1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30
31 #include "disasm.h"
32
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 [_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43
44 /* bpf_check() is a static code analyzer that walks eBPF program
45 * instruction by instruction and updates register/stack state.
46 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47 *
48 * The first pass is depth-first-search to check that the program is a DAG.
49 * It rejects the following programs:
50 * - larger than BPF_MAXINSNS insns
51 * - if loop is present (detected via back-edge)
52 * - unreachable insns exist (shouldn't be a forest. program = one function)
53 * - out of bounds or malformed jumps
54 * The second pass is all possible path descent from the 1st insn.
55 * Since it's analyzing all paths through the program, the length of the
56 * analysis is limited to 64k insn, which may be hit even if total number of
57 * insn is less then 4K, but there are too many branches that change stack/regs.
58 * Number of 'branches to be analyzed' is limited to 1k
59 *
60 * On entry to each instruction, each register has a type, and the instruction
61 * changes the types of the registers depending on instruction semantics.
62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63 * copied to R1.
64 *
65 * All registers are 64-bit.
66 * R0 - return register
67 * R1-R5 argument passing registers
68 * R6-R9 callee saved registers
69 * R10 - frame pointer read-only
70 *
71 * At the start of BPF program the register R1 contains a pointer to bpf_context
72 * and has type PTR_TO_CTX.
73 *
74 * Verifier tracks arithmetic operations on pointers in case:
75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77 * 1st insn copies R10 (which has FRAME_PTR) type into R1
78 * and 2nd arithmetic instruction is pattern matched to recognize
79 * that it wants to construct a pointer to some element within stack.
80 * So after 2nd insn, the register R1 has type PTR_TO_STACK
81 * (and -20 constant is saved for further stack bounds checking).
82 * Meaning that this reg is a pointer to stack plus known immediate constant.
83 *
84 * Most of the time the registers have SCALAR_VALUE type, which
85 * means the register has some value, but it's not a valid pointer.
86 * (like pointer plus pointer becomes SCALAR_VALUE type)
87 *
88 * When verifier sees load or store instructions the type of base register
89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90 * four pointer types recognized by check_mem_access() function.
91 *
92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93 * and the range of [ptr, ptr + map's value_size) is accessible.
94 *
95 * registers used to pass values to function calls are checked against
96 * function argument constraints.
97 *
98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99 * It means that the register type passed to this function must be
100 * PTR_TO_STACK and it will be used inside the function as
101 * 'pointer to map element key'
102 *
103 * For example the argument constraints for bpf_map_lookup_elem():
104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105 * .arg1_type = ARG_CONST_MAP_PTR,
106 * .arg2_type = ARG_PTR_TO_MAP_KEY,
107 *
108 * ret_type says that this function returns 'pointer to map elem value or null'
109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110 * 2nd argument should be a pointer to stack, which will be used inside
111 * the helper function as a pointer to map element key.
112 *
113 * On the kernel side the helper function looks like:
114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115 * {
116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117 * void *key = (void *) (unsigned long) r2;
118 * void *value;
119 *
120 * here kernel can access 'key' and 'map' pointers safely, knowing that
121 * [key, key + map->key_size) bytes are valid and were initialized on
122 * the stack of eBPF program.
123 * }
124 *
125 * Corresponding eBPF program may look like:
126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130 * here verifier looks at prototype of map_lookup_elem() and sees:
131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133 *
134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136 * and were initialized prior to this call.
137 * If it's ok, then verifier allows this BPF_CALL insn and looks at
138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140 * returns either pointer to map value or NULL.
141 *
142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143 * insn, the register holding that pointer in the true branch changes state to
144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145 * branch. See check_cond_jmp_op().
146 *
147 * After the call R0 is set to return type of the function and registers R1-R5
148 * are set to NOT_INIT to indicate that they are no longer readable.
149 *
150 * The following reference types represent a potential reference to a kernel
151 * resource which, after first being allocated, must be checked and freed by
152 * the BPF program:
153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154 *
155 * When the verifier sees a helper call return a reference type, it allocates a
156 * pointer id for the reference and stores it in the current function state.
157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159 * passes through a NULL-check conditional. For the branch wherein the state is
160 * changed to CONST_IMM, the verifier releases the reference.
161 *
162 * For each helper function that allocates a reference, such as
163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164 * bpf_sk_release(). When a reference type passes into the release function,
165 * the verifier also releases the reference. If any unchecked or unreleased
166 * reference remains at the end of the program, the verifier rejects it.
167 */
168
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 /* verifer state is 'st'
172 * before processing instruction 'insn_idx'
173 * and after processing instruction 'prev_insn_idx'
174 */
175 struct bpf_verifier_state st;
176 int insn_idx;
177 int prev_insn_idx;
178 struct bpf_verifier_stack_elem *next;
179 /* length of verifier log at the time this state was pushed on stack */
180 u32 log_pos;
181 };
182
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
184 #define BPF_COMPLEXITY_LIMIT_STATES 64
185
186 #define BPF_MAP_KEY_POISON (1ULL << 63)
187 #define BPF_MAP_KEY_SEEN (1ULL << 62)
188
189 #define BPF_MAP_PTR_UNPRIV 1UL
190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
191 POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 const struct bpf_map *map, bool unpriv)
216 {
217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 unpriv |= bpf_map_ptr_unpriv(aux);
219 aux->map_ptr_state = (unsigned long)map |
220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225 return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240 bool poisoned = bpf_map_key_poisoned(aux);
241
242 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245
bpf_helper_call(const struct bpf_insn * insn)246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248 return insn->code == (BPF_JMP | BPF_CALL) &&
249 insn->src_reg == 0;
250 }
251
bpf_pseudo_call(const struct bpf_insn * insn)252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254 return insn->code == (BPF_JMP | BPF_CALL) &&
255 insn->src_reg == BPF_PSEUDO_CALL;
256 }
257
bpf_pseudo_kfunc_call(const struct bpf_insn * insn)258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260 return insn->code == (BPF_JMP | BPF_CALL) &&
261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263
264 struct bpf_call_arg_meta {
265 struct bpf_map *map_ptr;
266 bool raw_mode;
267 bool pkt_access;
268 u8 release_regno;
269 int regno;
270 int access_size;
271 int mem_size;
272 u64 msize_max_value;
273 int ref_obj_id;
274 int dynptr_id;
275 int map_uid;
276 int func_id;
277 struct btf *btf;
278 u32 btf_id;
279 struct btf *ret_btf;
280 u32 ret_btf_id;
281 u32 subprogno;
282 struct btf_field *kptr_field;
283 };
284
285 struct bpf_kfunc_call_arg_meta {
286 /* In parameters */
287 struct btf *btf;
288 u32 func_id;
289 u32 kfunc_flags;
290 const struct btf_type *func_proto;
291 const char *func_name;
292 /* Out parameters */
293 u32 ref_obj_id;
294 u8 release_regno;
295 bool r0_rdonly;
296 u32 ret_btf_id;
297 u64 r0_size;
298 u32 subprogno;
299 struct {
300 u64 value;
301 bool found;
302 } arg_constant;
303
304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 * generally to pass info about user-defined local kptr types to later
306 * verification logic
307 * bpf_obj_drop
308 * Record the local kptr type to be drop'd
309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 * Record the local kptr type to be refcount_incr'd and use
311 * arg_owning_ref to determine whether refcount_acquire should be
312 * fallible
313 */
314 struct btf *arg_btf;
315 u32 arg_btf_id;
316 bool arg_owning_ref;
317
318 struct {
319 struct btf_field *field;
320 } arg_list_head;
321 struct {
322 struct btf_field *field;
323 } arg_rbtree_root;
324 struct {
325 enum bpf_dynptr_type type;
326 u32 id;
327 u32 ref_obj_id;
328 } initialized_dynptr;
329 struct {
330 u8 spi;
331 u8 frameno;
332 } iter;
333 u64 mem_size;
334 };
335
336 struct btf *btf_vmlinux;
337
338 static DEFINE_MUTEX(bpf_verifier_lock);
339
340 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343 const struct bpf_line_info *linfo;
344 const struct bpf_prog *prog;
345 u32 i, nr_linfo;
346
347 prog = env->prog;
348 nr_linfo = prog->aux->nr_linfo;
349
350 if (!nr_linfo || insn_off >= prog->len)
351 return NULL;
352
353 linfo = prog->aux->linfo;
354 for (i = 1; i < nr_linfo; i++)
355 if (insn_off < linfo[i].insn_off)
356 break;
357
358 return &linfo[i - 1];
359 }
360
verbose(void * private_data,const char * fmt,...)361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363 struct bpf_verifier_env *env = private_data;
364 va_list args;
365
366 if (!bpf_verifier_log_needed(&env->log))
367 return;
368
369 va_start(args, fmt);
370 bpf_verifier_vlog(&env->log, fmt, args);
371 va_end(args);
372 }
373
ltrim(const char * s)374 static const char *ltrim(const char *s)
375 {
376 while (isspace(*s))
377 s++;
378
379 return s;
380 }
381
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 u32 insn_off,
384 const char *prefix_fmt, ...)
385 {
386 const struct bpf_line_info *linfo;
387
388 if (!bpf_verifier_log_needed(&env->log))
389 return;
390
391 linfo = find_linfo(env, insn_off);
392 if (!linfo || linfo == env->prev_linfo)
393 return;
394
395 if (prefix_fmt) {
396 va_list args;
397
398 va_start(args, prefix_fmt);
399 bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 va_end(args);
401 }
402
403 verbose(env, "%s\n",
404 ltrim(btf_name_by_offset(env->prog->aux->btf,
405 linfo->line_off)));
406
407 env->prev_linfo = linfo;
408 }
409
verbose_invalid_scalar(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct tnum * range,const char * ctx,const char * reg_name)410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 struct bpf_reg_state *reg,
412 struct tnum *range, const char *ctx,
413 const char *reg_name)
414 {
415 char tn_buf[48];
416
417 verbose(env, "At %s the register %s ", ctx, reg_name);
418 if (!tnum_is_unknown(reg->var_off)) {
419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 verbose(env, "has value %s", tn_buf);
421 } else {
422 verbose(env, "has unknown scalar value");
423 }
424 tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 verbose(env, " should have been in %s\n", tn_buf);
426 }
427
type_is_pkt_pointer(enum bpf_reg_type type)428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 type = base_type(type);
431 return type == PTR_TO_PACKET ||
432 type == PTR_TO_PACKET_META;
433 }
434
type_is_sk_pointer(enum bpf_reg_type type)435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437 return type == PTR_TO_SOCKET ||
438 type == PTR_TO_SOCK_COMMON ||
439 type == PTR_TO_TCP_SOCK ||
440 type == PTR_TO_XDP_SOCK;
441 }
442
type_may_be_null(u32 type)443 static bool type_may_be_null(u32 type)
444 {
445 return type & PTR_MAYBE_NULL;
446 }
447
reg_not_null(const struct bpf_reg_state * reg)448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450 enum bpf_reg_type type;
451
452 type = reg->type;
453 if (type_may_be_null(type))
454 return false;
455
456 type = base_type(type);
457 return type == PTR_TO_SOCKET ||
458 type == PTR_TO_TCP_SOCK ||
459 type == PTR_TO_MAP_VALUE ||
460 type == PTR_TO_MAP_KEY ||
461 type == PTR_TO_SOCK_COMMON ||
462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463 type == PTR_TO_MEM;
464 }
465
type_is_ptr_alloc_obj(u32 type)466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470
type_is_non_owning_ref(u32 type)471 static bool type_is_non_owning_ref(u32 type)
472 {
473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475
reg_btf_record(const struct bpf_reg_state * reg)476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478 struct btf_record *rec = NULL;
479 struct btf_struct_meta *meta;
480
481 if (reg->type == PTR_TO_MAP_VALUE) {
482 rec = reg->map_ptr->record;
483 } else if (type_is_ptr_alloc_obj(reg->type)) {
484 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 if (meta)
486 rec = meta->record;
487 }
488 return rec;
489 }
490
subprog_is_global(const struct bpf_verifier_env * env,int subprog)491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494
495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502
type_is_rdonly_mem(u32 type)503 static bool type_is_rdonly_mem(u32 type)
504 {
505 return type & MEM_RDONLY;
506 }
507
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)508 static bool is_acquire_function(enum bpf_func_id func_id,
509 const struct bpf_map *map)
510 {
511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512
513 if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 func_id == BPF_FUNC_sk_lookup_udp ||
515 func_id == BPF_FUNC_skc_lookup_tcp ||
516 func_id == BPF_FUNC_ringbuf_reserve ||
517 func_id == BPF_FUNC_kptr_xchg)
518 return true;
519
520 if (func_id == BPF_FUNC_map_lookup_elem &&
521 (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 map_type == BPF_MAP_TYPE_SOCKHASH))
523 return true;
524
525 return false;
526 }
527
is_ptr_cast_function(enum bpf_func_id func_id)528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530 return func_id == BPF_FUNC_tcp_sock ||
531 func_id == BPF_FUNC_sk_fullsock ||
532 func_id == BPF_FUNC_skc_to_tcp_sock ||
533 func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 func_id == BPF_FUNC_skc_to_udp6_sock ||
535 func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539
is_dynptr_ref_function(enum bpf_func_id func_id)540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542 return func_id == BPF_FUNC_dynptr_data;
543 }
544
545 static bool is_sync_callback_calling_kfunc(u32 btf_id);
546
is_sync_callback_calling_function(enum bpf_func_id func_id)547 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
548 {
549 return func_id == BPF_FUNC_for_each_map_elem ||
550 func_id == BPF_FUNC_find_vma ||
551 func_id == BPF_FUNC_loop ||
552 func_id == BPF_FUNC_user_ringbuf_drain;
553 }
554
is_async_callback_calling_function(enum bpf_func_id func_id)555 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
556 {
557 return func_id == BPF_FUNC_timer_set_callback;
558 }
559
is_callback_calling_function(enum bpf_func_id func_id)560 static bool is_callback_calling_function(enum bpf_func_id func_id)
561 {
562 return is_sync_callback_calling_function(func_id) ||
563 is_async_callback_calling_function(func_id);
564 }
565
is_sync_callback_calling_insn(struct bpf_insn * insn)566 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
567 {
568 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
569 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
570 }
571
is_storage_get_function(enum bpf_func_id func_id)572 static bool is_storage_get_function(enum bpf_func_id func_id)
573 {
574 return func_id == BPF_FUNC_sk_storage_get ||
575 func_id == BPF_FUNC_inode_storage_get ||
576 func_id == BPF_FUNC_task_storage_get ||
577 func_id == BPF_FUNC_cgrp_storage_get;
578 }
579
helper_multiple_ref_obj_use(enum bpf_func_id func_id,const struct bpf_map * map)580 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
581 const struct bpf_map *map)
582 {
583 int ref_obj_uses = 0;
584
585 if (is_ptr_cast_function(func_id))
586 ref_obj_uses++;
587 if (is_acquire_function(func_id, map))
588 ref_obj_uses++;
589 if (is_dynptr_ref_function(func_id))
590 ref_obj_uses++;
591
592 return ref_obj_uses > 1;
593 }
594
is_cmpxchg_insn(const struct bpf_insn * insn)595 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
596 {
597 return BPF_CLASS(insn->code) == BPF_STX &&
598 BPF_MODE(insn->code) == BPF_ATOMIC &&
599 insn->imm == BPF_CMPXCHG;
600 }
601
602 /* string representation of 'enum bpf_reg_type'
603 *
604 * Note that reg_type_str() can not appear more than once in a single verbose()
605 * statement.
606 */
reg_type_str(struct bpf_verifier_env * env,enum bpf_reg_type type)607 static const char *reg_type_str(struct bpf_verifier_env *env,
608 enum bpf_reg_type type)
609 {
610 char postfix[16] = {0}, prefix[64] = {0};
611 static const char * const str[] = {
612 [NOT_INIT] = "?",
613 [SCALAR_VALUE] = "scalar",
614 [PTR_TO_CTX] = "ctx",
615 [CONST_PTR_TO_MAP] = "map_ptr",
616 [PTR_TO_MAP_VALUE] = "map_value",
617 [PTR_TO_STACK] = "fp",
618 [PTR_TO_PACKET] = "pkt",
619 [PTR_TO_PACKET_META] = "pkt_meta",
620 [PTR_TO_PACKET_END] = "pkt_end",
621 [PTR_TO_FLOW_KEYS] = "flow_keys",
622 [PTR_TO_SOCKET] = "sock",
623 [PTR_TO_SOCK_COMMON] = "sock_common",
624 [PTR_TO_TCP_SOCK] = "tcp_sock",
625 [PTR_TO_TP_BUFFER] = "tp_buffer",
626 [PTR_TO_XDP_SOCK] = "xdp_sock",
627 [PTR_TO_BTF_ID] = "ptr_",
628 [PTR_TO_MEM] = "mem",
629 [PTR_TO_BUF] = "buf",
630 [PTR_TO_FUNC] = "func",
631 [PTR_TO_MAP_KEY] = "map_key",
632 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr",
633 };
634
635 if (type & PTR_MAYBE_NULL) {
636 if (base_type(type) == PTR_TO_BTF_ID)
637 strncpy(postfix, "or_null_", 16);
638 else
639 strncpy(postfix, "_or_null", 16);
640 }
641
642 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
643 type & MEM_RDONLY ? "rdonly_" : "",
644 type & MEM_RINGBUF ? "ringbuf_" : "",
645 type & MEM_USER ? "user_" : "",
646 type & MEM_PERCPU ? "percpu_" : "",
647 type & MEM_RCU ? "rcu_" : "",
648 type & PTR_UNTRUSTED ? "untrusted_" : "",
649 type & PTR_TRUSTED ? "trusted_" : ""
650 );
651
652 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
653 prefix, str[base_type(type)], postfix);
654 return env->tmp_str_buf;
655 }
656
657 static char slot_type_char[] = {
658 [STACK_INVALID] = '?',
659 [STACK_SPILL] = 'r',
660 [STACK_MISC] = 'm',
661 [STACK_ZERO] = '0',
662 [STACK_DYNPTR] = 'd',
663 [STACK_ITER] = 'i',
664 };
665
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)666 static void print_liveness(struct bpf_verifier_env *env,
667 enum bpf_reg_liveness live)
668 {
669 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
670 verbose(env, "_");
671 if (live & REG_LIVE_READ)
672 verbose(env, "r");
673 if (live & REG_LIVE_WRITTEN)
674 verbose(env, "w");
675 if (live & REG_LIVE_DONE)
676 verbose(env, "D");
677 }
678
__get_spi(s32 off)679 static int __get_spi(s32 off)
680 {
681 return (-off - 1) / BPF_REG_SIZE;
682 }
683
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)684 static struct bpf_func_state *func(struct bpf_verifier_env *env,
685 const struct bpf_reg_state *reg)
686 {
687 struct bpf_verifier_state *cur = env->cur_state;
688
689 return cur->frame[reg->frameno];
690 }
691
is_spi_bounds_valid(struct bpf_func_state * state,int spi,int nr_slots)692 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
693 {
694 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
695
696 /* We need to check that slots between [spi - nr_slots + 1, spi] are
697 * within [0, allocated_stack).
698 *
699 * Please note that the spi grows downwards. For example, a dynptr
700 * takes the size of two stack slots; the first slot will be at
701 * spi and the second slot will be at spi - 1.
702 */
703 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
704 }
705
stack_slot_obj_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * obj_kind,int nr_slots)706 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
707 const char *obj_kind, int nr_slots)
708 {
709 int off, spi;
710
711 if (!tnum_is_const(reg->var_off)) {
712 verbose(env, "%s has to be at a constant offset\n", obj_kind);
713 return -EINVAL;
714 }
715
716 off = reg->off + reg->var_off.value;
717 if (off % BPF_REG_SIZE) {
718 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
719 return -EINVAL;
720 }
721
722 spi = __get_spi(off);
723 if (spi + 1 < nr_slots) {
724 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
725 return -EINVAL;
726 }
727
728 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
729 return -ERANGE;
730 return spi;
731 }
732
dynptr_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg)733 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
734 {
735 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
736 }
737
iter_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)738 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
739 {
740 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
741 }
742
btf_type_name(const struct btf * btf,u32 id)743 static const char *btf_type_name(const struct btf *btf, u32 id)
744 {
745 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
746 }
747
dynptr_type_str(enum bpf_dynptr_type type)748 static const char *dynptr_type_str(enum bpf_dynptr_type type)
749 {
750 switch (type) {
751 case BPF_DYNPTR_TYPE_LOCAL:
752 return "local";
753 case BPF_DYNPTR_TYPE_RINGBUF:
754 return "ringbuf";
755 case BPF_DYNPTR_TYPE_SKB:
756 return "skb";
757 case BPF_DYNPTR_TYPE_XDP:
758 return "xdp";
759 case BPF_DYNPTR_TYPE_INVALID:
760 return "<invalid>";
761 default:
762 WARN_ONCE(1, "unknown dynptr type %d\n", type);
763 return "<unknown>";
764 }
765 }
766
iter_type_str(const struct btf * btf,u32 btf_id)767 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
768 {
769 if (!btf || btf_id == 0)
770 return "<invalid>";
771
772 /* we already validated that type is valid and has conforming name */
773 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
774 }
775
iter_state_str(enum bpf_iter_state state)776 static const char *iter_state_str(enum bpf_iter_state state)
777 {
778 switch (state) {
779 case BPF_ITER_STATE_ACTIVE:
780 return "active";
781 case BPF_ITER_STATE_DRAINED:
782 return "drained";
783 case BPF_ITER_STATE_INVALID:
784 return "<invalid>";
785 default:
786 WARN_ONCE(1, "unknown iter state %d\n", state);
787 return "<unknown>";
788 }
789 }
790
mark_reg_scratched(struct bpf_verifier_env * env,u32 regno)791 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
792 {
793 env->scratched_regs |= 1U << regno;
794 }
795
mark_stack_slot_scratched(struct bpf_verifier_env * env,u32 spi)796 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
797 {
798 env->scratched_stack_slots |= 1ULL << spi;
799 }
800
reg_scratched(const struct bpf_verifier_env * env,u32 regno)801 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
802 {
803 return (env->scratched_regs >> regno) & 1;
804 }
805
stack_slot_scratched(const struct bpf_verifier_env * env,u64 regno)806 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
807 {
808 return (env->scratched_stack_slots >> regno) & 1;
809 }
810
verifier_state_scratched(const struct bpf_verifier_env * env)811 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
812 {
813 return env->scratched_regs || env->scratched_stack_slots;
814 }
815
mark_verifier_state_clean(struct bpf_verifier_env * env)816 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
817 {
818 env->scratched_regs = 0U;
819 env->scratched_stack_slots = 0ULL;
820 }
821
822 /* Used for printing the entire verifier state. */
mark_verifier_state_scratched(struct bpf_verifier_env * env)823 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
824 {
825 env->scratched_regs = ~0U;
826 env->scratched_stack_slots = ~0ULL;
827 }
828
arg_to_dynptr_type(enum bpf_arg_type arg_type)829 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
830 {
831 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
832 case DYNPTR_TYPE_LOCAL:
833 return BPF_DYNPTR_TYPE_LOCAL;
834 case DYNPTR_TYPE_RINGBUF:
835 return BPF_DYNPTR_TYPE_RINGBUF;
836 case DYNPTR_TYPE_SKB:
837 return BPF_DYNPTR_TYPE_SKB;
838 case DYNPTR_TYPE_XDP:
839 return BPF_DYNPTR_TYPE_XDP;
840 default:
841 return BPF_DYNPTR_TYPE_INVALID;
842 }
843 }
844
get_dynptr_type_flag(enum bpf_dynptr_type type)845 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
846 {
847 switch (type) {
848 case BPF_DYNPTR_TYPE_LOCAL:
849 return DYNPTR_TYPE_LOCAL;
850 case BPF_DYNPTR_TYPE_RINGBUF:
851 return DYNPTR_TYPE_RINGBUF;
852 case BPF_DYNPTR_TYPE_SKB:
853 return DYNPTR_TYPE_SKB;
854 case BPF_DYNPTR_TYPE_XDP:
855 return DYNPTR_TYPE_XDP;
856 default:
857 return 0;
858 }
859 }
860
dynptr_type_refcounted(enum bpf_dynptr_type type)861 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
862 {
863 return type == BPF_DYNPTR_TYPE_RINGBUF;
864 }
865
866 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
867 enum bpf_dynptr_type type,
868 bool first_slot, int dynptr_id);
869
870 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
871 struct bpf_reg_state *reg);
872
mark_dynptr_stack_regs(struct bpf_verifier_env * env,struct bpf_reg_state * sreg1,struct bpf_reg_state * sreg2,enum bpf_dynptr_type type)873 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
874 struct bpf_reg_state *sreg1,
875 struct bpf_reg_state *sreg2,
876 enum bpf_dynptr_type type)
877 {
878 int id = ++env->id_gen;
879
880 __mark_dynptr_reg(sreg1, type, true, id);
881 __mark_dynptr_reg(sreg2, type, false, id);
882 }
883
mark_dynptr_cb_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_dynptr_type type)884 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
885 struct bpf_reg_state *reg,
886 enum bpf_dynptr_type type)
887 {
888 __mark_dynptr_reg(reg, type, true, ++env->id_gen);
889 }
890
891 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
892 struct bpf_func_state *state, int spi);
893
mark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type,int insn_idx,int clone_ref_obj_id)894 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
895 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
896 {
897 struct bpf_func_state *state = func(env, reg);
898 enum bpf_dynptr_type type;
899 int spi, i, err;
900
901 spi = dynptr_get_spi(env, reg);
902 if (spi < 0)
903 return spi;
904
905 /* We cannot assume both spi and spi - 1 belong to the same dynptr,
906 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
907 * to ensure that for the following example:
908 * [d1][d1][d2][d2]
909 * spi 3 2 1 0
910 * So marking spi = 2 should lead to destruction of both d1 and d2. In
911 * case they do belong to same dynptr, second call won't see slot_type
912 * as STACK_DYNPTR and will simply skip destruction.
913 */
914 err = destroy_if_dynptr_stack_slot(env, state, spi);
915 if (err)
916 return err;
917 err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
918 if (err)
919 return err;
920
921 for (i = 0; i < BPF_REG_SIZE; i++) {
922 state->stack[spi].slot_type[i] = STACK_DYNPTR;
923 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
924 }
925
926 type = arg_to_dynptr_type(arg_type);
927 if (type == BPF_DYNPTR_TYPE_INVALID)
928 return -EINVAL;
929
930 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
931 &state->stack[spi - 1].spilled_ptr, type);
932
933 if (dynptr_type_refcounted(type)) {
934 /* The id is used to track proper releasing */
935 int id;
936
937 if (clone_ref_obj_id)
938 id = clone_ref_obj_id;
939 else
940 id = acquire_reference_state(env, insn_idx);
941
942 if (id < 0)
943 return id;
944
945 state->stack[spi].spilled_ptr.ref_obj_id = id;
946 state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
947 }
948
949 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
950 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
951
952 return 0;
953 }
954
invalidate_dynptr(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)955 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
956 {
957 int i;
958
959 for (i = 0; i < BPF_REG_SIZE; i++) {
960 state->stack[spi].slot_type[i] = STACK_INVALID;
961 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
962 }
963
964 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
965 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
966
967 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
968 *
969 * While we don't allow reading STACK_INVALID, it is still possible to
970 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
971 * helpers or insns can do partial read of that part without failing,
972 * but check_stack_range_initialized, check_stack_read_var_off, and
973 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
974 * the slot conservatively. Hence we need to prevent those liveness
975 * marking walks.
976 *
977 * This was not a problem before because STACK_INVALID is only set by
978 * default (where the default reg state has its reg->parent as NULL), or
979 * in clean_live_states after REG_LIVE_DONE (at which point
980 * mark_reg_read won't walk reg->parent chain), but not randomly during
981 * verifier state exploration (like we did above). Hence, for our case
982 * parentage chain will still be live (i.e. reg->parent may be
983 * non-NULL), while earlier reg->parent was NULL, so we need
984 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
985 * done later on reads or by mark_dynptr_read as well to unnecessary
986 * mark registers in verifier state.
987 */
988 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
989 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
990 }
991
unmark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg)992 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
993 {
994 struct bpf_func_state *state = func(env, reg);
995 int spi, ref_obj_id, i;
996
997 spi = dynptr_get_spi(env, reg);
998 if (spi < 0)
999 return spi;
1000
1001 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1002 invalidate_dynptr(env, state, spi);
1003 return 0;
1004 }
1005
1006 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
1007
1008 /* If the dynptr has a ref_obj_id, then we need to invalidate
1009 * two things:
1010 *
1011 * 1) Any dynptrs with a matching ref_obj_id (clones)
1012 * 2) Any slices derived from this dynptr.
1013 */
1014
1015 /* Invalidate any slices associated with this dynptr */
1016 WARN_ON_ONCE(release_reference(env, ref_obj_id));
1017
1018 /* Invalidate any dynptr clones */
1019 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1020 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1021 continue;
1022
1023 /* it should always be the case that if the ref obj id
1024 * matches then the stack slot also belongs to a
1025 * dynptr
1026 */
1027 if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1028 verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1029 return -EFAULT;
1030 }
1031 if (state->stack[i].spilled_ptr.dynptr.first_slot)
1032 invalidate_dynptr(env, state, i);
1033 }
1034
1035 return 0;
1036 }
1037
1038 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1039 struct bpf_reg_state *reg);
1040
mark_reg_invalid(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1041 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1042 {
1043 if (!env->allow_ptr_leaks)
1044 __mark_reg_not_init(env, reg);
1045 else
1046 __mark_reg_unknown(env, reg);
1047 }
1048
destroy_if_dynptr_stack_slot(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)1049 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1050 struct bpf_func_state *state, int spi)
1051 {
1052 struct bpf_func_state *fstate;
1053 struct bpf_reg_state *dreg;
1054 int i, dynptr_id;
1055
1056 /* We always ensure that STACK_DYNPTR is never set partially,
1057 * hence just checking for slot_type[0] is enough. This is
1058 * different for STACK_SPILL, where it may be only set for
1059 * 1 byte, so code has to use is_spilled_reg.
1060 */
1061 if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1062 return 0;
1063
1064 /* Reposition spi to first slot */
1065 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1066 spi = spi + 1;
1067
1068 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1069 verbose(env, "cannot overwrite referenced dynptr\n");
1070 return -EINVAL;
1071 }
1072
1073 mark_stack_slot_scratched(env, spi);
1074 mark_stack_slot_scratched(env, spi - 1);
1075
1076 /* Writing partially to one dynptr stack slot destroys both. */
1077 for (i = 0; i < BPF_REG_SIZE; i++) {
1078 state->stack[spi].slot_type[i] = STACK_INVALID;
1079 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1080 }
1081
1082 dynptr_id = state->stack[spi].spilled_ptr.id;
1083 /* Invalidate any slices associated with this dynptr */
1084 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1085 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1086 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1087 continue;
1088 if (dreg->dynptr_id == dynptr_id)
1089 mark_reg_invalid(env, dreg);
1090 }));
1091
1092 /* Do not release reference state, we are destroying dynptr on stack,
1093 * not using some helper to release it. Just reset register.
1094 */
1095 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1096 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1097
1098 /* Same reason as unmark_stack_slots_dynptr above */
1099 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1100 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1101
1102 return 0;
1103 }
1104
is_dynptr_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1105 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1106 {
1107 int spi;
1108
1109 if (reg->type == CONST_PTR_TO_DYNPTR)
1110 return false;
1111
1112 spi = dynptr_get_spi(env, reg);
1113
1114 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1115 * error because this just means the stack state hasn't been updated yet.
1116 * We will do check_mem_access to check and update stack bounds later.
1117 */
1118 if (spi < 0 && spi != -ERANGE)
1119 return false;
1120
1121 /* We don't need to check if the stack slots are marked by previous
1122 * dynptr initializations because we allow overwriting existing unreferenced
1123 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1124 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1125 * touching are completely destructed before we reinitialize them for a new
1126 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1127 * instead of delaying it until the end where the user will get "Unreleased
1128 * reference" error.
1129 */
1130 return true;
1131 }
1132
is_dynptr_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1133 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1134 {
1135 struct bpf_func_state *state = func(env, reg);
1136 int i, spi;
1137
1138 /* This already represents first slot of initialized bpf_dynptr.
1139 *
1140 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1141 * check_func_arg_reg_off's logic, so we don't need to check its
1142 * offset and alignment.
1143 */
1144 if (reg->type == CONST_PTR_TO_DYNPTR)
1145 return true;
1146
1147 spi = dynptr_get_spi(env, reg);
1148 if (spi < 0)
1149 return false;
1150 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1151 return false;
1152
1153 for (i = 0; i < BPF_REG_SIZE; i++) {
1154 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1155 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1156 return false;
1157 }
1158
1159 return true;
1160 }
1161
is_dynptr_type_expected(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type)1162 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1163 enum bpf_arg_type arg_type)
1164 {
1165 struct bpf_func_state *state = func(env, reg);
1166 enum bpf_dynptr_type dynptr_type;
1167 int spi;
1168
1169 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1170 if (arg_type == ARG_PTR_TO_DYNPTR)
1171 return true;
1172
1173 dynptr_type = arg_to_dynptr_type(arg_type);
1174 if (reg->type == CONST_PTR_TO_DYNPTR) {
1175 return reg->dynptr.type == dynptr_type;
1176 } else {
1177 spi = dynptr_get_spi(env, reg);
1178 if (spi < 0)
1179 return false;
1180 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1181 }
1182 }
1183
1184 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1185
mark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int insn_idx,struct btf * btf,u32 btf_id,int nr_slots)1186 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1187 struct bpf_reg_state *reg, int insn_idx,
1188 struct btf *btf, u32 btf_id, int nr_slots)
1189 {
1190 struct bpf_func_state *state = func(env, reg);
1191 int spi, i, j, id;
1192
1193 spi = iter_get_spi(env, reg, nr_slots);
1194 if (spi < 0)
1195 return spi;
1196
1197 id = acquire_reference_state(env, insn_idx);
1198 if (id < 0)
1199 return id;
1200
1201 for (i = 0; i < nr_slots; i++) {
1202 struct bpf_stack_state *slot = &state->stack[spi - i];
1203 struct bpf_reg_state *st = &slot->spilled_ptr;
1204
1205 __mark_reg_known_zero(st);
1206 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1207 st->live |= REG_LIVE_WRITTEN;
1208 st->ref_obj_id = i == 0 ? id : 0;
1209 st->iter.btf = btf;
1210 st->iter.btf_id = btf_id;
1211 st->iter.state = BPF_ITER_STATE_ACTIVE;
1212 st->iter.depth = 0;
1213
1214 for (j = 0; j < BPF_REG_SIZE; j++)
1215 slot->slot_type[j] = STACK_ITER;
1216
1217 mark_stack_slot_scratched(env, spi - i);
1218 }
1219
1220 return 0;
1221 }
1222
unmark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1223 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1224 struct bpf_reg_state *reg, int nr_slots)
1225 {
1226 struct bpf_func_state *state = func(env, reg);
1227 int spi, i, j;
1228
1229 spi = iter_get_spi(env, reg, nr_slots);
1230 if (spi < 0)
1231 return spi;
1232
1233 for (i = 0; i < nr_slots; i++) {
1234 struct bpf_stack_state *slot = &state->stack[spi - i];
1235 struct bpf_reg_state *st = &slot->spilled_ptr;
1236
1237 if (i == 0)
1238 WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1239
1240 __mark_reg_not_init(env, st);
1241
1242 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1243 st->live |= REG_LIVE_WRITTEN;
1244
1245 for (j = 0; j < BPF_REG_SIZE; j++)
1246 slot->slot_type[j] = STACK_INVALID;
1247
1248 mark_stack_slot_scratched(env, spi - i);
1249 }
1250
1251 return 0;
1252 }
1253
is_iter_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1254 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1255 struct bpf_reg_state *reg, int nr_slots)
1256 {
1257 struct bpf_func_state *state = func(env, reg);
1258 int spi, i, j;
1259
1260 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1261 * will do check_mem_access to check and update stack bounds later, so
1262 * return true for that case.
1263 */
1264 spi = iter_get_spi(env, reg, nr_slots);
1265 if (spi == -ERANGE)
1266 return true;
1267 if (spi < 0)
1268 return false;
1269
1270 for (i = 0; i < nr_slots; i++) {
1271 struct bpf_stack_state *slot = &state->stack[spi - i];
1272
1273 for (j = 0; j < BPF_REG_SIZE; j++)
1274 if (slot->slot_type[j] == STACK_ITER)
1275 return false;
1276 }
1277
1278 return true;
1279 }
1280
is_iter_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct btf * btf,u32 btf_id,int nr_slots)1281 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1282 struct btf *btf, u32 btf_id, int nr_slots)
1283 {
1284 struct bpf_func_state *state = func(env, reg);
1285 int spi, i, j;
1286
1287 spi = iter_get_spi(env, reg, nr_slots);
1288 if (spi < 0)
1289 return false;
1290
1291 for (i = 0; i < nr_slots; i++) {
1292 struct bpf_stack_state *slot = &state->stack[spi - i];
1293 struct bpf_reg_state *st = &slot->spilled_ptr;
1294
1295 /* only main (first) slot has ref_obj_id set */
1296 if (i == 0 && !st->ref_obj_id)
1297 return false;
1298 if (i != 0 && st->ref_obj_id)
1299 return false;
1300 if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1301 return false;
1302
1303 for (j = 0; j < BPF_REG_SIZE; j++)
1304 if (slot->slot_type[j] != STACK_ITER)
1305 return false;
1306 }
1307
1308 return true;
1309 }
1310
1311 /* Check if given stack slot is "special":
1312 * - spilled register state (STACK_SPILL);
1313 * - dynptr state (STACK_DYNPTR);
1314 * - iter state (STACK_ITER).
1315 */
is_stack_slot_special(const struct bpf_stack_state * stack)1316 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1317 {
1318 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1319
1320 switch (type) {
1321 case STACK_SPILL:
1322 case STACK_DYNPTR:
1323 case STACK_ITER:
1324 return true;
1325 case STACK_INVALID:
1326 case STACK_MISC:
1327 case STACK_ZERO:
1328 return false;
1329 default:
1330 WARN_ONCE(1, "unknown stack slot type %d\n", type);
1331 return true;
1332 }
1333 }
1334
1335 /* The reg state of a pointer or a bounded scalar was saved when
1336 * it was spilled to the stack.
1337 */
is_spilled_reg(const struct bpf_stack_state * stack)1338 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1339 {
1340 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1341 }
1342
is_spilled_scalar_reg(const struct bpf_stack_state * stack)1343 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1344 {
1345 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1346 stack->spilled_ptr.type == SCALAR_VALUE;
1347 }
1348
scrub_spilled_slot(u8 * stype)1349 static void scrub_spilled_slot(u8 *stype)
1350 {
1351 if (*stype != STACK_INVALID)
1352 *stype = STACK_MISC;
1353 }
1354
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state,bool print_all)1355 static void print_verifier_state(struct bpf_verifier_env *env,
1356 const struct bpf_func_state *state,
1357 bool print_all)
1358 {
1359 const struct bpf_reg_state *reg;
1360 enum bpf_reg_type t;
1361 int i;
1362
1363 if (state->frameno)
1364 verbose(env, " frame%d:", state->frameno);
1365 for (i = 0; i < MAX_BPF_REG; i++) {
1366 reg = &state->regs[i];
1367 t = reg->type;
1368 if (t == NOT_INIT)
1369 continue;
1370 if (!print_all && !reg_scratched(env, i))
1371 continue;
1372 verbose(env, " R%d", i);
1373 print_liveness(env, reg->live);
1374 verbose(env, "=");
1375 if (t == SCALAR_VALUE && reg->precise)
1376 verbose(env, "P");
1377 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1378 tnum_is_const(reg->var_off)) {
1379 /* reg->off should be 0 for SCALAR_VALUE */
1380 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1381 verbose(env, "%lld", reg->var_off.value + reg->off);
1382 } else {
1383 const char *sep = "";
1384
1385 verbose(env, "%s", reg_type_str(env, t));
1386 if (base_type(t) == PTR_TO_BTF_ID)
1387 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1388 verbose(env, "(");
1389 /*
1390 * _a stands for append, was shortened to avoid multiline statements below.
1391 * This macro is used to output a comma separated list of attributes.
1392 */
1393 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1394
1395 if (reg->id)
1396 verbose_a("id=%d", reg->id);
1397 if (reg->ref_obj_id)
1398 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1399 if (type_is_non_owning_ref(reg->type))
1400 verbose_a("%s", "non_own_ref");
1401 if (t != SCALAR_VALUE)
1402 verbose_a("off=%d", reg->off);
1403 if (type_is_pkt_pointer(t))
1404 verbose_a("r=%d", reg->range);
1405 else if (base_type(t) == CONST_PTR_TO_MAP ||
1406 base_type(t) == PTR_TO_MAP_KEY ||
1407 base_type(t) == PTR_TO_MAP_VALUE)
1408 verbose_a("ks=%d,vs=%d",
1409 reg->map_ptr->key_size,
1410 reg->map_ptr->value_size);
1411 if (tnum_is_const(reg->var_off)) {
1412 /* Typically an immediate SCALAR_VALUE, but
1413 * could be a pointer whose offset is too big
1414 * for reg->off
1415 */
1416 verbose_a("imm=%llx", reg->var_off.value);
1417 } else {
1418 if (reg->smin_value != reg->umin_value &&
1419 reg->smin_value != S64_MIN)
1420 verbose_a("smin=%lld", (long long)reg->smin_value);
1421 if (reg->smax_value != reg->umax_value &&
1422 reg->smax_value != S64_MAX)
1423 verbose_a("smax=%lld", (long long)reg->smax_value);
1424 if (reg->umin_value != 0)
1425 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1426 if (reg->umax_value != U64_MAX)
1427 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1428 if (!tnum_is_unknown(reg->var_off)) {
1429 char tn_buf[48];
1430
1431 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1432 verbose_a("var_off=%s", tn_buf);
1433 }
1434 if (reg->s32_min_value != reg->smin_value &&
1435 reg->s32_min_value != S32_MIN)
1436 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1437 if (reg->s32_max_value != reg->smax_value &&
1438 reg->s32_max_value != S32_MAX)
1439 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1440 if (reg->u32_min_value != reg->umin_value &&
1441 reg->u32_min_value != U32_MIN)
1442 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1443 if (reg->u32_max_value != reg->umax_value &&
1444 reg->u32_max_value != U32_MAX)
1445 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1446 }
1447 #undef verbose_a
1448
1449 verbose(env, ")");
1450 }
1451 }
1452 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1453 char types_buf[BPF_REG_SIZE + 1];
1454 bool valid = false;
1455 int j;
1456
1457 for (j = 0; j < BPF_REG_SIZE; j++) {
1458 if (state->stack[i].slot_type[j] != STACK_INVALID)
1459 valid = true;
1460 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1461 }
1462 types_buf[BPF_REG_SIZE] = 0;
1463 if (!valid)
1464 continue;
1465 if (!print_all && !stack_slot_scratched(env, i))
1466 continue;
1467 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1468 case STACK_SPILL:
1469 reg = &state->stack[i].spilled_ptr;
1470 t = reg->type;
1471
1472 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1473 print_liveness(env, reg->live);
1474 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1475 if (t == SCALAR_VALUE && reg->precise)
1476 verbose(env, "P");
1477 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1478 verbose(env, "%lld", reg->var_off.value + reg->off);
1479 break;
1480 case STACK_DYNPTR:
1481 i += BPF_DYNPTR_NR_SLOTS - 1;
1482 reg = &state->stack[i].spilled_ptr;
1483
1484 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1485 print_liveness(env, reg->live);
1486 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1487 if (reg->ref_obj_id)
1488 verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1489 break;
1490 case STACK_ITER:
1491 /* only main slot has ref_obj_id set; skip others */
1492 reg = &state->stack[i].spilled_ptr;
1493 if (!reg->ref_obj_id)
1494 continue;
1495
1496 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1497 print_liveness(env, reg->live);
1498 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1499 iter_type_str(reg->iter.btf, reg->iter.btf_id),
1500 reg->ref_obj_id, iter_state_str(reg->iter.state),
1501 reg->iter.depth);
1502 break;
1503 case STACK_MISC:
1504 case STACK_ZERO:
1505 default:
1506 reg = &state->stack[i].spilled_ptr;
1507
1508 for (j = 0; j < BPF_REG_SIZE; j++)
1509 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1510 types_buf[BPF_REG_SIZE] = 0;
1511
1512 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1513 print_liveness(env, reg->live);
1514 verbose(env, "=%s", types_buf);
1515 break;
1516 }
1517 }
1518 if (state->acquired_refs && state->refs[0].id) {
1519 verbose(env, " refs=%d", state->refs[0].id);
1520 for (i = 1; i < state->acquired_refs; i++)
1521 if (state->refs[i].id)
1522 verbose(env, ",%d", state->refs[i].id);
1523 }
1524 if (state->in_callback_fn)
1525 verbose(env, " cb");
1526 if (state->in_async_callback_fn)
1527 verbose(env, " async_cb");
1528 verbose(env, "\n");
1529 if (!print_all)
1530 mark_verifier_state_clean(env);
1531 }
1532
vlog_alignment(u32 pos)1533 static inline u32 vlog_alignment(u32 pos)
1534 {
1535 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1536 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1537 }
1538
print_insn_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)1539 static void print_insn_state(struct bpf_verifier_env *env,
1540 const struct bpf_func_state *state)
1541 {
1542 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1543 /* remove new line character */
1544 bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1545 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1546 } else {
1547 verbose(env, "%d:", env->insn_idx);
1548 }
1549 print_verifier_state(env, state, false);
1550 }
1551
1552 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1553 * small to hold src. This is different from krealloc since we don't want to preserve
1554 * the contents of dst.
