19776 
19777 	if (st_ops->check_member) {
19778 		int err = st_ops->check_member(t, member, prog);
19779 
19780 		if (err) {
19781 			verbose(env, "attach to unsupported member %s of struct %s\n",
19782 				mname, st_ops->name);
19783 			return err;
19784 		}
19785 	}
19786 
19787 	prog->aux->attach_func_proto = func_proto;
19788 	prog->aux->attach_func_name = mname;
19789 	env->ops = st_ops->verifier_ops;
19790 
19791 	return 0;
19792 }
19793 #define SECURITY_PREFIX "security_"
19794 
check_attach_modify_return(unsigned long addr,const char * func_name)19795 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19796 {
19797 	if (within_error_injection_list(addr) ||
19798 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
19799 		return 0;
19800 
19801 	return -EINVAL;
19802 }
19803 
19804 /* list of non-sleepable functions that are otherwise on
19805  * ALLOW_ERROR_INJECTION list
19806  */
19807 BTF_SET_START(btf_non_sleepable_error_inject)
19808 /* Three functions below can be called from sleepable and non-sleepable context.
19809  * Assume non-sleepable from bpf safety point of view.
19810  */
BTF_ID(func,__filemap_add_folio)19811 BTF_ID(func, __filemap_add_folio)
19812 BTF_ID(func, should_fail_alloc_page)
19813 BTF_ID(func, should_failslab)
19814 BTF_SET_END(btf_non_sleepable_error_inject)
19815 
19816 static int check_non_sleepable_error_inject(u32 btf_id)
19817 {
19818 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19819 }
19820 
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)19821 int bpf_check_attach_target(struct bpf_verifier_log *log,
19822 			    const struct bpf_prog *prog,
19823 			    const struct bpf_prog *tgt_prog,
19824 			    u32 btf_id,
19825 			    struct bpf_attach_target_info *tgt_info)
19826 {
19827 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19828 	const char prefix[] = "btf_trace_";
19829 	int ret = 0, subprog = -1, i;
19830 	const struct btf_type *t;
19831 	bool conservative = true;
19832 	const char *tname;
19833 	struct btf *btf;
19834 	long addr = 0;
19835 	struct module *mod = NULL;
19836 
19837 	if (!btf_id) {
19838 		bpf_log(log, "Tracing programs must provide btf_id\n");
19839 		return -EINVAL;
19840 	}
19841 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19842 	if (!btf) {
19843 		bpf_log(log,
19844 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19845 		return -EINVAL;
19846 	}
19847 	t = btf_type_by_id(btf, btf_id);
19848 	if (!t) {
19849 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19850 		return -EINVAL;
19851 	}
19852 	tname = btf_name_by_offset(btf, t->name_off);
19853 	if (!tname) {
19854 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19855 		return -EINVAL;
19856 	}
19857 	if (tgt_prog) {
19858 		struct bpf_prog_aux *aux = tgt_prog->aux;
19859 
19860 		if (bpf_prog_is_dev_bound(prog->aux) &&
19861 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19862 			bpf_log(log, "Target program bound device mismatch");
19863 			return -EINVAL;
19864 		}
19865 
19866 		for (i = 0; i < aux->func_info_cnt; i++)
19867 			if (aux->func_info[i].type_id == btf_id) {
19868 				subprog = i;
19869 				break;
19870 			}
19871 		if (subprog == -1) {
19872 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
19873 			return -EINVAL;
19874 		}
19875 		conservative = aux->func_info_aux[subprog].unreliable;
19876 		if (prog_extension) {
19877 			if (conservative) {
19878 				bpf_log(log,
19879 					"Cannot replace static functions\n");
19880 				return -EINVAL;
19881 			}
19882 			if (!prog->jit_requested) {
19883 				bpf_log(log,
19884 					"Extension programs should be JITed\n");
19885 				return -EINVAL;
19886 			}
19887 		}
19888 		if (!tgt_prog->jited) {
19889 			bpf_log(log, "Can attach to only JITed progs\n");
19890 			return -EINVAL;
19891 		}
19892 		if (tgt_prog->type == prog->type) {
19893 			/* Cannot fentry/fexit another fentry/fexit program.