1555 *
1556 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1557 * not be allocated.
1558 */
copy_array(void * dst,const void * src,size_t n,size_t size,gfp_t flags)1559 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1560 {
1561 size_t alloc_bytes;
1562 void *orig = dst;
1563 size_t bytes;
1564
1565 if (ZERO_OR_NULL_PTR(src))
1566 goto out;
1567
1568 if (unlikely(check_mul_overflow(n, size, &bytes)))
1569 return NULL;
1570
1571 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1572 dst = krealloc(orig, alloc_bytes, flags);
1573 if (!dst) {
1574 kfree(orig);
1575 return NULL;
1576 }
1577
1578 memcpy(dst, src, bytes);
1579 out:
1580 return dst ? dst : ZERO_SIZE_PTR;
1581 }
1582
1583 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1584 * small to hold new_n items. new items are zeroed out if the array grows.
1585 *
1586 * Contrary to krealloc_array, does not free arr if new_n is zero.
1587 */
realloc_array(void * arr,size_t old_n,size_t new_n,size_t size)1588 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1589 {
1590 size_t alloc_size;
1591 void *new_arr;
1592
1593 if (!new_n || old_n == new_n)
1594 goto out;
1595
1596 alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1597 new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1598 if (!new_arr) {
1599 kfree(arr);
1600 return NULL;
1601 }
1602 arr = new_arr;
1603
1604 if (new_n > old_n)
1605 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1606
1607 out:
1608 return arr ? arr : ZERO_SIZE_PTR;
1609 }
1610
copy_reference_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1611 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1612 {
1613 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1614 sizeof(struct bpf_reference_state), GFP_KERNEL);
1615 if (!dst->refs)
1616 return -ENOMEM;
1617
1618 dst->acquired_refs = src->acquired_refs;
1619 return 0;
1620 }
1621
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1622 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1623 {
1624 size_t n = src->allocated_stack / BPF_REG_SIZE;
1625
1626 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1627 GFP_KERNEL);
1628 if (!dst->stack)
1629 return -ENOMEM;
1630
1631 dst->allocated_stack = src->allocated_stack;
1632 return 0;
1633 }
1634
resize_reference_state(struct bpf_func_state * state,size_t n)1635 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1636 {
1637 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1638 sizeof(struct bpf_reference_state));
1639 if (!state->refs)
1640 return -ENOMEM;
1641
1642 state->acquired_refs = n;
1643 return 0;
1644 }
1645
1646 /* Possibly update state->allocated_stack to be at least size bytes. Also
1647 * possibly update the function's high-water mark in its bpf_subprog_info.
1648 */
grow_stack_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int size)1649 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1650 {
1651 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1652
1653 if (old_n >= n)
1654 return 0;
1655
1656 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1657 if (!state->stack)
1658 return -ENOMEM;
1659
1660 state->allocated_stack = size;
1661
1662 /* update known max for given subprogram */
1663 if (env->subprog_info[state->subprogno].stack_depth < size)
1664 env->subprog_info[state->subprogno].stack_depth = size;
1665
1666 return 0;
1667 }
1668
1669 /* Acquire a pointer id from the env and update the state->refs to include
1670 * this new pointer reference.
1671 * On success, returns a valid pointer id to associate with the register
1672 * On failure, returns a negative errno.
1673 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)1674 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1675 {
1676 struct bpf_func_state *state = cur_func(env);
1677 int new_ofs = state->acquired_refs;
1678 int id, err;
1679
1680 err = resize_reference_state(state, state->acquired_refs + 1);
1681 if (err)
1682 return err;
1683 id = ++env->id_gen;
1684 state->refs[new_ofs].id = id;
1685 state->refs[new_ofs].insn_idx = insn_idx;
1686 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1687
1688 return id;
1689 }
1690
1691 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)1692 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1693 {
1694 int i, last_idx;
1695
1696 last_idx = state->acquired_refs - 1;
1697 for (i = 0; i < state->acquired_refs; i++) {
1698 if (state->refs[i].id == ptr_id) {
1699 /* Cannot release caller references in callbacks */
1700 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1701 return -EINVAL;
1702 if (last_idx && i != last_idx)
1703 memcpy(&state->refs[i], &state->refs[last_idx],
1704 sizeof(*state->refs));
1705 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1706 state->acquired_refs--;
1707 return 0;
1708 }
1709 }
1710 return -EINVAL;
1711 }
1712
free_func_state(struct bpf_func_state * state)1713 static void free_func_state(struct bpf_func_state *state)
1714 {
1715 if (!state)
1716 return;
1717 kfree(state->refs);
1718 kfree(state->stack);
1719 kfree(state);
1720 }
1721
clear_jmp_history(struct bpf_verifier_state * state)1722 static void clear_jmp_history(struct bpf_verifier_state *state)
1723 {
1724 kfree(state->jmp_history);
1725 state->jmp_history = NULL;
1726 state->jmp_history_cnt = 0;
1727 }
1728
free_verifier_state(struct bpf_verifier_state * state,bool free_self)1729 static void free_verifier_state(struct bpf_verifier_state *state,
1730 bool free_self)
1731 {
1732 int i;
1733
1734 for (i = 0; i <= state->curframe; i++) {
1735 free_func_state(state->frame[i]);
1736 state->frame[i] = NULL;
1737 }
1738 clear_jmp_history(state);
1739 if (free_self)
1740 kfree(state);
1741 }
1742
1743 /* copy verifier state from src to dst growing dst stack space
1744 * when necessary to accommodate larger src stack
1745 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1746 static int copy_func_state(struct bpf_func_state *dst,
1747 const struct bpf_func_state *src)
1748 {
1749 int err;
1750
1751 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1752 err = copy_reference_state(dst, src);
1753 if (err)
1754 return err;
1755 return copy_stack_state(dst, src);
1756 }
1757
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)1758 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1759 const struct bpf_verifier_state *src)
1760 {
1761 struct bpf_func_state *dst;
1762 int i, err;
1763
1764 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1765 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1766 GFP_USER);
1767 if (!dst_state->jmp_history)
1768 return -ENOMEM;
1769 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1770
1771 /* if dst has more stack frames then src frame, free them */
1772 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1773 free_func_state(dst_state->frame[i]);
1774 dst_state->frame[i] = NULL;
1775 }
1776 dst_state->speculative = src->speculative;
1777 dst_state->active_rcu_lock = src->active_rcu_lock;
1778 dst_state->curframe = src->curframe;
1779 dst_state->active_lock.ptr = src->active_lock.ptr;
1780 dst_state->active_lock.id = src->active_lock.id;
1781 dst_state->branches = src->branches;
1782 dst_state->parent = src->parent;
1783 dst_state->first_insn_idx = src->first_insn_idx;
1784 dst_state->last_insn_idx = src->last_insn_idx;
1785 dst_state->dfs_depth = src->dfs_depth;
1786 dst_state->callback_unroll_depth = src->callback_unroll_depth;
1787 dst_state->used_as_loop_entry = src->used_as_loop_entry;
1788 for (i = 0; i <= src->curframe; i++) {
1789 dst = dst_state->frame[i];
1790 if (!dst) {
1791 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1792 if (!dst)
1793 return -ENOMEM;
1794 dst_state->frame[i] = dst;
1795 }
1796 err = copy_func_state(dst, src->frame[i]);
1797 if (err)
1798 return err;
1799 }
1800 return 0;
1801 }
1802
state_htab_size(struct bpf_verifier_env * env)1803 static u32 state_htab_size(struct bpf_verifier_env *env)
1804 {
1805 return env->prog->len;
1806 }
1807
explored_state(struct bpf_verifier_env * env,int idx)1808 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1809 {
1810 struct bpf_verifier_state *cur = env->cur_state;
1811 struct bpf_func_state *state = cur->frame[cur->curframe];
1812
1813 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1814 }
1815
same_callsites(struct bpf_verifier_state * a,struct bpf_verifier_state * b)1816 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1817 {
1818 int fr;
1819
1820 if (a->curframe != b->curframe)
1821 return false;
1822
1823 for (fr = a->curframe; fr >= 0; fr--)
1824 if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1825 return false;
1826
1827 return true;
1828 }
1829
1830 /* Open coded iterators allow back-edges in the state graph in order to
1831 * check unbounded loops that iterators.
1832 *
1833 * In is_state_visited() it is necessary to know if explored states are
1834 * part of some loops in order to decide whether non-exact states
1835 * comparison could be used:
1836 * - non-exact states comparison establishes sub-state relation and uses
1837 * read and precision marks to do so, these marks are propagated from
1838 * children states and thus are not guaranteed to be final in a loop;
1839 * - exact states comparison just checks if current and explored states
1840 * are identical (and thus form a back-edge).
1841 *
1842 * Paper "A New Algorithm for Identifying Loops in Decompilation"
1843 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1844 * algorithm for loop structure detection and gives an overview of
1845 * relevant terminology. It also has helpful illustrations.
1846 *
1847 * [1] https://api.semanticscholar.org/CorpusID:15784067
1848 *
1849 * We use a similar algorithm but because loop nested structure is
1850 * irrelevant for verifier ours is significantly simpler and resembles
1851 * strongly connected components algorithm from Sedgewick's textbook.
1852 *
1853 * Define topmost loop entry as a first node of the loop traversed in a
1854 * depth first search starting from initial state. The goal of the loop
1855 * tracking algorithm is to associate topmost loop entries with states
1856 * derived from these entries.
1857 *
1858 * For each step in the DFS states traversal algorithm needs to identify
1859 * the following situations:
1860 *
1861 * initial initial initial
1862 * | | |
1863 * V V V
1864 * ... ... .---------> hdr
1865 * | | | |
1866 * V V | V
1867 * cur .-> succ | .------...
1868 * | | | | | |
1869 * V | V | V V
1870 * succ '-- cur | ... ...
1871 * | | |
1872 * | V V
1873 * | succ <- cur
1874 * | |
1875 * | V
1876 * | ...
1877 * | |
1878 * '----'
1879 *
1880 * (A) successor state of cur (B) successor state of cur or it's entry
1881 * not yet traversed are in current DFS path, thus cur and succ
1882 * are members of the same outermost loop
1883 *
1884 * initial initial
1885 * | |
1886 * V V
1887 * ... ...
1888 * | |
1889 * V V
1890 * .------... .------...
1891 * | | | |
1892 * V V V V
1893 * .-> hdr ... ... ...
1894 * | | | | |
1895 * | V V V V
1896 * | succ <- cur succ <- cur
1897 * | | |
1898 * | V V
1899 * | ... ...
1900 * | | |
1901 * '----' exit
1902 *
1903 * (C) successor state of cur is a part of some loop but this loop
1904 * does not include cur or successor state is not in a loop at all.
1905 *
1906 * Algorithm could be described as the following python code:
1907 *
1908 * traversed = set() # Set of traversed nodes
1909 * entries = {} # Mapping from node to loop entry
1910 * depths = {} # Depth level assigned to graph node
1911 * path = set() # Current DFS path
1912 *
1913 * # Find outermost loop entry known for n
1914 * def get_loop_entry(n):
1915 * h = entries.get(n, None)
1916 * while h in entries and entries[h] != h:
1917 * h = entries[h]
1918 * return h
1919 *
1920 * # Update n's loop entry if h's outermost entry comes
1921 * # before n's outermost entry in current DFS path.
1922 * def update_loop_entry(n, h):
1923 * n1 = get_loop_entry(n) or n
1924 * h1 = get_loop_entry(h) or h
1925 * if h1 in path and depths[h1] <= depths[n1]:
1926 * entries[n] = h1
1927 *
1928 * def dfs(n, depth):
1929 * traversed.add(n)
1930 * path.add(n)
1931 * depths[n] = depth
1932 * for succ in G.successors(n):
1933 * if succ not in traversed:
1934 * # Case A: explore succ and update cur's loop entry
1935 * # only if succ's entry is in current DFS path.
1936 * dfs(succ, depth + 1)
1937 * h = get_loop_entry(succ)
1938 * update_loop_entry(n, h)
1939 * else:
1940 * # Case B or C depending on `h1 in path` check in update_loop_entry().
1941 * update_loop_entry(n, succ)
1942 * path.remove(n)
1943 *
1944 * To adapt this algorithm for use with verifier:
1945 * - use st->branch == 0 as a signal that DFS of succ had been finished
1946 * and cur's loop entry has to be updated (case A), handle this in
1947 * update_branch_counts();
1948 * - use st->branch > 0 as a signal that st is in the current DFS path;
1949 * - handle cases B and C in is_state_visited();
1950 * - update topmost loop entry for intermediate states in get_loop_entry().
1951 */
get_loop_entry(struct bpf_verifier_state * st)1952 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1953 {
1954 struct bpf_verifier_state *topmost = st->loop_entry, *old;
1955
1956 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1957 topmost = topmost->loop_entry;
1958 /* Update loop entries for intermediate states to avoid this
1959 * traversal in future get_loop_entry() calls.
1960 */
1961 while (st && st->loop_entry != topmost) {
1962 old = st->loop_entry;
1963 st->loop_entry = topmost;
1964 st = old;
1965 }
1966 return topmost;
1967 }
1968
update_loop_entry(struct bpf_verifier_state * cur,struct bpf_verifier_state * hdr)1969 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1970 {
1971 struct bpf_verifier_state *cur1, *hdr1;
1972
1973 cur1 = get_loop_entry(cur) ?: cur;
1974 hdr1 = get_loop_entry(hdr) ?: hdr;
1975 /* The head1->branches check decides between cases B and C in
1976 * comment for get_loop_entry(). If hdr1->branches == 0 then
1977 * head's topmost loop entry is not in current DFS path,
1978 * hence 'cur' and 'hdr' are not in the same loop and there is
1979 * no need to update cur->loop_entry.
1980 */
1981 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1982 cur->loop_entry = hdr;
1983 hdr->used_as_loop_entry = true;
1984 }
1985 }
1986
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1987 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1988 {
1989 while (st) {
1990 u32 br = --st->branches;
1991
1992 /* br == 0 signals that DFS exploration for 'st' is finished,
1993 * thus it is necessary to update parent's loop entry if it
1994 * turned out that st is a part of some loop.
1995 * This is a part of 'case A' in get_loop_entry() comment.
1996 */
1997 if (br == 0 && st->parent && st->loop_entry)
1998 update_loop_entry(st->parent, st->loop_entry);
1999
2000 /* WARN_ON(br > 1) technically makes sense here,
2001 * but see comment in push_stack(), hence:
2002 */
2003 WARN_ONCE((int)br < 0,
2004 "BUG update_branch_counts:branches_to_explore=%d\n",
2005 br);
2006 if (br)
2007 break;
2008 st = st->parent;
2009 }
2010 }
2011
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)2012 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2013 int *insn_idx, bool pop_log)
2014 {
2015 struct bpf_verifier_state *cur = env->cur_state;
2016 struct bpf_verifier_stack_elem *elem, *head = env->head;
2017 int err;
2018
2019 if (env->head == NULL)
2020 return -ENOENT;
2021
2022 if (cur) {
2023 err = copy_verifier_state(cur, &head->st);
2024 if (err)
2025 return err;
2026 }
2027 if (pop_log)
2028 bpf_vlog_reset(&env->log, head->log_pos);
2029 if (insn_idx)
2030 *insn_idx = head->insn_idx;
2031 if (prev_insn_idx)
2032 *prev_insn_idx = head->prev_insn_idx;
2033 elem = head->next;
2034 free_verifier_state(&head->st, false);
2035 kfree(head);
2036 env->head = elem;
2037 env->stack_size--;
2038 return 0;
2039 }
2040
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)2041 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2042 int insn_idx, int prev_insn_idx,
2043 bool speculative)
2044 {
2045 struct bpf_verifier_state *cur = env->cur_state;
2046 struct bpf_verifier_stack_elem *elem;
2047 int err;
2048
2049 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2050 if (!elem)
2051 goto err;
2052
2053 elem->insn_idx = insn_idx;
2054 elem->prev_insn_idx = prev_insn_idx;
2055 elem->next = env->head;
2056 elem->log_pos = env->log.end_pos;
2057 env->head = elem;
2058 env->stack_size++;
2059 err = copy_verifier_state(&elem->st, cur);
2060 if (err)
2061 goto err;
2062 elem->st.speculative |= speculative;
2063 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2064 verbose(env, "The sequence of %d jumps is too complex.\n",
2065 env->stack_size);
2066 goto err;
2067 }
2068 if (elem->st.parent) {
2069 ++elem->st.parent->branches;
2070 /* WARN_ON(branches > 2) technically makes sense here,
2071 * but
2072 * 1. speculative states will bump 'branches' for non-branch
2073 * instructions
2074 * 2. is_state_visited() heuristics may decide not to create
2075 * a new state for a sequence of branches and all such current
2076 * and cloned states will be pointing to a single parent state
2077 * which might have large 'branches' count.
2078 */
2079 }
2080 return &elem->st;
2081 err:
2082 free_verifier_state(env->cur_state, true);
2083 env->cur_state = NULL;
2084 /* pop all elements and return */
2085 while (!pop_stack(env, NULL, NULL, false));
2086 return NULL;
2087 }
2088
2089 #define CALLER_SAVED_REGS 6
2090 static const int caller_saved[CALLER_SAVED_REGS] = {
2091 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2092 };
2093
2094 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)2095 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2096 {
2097 reg->var_off = tnum_const(imm);
2098 reg->smin_value = (s64)imm;
2099 reg->smax_value = (s64)imm;
2100 reg->umin_value = imm;
2101 reg->umax_value = imm;
2102
2103 reg->s32_min_value = (s32)imm;
2104 reg->s32_max_value = (s32)imm;
2105 reg->u32_min_value = (u32)imm;
2106 reg->u32_max_value = (u32)imm;
2107 }
2108
2109 /* Mark the unknown part of a register (variable offset or scalar value) as
2110 * known to have the value @imm.
2111 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)2112 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2113 {
2114 /* Clear off and union(map_ptr, range) */
2115 memset(((u8 *)reg) + sizeof(reg->type), 0,
2116 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2117 reg->id = 0;
2118 reg->ref_obj_id = 0;
2119 ___mark_reg_known(reg, imm);
2120 }
2121
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)2122 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2123 {
2124 reg->var_off = tnum_const_subreg(reg->var_off, imm);
2125 reg->s32_min_value = (s32)imm;
2126 reg->s32_max_value = (s32)imm;
2127 reg->u32_min_value = (u32)imm;
2128 reg->u32_max_value = (u32)imm;
2129 }
2130
2131 /* Mark the 'variable offset' part of a register as zero. This should be
2132 * used only on registers holding a pointer type.
2133 */
__mark_reg_known_zero(struct bpf_reg_state * reg)2134 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2135 {
2136 __mark_reg_known(reg, 0);
2137 }
2138
__mark_reg_const_zero(struct bpf_reg_state * reg)2139 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
2140 {
2141 __mark_reg_known(reg, 0);
2142 reg->type = SCALAR_VALUE;
2143 }
2144
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2145 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2146 struct bpf_reg_state *regs, u32 regno)
2147 {
2148 if (WARN_ON(regno >= MAX_BPF_REG)) {
2149 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2150 /* Something bad happened, let's kill all regs */
2151 for (regno = 0; regno < MAX_BPF_REG; regno++)
2152 __mark_reg_not_init(env, regs + regno);
2153 return;
2154 }
2155 __mark_reg_known_zero(regs + regno);
2156 }
2157
__mark_dynptr_reg(struct bpf_reg_state * reg,enum bpf_dynptr_type type,bool first_slot,int dynptr_id)2158 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2159 bool first_slot, int dynptr_id)
2160 {
2161 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2162 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2163 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2164 */
2165 __mark_reg_known_zero(reg);
2166 reg->type = CONST_PTR_TO_DYNPTR;
2167 /* Give each dynptr a unique id to uniquely associate slices to it. */
2168 reg->id = dynptr_id;
2169 reg->dynptr.type = type;
2170 reg->dynptr.first_slot = first_slot;
2171 }
2172
mark_ptr_not_null_reg(struct bpf_reg_state * reg)2173 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2174 {
2175 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2176 const struct bpf_map *map = reg->map_ptr;
2177
2178 if (map->inner_map_meta) {
2179 reg->type = CONST_PTR_TO_MAP;
2180 reg->map_ptr = map->inner_map_meta;
2181 /* transfer reg's id which is unique for every map_lookup_elem
2182 * as UID of the inner map.
2183 */
2184 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
2185 reg->map_uid = reg->id;
2186 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2187 reg->type = PTR_TO_XDP_SOCK;
2188 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2189 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2190 reg->type = PTR_TO_SOCKET;
2191 } else {
2192 reg->type = PTR_TO_MAP_VALUE;
2193 }
2194 return;
2195 }
2196
2197 reg->type &= ~PTR_MAYBE_NULL;
2198 }
2199
mark_reg_graph_node(struct bpf_reg_state * regs,u32 regno,struct btf_field_graph_root * ds_head)2200 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2201 struct btf_field_graph_root *ds_head)
2202 {
2203 __mark_reg_known_zero(®s[regno]);
2204 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2205 regs[regno].btf = ds_head->btf;
2206 regs[regno].btf_id = ds_head->value_btf_id;
2207 regs[regno].off = ds_head->node_offset;
2208 }
2209
reg_is_pkt_pointer(const struct bpf_reg_state * reg)2210 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2211 {
2212 return type_is_pkt_pointer(reg->type);
2213 }
2214
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)2215 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2216 {
2217 return reg_is_pkt_pointer(reg) ||
2218 reg->type == PTR_TO_PACKET_END;
2219 }
2220
reg_is_dynptr_slice_pkt(const struct bpf_reg_state * reg)2221 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2222 {
2223 return base_type(reg->type) == PTR_TO_MEM &&
2224 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2225 }
2226
2227 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)2228 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2229 enum bpf_reg_type which)
2230 {
2231 /* The register can already have a range from prior markings.
2232 * This is fine as long as it hasn't been advanced from its
2233 * origin.
2234 */
2235 return reg->type == which &&
2236 reg->id == 0 &&
2237 reg->off == 0 &&
2238 tnum_equals_const(reg->var_off, 0);
2239 }
2240
2241 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)2242 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2243 {
2244 reg->smin_value = S64_MIN;
2245 reg->smax_value = S64_MAX;
2246 reg->umin_value = 0;
2247 reg->umax_value = U64_MAX;
2248
2249 reg->s32_min_value = S32_MIN;
2250 reg->s32_max_value = S32_MAX;
2251 reg->u32_min_value = 0;
2252 reg->u32_max_value = U32_MAX;
2253 }
2254
__mark_reg64_unbounded(struct bpf_reg_state * reg)2255 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2256 {
2257 reg->smin_value = S64_MIN;
2258 reg->smax_value = S64_MAX;
2259 reg->umin_value = 0;
2260 reg->umax_value = U64_MAX;
2261 }
2262
__mark_reg32_unbounded(struct bpf_reg_state * reg)2263 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2264 {
2265 reg->s32_min_value = S32_MIN;
2266 reg->s32_max_value = S32_MAX;
2267 reg->u32_min_value = 0;
2268 reg->u32_max_value = U32_MAX;
2269 }
2270
__update_reg32_bounds(struct bpf_reg_state * reg)2271 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2272 {
2273 struct tnum var32_off = tnum_subreg(reg->var_off);
2274
2275 /* min signed is max(sign bit) | min(other bits) */
2276 reg->s32_min_value = max_t(s32, reg->s32_min_value,
2277 var32_off.value | (var32_off.mask & S32_MIN));
2278 /* max signed is min(sign bit) | max(other bits) */
2279 reg->s32_max_value = min_t(s32, reg->s32_max_value,
2280 var32_off.value | (var32_off.mask & S32_MAX));
2281 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2282 reg->u32_max_value = min(reg->u32_max_value,
2283 (u32)(var32_off.value | var32_off.mask));
2284 }
2285
__update_reg64_bounds(struct bpf_reg_state * reg)2286 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2287 {
2288 /* min signed is max(sign bit) | min(other bits) */
2289 reg->smin_value = max_t(s64, reg->smin_value,
2290 reg->var_off.value | (reg->var_off.mask & S64_MIN));
2291 /* max signed is min(sign bit) | max(other bits) */
2292 reg->smax_value = min_t(s64, reg->smax_value,
2293 reg->var_off.value | (reg->var_off.mask & S64_MAX));
2294 reg->umin_value = max(reg->umin_value, reg->var_off.value);
2295 reg->umax_value = min(reg->umax_value,
2296 reg->var_off.value | reg->var_off.mask);
2297 }
2298
__update_reg_bounds(struct bpf_reg_state * reg)2299 static void __update_reg_bounds(struct bpf_reg_state *reg)
2300 {
2301 __update_reg32_bounds(reg);
2302 __update_reg64_bounds(reg);
2303 }
2304
2305 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)2306 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2307 {
2308 /* Learn sign from signed bounds.
2309 * If we cannot cross the sign boundary, then signed and unsigned bounds
2310 * are the same, so combine. This works even in the negative case, e.g.
2311 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2312 */
2313 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2314 reg->s32_min_value = reg->u32_min_value =
2315 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2316 reg->s32_max_value = reg->u32_max_value =
2317 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2318 return;
2319 }
2320 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2321 * boundary, so we must be careful.
2322 */
2323 if ((s32)reg->u32_max_value >= 0) {
2324 /* Positive. We can't learn anything from the smin, but smax
2325 * is positive, hence safe.
2326 */
2327 reg->s32_min_value = reg->u32_min_value;
2328 reg->s32_max_value = reg->u32_max_value =
2329 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2330 } else if ((s32)reg->u32_min_value < 0) {
2331 /* Negative. We can't learn anything from the smax, but smin
2332 * is negative, hence safe.
2333 */
2334 reg->s32_min_value = reg->u32_min_value =
2335 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2336 reg->s32_max_value = reg->u32_max_value;
2337 }
2338 }
2339
__reg64_deduce_bounds(struct bpf_reg_state * reg)2340 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2341 {
2342 /* Learn sign from signed bounds.
2343 * If we cannot cross the sign boundary, then signed and unsigned bounds
2344 * are the same, so combine. This works even in the negative case, e.g.
2345 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2346 */
2347 if (reg->smin_value >= 0 || reg->smax_value < 0) {
2348 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2349 reg->umin_value);
2350 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2351 reg->umax_value);
2352 return;
2353 }
2354 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2355 * boundary, so we must be careful.
2356 */
2357 if ((s64)reg->umax_value >= 0) {
2358 /* Positive. We can't learn anything from the smin, but smax
2359 * is positive, hence safe.
2360 */
2361 reg->smin_value = reg->umin_value;
2362 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2363 reg->umax_value);
2364 } else if ((s64)reg->umin_value < 0) {
2365 /* Negative. We can't learn anything from the smax, but smin
2366 * is negative, hence safe.
2367 */
2368 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2369 reg->umin_value);
2370 reg->smax_value = reg->umax_value;
2371 }
2372 }
2373
__reg_deduce_bounds(struct bpf_reg_state * reg)2374 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2375 {
2376 __reg32_deduce_bounds(reg);
2377 __reg64_deduce_bounds(reg);
2378 }
2379
2380 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)2381 static void __reg_bound_offset(struct bpf_reg_state *reg)
2382 {
2383 struct tnum var64_off = tnum_intersect(reg->var_off,
2384 tnum_range(reg->umin_value,
2385 reg->umax_value));
2386 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2387 tnum_range(reg->u32_min_value,
2388 reg->u32_max_value));
2389
2390 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2391 }
2392
reg_bounds_sync(struct bpf_reg_state * reg)2393 static void reg_bounds_sync(struct bpf_reg_state *reg)
2394 {
2395 /* We might have learned new bounds from the var_off. */
2396 __update_reg_bounds(reg);
2397 /* We might have learned something about the sign bit. */
2398 __reg_deduce_bounds(reg);
2399 /* We might have learned some bits from the bounds. */
2400 __reg_bound_offset(reg);
2401 /* Intersecting with the old var_off might have improved our bounds
2402 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2403 * then new var_off is (0; 0x7f...fc) which improves our umax.
2404 */
2405 __update_reg_bounds(reg);
2406 }
2407
__reg32_bound_s64(s32 a)2408 static bool __reg32_bound_s64(s32 a)
2409 {
2410 return a >= 0 && a <= S32_MAX;
2411 }
2412
__reg_assign_32_into_64(struct bpf_reg_state * reg)2413 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2414 {
2415 reg->umin_value = reg->u32_min_value;
2416 reg->umax_value = reg->u32_max_value;
2417
2418 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2419 * be positive otherwise set to worse case bounds and refine later
2420 * from tnum.
2421 */
2422 if (__reg32_bound_s64(reg->s32_min_value) &&
2423 __reg32_bound_s64(reg->s32_max_value)) {
2424 reg->smin_value = reg->s32_min_value;
2425 reg->smax_value = reg->s32_max_value;
2426 } else {
2427 reg->smin_value = 0;
2428 reg->smax_value = U32_MAX;
2429 }
2430 }
2431
__reg_combine_32_into_64(struct bpf_reg_state * reg)2432 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2433 {
2434 /* special case when 64-bit register has upper 32-bit register
2435 * zeroed. Typically happens after zext or <<32, >>32 sequence
2436 * allowing us to use 32-bit bounds directly,
2437 */
2438 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2439 __reg_assign_32_into_64(reg);
2440 } else {
2441 /* Otherwise the best we can do is push lower 32bit known and
2442 * unknown bits into register (var_off set from jmp logic)
2443 * then learn as much as possible from the 64-bit tnum
2444 * known and unknown bits. The previous smin/smax bounds are
2445 * invalid here because of jmp32 compare so mark them unknown
2446 * so they do not impact tnum bounds calculation.
2447 */
2448 __mark_reg64_unbounded(reg);
2449 }
2450 reg_bounds_sync(reg);
2451 }
2452
__reg64_bound_s32(s64 a)2453 static bool __reg64_bound_s32(s64 a)
2454 {
2455 return a >= S32_MIN && a <= S32_MAX;
2456 }
2457
__reg64_bound_u32(u64 a)2458 static bool __reg64_bound_u32(u64 a)
2459 {
2460 return a >= U32_MIN && a <= U32_MAX;
2461 }
2462
__reg_combine_64_into_32(struct bpf_reg_state * reg)2463 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2464 {
2465 __mark_reg32_unbounded(reg);
2466 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2467 reg->s32_min_value = (s32)reg->smin_value;
2468 reg->s32_max_value = (s32)reg->smax_value;
2469 }
2470 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2471 reg->u32_min_value = (u32)reg->umin_value;
2472 reg->u32_max_value = (u32)reg->umax_value;
2473 }
2474 reg_bounds_sync(reg);
2475 }
2476
2477 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2478 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2479 struct bpf_reg_state *reg)
2480 {
2481 /*
2482 * Clear type, off, and union(map_ptr, range) and
2483 * padding between 'type' and union
2484 */
2485 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2486 reg->type = SCALAR_VALUE;
2487 reg->id = 0;
2488 reg->ref_obj_id = 0;
2489 reg->var_off = tnum_unknown;
2490 reg->frameno = 0;
2491 reg->precise = !env->bpf_capable;
2492 __mark_reg_unbounded(reg);
2493 }
2494
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2495 static void mark_reg_unknown(struct bpf_verifier_env *env,
2496 struct bpf_reg_state *regs, u32 regno)
2497 {
2498 if (WARN_ON(regno >= MAX_BPF_REG)) {
2499 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2500 /* Something bad happened, let's kill all regs except FP */
2501 for (regno = 0; regno < BPF_REG_FP; regno++)
2502 __mark_reg_not_init(env, regs + regno);
2503 return;
2504 }
2505 __mark_reg_unknown(env, regs + regno);
2506 }
2507
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2508 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2509 struct bpf_reg_state *reg)
2510 {
2511 __mark_reg_unknown(env, reg);
2512 reg->type = NOT_INIT;
2513 }
2514
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2515 static void mark_reg_not_init(struct bpf_verifier_env *env,
2516 struct bpf_reg_state *regs, u32 regno)
2517 {
2518 if (WARN_ON(regno >= MAX_BPF_REG)) {
2519 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2520 /* Something bad happened, let's kill all regs except FP */
2521 for (regno = 0; regno < BPF_REG_FP; regno++)
2522 __mark_reg_not_init(env, regs + regno);
2523 return;
2524 }
2525 __mark_reg_not_init(env, regs + regno);
2526 }
2527
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,struct btf * btf,u32 btf_id,enum bpf_type_flag flag)2528 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2529 struct bpf_reg_state *regs, u32 regno,
2530 enum bpf_reg_type reg_type,
2531 struct btf *btf, u32 btf_id,
2532 enum bpf_type_flag flag)
2533 {
2534 if (reg_type == SCALAR_VALUE) {
2535 mark_reg_unknown(env, regs, regno);
2536 return;
2537 }
2538 mark_reg_known_zero(env, regs, regno);
2539 regs[regno].type = PTR_TO_BTF_ID | flag;
2540 regs[regno].btf = btf;
2541 regs[regno].btf_id = btf_id;
2542 if (type_may_be_null(flag))
2543 regs[regno].id = ++env->id_gen;
2544 }
2545
2546 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)2547 static void init_reg_state(struct bpf_verifier_env *env,
2548 struct bpf_func_state *state)
2549 {
2550 struct bpf_reg_state *regs = state->regs;
2551 int i;
2552
2553 for (i = 0; i < MAX_BPF_REG; i++) {
2554 mark_reg_not_init(env, regs, i);
2555 regs[i].live = REG_LIVE_NONE;
2556 regs[i].parent = NULL;
2557 regs[i].subreg_def = DEF_NOT_SUBREG;
2558 }
2559
2560 /* frame pointer */
2561 regs[BPF_REG_FP].type = PTR_TO_STACK;
2562 mark_reg_known_zero(env, regs, BPF_REG_FP);
2563 regs[BPF_REG_FP].frameno = state->frameno;
2564 }
2565
2566 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)2567 static void init_func_state(struct bpf_verifier_env *env,
2568 struct bpf_func_state *state,
2569 int callsite, int frameno, int subprogno)
2570 {
2571 state->callsite = callsite;
2572 state->frameno = frameno;
2573 state->subprogno = subprogno;
2574 state->callback_ret_range = tnum_range(0, 0);
2575 init_reg_state(env, state);
2576 mark_verifier_state_scratched(env);
2577 }
2578
2579 /* Similar to push_stack(), but for async callbacks */
push_async_cb(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,int subprog)2580 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2581 int insn_idx, int prev_insn_idx,
2582 int subprog)
2583 {
2584 struct bpf_verifier_stack_elem *elem;
2585 struct bpf_func_state *frame;
2586
2587 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2588 if (!elem)
2589 goto err;
2590
2591 elem->insn_idx = insn_idx;
2592 elem->prev_insn_idx = prev_insn_idx;
2593 elem->next = env->head;
2594 elem->log_pos = env->log.end_pos;
2595 env->head = elem;
2596 env->stack_size++;
2597 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2598 verbose(env,
2599 "The sequence of %d jumps is too complex for async cb.\n",
2600 env->stack_size);
2601 goto err;
2602 }
2603 /* Unlike push_stack() do not copy_verifier_state().
2604 * The caller state doesn't matter.
2605 * This is async callback. It starts in a fresh stack.
2606 * Initialize it similar to do_check_common().
2607 */
2608 elem->st.branches = 1;
2609 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2610 if (!frame)
2611 goto err;
2612 init_func_state(env, frame,
2613 BPF_MAIN_FUNC /* callsite */,
2614 0 /* frameno within this callchain */,
2615 subprog /* subprog number within this prog */);
2616 elem->st.frame[0] = frame;
2617 return &elem->st;
2618 err:
2619 free_verifier_state(env->cur_state, true);
2620 env->cur_state = NULL;
2621 /* pop all elements and return */
2622 while (!pop_stack(env, NULL, NULL, false));
2623 return NULL;
2624 }
2625
2626
2627 enum reg_arg_type {
2628 SRC_OP, /* register is used as source operand */
2629 DST_OP, /* register is used as destination operand */
2630 DST_OP_NO_MARK /* same as above, check only, don't mark */
2631 };
2632
cmp_subprogs(const void * a,const void * b)2633 static int cmp_subprogs(const void *a, const void *b)
2634 {
2635 return ((struct bpf_subprog_info *)a)->start -
2636 ((struct bpf_subprog_info *)b)->start;
2637 }
2638
find_subprog(struct bpf_verifier_env * env,int off)2639 static int find_subprog(struct bpf_verifier_env *env, int off)
2640 {
2641 struct bpf_subprog_info *p;
2642
2643 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2644 sizeof(env->subprog_info[0]), cmp_subprogs);
2645 if (!p)
2646 return -ENOENT;
2647 return p - env->subprog_info;
2648
2649 }
2650
add_subprog(struct bpf_verifier_env * env,int off)2651 static int add_subprog(struct bpf_verifier_env *env, int off)
2652 {
2653 int insn_cnt = env->prog->len;
2654 int ret;
2655
2656 if (off >= insn_cnt || off < 0) {
2657 verbose(env, "call to invalid destination\n");
2658 return -EINVAL;
2659 }
2660 ret = find_subprog(env, off);
2661 if (ret >= 0)
2662 return ret;
2663 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2664 verbose(env, "too many subprograms\n");
2665 return -E2BIG;
2666 }
2667 /* determine subprog starts. The end is one before the next starts */
2668 env->subprog_info[env->subprog_cnt++].start = off;
2669 sort(env->subprog_info, env->subprog_cnt,
2670 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2671 return env->subprog_cnt - 1;
2672 }
2673
2674 #define MAX_KFUNC_DESCS 256
2675 #define MAX_KFUNC_BTFS 256
2676
2677 struct bpf_kfunc_desc {
2678 struct btf_func_model func_model;
2679 u32 func_id;
2680 s32 imm;
2681 u16 offset;
2682 unsigned long addr;
2683 };
2684
2685 struct bpf_kfunc_btf {
2686 struct btf *btf;
2687 struct module *module;
2688 u16 offset;
2689 };
2690
2691 struct bpf_kfunc_desc_tab {
2692 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2693 * verification. JITs do lookups by bpf_insn, where func_id may not be
2694 * available, therefore at the end of verification do_misc_fixups()
2695 * sorts this by imm and offset.
2696 */
2697 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2698 u32 nr_descs;
2699 };
2700
2701 struct bpf_kfunc_btf_tab {
2702 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2703 u32 nr_descs;
2704 };
2705
kfunc_desc_cmp_by_id_off(const void * a,const void * b)2706 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2707 {
2708 const struct bpf_kfunc_desc *d0 = a;
2709 const struct bpf_kfunc_desc *d1 = b;
2710
2711 /* func_id is not greater than BTF_MAX_TYPE */
2712 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2713 }
2714
kfunc_btf_cmp_by_off(const void * a,const void * b)2715 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2716 {
2717 const struct bpf_kfunc_btf *d0 = a;
2718 const struct bpf_kfunc_btf *d1 = b;
2719
2720 return d0->offset - d1->offset;
2721 }
2722
2723 static const struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog * prog,u32 func_id,u16 offset)2724 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2725 {
2726 struct bpf_kfunc_desc desc = {
2727 .func_id = func_id,
2728 .offset = offset,
2729 };
2730 struct bpf_kfunc_desc_tab *tab;
2731
2732 tab = prog->aux->kfunc_tab;
2733 return bsearch(&desc, tab->descs, tab->nr_descs,
2734 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2735 }
2736
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)2737 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2738 u16 btf_fd_idx, u8 **func_addr)
2739 {
2740 const struct bpf_kfunc_desc *desc;
2741
2742 desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2743 if (!desc)
2744 return -EFAULT;
2745
2746 *func_addr = (u8 *)desc->addr;
2747 return 0;
2748 }
2749
__find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2750 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2751 s16 offset)
2752 {
2753 struct bpf_kfunc_btf kf_btf = { .offset = offset };
2754 struct bpf_kfunc_btf_tab *tab;
2755 struct bpf_kfunc_btf *b;
2756 struct module *mod;
2757 struct btf *btf;
2758 int btf_fd;
2759
2760 tab = env->prog->aux->kfunc_btf_tab;
2761 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2762 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2763 if (!b) {
2764 if (tab->nr_descs == MAX_KFUNC_BTFS) {
2765 verbose(env, "too many different module BTFs\n");
2766 return ERR_PTR(-E2BIG);
2767 }
2768
2769 if (bpfptr_is_null(env->fd_array)) {
2770 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2771 return ERR_PTR(-EPROTO);
2772 }
2773
2774 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2775 offset * sizeof(btf_fd),
2776 sizeof(btf_fd)))
2777 return ERR_PTR(-EFAULT);
2778
2779 btf = btf_get_by_fd(btf_fd);
2780 if (IS_ERR(btf)) {
2781 verbose(env, "invalid module BTF fd specified\n");
2782 return btf;
2783 }
2784
2785 if (!btf_is_module(btf)) {
2786 verbose(env, "BTF fd for kfunc is not a module BTF\n");
2787 btf_put(btf);
2788 return ERR_PTR(-EINVAL);
2789 }
2790
2791 mod = btf_try_get_module(btf);
2792 if (!mod) {
2793 btf_put(btf);
2794 return ERR_PTR(-ENXIO);
2795 }
2796
2797 b = &tab->descs[tab->nr_descs++];
2798 b->btf = btf;
2799 b->module = mod;
2800 b->offset = offset;
2801
2802 /* sort() reorders entries by value, so b may no longer point
2803 * to the right entry after this
2804 */
2805 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2806 kfunc_btf_cmp_by_off, NULL);
2807 } else {
2808 btf = b->btf;
2809 }
2810
2811 return btf;
2812 }
2813
bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab * tab)2814 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2815 {
2816 if (!tab)
2817 return;
2818
2819 while (tab->nr_descs--) {
2820 module_put(tab->descs[tab->nr_descs].module);
2821 btf_put(tab->descs[tab->nr_descs].btf);
2822 }
2823 kfree(tab);
2824 }
2825
find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2826 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2827 {
2828 if (offset) {
2829 if (offset < 0) {
2830 /* In the future, this can be allowed to increase limit
2831 * of fd index into fd_array, interpreted as u16.
2832 */
2833 verbose(env, "negative offset disallowed for kernel module function call\n");
2834 return ERR_PTR(-EINVAL);
2835 }
2836
2837 return __find_kfunc_desc_btf(env, offset);
2838 }
2839 return btf_vmlinux ?: ERR_PTR(-ENOENT);
2840 }
2841
add_kfunc_call(struct bpf_verifier_env * env,u32 func_id,s16 offset)2842 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2843 {
2844 const struct btf_type *func, *func_proto;
2845 struct bpf_kfunc_btf_tab *btf_tab;
2846 struct bpf_kfunc_desc_tab *tab;
2847 struct bpf_prog_aux *prog_aux;
2848 struct bpf_kfunc_desc *desc;
2849 const char *func_name;
2850 struct btf *desc_btf;
2851 unsigned long call_imm;
2852 unsigned long addr;
2853 int err;
2854
2855 prog_aux = env->prog->aux;
2856 tab = prog_aux->kfunc_tab;
2857 btf_tab = prog_aux->kfunc_btf_tab;
2858 if (!tab) {
2859 if (!btf_vmlinux) {
2860 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2861 return -ENOTSUPP;
2862 }
2863
2864 if (!env->prog->jit_requested) {
2865 verbose(env, "JIT is required for calling kernel function\n");
2866 return -ENOTSUPP;
2867 }
2868
2869 if (!bpf_jit_supports_kfunc_call()) {
2870 verbose(env, "JIT does not support calling kernel function\n");
2871 return -ENOTSUPP;
2872 }
2873
2874 if (!env->prog->gpl_compatible) {
2875 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2876 return -EINVAL;
2877 }
2878
2879 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2880 if (!tab)
2881 return -ENOMEM;
2882 prog_aux->kfunc_tab = tab;
2883 }
2884
2885 /* func_id == 0 is always invalid, but instead of returning an error, be
2886 * conservative and wait until the code elimination pass before returning
2887 * error, so that invalid calls that get pruned out can be in BPF programs
2888 * loaded from userspace. It is also required that offset be untouched
2889 * for such calls.
2890 */
2891 if (!func_id && !offset)
2892 return 0;
2893
2894 if (!btf_tab && offset) {
2895 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2896 if (!btf_tab)
2897 return -ENOMEM;
2898 prog_aux->kfunc_btf_tab = btf_tab;
2899 }
2900
2901 desc_btf = find_kfunc_desc_btf(env, offset);
2902 if (IS_ERR(desc_btf)) {
2903 verbose(env, "failed to find BTF for kernel function\n");
2904 return PTR_ERR(desc_btf);
2905 }
2906
2907 if (find_kfunc_desc(env->prog, func_id, offset))
2908 return 0;
2909
2910 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2911 verbose(env, "too many different kernel function calls\n");
2912 return -E2BIG;
2913 }
2914
2915 func = btf_type_by_id(desc_btf, func_id);
2916 if (!func || !btf_type_is_func(func)) {
2917 verbose(env, "kernel btf_id %u is not a function\n",
2918 func_id);
2919 return -EINVAL;
2920 }
2921 func_proto = btf_type_by_id(desc_btf, func->type);
2922 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2923 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2924 func_id);
2925 return -EINVAL;
2926 }
2927
2928 func_name = btf_name_by_offset(desc_btf, func->name_off);
2929 addr = kallsyms_lookup_name(func_name);
2930 if (!addr) {
2931 verbose(env, "cannot find address for kernel function %s\n",
2932 func_name);
2933 return -EINVAL;
2934 }
2935 specialize_kfunc(env, func_id, offset, &addr);
2936
2937 if (bpf_jit_supports_far_kfunc_call()) {
2938 call_imm = func_id;
2939 } else {
2940 call_imm = BPF_CALL_IMM(addr);
2941 /* Check whether the relative offset overflows desc->imm */
2942 if ((unsigned long)(s32)call_imm != call_imm) {
2943 verbose(env, "address of kernel function %s is out of range\n",
2944 func_name);
2945 return -EINVAL;
2946 }
2947 }
2948
2949 if (bpf_dev_bound_kfunc_id(func_id)) {
2950 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2951 if (err)
2952 return err;
2953 }
2954
2955 desc = &tab->descs[tab->nr_descs++];
2956 desc->func_id = func_id;
2957 desc->imm = call_imm;
2958 desc->offset = offset;
2959 desc->addr = addr;
2960 err = btf_distill_func_proto(&env->log, desc_btf,
2961 func_proto, func_name,
2962 &desc->func_model);
2963 if (!err)
2964 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2965 kfunc_desc_cmp_by_id_off, NULL);
2966 return err;
2967 }
2968
kfunc_desc_cmp_by_imm_off(const void * a,const void * b)2969 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2970 {
2971 const struct bpf_kfunc_desc *d0 = a;
2972 const struct bpf_kfunc_desc *d1 = b;
2973
2974 if (d0->imm != d1->imm)
2975 return d0->imm < d1->imm ? -1 : 1;
2976 if (d0->offset != d1->offset)
2977 return d0->offset < d1->offset ? -1 : 1;
2978 return 0;
2979 }
2980
sort_kfunc_descs_by_imm_off(struct bpf_prog * prog)2981 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2982 {
2983 struct bpf_kfunc_desc_tab *tab;
2984
2985 tab = prog->aux->kfunc_tab;
2986 if (!tab)
2987 return;
2988
2989 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2990 kfunc_desc_cmp_by_imm_off, NULL);
2991 }
2992
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)2993 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2994 {
2995 return !!prog->aux->kfunc_tab;
2996 }
2997
2998 const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)2999 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3000 const struct bpf_insn *insn)
3001 {
3002 const struct bpf_kfunc_desc desc = {
3003 .imm = insn->imm,
3004 .offset = insn->off,
3005 };
3006 const struct bpf_kfunc_desc *res;
3007 struct bpf_kfunc_desc_tab *tab;
3008
3009 tab = prog->aux->kfunc_tab;
3010 res = bsearch(&desc, tab->descs, tab->nr_descs,
3011 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3012
3013 return res ? &res->func_model : NULL;
3014 }
3015
add_subprog_and_kfunc(struct bpf_verifier_env * env)3016 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3017 {
3018 struct bpf_subprog_info *subprog = env->subprog_info;
3019 struct bpf_insn *insn = env->prog->insnsi;
3020 int i, ret, insn_cnt = env->prog->len;
3021
3022 /* Add entry function. */
3023 ret = add_subprog(env, 0);
3024 if (ret)
3025 return ret;
3026
3027 for (i = 0; i < insn_cnt; i++, insn++) {
3028 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3029 !bpf_pseudo_kfunc_call(insn))
3030 continue;
3031
3032 if (!env->bpf_capable) {
3033 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3034 return -EPERM;
3035 }
3036
3037 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3038 ret = add_subprog(env, i + insn->imm + 1);
3039 else
3040 ret = add_kfunc_call(env, insn->imm, insn->off);
3041
3042 if (ret < 0)
3043 return ret;
3044 }
3045
3046 /* Add a fake 'exit' subprog which could simplify subprog iteration
3047 * logic. 'subprog_cnt' should not be increased.
3048 */
3049 subprog[env->subprog_cnt].start = insn_cnt;
3050
3051 if (env->log.level & BPF_LOG_LEVEL2)
3052 for (i = 0; i < env->subprog_cnt; i++)
3053 verbose(env, "func#%d @%d\n", i, subprog[i].start);
3054
3055 return 0;
3056 }
3057
check_subprogs(struct bpf_verifier_env * env)3058 static int check_subprogs(struct bpf_verifier_env *env)
3059 {
3060 int i, subprog_start, subprog_end, off, cur_subprog = 0;
3061 struct bpf_subprog_info *subprog = env->subprog_info;
3062 struct bpf_insn *insn = env->prog->insnsi;
3063 int insn_cnt = env->prog->len;
3064
3065 /* now check that all jumps are within the same subprog */
3066 subprog_start = subprog[cur_subprog].start;
3067 subprog_end = subprog[cur_subprog + 1].start;
3068 for (i = 0; i < insn_cnt; i++) {
3069 u8 code = insn[i].code;
3070
3071 if (code == (BPF_JMP | BPF_CALL) &&
3072 insn[i].src_reg == 0 &&
3073 insn[i].imm == BPF_FUNC_tail_call) {
3074 subprog[cur_subprog].has_tail_call = true;
3075 subprog[cur_subprog].tail_call_reachable = true;
3076 }
3077 if (BPF_CLASS(code) == BPF_LD &&
3078 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3079 subprog[cur_subprog].has_ld_abs = true;
3080 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3081 goto next;
3082 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3083 goto next;
3084 if (code == (BPF_JMP32 | BPF_JA))
3085 off = i + insn[i].imm + 1;
3086 else
3087 off = i + insn[i].off + 1;
3088 if (off < subprog_start || off >= subprog_end) {
3089 verbose(env, "jump out of range from insn %d to %d\n", i, off);
3090 return -EINVAL;
3091 }
3092 next:
3093 if (i == subprog_end - 1) {
3094 /* to avoid fall-through from one subprog into another
3095 * the last insn of the subprog should be either exit
3096 * or unconditional jump back
3097 */
3098 if (code != (BPF_JMP | BPF_EXIT) &&
3099 code != (BPF_JMP32 | BPF_JA) &&
3100 code != (BPF_JMP | BPF_JA)) {
3101 verbose(env, "last insn is not an exit or jmp\n");
3102 return -EINVAL;
3103 }
3104 subprog_start = subprog_end;
3105 cur_subprog++;
3106 if (cur_subprog < env->subprog_cnt)
3107 subprog_end = subprog[cur_subprog + 1].start;
3108 }
3109 }
3110 return 0;
3111 }
3112
3113 /* Parentage chain of this register (or stack slot) should take care of all
3114 * issues like callee-saved registers, stack slot allocation time, etc.
3115 */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)3116 static int mark_reg_read(struct bpf_verifier_env *env,
3117 const struct bpf_reg_state *state,
3118 struct bpf_reg_state *parent, u8 flag)
3119 {
3120 bool writes = parent == state->parent; /* Observe write marks */
3121 int cnt = 0;
3122
3123 while (parent) {
3124 /* if read wasn't screened by an earlier write ... */
3125 if (writes && state->live & REG_LIVE_WRITTEN)
3126 break;
3127 if (parent->live & REG_LIVE_DONE) {
3128 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3129 reg_type_str(env, parent->type),
3130 parent->var_off.value, parent->off);
3131 return -EFAULT;
3132 }
3133 /* The first condition is more likely to be true than the
3134 * second, checked it first.
3135 */
3136 if ((parent->live & REG_LIVE_READ) == flag ||
3137 parent->live & REG_LIVE_READ64)
3138 /* The parentage chain never changes and
3139 * this parent was already marked as LIVE_READ.
3140 * There is no need to keep walking the chain again and
3141 * keep re-marking all parents as LIVE_READ.
3142 * This case happens when the same register is read
3143 * multiple times without writes into it in-between.
3144 * Also, if parent has the stronger REG_LIVE_READ64 set,
3145 * then no need to set the weak REG_LIVE_READ32.
3146 */
3147 break;
3148 /* ... then we depend on parent's value */
3149 parent->live |= flag;
3150 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3151 if (flag == REG_LIVE_READ64)
3152 parent->live &= ~REG_LIVE_READ32;
3153 state = parent;
3154 parent = state->parent;
3155 writes = true;
3156 cnt++;
3157 }
3158
3159 if (env->longest_mark_read_walk < cnt)
3160 env->longest_mark_read_walk = cnt;
3161 return 0;
3162 }
3163
mark_dynptr_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3164 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3165 {
3166 struct bpf_func_state *state = func(env, reg);
3167 int spi, ret;
3168
3169 /* For CONST_PTR_TO_DYNPTR, it must have already been done by
3170 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3171 * check_kfunc_call.
3172 */
3173 if (reg->type == CONST_PTR_TO_DYNPTR)
3174 return 0;
3175 spi = dynptr_get_spi(env, reg);
3176 if (spi < 0)
3177 return spi;
3178 /* Caller ensures dynptr is valid and initialized, which means spi is in
3179 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3180 * read.
3181 */
3182 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3183 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3184 if (ret)
3185 return ret;
3186 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3187 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3188 }
3189
mark_iter_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi,int nr_slots)3190 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3191 int spi, int nr_slots)
3192 {
3193 struct bpf_func_state *state = func(env, reg);
3194 int err, i;
3195
3196 for (i = 0; i < nr_slots; i++) {
3197 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3198
3199 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3200 if (err)
3201 return err;
3202
3203 mark_stack_slot_scratched(env, spi - i);
3204 }
3205
3206 return 0;
3207 }
3208
3209 /* This function is supposed to be used by the following 32-bit optimization
3210 * code only. It returns TRUE if the source or destination register operates
3211 * on 64-bit, otherwise return FALSE.
3212 */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)3213 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3214 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3215 {
3216 u8 code, class, op;
3217
3218 code = insn->code;
3219 class = BPF_CLASS(code);
3220 op = BPF_OP(code);
3221 if (class == BPF_JMP) {
3222 /* BPF_EXIT for "main" will reach here. Return TRUE
3223 * conservatively.
3224 */
3225 if (op == BPF_EXIT)
3226 return true;
3227 if (op == BPF_CALL) {
3228 /* BPF to BPF call will reach here because of marking
3229 * caller saved clobber with DST_OP_NO_MARK for which we
3230 * don't care the register def because they are anyway
3231 * marked as NOT_INIT already.
3232 */
3233 if (insn->src_reg == BPF_PSEUDO_CALL)
3234 return false;
3235 /* Helper call will reach here because of arg type
3236 * check, conservatively return TRUE.
3237 */
3238 if (t == SRC_OP)
3239 return true;
3240
3241 return false;
3242 }
3243 }
3244
3245 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3246 return false;
3247
3248 if (class == BPF_ALU64 || class == BPF_JMP ||
3249 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3250 return true;
3251
3252 if (class == BPF_ALU || class == BPF_JMP32)
3253 return false;
3254
3255 if (class == BPF_LDX) {
3256 if (t != SRC_OP)
3257 return BPF_SIZE(code) == BPF_DW;
3258 /* LDX source must be ptr. */
3259 return true;
3260 }
3261
3262 if (class == BPF_STX) {
3263 /* BPF_STX (including atomic variants) has multiple source
3264 * operands, one of which is a ptr. Check whether the caller is
3265 * asking about it.
3266 */
3267 if (t == SRC_OP && reg->type != SCALAR_VALUE)
3268 return true;
3269 return BPF_SIZE(code) == BPF_DW;
3270 }
3271
3272 if (class == BPF_LD) {
3273 u8 mode = BPF_MODE(code);
3274
3275 /* LD_IMM64 */
3276 if (mode == BPF_IMM)
3277 return true;
3278
3279 /* Both LD_IND and LD_ABS return 32-bit data. */
3280 if (t != SRC_OP)
3281 return false;
3282
3283 /* Implicit ctx ptr. */
3284 if (regno == BPF_REG_6)
3285 return true;
3286
3287 /* Explicit source could be any width. */
3288 return true;
3289 }
3290
3291 if (class == BPF_ST)
3292 /* The only source register for BPF_ST is a ptr. */
3293 return true;
3294
3295 /* Conservatively return true at default. */
3296 return true;
3297 }
3298
3299 /* Return the regno defined by the insn, or -1. */
insn_def_regno(const struct bpf_insn * insn)3300 static int insn_def_regno(const struct bpf_insn *insn)
3301 {
3302 switch (BPF_CLASS(insn->code)) {
3303 case BPF_JMP:
3304 case BPF_JMP32:
3305 case BPF_ST:
3306 return -1;
3307 case BPF_STX:
3308 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3309 (insn->imm & BPF_FETCH)) {
3310 if (insn->imm == BPF_CMPXCHG)
3311 return BPF_REG_0;
3312 else
3313 return insn->src_reg;
3314 } else {
3315 return -1;
3316 }
3317 default:
3318 return insn->dst_reg;
3319 }
3320 }
3321
3322 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)3323 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3324 {
3325 int dst_reg = insn_def_regno(insn);
3326
3327 if (dst_reg == -1)
3328 return false;
3329
3330 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3331 }
3332
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3333 static void mark_insn_zext(struct bpf_verifier_env *env,
3334 struct bpf_reg_state *reg)
3335 {
3336 s32 def_idx = reg->subreg_def;
3337
3338 if (def_idx == DEF_NOT_SUBREG)
3339 return;
3340
3341 env->insn_aux_data[def_idx - 1].zext_dst = true;
3342 /* The dst will be zero extended, so won't be sub-register anymore. */
3343 reg->subreg_def = DEF_NOT_SUBREG;
3344 }
3345
__check_reg_arg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum reg_arg_type t)3346 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3347 enum reg_arg_type t)
3348 {
3349 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3350 struct bpf_reg_state *reg;
3351 bool rw64;
3352
3353 if (regno >= MAX_BPF_REG) {
3354 verbose(env, "R%d is invalid\n", regno);
3355 return -EINVAL;
3356 }
3357
3358 mark_reg_scratched(env, regno);
3359
3360 reg = ®s[regno];
3361 rw64 = is_reg64(env, insn, regno, reg, t);
3362 if (t == SRC_OP) {
3363 /* check whether register used as source operand can be read */
3364 if (reg->type == NOT_INIT) {
3365 verbose(env, "R%d !read_ok\n", regno);
3366 return -EACCES;
3367 }
3368 /* We don't need to worry about FP liveness because it's read-only */
3369 if (regno == BPF_REG_FP)
3370 return 0;
3371
3372 if (rw64)
3373 mark_insn_zext(env, reg);
3374
3375 return mark_reg_read(env, reg, reg->parent,
3376 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3377 } else {
3378 /* check whether register used as dest operand can be written to */
3379 if (regno == BPF_REG_FP) {
3380 verbose(env, "frame pointer is read only\n");
3381 return -EACCES;
3382 }
3383 reg->live |= REG_LIVE_WRITTEN;
3384 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3385 if (t == DST_OP)
3386 mark_reg_unknown(env, regs, regno);
3387 }
3388 return 0;
3389 }
3390
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)3391 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3392 enum reg_arg_type t)
3393 {
3394 struct bpf_verifier_state *vstate = env->cur_state;
3395 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3396
3397 return __check_reg_arg(env, state->regs, regno, t);
3398 }
3399
mark_jmp_point(struct bpf_verifier_env * env,int idx)3400 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3401 {
3402 env->insn_aux_data[idx].jmp_point = true;
3403 }
3404
is_jmp_point(struct bpf_verifier_env * env,int insn_idx)3405 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3406 {
3407 return env->insn_aux_data[insn_idx].jmp_point;
3408 }
3409
3410 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur)3411 static int push_jmp_history(struct bpf_verifier_env *env,
3412 struct bpf_verifier_state *cur)
3413 {
3414 u32 cnt = cur->jmp_history_cnt;
3415 struct bpf_idx_pair *p;
3416 size_t alloc_size;
3417
3418 if (!is_jmp_point(env, env->insn_idx))
3419 return 0;
3420
3421 cnt++;
3422 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3423 p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3424 if (!p)
3425 return -ENOMEM;
3426 p[cnt - 1].idx = env->insn_idx;
3427 p[cnt - 1].prev_idx = env->prev_insn_idx;
3428 cur->jmp_history = p;
3429 cur->jmp_history_cnt = cnt;
3430 return 0;
3431 }
3432
3433 /* Backtrack one insn at a time. If idx is not at the top of recorded
3434 * history then previous instruction came from straight line execution.
3435 * Return -ENOENT if we exhausted all instructions within given state.
3436 *
3437 * It's legal to have a bit of a looping with the same starting and ending
3438 * insn index within the same state, e.g.: 3->4->5->3, so just because current
3439 * instruction index is the same as state's first_idx doesn't mean we are
3440 * done. If there is still some jump history left, we should keep going. We
3441 * need to take into account that we might have a jump history between given
3442 * state's parent and itself, due to checkpointing. In this case, we'll have
3443 * history entry recording a jump from last instruction of parent state and
3444 * first instruction of given state.
3445 */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)3446 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3447 u32 *history)
3448 {
3449 u32 cnt = *history;
3450
3451 if (i == st->first_insn_idx) {
3452 if (cnt == 0)
3453 return -ENOENT;
3454 if (cnt == 1 && st->jmp_history[0].idx == i)
3455 return -ENOENT;
3456 }
3457
3458 if (cnt && st->jmp_history[cnt - 1].idx == i) {
3459 i = st->jmp_history[cnt - 1].prev_idx;
3460 (*history)--;
3461 } else {
3462 i--;
3463 }
3464 return i;
3465 }
3466
disasm_kfunc_name(void * data,const struct bpf_insn * insn)3467 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3468 {
3469 const struct btf_type *func;
3470 struct btf *desc_btf;
3471
3472 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3473 return NULL;
3474
3475 desc_btf = find_kfunc_desc_btf(data, insn->off);
3476 if (IS_ERR(desc_btf))
3477 return "<error>";
3478
3479 func = btf_type_by_id(desc_btf, insn->imm);
3480 return btf_name_by_offset(desc_btf, func->name_off);
3481 }
3482
bt_init(struct backtrack_state * bt,u32 frame)3483 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3484 {
3485 bt->frame = frame;
3486 }
3487
bt_reset(struct backtrack_state * bt)3488 static inline void bt_reset(struct backtrack_state *bt)
3489 {
3490 struct bpf_verifier_env *env = bt->env;
3491
3492 memset(bt, 0, sizeof(*bt));
3493 bt->env = env;
3494 }
3495
bt_empty(struct backtrack_state * bt)3496 static inline u32 bt_empty(struct backtrack_state *bt)
3497 {
3498 u64 mask = 0;
3499 int i;
3500
3501 for (i = 0; i <= bt->frame; i++)
3502 mask |= bt->reg_masks[i] | bt->stack_masks[i];
3503
3504 return mask == 0;
3505 }
3506
bt_subprog_enter(struct backtrack_state * bt)3507 static inline int bt_subprog_enter(struct backtrack_state *bt)
3508 {
3509 if (bt->frame == MAX_CALL_FRAMES - 1) {
3510 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3511 WARN_ONCE(1, "verifier backtracking bug");
3512 return -EFAULT;
3513 }
3514 bt->frame++;
3515 return 0;
3516 }
3517
bt_subprog_exit(struct backtrack_state * bt)3518 static inline int bt_subprog_exit(struct backtrack_state *bt)
3519 {
3520 if (bt->frame == 0) {
3521 verbose(bt->env, "BUG subprog exit from frame 0\n");
3522 WARN_ONCE(1, "verifier backtracking bug");
3523 return -EFAULT;
3524 }
3525 bt->frame--;
3526 return 0;
3527 }
3528
bt_set_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)3529 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3530 {
3531 bt->reg_masks[frame] |= 1 << reg;
3532 }
3533
bt_clear_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)3534 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3535 {
3536 bt->reg_masks[frame] &= ~(1 << reg);
3537 }
3538
bt_set_reg(struct backtrack_state * bt,u32 reg)3539 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3540 {
3541 bt_set_frame_reg(bt, bt->frame, reg);
3542 }
3543
bt_clear_reg(struct backtrack_state * bt,u32 reg)3544 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3545 {
3546 bt_clear_frame_reg(bt, bt->frame, reg);
3547 }
3548
bt_set_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)3549 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3550 {
3551 bt->stack_masks[frame] |= 1ull << slot;
3552 }
3553
bt_clear_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)3554 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3555 {
3556 bt->stack_masks[frame] &= ~(1ull << slot);
3557 }
3558
bt_set_slot(struct backtrack_state * bt,u32 slot)3559 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3560 {
3561 bt_set_frame_slot(bt, bt->frame, slot);
3562 }
3563
bt_clear_slot(struct backtrack_state * bt,u32 slot)3564 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3565 {
3566 bt_clear_frame_slot(bt, bt->frame, slot);
3567 }
3568
bt_frame_reg_mask(struct backtrack_state * bt,u32 frame)3569 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3570 {
3571 return bt->reg_masks[frame];
3572 }
3573
bt_reg_mask(struct backtrack_state * bt)3574 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3575 {
3576 return bt->reg_masks[bt->frame];
3577 }
3578
bt_frame_stack_mask(struct backtrack_state * bt,u32 frame)3579 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3580 {
3581 return bt->stack_masks[frame];
3582 }
3583
bt_stack_mask(struct backtrack_state * bt)3584 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3585 {
3586 return bt->stack_masks[bt->frame];
3587 }
3588
bt_is_reg_set(struct backtrack_state * bt,u32 reg)3589 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3590 {
3591 return bt->reg_masks[bt->frame] & (1 << reg);
3592 }
3593
bt_is_slot_set(struct backtrack_state * bt,u32 slot)3594 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3595 {
3596 return bt->stack_masks[bt->frame] & (1ull << slot);
3597 }
3598
3599 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
fmt_reg_mask(char * buf,ssize_t buf_sz,u32 reg_mask)3600 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3601 {
3602 DECLARE_BITMAP(mask, 64);
3603 bool first = true;
3604 int i, n;
3605
3606 buf[0] = '\0';
3607
3608 bitmap_from_u64(mask, reg_mask);
3609 for_each_set_bit(i, mask, 32) {
3610 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3611 first = false;
3612 buf += n;
3613 buf_sz -= n;
3614 if (buf_sz < 0)
3615 break;
3616 }
3617 }
3618 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
fmt_stack_mask(char * buf,ssize_t buf_sz,u64 stack_mask)3619 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3620 {
3621 DECLARE_BITMAP(mask, 64);
3622 bool first = true;
3623 int i, n;
3624
3625 buf[0] = '\0';
3626
3627 bitmap_from_u64(mask, stack_mask);
3628 for_each_set_bit(i, mask, 64) {
3629 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3630 first = false;
3631 buf += n;
3632 buf_sz -= n;
3633 if (buf_sz < 0)
3634 break;
3635 }
3636 }
3637
3638 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3639
3640 /* For given verifier state backtrack_insn() is called from the last insn to
3641 * the first insn. Its purpose is to compute a bitmask of registers and
3642 * stack slots that needs precision in the parent verifier state.
3643 *
3644 * @idx is an index of the instruction we are currently processing;
3645 * @subseq_idx is an index of the subsequent instruction that:
3646 * - *would be* executed next, if jump history is viewed in forward order;
3647 * - *was* processed previously during backtracking.
3648 */
backtrack_insn(struct bpf_verifier_env * env,int idx,int subseq_idx,struct backtrack_state * bt)3649 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3650 struct backtrack_state *bt)
3651 {
3652 const struct bpf_insn_cbs cbs = {
3653 .cb_call = disasm_kfunc_name,
3654 .cb_print = verbose,
3655 .private_data = env,
3656 };
3657 struct bpf_insn *insn = env->prog->insnsi + idx;
3658 u8 class = BPF_CLASS(insn->code);
3659 u8 opcode = BPF_OP(insn->code);
3660 u8 mode = BPF_MODE(insn->code);
3661 u32 dreg = insn->dst_reg;
3662 u32 sreg = insn->src_reg;
3663 u32 spi, i;
3664
3665 if (insn->code == 0)
3666 return 0;
3667 if (env->log.level & BPF_LOG_LEVEL2) {
3668 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3669 verbose(env, "mark_precise: frame%d: regs=%s ",
3670 bt->frame, env->tmp_str_buf);
3671 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3672 verbose(env, "stack=%s before ", env->tmp_str_buf);
3673 verbose(env, "%d: ", idx);
3674 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3675 }
3676
3677 if (class == BPF_ALU || class == BPF_ALU64) {
3678 if (!bt_is_reg_set(bt, dreg))
3679 return 0;
3680 if (opcode == BPF_END || opcode == BPF_NEG) {
3681 /* sreg is reserved and unused
3682 * dreg still need precision before this insn
3683 */
3684 return 0;
3685 } else if (opcode == BPF_MOV) {
3686 if (BPF_SRC(insn->code) == BPF_X) {
3687 /* dreg = sreg or dreg = (s8, s16, s32)sreg
3688 * dreg needs precision after this insn
3689 * sreg needs precision before this insn
3690 */
3691 bt_clear_reg(bt, dreg);
3692 if (sreg != BPF_REG_FP)
3693 bt_set_reg(bt, sreg);
3694 } else {
3695 /* dreg = K
3696 * dreg needs precision after this insn.
3697 * Corresponding register is already marked
3698 * as precise=true in this verifier state.
3699 * No further markings in parent are necessary
3700 */
3701 bt_clear_reg(bt, dreg);
3702 }
3703 } else {
3704 if (BPF_SRC(insn->code) == BPF_X) {
3705 /* dreg += sreg
3706 * both dreg and sreg need precision
3707 * before this insn
3708 */
3709 if (sreg != BPF_REG_FP)
3710 bt_set_reg(bt, sreg);
3711 } /* else dreg += K
3712 * dreg still needs precision before this insn
3713 */
3714 }
3715 } else if (class == BPF_LDX) {
3716 if (!bt_is_reg_set(bt, dreg))
3717 return 0;
3718 bt_clear_reg(bt, dreg);
3719
3720 /* scalars can only be spilled into stack w/o losing precision.
3721 * Load from any other memory can be zero extended.
3722 * The desire to keep that precision is already indicated
3723 * by 'precise' mark in corresponding register of this state.
3724 * No further tracking necessary.
3725 */
3726 if (insn->src_reg != BPF_REG_FP)
3727 return 0;
3728
3729 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
3730 * that [fp - off] slot contains scalar that needs to be
3731 * tracked with precision
3732 */
3733 spi = (-insn->off - 1) / BPF_REG_SIZE;
3734 if (spi >= 64) {
3735 verbose(env, "BUG spi %d\n", spi);
3736 WARN_ONCE(1, "verifier backtracking bug");
3737 return -EFAULT;
3738 }
3739 bt_set_slot(bt, spi);
3740 } else if (class == BPF_STX || class == BPF_ST) {
3741 if (bt_is_reg_set(bt, dreg))
3742 /* stx & st shouldn't be using _scalar_ dst_reg
3743 * to access memory. It means backtracking
3744 * encountered a case of pointer subtraction.
3745 */
3746 return -ENOTSUPP;
3747 /* scalars can only be spilled into stack */
3748 if (insn->dst_reg != BPF_REG_FP)
3749 return 0;
3750 spi = (-insn->off - 1) / BPF_REG_SIZE;
3751 if (spi >= 64) {
3752 verbose(env, "BUG spi %d\n", spi);
3753 WARN_ONCE(1, "verifier backtracking bug");
3754 return -EFAULT;
3755 }
3756 if (!bt_is_slot_set(bt, spi))
3757 return 0;
3758 bt_clear_slot(bt, spi);
3759 if (class == BPF_STX)
3760 bt_set_reg(bt, sreg);
3761 } else if (class == BPF_JMP || class == BPF_JMP32) {
3762 if (bpf_pseudo_call(insn)) {
3763 int subprog_insn_idx, subprog;
3764
3765 subprog_insn_idx = idx + insn->imm + 1;
3766 subprog = find_subprog(env, subprog_insn_idx);
3767 if (subprog < 0)
3768 return -EFAULT;
3769
3770 if (subprog_is_global(env, subprog)) {
3771 /* check that jump history doesn't have any
3772 * extra instructions from subprog; the next
3773 * instruction after call to global subprog
3774 * should be literally next instruction in
3775 * caller program
3776 */
3777 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3778 /* r1-r5 are invalidated after subprog call,
3779 * so for global func call it shouldn't be set
3780 * anymore
3781 */
3782 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3783 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3784 WARN_ONCE(1, "verifier backtracking bug");
3785 return -EFAULT;
3786 }
3787 /* global subprog always sets R0 */
3788 bt_clear_reg(bt, BPF_REG_0);
3789 return 0;
3790 } else {
3791 /* static subprog call instruction, which
3792 * means that we are exiting current subprog,
3793 * so only r1-r5 could be still requested as
3794 * precise, r0 and r6-r10 or any stack slot in
3795 * the current frame should be zero by now
3796 */
3797 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3798 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3799 WARN_ONCE(1, "verifier backtracking bug");
3800 return -EFAULT;
3801 }
3802 /* we don't track register spills perfectly,
3803 * so fallback to force-precise instead of failing */
3804 if (bt_stack_mask(bt) != 0)
3805 return -ENOTSUPP;
3806 /* propagate r1-r5 to the caller */
3807 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3808 if (bt_is_reg_set(bt, i)) {
3809 bt_clear_reg(bt, i);
3810 bt_set_frame_reg(bt, bt->frame - 1, i);
3811 }
3812 }
3813 if (bt_subprog_exit(bt))
3814 return -EFAULT;
3815 return 0;
3816 }
3817 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3818 /* exit from callback subprog to callback-calling helper or
3819 * kfunc call. Use idx/subseq_idx check to discern it from
3820 * straight line code backtracking.
3821 * Unlike the subprog call handling above, we shouldn't
3822 * propagate precision of r1-r5 (if any requested), as they are
3823 * not actually arguments passed directly to callback subprogs
3824 */
3825 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3826 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3827 WARN_ONCE(1, "verifier backtracking bug");
3828 return -EFAULT;
3829 }
3830 if (bt_stack_mask(bt) != 0)
3831 return -ENOTSUPP;
3832 /* clear r1-r5 in callback subprog's mask */
3833 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3834 bt_clear_reg(bt, i);
3835 if (bt_subprog_exit(bt))
3836 return -EFAULT;
3837 return 0;
3838 } else if (opcode == BPF_CALL) {
3839 /* kfunc with imm==0 is invalid and fixup_kfunc_call will
3840 * catch this error later. Make backtracking conservative
3841 * with ENOTSUPP.
3842 */
3843 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3844 return -ENOTSUPP;
3845 /* regular helper call sets R0 */
3846 bt_clear_reg(bt, BPF_REG_0);
3847 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3848 /* if backtracing was looking for registers R1-R5
3849 * they should have been found already.
3850 */
3851 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3852 WARN_ONCE(1, "verifier backtracking bug");
3853 return -EFAULT;
3854 }
3855 } else if (opcode == BPF_EXIT) {
3856 bool r0_precise;
3857
3858 /* Backtracking to a nested function call, 'idx' is a part of
3859 * the inner frame 'subseq_idx' is a part of the outer frame.
3860 * In case of a regular function call, instructions giving
3861 * precision to registers R1-R5 should have been found already.
3862 * In case of a callback, it is ok to have R1-R5 marked for
3863 * backtracking, as these registers are set by the function
3864 * invoking callback.
3865 */
3866 if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3867 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3868 bt_clear_reg(bt, i);
3869 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3870 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3871 WARN_ONCE(1, "verifier backtracking bug");
3872 return -EFAULT;
3873 }
3874
3875 /* BPF_EXIT in subprog or callback always returns
3876 * right after the call instruction, so by checking
3877 * whether the instruction at subseq_idx-1 is subprog
3878 * call or not we can distinguish actual exit from
3879 * *subprog* from exit from *callback*. In the former
3880 * case, we need to propagate r0 precision, if
3881 * necessary. In the former we never do that.
3882 */
3883 r0_precise = subseq_idx - 1 >= 0 &&
3884 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3885 bt_is_reg_set(bt, BPF_REG_0);
3886
3887 bt_clear_reg(bt, BPF_REG_0);
3888 if (bt_subprog_enter(bt))
3889 return -EFAULT;
3890
3891 if (r0_precise)
3892 bt_set_reg(bt, BPF_REG_0);
3893 /* r6-r9 and stack slots will stay set in caller frame
3894 * bitmasks until we return back from callee(s)
3895 */
3896 return 0;
3897 } else if (BPF_SRC(insn->code) == BPF_X) {
3898 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3899 return 0;
3900 /* dreg <cond> sreg
3901 * Both dreg and sreg need precision before
3902 * this insn. If only sreg was marked precise
3903 * before it would be equally necessary to
3904 * propagate it to dreg.
3905 */
3906 bt_set_reg(bt, dreg);
3907 bt_set_reg(bt, sreg);
3908 /* else dreg <cond> K
3909 * Only dreg still needs precision before
3910 * this insn, so for the K-based conditional
3911 * there is nothing new to be marked.
3912 */
3913 }
3914 } else if (class == BPF_LD) {
3915 if (!bt_is_reg_set(bt, dreg))
3916 return 0;
3917 bt_clear_reg(bt, dreg);
3918 /* It's ld_imm64 or ld_abs or ld_ind.
3919 * For ld_imm64 no further tracking of precision
3920 * into parent is necessary
3921 */
3922 if (mode == BPF_IND || mode == BPF_ABS)
3923 /* to be analyzed */
3924 return -ENOTSUPP;
3925 }
3926 return 0;
3927 }
3928
3929 /* the scalar precision tracking algorithm:
3930 * . at the start all registers have precise=false.
3931 * . scalar ranges are tracked as normal through alu and jmp insns.
3932 * . once precise value of the scalar register is used in:
3933 * . ptr + scalar alu
3934 * . if (scalar cond K|scalar)
3935 * . helper_call(.., scalar, ...) where ARG_CONST is expected
3936 * backtrack through the verifier states and mark all registers and
3937 * stack slots with spilled constants that these scalar regisers
3938 * should be precise.
3939 * . during state pruning two registers (or spilled stack slots)
3940 * are equivalent if both are not precise.
3941 *
3942 * Note the verifier cannot simply walk register parentage chain,
3943 * since many different registers and stack slots could have been
3944 * used to compute single precise scalar.
3945 *
3946 * The approach of starting with precise=true for all registers and then
3947 * backtrack to mark a register as not precise when the verifier detects
3948 * that program doesn't care about specific value (e.g., when helper
3949 * takes register as ARG_ANYTHING parameter) is not safe.
3950 *
3951 * It's ok to walk single parentage chain of the verifier states.
3952 * It's possible that this backtracking will go all the way till 1st insn.
3953 * All other branches will be explored for needing precision later.
3954 *
3955 * The backtracking needs to deal with cases like:
3956 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3957 * r9 -= r8
3958 * r5 = r9
3959 * if r5 > 0x79f goto pc+7
3960 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3961 * r5 += 1
3962 * ...
3963 * call bpf_perf_event_output#25
3964 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3965 *
3966 * and this case:
3967 * r6 = 1
3968 * call foo // uses callee's r6 inside to compute r0
3969 * r0 += r6
3970 * if r0 == 0 goto
3971 *
3972 * to track above reg_mask/stack_mask needs to be independent for each frame.
3973 *
3974 * Also if parent's curframe > frame where backtracking started,
3975 * the verifier need to mark registers in both frames, otherwise callees
3976 * may incorrectly prune callers. This is similar to
3977 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3978 *
3979 * For now backtracking falls back into conservative marking.
3980 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)3981 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3982 struct bpf_verifier_state *st)
3983 {
3984 struct bpf_func_state *func;
3985 struct bpf_reg_state *reg;
3986 int i, j;
3987
3988 if (env->log.level & BPF_LOG_LEVEL2) {
3989 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3990 st->curframe);
3991 }
3992
3993 /* big hammer: mark all scalars precise in this path.
3994 * pop_stack may still get !precise scalars.
3995 * We also skip current state and go straight to first parent state,
3996 * because precision markings in current non-checkpointed state are
3997 * not needed. See why in the comment in __mark_chain_precision below.
3998 */
3999 for (st = st->parent; st; st = st->parent) {
4000 for (i = 0; i <= st->curframe; i++) {
4001 func = st->frame[i];
4002 for (j = 0; j < BPF_REG_FP; j++) {
4003 reg = &func->regs[j];
4004 if (reg->type != SCALAR_VALUE || reg->precise)
4005 continue;
4006 reg->precise = true;
4007 if (env->log.level & BPF_LOG_LEVEL2) {
4008 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4009 i, j);
4010 }
4011 }
4012 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4013 if (!is_spilled_reg(&func->stack[j]))
4014 continue;
4015 reg = &func->stack[j].spilled_ptr;
4016 if (reg->type != SCALAR_VALUE || reg->precise)
4017 continue;
4018 reg->precise = true;
4019 if (env->log.level & BPF_LOG_LEVEL2) {
4020 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4021 i, -(j + 1) * 8);
4022 }
4023 }
4024 }
4025 }
4026 }
4027
mark_all_scalars_imprecise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4028 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4029 {
4030 struct bpf_func_state *func;
4031 struct bpf_reg_state *reg;
4032 int i, j;
4033
4034 for (i = 0; i <= st->curframe; i++) {
4035 func = st->frame[i];
4036 for (j = 0; j < BPF_REG_FP; j++) {
4037 reg = &func->regs[j];
4038 if (reg->type != SCALAR_VALUE)
4039 continue;
4040 reg->precise = false;
4041 }
4042 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4043 if (!is_spilled_reg(&func->stack[j]))
4044 continue;
4045 reg = &func->stack[j].spilled_ptr;
4046 if (reg->type != SCALAR_VALUE)
4047 continue;
4048 reg->precise = false;
4049 }
4050 }
4051 }
4052
idset_contains(struct bpf_idset * s,u32 id)4053 static bool idset_contains(struct bpf_idset *s, u32 id)
4054 {
4055 u32 i;
4056
4057 for (i = 0; i < s->count; ++i)
4058 if (s->ids[i] == id)
4059 return true;
4060
4061 return false;
4062 }
4063
idset_push(struct bpf_idset * s,u32 id)4064 static int idset_push(struct bpf_idset *s, u32 id)
4065 {
4066 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
4067 return -EFAULT;
4068 s->ids[s->count++] = id;
4069 return 0;
4070 }
4071
idset_reset(struct bpf_idset * s)4072 static void idset_reset(struct bpf_idset *s)
4073 {
4074 s->count = 0;
4075 }
4076
4077 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
4078 * Mark all registers with these IDs as precise.
4079 */
mark_precise_scalar_ids(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4080 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4081 {
4082 struct bpf_idset *precise_ids = &env->idset_scratch;
4083 struct backtrack_state *bt = &env->bt;
4084 struct bpf_func_state *func;
4085 struct bpf_reg_state *reg;
4086 DECLARE_BITMAP(mask, 64);
4087 int i, fr;
4088
4089 idset_reset(precise_ids);
4090
4091 for (fr = bt->frame; fr >= 0; fr--) {
4092 func = st->frame[fr];
4093
4094 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4095 for_each_set_bit(i, mask, 32) {
4096 reg = &func->regs[i];
4097 if (!reg->id || reg->type != SCALAR_VALUE)
4098 continue;
4099 if (idset_push(precise_ids, reg->id))
4100 return -EFAULT;
4101 }
4102
4103 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4104 for_each_set_bit(i, mask, 64) {
4105 if (i >= func->allocated_stack / BPF_REG_SIZE)
4106 break;
4107 if (!is_spilled_scalar_reg(&func->stack[i]))
4108 continue;
4109 reg = &func->stack[i].spilled_ptr;
4110 if (!reg->id)
4111 continue;
4112 if (idset_push(precise_ids, reg->id))
4113 return -EFAULT;
4114 }
4115 }
4116
4117 for (fr = 0; fr <= st->curframe; ++fr) {
4118 func = st->frame[fr];
4119
4120 for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4121 reg = &func->regs[i];
4122 if (!reg->id)
4123 continue;
4124 if (!idset_contains(precise_ids, reg->id))
4125 continue;
4126 bt_set_frame_reg(bt, fr, i);
4127 }
4128 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4129 if (!is_spilled_scalar_reg(&func->stack[i]))
4130 continue;
4131 reg = &func->stack[i].spilled_ptr;
4132 if (!reg->id)
4133 continue;
4134 if (!idset_contains(precise_ids, reg->id))
4135 continue;
4136 bt_set_frame_slot(bt, fr, i);
4137 }
4138 }
4139
4140 return 0;
4141 }
4142
4143 /*
4144 * __mark_chain_precision() backtracks BPF program instruction sequence and
4145 * chain of verifier states making sure that register *regno* (if regno >= 0)
4146 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4147 * SCALARS, as well as any other registers and slots that contribute to
4148 * a tracked state of given registers/stack slots, depending on specific BPF
4149 * assembly instructions (see backtrack_insns() for exact instruction handling
4150 * logic). This backtracking relies on recorded jmp_history and is able to
4151 * traverse entire chain of parent states. This process ends only when all the
4152 * necessary registers/slots and their transitive dependencies are marked as
4153 * precise.
4154 *
4155 * One important and subtle aspect is that precise marks *do not matter* in
4156 * the currently verified state (current state). It is important to understand
4157 * why this is the case.
4158 *
4159 * First, note that current state is the state that is not yet "checkpointed",
4160 * i.e., it is not yet put into env->explored_states, and it has no children
4161 * states as well. It's ephemeral, and can end up either a) being discarded if
4162 * compatible explored state is found at some point or BPF_EXIT instruction is
4163 * reached or b) checkpointed and put into env->explored_states, branching out
4164 * into one or more children states.
4165 *
4166 * In the former case, precise markings in current state are completely
4167 * ignored by state comparison code (see regsafe() for details). Only
4168 * checkpointed ("old") state precise markings are important, and if old
4169 * state's register/slot is precise, regsafe() assumes current state's
4170 * register/slot as precise and checks value ranges exactly and precisely. If
4171 * states turn out to be compatible, current state's necessary precise
4172 * markings and any required parent states' precise markings are enforced
4173 * after the fact with propagate_precision() logic, after the fact. But it's
4174 * important to realize that in this case, even after marking current state
4175 * registers/slots as precise, we immediately discard current state. So what
4176 * actually matters is any of the precise markings propagated into current
4177 * state's parent states, which are always checkpointed (due to b) case above).