19894 			 * Cannot attach program extension to another extension.
19895 			 * It's ok to attach fentry/fexit to extension program.
19896 			 */
19897 			bpf_log(log, "Cannot recursively attach\n");
19898 			return -EINVAL;
19899 		}
19900 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19901 		    prog_extension &&
19902 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19903 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19904 			/* Program extensions can extend all program types
19905 			 * except fentry/fexit. The reason is the following.
19906 			 * The fentry/fexit programs are used for performance
19907 			 * analysis, stats and can be attached to any program
19908 			 * type except themselves. When extension program is
19909 			 * replacing XDP function it is necessary to allow
19910 			 * performance analysis of all functions. Both original
19911 			 * XDP program and its program extension. Hence
19912 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19913 			 * allowed. If extending of fentry/fexit was allowed it
19914 			 * would be possible to create long call chain
19915 			 * fentry->extension->fentry->extension beyond
19916 			 * reasonable stack size. Hence extending fentry is not
19917 			 * allowed.
19918 			 */
19919 			bpf_log(log, "Cannot extend fentry/fexit\n");
19920 			return -EINVAL;
19921 		}
19922 	} else {
19923 		if (prog_extension) {
19924 			bpf_log(log, "Cannot replace kernel functions\n");
19925 			return -EINVAL;
19926 		}
19927 	}
19928 
19929 	switch (prog->expected_attach_type) {
19930 	case BPF_TRACE_RAW_TP:
19931 		if (tgt_prog) {
19932 			bpf_log(log,
19933 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19934 			return -EINVAL;
19935 		}
19936 		if (!btf_type_is_typedef(t)) {
19937 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
19938 				btf_id);
19939 			return -EINVAL;
19940 		}
19941 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
19942 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
19943 				btf_id, tname);
19944 			return -EINVAL;
19945 		}
19946 		tname += sizeof(prefix) - 1;
19947 		t = btf_type_by_id(btf, t->type);
19948 		if (!btf_type_is_ptr(t))
19949 			/* should never happen in valid vmlinux build */
19950 			return -EINVAL;
19951 		t = btf_type_by_id(btf, t->type);
19952 		if (!btf_type_is_func_proto(t))
19953 			/* should never happen in valid vmlinux build */
19954 			return -EINVAL;
19955 
19956 		break;
19957 	case BPF_TRACE_ITER:
19958 		if (!btf_type_is_func(t)) {
19959 			bpf_log(log, "attach_btf_id %u is not a function\n",
19960 				btf_id);
19961 			return -EINVAL;
19962 		}
19963 		t = btf_type_by_id(btf, t->type);
19964 		if (!btf_type_is_func_proto(t))
19965 			return -EINVAL;
19966 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19967 		if (ret)
19968 			return ret;
19969 		break;
19970 	default:
19971 		if (!prog_extension)
19972 			return -EINVAL;
19973 		fallthrough;
19974 	case BPF_MODIFY_RETURN:
19975 	case BPF_LSM_MAC:
19976 	case BPF_LSM_CGROUP:
19977 	case BPF_TRACE_FENTRY:
19978 	case BPF_TRACE_FEXIT:
19979 		if (!btf_type_is_func(t)) {
19980 			bpf_log(log, "attach_btf_id %u is not a function\n",
19981 				btf_id);
19982 			return -EINVAL;
19983 		}
19984 		if (prog_extension &&
19985 		    btf_check_type_match(log, prog, btf, t))
19986 			return -EINVAL;
19987 		t = btf_type_by_id(btf, t->type);
19988 		if (!btf_type_is_func_proto(t))
19989 			return -EINVAL;
19990 
19991 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
19992 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
19993 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
19994 			return -EINVAL;
19995 
19996 		if (tgt_prog && conservative)
19997 			t = NULL;
19998 
19999 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20000 		if (ret < 0)
20001 			return ret;
20002 
20003 		if (tgt_prog) {
20004 			if (subprog == 0)
20005 				addr = (long) tgt_prog->bpf_func;
20006 			else
20007 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
20008 		} else {
20009 			if (btf_is_module(btf)) {
20010 				mod = btf_try_get_module(btf);
20011 				if (mod)
20012 					addr = find_kallsyms_symbol_value(mod, tname);
20013 				else
20014 					addr = 0;
20015 			} else {
20016 				addr = kallsyms_lookup_name(tname);
20017 			}
20018 			if (!addr) {
20019 				module_put(mod);
20020 				bpf_log(log,
20021 					"The address of function %s cannot be found\n",
20022 					tname);
20023 				return -ENOENT;
20024 			}
20025 		}
20026 
20027 		if (prog->aux->sleepable) {
20028 			ret = -EINVAL;
20029 			switch (prog->type) {
20030 			case BPF_PROG_TYPE_TRACING:
20031 
20032 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
20033 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20034 				 */
20035 				if (!check_non_sleepable_error_inject(btf_id) &&
20036 				    within_error_injection_list(addr))
20037 					ret = 0;
20038 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
20039 				 * in the fmodret id set with the KF_SLEEPABLE flag.
20040 				 */
20041 				else {
20042 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20043 										prog);
20044 
20045 					if (flags && (*flags & KF_SLEEPABLE))
20046 						ret = 0;
20047 				}
20048 				break;
20049 			case BPF_PROG_TYPE_LSM:
20050 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
20051 				 * Only some of them are sleepable.
20052 				 */
20053 				if (bpf_lsm_is_sleepable_hook(btf_id))
20054 					ret = 0;
20055 				break;
20056 			default:
20057 				break;
20058 			}
20059 			if (ret) {
20060 				module_put(mod);
20061 				bpf_log(log, "%s is not sleepable\n", tname);
20062 				return ret;
20063 			}
20064 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
20065 			if (tgt_prog) {
20066 				module_put(mod);
20067 				bpf_log(log, "can't modify return codes of BPF programs\n");
20068 				return -EINVAL;
20069 			}
20070 			ret = -EINVAL;
20071 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
20072 			    !check_attach_modify_return(addr, tname))
20073 				ret = 0;
20074 			if (ret) {
20075 				module_put(mod);
20076 				bpf_log(log, "%s() is not modifiable\n", tname);
20077 				return ret;
20078 			}
20079 		}
20080 
20081 		break;
20082 	}
20083 	tgt_info->tgt_addr = addr;
20084 	tgt_info->tgt_name = tname;
20085 	tgt_info->tgt_type = t;
20086 	tgt_info->tgt_mod = mod;
20087 	return 0;
20088 }
20089 
BTF_SET_START(btf_id_deny)20090 BTF_SET_START(btf_id_deny)
20091 BTF_ID_UNUSED
20092 #ifdef CONFIG_SMP
20093 BTF_ID(func, migrate_disable)
20094 BTF_ID(func, migrate_enable)
20095 #endif
20096 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20097 BTF_ID(func, rcu_read_unlock_strict)
20098 #endif
20099 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20100 BTF_ID(func, preempt_count_add)
20101 BTF_ID(func, preempt_count_sub)
20102 #endif
20103 #ifdef CONFIG_PREEMPT_RCU
20104 BTF_ID(func, __rcu_read_lock)
20105 BTF_ID(func, __rcu_read_unlock)
20106 #endif
20107 BTF_SET_END(btf_id_deny)
20108 
20109 static bool can_be_sleepable(struct bpf_prog *prog)
20110 {
20111 	if (prog->type == BPF_PROG_TYPE_TRACING) {
20112 		switch (prog->expected_attach_type) {
20113 		case BPF_TRACE_FENTRY:
20114 		case BPF_TRACE_FEXIT:
20115 		case BPF_MODIFY_RETURN:
20116 		case BPF_TRACE_ITER:
20117 			return true;
20118 		default:
20119 			return false;
20120 		}
20121 	}
20122 	return prog->type == BPF_PROG_TYPE_LSM ||
20123 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20124 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20125 }
20126 
check_attach_btf_id(struct bpf_verifier_env * env)20127 static int check_attach_btf_id(struct bpf_verifier_env *env)
20128 {
20129 	struct bpf_prog *prog = env->prog;