4178 * As such, for scenario a) it doesn't matter if current state has precise
4179 * markings set or not.
4180 *
4181 * Now, for the scenario b), checkpointing and forking into child(ren)
4182 * state(s). Note that before current state gets to checkpointing step, any
4183 * processed instruction always assumes precise SCALAR register/slot
4184 * knowledge: if precise value or range is useful to prune jump branch, BPF
4185 * verifier takes this opportunity enthusiastically. Similarly, when
4186 * register's value is used to calculate offset or memory address, exact
4187 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4188 * what we mentioned above about state comparison ignoring precise markings
4189 * during state comparison, BPF verifier ignores and also assumes precise
4190 * markings *at will* during instruction verification process. But as verifier
4191 * assumes precision, it also propagates any precision dependencies across
4192 * parent states, which are not yet finalized, so can be further restricted
4193 * based on new knowledge gained from restrictions enforced by their children
4194 * states. This is so that once those parent states are finalized, i.e., when
4195 * they have no more active children state, state comparison logic in
4196 * is_state_visited() would enforce strict and precise SCALAR ranges, if
4197 * required for correctness.
4198 *
4199 * To build a bit more intuition, note also that once a state is checkpointed,
4200 * the path we took to get to that state is not important. This is crucial
4201 * property for state pruning. When state is checkpointed and finalized at
4202 * some instruction index, it can be correctly and safely used to "short
4203 * circuit" any *compatible* state that reaches exactly the same instruction
4204 * index. I.e., if we jumped to that instruction from a completely different
4205 * code path than original finalized state was derived from, it doesn't
4206 * matter, current state can be discarded because from that instruction
4207 * forward having a compatible state will ensure we will safely reach the
4208 * exit. States describe preconditions for further exploration, but completely
4209 * forget the history of how we got here.
4210 *
4211 * This also means that even if we needed precise SCALAR range to get to
4212 * finalized state, but from that point forward *that same* SCALAR register is
4213 * never used in a precise context (i.e., it's precise value is not needed for
4214 * correctness), it's correct and safe to mark such register as "imprecise"
4215 * (i.e., precise marking set to false). This is what we rely on when we do
4216 * not set precise marking in current state. If no child state requires
4217 * precision for any given SCALAR register, it's safe to dictate that it can
4218 * be imprecise. If any child state does require this register to be precise,
4219 * we'll mark it precise later retroactively during precise markings
4220 * propagation from child state to parent states.
4221 *
4222 * Skipping precise marking setting in current state is a mild version of
4223 * relying on the above observation. But we can utilize this property even
4224 * more aggressively by proactively forgetting any precise marking in the
4225 * current state (which we inherited from the parent state), right before we
4226 * checkpoint it and branch off into new child state. This is done by
4227 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4228 * finalized states which help in short circuiting more future states.
4229 */
__mark_chain_precision(struct bpf_verifier_env * env,int regno)4230 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4231 {
4232 struct backtrack_state *bt = &env->bt;
4233 struct bpf_verifier_state *st = env->cur_state;
4234 int first_idx = st->first_insn_idx;
4235 int last_idx = env->insn_idx;
4236 int subseq_idx = -1;
4237 struct bpf_func_state *func;
4238 struct bpf_reg_state *reg;
4239 bool skip_first = true;
4240 int i, fr, err;
4241
4242 if (!env->bpf_capable)
4243 return 0;
4244
4245 /* set frame number from which we are starting to backtrack */
4246 bt_init(bt, env->cur_state->curframe);
4247
4248 /* Do sanity checks against current state of register and/or stack
4249 * slot, but don't set precise flag in current state, as precision
4250 * tracking in the current state is unnecessary.
4251 */
4252 func = st->frame[bt->frame];
4253 if (regno >= 0) {
4254 reg = &func->regs[regno];
4255 if (reg->type != SCALAR_VALUE) {
4256 WARN_ONCE(1, "backtracing misuse");
4257 return -EFAULT;
4258 }
4259 bt_set_reg(bt, regno);
4260 }
4261
4262 if (bt_empty(bt))
4263 return 0;
4264
4265 for (;;) {
4266 DECLARE_BITMAP(mask, 64);
4267 u32 history = st->jmp_history_cnt;
4268
4269 if (env->log.level & BPF_LOG_LEVEL2) {
4270 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4271 bt->frame, last_idx, first_idx, subseq_idx);
4272 }
4273
4274 /* If some register with scalar ID is marked as precise,
4275 * make sure that all registers sharing this ID are also precise.
4276 * This is needed to estimate effect of find_equal_scalars().
4277 * Do this at the last instruction of each state,
4278 * bpf_reg_state::id fields are valid for these instructions.
4279 *
4280 * Allows to track precision in situation like below:
4281 *
4282 * r2 = unknown value
4283 * ...
4284 * --- state #0 ---
4285 * ...
4286 * r1 = r2 // r1 and r2 now share the same ID
4287 * ...
4288 * --- state #1 {r1.id = A, r2.id = A} ---
4289 * ...
4290 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4291 * ...
4292 * --- state #2 {r1.id = A, r2.id = A} ---
4293 * r3 = r10
4294 * r3 += r1 // need to mark both r1 and r2
4295 */
4296 if (mark_precise_scalar_ids(env, st))
4297 return -EFAULT;
4298
4299 if (last_idx < 0) {
4300 /* we are at the entry into subprog, which
4301 * is expected for global funcs, but only if
4302 * requested precise registers are R1-R5
4303 * (which are global func's input arguments)
4304 */
4305 if (st->curframe == 0 &&
4306 st->frame[0]->subprogno > 0 &&
4307 st->frame[0]->callsite == BPF_MAIN_FUNC &&
4308 bt_stack_mask(bt) == 0 &&
4309 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4310 bitmap_from_u64(mask, bt_reg_mask(bt));
4311 for_each_set_bit(i, mask, 32) {
4312 reg = &st->frame[0]->regs[i];
4313 bt_clear_reg(bt, i);
4314 if (reg->type == SCALAR_VALUE)
4315 reg->precise = true;
4316 }
4317 return 0;
4318 }
4319
4320 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4321 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4322 WARN_ONCE(1, "verifier backtracking bug");
4323 return -EFAULT;
4324 }
4325
4326 for (i = last_idx;;) {
4327 if (skip_first) {
4328 err = 0;
4329 skip_first = false;
4330 } else {
4331 err = backtrack_insn(env, i, subseq_idx, bt);
4332 }
4333 if (err == -ENOTSUPP) {
4334 mark_all_scalars_precise(env, env->cur_state);
4335 bt_reset(bt);
4336 return 0;
4337 } else if (err) {
4338 return err;
4339 }
4340 if (bt_empty(bt))
4341 /* Found assignment(s) into tracked register in this state.
4342 * Since this state is already marked, just return.
4343 * Nothing to be tracked further in the parent state.
4344 */
4345 return 0;
4346 subseq_idx = i;
4347 i = get_prev_insn_idx(st, i, &history);
4348 if (i == -ENOENT)
4349 break;
4350 if (i >= env->prog->len) {
4351 /* This can happen if backtracking reached insn 0
4352 * and there are still reg_mask or stack_mask
4353 * to backtrack.
4354 * It means the backtracking missed the spot where
4355 * particular register was initialized with a constant.
4356 */
4357 verbose(env, "BUG backtracking idx %d\n", i);
4358 WARN_ONCE(1, "verifier backtracking bug");
4359 return -EFAULT;
4360 }
4361 }
4362 st = st->parent;
4363 if (!st)
4364 break;
4365
4366 for (fr = bt->frame; fr >= 0; fr--) {
4367 func = st->frame[fr];
4368 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4369 for_each_set_bit(i, mask, 32) {
4370 reg = &func->regs[i];
4371 if (reg->type != SCALAR_VALUE) {
4372 bt_clear_frame_reg(bt, fr, i);
4373 continue;
4374 }
4375 if (reg->precise)
4376 bt_clear_frame_reg(bt, fr, i);
4377 else
4378 reg->precise = true;
4379 }
4380
4381 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4382 for_each_set_bit(i, mask, 64) {
4383 if (i >= func->allocated_stack / BPF_REG_SIZE) {
4384 /* the sequence of instructions:
4385 * 2: (bf) r3 = r10
4386 * 3: (7b) *(u64 *)(r3 -8) = r0
4387 * 4: (79) r4 = *(u64 *)(r10 -8)
4388 * doesn't contain jmps. It's backtracked
4389 * as a single block.
4390 * During backtracking insn 3 is not recognized as
4391 * stack access, so at the end of backtracking
4392 * stack slot fp-8 is still marked in stack_mask.
4393 * However the parent state may not have accessed
4394 * fp-8 and it's "unallocated" stack space.
4395 * In such case fallback to conservative.
4396 */
4397 mark_all_scalars_precise(env, env->cur_state);
4398 bt_reset(bt);
4399 return 0;
4400 }
4401
4402 if (!is_spilled_scalar_reg(&func->stack[i])) {
4403 bt_clear_frame_slot(bt, fr, i);
4404 continue;
4405 }
4406 reg = &func->stack[i].spilled_ptr;
4407 if (reg->precise)
4408 bt_clear_frame_slot(bt, fr, i);
4409 else
4410 reg->precise = true;
4411 }
4412 if (env->log.level & BPF_LOG_LEVEL2) {
4413 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4414 bt_frame_reg_mask(bt, fr));
4415 verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4416 fr, env->tmp_str_buf);
4417 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4418 bt_frame_stack_mask(bt, fr));
4419 verbose(env, "stack=%s: ", env->tmp_str_buf);
4420 print_verifier_state(env, func, true);
4421 }
4422 }
4423
4424 if (bt_empty(bt))
4425 return 0;
4426
4427 subseq_idx = first_idx;
4428 last_idx = st->last_insn_idx;
4429 first_idx = st->first_insn_idx;
4430 }
4431
4432 /* if we still have requested precise regs or slots, we missed
4433 * something (e.g., stack access through non-r10 register), so
4434 * fallback to marking all precise
4435 */
4436 if (!bt_empty(bt)) {
4437 mark_all_scalars_precise(env, env->cur_state);
4438 bt_reset(bt);
4439 }
4440
4441 return 0;
4442 }
4443
mark_chain_precision(struct bpf_verifier_env * env,int regno)4444 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4445 {
4446 return __mark_chain_precision(env, regno);
4447 }
4448
4449 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4450 * desired reg and stack masks across all relevant frames
4451 */
mark_chain_precision_batch(struct bpf_verifier_env * env)4452 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4453 {
4454 return __mark_chain_precision(env, -1);
4455 }
4456
is_spillable_regtype(enum bpf_reg_type type)4457 static bool is_spillable_regtype(enum bpf_reg_type type)
4458 {
4459 switch (base_type(type)) {
4460 case PTR_TO_MAP_VALUE:
4461 case PTR_TO_STACK:
4462 case PTR_TO_CTX:
4463 case PTR_TO_PACKET:
4464 case PTR_TO_PACKET_META:
4465 case PTR_TO_PACKET_END:
4466 case PTR_TO_FLOW_KEYS:
4467 case CONST_PTR_TO_MAP:
4468 case PTR_TO_SOCKET:
4469 case PTR_TO_SOCK_COMMON:
4470 case PTR_TO_TCP_SOCK:
4471 case PTR_TO_XDP_SOCK:
4472 case PTR_TO_BTF_ID:
4473 case PTR_TO_BUF:
4474 case PTR_TO_MEM:
4475 case PTR_TO_FUNC:
4476 case PTR_TO_MAP_KEY:
4477 return true;
4478 default:
4479 return false;
4480 }
4481 }
4482
4483 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)4484 static bool register_is_null(struct bpf_reg_state *reg)
4485 {
4486 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4487 }
4488
register_is_const(struct bpf_reg_state * reg)4489 static bool register_is_const(struct bpf_reg_state *reg)
4490 {
4491 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4492 }
4493
__is_scalar_unbounded(struct bpf_reg_state * reg)4494 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4495 {
4496 return tnum_is_unknown(reg->var_off) &&
4497 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4498 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4499 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4500 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4501 }
4502
register_is_bounded(struct bpf_reg_state * reg)4503 static bool register_is_bounded(struct bpf_reg_state *reg)
4504 {
4505 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4506 }
4507
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)4508 static bool __is_pointer_value(bool allow_ptr_leaks,
4509 const struct bpf_reg_state *reg)
4510 {
4511 if (allow_ptr_leaks)
4512 return false;
4513
4514 return reg->type != SCALAR_VALUE;
4515 }
4516
4517 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)4518 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4519 {
4520 struct bpf_reg_state *parent = dst->parent;
4521 enum bpf_reg_liveness live = dst->live;
4522
4523 *dst = *src;
4524 dst->parent = parent;
4525 dst->live = live;
4526 }
4527
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)4528 static void save_register_state(struct bpf_func_state *state,
4529 int spi, struct bpf_reg_state *reg,
4530 int size)
4531 {
4532 int i;
4533
4534 copy_register_state(&state->stack[spi].spilled_ptr, reg);
4535 if (size == BPF_REG_SIZE)
4536 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4537
4538 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4539 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4540
4541 /* size < 8 bytes spill */
4542 for (; i; i--)
4543 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4544 }
4545
is_bpf_st_mem(struct bpf_insn * insn)4546 static bool is_bpf_st_mem(struct bpf_insn *insn)
4547 {
4548 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4549 }
4550
4551 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4552 * stack boundary and alignment are checked in check_mem_access()
4553 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)4554 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4555 /* stack frame we're writing to */
4556 struct bpf_func_state *state,
4557 int off, int size, int value_regno,
4558 int insn_idx)
4559 {
4560 struct bpf_func_state *cur; /* state of the current function */
4561 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4562 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4563 struct bpf_reg_state *reg = NULL;
4564 u32 dst_reg = insn->dst_reg;
4565
4566 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4567 * so it's aligned access and [off, off + size) are within stack limits
4568 */
4569 if (!env->allow_ptr_leaks &&
4570 is_spilled_reg(&state->stack[spi]) &&
4571 !is_spilled_scalar_reg(&state->stack[spi]) &&
4572 size != BPF_REG_SIZE) {
4573 verbose(env, "attempt to corrupt spilled pointer on stack\n");
4574 return -EACCES;
4575 }
4576
4577 cur = env->cur_state->frame[env->cur_state->curframe];
4578 if (value_regno >= 0)
4579 reg = &cur->regs[value_regno];
4580 if (!env->bypass_spec_v4) {
4581 bool sanitize = reg && is_spillable_regtype(reg->type);
4582
4583 for (i = 0; i < size; i++) {
4584 u8 type = state->stack[spi].slot_type[i];
4585
4586 if (type != STACK_MISC && type != STACK_ZERO) {
4587 sanitize = true;
4588 break;
4589 }
4590 }
4591
4592 if (sanitize)
4593 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4594 }
4595
4596 err = destroy_if_dynptr_stack_slot(env, state, spi);
4597 if (err)
4598 return err;
4599
4600 mark_stack_slot_scratched(env, spi);
4601 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4602 !register_is_null(reg) && env->bpf_capable) {
4603 if (dst_reg != BPF_REG_FP) {
4604 /* The backtracking logic can only recognize explicit
4605 * stack slot address like [fp - 8]. Other spill of
4606 * scalar via different register has to be conservative.
4607 * Backtrack from here and mark all registers as precise
4608 * that contributed into 'reg' being a constant.
4609 */
4610 err = mark_chain_precision(env, value_regno);
4611 if (err)
4612 return err;
4613 }
4614 save_register_state(state, spi, reg, size);
4615 /* Break the relation on a narrowing spill. */
4616 if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4617 state->stack[spi].spilled_ptr.id = 0;
4618 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4619 insn->imm != 0 && env->bpf_capable) {
4620 struct bpf_reg_state fake_reg = {};
4621
4622 __mark_reg_known(&fake_reg, insn->imm);
4623 fake_reg.type = SCALAR_VALUE;
4624 save_register_state(state, spi, &fake_reg, size);
4625 } else if (reg && is_spillable_regtype(reg->type)) {
4626 /* register containing pointer is being spilled into stack */
4627 if (size != BPF_REG_SIZE) {
4628 verbose_linfo(env, insn_idx, "; ");
4629 verbose(env, "invalid size of register spill\n");
4630 return -EACCES;
4631 }
4632 if (state != cur && reg->type == PTR_TO_STACK) {
4633 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4634 return -EINVAL;
4635 }
4636 save_register_state(state, spi, reg, size);
4637 } else {
4638 u8 type = STACK_MISC;
4639
4640 /* regular write of data into stack destroys any spilled ptr */
4641 state->stack[spi].spilled_ptr.type = NOT_INIT;
4642 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4643 if (is_stack_slot_special(&state->stack[spi]))
4644 for (i = 0; i < BPF_REG_SIZE; i++)
4645 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4646
4647 /* only mark the slot as written if all 8 bytes were written
4648 * otherwise read propagation may incorrectly stop too soon
4649 * when stack slots are partially written.
4650 * This heuristic means that read propagation will be
4651 * conservative, since it will add reg_live_read marks
4652 * to stack slots all the way to first state when programs
4653 * writes+reads less than 8 bytes
4654 */
4655 if (size == BPF_REG_SIZE)
4656 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4657
4658 /* when we zero initialize stack slots mark them as such */
4659 if ((reg && register_is_null(reg)) ||
4660 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4661 /* backtracking doesn't work for STACK_ZERO yet. */
4662 err = mark_chain_precision(env, value_regno);
4663 if (err)
4664 return err;
4665 type = STACK_ZERO;
4666 }
4667
4668 /* Mark slots affected by this stack write. */
4669 for (i = 0; i < size; i++)
4670 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4671 type;
4672 }
4673 return 0;
4674 }
4675
4676 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4677 * known to contain a variable offset.
4678 * This function checks whether the write is permitted and conservatively
4679 * tracks the effects of the write, considering that each stack slot in the
4680 * dynamic range is potentially written to.
4681 *
4682 * 'off' includes 'regno->off'.
4683 * 'value_regno' can be -1, meaning that an unknown value is being written to
4684 * the stack.
4685 *
4686 * Spilled pointers in range are not marked as written because we don't know
4687 * what's going to be actually written. This means that read propagation for
4688 * future reads cannot be terminated by this write.
4689 *
4690 * For privileged programs, uninitialized stack slots are considered
4691 * initialized by this write (even though we don't know exactly what offsets
4692 * are going to be written to). The idea is that we don't want the verifier to
4693 * reject future reads that access slots written to through variable offsets.
4694 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)4695 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4696 /* func where register points to */
4697 struct bpf_func_state *state,
4698 int ptr_regno, int off, int size,
4699 int value_regno, int insn_idx)
4700 {
4701 struct bpf_func_state *cur; /* state of the current function */
4702 int min_off, max_off;
4703 int i, err;
4704 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4705 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4706 bool writing_zero = false;
4707 /* set if the fact that we're writing a zero is used to let any
4708 * stack slots remain STACK_ZERO
4709 */
4710 bool zero_used = false;
4711
4712 cur = env->cur_state->frame[env->cur_state->curframe];
4713 ptr_reg = &cur->regs[ptr_regno];
4714 min_off = ptr_reg->smin_value + off;
4715 max_off = ptr_reg->smax_value + off + size;
4716 if (value_regno >= 0)
4717 value_reg = &cur->regs[value_regno];
4718 if ((value_reg && register_is_null(value_reg)) ||
4719 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4720 writing_zero = true;
4721
4722 for (i = min_off; i < max_off; i++) {
4723 int spi;
4724
4725 spi = __get_spi(i);
4726 err = destroy_if_dynptr_stack_slot(env, state, spi);
4727 if (err)
4728 return err;
4729 }
4730
4731 /* Variable offset writes destroy any spilled pointers in range. */
4732 for (i = min_off; i < max_off; i++) {
4733 u8 new_type, *stype;
4734 int slot, spi;
4735
4736 slot = -i - 1;
4737 spi = slot / BPF_REG_SIZE;
4738 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4739 mark_stack_slot_scratched(env, spi);
4740
4741 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4742 /* Reject the write if range we may write to has not
4743 * been initialized beforehand. If we didn't reject
4744 * here, the ptr status would be erased below (even
4745 * though not all slots are actually overwritten),
4746 * possibly opening the door to leaks.
4747 *
4748 * We do however catch STACK_INVALID case below, and
4749 * only allow reading possibly uninitialized memory
4750 * later for CAP_PERFMON, as the write may not happen to
4751 * that slot.
4752 */
4753 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4754 insn_idx, i);
4755 return -EINVAL;
4756 }
4757
4758 /* Erase all spilled pointers. */
4759 state->stack[spi].spilled_ptr.type = NOT_INIT;
4760
4761 /* Update the slot type. */
4762 new_type = STACK_MISC;
4763 if (writing_zero && *stype == STACK_ZERO) {
4764 new_type = STACK_ZERO;
4765 zero_used = true;
4766 }
4767 /* If the slot is STACK_INVALID, we check whether it's OK to
4768 * pretend that it will be initialized by this write. The slot
4769 * might not actually be written to, and so if we mark it as
4770 * initialized future reads might leak uninitialized memory.
4771 * For privileged programs, we will accept such reads to slots
4772 * that may or may not be written because, if we're reject
4773 * them, the error would be too confusing.
4774 */
4775 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4776 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4777 insn_idx, i);
4778 return -EINVAL;
4779 }
4780 *stype = new_type;
4781 }
4782 if (zero_used) {
4783 /* backtracking doesn't work for STACK_ZERO yet. */
4784 err = mark_chain_precision(env, value_regno);
4785 if (err)
4786 return err;
4787 }
4788 return 0;
4789 }
4790
4791 /* When register 'dst_regno' is assigned some values from stack[min_off,
4792 * max_off), we set the register's type according to the types of the
4793 * respective stack slots. If all the stack values are known to be zeros, then
4794 * so is the destination reg. Otherwise, the register is considered to be
4795 * SCALAR. This function does not deal with register filling; the caller must
4796 * ensure that all spilled registers in the stack range have been marked as
4797 * read.
4798 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)4799 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4800 /* func where src register points to */
4801 struct bpf_func_state *ptr_state,
4802 int min_off, int max_off, int dst_regno)
4803 {
4804 struct bpf_verifier_state *vstate = env->cur_state;
4805 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4806 int i, slot, spi;
4807 u8 *stype;
4808 int zeros = 0;
4809
4810 for (i = min_off; i < max_off; i++) {
4811 slot = -i - 1;
4812 spi = slot / BPF_REG_SIZE;
4813 mark_stack_slot_scratched(env, spi);
4814 stype = ptr_state->stack[spi].slot_type;
4815 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4816 break;
4817 zeros++;
4818 }
4819 if (zeros == max_off - min_off) {
4820 /* any access_size read into register is zero extended,
4821 * so the whole register == const_zero
4822 */
4823 __mark_reg_const_zero(&state->regs[dst_regno]);
4824 /* backtracking doesn't support STACK_ZERO yet,
4825 * so mark it precise here, so that later
4826 * backtracking can stop here.
4827 * Backtracking may not need this if this register
4828 * doesn't participate in pointer adjustment.
4829 * Forward propagation of precise flag is not
4830 * necessary either. This mark is only to stop
4831 * backtracking. Any register that contributed
4832 * to const 0 was marked precise before spill.
4833 */
4834 state->regs[dst_regno].precise = true;
4835 } else {
4836 /* have read misc data from the stack */
4837 mark_reg_unknown(env, state->regs, dst_regno);
4838 }
4839 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4840 }
4841
4842 /* Read the stack at 'off' and put the results into the register indicated by
4843 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4844 * spilled reg.
4845 *
4846 * 'dst_regno' can be -1, meaning that the read value is not going to a
4847 * register.
4848 *
4849 * The access is assumed to be within the current stack bounds.
4850 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)4851 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4852 /* func where src register points to */
4853 struct bpf_func_state *reg_state,
4854 int off, int size, int dst_regno)
4855 {
4856 struct bpf_verifier_state *vstate = env->cur_state;
4857 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4858 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4859 struct bpf_reg_state *reg;
4860 u8 *stype, type;
4861
4862 stype = reg_state->stack[spi].slot_type;
4863 reg = ®_state->stack[spi].spilled_ptr;
4864
4865 mark_stack_slot_scratched(env, spi);
4866
4867 if (is_spilled_reg(®_state->stack[spi])) {
4868 u8 spill_size = 1;
4869
4870 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4871 spill_size++;
4872
4873 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4874 if (reg->type != SCALAR_VALUE) {
4875 verbose_linfo(env, env->insn_idx, "; ");
4876 verbose(env, "invalid size of register fill\n");
4877 return -EACCES;
4878 }
4879
4880 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4881 if (dst_regno < 0)
4882 return 0;
4883
4884 if (!(off % BPF_REG_SIZE) && size == spill_size) {
4885 /* The earlier check_reg_arg() has decided the
4886 * subreg_def for this insn. Save it first.
4887 */
4888 s32 subreg_def = state->regs[dst_regno].subreg_def;
4889
4890 copy_register_state(&state->regs[dst_regno], reg);
4891 state->regs[dst_regno].subreg_def = subreg_def;
4892 } else {
4893 for (i = 0; i < size; i++) {
4894 type = stype[(slot - i) % BPF_REG_SIZE];
4895 if (type == STACK_SPILL)
4896 continue;
4897 if (type == STACK_MISC)
4898 continue;
4899 if (type == STACK_INVALID && env->allow_uninit_stack)
4900 continue;
4901 verbose(env, "invalid read from stack off %d+%d size %d\n",
4902 off, i, size);
4903 return -EACCES;
4904 }
4905 mark_reg_unknown(env, state->regs, dst_regno);
4906 }
4907 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4908 return 0;
4909 }
4910
4911 if (dst_regno >= 0) {
4912 /* restore register state from stack */
4913 copy_register_state(&state->regs[dst_regno], reg);
4914 /* mark reg as written since spilled pointer state likely
4915 * has its liveness marks cleared by is_state_visited()
4916 * which resets stack/reg liveness for state transitions
4917 */
4918 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4919 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4920 /* If dst_regno==-1, the caller is asking us whether
4921 * it is acceptable to use this value as a SCALAR_VALUE
4922 * (e.g. for XADD).
4923 * We must not allow unprivileged callers to do that
4924 * with spilled pointers.
4925 */
4926 verbose(env, "leaking pointer from stack off %d\n",
4927 off);
4928 return -EACCES;
4929 }
4930 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4931 } else {
4932 for (i = 0; i < size; i++) {
4933 type = stype[(slot - i) % BPF_REG_SIZE];
4934 if (type == STACK_MISC)
4935 continue;
4936 if (type == STACK_ZERO)
4937 continue;
4938 if (type == STACK_INVALID && env->allow_uninit_stack)
4939 continue;
4940 verbose(env, "invalid read from stack off %d+%d size %d\n",
4941 off, i, size);
4942 return -EACCES;
4943 }
4944 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4945 if (dst_regno >= 0)
4946 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4947 }
4948 return 0;
4949 }
4950
4951 enum bpf_access_src {
4952 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
4953 ACCESS_HELPER = 2, /* the access is performed by a helper */
4954 };
4955
4956 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4957 int regno, int off, int access_size,
4958 bool zero_size_allowed,
4959 enum bpf_access_src type,
4960 struct bpf_call_arg_meta *meta);
4961
reg_state(struct bpf_verifier_env * env,int regno)4962 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4963 {
4964 return cur_regs(env) + regno;
4965 }
4966
4967 /* Read the stack at 'ptr_regno + off' and put the result into the register
4968 * 'dst_regno'.
4969 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4970 * but not its variable offset.
4971 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4972 *
4973 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4974 * filling registers (i.e. reads of spilled register cannot be detected when
4975 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4976 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4977 * offset; for a fixed offset check_stack_read_fixed_off should be used
4978 * instead.
4979 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)4980 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4981 int ptr_regno, int off, int size, int dst_regno)
4982 {
4983 /* The state of the source register. */
4984 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4985 struct bpf_func_state *ptr_state = func(env, reg);
4986 int err;
4987 int min_off, max_off;
4988
4989 /* Note that we pass a NULL meta, so raw access will not be permitted.
4990 */
4991 err = check_stack_range_initialized(env, ptr_regno, off, size,
4992 false, ACCESS_DIRECT, NULL);
4993 if (err)
4994 return err;
4995
4996 min_off = reg->smin_value + off;
4997 max_off = reg->smax_value + off;
4998 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4999 return 0;
5000 }
5001
5002 /* check_stack_read dispatches to check_stack_read_fixed_off or
5003 * check_stack_read_var_off.
5004 *
5005 * The caller must ensure that the offset falls within the allocated stack
5006 * bounds.
5007 *
5008 * 'dst_regno' is a register which will receive the value from the stack. It
5009 * can be -1, meaning that the read value is not going to a register.
5010 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5011 static int check_stack_read(struct bpf_verifier_env *env,
5012 int ptr_regno, int off, int size,
5013 int dst_regno)
5014 {
5015 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5016 struct bpf_func_state *state = func(env, reg);
5017 int err;
5018 /* Some accesses are only permitted with a static offset. */
5019 bool var_off = !tnum_is_const(reg->var_off);
5020
5021 /* The offset is required to be static when reads don't go to a
5022 * register, in order to not leak pointers (see
5023 * check_stack_read_fixed_off).
5024 */
5025 if (dst_regno < 0 && var_off) {
5026 char tn_buf[48];
5027
5028 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5029 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5030 tn_buf, off, size);
5031 return -EACCES;
5032 }
5033 /* Variable offset is prohibited for unprivileged mode for simplicity
5034 * since it requires corresponding support in Spectre masking for stack
5035 * ALU. See also retrieve_ptr_limit(). The check in
5036 * check_stack_access_for_ptr_arithmetic() called by
5037 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5038 * with variable offsets, therefore no check is required here. Further,
5039 * just checking it here would be insufficient as speculative stack
5040 * writes could still lead to unsafe speculative behaviour.
5041 */
5042 if (!var_off) {
5043 off += reg->var_off.value;
5044 err = check_stack_read_fixed_off(env, state, off, size,
5045 dst_regno);
5046 } else {
5047 /* Variable offset stack reads need more conservative handling
5048 * than fixed offset ones. Note that dst_regno >= 0 on this
5049 * branch.
5050 */
5051 err = check_stack_read_var_off(env, ptr_regno, off, size,
5052 dst_regno);
5053 }
5054 return err;
5055 }
5056
5057
5058 /* check_stack_write dispatches to check_stack_write_fixed_off or
5059 * check_stack_write_var_off.
5060 *
5061 * 'ptr_regno' is the register used as a pointer into the stack.
5062 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5063 * 'value_regno' is the register whose value we're writing to the stack. It can
5064 * be -1, meaning that we're not writing from a register.
5065 *
5066 * The caller must ensure that the offset falls within the maximum stack size.
5067 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)5068 static int check_stack_write(struct bpf_verifier_env *env,
5069 int ptr_regno, int off, int size,
5070 int value_regno, int insn_idx)
5071 {
5072 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5073 struct bpf_func_state *state = func(env, reg);
5074 int err;
5075
5076 if (tnum_is_const(reg->var_off)) {
5077 off += reg->var_off.value;
5078 err = check_stack_write_fixed_off(env, state, off, size,
5079 value_regno, insn_idx);
5080 } else {
5081 /* Variable offset stack reads need more conservative handling
5082 * than fixed offset ones.
5083 */
5084 err = check_stack_write_var_off(env, state,
5085 ptr_regno, off, size,
5086 value_regno, insn_idx);
5087 }
5088 return err;
5089 }
5090
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)5091 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5092 int off, int size, enum bpf_access_type type)
5093 {
5094 struct bpf_reg_state *regs = cur_regs(env);
5095 struct bpf_map *map = regs[regno].map_ptr;
5096 u32 cap = bpf_map_flags_to_cap(map);
5097
5098 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5099 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5100 map->value_size, off, size);
5101 return -EACCES;
5102 }
5103
5104 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5105 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5106 map->value_size, off, size);
5107 return -EACCES;
5108 }
5109
5110 return 0;
5111 }
5112
5113 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)5114 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5115 int off, int size, u32 mem_size,
5116 bool zero_size_allowed)
5117 {
5118 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5119 struct bpf_reg_state *reg;
5120
5121 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5122 return 0;
5123
5124 reg = &cur_regs(env)[regno];
5125 switch (reg->type) {
5126 case PTR_TO_MAP_KEY:
5127 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5128 mem_size, off, size);
5129 break;
5130 case PTR_TO_MAP_VALUE:
5131 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5132 mem_size, off, size);
5133 break;
5134 case PTR_TO_PACKET:
5135 case PTR_TO_PACKET_META:
5136 case PTR_TO_PACKET_END:
5137 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5138 off, size, regno, reg->id, off, mem_size);
5139 break;
5140 case PTR_TO_MEM:
5141 default:
5142 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5143 mem_size, off, size);
5144 }
5145
5146 return -EACCES;
5147 }
5148
5149 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)5150 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5151 int off, int size, u32 mem_size,
5152 bool zero_size_allowed)
5153 {
5154 struct bpf_verifier_state *vstate = env->cur_state;
5155 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5156 struct bpf_reg_state *reg = &state->regs[regno];
5157 int err;
5158
5159 /* We may have adjusted the register pointing to memory region, so we
5160 * need to try adding each of min_value and max_value to off
5161 * to make sure our theoretical access will be safe.
5162 *
5163 * The minimum value is only important with signed
5164 * comparisons where we can't assume the floor of a
5165 * value is 0. If we are using signed variables for our
5166 * index'es we need to make sure that whatever we use
5167 * will have a set floor within our range.
5168 */
5169 if (reg->smin_value < 0 &&
5170 (reg->smin_value == S64_MIN ||
5171 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5172 reg->smin_value + off < 0)) {
5173 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5174 regno);
5175 return -EACCES;
5176 }
5177 err = __check_mem_access(env, regno, reg->smin_value + off, size,
5178 mem_size, zero_size_allowed);
5179 if (err) {
5180 verbose(env, "R%d min value is outside of the allowed memory range\n",
5181 regno);
5182 return err;
5183 }
5184
5185 /* If we haven't set a max value then we need to bail since we can't be
5186 * sure we won't do bad things.
5187 * If reg->umax_value + off could overflow, treat that as unbounded too.
5188 */
5189 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5190 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5191 regno);
5192 return -EACCES;
5193 }
5194 err = __check_mem_access(env, regno, reg->umax_value + off, size,
5195 mem_size, zero_size_allowed);
5196 if (err) {
5197 verbose(env, "R%d max value is outside of the allowed memory range\n",
5198 regno);
5199 return err;
5200 }
5201
5202 return 0;
5203 }
5204
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)5205 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5206 const struct bpf_reg_state *reg, int regno,
5207 bool fixed_off_ok)
5208 {
5209 /* Access to this pointer-typed register or passing it to a helper
5210 * is only allowed in its original, unmodified form.
5211 */
5212
5213 if (reg->off < 0) {
5214 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5215 reg_type_str(env, reg->type), regno, reg->off);
5216 return -EACCES;
5217 }
5218
5219 if (!fixed_off_ok && reg->off) {
5220 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5221 reg_type_str(env, reg->type), regno, reg->off);
5222 return -EACCES;
5223 }
5224
5225 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5226 char tn_buf[48];
5227
5228 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5229 verbose(env, "variable %s access var_off=%s disallowed\n",
5230 reg_type_str(env, reg->type), tn_buf);
5231 return -EACCES;
5232 }
5233
5234 return 0;
5235 }
5236
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)5237 int check_ptr_off_reg(struct bpf_verifier_env *env,
5238 const struct bpf_reg_state *reg, int regno)
5239 {
5240 return __check_ptr_off_reg(env, reg, regno, false);
5241 }
5242
map_kptr_match_type(struct bpf_verifier_env * env,struct btf_field * kptr_field,struct bpf_reg_state * reg,u32 regno)5243 static int map_kptr_match_type(struct bpf_verifier_env *env,
5244 struct btf_field *kptr_field,
5245 struct bpf_reg_state *reg, u32 regno)
5246 {
5247 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5248 int perm_flags;
5249 const char *reg_name = "";
5250
5251 if (btf_is_kernel(reg->btf)) {
5252 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5253
5254 /* Only unreferenced case accepts untrusted pointers */
5255 if (kptr_field->type == BPF_KPTR_UNREF)
5256 perm_flags |= PTR_UNTRUSTED;
5257 } else {
5258 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5259 }
5260
5261 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5262 goto bad_type;
5263
5264 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
5265 reg_name = btf_type_name(reg->btf, reg->btf_id);
5266
5267 /* For ref_ptr case, release function check should ensure we get one
5268 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5269 * normal store of unreferenced kptr, we must ensure var_off is zero.
5270 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5271 * reg->off and reg->ref_obj_id are not needed here.
5272 */
5273 if (__check_ptr_off_reg(env, reg, regno, true))
5274 return -EACCES;
5275
5276 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5277 * we also need to take into account the reg->off.
5278 *
5279 * We want to support cases like:
5280 *
5281 * struct foo {
5282 * struct bar br;
5283 * struct baz bz;
5284 * };
5285 *
5286 * struct foo *v;
5287 * v = func(); // PTR_TO_BTF_ID
5288 * val->foo = v; // reg->off is zero, btf and btf_id match type
5289 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5290 * // first member type of struct after comparison fails
5291 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5292 * // to match type
5293 *
5294 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5295 * is zero. We must also ensure that btf_struct_ids_match does not walk
5296 * the struct to match type against first member of struct, i.e. reject
5297 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5298 * strict mode to true for type match.
5299 */
5300 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5301 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5302 kptr_field->type == BPF_KPTR_REF))
5303 goto bad_type;
5304 return 0;
5305 bad_type:
5306 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5307 reg_type_str(env, reg->type), reg_name);
5308 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5309 if (kptr_field->type == BPF_KPTR_UNREF)
5310 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5311 targ_name);
5312 else
5313 verbose(env, "\n");
5314 return -EINVAL;
5315 }
5316
5317 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5318 * can dereference RCU protected pointers and result is PTR_TRUSTED.
5319 */
in_rcu_cs(struct bpf_verifier_env * env)5320 static bool in_rcu_cs(struct bpf_verifier_env *env)
5321 {
5322 return env->cur_state->active_rcu_lock ||
5323 env->cur_state->active_lock.ptr ||
5324 !env->prog->aux->sleepable;
5325 }
5326
5327 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5328 BTF_SET_START(rcu_protected_types)
BTF_ID(struct,prog_test_ref_kfunc)5329 BTF_ID(struct, prog_test_ref_kfunc)
5330 BTF_ID(struct, cgroup)
5331 BTF_ID(struct, bpf_cpumask)
5332 BTF_ID(struct, task_struct)
5333 BTF_SET_END(rcu_protected_types)
5334
5335 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5336 {
5337 if (!btf_is_kernel(btf))
5338 return false;
5339 return btf_id_set_contains(&rcu_protected_types, btf_id);
5340 }
5341
rcu_safe_kptr(const struct btf_field * field)5342 static bool rcu_safe_kptr(const struct btf_field *field)
5343 {
5344 const struct btf_field_kptr *kptr = &field->kptr;
5345
5346 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
5347 }
5348
check_map_kptr_access(struct bpf_verifier_env * env,u32 regno,int value_regno,int insn_idx,struct btf_field * kptr_field)5349 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5350 int value_regno, int insn_idx,
5351 struct btf_field *kptr_field)
5352 {
5353 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5354 int class = BPF_CLASS(insn->code);
5355 struct bpf_reg_state *val_reg;
5356
5357 /* Things we already checked for in check_map_access and caller:
5358 * - Reject cases where variable offset may touch kptr
5359 * - size of access (must be BPF_DW)
5360 * - tnum_is_const(reg->var_off)
5361 * - kptr_field->offset == off + reg->var_off.value
5362 */
5363 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5364 if (BPF_MODE(insn->code) != BPF_MEM) {
5365 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5366 return -EACCES;
5367 }
5368
5369 /* We only allow loading referenced kptr, since it will be marked as
5370 * untrusted, similar to unreferenced kptr.
5371 */
5372 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
5373 verbose(env, "store to referenced kptr disallowed\n");
5374 return -EACCES;
5375 }
5376
5377 if (class == BPF_LDX) {
5378 val_reg = reg_state(env, value_regno);
5379 /* We can simply mark the value_regno receiving the pointer
5380 * value from map as PTR_TO_BTF_ID, with the correct type.
5381 */
5382 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5383 kptr_field->kptr.btf_id,
5384 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
5385 PTR_MAYBE_NULL | MEM_RCU :
5386 PTR_MAYBE_NULL | PTR_UNTRUSTED);
5387 } else if (class == BPF_STX) {
5388 val_reg = reg_state(env, value_regno);
5389 if (!register_is_null(val_reg) &&
5390 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5391 return -EACCES;
5392 } else if (class == BPF_ST) {
5393 if (insn->imm) {
5394 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5395 kptr_field->offset);
5396 return -EACCES;
5397 }
5398 } else {
5399 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5400 return -EACCES;
5401 }
5402 return 0;
5403 }
5404
5405 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed,enum bpf_access_src src)5406 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5407 int off, int size, bool zero_size_allowed,
5408 enum bpf_access_src src)
5409 {
5410 struct bpf_verifier_state *vstate = env->cur_state;
5411 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5412 struct bpf_reg_state *reg = &state->regs[regno];
5413 struct bpf_map *map = reg->map_ptr;
5414 struct btf_record *rec;
5415 int err, i;
5416
5417 err = check_mem_region_access(env, regno, off, size, map->value_size,
5418 zero_size_allowed);
5419 if (err)
5420 return err;
5421
5422 if (IS_ERR_OR_NULL(map->record))
5423 return 0;
5424 rec = map->record;
5425 for (i = 0; i < rec->cnt; i++) {
5426 struct btf_field *field = &rec->fields[i];
5427 u32 p = field->offset;
5428
5429 /* If any part of a field can be touched by load/store, reject
5430 * this program. To check that [x1, x2) overlaps with [y1, y2),
5431 * it is sufficient to check x1 < y2 && y1 < x2.
5432 */
5433 if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5434 p < reg->umax_value + off + size) {
5435 switch (field->type) {
5436 case BPF_KPTR_UNREF:
5437 case BPF_KPTR_REF:
5438 if (src != ACCESS_DIRECT) {
5439 verbose(env, "kptr cannot be accessed indirectly by helper\n");
5440 return -EACCES;
5441 }
5442 if (!tnum_is_const(reg->var_off)) {
5443 verbose(env, "kptr access cannot have variable offset\n");
5444 return -EACCES;
5445 }
5446 if (p != off + reg->var_off.value) {
5447 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5448 p, off + reg->var_off.value);
5449 return -EACCES;
5450 }
5451 if (size != bpf_size_to_bytes(BPF_DW)) {
5452 verbose(env, "kptr access size must be BPF_DW\n");
5453 return -EACCES;
5454 }
5455 break;
5456 default:
5457 verbose(env, "%s cannot be accessed directly by load/store\n",
5458 btf_field_type_name(field->type));
5459 return -EACCES;
5460 }
5461 }
5462 }
5463 return 0;
5464 }
5465
5466 #define MAX_PACKET_OFF 0xffff
5467
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)5468 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5469 const struct bpf_call_arg_meta *meta,
5470 enum bpf_access_type t)
5471 {
5472 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5473
5474 switch (prog_type) {
5475 /* Program types only with direct read access go here! */
5476 case BPF_PROG_TYPE_LWT_IN:
5477 case BPF_PROG_TYPE_LWT_OUT:
5478 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5479 case BPF_PROG_TYPE_SK_REUSEPORT:
5480 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5481 case BPF_PROG_TYPE_CGROUP_SKB:
5482 if (t == BPF_WRITE)
5483 return false;
5484 fallthrough;
5485
5486 /* Program types with direct read + write access go here! */
5487 case BPF_PROG_TYPE_SCHED_CLS:
5488 case BPF_PROG_TYPE_SCHED_ACT:
5489 case BPF_PROG_TYPE_XDP:
5490 case BPF_PROG_TYPE_LWT_XMIT:
5491 case BPF_PROG_TYPE_SK_SKB:
5492 case BPF_PROG_TYPE_SK_MSG:
5493 if (meta)
5494 return meta->pkt_access;
5495
5496 env->seen_direct_write = true;
5497 return true;
5498
5499 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5500 if (t == BPF_WRITE)
5501 env->seen_direct_write = true;
5502
5503 return true;
5504
5505 default:
5506 return false;
5507 }
5508 }
5509
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)5510 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5511 int size, bool zero_size_allowed)
5512 {
5513 struct bpf_reg_state *regs = cur_regs(env);
5514 struct bpf_reg_state *reg = ®s[regno];
5515 int err;
5516
5517 /* We may have added a variable offset to the packet pointer; but any
5518 * reg->range we have comes after that. We are only checking the fixed
5519 * offset.