20130 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20131 	struct bpf_attach_target_info tgt_info = {};
20132 	u32 btf_id = prog->aux->attach_btf_id;
20133 	struct bpf_trampoline *tr;
20134 	int ret;
20135 	u64 key;
20136 
20137 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20138 		if (prog->aux->sleepable)
20139 			/* attach_btf_id checked to be zero already */
20140 			return 0;
20141 		verbose(env, "Syscall programs can only be sleepable\n");
20142 		return -EINVAL;
20143 	}
20144 
20145 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20146 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20147 		return -EINVAL;
20148 	}
20149 
20150 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20151 		return check_struct_ops_btf_id(env);
20152 
20153 	if (prog->type != BPF_PROG_TYPE_TRACING &&
20154 	    prog->type != BPF_PROG_TYPE_LSM &&
20155 	    prog->type != BPF_PROG_TYPE_EXT)
20156 		return 0;
20157 
20158 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20159 	if (ret)
20160 		return ret;
20161 
20162 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20163 		/* to make freplace equivalent to their targets, they need to
20164 		 * inherit env->ops and expected_attach_type for the rest of the
20165 		 * verification
20166 		 */
20167 		env->ops = bpf_verifier_ops[tgt_prog->type];
20168 		prog->expected_attach_type = tgt_prog->expected_attach_type;
20169 	}
20170 
20171 	/* store info about the attachment target that will be used later */
20172 	prog->aux->attach_func_proto = tgt_info.tgt_type;
20173 	prog->aux->attach_func_name = tgt_info.tgt_name;
20174 	prog->aux->mod = tgt_info.tgt_mod;
20175 
20176 	if (tgt_prog) {
20177 		prog->aux->saved_dst_prog_type = tgt_prog->type;
20178 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20179 	}
20180 
20181 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20182 		prog->aux->attach_btf_trace = true;
20183 		return 0;
20184 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20185 		if (!bpf_iter_prog_supported(prog))
20186 			return -EINVAL;
20187 		return 0;
20188 	}
20189 
20190 	if (prog->type == BPF_PROG_TYPE_LSM) {
20191 		ret = bpf_lsm_verify_prog(&env->log, prog);
20192 		if (ret < 0)
20193 			return ret;
20194 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
20195 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
20196 		return -EINVAL;
20197 	}
20198 
20199 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20200 	tr = bpf_trampoline_get(key, &tgt_info);
20201 	if (!tr)
20202 		return -ENOMEM;
20203 
20204 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20205 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20206 
20207 	prog->aux->dst_trampoline = tr;
20208 	return 0;
20209 }
20210 
bpf_get_btf_vmlinux(void)20211 struct btf *bpf_get_btf_vmlinux(void)
20212 {
20213 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20214 		mutex_lock(&bpf_verifier_lock);
20215 		if (!btf_vmlinux)
20216 			btf_vmlinux = btf_parse_vmlinux();
20217 		mutex_unlock(&bpf_verifier_lock);
20218 	}
20219 	return btf_vmlinux;
20220 }
20221 
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,bpfptr_t uattr,__u32 uattr_size)20222 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20223 {
20224 	u64 start_time = ktime_get_ns();
20225 	struct bpf_verifier_env *env;
20226 	int i, len, ret = -EINVAL, err;
20227 	u32 log_true_size;
20228 	bool is_priv;
20229 
20230 	/* no program is valid */
20231 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20232 		return -EINVAL;
20233 
20234 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
20235 	 * allocate/free it every time bpf_check() is called
20236 	 */
20237 	env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20238 	if (!env)
20239 		return -ENOMEM;
20240 
20241 	env->bt.env = env;
20242 
20243 	len = (*prog)->len;
20244 	env->insn_aux_data =
20245 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20246 	ret = -ENOMEM;
20247 	if (!env->insn_aux_data)
20248 		goto err_free_env;
20249 	for (i = 0; i < len; i++)
20250 		env->insn_aux_data[i].orig_idx = i;
20251 	env->prog = *prog;
20252 	env->ops = bpf_verifier_ops[env->prog->type];
20253 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20254 	is_priv = bpf_capable();
20255 
20256 	bpf_get_btf_vmlinux();
20257 
20258 	/* grab the mutex to protect few globals used by verifier */
20259 	if (!is_priv)
20260 		mutex_lock(&bpf_verifier_lock);
20261 
20262 	/* user could have requested verbose verifier output
20263 	 * and supplied buffer to store the verification trace
20264 	 */
20265 	ret = bpf_vlog_init(&env->log, attr->log_level,
20266 			    (char __user *) (unsigned long) attr->log_buf,
20267 			    attr->log_size);
20268 	if (ret)
20269 		goto err_unlock;
20270 
20271 	mark_verifier_state_clean(env);
20272 
20273 	if (IS_ERR(btf_vmlinux)) {
20274 		/* Either gcc or pahole or kernel are broken. */
20275 		verbose(env, "in-kernel BTF is malformed\n");
20276 		ret = PTR_ERR(btf_vmlinux);
20277 		goto skip_full_check;
20278 	}
20279 
20280 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20281 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20282 		env->strict_alignment = true;
20283 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20284 		env->strict_alignment = false;
20285 
20286 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20287 	env->allow_uninit_stack = bpf_allow_uninit_stack();
20288 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
20289 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
20290 	env->bpf_capable = bpf_capable();
20291 
20292 	if (is_priv)
20293 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20294 
20295 	env->explored_states = kvcalloc(state_htab_size(env),
20296 				       sizeof(struct bpf_verifier_state_list *),
20297 				       GFP_USER);
20298 	ret = -ENOMEM;
20299 	if (!env->explored_states)
20300 		goto skip_full_check;
20301 
20302 	ret = add_subprog_and_kfunc(env);
20303 	if (ret < 0)
20304 		goto skip_full_check;
20305 
20306 	ret = check_subprogs(env);
20307 	if (ret < 0)
20308 		goto skip_full_check;
20309 
20310 	ret = check_btf_info(env, attr, uattr);
20311 	if (ret < 0)
20312 		goto skip_full_check;
20313 
20314 	ret = check_attach_btf_id(env);
20315 	if (ret)
20316 		goto skip_full_check;
20317 
20318 	ret = resolve_pseudo_ldimm64(env);
20319 	if (ret < 0)
20320 		goto skip_full_check;
20321 
20322 	if (bpf_prog_is_offloaded(env->prog->aux)) {
20323 		ret = bpf_prog_offload_verifier_prep(env->prog);
20324 		if (ret)
20325 			goto skip_full_check;
20326 	}
20327 
20328 	ret = check_cfg(env);
20329 	if (ret < 0)
20330 		goto skip_full_check;
20331 
20332 	ret = do_check_subprogs(env);
20333 	ret = ret ?: do_check_main(env);
20334 
20335 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20336 		ret = bpf_prog_offload_finalize(env);
20337 
20338 skip_full_check:
20339 	kvfree(env->explored_states);
20340 
20341 	if (ret == 0)
20342 		ret = check_max_stack_depth(env);
20343 
20344 	/* instruction rewrites happen after this point */
20345 	if (ret == 0)
20346 		ret = optimize_bpf_loop(env);
20347 
20348 	if (is_priv) {
20349 		if (ret == 0)
20350 			opt_hard_wire_dead_code_branches(env);
20351 		if (ret == 0)
20352 			ret = opt_remove_dead_code(env);
20353 		if (ret == 0)
20354 			ret = opt_remove_nops(env);
20355 	} else {
20356 		if (ret == 0)
20357 			sanitize_dead_code(env);
20358 	}
20359 
20360 	if (ret == 0)
20361 		/* program is valid, convert *(u32*)(ctx + off) accesses */
20362 		ret = convert_ctx_accesses(env);
20363 
20364 	if (ret == 0)
20365 		ret = do_misc_fixups(env);
20366 
20367 	/* do 32-bit optimization after insn patching has done so those patched
20368 	 * insns could be handled correctly.