5520 */
5521
5522 /* We don't allow negative numbers, because we aren't tracking enough
5523 * detail to prove they're safe.
5524 */
5525 if (reg->smin_value < 0) {
5526 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5527 regno);
5528 return -EACCES;
5529 }
5530
5531 err = reg->range < 0 ? -EINVAL :
5532 __check_mem_access(env, regno, off, size, reg->range,
5533 zero_size_allowed);
5534 if (err) {
5535 verbose(env, "R%d offset is outside of the packet\n", regno);
5536 return err;
5537 }
5538
5539 /* __check_mem_access has made sure "off + size - 1" is within u16.
5540 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5541 * otherwise find_good_pkt_pointers would have refused to set range info
5542 * that __check_mem_access would have rejected this pkt access.
5543 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5544 */
5545 env->prog->aux->max_pkt_offset =
5546 max_t(u32, env->prog->aux->max_pkt_offset,
5547 off + reg->umax_value + size - 1);
5548
5549 return err;
5550 }
5551
5552 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,struct btf ** btf,u32 * btf_id)5553 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5554 enum bpf_access_type t, enum bpf_reg_type *reg_type,
5555 struct btf **btf, u32 *btf_id)
5556 {
5557 struct bpf_insn_access_aux info = {
5558 .reg_type = *reg_type,
5559 .log = &env->log,
5560 };
5561
5562 if (env->ops->is_valid_access &&
5563 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5564 /* A non zero info.ctx_field_size indicates that this field is a
5565 * candidate for later verifier transformation to load the whole
5566 * field and then apply a mask when accessed with a narrower
5567 * access than actual ctx access size. A zero info.ctx_field_size
5568 * will only allow for whole field access and rejects any other
5569 * type of narrower access.
5570 */
5571 *reg_type = info.reg_type;
5572
5573 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5574 *btf = info.btf;
5575 *btf_id = info.btf_id;
5576 } else {
5577 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5578 }
5579 /* remember the offset of last byte accessed in ctx */
5580 if (env->prog->aux->max_ctx_offset < off + size)
5581 env->prog->aux->max_ctx_offset = off + size;
5582 return 0;
5583 }
5584
5585 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5586 return -EACCES;
5587 }
5588
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)5589 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5590 int size)
5591 {
5592 if (size < 0 || off < 0 ||
5593 (u64)off + size > sizeof(struct bpf_flow_keys)) {
5594 verbose(env, "invalid access to flow keys off=%d size=%d\n",
5595 off, size);
5596 return -EACCES;
5597 }
5598 return 0;
5599 }
5600
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)5601 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5602 u32 regno, int off, int size,
5603 enum bpf_access_type t)
5604 {
5605 struct bpf_reg_state *regs = cur_regs(env);
5606 struct bpf_reg_state *reg = ®s[regno];
5607 struct bpf_insn_access_aux info = {};
5608 bool valid;
5609
5610 if (reg->smin_value < 0) {
5611 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5612 regno);
5613 return -EACCES;
5614 }
5615
5616 switch (reg->type) {
5617 case PTR_TO_SOCK_COMMON:
5618 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5619 break;
5620 case PTR_TO_SOCKET:
5621 valid = bpf_sock_is_valid_access(off, size, t, &info);
5622 break;
5623 case PTR_TO_TCP_SOCK:
5624 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5625 break;
5626 case PTR_TO_XDP_SOCK:
5627 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5628 break;
5629 default:
5630 valid = false;
5631 }
5632
5633
5634 if (valid) {
5635 env->insn_aux_data[insn_idx].ctx_field_size =
5636 info.ctx_field_size;
5637 return 0;
5638 }
5639
5640 verbose(env, "R%d invalid %s access off=%d size=%d\n",
5641 regno, reg_type_str(env, reg->type), off, size);
5642
5643 return -EACCES;
5644 }
5645
is_pointer_value(struct bpf_verifier_env * env,int regno)5646 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5647 {
5648 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5649 }
5650
is_ctx_reg(struct bpf_verifier_env * env,int regno)5651 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5652 {
5653 const struct bpf_reg_state *reg = reg_state(env, regno);
5654
5655 return reg->type == PTR_TO_CTX;
5656 }
5657
is_sk_reg(struct bpf_verifier_env * env,int regno)5658 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5659 {
5660 const struct bpf_reg_state *reg = reg_state(env, regno);
5661
5662 return type_is_sk_pointer(reg->type);
5663 }
5664
is_pkt_reg(struct bpf_verifier_env * env,int regno)5665 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5666 {
5667 const struct bpf_reg_state *reg = reg_state(env, regno);
5668
5669 return type_is_pkt_pointer(reg->type);
5670 }
5671
is_flow_key_reg(struct bpf_verifier_env * env,int regno)5672 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5673 {
5674 const struct bpf_reg_state *reg = reg_state(env, regno);
5675
5676 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5677 return reg->type == PTR_TO_FLOW_KEYS;
5678 }
5679
5680 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5681 #ifdef CONFIG_NET
5682 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5683 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5684 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5685 #endif
5686 [CONST_PTR_TO_MAP] = btf_bpf_map_id,
5687 };
5688
is_trusted_reg(const struct bpf_reg_state * reg)5689 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5690 {
5691 /* A referenced register is always trusted. */
5692 if (reg->ref_obj_id)
5693 return true;
5694
5695 /* Types listed in the reg2btf_ids are always trusted */
5696 if (reg2btf_ids[base_type(reg->type)] &&
5697 !bpf_type_has_unsafe_modifiers(reg->type))
5698 return true;
5699
5700 /* If a register is not referenced, it is trusted if it has the
5701 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5702 * other type modifiers may be safe, but we elect to take an opt-in
5703 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5704 * not.
5705 *
5706 * Eventually, we should make PTR_TRUSTED the single source of truth
5707 * for whether a register is trusted.
5708 */
5709 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5710 !bpf_type_has_unsafe_modifiers(reg->type);
5711 }
5712
is_rcu_reg(const struct bpf_reg_state * reg)5713 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5714 {
5715 return reg->type & MEM_RCU;
5716 }
5717
clear_trusted_flags(enum bpf_type_flag * flag)5718 static void clear_trusted_flags(enum bpf_type_flag *flag)
5719 {
5720 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5721 }
5722
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)5723 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5724 const struct bpf_reg_state *reg,
5725 int off, int size, bool strict)
5726 {
5727 struct tnum reg_off;
5728 int ip_align;
5729
5730 /* Byte size accesses are always allowed. */
5731 if (!strict || size == 1)
5732 return 0;
5733
5734 /* For platforms that do not have a Kconfig enabling
5735 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5736 * NET_IP_ALIGN is universally set to '2'. And on platforms
5737 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5738 * to this code only in strict mode where we want to emulate
5739 * the NET_IP_ALIGN==2 checking. Therefore use an
5740 * unconditional IP align value of '2'.
5741 */
5742 ip_align = 2;
5743
5744 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5745 if (!tnum_is_aligned(reg_off, size)) {
5746 char tn_buf[48];
5747
5748 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5749 verbose(env,
5750 "misaligned packet access off %d+%s+%d+%d size %d\n",
5751 ip_align, tn_buf, reg->off, off, size);
5752 return -EACCES;
5753 }
5754
5755 return 0;
5756 }
5757
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)5758 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5759 const struct bpf_reg_state *reg,
5760 const char *pointer_desc,
5761 int off, int size, bool strict)
5762 {
5763 struct tnum reg_off;
5764
5765 /* Byte size accesses are always allowed. */
5766 if (!strict || size == 1)
5767 return 0;
5768
5769 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5770 if (!tnum_is_aligned(reg_off, size)) {
5771 char tn_buf[48];
5772
5773 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5774 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5775 pointer_desc, tn_buf, reg->off, off, size);
5776 return -EACCES;
5777 }
5778
5779 return 0;
5780 }
5781
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)5782 static int check_ptr_alignment(struct bpf_verifier_env *env,
5783 const struct bpf_reg_state *reg, int off,
5784 int size, bool strict_alignment_once)
5785 {
5786 bool strict = env->strict_alignment || strict_alignment_once;
5787 const char *pointer_desc = "";
5788
5789 switch (reg->type) {
5790 case PTR_TO_PACKET:
5791 case PTR_TO_PACKET_META:
5792 /* Special case, because of NET_IP_ALIGN. Given metadata sits
5793 * right in front, treat it the very same way.
5794 */
5795 return check_pkt_ptr_alignment(env, reg, off, size, strict);
5796 case PTR_TO_FLOW_KEYS:
5797 pointer_desc = "flow keys ";
5798 break;
5799 case PTR_TO_MAP_KEY:
5800 pointer_desc = "key ";
5801 break;
5802 case PTR_TO_MAP_VALUE:
5803 pointer_desc = "value ";
5804 break;
5805 case PTR_TO_CTX:
5806 pointer_desc = "context ";
5807 break;
5808 case PTR_TO_STACK:
5809 pointer_desc = "stack ";
5810 /* The stack spill tracking logic in check_stack_write_fixed_off()
5811 * and check_stack_read_fixed_off() relies on stack accesses being
5812 * aligned.
5813 */
5814 strict = true;
5815 break;
5816 case PTR_TO_SOCKET:
5817 pointer_desc = "sock ";
5818 break;
5819 case PTR_TO_SOCK_COMMON:
5820 pointer_desc = "sock_common ";
5821 break;
5822 case PTR_TO_TCP_SOCK:
5823 pointer_desc = "tcp_sock ";
5824 break;
5825 case PTR_TO_XDP_SOCK:
5826 pointer_desc = "xdp_sock ";
5827 break;
5828 default:
5829 break;
5830 }
5831 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5832 strict);
5833 }
5834
5835 /* starting from main bpf function walk all instructions of the function
5836 * and recursively walk all callees that given function can call.
5837 * Ignore jump and exit insns.
5838 * Since recursion is prevented by check_cfg() this algorithm
5839 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5840 */
check_max_stack_depth_subprog(struct bpf_verifier_env * env,int idx)5841 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5842 {
5843 struct bpf_subprog_info *subprog = env->subprog_info;
5844 struct bpf_insn *insn = env->prog->insnsi;
5845 int depth = 0, frame = 0, i, subprog_end;
5846 bool tail_call_reachable = false;
5847 int ret_insn[MAX_CALL_FRAMES];
5848 int ret_prog[MAX_CALL_FRAMES];
5849 int j;
5850
5851 i = subprog[idx].start;
5852 process_func:
5853 /* protect against potential stack overflow that might happen when
5854 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5855 * depth for such case down to 256 so that the worst case scenario
5856 * would result in 8k stack size (32 which is tailcall limit * 256 =
5857 * 8k).
5858 *
5859 * To get the idea what might happen, see an example:
5860 * func1 -> sub rsp, 128
5861 * subfunc1 -> sub rsp, 256
5862 * tailcall1 -> add rsp, 256
5863 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5864 * subfunc2 -> sub rsp, 64
5865 * subfunc22 -> sub rsp, 128
5866 * tailcall2 -> add rsp, 128
5867 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5868 *
5869 * tailcall will unwind the current stack frame but it will not get rid
5870 * of caller's stack as shown on the example above.
5871 */
5872 if (idx && subprog[idx].has_tail_call && depth >= 256) {
5873 verbose(env,
5874 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5875 depth);
5876 return -EACCES;
5877 }
5878 /* round up to 32-bytes, since this is granularity
5879 * of interpreter stack size
5880 */
5881 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5882 if (depth > MAX_BPF_STACK) {
5883 verbose(env, "combined stack size of %d calls is %d. Too large\n",
5884 frame + 1, depth);
5885 return -EACCES;
5886 }
5887 continue_func:
5888 subprog_end = subprog[idx + 1].start;
5889 for (; i < subprog_end; i++) {
5890 int next_insn, sidx;
5891
5892 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5893 continue;
5894 /* remember insn and function to return to */
5895 ret_insn[frame] = i + 1;
5896 ret_prog[frame] = idx;
5897
5898 /* find the callee */
5899 next_insn = i + insn[i].imm + 1;
5900 sidx = find_subprog(env, next_insn);
5901 if (sidx < 0) {
5902 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5903 next_insn);
5904 return -EFAULT;
5905 }
5906 if (subprog[sidx].is_async_cb) {
5907 if (subprog[sidx].has_tail_call) {
5908 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5909 return -EFAULT;
5910 }
5911 /* async callbacks don't increase bpf prog stack size unless called directly */
5912 if (!bpf_pseudo_call(insn + i))
5913 continue;
5914 }
5915 i = next_insn;
5916 idx = sidx;
5917
5918 if (subprog[idx].has_tail_call)
5919 tail_call_reachable = true;
5920
5921 frame++;
5922 if (frame >= MAX_CALL_FRAMES) {
5923 verbose(env, "the call stack of %d frames is too deep !\n",
5924 frame);
5925 return -E2BIG;
5926 }
5927 goto process_func;
5928 }
5929 /* if tail call got detected across bpf2bpf calls then mark each of the
5930 * currently present subprog frames as tail call reachable subprogs;
5931 * this info will be utilized by JIT so that we will be preserving the
5932 * tail call counter throughout bpf2bpf calls combined with tailcalls
5933 */
5934 if (tail_call_reachable)
5935 for (j = 0; j < frame; j++)
5936 subprog[ret_prog[j]].tail_call_reachable = true;
5937 if (subprog[0].tail_call_reachable)
5938 env->prog->aux->tail_call_reachable = true;
5939
5940 /* end of for() loop means the last insn of the 'subprog'
5941 * was reached. Doesn't matter whether it was JA or EXIT
5942 */
5943 if (frame == 0)
5944 return 0;
5945 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5946 frame--;
5947 i = ret_insn[frame];
5948 idx = ret_prog[frame];
5949 goto continue_func;
5950 }
5951
check_max_stack_depth(struct bpf_verifier_env * env)5952 static int check_max_stack_depth(struct bpf_verifier_env *env)
5953 {
5954 struct bpf_subprog_info *si = env->subprog_info;
5955 int ret;
5956
5957 for (int i = 0; i < env->subprog_cnt; i++) {
5958 if (!i || si[i].is_async_cb) {
5959 ret = check_max_stack_depth_subprog(env, i);
5960 if (ret < 0)
5961 return ret;
5962 }
5963 continue;
5964 }
5965 return 0;
5966 }
5967
5968 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)5969 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5970 const struct bpf_insn *insn, int idx)
5971 {
5972 int start = idx + insn->imm + 1, subprog;
5973
5974 subprog = find_subprog(env, start);
5975 if (subprog < 0) {
5976 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5977 start);
5978 return -EFAULT;
5979 }
5980 return env->subprog_info[subprog].stack_depth;
5981 }
5982 #endif
5983
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)5984 static int __check_buffer_access(struct bpf_verifier_env *env,
5985 const char *buf_info,
5986 const struct bpf_reg_state *reg,
5987 int regno, int off, int size)
5988 {
5989 if (off < 0) {
5990 verbose(env,
5991 "R%d invalid %s buffer access: off=%d, size=%d\n",
5992 regno, buf_info, off, size);
5993 return -EACCES;
5994 }
5995 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5996 char tn_buf[48];
5997
5998 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5999 verbose(env,
6000 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6001 regno, off, tn_buf);
6002 return -EACCES;
6003 }
6004
6005 return 0;
6006 }
6007
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)6008 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6009 const struct bpf_reg_state *reg,
6010 int regno, int off, int size)
6011 {
6012 int err;
6013
6014 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6015 if (err)
6016 return err;
6017
6018 if (off + size > env->prog->aux->max_tp_access)
6019 env->prog->aux->max_tp_access = off + size;
6020
6021 return 0;
6022 }
6023
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,u32 * max_access)6024 static int check_buffer_access(struct bpf_verifier_env *env,
6025 const struct bpf_reg_state *reg,
6026 int regno, int off, int size,
6027 bool zero_size_allowed,
6028 u32 *max_access)
6029 {
6030 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6031 int err;
6032
6033 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6034 if (err)
6035 return err;
6036
6037 if (off + size > *max_access)
6038 *max_access = off + size;
6039
6040 return 0;
6041 }
6042
6043 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)6044 static void zext_32_to_64(struct bpf_reg_state *reg)
6045 {
6046 reg->var_off = tnum_subreg(reg->var_off);
6047 __reg_assign_32_into_64(reg);
6048 }
6049
6050 /* truncate register to smaller size (in bytes)
6051 * must be called with size < BPF_REG_SIZE
6052 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)6053 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6054 {
6055 u64 mask;
6056
6057 /* clear high bits in bit representation */
6058 reg->var_off = tnum_cast(reg->var_off, size);
6059
6060 /* fix arithmetic bounds */
6061 mask = ((u64)1 << (size * 8)) - 1;
6062 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6063 reg->umin_value &= mask;
6064 reg->umax_value &= mask;
6065 } else {
6066 reg->umin_value = 0;
6067 reg->umax_value = mask;
6068 }
6069 reg->smin_value = reg->umin_value;
6070 reg->smax_value = reg->umax_value;
6071
6072 /* If size is smaller than 32bit register the 32bit register
6073 * values are also truncated so we push 64-bit bounds into
6074 * 32-bit bounds. Above were truncated < 32-bits already.
6075 */
6076 if (size >= 4)
6077 return;
6078 __reg_combine_64_into_32(reg);
6079 }
6080
set_sext64_default_val(struct bpf_reg_state * reg,int size)6081 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6082 {
6083 if (size == 1) {
6084 reg->smin_value = reg->s32_min_value = S8_MIN;
6085 reg->smax_value = reg->s32_max_value = S8_MAX;
6086 } else if (size == 2) {
6087 reg->smin_value = reg->s32_min_value = S16_MIN;
6088 reg->smax_value = reg->s32_max_value = S16_MAX;
6089 } else {
6090 /* size == 4 */
6091 reg->smin_value = reg->s32_min_value = S32_MIN;
6092 reg->smax_value = reg->s32_max_value = S32_MAX;
6093 }
6094 reg->umin_value = reg->u32_min_value = 0;
6095 reg->umax_value = U64_MAX;
6096 reg->u32_max_value = U32_MAX;
6097 reg->var_off = tnum_unknown;
6098 }
6099
coerce_reg_to_size_sx(struct bpf_reg_state * reg,int size)6100 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6101 {
6102 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6103 u64 top_smax_value, top_smin_value;
6104 u64 num_bits = size * 8;
6105
6106 if (tnum_is_const(reg->var_off)) {
6107 u64_cval = reg->var_off.value;
6108 if (size == 1)
6109 reg->var_off = tnum_const((s8)u64_cval);
6110 else if (size == 2)
6111 reg->var_off = tnum_const((s16)u64_cval);
6112 else
6113 /* size == 4 */
6114 reg->var_off = tnum_const((s32)u64_cval);
6115
6116 u64_cval = reg->var_off.value;
6117 reg->smax_value = reg->smin_value = u64_cval;
6118 reg->umax_value = reg->umin_value = u64_cval;
6119 reg->s32_max_value = reg->s32_min_value = u64_cval;
6120 reg->u32_max_value = reg->u32_min_value = u64_cval;
6121 return;
6122 }
6123
6124 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6125 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6126
6127 if (top_smax_value != top_smin_value)
6128 goto out;
6129
6130 /* find the s64_min and s64_min after sign extension */
6131 if (size == 1) {
6132 init_s64_max = (s8)reg->smax_value;
6133 init_s64_min = (s8)reg->smin_value;
6134 } else if (size == 2) {
6135 init_s64_max = (s16)reg->smax_value;
6136 init_s64_min = (s16)reg->smin_value;
6137 } else {
6138 init_s64_max = (s32)reg->smax_value;
6139 init_s64_min = (s32)reg->smin_value;
6140 }
6141
6142 s64_max = max(init_s64_max, init_s64_min);
6143 s64_min = min(init_s64_max, init_s64_min);
6144
6145 /* both of s64_max/s64_min positive or negative */
6146 if ((s64_max >= 0) == (s64_min >= 0)) {
6147 reg->s32_min_value = reg->smin_value = s64_min;
6148 reg->s32_max_value = reg->smax_value = s64_max;
6149 reg->u32_min_value = reg->umin_value = s64_min;
6150 reg->u32_max_value = reg->umax_value = s64_max;
6151 reg->var_off = tnum_range(s64_min, s64_max);
6152 return;
6153 }
6154
6155 out:
6156 set_sext64_default_val(reg, size);
6157 }
6158
set_sext32_default_val(struct bpf_reg_state * reg,int size)6159 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6160 {
6161 if (size == 1) {
6162 reg->s32_min_value = S8_MIN;
6163 reg->s32_max_value = S8_MAX;
6164 } else {
6165 /* size == 2 */
6166 reg->s32_min_value = S16_MIN;
6167 reg->s32_max_value = S16_MAX;
6168 }
6169 reg->u32_min_value = 0;
6170 reg->u32_max_value = U32_MAX;
6171 reg->var_off = tnum_subreg(tnum_unknown);
6172 }
6173
coerce_subreg_to_size_sx(struct bpf_reg_state * reg,int size)6174 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6175 {
6176 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6177 u32 top_smax_value, top_smin_value;
6178 u32 num_bits = size * 8;
6179
6180 if (tnum_is_const(reg->var_off)) {
6181 u32_val = reg->var_off.value;
6182 if (size == 1)
6183 reg->var_off = tnum_const((s8)u32_val);
6184 else
6185 reg->var_off = tnum_const((s16)u32_val);
6186
6187 u32_val = reg->var_off.value;
6188 reg->s32_min_value = reg->s32_max_value = u32_val;
6189 reg->u32_min_value = reg->u32_max_value = u32_val;
6190 return;
6191 }
6192
6193 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6194 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6195
6196 if (top_smax_value != top_smin_value)
6197 goto out;
6198
6199 /* find the s32_min and s32_min after sign extension */
6200 if (size == 1) {
6201 init_s32_max = (s8)reg->s32_max_value;
6202 init_s32_min = (s8)reg->s32_min_value;
6203 } else {
6204 /* size == 2 */
6205 init_s32_max = (s16)reg->s32_max_value;
6206 init_s32_min = (s16)reg->s32_min_value;
6207 }
6208 s32_max = max(init_s32_max, init_s32_min);
6209 s32_min = min(init_s32_max, init_s32_min);
6210
6211 if ((s32_min >= 0) == (s32_max >= 0)) {
6212 reg->s32_min_value = s32_min;
6213 reg->s32_max_value = s32_max;
6214 reg->u32_min_value = (u32)s32_min;
6215 reg->u32_max_value = (u32)s32_max;
6216 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
6217 return;
6218 }
6219
6220 out:
6221 set_sext32_default_val(reg, size);
6222 }
6223
bpf_map_is_rdonly(const struct bpf_map * map)6224 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6225 {
6226 /* A map is considered read-only if the following condition are true:
6227 *
6228 * 1) BPF program side cannot change any of the map content. The
6229 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6230 * and was set at map creation time.
6231 * 2) The map value(s) have been initialized from user space by a
6232 * loader and then "frozen", such that no new map update/delete
6233 * operations from syscall side are possible for the rest of
6234 * the map's lifetime from that point onwards.
6235 * 3) Any parallel/pending map update/delete operations from syscall
6236 * side have been completed. Only after that point, it's safe to
6237 * assume that map value(s) are immutable.
6238 */
6239 return (map->map_flags & BPF_F_RDONLY_PROG) &&
6240 READ_ONCE(map->frozen) &&
6241 !bpf_map_write_active(map);
6242 }
6243
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val,bool is_ldsx)6244 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6245 bool is_ldsx)
6246 {
6247 void *ptr;
6248 u64 addr;
6249 int err;
6250
6251 err = map->ops->map_direct_value_addr(map, &addr, off);
6252 if (err)
6253 return err;
6254 ptr = (void *)(long)addr + off;
6255
6256 switch (size) {
6257 case sizeof(u8):
6258 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6259 break;
6260 case sizeof(u16):
6261 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6262 break;
6263 case sizeof(u32):
6264 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6265 break;
6266 case sizeof(u64):
6267 *val = *(u64 *)ptr;
6268 break;
6269 default:
6270 return -EINVAL;
6271 }
6272 return 0;
6273 }
6274
6275 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu)
6276 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null)
6277 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted)
6278 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null)
6279
6280 /*
6281 * Allow list few fields as RCU trusted or full trusted.
6282 * This logic doesn't allow mix tagging and will be removed once GCC supports
6283 * btf_type_tag.
6284 */
6285
6286 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
BTF_TYPE_SAFE_RCU(struct task_struct)6287 BTF_TYPE_SAFE_RCU(struct task_struct) {
6288 const cpumask_t *cpus_ptr;
6289 struct css_set __rcu *cgroups;
6290 struct task_struct __rcu *real_parent;
6291 struct task_struct *group_leader;
6292 };
6293
BTF_TYPE_SAFE_RCU(struct cgroup)6294 BTF_TYPE_SAFE_RCU(struct cgroup) {
6295 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6296 struct kernfs_node *kn;
6297 };
6298
BTF_TYPE_SAFE_RCU(struct css_set)6299 BTF_TYPE_SAFE_RCU(struct css_set) {
6300 struct cgroup *dfl_cgrp;
6301 };
6302
6303 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)6304 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6305 struct file __rcu *exe_file;
6306 };
6307
6308 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6309 * because bpf prog accessible sockets are SOCK_RCU_FREE.
6310 */
BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)6311 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6312 struct sock *sk;
6313 };
6314
BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)6315 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6316 struct sock *sk;
6317 };
6318
6319 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)6320 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6321 struct seq_file *seq;
6322 };
6323
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)6324 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6325 struct bpf_iter_meta *meta;
6326 struct task_struct *task;
6327 };
6328
BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)6329 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6330 struct file *file;
6331 };
6332
BTF_TYPE_SAFE_TRUSTED(struct file)6333 BTF_TYPE_SAFE_TRUSTED(struct file) {
6334 struct inode *f_inode;
6335 };
6336
BTF_TYPE_SAFE_TRUSTED(struct dentry)6337 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6338 /* no negative dentry-s in places where bpf can see it */
6339 struct inode *d_inode;
6340 };
6341
BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)6342 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
6343 struct sock *sk;
6344 };
6345
type_is_rcu(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6346 static bool type_is_rcu(struct bpf_verifier_env *env,
6347 struct bpf_reg_state *reg,
6348 const char *field_name, u32 btf_id)
6349 {
6350 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6351 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6352 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6353
6354 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6355 }
6356
type_is_rcu_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6357 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6358 struct bpf_reg_state *reg,
6359 const char *field_name, u32 btf_id)
6360 {
6361 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6362 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6363 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6364
6365 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6366 }
6367
type_is_trusted(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6368 static bool type_is_trusted(struct bpf_verifier_env *env,
6369 struct bpf_reg_state *reg,
6370 const char *field_name, u32 btf_id)
6371 {
6372 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6373 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6374 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6375 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6376 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6377
6378 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6379 }
6380
type_is_trusted_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6381 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
6382 struct bpf_reg_state *reg,
6383 const char *field_name, u32 btf_id)
6384 {
6385 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
6386
6387 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
6388 "__safe_trusted_or_null");
6389 }
6390
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)6391 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6392 struct bpf_reg_state *regs,
6393 int regno, int off, int size,
6394 enum bpf_access_type atype,
6395 int value_regno)
6396 {
6397 struct bpf_reg_state *reg = regs + regno;
6398 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6399 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6400 const char *field_name = NULL;
6401 enum bpf_type_flag flag = 0;
6402 u32 btf_id = 0;
6403 int ret;
6404
6405 if (!env->allow_ptr_leaks) {
6406 verbose(env,
6407 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6408 tname);
6409 return -EPERM;
6410 }
6411 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6412 verbose(env,
6413 "Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6414 tname);
6415 return -EINVAL;
6416 }
6417 if (off < 0) {
6418 verbose(env,
6419 "R%d is ptr_%s invalid negative access: off=%d\n",
6420 regno, tname, off);
6421 return -EACCES;
6422 }
6423 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6424 char tn_buf[48];
6425
6426 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6427 verbose(env,
6428 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6429 regno, tname, off, tn_buf);
6430 return -EACCES;
6431 }
6432
6433 if (reg->type & MEM_USER) {
6434 verbose(env,
6435 "R%d is ptr_%s access user memory: off=%d\n",
6436 regno, tname, off);
6437 return -EACCES;
6438 }
6439
6440 if (reg->type & MEM_PERCPU) {
6441 verbose(env,
6442 "R%d is ptr_%s access percpu memory: off=%d\n",
6443 regno, tname, off);
6444 return -EACCES;
6445 }
6446
6447 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6448 if (!btf_is_kernel(reg->btf)) {
6449 verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6450 return -EFAULT;
6451 }
6452 ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6453 } else {
6454 /* Writes are permitted with default btf_struct_access for
6455 * program allocated objects (which always have ref_obj_id > 0),
6456 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6457 */
6458 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6459 verbose(env, "only read is supported\n");
6460 return -EACCES;
6461 }
6462
6463 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6464 !reg->ref_obj_id) {
6465 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6466 return -EFAULT;
6467 }
6468
6469 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6470 }
6471
6472 if (ret < 0)
6473 return ret;
6474
6475 if (ret != PTR_TO_BTF_ID) {
6476 /* just mark; */
6477
6478 } else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6479 /* If this is an untrusted pointer, all pointers formed by walking it
6480 * also inherit the untrusted flag.
6481 */
6482 flag = PTR_UNTRUSTED;
6483
6484 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6485 /* By default any pointer obtained from walking a trusted pointer is no
6486 * longer trusted, unless the field being accessed has explicitly been
6487 * marked as inheriting its parent's state of trust (either full or RCU).
6488 * For example:
6489 * 'cgroups' pointer is untrusted if task->cgroups dereference
6490 * happened in a sleepable program outside of bpf_rcu_read_lock()
6491 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6492 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6493 *
6494 * A regular RCU-protected pointer with __rcu tag can also be deemed
6495 * trusted if we are in an RCU CS. Such pointer can be NULL.
6496 */
6497 if (type_is_trusted(env, reg, field_name, btf_id)) {
6498 flag |= PTR_TRUSTED;
6499 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
6500 flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
6501 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6502 if (type_is_rcu(env, reg, field_name, btf_id)) {
6503 /* ignore __rcu tag and mark it MEM_RCU */
6504 flag |= MEM_RCU;
6505 } else if (flag & MEM_RCU ||
6506 type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6507 /* __rcu tagged pointers can be NULL */
6508 flag |= MEM_RCU | PTR_MAYBE_NULL;
6509
6510 /* We always trust them */
6511 if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6512 flag & PTR_UNTRUSTED)
6513 flag &= ~PTR_UNTRUSTED;
6514 } else if (flag & (MEM_PERCPU | MEM_USER)) {
6515 /* keep as-is */
6516 } else {
6517 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6518 clear_trusted_flags(&flag);
6519 }
6520 } else {
6521 /*
6522 * If not in RCU CS or MEM_RCU pointer can be NULL then
6523 * aggressively mark as untrusted otherwise such
6524 * pointers will be plain PTR_TO_BTF_ID without flags
6525 * and will be allowed to be passed into helpers for
6526 * compat reasons.
6527 */
6528 flag = PTR_UNTRUSTED;
6529 }
6530 } else {
6531 /* Old compat. Deprecated */
6532 clear_trusted_flags(&flag);
6533 }
6534
6535 if (atype == BPF_READ && value_regno >= 0)
6536 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6537
6538 return 0;
6539 }
6540
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)6541 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6542 struct bpf_reg_state *regs,
6543 int regno, int off, int size,
6544 enum bpf_access_type atype,
6545 int value_regno)
6546 {
6547 struct bpf_reg_state *reg = regs + regno;
6548 struct bpf_map *map = reg->map_ptr;
6549 struct bpf_reg_state map_reg;
6550 enum bpf_type_flag flag = 0;
6551 const struct btf_type *t;
6552 const char *tname;
6553 u32 btf_id;
6554 int ret;
6555
6556 if (!btf_vmlinux) {
6557 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6558 return -ENOTSUPP;
6559 }
6560
6561 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6562 verbose(env, "map_ptr access not supported for map type %d\n",
6563 map->map_type);
6564 return -ENOTSUPP;
6565 }
6566
6567 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6568 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6569
6570 if (!env->allow_ptr_leaks) {
6571 verbose(env,
6572 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6573 tname);
6574 return -EPERM;
6575 }
6576
6577 if (off < 0) {
6578 verbose(env, "R%d is %s invalid negative access: off=%d\n",
6579 regno, tname, off);
6580 return -EACCES;
6581 }
6582
6583 if (atype != BPF_READ) {
6584 verbose(env, "only read from %s is supported\n", tname);
6585 return -EACCES;
6586 }
6587
6588 /* Simulate access to a PTR_TO_BTF_ID */
6589 memset(&map_reg, 0, sizeof(map_reg));
6590 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6591 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6592 if (ret < 0)
6593 return ret;
6594
6595 if (value_regno >= 0)
6596 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6597
6598 return 0;
6599 }
6600
6601 /* Check that the stack access at the given offset is within bounds. The
6602 * maximum valid offset is -1.
6603 *
6604 * The minimum valid offset is -MAX_BPF_STACK for writes, and
6605 * -state->allocated_stack for reads.
6606 */
check_stack_slot_within_bounds(struct bpf_verifier_env * env,s64 off,struct bpf_func_state * state,enum bpf_access_type t)6607 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6608 s64 off,
6609 struct bpf_func_state *state,
6610 enum bpf_access_type t)
6611 {
6612 int min_valid_off;
6613
6614 if (t == BPF_WRITE || env->allow_uninit_stack)
6615 min_valid_off = -MAX_BPF_STACK;
6616 else
6617 min_valid_off = -state->allocated_stack;
6618
6619 if (off < min_valid_off || off > -1)
6620 return -EACCES;
6621 return 0;
6622 }
6623
6624 /* Check that the stack access at 'regno + off' falls within the maximum stack
6625 * bounds.
6626 *
6627 * 'off' includes `regno->offset`, but not its dynamic part (if any).
6628 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum bpf_access_src src,enum bpf_access_type type)6629 static int check_stack_access_within_bounds(
6630 struct bpf_verifier_env *env,
6631 int regno, int off, int access_size,
6632 enum bpf_access_src src, enum bpf_access_type type)
6633 {
6634 struct bpf_reg_state *regs = cur_regs(env);
6635 struct bpf_reg_state *reg = regs + regno;
6636 struct bpf_func_state *state = func(env, reg);
6637 s64 min_off, max_off;
6638 int err;
6639 char *err_extra;
6640
6641 if (src == ACCESS_HELPER)
6642 /* We don't know if helpers are reading or writing (or both). */
6643 err_extra = " indirect access to";
6644 else if (type == BPF_READ)
6645 err_extra = " read from";
6646 else
6647 err_extra = " write to";
6648
6649 if (tnum_is_const(reg->var_off)) {
6650 min_off = (s64)reg->var_off.value + off;
6651 max_off = min_off + access_size;
6652 } else {
6653 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6654 reg->smin_value <= -BPF_MAX_VAR_OFF) {
6655 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6656 err_extra, regno);
6657 return -EACCES;
6658 }
6659 min_off = reg->smin_value + off;
6660 max_off = reg->smax_value + off + access_size;
6661 }
6662
6663 err = check_stack_slot_within_bounds(env, min_off, state, type);
6664 if (!err && max_off > 0)
6665 err = -EINVAL; /* out of stack access into non-negative offsets */
6666 if (!err && access_size < 0)
6667 /* access_size should not be negative (or overflow an int); others checks
6668 * along the way should have prevented such an access.
6669 */
6670 err = -EFAULT; /* invalid negative access size; integer overflow? */
6671
6672 if (err) {
6673 if (tnum_is_const(reg->var_off)) {
6674 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6675 err_extra, regno, off, access_size);
6676 } else {
6677 char tn_buf[48];
6678
6679 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6680 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6681 err_extra, regno, tn_buf, access_size);
6682 }
6683 return err;
6684 }
6685
6686 return grow_stack_state(env, state, round_up(-min_off, BPF_REG_SIZE));
6687 }
6688
6689 /* check whether memory at (regno + off) is accessible for t = (read | write)
6690 * if t==write, value_regno is a register which value is stored into memory
6691 * if t==read, value_regno is a register which will receive the value from memory
6692 * if t==write && value_regno==-1, some unknown value is stored into memory
6693 * if t==read && value_regno==-1, don't care what we read from memory
6694 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once,bool is_ldsx)6695 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6696 int off, int bpf_size, enum bpf_access_type t,
6697 int value_regno, bool strict_alignment_once, bool is_ldsx)
6698 {
6699 struct bpf_reg_state *regs = cur_regs(env);
6700 struct bpf_reg_state *reg = regs + regno;
6701 int size, err = 0;
6702
6703 size = bpf_size_to_bytes(bpf_size);
6704 if (size < 0)
6705 return size;
6706
6707 /* alignment checks will add in reg->off themselves */
6708 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6709 if (err)
6710 return err;
6711
6712 /* for access checks, reg->off is just part of off */
6713 off += reg->off;
6714
6715 if (reg->type == PTR_TO_MAP_KEY) {
6716 if (t == BPF_WRITE) {
6717 verbose(env, "write to change key R%d not allowed\n", regno);
6718 return -EACCES;
6719 }
6720
6721 err = check_mem_region_access(env, regno, off, size,
6722 reg->map_ptr->key_size, false);
6723 if (err)
6724 return err;
6725 if (value_regno >= 0)
6726 mark_reg_unknown(env, regs, value_regno);
6727 } else if (reg->type == PTR_TO_MAP_VALUE) {
6728 struct btf_field *kptr_field = NULL;
6729
6730 if (t == BPF_WRITE && value_regno >= 0 &&
6731 is_pointer_value(env, value_regno)) {
6732 verbose(env, "R%d leaks addr into map\n", value_regno);
6733 return -EACCES;
6734 }
6735 err = check_map_access_type(env, regno, off, size, t);
6736 if (err)
6737 return err;
6738 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6739 if (err)
6740 return err;
6741 if (tnum_is_const(reg->var_off))
6742 kptr_field = btf_record_find(reg->map_ptr->record,
6743 off + reg->var_off.value, BPF_KPTR);
6744 if (kptr_field) {
6745 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6746 } else if (t == BPF_READ && value_regno >= 0) {
6747 struct bpf_map *map = reg->map_ptr;
6748
6749 /* if map is read-only, track its contents as scalars */
6750 if (tnum_is_const(reg->var_off) &&
6751 bpf_map_is_rdonly(map) &&
6752 map->ops->map_direct_value_addr) {
6753 int map_off = off + reg->var_off.value;
6754 u64 val = 0;
6755
6756 err = bpf_map_direct_read(map, map_off, size,
6757 &val, is_ldsx);
6758 if (err)
6759 return err;
6760
6761 regs[value_regno].type = SCALAR_VALUE;
6762 __mark_reg_known(®s[value_regno], val);
6763 } else {
6764 mark_reg_unknown(env, regs, value_regno);
6765 }
6766 }
6767 } else if (base_type(reg->type) == PTR_TO_MEM) {
6768 bool rdonly_mem = type_is_rdonly_mem(reg->type);
6769
6770 if (type_may_be_null(reg->type)) {
6771 verbose(env, "R%d invalid mem access '%s'\n", regno,
6772 reg_type_str(env, reg->type));
6773 return -EACCES;
6774 }
6775
6776 if (t == BPF_WRITE && rdonly_mem) {
6777 verbose(env, "R%d cannot write into %s\n",
6778 regno, reg_type_str(env, reg->type));
6779 return -EACCES;
6780 }
6781
6782 if (t == BPF_WRITE && value_regno >= 0 &&
6783 is_pointer_value(env, value_regno)) {
6784 verbose(env, "R%d leaks addr into mem\n", value_regno);
6785 return -EACCES;
6786 }
6787
6788 err = check_mem_region_access(env, regno, off, size,
6789 reg->mem_size, false);
6790 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6791 mark_reg_unknown(env, regs, value_regno);
6792 } else if (reg->type == PTR_TO_CTX) {
6793 enum bpf_reg_type reg_type = SCALAR_VALUE;
6794 struct btf *btf = NULL;
6795 u32 btf_id = 0;
6796
6797 if (t == BPF_WRITE && value_regno >= 0 &&
6798 is_pointer_value(env, value_regno)) {
6799 verbose(env, "R%d leaks addr into ctx\n", value_regno);
6800 return -EACCES;
6801 }
6802
6803 err = check_ptr_off_reg(env, reg, regno);
6804 if (err < 0)
6805 return err;
6806
6807 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf,
6808 &btf_id);
6809 if (err)
6810 verbose_linfo(env, insn_idx, "; ");
6811 if (!err && t == BPF_READ && value_regno >= 0) {
6812 /* ctx access returns either a scalar, or a
6813 * PTR_TO_PACKET[_META,_END]. In the latter
6814 * case, we know the offset is zero.
6815 */
6816 if (reg_type == SCALAR_VALUE) {
6817 mark_reg_unknown(env, regs, value_regno);
6818 } else {
6819 mark_reg_known_zero(env, regs,
6820 value_regno);
6821 if (type_may_be_null(reg_type))
6822 regs[value_regno].id = ++env->id_gen;
6823 /* A load of ctx field could have different
6824 * actual load size with the one encoded in the
6825 * insn. When the dst is PTR, it is for sure not
6826 * a sub-register.