20369 	 */
20370 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20371 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20372 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20373 								     : false;
20374 	}
20375 
20376 	if (ret == 0)
20377 		ret = fixup_call_args(env);
20378 
20379 	env->verification_time = ktime_get_ns() - start_time;
20380 	print_verification_stats(env);
20381 	env->prog->aux->verified_insns = env->insn_processed;
20382 
20383 	/* preserve original error even if log finalization is successful */
20384 	err = bpf_vlog_finalize(&env->log, &log_true_size);
20385 	if (err)
20386 		ret = err;
20387 
20388 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20389 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20390 				  &log_true_size, sizeof(log_true_size))) {
20391 		ret = -EFAULT;
20392 		goto err_release_maps;
20393 	}
20394 
20395 	if (ret)
20396 		goto err_release_maps;
20397 
20398 	if (env->used_map_cnt) {
20399 		/* if program passed verifier, update used_maps in bpf_prog_info */
20400 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20401 							  sizeof(env->used_maps[0]),
20402 							  GFP_KERNEL);
20403 
20404 		if (!env->prog->aux->used_maps) {
20405 			ret = -ENOMEM;
20406 			goto err_release_maps;
20407 		}
20408 
20409 		memcpy(env->prog->aux->used_maps, env->used_maps,
20410 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
20411 		env->prog->aux->used_map_cnt = env->used_map_cnt;
20412 	}
20413 	if (env->used_btf_cnt) {
20414 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
20415 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20416 							  sizeof(env->used_btfs[0]),
20417 							  GFP_KERNEL);
20418 		if (!env->prog->aux->used_btfs) {
20419 			ret = -ENOMEM;
20420 			goto err_release_maps;
20421 		}
20422 
20423 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
20424 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20425 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20426 	}
20427 	if (env->used_map_cnt || env->used_btf_cnt) {
20428 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
20429 		 * bpf_ld_imm64 instructions
20430 		 */
20431 		convert_pseudo_ld_imm64(env);
20432 	}
20433 
20434 	adjust_btf_func(env);
20435 
20436 err_release_maps:
20437 	if (!env->prog->aux->used_maps)
20438 		/* if we didn't copy map pointers into bpf_prog_info, release
20439 		 * them now. Otherwise free_used_maps() will release them.
20440 		 */
20441 		release_maps(env);
20442 	if (!env->prog->aux->used_btfs)
20443 		release_btfs(env);
20444 
20445 	/* extension progs temporarily inherit the attach_type of their targets
20446 	   for verification purposes, so set it back to zero before returning
20447 	 */
20448 	if (env->prog->type == BPF_PROG_TYPE_EXT)
20449 		env->prog->expected_attach_type = 0;
20450 
20451 	*prog = env->prog;
20452 err_unlock:
20453 	if (!is_priv)
20454 		mutex_unlock(&bpf_verifier_lock);
20455 	vfree(env->insn_aux_data);
20456 err_free_env:
20457 	kvfree(env);
20458 	return ret;
20459 }
20460