6827 */
6828 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6829 if (base_type(reg_type) == PTR_TO_BTF_ID) {
6830 regs[value_regno].btf = btf;
6831 regs[value_regno].btf_id = btf_id;
6832 }
6833 }
6834 regs[value_regno].type = reg_type;
6835 }
6836
6837 } else if (reg->type == PTR_TO_STACK) {
6838 /* Basic bounds checks. */
6839 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6840 if (err)
6841 return err;
6842
6843 if (t == BPF_READ)
6844 err = check_stack_read(env, regno, off, size,
6845 value_regno);
6846 else
6847 err = check_stack_write(env, regno, off, size,
6848 value_regno, insn_idx);
6849 } else if (reg_is_pkt_pointer(reg)) {
6850 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6851 verbose(env, "cannot write into packet\n");
6852 return -EACCES;
6853 }
6854 if (t == BPF_WRITE && value_regno >= 0 &&
6855 is_pointer_value(env, value_regno)) {
6856 verbose(env, "R%d leaks addr into packet\n",
6857 value_regno);
6858 return -EACCES;
6859 }
6860 err = check_packet_access(env, regno, off, size, false);
6861 if (!err && t == BPF_READ && value_regno >= 0)
6862 mark_reg_unknown(env, regs, value_regno);
6863 } else if (reg->type == PTR_TO_FLOW_KEYS) {
6864 if (t == BPF_WRITE && value_regno >= 0 &&
6865 is_pointer_value(env, value_regno)) {
6866 verbose(env, "R%d leaks addr into flow keys\n",
6867 value_regno);
6868 return -EACCES;
6869 }
6870
6871 err = check_flow_keys_access(env, off, size);
6872 if (!err && t == BPF_READ && value_regno >= 0)
6873 mark_reg_unknown(env, regs, value_regno);
6874 } else if (type_is_sk_pointer(reg->type)) {
6875 if (t == BPF_WRITE) {
6876 verbose(env, "R%d cannot write into %s\n",
6877 regno, reg_type_str(env, reg->type));
6878 return -EACCES;
6879 }
6880 err = check_sock_access(env, insn_idx, regno, off, size, t);
6881 if (!err && value_regno >= 0)
6882 mark_reg_unknown(env, regs, value_regno);
6883 } else if (reg->type == PTR_TO_TP_BUFFER) {
6884 err = check_tp_buffer_access(env, reg, regno, off, size);
6885 if (!err && t == BPF_READ && value_regno >= 0)
6886 mark_reg_unknown(env, regs, value_regno);
6887 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6888 !type_may_be_null(reg->type)) {
6889 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6890 value_regno);
6891 } else if (reg->type == CONST_PTR_TO_MAP) {
6892 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6893 value_regno);
6894 } else if (base_type(reg->type) == PTR_TO_BUF) {
6895 bool rdonly_mem = type_is_rdonly_mem(reg->type);
6896 u32 *max_access;
6897
6898 if (rdonly_mem) {
6899 if (t == BPF_WRITE) {
6900 verbose(env, "R%d cannot write into %s\n",
6901 regno, reg_type_str(env, reg->type));
6902 return -EACCES;
6903 }
6904 max_access = &env->prog->aux->max_rdonly_access;
6905 } else {
6906 max_access = &env->prog->aux->max_rdwr_access;
6907 }
6908
6909 err = check_buffer_access(env, reg, regno, off, size, false,
6910 max_access);
6911
6912 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6913 mark_reg_unknown(env, regs, value_regno);
6914 } else {
6915 verbose(env, "R%d invalid mem access '%s'\n", regno,
6916 reg_type_str(env, reg->type));
6917 return -EACCES;
6918 }
6919
6920 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6921 regs[value_regno].type == SCALAR_VALUE) {
6922 if (!is_ldsx)
6923 /* b/h/w load zero-extends, mark upper bits as known 0 */
6924 coerce_reg_to_size(®s[value_regno], size);
6925 else
6926 coerce_reg_to_size_sx(®s[value_regno], size);
6927 }
6928 return err;
6929 }
6930
check_atomic(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)6931 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6932 {
6933 int load_reg;
6934 int err;
6935
6936 switch (insn->imm) {
6937 case BPF_ADD:
6938 case BPF_ADD | BPF_FETCH:
6939 case BPF_AND:
6940 case BPF_AND | BPF_FETCH:
6941 case BPF_OR:
6942 case BPF_OR | BPF_FETCH:
6943 case BPF_XOR:
6944 case BPF_XOR | BPF_FETCH:
6945 case BPF_XCHG:
6946 case BPF_CMPXCHG:
6947 break;
6948 default:
6949 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6950 return -EINVAL;
6951 }
6952
6953 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6954 verbose(env, "invalid atomic operand size\n");
6955 return -EINVAL;
6956 }
6957
6958 /* check src1 operand */
6959 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6960 if (err)
6961 return err;
6962
6963 /* check src2 operand */
6964 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6965 if (err)
6966 return err;
6967
6968 if (insn->imm == BPF_CMPXCHG) {
6969 /* Check comparison of R0 with memory location */
6970 const u32 aux_reg = BPF_REG_0;
6971
6972 err = check_reg_arg(env, aux_reg, SRC_OP);
6973 if (err)
6974 return err;
6975
6976 if (is_pointer_value(env, aux_reg)) {
6977 verbose(env, "R%d leaks addr into mem\n", aux_reg);
6978 return -EACCES;
6979 }
6980 }
6981
6982 if (is_pointer_value(env, insn->src_reg)) {
6983 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6984 return -EACCES;
6985 }
6986
6987 if (is_ctx_reg(env, insn->dst_reg) ||
6988 is_pkt_reg(env, insn->dst_reg) ||
6989 is_flow_key_reg(env, insn->dst_reg) ||
6990 is_sk_reg(env, insn->dst_reg)) {
6991 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6992 insn->dst_reg,
6993 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6994 return -EACCES;
6995 }
6996
6997 if (insn->imm & BPF_FETCH) {
6998 if (insn->imm == BPF_CMPXCHG)
6999 load_reg = BPF_REG_0;
7000 else
7001 load_reg = insn->src_reg;
7002
7003 /* check and record load of old value */
7004 err = check_reg_arg(env, load_reg, DST_OP);
7005 if (err)
7006 return err;
7007 } else {
7008 /* This instruction accesses a memory location but doesn't
7009 * actually load it into a register.
7010 */
7011 load_reg = -1;
7012 }
7013
7014 /* Check whether we can read the memory, with second call for fetch
7015 * case to simulate the register fill.
7016 */
7017 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7018 BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7019 if (!err && load_reg >= 0)
7020 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7021 BPF_SIZE(insn->code), BPF_READ, load_reg,
7022 true, false);
7023 if (err)
7024 return err;
7025
7026 /* Check whether we can write into the same memory. */
7027 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7028 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7029 if (err)
7030 return err;
7031
7032 return 0;
7033 }
7034
7035 /* When register 'regno' is used to read the stack (either directly or through
7036 * a helper function) make sure that it's within stack boundary and, depending
7037 * on the access type and privileges, that all elements of the stack are
7038 * initialized.
7039 *
7040 * 'off' includes 'regno->off', but not its dynamic part (if any).
7041 *
7042 * All registers that have been spilled on the stack in the slots within the
7043 * read offsets are marked as read.
7044 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum bpf_access_src type,struct bpf_call_arg_meta * meta)7045 static int check_stack_range_initialized(
7046 struct bpf_verifier_env *env, int regno, int off,
7047 int access_size, bool zero_size_allowed,
7048 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7049 {
7050 struct bpf_reg_state *reg = reg_state(env, regno);
7051 struct bpf_func_state *state = func(env, reg);
7052 int err, min_off, max_off, i, j, slot, spi;
7053 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7054 enum bpf_access_type bounds_check_type;
7055 /* Some accesses can write anything into the stack, others are
7056 * read-only.
7057 */
7058 bool clobber = false;
7059
7060 if (access_size == 0 && !zero_size_allowed) {
7061 verbose(env, "invalid zero-sized read\n");
7062 return -EACCES;
7063 }
7064
7065 if (type == ACCESS_HELPER) {
7066 /* The bounds checks for writes are more permissive than for
7067 * reads. However, if raw_mode is not set, we'll do extra
7068 * checks below.
7069 */
7070 bounds_check_type = BPF_WRITE;
7071 clobber = true;
7072 } else {
7073 bounds_check_type = BPF_READ;
7074 }
7075 err = check_stack_access_within_bounds(env, regno, off, access_size,
7076 type, bounds_check_type);
7077 if (err)
7078 return err;
7079
7080
7081 if (tnum_is_const(reg->var_off)) {
7082 min_off = max_off = reg->var_off.value + off;
7083 } else {
7084 /* Variable offset is prohibited for unprivileged mode for
7085 * simplicity since it requires corresponding support in
7086 * Spectre masking for stack ALU.
7087 * See also retrieve_ptr_limit().
7088 */
7089 if (!env->bypass_spec_v1) {
7090 char tn_buf[48];
7091
7092 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7093 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7094 regno, err_extra, tn_buf);
7095 return -EACCES;
7096 }
7097 /* Only initialized buffer on stack is allowed to be accessed
7098 * with variable offset. With uninitialized buffer it's hard to
7099 * guarantee that whole memory is marked as initialized on
7100 * helper return since specific bounds are unknown what may
7101 * cause uninitialized stack leaking.
7102 */
7103 if (meta && meta->raw_mode)
7104 meta = NULL;
7105
7106 min_off = reg->smin_value + off;
7107 max_off = reg->smax_value + off;
7108 }
7109
7110 if (meta && meta->raw_mode) {
7111 /* Ensure we won't be overwriting dynptrs when simulating byte
7112 * by byte access in check_helper_call using meta.access_size.
7113 * This would be a problem if we have a helper in the future
7114 * which takes:
7115 *
7116 * helper(uninit_mem, len, dynptr)
7117 *
7118 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7119 * may end up writing to dynptr itself when touching memory from
7120 * arg 1. This can be relaxed on a case by case basis for known
7121 * safe cases, but reject due to the possibilitiy of aliasing by
7122 * default.
7123 */
7124 for (i = min_off; i < max_off + access_size; i++) {
7125 int stack_off = -i - 1;
7126
7127 spi = __get_spi(i);
7128 /* raw_mode may write past allocated_stack */
7129 if (state->allocated_stack <= stack_off)
7130 continue;
7131 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7132 verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7133 return -EACCES;
7134 }
7135 }
7136 meta->access_size = access_size;
7137 meta->regno = regno;
7138 return 0;
7139 }
7140
7141 for (i = min_off; i < max_off + access_size; i++) {
7142 u8 *stype;
7143
7144 slot = -i - 1;
7145 spi = slot / BPF_REG_SIZE;
7146 if (state->allocated_stack <= slot) {
7147 verbose(env, "verifier bug: allocated_stack too small");
7148 return -EFAULT;
7149 }
7150
7151 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7152 if (*stype == STACK_MISC)
7153 goto mark;
7154 if ((*stype == STACK_ZERO) ||
7155 (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7156 if (clobber) {
7157 /* helper can write anything into the stack */
7158 *stype = STACK_MISC;
7159 }
7160 goto mark;
7161 }
7162
7163 if (is_spilled_reg(&state->stack[spi]) &&
7164 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7165 env->allow_ptr_leaks)) {
7166 if (clobber) {
7167 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7168 for (j = 0; j < BPF_REG_SIZE; j++)
7169 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7170 }
7171 goto mark;
7172 }
7173
7174 if (tnum_is_const(reg->var_off)) {
7175 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7176 err_extra, regno, min_off, i - min_off, access_size);
7177 } else {
7178 char tn_buf[48];
7179
7180 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7181 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7182 err_extra, regno, tn_buf, i - min_off, access_size);
7183 }
7184 return -EACCES;
7185 mark:
7186 /* reading any byte out of 8-byte 'spill_slot' will cause
7187 * the whole slot to be marked as 'read'
7188 */
7189 mark_reg_read(env, &state->stack[spi].spilled_ptr,
7190 state->stack[spi].spilled_ptr.parent,
7191 REG_LIVE_READ64);
7192 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7193 * be sure that whether stack slot is written to or not. Hence,
7194 * we must still conservatively propagate reads upwards even if
7195 * helper may write to the entire memory range.
7196 */
7197 }
7198 return 0;
7199 }
7200
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)7201 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7202 int access_size, enum bpf_access_type access_type,
7203 bool zero_size_allowed,
7204 struct bpf_call_arg_meta *meta)
7205 {
7206 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7207 u32 *max_access;
7208
7209 switch (base_type(reg->type)) {
7210 case PTR_TO_PACKET:
7211 case PTR_TO_PACKET_META:
7212 return check_packet_access(env, regno, reg->off, access_size,
7213 zero_size_allowed);
7214 case PTR_TO_MAP_KEY:
7215 if (access_type == BPF_WRITE) {
7216 verbose(env, "R%d cannot write into %s\n", regno,
7217 reg_type_str(env, reg->type));
7218 return -EACCES;
7219 }
7220 return check_mem_region_access(env, regno, reg->off, access_size,
7221 reg->map_ptr->key_size, false);
7222 case PTR_TO_MAP_VALUE:
7223 if (check_map_access_type(env, regno, reg->off, access_size, access_type))
7224 return -EACCES;
7225 return check_map_access(env, regno, reg->off, access_size,
7226 zero_size_allowed, ACCESS_HELPER);
7227 case PTR_TO_MEM:
7228 if (type_is_rdonly_mem(reg->type)) {
7229 if (access_type == BPF_WRITE) {
7230 verbose(env, "R%d cannot write into %s\n", regno,
7231 reg_type_str(env, reg->type));
7232 return -EACCES;
7233 }
7234 }
7235 return check_mem_region_access(env, regno, reg->off,
7236 access_size, reg->mem_size,
7237 zero_size_allowed);
7238 case PTR_TO_BUF:
7239 if (type_is_rdonly_mem(reg->type)) {
7240 if (access_type == BPF_WRITE) {
7241 verbose(env, "R%d cannot write into %s\n", regno,
7242 reg_type_str(env, reg->type));
7243 return -EACCES;
7244 }
7245
7246 max_access = &env->prog->aux->max_rdonly_access;
7247 } else {
7248 max_access = &env->prog->aux->max_rdwr_access;
7249 }
7250 return check_buffer_access(env, reg, regno, reg->off,
7251 access_size, zero_size_allowed,
7252 max_access);
7253 case PTR_TO_STACK:
7254 return check_stack_range_initialized(
7255 env,
7256 regno, reg->off, access_size,
7257 zero_size_allowed, ACCESS_HELPER, meta);
7258 case PTR_TO_BTF_ID:
7259 return check_ptr_to_btf_access(env, regs, regno, reg->off,
7260 access_size, BPF_READ, -1);
7261 case PTR_TO_CTX:
7262 /* in case the function doesn't know how to access the context,
7263 * (because we are in a program of type SYSCALL for example), we
7264 * can not statically check its size.
7265 * Dynamically check it now.
7266 */
7267 if (!env->ops->convert_ctx_access) {
7268 int offset = access_size - 1;
7269
7270 /* Allow zero-byte read from PTR_TO_CTX */
7271 if (access_size == 0)
7272 return zero_size_allowed ? 0 : -EACCES;
7273
7274 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7275 access_type, -1, false, false);
7276 }
7277
7278 fallthrough;
7279 default: /* scalar_value or invalid ptr */
7280 /* Allow zero-byte read from NULL, regardless of pointer type */
7281 if (zero_size_allowed && access_size == 0 &&
7282 register_is_null(reg))
7283 return 0;
7284
7285 verbose(env, "R%d type=%s ", regno,
7286 reg_type_str(env, reg->type));
7287 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7288 return -EACCES;
7289 }
7290 }
7291
check_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)7292 static int check_mem_size_reg(struct bpf_verifier_env *env,
7293 struct bpf_reg_state *reg, u32 regno,
7294 enum bpf_access_type access_type,
7295 bool zero_size_allowed,
7296 struct bpf_call_arg_meta *meta)
7297 {
7298 int err;
7299
7300 /* This is used to refine r0 return value bounds for helpers
7301 * that enforce this value as an upper bound on return values.
7302 * See do_refine_retval_range() for helpers that can refine
7303 * the return value. C type of helper is u32 so we pull register
7304 * bound from umax_value however, if negative verifier errors
7305 * out. Only upper bounds can be learned because retval is an
7306 * int type and negative retvals are allowed.
7307 */
7308 meta->msize_max_value = reg->umax_value;
7309
7310 /* The register is SCALAR_VALUE; the access check happens using
7311 * its boundaries. For unprivileged variable accesses, disable
7312 * raw mode so that the program is required to initialize all
7313 * the memory that the helper could just partially fill up.
7314 */
7315 if (!tnum_is_const(reg->var_off))
7316 meta = NULL;
7317
7318 if (reg->smin_value < 0) {
7319 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7320 regno);
7321 return -EACCES;
7322 }
7323
7324 if (reg->umin_value == 0 && !zero_size_allowed) {
7325 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7326 regno, reg->umin_value, reg->umax_value);
7327 return -EACCES;
7328 }
7329
7330 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7331 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7332 regno);
7333 return -EACCES;
7334 }
7335 err = check_helper_mem_access(env, regno - 1, reg->umax_value,
7336 access_type, zero_size_allowed, meta);
7337 if (!err)
7338 err = mark_chain_precision(env, regno);
7339 return err;
7340 }
7341
check_mem_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,u32 mem_size)7342 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7343 u32 regno, u32 mem_size)
7344 {
7345 bool may_be_null = type_may_be_null(reg->type);
7346 struct bpf_reg_state saved_reg;
7347 int err;
7348
7349 if (register_is_null(reg))
7350 return 0;
7351
7352 /* Assuming that the register contains a value check if the memory
7353 * access is safe. Temporarily save and restore the register's state as
7354 * the conversion shouldn't be visible to a caller.
7355 */
7356 if (may_be_null) {
7357 saved_reg = *reg;
7358 mark_ptr_not_null_reg(reg);
7359 }
7360
7361 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
7362 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
7363
7364 if (may_be_null)
7365 *reg = saved_reg;
7366
7367 return err;
7368 }
7369
check_kfunc_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)7370 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7371 u32 regno)
7372 {
7373 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7374 bool may_be_null = type_may_be_null(mem_reg->type);
7375 struct bpf_reg_state saved_reg;
7376 struct bpf_call_arg_meta meta;
7377 int err;
7378
7379 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7380
7381 memset(&meta, 0, sizeof(meta));
7382
7383 if (may_be_null) {
7384 saved_reg = *mem_reg;
7385 mark_ptr_not_null_reg(mem_reg);
7386 }
7387
7388 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
7389 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
7390
7391 if (may_be_null)
7392 *mem_reg = saved_reg;
7393
7394 return err;
7395 }
7396
7397 /* Implementation details:
7398 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7399 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7400 * Two bpf_map_lookups (even with the same key) will have different reg->id.
7401 * Two separate bpf_obj_new will also have different reg->id.
7402 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7403 * clears reg->id after value_or_null->value transition, since the verifier only
7404 * cares about the range of access to valid map value pointer and doesn't care
7405 * about actual address of the map element.
7406 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7407 * reg->id > 0 after value_or_null->value transition. By doing so
7408 * two bpf_map_lookups will be considered two different pointers that
7409 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7410 * returned from bpf_obj_new.
7411 * The verifier allows taking only one bpf_spin_lock at a time to avoid
7412 * dead-locks.
7413 * Since only one bpf_spin_lock is allowed the checks are simpler than
7414 * reg_is_refcounted() logic. The verifier needs to remember only
7415 * one spin_lock instead of array of acquired_refs.
7416 * cur_state->active_lock remembers which map value element or allocated
7417 * object got locked and clears it after bpf_spin_unlock.
7418 */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)7419 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7420 bool is_lock)
7421 {
7422 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7423 struct bpf_verifier_state *cur = env->cur_state;
7424 bool is_const = tnum_is_const(reg->var_off);
7425 u64 val = reg->var_off.value;
7426 struct bpf_map *map = NULL;
7427 struct btf *btf = NULL;
7428 struct btf_record *rec;
7429
7430 if (!is_const) {
7431 verbose(env,
7432 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7433 regno);
7434 return -EINVAL;
7435 }
7436 if (reg->type == PTR_TO_MAP_VALUE) {
7437 map = reg->map_ptr;
7438 if (!map->btf) {
7439 verbose(env,
7440 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
7441 map->name);
7442 return -EINVAL;
7443 }
7444 } else {
7445 btf = reg->btf;
7446 }
7447
7448 rec = reg_btf_record(reg);
7449 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7450 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7451 map ? map->name : "kptr");
7452 return -EINVAL;
7453 }
7454 if (rec->spin_lock_off != val + reg->off) {
7455 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7456 val + reg->off, rec->spin_lock_off);
7457 return -EINVAL;
7458 }
7459 if (is_lock) {
7460 if (cur->active_lock.ptr) {
7461 verbose(env,
7462 "Locking two bpf_spin_locks are not allowed\n");
7463 return -EINVAL;
7464 }
7465 if (map)
7466 cur->active_lock.ptr = map;
7467 else
7468 cur->active_lock.ptr = btf;
7469 cur->active_lock.id = reg->id;
7470 } else {
7471 void *ptr;
7472
7473 if (map)
7474 ptr = map;
7475 else
7476 ptr = btf;
7477
7478 if (!cur->active_lock.ptr) {
7479 verbose(env, "bpf_spin_unlock without taking a lock\n");
7480 return -EINVAL;
7481 }
7482 if (cur->active_lock.ptr != ptr ||
7483 cur->active_lock.id != reg->id) {
7484 verbose(env, "bpf_spin_unlock of different lock\n");
7485 return -EINVAL;
7486 }
7487
7488 invalidate_non_owning_refs(env);
7489
7490 cur->active_lock.ptr = NULL;
7491 cur->active_lock.id = 0;
7492 }
7493 return 0;
7494 }
7495
process_timer_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)7496 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7497 struct bpf_call_arg_meta *meta)
7498 {
7499 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7500 bool is_const = tnum_is_const(reg->var_off);
7501 struct bpf_map *map = reg->map_ptr;
7502 u64 val = reg->var_off.value;
7503
7504 if (!is_const) {
7505 verbose(env,
7506 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7507 regno);
7508 return -EINVAL;
7509 }
7510 if (!map->btf) {
7511 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7512 map->name);
7513 return -EINVAL;
7514 }
7515 if (!btf_record_has_field(map->record, BPF_TIMER)) {
7516 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7517 return -EINVAL;
7518 }
7519 if (map->record->timer_off != val + reg->off) {
7520 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7521 val + reg->off, map->record->timer_off);
7522 return -EINVAL;
7523 }
7524 if (meta->map_ptr) {
7525 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7526 return -EFAULT;
7527 }
7528 meta->map_uid = reg->map_uid;
7529 meta->map_ptr = map;
7530 return 0;
7531 }
7532
process_kptr_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)7533 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7534 struct bpf_call_arg_meta *meta)
7535 {
7536 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7537 struct bpf_map *map_ptr = reg->map_ptr;
7538 struct btf_field *kptr_field;
7539 u32 kptr_off;
7540
7541 if (!tnum_is_const(reg->var_off)) {
7542 verbose(env,
7543 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7544 regno);
7545 return -EINVAL;
7546 }
7547 if (!map_ptr->btf) {
7548 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7549 map_ptr->name);
7550 return -EINVAL;
7551 }
7552 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7553 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7554 return -EINVAL;
7555 }
7556
7557 meta->map_ptr = map_ptr;
7558 kptr_off = reg->off + reg->var_off.value;
7559 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7560 if (!kptr_field) {
7561 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7562 return -EACCES;
7563 }
7564 if (kptr_field->type != BPF_KPTR_REF) {
7565 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7566 return -EACCES;
7567 }
7568 meta->kptr_field = kptr_field;
7569 return 0;
7570 }
7571
7572 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7573 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7574 *
7575 * In both cases we deal with the first 8 bytes, but need to mark the next 8
7576 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7577 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7578 *
7579 * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7580 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7581 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7582 * mutate the view of the dynptr and also possibly destroy it. In the latter
7583 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7584 * memory that dynptr points to.
7585 *
7586 * The verifier will keep track both levels of mutation (bpf_dynptr's in
7587 * reg->type and the memory's in reg->dynptr.type), but there is no support for
7588 * readonly dynptr view yet, hence only the first case is tracked and checked.
7589 *
7590 * This is consistent with how C applies the const modifier to a struct object,
7591 * where the pointer itself inside bpf_dynptr becomes const but not what it
7592 * points to.
7593 *
7594 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7595 * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7596 */
process_dynptr_func(struct bpf_verifier_env * env,int regno,int insn_idx,enum bpf_arg_type arg_type,int clone_ref_obj_id)7597 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7598 enum bpf_arg_type arg_type, int clone_ref_obj_id)
7599 {
7600 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7601 int err;
7602
7603 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7604 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7605 */
7606 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7607 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7608 return -EFAULT;
7609 }
7610
7611 /* MEM_UNINIT - Points to memory that is an appropriate candidate for
7612 * constructing a mutable bpf_dynptr object.
7613 *
7614 * Currently, this is only possible with PTR_TO_STACK
7615 * pointing to a region of at least 16 bytes which doesn't
7616 * contain an existing bpf_dynptr.
7617 *
7618 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7619 * mutated or destroyed. However, the memory it points to
7620 * may be mutated.
7621 *
7622 * None - Points to a initialized dynptr that can be mutated and
7623 * destroyed, including mutation of the memory it points
7624 * to.
7625 */
7626 if (arg_type & MEM_UNINIT) {
7627 int i;
7628
7629 if (!is_dynptr_reg_valid_uninit(env, reg)) {
7630 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7631 return -EINVAL;
7632 }
7633
7634 /* we write BPF_DW bits (8 bytes) at a time */
7635 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7636 err = check_mem_access(env, insn_idx, regno,
7637 i, BPF_DW, BPF_WRITE, -1, false, false);
7638 if (err)
7639 return err;
7640 }
7641
7642 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7643 } else /* MEM_RDONLY and None case from above */ {
7644 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7645 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7646 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7647 return -EINVAL;
7648 }
7649
7650 if (!is_dynptr_reg_valid_init(env, reg)) {
7651 verbose(env,
7652 "Expected an initialized dynptr as arg #%d\n",
7653 regno);
7654 return -EINVAL;
7655 }
7656
7657 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7658 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7659 verbose(env,
7660 "Expected a dynptr of type %s as arg #%d\n",
7661 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7662 return -EINVAL;
7663 }
7664
7665 err = mark_dynptr_read(env, reg);
7666 }
7667 return err;
7668 }
7669
iter_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi)7670 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7671 {
7672 struct bpf_func_state *state = func(env, reg);
7673
7674 return state->stack[spi].spilled_ptr.ref_obj_id;
7675 }
7676
is_iter_kfunc(struct bpf_kfunc_call_arg_meta * meta)7677 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7678 {
7679 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7680 }
7681
is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta * meta)7682 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7683 {
7684 return meta->kfunc_flags & KF_ITER_NEW;
7685 }
7686
is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta * meta)7687 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7688 {
7689 return meta->kfunc_flags & KF_ITER_NEXT;
7690 }
7691
is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta * meta)7692 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7693 {
7694 return meta->kfunc_flags & KF_ITER_DESTROY;
7695 }
7696
is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta * meta,int arg)7697 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7698 {
7699 /* btf_check_iter_kfuncs() guarantees that first argument of any iter
7700 * kfunc is iter state pointer
7701 */
7702 return arg == 0 && is_iter_kfunc(meta);
7703 }
7704
process_iter_arg(struct bpf_verifier_env * env,int regno,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)7705 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7706 struct bpf_kfunc_call_arg_meta *meta)
7707 {
7708 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7709 const struct btf_type *t;
7710 const struct btf_param *arg;
7711 int spi, err, i, nr_slots;
7712 u32 btf_id;
7713
7714 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7715 arg = &btf_params(meta->func_proto)[0];
7716 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */
7717 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */
7718 nr_slots = t->size / BPF_REG_SIZE;
7719
7720 if (is_iter_new_kfunc(meta)) {
7721 /* bpf_iter_<type>_new() expects pointer to uninit iter state */
7722 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7723 verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7724 iter_type_str(meta->btf, btf_id), regno);
7725 return -EINVAL;
7726 }
7727
7728 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7729 err = check_mem_access(env, insn_idx, regno,
7730 i, BPF_DW, BPF_WRITE, -1, false, false);
7731 if (err)
7732 return err;
7733 }
7734
7735 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7736 if (err)
7737 return err;
7738 } else {
7739 /* iter_next() or iter_destroy() expect initialized iter state*/
7740 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7741 verbose(env, "expected an initialized iter_%s as arg #%d\n",
7742 iter_type_str(meta->btf, btf_id), regno);
7743 return -EINVAL;
7744 }
7745
7746 spi = iter_get_spi(env, reg, nr_slots);
7747 if (spi < 0)
7748 return spi;
7749
7750 err = mark_iter_read(env, reg, spi, nr_slots);
7751 if (err)
7752 return err;
7753
7754 /* remember meta->iter info for process_iter_next_call() */
7755 meta->iter.spi = spi;
7756 meta->iter.frameno = reg->frameno;
7757 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7758
7759 if (is_iter_destroy_kfunc(meta)) {
7760 err = unmark_stack_slots_iter(env, reg, nr_slots);
7761 if (err)
7762 return err;
7763 }
7764 }
7765
7766 return 0;
7767 }
7768
7769 /* Look for a previous loop entry at insn_idx: nearest parent state
7770 * stopped at insn_idx with callsites matching those in cur->frame.
7771 */
find_prev_entry(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_idx)7772 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7773 struct bpf_verifier_state *cur,
7774 int insn_idx)
7775 {
7776 struct bpf_verifier_state_list *sl;
7777 struct bpf_verifier_state *st;
7778
7779 /* Explored states are pushed in stack order, most recent states come first */
7780 sl = *explored_state(env, insn_idx);
7781 for (; sl; sl = sl->next) {
7782 /* If st->branches != 0 state is a part of current DFS verification path,
7783 * hence cur & st for a loop.
7784 */
7785 st = &sl->state;
7786 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7787 st->dfs_depth < cur->dfs_depth)
7788 return st;
7789 }
7790
7791 return NULL;
7792 }
7793
7794 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7795 static bool regs_exact(const struct bpf_reg_state *rold,
7796 const struct bpf_reg_state *rcur,
7797 struct bpf_idmap *idmap);
7798
maybe_widen_reg(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap)7799 static void maybe_widen_reg(struct bpf_verifier_env *env,
7800 struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7801 struct bpf_idmap *idmap)
7802 {
7803 if (rold->type != SCALAR_VALUE)
7804 return;
7805 if (rold->type != rcur->type)
7806 return;
7807 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7808 return;
7809 __mark_reg_unknown(env, rcur);
7810 }
7811
widen_imprecise_scalars(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)7812 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7813 struct bpf_verifier_state *old,
7814 struct bpf_verifier_state *cur)
7815 {
7816 struct bpf_func_state *fold, *fcur;
7817 int i, fr;
7818
7819 reset_idmap_scratch(env);
7820 for (fr = old->curframe; fr >= 0; fr--) {
7821 fold = old->frame[fr];
7822 fcur = cur->frame[fr];
7823
7824 for (i = 0; i < MAX_BPF_REG; i++)
7825 maybe_widen_reg(env,
7826 &fold->regs[i],
7827 &fcur->regs[i],
7828 &env->idmap_scratch);
7829
7830 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7831 if (!is_spilled_reg(&fold->stack[i]) ||
7832 !is_spilled_reg(&fcur->stack[i]))
7833 continue;
7834
7835 maybe_widen_reg(env,
7836 &fold->stack[i].spilled_ptr,
7837 &fcur->stack[i].spilled_ptr,
7838 &env->idmap_scratch);
7839 }
7840 }
7841 return 0;
7842 }
7843
get_iter_from_state(struct bpf_verifier_state * cur_st,struct bpf_kfunc_call_arg_meta * meta)7844 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
7845 struct bpf_kfunc_call_arg_meta *meta)
7846 {
7847 int iter_frameno = meta->iter.frameno;
7848 int iter_spi = meta->iter.spi;
7849
7850 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7851 }
7852
7853 /* process_iter_next_call() is called when verifier gets to iterator's next
7854 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7855 * to it as just "iter_next()" in comments below.
7856 *
7857 * BPF verifier relies on a crucial contract for any iter_next()
7858 * implementation: it should *eventually* return NULL, and once that happens
7859 * it should keep returning NULL. That is, once iterator exhausts elements to
7860 * iterate, it should never reset or spuriously return new elements.
7861 *
7862 * With the assumption of such contract, process_iter_next_call() simulates
7863 * a fork in the verifier state to validate loop logic correctness and safety
7864 * without having to simulate infinite amount of iterations.
7865 *
7866 * In current state, we first assume that iter_next() returned NULL and
7867 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7868 * conditions we should not form an infinite loop and should eventually reach
7869 * exit.
7870 *
7871 * Besides that, we also fork current state and enqueue it for later
7872 * verification. In a forked state we keep iterator state as ACTIVE
7873 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7874 * also bump iteration depth to prevent erroneous infinite loop detection
7875 * later on (see iter_active_depths_differ() comment for details). In this
7876 * state we assume that we'll eventually loop back to another iter_next()
7877 * calls (it could be in exactly same location or in some other instruction,
7878 * it doesn't matter, we don't make any unnecessary assumptions about this,
7879 * everything revolves around iterator state in a stack slot, not which
7880 * instruction is calling iter_next()). When that happens, we either will come
7881 * to iter_next() with equivalent state and can conclude that next iteration
7882 * will proceed in exactly the same way as we just verified, so it's safe to
7883 * assume that loop converges. If not, we'll go on another iteration
7884 * simulation with a different input state, until all possible starting states
7885 * are validated or we reach maximum number of instructions limit.
7886 *
7887 * This way, we will either exhaustively discover all possible input states
7888 * that iterator loop can start with and eventually will converge, or we'll
7889 * effectively regress into bounded loop simulation logic and either reach
7890 * maximum number of instructions if loop is not provably convergent, or there
7891 * is some statically known limit on number of iterations (e.g., if there is
7892 * an explicit `if n > 100 then break;` statement somewhere in the loop).
7893 *
7894 * Iteration convergence logic in is_state_visited() relies on exact
7895 * states comparison, which ignores read and precision marks.
7896 * This is necessary because read and precision marks are not finalized
7897 * while in the loop. Exact comparison might preclude convergence for
7898 * simple programs like below:
7899 *
7900 * i = 0;
7901 * while(iter_next(&it))
7902 * i++;
7903 *
7904 * At each iteration step i++ would produce a new distinct state and
7905 * eventually instruction processing limit would be reached.
7906 *
7907 * To avoid such behavior speculatively forget (widen) range for
7908 * imprecise scalar registers, if those registers were not precise at the
7909 * end of the previous iteration and do not match exactly.
7910 *
7911 * This is a conservative heuristic that allows to verify wide range of programs,
7912 * however it precludes verification of programs that conjure an
7913 * imprecise value on the first loop iteration and use it as precise on a second.
7914 * For example, the following safe program would fail to verify:
7915 *
7916 * struct bpf_num_iter it;
7917 * int arr[10];
7918 * int i = 0, a = 0;
7919 * bpf_iter_num_new(&it, 0, 10);
7920 * while (bpf_iter_num_next(&it)) {
7921 * if (a == 0) {
7922 * a = 1;
7923 * i = 7; // Because i changed verifier would forget
7924 * // it's range on second loop entry.
7925 * } else {
7926 * arr[i] = 42; // This would fail to verify.
7927 * }
7928 * }
7929 * bpf_iter_num_destroy(&it);
7930 */
process_iter_next_call(struct bpf_verifier_env * env,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)7931 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7932 struct bpf_kfunc_call_arg_meta *meta)
7933 {
7934 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
7935 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7936 struct bpf_reg_state *cur_iter, *queued_iter;
7937
7938 BTF_TYPE_EMIT(struct bpf_iter);
7939
7940 cur_iter = get_iter_from_state(cur_st, meta);
7941
7942 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7943 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7944 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7945 cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7946 return -EFAULT;
7947 }
7948
7949 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7950 /* Because iter_next() call is a checkpoint is_state_visitied()
7951 * should guarantee parent state with same call sites and insn_idx.
7952 */
7953 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
7954 !same_callsites(cur_st->parent, cur_st)) {
7955 verbose(env, "bug: bad parent state for iter next call");
7956 return -EFAULT;
7957 }
7958 /* Note cur_st->parent in the call below, it is necessary to skip
7959 * checkpoint created for cur_st by is_state_visited()
7960 * right at this instruction.
7961 */
7962 prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
7963 /* branch out active iter state */
7964 queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7965 if (!queued_st)
7966 return -ENOMEM;
7967
7968 queued_iter = get_iter_from_state(queued_st, meta);
7969 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7970 queued_iter->iter.depth++;
7971 if (prev_st)
7972 widen_imprecise_scalars(env, prev_st, queued_st);
7973
7974 queued_fr = queued_st->frame[queued_st->curframe];
7975 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7976 }
7977
7978 /* switch to DRAINED state, but keep the depth unchanged */
7979 /* mark current iter state as drained and assume returned NULL */
7980 cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7981 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
7982
7983 return 0;
7984 }
7985
arg_type_is_mem_size(enum bpf_arg_type type)7986 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7987 {
7988 return type == ARG_CONST_SIZE ||
7989 type == ARG_CONST_SIZE_OR_ZERO;
7990 }
7991
arg_type_is_raw_mem(enum bpf_arg_type type)7992 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
7993 {
7994 return base_type(type) == ARG_PTR_TO_MEM &&
7995 type & MEM_UNINIT;
7996 }
7997
arg_type_is_release(enum bpf_arg_type type)7998 static bool arg_type_is_release(enum bpf_arg_type type)
7999 {
8000 return type & OBJ_RELEASE;
8001 }
8002
arg_type_is_dynptr(enum bpf_arg_type type)8003 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8004 {
8005 return base_type(type) == ARG_PTR_TO_DYNPTR;
8006 }
8007
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)8008 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8009 const struct bpf_call_arg_meta *meta,
8010 enum bpf_arg_type *arg_type)
8011 {
8012 if (!meta->map_ptr) {
8013 /* kernel subsystem misconfigured verifier */
8014 verbose(env, "invalid map_ptr to access map->type\n");
8015 return -EACCES;
8016 }
8017
8018 switch (meta->map_ptr->map_type) {
8019 case BPF_MAP_TYPE_SOCKMAP:
8020 case BPF_MAP_TYPE_SOCKHASH:
8021 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8022 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8023 } else {
8024 verbose(env, "invalid arg_type for sockmap/sockhash\n");
8025 return -EINVAL;
8026 }
8027 break;
8028 case BPF_MAP_TYPE_BLOOM_FILTER:
8029 if (meta->func_id == BPF_FUNC_map_peek_elem)
8030 *arg_type = ARG_PTR_TO_MAP_VALUE;
8031 break;
8032 default:
8033 break;
8034 }
8035 return 0;
8036 }
8037
8038 struct bpf_reg_types {
8039 const enum bpf_reg_type types[10];
8040 u32 *btf_id;
8041 };
8042
8043 static const struct bpf_reg_types sock_types = {
8044 .types = {
8045 PTR_TO_SOCK_COMMON,
8046 PTR_TO_SOCKET,
8047 PTR_TO_TCP_SOCK,
8048 PTR_TO_XDP_SOCK,
8049 },
8050 };
8051
8052 #ifdef CONFIG_NET
8053 static const struct bpf_reg_types btf_id_sock_common_types = {
8054 .types = {
8055 PTR_TO_SOCK_COMMON,
8056 PTR_TO_SOCKET,
8057 PTR_TO_TCP_SOCK,
8058 PTR_TO_XDP_SOCK,
8059 PTR_TO_BTF_ID,
8060 PTR_TO_BTF_ID | PTR_TRUSTED,
8061 },
8062 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8063 };
8064 #endif
8065
8066 static const struct bpf_reg_types mem_types = {
8067 .types = {
8068 PTR_TO_STACK,
8069 PTR_TO_PACKET,
8070 PTR_TO_PACKET_META,
8071 PTR_TO_MAP_KEY,
8072 PTR_TO_MAP_VALUE,
8073 PTR_TO_MEM,
8074 PTR_TO_MEM | MEM_RINGBUF,
8075 PTR_TO_BUF,
8076 PTR_TO_BTF_ID | PTR_TRUSTED,
8077 },
8078 };
8079
8080 static const struct bpf_reg_types spin_lock_types = {
8081 .types = {
8082 PTR_TO_MAP_VALUE,
8083 PTR_TO_BTF_ID | MEM_ALLOC,
8084 }
8085 };
8086
8087 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8088 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8089 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8090 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8091 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8092 static const struct bpf_reg_types btf_ptr_types = {
8093 .types = {
8094 PTR_TO_BTF_ID,
8095 PTR_TO_BTF_ID | PTR_TRUSTED,
8096 PTR_TO_BTF_ID | MEM_RCU,
8097 },
8098 };
8099 static const struct bpf_reg_types percpu_btf_ptr_types = {
8100 .types = {
8101 PTR_TO_BTF_ID | MEM_PERCPU,
8102 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8103 }
8104 };
8105 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8106 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8107 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8108 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8109 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8110 static const struct bpf_reg_types dynptr_types = {
8111 .types = {
8112 PTR_TO_STACK,
8113 CONST_PTR_TO_DYNPTR,
8114 }
8115 };
8116
8117 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8118 [ARG_PTR_TO_MAP_KEY] = &mem_types,
8119 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
8120 [ARG_CONST_SIZE] = &scalar_types,
8121 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
8122 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
8123 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
8124 [ARG_PTR_TO_CTX] = &context_types,
8125 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
8126 #ifdef CONFIG_NET
8127 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
8128 #endif
8129 [ARG_PTR_TO_SOCKET] = &fullsock_types,
8130 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
8131 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
8132 [ARG_PTR_TO_MEM] = &mem_types,
8133 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
8134 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
8135 [ARG_PTR_TO_FUNC] = &func_ptr_types,
8136 [ARG_PTR_TO_STACK] = &stack_ptr_types,
8137 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
8138 [ARG_PTR_TO_TIMER] = &timer_types,
8139 [ARG_PTR_TO_KPTR] = &kptr_types,
8140 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
8141 };
8142
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id,struct bpf_call_arg_meta * meta)8143 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8144 enum bpf_arg_type arg_type,
8145 const u32 *arg_btf_id,
8146 struct bpf_call_arg_meta *meta)
8147 {
8148 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8149 enum bpf_reg_type expected, type = reg->type;
8150 const struct bpf_reg_types *compatible;
8151 int i, j;
8152
8153 compatible = compatible_reg_types[base_type(arg_type)];
8154 if (!compatible) {
8155 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8156 return -EFAULT;
8157 }
8158
8159 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8160 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8161 *
8162 * Same for MAYBE_NULL:
8163 *
8164 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8165 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8166 *
8167 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8168 *
8169 * Therefore we fold these flags depending on the arg_type before comparison.
8170 */
8171 if (arg_type & MEM_RDONLY)
8172 type &= ~MEM_RDONLY;
8173 if (arg_type & PTR_MAYBE_NULL)
8174 type &= ~PTR_MAYBE_NULL;
8175 if (base_type(arg_type) == ARG_PTR_TO_MEM)
8176 type &= ~DYNPTR_TYPE_FLAG_MASK;
8177
8178 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type))
8179 type &= ~MEM_ALLOC;
8180
8181 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8182 expected = compatible->types[i];
8183 if (expected == NOT_INIT)
8184 break;
8185
8186 if (type == expected)
8187 goto found;
8188 }
8189
8190 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8191 for (j = 0; j + 1 < i; j++)
8192 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8193 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8194 return -EACCES;
8195
8196 found:
8197 if (base_type(reg->type) != PTR_TO_BTF_ID)
8198 return 0;
8199
8200 if (compatible == &mem_types) {
8201 if (!(arg_type & MEM_RDONLY)) {
8202 verbose(env,
8203 "%s() may write into memory pointed by R%d type=%s\n",
8204 func_id_name(meta->func_id),
8205 regno, reg_type_str(env, reg->type));
8206 return -EACCES;
8207 }
8208 return 0;
8209 }
8210
8211 switch ((int)reg->type) {
8212 case PTR_TO_BTF_ID:
8213 case PTR_TO_BTF_ID | PTR_TRUSTED:
8214 case PTR_TO_BTF_ID | MEM_RCU:
8215 case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8216 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8217 {
8218 /* For bpf_sk_release, it needs to match against first member
8219 * 'struct sock_common', hence make an exception for it. This
8220 * allows bpf_sk_release to work for multiple socket types.
8221 */
8222 bool strict_type_match = arg_type_is_release(arg_type) &&
8223 meta->func_id != BPF_FUNC_sk_release;
8224
8225 if (type_may_be_null(reg->type) &&
8226 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8227 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8228 return -EACCES;
8229 }
8230
8231 if (!arg_btf_id) {
8232 if (!compatible->btf_id) {
8233 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8234 return -EFAULT;
8235 }
8236 arg_btf_id = compatible->btf_id;
8237 }
8238
8239 if (meta->func_id == BPF_FUNC_kptr_xchg) {
8240 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8241 return -EACCES;
8242 } else {
8243 if (arg_btf_id == BPF_PTR_POISON) {
8244 verbose(env, "verifier internal error:");
8245 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8246 regno);
8247 return -EACCES;
8248 }
8249
8250 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8251 btf_vmlinux, *arg_btf_id,
8252 strict_type_match)) {
8253 verbose(env, "R%d is of type %s but %s is expected\n",
8254 regno, btf_type_name(reg->btf, reg->btf_id),
8255 btf_type_name(btf_vmlinux, *arg_btf_id));
8256 return -EACCES;
8257 }
8258 }
8259 break;
8260 }
8261 case PTR_TO_BTF_ID | MEM_ALLOC:
8262 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8263 meta->func_id != BPF_FUNC_kptr_xchg) {
8264 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8265 return -EFAULT;
8266 }
8267 if (meta->func_id == BPF_FUNC_kptr_xchg) {
8268 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8269 return -EACCES;
8270 }
8271 break;
8272 case PTR_TO_BTF_ID | MEM_PERCPU:
8273 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8274 /* Handled by helper specific checks */
8275 break;
8276 default:
8277 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8278 return -EFAULT;
8279 }
8280 return 0;
8281 }
8282
8283 static struct btf_field *
reg_find_field_offset(const struct bpf_reg_state * reg,s32 off,u32 fields)8284 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8285 {
8286 struct btf_field *field;
8287 struct btf_record *rec;
8288
8289 rec = reg_btf_record(reg);
8290 if (!rec)
8291 return NULL;
8292
8293 field = btf_record_find(rec, off, fields);
8294 if (!field)
8295 return NULL;
8296
8297 return field;
8298 }
8299
check_func_arg_reg_off(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,enum bpf_arg_type arg_type)8300 int check_func_arg_reg_off(struct bpf_verifier_env *env,
8301 const struct bpf_reg_state *reg, int regno,
8302 enum bpf_arg_type arg_type)
8303 {
8304 u32 type = reg->type;
8305
8306 /* When referenced register is passed to release function, its fixed
8307 * offset must be 0.
8308 *
8309 * We will check arg_type_is_release reg has ref_obj_id when storing
8310 * meta->release_regno.
8311 */
8312 if (arg_type_is_release(arg_type)) {
8313 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8314 * may not directly point to the object being released, but to
8315 * dynptr pointing to such object, which might be at some offset
8316 * on the stack. In that case, we simply to fallback to the
8317 * default handling.
8318 */
8319 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8320 return 0;
8321
8322 /* Doing check_ptr_off_reg check for the offset will catch this
8323 * because fixed_off_ok is false, but checking here allows us
8324 * to give the user a better error message.
8325 */
8326 if (reg->off) {
8327 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8328 regno);
8329 return -EINVAL;
8330 }
8331 return __check_ptr_off_reg(env, reg, regno, false);
8332 }
8333
8334 switch (type) {
8335 /* Pointer types where both fixed and variable offset is explicitly allowed: */
8336 case PTR_TO_STACK:
8337 case PTR_TO_PACKET:
8338 case PTR_TO_PACKET_META:
8339 case PTR_TO_MAP_KEY:
8340 case PTR_TO_MAP_VALUE:
8341 case PTR_TO_MEM:
8342 case PTR_TO_MEM | MEM_RDONLY:
8343 case PTR_TO_MEM | MEM_RINGBUF:
8344 case PTR_TO_BUF:
8345 case PTR_TO_BUF | MEM_RDONLY:
8346 case SCALAR_VALUE:
8347 return 0;
8348 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8349 * fixed offset.
8350 */
8351 case PTR_TO_BTF_ID:
8352 case PTR_TO_BTF_ID | MEM_ALLOC:
8353 case PTR_TO_BTF_ID | PTR_TRUSTED:
8354 case PTR_TO_BTF_ID | MEM_RCU:
8355 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8356 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8357 /* When referenced PTR_TO_BTF_ID is passed to release function,
8358 * its fixed offset must be 0. In the other cases, fixed offset
8359 * can be non-zero. This was already checked above. So pass
8360 * fixed_off_ok as true to allow fixed offset for all other
8361 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8362 * still need to do checks instead of returning.
8363 */
8364 return __check_ptr_off_reg(env, reg, regno, true);
8365 default:
8366 return __check_ptr_off_reg(env, reg, regno, false);
8367 }
8368 }
8369
get_dynptr_arg_reg(struct bpf_verifier_env * env,const struct bpf_func_proto * fn,struct bpf_reg_state * regs)8370 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8371 const struct bpf_func_proto *fn,
8372 struct bpf_reg_state *regs)
8373 {
8374 struct bpf_reg_state *state = NULL;
8375 int i;
8376
8377 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8378 if (arg_type_is_dynptr(fn->arg_type[i])) {
8379 if (state) {
8380 verbose(env, "verifier internal error: multiple dynptr args\n");
8381 return NULL;
8382 }
8383 state = ®s[BPF_REG_1 + i];
8384 }
8385
8386 if (!state)
8387 verbose(env, "verifier internal error: no dynptr arg found\n");
8388
8389 return state;
8390 }
8391
dynptr_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8392 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8393 {
8394 struct bpf_func_state *state = func(env, reg);
8395 int spi;
8396
8397 if (reg->type == CONST_PTR_TO_DYNPTR)
8398 return reg->id;
8399 spi = dynptr_get_spi(env, reg);
8400 if (spi < 0)
8401 return spi;
8402 return state->stack[spi].spilled_ptr.id;
8403 }
8404
dynptr_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8405 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8406 {
8407 struct bpf_func_state *state = func(env, reg);
8408 int spi;
8409
8410 if (reg->type == CONST_PTR_TO_DYNPTR)
8411 return reg->ref_obj_id;
8412 spi = dynptr_get_spi(env, reg);
8413 if (spi < 0)
8414 return spi;
8415 return state->stack[spi].spilled_ptr.ref_obj_id;
8416 }
8417
dynptr_get_type(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8418 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8419 struct bpf_reg_state *reg)
8420 {
8421 struct bpf_func_state *state = func(env, reg);
8422 int spi;
8423
8424 if (reg->type == CONST_PTR_TO_DYNPTR)
8425 return reg->dynptr.type;
8426
8427 spi = __get_spi(reg->off);
8428 if (spi < 0) {
8429 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8430 return BPF_DYNPTR_TYPE_INVALID;
8431 }
8432
8433 return state->stack[spi].spilled_ptr.dynptr.type;
8434 }
8435
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn,int insn_idx)8436 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8437 struct bpf_call_arg_meta *meta,
8438 const struct bpf_func_proto *fn,
8439 int insn_idx)
8440 {
8441 u32 regno = BPF_REG_1 + arg;
8442 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8443 enum bpf_arg_type arg_type = fn->arg_type[arg];
8444 enum bpf_reg_type type = reg->type;
8445 u32 *arg_btf_id = NULL;
8446 int err = 0;
8447
8448 if (arg_type == ARG_DONTCARE)
8449 return 0;
8450
8451 err = check_reg_arg(env, regno, SRC_OP);
8452 if (err)
8453 return err;
8454
8455 if (arg_type == ARG_ANYTHING) {
8456 if (is_pointer_value(env, regno)) {
8457 verbose(env, "R%d leaks addr into helper function\n",
8458 regno);
8459 return -EACCES;
8460 }
8461 return 0;
8462 }
8463
8464 if (type_is_pkt_pointer(type) &&
8465 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8466 verbose(env, "helper access to the packet is not allowed\n");
8467 return -EACCES;
8468 }
8469
8470 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8471 err = resolve_map_arg_type(env, meta, &arg_type);
8472 if (err)
8473 return err;
8474 }
8475
8476 if (register_is_null(reg) && type_may_be_null(arg_type))
8477 /* A NULL register has a SCALAR_VALUE type, so skip
8478 * type checking.
8479 */
8480 goto skip_type_check;
8481
8482 /* arg_btf_id and arg_size are in a union. */
8483 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8484 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8485 arg_btf_id = fn->arg_btf_id[arg];
8486
8487 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8488 if (err)
8489 return err;
8490
8491 err = check_func_arg_reg_off(env, reg, regno, arg_type);
8492 if (err)
8493 return err;
8494
8495 skip_type_check:
8496 if (arg_type_is_release(arg_type)) {
8497 if (arg_type_is_dynptr(arg_type)) {
8498 struct bpf_func_state *state = func(env, reg);
8499 int spi;
8500
8501 /* Only dynptr created on stack can be released, thus
8502 * the get_spi and stack state checks for spilled_ptr
8503 * should only be done before process_dynptr_func for
8504 * PTR_TO_STACK.
8505 */
8506 if (reg->type == PTR_TO_STACK) {
8507 spi = dynptr_get_spi(env, reg);
8508 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8509 verbose(env, "arg %d is an unacquired reference\n", regno);
8510 return -EINVAL;
8511 }
8512 } else {
8513 verbose(env, "cannot release unowned const bpf_dynptr\n");
8514 return -EINVAL;
8515 }
8516 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
8517 verbose(env, "R%d must be referenced when passed to release function\n",
8518 regno);
8519 return -EINVAL;
8520 }
8521 if (meta->release_regno) {
8522 verbose(env, "verifier internal error: more than one release argument\n");
8523 return -EFAULT;
8524 }
8525 meta->release_regno = regno;
8526 }
8527
8528 if (reg->ref_obj_id) {
8529 if (meta->ref_obj_id) {
8530 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8531 regno, reg->ref_obj_id,
8532 meta->ref_obj_id);
8533 return -EFAULT;
8534 }
8535 meta->ref_obj_id = reg->ref_obj_id;
8536 }
8537
8538 switch (base_type(arg_type)) {
8539 case ARG_CONST_MAP_PTR:
8540 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8541 if (meta->map_ptr) {
8542 /* Use map_uid (which is unique id of inner map) to reject:
8543 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8544 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8545 * if (inner_map1 && inner_map2) {
8546 * timer = bpf_map_lookup_elem(inner_map1);
8547 * if (timer)
8548 * // mismatch would have been allowed
8549 * bpf_timer_init(timer, inner_map2);
8550 * }
8551 *
8552 * Comparing map_ptr is enough to distinguish normal and outer maps.
8553 */
8554 if (meta->map_ptr != reg->map_ptr ||
8555 meta->map_uid != reg->map_uid) {
8556 verbose(env,
8557 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8558 meta->map_uid, reg->map_uid);
8559 return -EINVAL;
8560 }
8561 }
8562 meta->map_ptr = reg->map_ptr;
8563 meta->map_uid = reg->map_uid;
8564 break;
8565 case ARG_PTR_TO_MAP_KEY:
8566 /* bpf_map_xxx(..., map_ptr, ..., key) call:
8567 * check that [key, key + map->key_size) are within
8568 * stack limits and initialized
8569 */
8570 if (!meta->map_ptr) {
8571 /* in function declaration map_ptr must come before
8572 * map_key, so that it's verified and known before
8573 * we have to check map_key here. Otherwise it means
8574 * that kernel subsystem misconfigured verifier
8575 */
8576 verbose(env, "invalid map_ptr to access map->key\n");
8577 return -EACCES;
8578 }
8579 err = check_helper_mem_access(env, regno, meta->map_ptr->key_size,
8580 BPF_READ, false, NULL);
8581 break;
8582 case ARG_PTR_TO_MAP_VALUE:
8583 if (type_may_be_null(arg_type) && register_is_null(reg))
8584 return 0;
8585
8586 /* bpf_map_xxx(..., map_ptr, ..., value) call:
8587 * check [value, value + map->value_size) validity
8588 */
8589 if (!meta->map_ptr) {
8590 /* kernel subsystem misconfigured verifier */
8591 verbose(env, "invalid map_ptr to access map->value\n");
8592 return -EACCES;
8593 }
8594 meta->raw_mode = arg_type & MEM_UNINIT;
8595 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
8596 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
8597 false, meta);
8598 break;
8599 case ARG_PTR_TO_PERCPU_BTF_ID:
8600 if (!reg->btf_id) {
8601 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8602 return -EACCES;
8603 }
8604 meta->ret_btf = reg->btf;
8605 meta->ret_btf_id = reg->btf_id;
8606 break;
8607 case ARG_PTR_TO_SPIN_LOCK:
8608 if (in_rbtree_lock_required_cb(env)) {
8609 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8610 return -EACCES;
8611 }
8612 if (meta->func_id == BPF_FUNC_spin_lock) {
8613 err = process_spin_lock(env, regno, true);
8614 if (err)
8615 return err;
8616 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
8617 err = process_spin_lock(env, regno, false);
8618 if (err)
8619 return err;
8620 } else {
8621 verbose(env, "verifier internal error\n");
8622 return -EFAULT;
8623 }
8624 break;
8625 case ARG_PTR_TO_TIMER:
8626 err = process_timer_func(env, regno, meta);
8627 if (err)
8628 return err;
8629 break;
8630 case ARG_PTR_TO_FUNC:
8631 meta->subprogno = reg->subprogno;
8632 break;
8633 case ARG_PTR_TO_MEM:
8634 /* The access to this pointer is only checked when we hit the
8635 * next is_mem_size argument below.
8636 */
8637 meta->raw_mode = arg_type & MEM_UNINIT;
8638 if (arg_type & MEM_FIXED_SIZE) {
8639 err = check_helper_mem_access(env, regno, fn->arg_size[arg],
8640 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
8641 false, meta);
8642 if (err)
8643 return err;
8644 if (arg_type & MEM_ALIGNED)
8645 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
8646 }
8647 break;
8648 case ARG_CONST_SIZE:
8649 err = check_mem_size_reg(env, reg, regno,
8650 fn->arg_type[arg - 1] & MEM_WRITE ?
8651 BPF_WRITE : BPF_READ,
8652 false, meta);
8653 break;
8654 case ARG_CONST_SIZE_OR_ZERO:
8655 err = check_mem_size_reg(env, reg, regno,
8656 fn->arg_type[arg - 1] & MEM_WRITE ?
8657 BPF_WRITE : BPF_READ,
8658 true, meta);
8659 break;
8660 case ARG_PTR_TO_DYNPTR:
8661 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8662 if (err)
8663 return err;
8664 break;
8665 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8666 if (!tnum_is_const(reg->var_off)) {
8667 verbose(env, "R%d is not a known constant'\n",
8668 regno);
8669 return -EACCES;
8670 }
8671 meta->mem_size = reg->var_off.value;
8672 err = mark_chain_precision(env, regno);
8673 if (err)
8674 return err;
8675 break;
8676 case ARG_PTR_TO_CONST_STR:
8677 {
8678 struct bpf_map *map = reg->map_ptr;
8679 int map_off;
8680 u64 map_addr;
8681 char *str_ptr;
8682
8683 if (!bpf_map_is_rdonly(map)) {
8684 verbose(env, "R%d does not point to a readonly map'\n", regno);
8685 return -EACCES;
8686 }
8687
8688 if (!tnum_is_const(reg->var_off)) {
8689 verbose(env, "R%d is not a constant address'\n", regno);
8690 return -EACCES;
8691 }
8692
8693 if (!map->ops->map_direct_value_addr) {
8694 verbose(env, "no direct value access support for this map type\n");
8695 return -EACCES;
8696 }
8697
8698 err = check_map_access(env, regno, reg->off,
8699 map->value_size - reg->off, false,
8700 ACCESS_HELPER);
8701 if (err)
8702 return err;
8703
8704 map_off = reg->off + reg->var_off.value;
8705 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8706 if (err) {
8707 verbose(env, "direct value access on string failed\n");
8708 return err;
8709 }
8710
8711 str_ptr = (char *)(long)(map_addr);
8712 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8713 verbose(env, "string is not zero-terminated\n");
8714 return -EINVAL;
8715 }
8716 break;
8717 }
8718 case ARG_PTR_TO_KPTR:
8719 err = process_kptr_func(env, regno, meta);
8720 if (err)
8721 return err;
8722 break;
8723 }
8724
8725 return err;
8726 }
8727
may_update_sockmap(struct bpf_verifier_env * env,int func_id)8728 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8729 {
8730 enum bpf_attach_type eatype = env->prog->expected_attach_type;
8731 enum bpf_prog_type type = resolve_prog_type(env->prog);
8732
8733 if (func_id != BPF_FUNC_map_update_elem &&
8734 func_id != BPF_FUNC_map_delete_elem)
8735 return false;
8736
8737 /* It's not possible to get access to a locked struct sock in these
8738 * contexts, so updating is safe.
8739 */
8740 switch (type) {
8741 case BPF_PROG_TYPE_TRACING:
8742 if (eatype == BPF_TRACE_ITER)
8743 return true;
8744 break;
8745 case BPF_PROG_TYPE_SOCK_OPS:
8746 /* map_update allowed only via dedicated helpers with event type checks */
8747 if (func_id == BPF_FUNC_map_delete_elem)
8748 return true;
8749 break;
8750 case BPF_PROG_TYPE_SOCKET_FILTER:
8751 case BPF_PROG_TYPE_SCHED_CLS:
8752 case BPF_PROG_TYPE_SCHED_ACT:
8753 case BPF_PROG_TYPE_XDP:
8754 case BPF_PROG_TYPE_SK_REUSEPORT:
8755 case BPF_PROG_TYPE_FLOW_DISSECTOR:
8756 case BPF_PROG_TYPE_SK_LOOKUP:
8757 return true;
8758 default:
8759 break;
8760 }
8761
8762 verbose(env, "cannot update sockmap in this context\n");
8763 return false;
8764 }
8765
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)8766 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8767 {
8768 return env->prog->jit_requested &&
8769 bpf_jit_supports_subprog_tailcalls();
8770 }
8771
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)8772 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8773 struct bpf_map *map, int func_id)
8774 {
8775 if (!map)
8776 return 0;
8777
8778 /* We need a two way check, first is from map perspective ... */
8779 switch (map->map_type) {
8780 case BPF_MAP_TYPE_PROG_ARRAY:
8781 if (func_id != BPF_FUNC_tail_call)
8782 goto error;
8783 break;
8784 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8785 if (func_id != BPF_FUNC_perf_event_read &&
8786 func_id != BPF_FUNC_perf_event_output &&
8787 func_id != BPF_FUNC_skb_output &&
8788 func_id != BPF_FUNC_perf_event_read_value &&
8789 func_id != BPF_FUNC_xdp_output)
8790 goto error;
8791 break;
8792 case BPF_MAP_TYPE_RINGBUF:
8793 if (func_id != BPF_FUNC_ringbuf_output &&
8794 func_id != BPF_FUNC_ringbuf_reserve &&
8795 func_id != BPF_FUNC_ringbuf_query &&
8796 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8797 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8798 func_id != BPF_FUNC_ringbuf_discard_dynptr)
8799 goto error;
8800 break;
8801 case BPF_MAP_TYPE_USER_RINGBUF:
8802 if (func_id != BPF_FUNC_user_ringbuf_drain)
8803 goto error;
8804 break;
8805 case BPF_MAP_TYPE_STACK_TRACE:
8806 if (func_id != BPF_FUNC_get_stackid)
8807 goto error;
8808 break;
8809 case BPF_MAP_TYPE_CGROUP_ARRAY:
8810 if (func_id != BPF_FUNC_skb_under_cgroup &&
8811 func_id != BPF_FUNC_current_task_under_cgroup)
8812 goto error;
8813 break;
8814 case BPF_MAP_TYPE_CGROUP_STORAGE:
8815 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8816 if (func_id != BPF_FUNC_get_local_storage)
8817 goto error;
8818 break;
8819 case BPF_MAP_TYPE_DEVMAP:
8820 case BPF_MAP_TYPE_DEVMAP_HASH:
8821 if (func_id != BPF_FUNC_redirect_map &&
8822 func_id != BPF_FUNC_map_lookup_elem)
8823 goto error;
8824 break;
8825 /* Restrict bpf side of cpumap and xskmap, open when use-cases
8826 * appear.
8827 */
8828 case BPF_MAP_TYPE_CPUMAP:
8829 if (func_id != BPF_FUNC_redirect_map)
8830 goto error;
8831 break;
8832 case BPF_MAP_TYPE_XSKMAP:
8833 if (func_id != BPF_FUNC_redirect_map &&
8834 func_id != BPF_FUNC_map_lookup_elem)
8835 goto error;
8836 break;
8837 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8838 case BPF_MAP_TYPE_HASH_OF_MAPS:
8839 if (func_id != BPF_FUNC_map_lookup_elem)
8840 goto error;
8841 break;
8842 case BPF_MAP_TYPE_SOCKMAP:
8843 if (func_id != BPF_FUNC_sk_redirect_map &&
8844 func_id != BPF_FUNC_sock_map_update &&
8845 func_id != BPF_FUNC_msg_redirect_map &&
8846 func_id != BPF_FUNC_sk_select_reuseport &&
8847 func_id != BPF_FUNC_map_lookup_elem &&
8848 !may_update_sockmap(env, func_id))
8849 goto error;
8850 break;
8851 case BPF_MAP_TYPE_SOCKHASH:
8852 if (func_id != BPF_FUNC_sk_redirect_hash &&
8853 func_id != BPF_FUNC_sock_hash_update &&
8854 func_id != BPF_FUNC_msg_redirect_hash &&
8855 func_id != BPF_FUNC_sk_select_reuseport &&
8856 func_id != BPF_FUNC_map_lookup_elem &&
8857 !may_update_sockmap(env, func_id))
8858 goto error;
8859 break;
8860 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8861 if (func_id != BPF_FUNC_sk_select_reuseport)
8862 goto error;
8863 break;
8864 case BPF_MAP_TYPE_QUEUE:
8865 case BPF_MAP_TYPE_STACK:
8866 if (func_id != BPF_FUNC_map_peek_elem &&
8867 func_id != BPF_FUNC_map_pop_elem &&
8868 func_id != BPF_FUNC_map_push_elem)
8869 goto error;
8870 break;
8871 case BPF_MAP_TYPE_SK_STORAGE:
8872 if (func_id != BPF_FUNC_sk_storage_get &&
8873 func_id != BPF_FUNC_sk_storage_delete &&
8874 func_id != BPF_FUNC_kptr_xchg)
8875 goto error;
8876 break;
8877 case BPF_MAP_TYPE_INODE_STORAGE:
8878 if (func_id != BPF_FUNC_inode_storage_get &&
8879 func_id != BPF_FUNC_inode_storage_delete &&
8880 func_id != BPF_FUNC_kptr_xchg)
8881 goto error;
8882 break;
8883 case BPF_MAP_TYPE_TASK_STORAGE:
8884 if (func_id != BPF_FUNC_task_storage_get &&
8885 func_id != BPF_FUNC_task_storage_delete &&
8886 func_id != BPF_FUNC_kptr_xchg)
8887 goto error;
8888 break;
8889 case BPF_MAP_TYPE_CGRP_STORAGE:
8890 if (func_id != BPF_FUNC_cgrp_storage_get &&
8891 func_id != BPF_FUNC_cgrp_storage_delete &&
8892 func_id != BPF_FUNC_kptr_xchg)
8893 goto error;
8894 break;
8895 case BPF_MAP_TYPE_BLOOM_FILTER:
8896 if (func_id != BPF_FUNC_map_peek_elem &&
8897 func_id != BPF_FUNC_map_push_elem)
8898 goto error;
8899 break;
8900 default:
8901 break;
8902 }
8903
8904 /* ... and second from the function itself. */
8905 switch (func_id) {
8906 case BPF_FUNC_tail_call:
8907 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8908 goto error;
8909 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8910 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8911 return -EINVAL;
8912 }
8913 break;
8914 case BPF_FUNC_perf_event_read:
8915 case BPF_FUNC_perf_event_output:
8916 case BPF_FUNC_perf_event_read_value:
8917 case BPF_FUNC_skb_output:
8918 case BPF_FUNC_xdp_output:
8919 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8920 goto error;
8921 break;
8922 case BPF_FUNC_ringbuf_output:
8923 case BPF_FUNC_ringbuf_reserve:
8924 case BPF_FUNC_ringbuf_query:
8925 case BPF_FUNC_ringbuf_reserve_dynptr:
8926 case BPF_FUNC_ringbuf_submit_dynptr:
8927 case BPF_FUNC_ringbuf_discard_dynptr:
8928 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8929 goto error;
8930 break;
8931 case BPF_FUNC_user_ringbuf_drain:
8932 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8933 goto error;
8934 break;
8935 case BPF_FUNC_get_stackid:
8936 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8937 goto error;
8938 break;
8939 case BPF_FUNC_current_task_under_cgroup:
8940 case BPF_FUNC_skb_under_cgroup:
8941 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8942 goto error;
8943 break;
8944 case BPF_FUNC_redirect_map:
8945 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8946 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8947 map->map_type != BPF_MAP_TYPE_CPUMAP &&
8948 map->map_type != BPF_MAP_TYPE_XSKMAP)
8949 goto error;
8950 break;
8951 case BPF_FUNC_sk_redirect_map:
8952 case BPF_FUNC_msg_redirect_map:
8953 case BPF_FUNC_sock_map_update:
8954 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8955 goto error;
8956 break;
8957 case BPF_FUNC_sk_redirect_hash:
8958 case BPF_FUNC_msg_redirect_hash:
8959 case BPF_FUNC_sock_hash_update:
8960 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8961 goto error;
8962 break;
8963 case BPF_FUNC_get_local_storage:
8964 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8965 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8966 goto error;
8967 break;
8968 case BPF_FUNC_sk_select_reuseport:
8969 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8970 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8971 map->map_type != BPF_MAP_TYPE_SOCKHASH)
8972 goto error;
8973 break;
8974 case BPF_FUNC_map_pop_elem:
8975 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8976 map->map_type != BPF_MAP_TYPE_STACK)
8977 goto error;
8978 break;
8979 case BPF_FUNC_map_peek_elem:
8980 case BPF_FUNC_map_push_elem:
8981 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8982 map->map_type != BPF_MAP_TYPE_STACK &&
8983 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8984 goto error;
8985 break;
8986 case BPF_FUNC_map_lookup_percpu_elem:
8987 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8988 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8989 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8990 goto error;
8991 break;
8992 case BPF_FUNC_sk_storage_get:
8993 case BPF_FUNC_sk_storage_delete:
8994 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8995 goto error;
8996 break;
8997 case BPF_FUNC_inode_storage_get:
8998 case BPF_FUNC_inode_storage_delete:
8999 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9000 goto error;
9001 break;
9002 case BPF_FUNC_task_storage_get:
9003 case BPF_FUNC_task_storage_delete:
9004 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9005 goto error;
9006 break;
9007 case BPF_FUNC_cgrp_storage_get:
9008 case BPF_FUNC_cgrp_storage_delete:
9009 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9010 goto error;
9011 break;
9012 default:
9013 break;
9014 }
9015
9016 return 0;
9017 error:
9018 verbose(env, "cannot pass map_type %d into func %s#%d\n",
9019 map->map_type, func_id_name(func_id), func_id);
9020 return -EINVAL;
9021 }
9022
check_raw_mode_ok(const struct bpf_func_proto * fn)9023 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9024 {
9025 int count = 0;
9026
9027 if (arg_type_is_raw_mem(fn->arg1_type))
9028 count++;
9029 if (arg_type_is_raw_mem(fn->arg2_type))
9030 count++;
9031 if (arg_type_is_raw_mem(fn->arg3_type))
9032 count++;
9033 if (arg_type_is_raw_mem(fn->arg4_type))
9034 count++;
9035 if (arg_type_is_raw_mem(fn->arg5_type))
9036 count++;
9037
9038 /* We only support one arg being in raw mode at the moment,
9039 * which is sufficient for the helper functions we have
9040 * right now.
9041 */
9042 return count <= 1;
9043 }
9044
check_args_pair_invalid(const struct bpf_func_proto * fn,int arg)9045 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9046 {
9047 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9048 bool has_size = fn->arg_size[arg] != 0;
9049 bool is_next_size = false;
9050
9051 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9052 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9053
9054 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9055 return is_next_size;
9056
9057 return has_size == is_next_size || is_next_size == is_fixed;
9058 }
9059
check_arg_pair_ok(const struct bpf_func_proto * fn)9060 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9061 {
9062 /* bpf_xxx(..., buf, len) call will access 'len'
9063 * bytes from memory 'buf'. Both arg types need
9064 * to be paired, so make sure there's no buggy
9065 * helper function specification.
9066 */
9067 if (arg_type_is_mem_size(fn->arg1_type) ||
9068 check_args_pair_invalid(fn, 0) ||
9069 check_args_pair_invalid(fn, 1) ||
9070 check_args_pair_invalid(fn, 2) ||
9071 check_args_pair_invalid(fn, 3) ||
9072 check_args_pair_invalid(fn, 4))
9073 return false;
9074
9075 return true;
9076 }
9077
check_btf_id_ok(const struct bpf_func_proto * fn)9078 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9079 {
9080 int i;
9081
9082 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9083 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9084 return !!fn->arg_btf_id[i];
9085 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9086 return fn->arg_btf_id[i] == BPF_PTR_POISON;
9087 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9088 /* arg_btf_id and arg_size are in a union. */
9089 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9090 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9091 return false;
9092 }
9093
9094 return true;
9095 }
9096
check_func_proto(const struct bpf_func_proto * fn,int func_id)9097 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9098 {
9099 return check_raw_mode_ok(fn) &&
9100 check_arg_pair_ok(fn) &&
9101 check_btf_id_ok(fn) ? 0 : -EINVAL;
9102 }
9103
9104 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9105 * are now invalid, so turn them into unknown SCALAR_VALUE.
9106 *
9107 * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9108 * since these slices point to packet data.
9109 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)9110 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9111 {
9112 struct bpf_func_state *state;
9113 struct bpf_reg_state *reg;
9114
9115 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9116 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9117 mark_reg_invalid(env, reg);
9118 }));
9119 }
9120
9121 enum {
9122 AT_PKT_END = -1,
9123 BEYOND_PKT_END = -2,
9124 };
9125
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)9126 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9127 {
9128 struct bpf_func_state *state = vstate->frame[vstate->curframe];
9129 struct bpf_reg_state *reg = &state->regs[regn];
9130
9131 if (reg->type != PTR_TO_PACKET)
9132 /* PTR_TO_PACKET_META is not supported yet */
9133 return;
9134
9135 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9136 * How far beyond pkt_end it goes is unknown.
9137 * if (!range_open) it's the case of pkt >= pkt_end
9138 * if (range_open) it's the case of pkt > pkt_end
9139 * hence this pointer is at least 1 byte bigger than pkt_end
9140 */
9141 if (range_open)
9142 reg->range = BEYOND_PKT_END;
9143 else
9144 reg->range = AT_PKT_END;
9145 }
9146
9147 /* The pointer with the specified id has released its reference to kernel
9148 * resources. Identify all copies of the same pointer and clear the reference.
9149 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)9150 static int release_reference(struct bpf_verifier_env *env,
9151 int ref_obj_id)
9152 {
9153 struct bpf_func_state *state;
9154 struct bpf_reg_state *reg;
9155 int err;
9156
9157 err = release_reference_state(cur_func(env), ref_obj_id);
9158 if (err)
9159 return err;
9160
9161 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9162 if (reg->ref_obj_id == ref_obj_id)
9163 mark_reg_invalid(env, reg);
9164 }));
9165
9166 return 0;
9167 }
9168
invalidate_non_owning_refs(struct bpf_verifier_env * env)9169 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9170 {
9171 struct bpf_func_state *unused;
9172 struct bpf_reg_state *reg;
9173
9174 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9175 if (type_is_non_owning_ref(reg->type))
9176 mark_reg_invalid(env, reg);
9177 }));
9178 }
9179
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)9180 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9181 struct bpf_reg_state *regs)
9182 {
9183 int i;
9184
9185 /* after the call registers r0 - r5 were scratched */
9186 for (i = 0; i < CALLER_SAVED_REGS; i++) {
9187 mark_reg_not_init(env, regs, caller_saved[i]);
9188 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9189 }
9190 }
9191
9192 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9193 struct bpf_func_state *caller,
9194 struct bpf_func_state *callee,
9195 int insn_idx);
9196
9197 static int set_callee_state(struct bpf_verifier_env *env,
9198 struct bpf_func_state *caller,
9199 struct bpf_func_state *callee, int insn_idx);
9200
setup_func_entry(struct bpf_verifier_env * env,int subprog,int callsite,set_callee_state_fn set_callee_state_cb,struct bpf_verifier_state * state)9201 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9202 set_callee_state_fn set_callee_state_cb,
9203 struct bpf_verifier_state *state)
9204 {
9205 struct bpf_func_state *caller, *callee;
9206 int err;
9207
9208 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9209 verbose(env, "the call stack of %d frames is too deep\n",
9210 state->curframe + 2);
9211 return -E2BIG;
9212 }
9213
9214 if (state->frame[state->curframe + 1]) {
9215 verbose(env, "verifier bug. Frame %d already allocated\n",
9216 state->curframe + 1);
9217 return -EFAULT;
9218 }
9219
9220 caller = state->frame[state->curframe];
9221 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9222 if (!callee)
9223 return -ENOMEM;
9224 state->frame[state->curframe + 1] = callee;
9225
9226 /* callee cannot access r0, r6 - r9 for reading and has to write
9227 * into its own stack before reading from it.
9228 * callee can read/write into caller's stack
9229 */
9230 init_func_state(env, callee,
9231 /* remember the callsite, it will be used by bpf_exit */
9232 callsite,
9233 state->curframe + 1 /* frameno within this callchain */,
9234 subprog /* subprog number within this prog */);
9235 /* Transfer references to the callee */
9236 err = copy_reference_state(callee, caller);
9237 err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9238 if (err)
9239 goto err_out;
9240
9241 /* only increment it after check_reg_arg() finished */
9242 state->curframe++;
9243
9244 return 0;
9245
9246 err_out:
9247 free_func_state(callee);
9248 state->frame[state->curframe + 1] = NULL;
9249 return err;
9250 }
9251
push_callback_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int insn_idx,int subprog,set_callee_state_fn set_callee_state_cb)9252 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9253 int insn_idx, int subprog,
9254 set_callee_state_fn set_callee_state_cb)
9255 {
9256 struct bpf_verifier_state *state = env->cur_state, *callback_state;
9257 struct bpf_func_state *caller, *callee;
9258 int err;
9259
9260 caller = state->frame[state->curframe];
9261 err = btf_check_subprog_call(env, subprog, caller->regs);
9262 if (err == -EFAULT)
9263 return err;
9264
9265 /* set_callee_state is used for direct subprog calls, but we are
9266 * interested in validating only BPF helpers that can call subprogs as
9267 * callbacks
9268 */
9269 if (bpf_pseudo_kfunc_call(insn) &&
9270 !is_sync_callback_calling_kfunc(insn->imm)) {
9271 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9272 func_id_name(insn->imm), insn->imm);
9273 return -EFAULT;
9274 } else if (!bpf_pseudo_kfunc_call(insn) &&
9275 !is_callback_calling_function(insn->imm)) { /* helper */
9276 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9277 func_id_name(insn->imm), insn->imm);
9278 return -EFAULT;
9279 }
9280
9281 if (insn->code == (BPF_JMP | BPF_CALL) &&
9282 insn->src_reg == 0 &&
9283 insn->imm == BPF_FUNC_timer_set_callback) {
9284 struct bpf_verifier_state *async_cb;
9285
9286 /* there is no real recursion here. timer callbacks are async */
9287 env->subprog_info[subprog].is_async_cb = true;
9288 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9289 insn_idx, subprog);
9290 if (!async_cb)
9291 return -EFAULT;
9292 callee = async_cb->frame[0];
9293 callee->async_entry_cnt = caller->async_entry_cnt + 1;
9294
9295 /* Convert bpf_timer_set_callback() args into timer callback args */
9296 err = set_callee_state_cb(env, caller, callee, insn_idx);
9297 if (err)
9298 return err;
9299
9300 return 0;
9301 }
9302
9303 /* for callback functions enqueue entry to callback and
9304 * proceed with next instruction within current frame.
9305 */
9306 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9307 if (!callback_state)
9308 return -ENOMEM;
9309
9310 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9311 callback_state);
9312 if (err)
9313 return err;
9314
9315 callback_state->callback_unroll_depth++;
9316 callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9317 caller->callback_depth = 0;
9318 return 0;
9319 }
9320
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)9321 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9322 int *insn_idx)
9323 {
9324 struct bpf_verifier_state *state = env->cur_state;
9325 struct bpf_func_state *caller;
9326 int err, subprog, target_insn;
9327
9328 target_insn = *insn_idx + insn->imm + 1;
9329 subprog = find_subprog(env, target_insn);
9330 if (subprog < 0) {
9331 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9332 return -EFAULT;
9333 }
9334
9335 caller = state->frame[state->curframe];
9336 err = btf_check_subprog_call(env, subprog, caller->regs);
9337 if (err == -EFAULT)
9338 return err;
9339 if (subprog_is_global(env, subprog)) {
9340 if (err) {
9341 verbose(env, "Caller passes invalid args into func#%d\n", subprog);
9342 return err;
9343 }
9344
9345 if (env->log.level & BPF_LOG_LEVEL)
9346 verbose(env, "Func#%d is global and valid. Skipping.\n", subprog);
9347 clear_caller_saved_regs(env, caller->regs);
9348
9349 /* All global functions return a 64-bit SCALAR_VALUE */
9350 mark_reg_unknown(env, caller->regs, BPF_REG_0);
9351 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9352
9353 /* continue with next insn after call */
9354 return 0;
9355 }
9356
9357 /* for regular function entry setup new frame and continue
9358 * from that frame.
9359 */
9360 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9361 if (err)
9362 return err;
9363
9364 clear_caller_saved_regs(env, caller->regs);
9365
9366 /* and go analyze first insn of the callee */
9367 *insn_idx = env->subprog_info[subprog].start - 1;
9368
9369 if (env->log.level & BPF_LOG_LEVEL) {
9370 verbose(env, "caller:\n");
9371 print_verifier_state(env, caller, true);
9372 verbose(env, "callee:\n");
9373 print_verifier_state(env, state->frame[state->curframe], true);
9374 }
9375
9376 return 0;
9377 }
9378
map_set_for_each_callback_args(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee)9379 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9380 struct bpf_func_state *caller,
9381 struct bpf_func_state *callee)
9382 {
9383 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9384 * void *callback_ctx, u64 flags);
9385 * callback_fn(struct bpf_map *map, void *key, void *value,
9386 * void *callback_ctx);
9387 */
9388 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9389
9390 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9391 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9392 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9393
9394 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9395 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9396 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9397
9398 /* pointer to stack or null */
9399 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9400
9401 /* unused */
9402 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9403 return 0;
9404 }
9405
set_callee_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9406 static int set_callee_state(struct bpf_verifier_env *env,
9407 struct bpf_func_state *caller,
9408 struct bpf_func_state *callee, int insn_idx)
9409 {
9410 int i;
9411
9412 /* copy r1 - r5 args that callee can access. The copy includes parent
9413 * pointers, which connects us up to the liveness chain
9414 */
9415 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9416 callee->regs[i] = caller->regs[i];
9417 return 0;
9418 }
9419
set_map_elem_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9420 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9421 struct bpf_func_state *caller,
9422 struct bpf_func_state *callee,
9423 int insn_idx)
9424 {
9425 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9426 struct bpf_map *map;
9427 int err;
9428
9429 if (bpf_map_ptr_poisoned(insn_aux)) {
9430 verbose(env, "tail_call abusing map_ptr\n");
9431 return -EINVAL;
9432 }
9433
9434 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9435 if (!map->ops->map_set_for_each_callback_args ||
9436 !map->ops->map_for_each_callback) {
9437 verbose(env, "callback function not allowed for map\n");
9438 return -ENOTSUPP;
9439 }
9440
9441 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9442 if (err)
9443 return err;
9444
9445 callee->in_callback_fn = true;
9446 callee->callback_ret_range = tnum_range(0, 1);
9447 return 0;
9448 }
9449
set_loop_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9450 static int set_loop_callback_state(struct bpf_verifier_env *env,
9451 struct bpf_func_state *caller,
9452 struct bpf_func_state *callee,
9453 int insn_idx)
9454 {
9455 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9456 * u64 flags);
9457 * callback_fn(u32 index, void *callback_ctx);
9458 */
9459 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9460 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9461
9462 /* unused */
9463 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9464 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9465 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9466
9467 callee->in_callback_fn = true;
9468 callee->callback_ret_range = tnum_range(0, 1);
9469 return 0;
9470 }
9471
set_timer_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9472 static int set_timer_callback_state(struct bpf_verifier_env *env,
9473 struct bpf_func_state *caller,
9474 struct bpf_func_state *callee,
9475 int insn_idx)
9476 {
9477 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9478
9479 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9480 * callback_fn(struct bpf_map *map, void *key, void *value);
9481 */
9482 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9483 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9484 callee->regs[BPF_REG_1].map_ptr = map_ptr;
9485
9486 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9487 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9488 callee->regs[BPF_REG_2].map_ptr = map_ptr;
9489
9490 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9491 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9492 callee->regs[BPF_REG_3].map_ptr = map_ptr;
9493
9494 /* unused */
9495 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9496 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9497 callee->in_async_callback_fn = true;
9498 callee->callback_ret_range = tnum_range(0, 1);
9499 return 0;
9500 }
9501
set_find_vma_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9502 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9503 struct bpf_func_state *caller,
9504 struct bpf_func_state *callee,
9505 int insn_idx)
9506 {
9507 /* bpf_find_vma(struct task_struct *task, u64 addr,
9508 * void *callback_fn, void *callback_ctx, u64 flags)
9509 * (callback_fn)(struct task_struct *task,
9510 * struct vm_area_struct *vma, void *callback_ctx);
9511 */
9512 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9513
9514 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9515 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9516 callee->regs[BPF_REG_2].btf = btf_vmlinux;
9517 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9518
9519 /* pointer to stack or null */
9520 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9521
9522 /* unused */
9523 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9524 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9525 callee->in_callback_fn = true;
9526 callee->callback_ret_range = tnum_range(0, 1);
9527 return 0;
9528 }
9529
set_user_ringbuf_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9530 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9531 struct bpf_func_state *caller,
9532 struct bpf_func_state *callee,
9533 int insn_idx)
9534 {
9535 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9536 * callback_ctx, u64 flags);
9537 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9538 */
9539 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9540 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9541 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9542
9543 /* unused */
9544 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9545 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9546 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9547
9548 callee->in_callback_fn = true;
9549 callee->callback_ret_range = tnum_range(0, 1);
9550 return 0;
9551 }
9552
set_rbtree_add_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9553 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9554 struct bpf_func_state *caller,
9555 struct bpf_func_state *callee,
9556 int insn_idx)
9557 {
9558 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9559 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9560 *
9561 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9562 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9563 * by this point, so look at 'root'
9564 */
9565 struct btf_field *field;
9566
9567 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9568 BPF_RB_ROOT);
9569 if (!field || !field->graph_root.value_btf_id)
9570 return -EFAULT;
9571
9572 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9573 ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9574 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9575 ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9576
9577 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9578 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9579 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9580 callee->in_callback_fn = true;
9581 callee->callback_ret_range = tnum_range(0, 1);
9582 return 0;
9583 }
9584
9585 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9586
9587 /* Are we currently verifying the callback for a rbtree helper that must
9588 * be called with lock held? If so, no need to complain about unreleased
9589 * lock
9590 */
in_rbtree_lock_required_cb(struct bpf_verifier_env * env)9591 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9592 {
9593 struct bpf_verifier_state *state = env->cur_state;
9594 struct bpf_insn *insn = env->prog->insnsi;
9595 struct bpf_func_state *callee;
9596 int kfunc_btf_id;
9597
9598 if (!state->curframe)
9599 return false;
9600
9601 callee = state->frame[state->curframe];
9602
9603 if (!callee->in_callback_fn)
9604 return false;
9605
9606 kfunc_btf_id = insn[callee->callsite].imm;
9607 return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9608 }
9609
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)9610 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9611 {
9612 struct bpf_verifier_state *state = env->cur_state, *prev_st;
9613 struct bpf_func_state *caller, *callee;
9614 struct bpf_reg_state *r0;
9615 bool in_callback_fn;
9616 int err;
9617
9618 callee = state->frame[state->curframe];
9619 r0 = &callee->regs[BPF_REG_0];
9620 if (r0->type == PTR_TO_STACK) {
9621 /* technically it's ok to return caller's stack pointer
9622 * (or caller's caller's pointer) back to the caller,
9623 * since these pointers are valid. Only current stack
9624 * pointer will be invalid as soon as function exits,
9625 * but let's be conservative
9626 */
9627 verbose(env, "cannot return stack pointer to the caller\n");
9628 return -EINVAL;
9629 }
9630
9631 caller = state->frame[state->curframe - 1];
9632 if (callee->in_callback_fn) {
9633 /* enforce R0 return value range [0, 1]. */
9634 struct tnum range = callee->callback_ret_range;
9635
9636 if (r0->type != SCALAR_VALUE) {
9637 verbose(env, "R0 not a scalar value\n");
9638 return -EACCES;
9639 }
9640
9641 /* we are going to rely on register's precise value */
9642 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
9643 err = err ?: mark_chain_precision(env, BPF_REG_0);
9644 if (err)
9645 return err;
9646
9647 if (!tnum_in(range, r0->var_off)) {
9648 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9649 return -EINVAL;
9650 }
9651 if (!calls_callback(env, callee->callsite)) {
9652 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
9653 *insn_idx, callee->callsite);
9654 return -EFAULT;
9655 }
9656 } else {
9657 /* return to the caller whatever r0 had in the callee */
9658 caller->regs[BPF_REG_0] = *r0;
9659 }
9660
9661 /* callback_fn frame should have released its own additions to parent's
9662 * reference state at this point, or check_reference_leak would
9663 * complain, hence it must be the same as the caller. There is no need
9664 * to copy it back.
9665 */
9666 if (!callee->in_callback_fn) {
9667 /* Transfer references to the caller */
9668 err = copy_reference_state(caller, callee);
9669 if (err)
9670 return err;
9671 }
9672
9673 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
9674 * there function call logic would reschedule callback visit. If iteration
9675 * converges is_state_visited() would prune that visit eventually.
9676 */
9677 in_callback_fn = callee->in_callback_fn;
9678 if (in_callback_fn)
9679 *insn_idx = callee->callsite;
9680 else
9681 *insn_idx = callee->callsite + 1;
9682
9683 if (env->log.level & BPF_LOG_LEVEL) {
9684 verbose(env, "returning from callee:\n");
9685 print_verifier_state(env, callee, true);
9686 verbose(env, "to caller at %d:\n", *insn_idx);
9687 print_verifier_state(env, caller, true);
9688 }
9689 /* clear everything in the callee */
9690 free_func_state(callee);
9691 state->frame[state->curframe--] = NULL;
9692
9693 /* for callbacks widen imprecise scalars to make programs like below verify:
9694 *
9695 * struct ctx { int i; }
9696 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
9697 * ...
9698 * struct ctx = { .i = 0; }
9699 * bpf_loop(100, cb, &ctx, 0);
9700 *
9701 * This is similar to what is done in process_iter_next_call() for open
9702 * coded iterators.
9703 */
9704 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
9705 if (prev_st) {
9706 err = widen_imprecise_scalars(env, prev_st, state);
9707 if (err)
9708 return err;
9709 }
9710 return 0;
9711 }
9712
do_refine_retval_range(struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)9713 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9714 int func_id,
9715 struct bpf_call_arg_meta *meta)
9716 {
9717 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
9718
9719 if (ret_type != RET_INTEGER)
9720 return;
9721
9722 switch (func_id) {
9723 case BPF_FUNC_get_stack:
9724 case BPF_FUNC_get_task_stack:
9725 case BPF_FUNC_probe_read_str:
9726 case BPF_FUNC_probe_read_kernel_str:
9727 case BPF_FUNC_probe_read_user_str:
9728 ret_reg->smax_value = meta->msize_max_value;
9729 ret_reg->s32_max_value = meta->msize_max_value;
9730 ret_reg->smin_value = -MAX_ERRNO;
9731 ret_reg->s32_min_value = -MAX_ERRNO;
9732 reg_bounds_sync(ret_reg);
9733 break;
9734 case BPF_FUNC_get_smp_processor_id:
9735 ret_reg->umax_value = nr_cpu_ids - 1;
9736 ret_reg->u32_max_value = nr_cpu_ids - 1;
9737 ret_reg->smax_value = nr_cpu_ids - 1;
9738 ret_reg->s32_max_value = nr_cpu_ids - 1;
9739 ret_reg->umin_value = 0;
9740 ret_reg->u32_min_value = 0;
9741 ret_reg->smin_value = 0;
9742 ret_reg->s32_min_value = 0;
9743 reg_bounds_sync(ret_reg);
9744 break;
9745 }
9746 }
9747
9748 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)9749 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9750 int func_id, int insn_idx)
9751 {
9752 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9753 struct bpf_map *map = meta->map_ptr;
9754
9755 if (func_id != BPF_FUNC_tail_call &&
9756 func_id != BPF_FUNC_map_lookup_elem &&
9757 func_id != BPF_FUNC_map_update_elem &&
9758 func_id != BPF_FUNC_map_delete_elem &&
9759 func_id != BPF_FUNC_map_push_elem &&
9760 func_id != BPF_FUNC_map_pop_elem &&
9761 func_id != BPF_FUNC_map_peek_elem &&
9762 func_id != BPF_FUNC_for_each_map_elem &&
9763 func_id != BPF_FUNC_redirect_map &&
9764 func_id != BPF_FUNC_map_lookup_percpu_elem)
9765 return 0;
9766
9767 if (map == NULL) {
9768 verbose(env, "kernel subsystem misconfigured verifier\n");
9769 return -EINVAL;
9770 }
9771
9772 /* In case of read-only, some additional restrictions
9773 * need to be applied in order to prevent altering the
9774 * state of the map from program side.
9775 */
9776 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9777 (func_id == BPF_FUNC_map_delete_elem ||
9778 func_id == BPF_FUNC_map_update_elem ||
9779 func_id == BPF_FUNC_map_push_elem ||
9780 func_id == BPF_FUNC_map_pop_elem)) {
9781 verbose(env, "write into map forbidden\n");
9782 return -EACCES;
9783 }
9784
9785 if (!BPF_MAP_PTR(aux->map_ptr_state))
9786 bpf_map_ptr_store(aux, meta->map_ptr,
9787 !meta->map_ptr->bypass_spec_v1);
9788 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9789 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9790 !meta->map_ptr->bypass_spec_v1);
9791 return 0;
9792 }
9793
9794 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)9795 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9796 int func_id, int insn_idx)
9797 {
9798 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9799 struct bpf_reg_state *regs = cur_regs(env), *reg;
9800 struct bpf_map *map = meta->map_ptr;
9801 u64 val, max;
9802 int err;
9803
9804 if (func_id != BPF_FUNC_tail_call)
9805 return 0;
9806 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9807 verbose(env, "kernel subsystem misconfigured verifier\n");
9808 return -EINVAL;
9809 }
9810
9811 reg = ®s[BPF_REG_3];
9812 val = reg->var_off.value;
9813 max = map->max_entries;
9814
9815 if (!(register_is_const(reg) && val < max)) {
9816 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9817 return 0;
9818 }
9819
9820 err = mark_chain_precision(env, BPF_REG_3);
9821 if (err)
9822 return err;
9823 if (bpf_map_key_unseen(aux))
9824 bpf_map_key_store(aux, val);
9825 else if (!bpf_map_key_poisoned(aux) &&
9826 bpf_map_key_immediate(aux) != val)
9827 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9828 return 0;
9829 }
9830
check_reference_leak(struct bpf_verifier_env * env)9831 static int check_reference_leak(struct bpf_verifier_env *env)
9832 {
9833 struct bpf_func_state *state = cur_func(env);
9834 bool refs_lingering = false;
9835 int i;
9836
9837 if (state->frameno && !state->in_callback_fn)
9838 return 0;
9839
9840 for (i = 0; i < state->acquired_refs; i++) {
9841 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9842 continue;
9843 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9844 state->refs[i].id, state->refs[i].insn_idx);
9845 refs_lingering = true;
9846 }
9847 return refs_lingering ? -EINVAL : 0;
9848 }
9849
check_bpf_snprintf_call(struct bpf_verifier_env * env,struct bpf_reg_state * regs)9850 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9851 struct bpf_reg_state *regs)
9852 {
9853 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3];
9854 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5];
9855 struct bpf_map *fmt_map = fmt_reg->map_ptr;
9856 struct bpf_bprintf_data data = {};
9857 int err, fmt_map_off, num_args;
9858 u64 fmt_addr;
9859 char *fmt;
9860
9861 /* data must be an array of u64 */
9862 if (data_len_reg->var_off.value % 8)
9863 return -EINVAL;
9864 num_args = data_len_reg->var_off.value / 8;
9865
9866 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9867 * and map_direct_value_addr is set.
9868 */
9869 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9870 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9871 fmt_map_off);
9872 if (err) {
9873 verbose(env, "verifier bug\n");
9874 return -EFAULT;
9875 }
9876 fmt = (char *)(long)fmt_addr + fmt_map_off;
9877
9878 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9879 * can focus on validating the format specifiers.
9880 */
9881 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9882 if (err < 0)
9883 verbose(env, "Invalid format string\n");
9884
9885 return err;
9886 }
9887
check_get_func_ip(struct bpf_verifier_env * env)9888 static int check_get_func_ip(struct bpf_verifier_env *env)
9889 {
9890 enum bpf_prog_type type = resolve_prog_type(env->prog);
9891 int func_id = BPF_FUNC_get_func_ip;
9892
9893 if (type == BPF_PROG_TYPE_TRACING) {
9894 if (!bpf_prog_has_trampoline(env->prog)) {
9895 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9896 func_id_name(func_id), func_id);
9897 return -ENOTSUPP;
9898 }
9899 return 0;
9900 } else if (type == BPF_PROG_TYPE_KPROBE) {
9901 return 0;
9902 }
9903
9904 verbose(env, "func %s#%d not supported for program type %d\n",
9905 func_id_name(func_id), func_id, type);
9906 return -ENOTSUPP;
9907 }
9908
cur_aux(struct bpf_verifier_env * env)9909 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9910 {
9911 return &env->insn_aux_data[env->insn_idx];
9912 }
9913
loop_flag_is_zero(struct bpf_verifier_env * env)9914 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9915 {
9916 struct bpf_reg_state *regs = cur_regs(env);
9917 struct bpf_reg_state *reg = ®s[BPF_REG_4];
9918 bool reg_is_null = register_is_null(reg);
9919
9920 if (reg_is_null)
9921 mark_chain_precision(env, BPF_REG_4);
9922
9923 return reg_is_null;
9924 }
9925
update_loop_inline_state(struct bpf_verifier_env * env,u32 subprogno)9926 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9927 {
9928 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9929
9930 if (!state->initialized) {
9931 state->initialized = 1;
9932 state->fit_for_inline = loop_flag_is_zero(env);
9933 state->callback_subprogno = subprogno;
9934 return;
9935 }
9936
9937 if (!state->fit_for_inline)
9938 return;
9939
9940 state->fit_for_inline = (loop_flag_is_zero(env) &&
9941 state->callback_subprogno == subprogno);
9942 }
9943
check_helper_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)9944 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9945 int *insn_idx_p)
9946 {
9947 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9948 const struct bpf_func_proto *fn = NULL;
9949 enum bpf_return_type ret_type;
9950 enum bpf_type_flag ret_flag;
9951 struct bpf_reg_state *regs;
9952 struct bpf_call_arg_meta meta;
9953 int insn_idx = *insn_idx_p;
9954 bool changes_data;
9955 int i, err, func_id;
9956
9957 /* find function prototype */
9958 func_id = insn->imm;
9959 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9960 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9961 func_id);
9962 return -EINVAL;
9963 }
9964
9965 if (env->ops->get_func_proto)
9966 fn = env->ops->get_func_proto(func_id, env->prog);
9967 if (!fn) {
9968 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9969 func_id);
9970 return -EINVAL;
9971 }
9972
9973 /* eBPF programs must be GPL compatible to use GPL-ed functions */
9974 if (!env->prog->gpl_compatible && fn->gpl_only) {
9975 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
9976 return -EINVAL;
9977 }
9978
9979 if (fn->allowed && !fn->allowed(env->prog)) {
9980 verbose(env, "helper call is not allowed in probe\n");
9981 return -EINVAL;
9982 }
9983
9984 if (!env->prog->aux->sleepable && fn->might_sleep) {
9985 verbose(env, "helper call might sleep in a non-sleepable prog\n");
9986 return -EINVAL;
9987 }
9988
9989 /* With LD_ABS/IND some JITs save/restore skb from r1. */
9990 changes_data = bpf_helper_changes_pkt_data(fn->func);
9991 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
9992 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
9993 func_id_name(func_id), func_id);
9994 return -EINVAL;
9995 }
9996
9997 memset(&meta, 0, sizeof(meta));
9998 meta.pkt_access = fn->pkt_access;
9999
10000 err = check_func_proto(fn, func_id);
10001 if (err) {
10002 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10003 func_id_name(func_id), func_id);
10004 return err;
10005 }
10006
10007 if (env->cur_state->active_rcu_lock) {
10008 if (fn->might_sleep) {
10009 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10010 func_id_name(func_id), func_id);
10011 return -EINVAL;
10012 }
10013
10014 if (env->prog->aux->sleepable && is_storage_get_function(func_id))
10015 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10016 }
10017
10018 meta.func_id = func_id;
10019 /* check args */
10020 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10021 err = check_func_arg(env, i, &meta, fn, insn_idx);
10022 if (err)
10023 return err;
10024 }
10025
10026 err = record_func_map(env, &meta, func_id, insn_idx);
10027 if (err)
10028 return err;
10029
10030 err = record_func_key(env, &meta, func_id, insn_idx);
10031 if (err)
10032 return err;
10033
10034 /* Mark slots with STACK_MISC in case of raw mode, stack offset
10035 * is inferred from register state.
10036 */
10037 for (i = 0; i < meta.access_size; i++) {
10038 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10039 BPF_WRITE, -1, false, false);
10040 if (err)
10041 return err;
10042 }
10043
10044 regs = cur_regs(env);
10045
10046 if (meta.release_regno) {
10047 err = -EINVAL;
10048 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10049 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10050 * is safe to do directly.
10051 */
10052 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10053 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10054 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10055 return -EFAULT;
10056 }
10057 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]);
10058 } else if (meta.ref_obj_id) {
10059 err = release_reference(env, meta.ref_obj_id);
10060 } else if (register_is_null(®s[meta.release_regno])) {
10061 /* meta.ref_obj_id can only be 0 if register that is meant to be
10062 * released is NULL, which must be > R0.
10063 */
10064 err = 0;
10065 }
10066 if (err) {
10067 verbose(env, "func %s#%d reference has not been acquired before\n",
10068 func_id_name(func_id), func_id);
10069 return err;
10070 }
10071 }
10072
10073 switch (func_id) {
10074 case BPF_FUNC_tail_call:
10075 err = check_reference_leak(env);
10076 if (err) {
10077 verbose(env, "tail_call would lead to reference leak\n");
10078 return err;
10079 }
10080 break;
10081 case BPF_FUNC_get_local_storage:
10082 /* check that flags argument in get_local_storage(map, flags) is 0,
10083 * this is required because get_local_storage() can't return an error.
10084 */
10085 if (!register_is_null(®s[BPF_REG_2])) {
10086 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10087 return -EINVAL;
10088 }
10089 break;
10090 case BPF_FUNC_for_each_map_elem:
10091 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10092 set_map_elem_callback_state);
10093 break;
10094 case BPF_FUNC_timer_set_callback:
10095 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10096 set_timer_callback_state);
10097 break;
10098 case BPF_FUNC_find_vma:
10099 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10100 set_find_vma_callback_state);
10101 break;
10102 case BPF_FUNC_snprintf:
10103 err = check_bpf_snprintf_call(env, regs);
10104 break;
10105 case BPF_FUNC_loop:
10106 update_loop_inline_state(env, meta.subprogno);
10107 /* Verifier relies on R1 value to determine if bpf_loop() iteration
10108 * is finished, thus mark it precise.
10109 */
10110 err = mark_chain_precision(env, BPF_REG_1);
10111 if (err)
10112 return err;
10113 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10114 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10115 set_loop_callback_state);
10116 } else {
10117 cur_func(env)->callback_depth = 0;
10118 if (env->log.level & BPF_LOG_LEVEL2)
10119 verbose(env, "frame%d bpf_loop iteration limit reached\n",
10120 env->cur_state->curframe);
10121 }
10122 break;
10123 case BPF_FUNC_dynptr_from_mem:
10124 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10125 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10126 reg_type_str(env, regs[BPF_REG_1].type));
10127 return -EACCES;
10128 }
10129 break;
10130 case BPF_FUNC_set_retval:
10131 if (prog_type == BPF_PROG_TYPE_LSM &&
10132 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10133 if (!env->prog->aux->attach_func_proto->type) {
10134 /* Make sure programs that attach to void
10135 * hooks don't try to modify return value.
10136 */
10137 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10138 return -EINVAL;
10139 }
10140 }
10141 break;
10142 case BPF_FUNC_dynptr_data:
10143 {
10144 struct bpf_reg_state *reg;
10145 int id, ref_obj_id;
10146
10147 reg = get_dynptr_arg_reg(env, fn, regs);
10148 if (!reg)
10149 return -EFAULT;
10150
10151
10152 if (meta.dynptr_id) {
10153 verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10154 return -EFAULT;
10155 }
10156 if (meta.ref_obj_id) {
10157 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10158 return -EFAULT;
10159 }
10160
10161 id = dynptr_id(env, reg);
10162 if (id < 0) {
10163 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10164 return id;
10165 }
10166
10167 ref_obj_id = dynptr_ref_obj_id(env, reg);
10168 if (ref_obj_id < 0) {
10169 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10170 return ref_obj_id;
10171 }
10172
10173 meta.dynptr_id = id;
10174 meta.ref_obj_id = ref_obj_id;
10175
10176 break;
10177 }
10178 case BPF_FUNC_dynptr_write:
10179 {
10180 enum bpf_dynptr_type dynptr_type;
10181 struct bpf_reg_state *reg;
10182
10183 reg = get_dynptr_arg_reg(env, fn, regs);
10184 if (!reg)
10185 return -EFAULT;
10186
10187 dynptr_type = dynptr_get_type(env, reg);
10188 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10189 return -EFAULT;
10190
10191 if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10192 /* this will trigger clear_all_pkt_pointers(), which will
10193 * invalidate all dynptr slices associated with the skb
10194 */
10195 changes_data = true;
10196
10197 break;
10198 }
10199 case BPF_FUNC_user_ringbuf_drain:
10200 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10201 set_user_ringbuf_callback_state);
10202 break;
10203 }
10204
10205 if (err)
10206 return err;
10207
10208 /* reset caller saved regs */
10209 for (i = 0; i < CALLER_SAVED_REGS; i++) {
10210 mark_reg_not_init(env, regs, caller_saved[i]);
10211 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10212 }
10213
10214 /* helper call returns 64-bit value. */
10215 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10216
10217 /* update return register (already marked as written above) */
10218 ret_type = fn->ret_type;
10219 ret_flag = type_flag(ret_type);
10220
10221 switch (base_type(ret_type)) {
10222 case RET_INTEGER:
10223 /* sets type to SCALAR_VALUE */
10224 mark_reg_unknown(env, regs, BPF_REG_0);
10225 break;
10226 case RET_VOID:
10227 regs[BPF_REG_0].type = NOT_INIT;
10228 break;
10229 case RET_PTR_TO_MAP_VALUE:
10230 /* There is no offset yet applied, variable or fixed */
10231 mark_reg_known_zero(env, regs, BPF_REG_0);
10232 /* remember map_ptr, so that check_map_access()
10233 * can check 'value_size' boundary of memory access
10234 * to map element returned from bpf_map_lookup_elem()
10235 */
10236 if (meta.map_ptr == NULL) {
10237 verbose(env,
10238 "kernel subsystem misconfigured verifier\n");
10239 return -EINVAL;
10240 }
10241 regs[BPF_REG_0].map_ptr = meta.map_ptr;
10242 regs[BPF_REG_0].map_uid = meta.map_uid;
10243 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10244 if (!type_may_be_null(ret_type) &&
10245 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10246 regs[BPF_REG_0].id = ++env->id_gen;
10247 }
10248 break;
10249 case RET_PTR_TO_SOCKET:
10250 mark_reg_known_zero(env, regs, BPF_REG_0);
10251 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10252 break;
10253 case RET_PTR_TO_SOCK_COMMON:
10254 mark_reg_known_zero(env, regs, BPF_REG_0);
10255 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10256 break;
10257 case RET_PTR_TO_TCP_SOCK:
10258 mark_reg_known_zero(env, regs, BPF_REG_0);
10259 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10260 break;
10261 case RET_PTR_TO_MEM:
10262 mark_reg_known_zero(env, regs, BPF_REG_0);
10263 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10264 regs[BPF_REG_0].mem_size = meta.mem_size;
10265 break;
10266 case RET_PTR_TO_MEM_OR_BTF_ID:
10267 {
10268 const struct btf_type *t;
10269
10270 mark_reg_known_zero(env, regs, BPF_REG_0);
10271 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10272 if (!btf_type_is_struct(t)) {
10273 u32 tsize;
10274 const struct btf_type *ret;
10275 const char *tname;
10276
10277 /* resolve the type size of ksym. */
10278 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10279 if (IS_ERR(ret)) {
10280 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10281 verbose(env, "unable to resolve the size of type '%s': %ld\n",
10282 tname, PTR_ERR(ret));
10283 return -EINVAL;
10284 }
10285 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10286 regs[BPF_REG_0].mem_size = tsize;
10287 } else {
10288 /* MEM_RDONLY may be carried from ret_flag, but it
10289 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10290 * it will confuse the check of PTR_TO_BTF_ID in
10291 * check_mem_access().
10292 */
10293 ret_flag &= ~MEM_RDONLY;
10294
10295 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10296 regs[BPF_REG_0].btf = meta.ret_btf;
10297 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10298 }
10299 break;
10300 }
10301 case RET_PTR_TO_BTF_ID:
10302 {
10303 struct btf *ret_btf;
10304 int ret_btf_id;
10305
10306 mark_reg_known_zero(env, regs, BPF_REG_0);
10307 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10308 if (func_id == BPF_FUNC_kptr_xchg) {
10309 ret_btf = meta.kptr_field->kptr.btf;
10310 ret_btf_id = meta.kptr_field->kptr.btf_id;
10311 if (!btf_is_kernel(ret_btf))
10312 regs[BPF_REG_0].type |= MEM_ALLOC;
10313 } else {
10314 if (fn->ret_btf_id == BPF_PTR_POISON) {
10315 verbose(env, "verifier internal error:");
10316 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10317 func_id_name(func_id));
10318 return -EINVAL;
10319 }
10320 ret_btf = btf_vmlinux;
10321 ret_btf_id = *fn->ret_btf_id;
10322 }
10323 if (ret_btf_id == 0) {
10324 verbose(env, "invalid return type %u of func %s#%d\n",
10325 base_type(ret_type), func_id_name(func_id),
10326 func_id);
10327 return -EINVAL;
10328 }
10329 regs[BPF_REG_0].btf = ret_btf;
10330 regs[BPF_REG_0].btf_id = ret_btf_id;
10331 break;
10332 }
10333 default:
10334 verbose(env, "unknown return type %u of func %s#%d\n",
10335 base_type(ret_type), func_id_name(func_id), func_id);
10336 return -EINVAL;
10337 }
10338
10339 if (type_may_be_null(regs[BPF_REG_0].type))
10340 regs[BPF_REG_0].id = ++env->id_gen;
10341
10342 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10343 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10344 func_id_name(func_id), func_id);
10345 return -EFAULT;
10346 }
10347
10348 if (is_dynptr_ref_function(func_id))
10349 regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10350
10351 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10352 /* For release_reference() */
10353 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10354 } else if (is_acquire_function(func_id, meta.map_ptr)) {
10355 int id = acquire_reference_state(env, insn_idx);
10356
10357 if (id < 0)
10358 return id;
10359 /* For mark_ptr_or_null_reg() */
10360 regs[BPF_REG_0].id = id;
10361 /* For release_reference() */
10362 regs[BPF_REG_0].ref_obj_id = id;
10363 }
10364
10365 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
10366
10367 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10368 if (err)
10369 return err;
10370
10371 if ((func_id == BPF_FUNC_get_stack ||
10372 func_id == BPF_FUNC_get_task_stack) &&
10373 !env->prog->has_callchain_buf) {
10374 const char *err_str;
10375
10376 #ifdef CONFIG_PERF_EVENTS
10377 err = get_callchain_buffers(sysctl_perf_event_max_stack);
10378 err_str = "cannot get callchain buffer for func %s#%d\n";
10379 #else
10380 err = -ENOTSUPP;
10381 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10382 #endif
10383 if (err) {
10384 verbose(env, err_str, func_id_name(func_id), func_id);
10385 return err;
10386 }
10387
10388 env->prog->has_callchain_buf = true;
10389 }
10390
10391 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10392 env->prog->call_get_stack = true;
10393
10394 if (func_id == BPF_FUNC_get_func_ip) {
10395 if (check_get_func_ip(env))
10396 return -ENOTSUPP;
10397 env->prog->call_get_func_ip = true;
10398 }
10399
10400 if (changes_data)
10401 clear_all_pkt_pointers(env);
10402 return 0;
10403 }
10404
10405 /* mark_btf_func_reg_size() is used when the reg size is determined by
10406 * the BTF func_proto's return value size and argument.
10407 */
mark_btf_func_reg_size(struct bpf_verifier_env * env,u32 regno,size_t reg_size)10408 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10409 size_t reg_size)
10410 {
10411 struct bpf_reg_state *reg = &cur_regs(env)[regno];
10412
10413 if (regno == BPF_REG_0) {
10414 /* Function return value */
10415 reg->live |= REG_LIVE_WRITTEN;
10416 reg->subreg_def = reg_size == sizeof(u64) ?
10417 DEF_NOT_SUBREG : env->insn_idx + 1;
10418 } else {
10419 /* Function argument */
10420 if (reg_size == sizeof(u64)) {
10421 mark_insn_zext(env, reg);
10422 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10423 } else {
10424 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10425 }
10426 }
10427 }
10428
is_kfunc_acquire(struct bpf_kfunc_call_arg_meta * meta)10429 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10430 {
10431 return meta->kfunc_flags & KF_ACQUIRE;
10432 }
10433
is_kfunc_release(struct bpf_kfunc_call_arg_meta * meta)10434 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10435 {
10436 return meta->kfunc_flags & KF_RELEASE;
10437 }
10438
is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta * meta)10439 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10440 {
10441 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10442 }
10443
is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta * meta)10444 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10445 {
10446 return meta->kfunc_flags & KF_SLEEPABLE;
10447 }
10448
is_kfunc_destructive(struct bpf_kfunc_call_arg_meta * meta)10449 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10450 {
10451 return meta->kfunc_flags & KF_DESTRUCTIVE;
10452 }
10453
is_kfunc_rcu(struct bpf_kfunc_call_arg_meta * meta)10454 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10455 {
10456 return meta->kfunc_flags & KF_RCU;
10457 }
10458
__kfunc_param_match_suffix(const struct btf * btf,const struct btf_param * arg,const char * suffix)10459 static bool __kfunc_param_match_suffix(const struct btf *btf,
10460 const struct btf_param *arg,
10461 const char *suffix)
10462 {
10463 int suffix_len = strlen(suffix), len;
10464 const char *param_name;
10465
10466 /* In the future, this can be ported to use BTF tagging */
10467 param_name = btf_name_by_offset(btf, arg->name_off);
10468 if (str_is_empty(param_name))
10469 return false;
10470 len = strlen(param_name);
10471 if (len < suffix_len)
10472 return false;
10473 param_name += len - suffix_len;
10474 return !strncmp(param_name, suffix, suffix_len);
10475 }
10476
is_kfunc_arg_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)10477 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10478 const struct btf_param *arg,
10479 const struct bpf_reg_state *reg)
10480 {
10481 const struct btf_type *t;
10482
10483 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10484 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10485 return false;
10486
10487 return __kfunc_param_match_suffix(btf, arg, "__sz");
10488 }
10489
is_kfunc_arg_const_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)10490 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10491 const struct btf_param *arg,
10492 const struct bpf_reg_state *reg)
10493 {
10494 const struct btf_type *t;
10495
10496 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10497 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10498 return false;
10499
10500 return __kfunc_param_match_suffix(btf, arg, "__szk");
10501 }
10502
is_kfunc_arg_optional(const struct btf * btf,const struct btf_param * arg)10503 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10504 {
10505 return __kfunc_param_match_suffix(btf, arg, "__opt");
10506 }
10507
is_kfunc_arg_constant(const struct btf * btf,const struct btf_param * arg)10508 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10509 {
10510 return __kfunc_param_match_suffix(btf, arg, "__k");
10511 }
10512
is_kfunc_arg_ignore(const struct btf * btf,const struct btf_param * arg)10513 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10514 {
10515 return __kfunc_param_match_suffix(btf, arg, "__ign");
10516 }
10517
is_kfunc_arg_alloc_obj(const struct btf * btf,const struct btf_param * arg)10518 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10519 {
10520 return __kfunc_param_match_suffix(btf, arg, "__alloc");
10521 }
10522
is_kfunc_arg_uninit(const struct btf * btf,const struct btf_param * arg)10523 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10524 {
10525 return __kfunc_param_match_suffix(btf, arg, "__uninit");
10526 }
10527
is_kfunc_arg_refcounted_kptr(const struct btf * btf,const struct btf_param * arg)10528 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10529 {
10530 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10531 }
10532
is_kfunc_arg_scalar_with_name(const struct btf * btf,const struct btf_param * arg,const char * name)10533 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10534 const struct btf_param *arg,
10535 const char *name)
10536 {
10537 int len, target_len = strlen(name);
10538 const char *param_name;
10539
10540 param_name = btf_name_by_offset(btf, arg->name_off);
10541 if (str_is_empty(param_name))
10542 return false;
10543 len = strlen(param_name);
10544 if (len != target_len)
10545 return false;
10546 if (strcmp(param_name, name))
10547 return false;
10548
10549 return true;
10550 }
10551
10552 enum {
10553 KF_ARG_DYNPTR_ID,
10554 KF_ARG_LIST_HEAD_ID,
10555 KF_ARG_LIST_NODE_ID,
10556 KF_ARG_RB_ROOT_ID,
10557 KF_ARG_RB_NODE_ID,
10558 };
10559
10560 BTF_ID_LIST(kf_arg_btf_ids)
BTF_ID(struct,bpf_dynptr_kern)10561 BTF_ID(struct, bpf_dynptr_kern)
10562 BTF_ID(struct, bpf_list_head)
10563 BTF_ID(struct, bpf_list_node)
10564 BTF_ID(struct, bpf_rb_root)
10565 BTF_ID(struct, bpf_rb_node)
10566
10567 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10568 const struct btf_param *arg, int type)
10569 {
10570 const struct btf_type *t;
10571 u32 res_id;
10572
10573 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10574 if (!t)
10575 return false;
10576 if (!btf_type_is_ptr(t))
10577 return false;
10578 t = btf_type_skip_modifiers(btf, t->type, &res_id);
10579 if (!t)
10580 return false;
10581 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10582 }
10583
is_kfunc_arg_dynptr(const struct btf * btf,const struct btf_param * arg)10584 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10585 {
10586 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10587 }
10588
is_kfunc_arg_list_head(const struct btf * btf,const struct btf_param * arg)10589 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10590 {
10591 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10592 }
10593
is_kfunc_arg_list_node(const struct btf * btf,const struct btf_param * arg)10594 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10595 {
10596 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10597 }
10598
is_kfunc_arg_rbtree_root(const struct btf * btf,const struct btf_param * arg)10599 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10600 {
10601 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10602 }
10603
is_kfunc_arg_rbtree_node(const struct btf * btf,const struct btf_param * arg)10604 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10605 {
10606 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10607 }
10608
is_kfunc_arg_callback(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_param * arg)10609 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10610 const struct btf_param *arg)
10611 {
10612 const struct btf_type *t;
10613
10614 t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10615 if (!t)
10616 return false;
10617
10618 return true;
10619 }
10620
10621 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
__btf_type_is_scalar_struct(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_type * t,int rec)10622 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10623 const struct btf *btf,
10624 const struct btf_type *t, int rec)
10625 {
10626 const struct btf_type *member_type;
10627 const struct btf_member *member;
10628 u32 i;
10629
10630 if (!btf_type_is_struct(t))
10631 return false;
10632
10633 for_each_member(i, t, member) {
10634 const struct btf_array *array;
10635
10636 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10637 if (btf_type_is_struct(member_type)) {
10638 if (rec >= 3) {
10639 verbose(env, "max struct nesting depth exceeded\n");
10640 return false;
10641 }
10642 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10643 return false;
10644 continue;
10645 }
10646 if (btf_type_is_array(member_type)) {
10647 array = btf_array(member_type);
10648 if (!array->nelems)
10649 return false;
10650 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10651 if (!btf_type_is_scalar(member_type))
10652 return false;
10653 continue;
10654 }
10655 if (!btf_type_is_scalar(member_type))
10656 return false;
10657 }
10658 return true;
10659 }
10660
10661 enum kfunc_ptr_arg_type {
10662 KF_ARG_PTR_TO_CTX,
10663 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
10664 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10665 KF_ARG_PTR_TO_DYNPTR,
10666 KF_ARG_PTR_TO_ITER,
10667 KF_ARG_PTR_TO_LIST_HEAD,
10668 KF_ARG_PTR_TO_LIST_NODE,
10669 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
10670 KF_ARG_PTR_TO_MEM,
10671 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
10672 KF_ARG_PTR_TO_CALLBACK,
10673 KF_ARG_PTR_TO_RB_ROOT,
10674 KF_ARG_PTR_TO_RB_NODE,
10675 };
10676
10677 enum special_kfunc_type {
10678 KF_bpf_obj_new_impl,
10679 KF_bpf_obj_drop_impl,
10680 KF_bpf_refcount_acquire_impl,
10681 KF_bpf_list_push_front_impl,
10682 KF_bpf_list_push_back_impl,
10683 KF_bpf_list_pop_front,
10684 KF_bpf_list_pop_back,
10685 KF_bpf_cast_to_kern_ctx,
10686 KF_bpf_rdonly_cast,
10687 KF_bpf_rcu_read_lock,
10688 KF_bpf_rcu_read_unlock,
10689 KF_bpf_rbtree_remove,
10690 KF_bpf_rbtree_add_impl,
10691 KF_bpf_rbtree_first,
10692 KF_bpf_dynptr_from_skb,
10693 KF_bpf_dynptr_from_xdp,
10694 KF_bpf_dynptr_slice,
10695 KF_bpf_dynptr_slice_rdwr,
10696 KF_bpf_dynptr_clone,
10697 };
10698
10699 BTF_SET_START(special_kfunc_set)
BTF_ID(func,bpf_obj_new_impl)10700 BTF_ID(func, bpf_obj_new_impl)
10701 BTF_ID(func, bpf_obj_drop_impl)
10702 BTF_ID(func, bpf_refcount_acquire_impl)
10703 BTF_ID(func, bpf_list_push_front_impl)
10704 BTF_ID(func, bpf_list_push_back_impl)
10705 BTF_ID(func, bpf_list_pop_front)
10706 BTF_ID(func, bpf_list_pop_back)
10707 BTF_ID(func, bpf_cast_to_kern_ctx)
10708 BTF_ID(func, bpf_rdonly_cast)
10709 BTF_ID(func, bpf_rbtree_remove)
10710 BTF_ID(func, bpf_rbtree_add_impl)
10711 BTF_ID(func, bpf_rbtree_first)
10712 BTF_ID(func, bpf_dynptr_from_skb)
10713 BTF_ID(func, bpf_dynptr_from_xdp)
10714 BTF_ID(func, bpf_dynptr_slice)
10715 BTF_ID(func, bpf_dynptr_slice_rdwr)
10716 BTF_ID(func, bpf_dynptr_clone)
10717 BTF_SET_END(special_kfunc_set)
10718
10719 BTF_ID_LIST(special_kfunc_list)
10720 BTF_ID(func, bpf_obj_new_impl)
10721 BTF_ID(func, bpf_obj_drop_impl)
10722 BTF_ID(func, bpf_refcount_acquire_impl)
10723 BTF_ID(func, bpf_list_push_front_impl)
10724 BTF_ID(func, bpf_list_push_back_impl)
10725 BTF_ID(func, bpf_list_pop_front)
10726 BTF_ID(func, bpf_list_pop_back)
10727 BTF_ID(func, bpf_cast_to_kern_ctx)
10728 BTF_ID(func, bpf_rdonly_cast)
10729 BTF_ID(func, bpf_rcu_read_lock)
10730 BTF_ID(func, bpf_rcu_read_unlock)
10731 BTF_ID(func, bpf_rbtree_remove)
10732 BTF_ID(func, bpf_rbtree_add_impl)
10733 BTF_ID(func, bpf_rbtree_first)
10734 BTF_ID(func, bpf_dynptr_from_skb)
10735 BTF_ID(func, bpf_dynptr_from_xdp)
10736 BTF_ID(func, bpf_dynptr_slice)
10737 BTF_ID(func, bpf_dynptr_slice_rdwr)
10738 BTF_ID(func, bpf_dynptr_clone)
10739
10740 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10741 {
10742 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10743 meta->arg_owning_ref) {
10744 return false;
10745 }
10746
10747 return meta->kfunc_flags & KF_RET_NULL;
10748 }
10749
is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta * meta)10750 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10751 {
10752 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10753 }
10754
is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta * meta)10755 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10756 {
10757 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10758 }
10759
10760 static enum kfunc_ptr_arg_type
get_kfunc_ptr_arg_type(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,const struct btf_type * t,const struct btf_type * ref_t,const char * ref_tname,const struct btf_param * args,int argno,int nargs)10761 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10762 struct bpf_kfunc_call_arg_meta *meta,
10763 const struct btf_type *t, const struct btf_type *ref_t,
10764 const char *ref_tname, const struct btf_param *args,
10765 int argno, int nargs)
10766 {
10767 u32 regno = argno + 1;
10768 struct bpf_reg_state *regs = cur_regs(env);
10769 struct bpf_reg_state *reg = ®s[regno];
10770 bool arg_mem_size = false;
10771
10772 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10773 return KF_ARG_PTR_TO_CTX;
10774
10775 /* In this function, we verify the kfunc's BTF as per the argument type,
10776 * leaving the rest of the verification with respect to the register
10777 * type to our caller. When a set of conditions hold in the BTF type of
10778 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10779 */
10780 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10781 return KF_ARG_PTR_TO_CTX;
10782
10783 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10784 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10785
10786 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10787 return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10788
10789 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10790 return KF_ARG_PTR_TO_DYNPTR;
10791
10792 if (is_kfunc_arg_iter(meta, argno))
10793 return KF_ARG_PTR_TO_ITER;
10794
10795 if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10796 return KF_ARG_PTR_TO_LIST_HEAD;
10797
10798 if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10799 return KF_ARG_PTR_TO_LIST_NODE;
10800
10801 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10802 return KF_ARG_PTR_TO_RB_ROOT;
10803
10804 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10805 return KF_ARG_PTR_TO_RB_NODE;
10806
10807 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10808 if (!btf_type_is_struct(ref_t)) {
10809 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10810 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10811 return -EINVAL;
10812 }
10813 return KF_ARG_PTR_TO_BTF_ID;
10814 }
10815
10816 if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10817 return KF_ARG_PTR_TO_CALLBACK;
10818
10819
10820 if (argno + 1 < nargs &&
10821 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) ||
10822 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])))
10823 arg_mem_size = true;
10824
10825 /* This is the catch all argument type of register types supported by
10826 * check_helper_mem_access. However, we only allow when argument type is
10827 * pointer to scalar, or struct composed (recursively) of scalars. When
10828 * arg_mem_size is true, the pointer can be void *.
10829 */
10830 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10831 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10832 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10833 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10834 return -EINVAL;
10835 }
10836 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10837 }
10838
process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const struct btf_type * ref_t,const char * ref_tname,u32 ref_id,struct bpf_kfunc_call_arg_meta * meta,int argno)10839 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10840 struct bpf_reg_state *reg,
10841 const struct btf_type *ref_t,
10842 const char *ref_tname, u32 ref_id,
10843 struct bpf_kfunc_call_arg_meta *meta,
10844 int argno)
10845 {
10846 const struct btf_type *reg_ref_t;
10847 bool strict_type_match = false;
10848 const struct btf *reg_btf;
10849 const char *reg_ref_tname;
10850 u32 reg_ref_id;
10851
10852 if (base_type(reg->type) == PTR_TO_BTF_ID) {
10853 reg_btf = reg->btf;
10854 reg_ref_id = reg->btf_id;
10855 } else {
10856 reg_btf = btf_vmlinux;
10857 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10858 }
10859
10860 /* Enforce strict type matching for calls to kfuncs that are acquiring
10861 * or releasing a reference, or are no-cast aliases. We do _not_
10862 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10863 * as we want to enable BPF programs to pass types that are bitwise
10864 * equivalent without forcing them to explicitly cast with something
10865 * like bpf_cast_to_kern_ctx().
10866 *
10867 * For example, say we had a type like the following:
10868 *
10869 * struct bpf_cpumask {
10870 * cpumask_t cpumask;
10871 * refcount_t usage;
10872 * };
10873 *
10874 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10875 * to a struct cpumask, so it would be safe to pass a struct
10876 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10877 *
10878 * The philosophy here is similar to how we allow scalars of different
10879 * types to be passed to kfuncs as long as the size is the same. The
10880 * only difference here is that we're simply allowing
10881 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10882 * resolve types.
10883 */
10884 if (is_kfunc_acquire(meta) ||
10885 (is_kfunc_release(meta) && reg->ref_obj_id) ||
10886 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10887 strict_type_match = true;
10888
10889 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10890
10891 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id);
10892 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10893 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10894 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10895 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10896 btf_type_str(reg_ref_t), reg_ref_tname);
10897 return -EINVAL;
10898 }
10899 return 0;
10900 }
10901
ref_set_non_owning(struct bpf_verifier_env * env,struct bpf_reg_state * reg)10902 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10903 {
10904 struct bpf_verifier_state *state = env->cur_state;
10905 struct btf_record *rec = reg_btf_record(reg);
10906
10907 if (!state->active_lock.ptr) {
10908 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10909 return -EFAULT;
10910 }
10911
10912 if (type_flag(reg->type) & NON_OWN_REF) {
10913 verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10914 return -EFAULT;
10915 }
10916
10917 reg->type |= NON_OWN_REF;
10918 if (rec->refcount_off >= 0)
10919 reg->type |= MEM_RCU;
10920
10921 return 0;
10922 }
10923
ref_convert_owning_non_owning(struct bpf_verifier_env * env,u32 ref_obj_id)10924 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10925 {
10926 struct bpf_func_state *state, *unused;
10927 struct bpf_reg_state *reg;
10928 int i;
10929
10930 state = cur_func(env);
10931
10932 if (!ref_obj_id) {
10933 verbose(env, "verifier internal error: ref_obj_id is zero for "
10934 "owning -> non-owning conversion\n");
10935 return -EFAULT;
10936 }
10937
10938 for (i = 0; i < state->acquired_refs; i++) {
10939 if (state->refs[i].id != ref_obj_id)
10940 continue;
10941
10942 /* Clear ref_obj_id here so release_reference doesn't clobber
10943 * the whole reg
10944 */
10945 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10946 if (reg->ref_obj_id == ref_obj_id) {
10947 reg->ref_obj_id = 0;
10948 ref_set_non_owning(env, reg);
10949 }
10950 }));
10951 return 0;
10952 }
10953
10954 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10955 return -EFAULT;
10956 }
10957
10958 /* Implementation details:
10959 *
10960 * Each register points to some region of memory, which we define as an
10961 * allocation. Each allocation may embed a bpf_spin_lock which protects any
10962 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10963 * allocation. The lock and the data it protects are colocated in the same
10964 * memory region.
10965 *
10966 * Hence, everytime a register holds a pointer value pointing to such
10967 * allocation, the verifier preserves a unique reg->id for it.
10968 *
10969 * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10970 * bpf_spin_lock is called.
10971 *
10972 * To enable this, lock state in the verifier captures two values:
10973 * active_lock.ptr = Register's type specific pointer
10974 * active_lock.id = A unique ID for each register pointer value
10975 *
10976 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10977 * supported register types.
10978 *
10979 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
10980 * allocated objects is the reg->btf pointer.
10981 *
10982 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
10983 * can establish the provenance of the map value statically for each distinct
10984 * lookup into such maps. They always contain a single map value hence unique
10985 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
10986 *
10987 * So, in case of global variables, they use array maps with max_entries = 1,
10988 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
10989 * into the same map value as max_entries is 1, as described above).
10990 *
10991 * In case of inner map lookups, the inner map pointer has same map_ptr as the
10992 * outer map pointer (in verifier context), but each lookup into an inner map
10993 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
10994 * maps from the same outer map share the same map_ptr as active_lock.ptr, they
10995 * will get different reg->id assigned to each lookup, hence different
10996 * active_lock.id.
10997 *
10998 * In case of allocated objects, active_lock.ptr is the reg->btf, and the
10999 * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11000 * returned from bpf_obj_new. Each allocation receives a new reg->id.
11001 */
check_reg_allocation_locked(struct bpf_verifier_env * env,struct bpf_reg_state * reg)11002 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11003 {
11004 void *ptr;
11005 u32 id;
11006
11007 switch ((int)reg->type) {
11008 case PTR_TO_MAP_VALUE:
11009 ptr = reg->map_ptr;
11010 break;
11011 case PTR_TO_BTF_ID | MEM_ALLOC:
11012 ptr = reg->btf;
11013 break;
11014 default:
11015 verbose(env, "verifier internal error: unknown reg type for lock check\n");
11016 return -EFAULT;
11017 }
11018 id = reg->id;
11019
11020 if (!env->cur_state->active_lock.ptr)
11021 return -EINVAL;
11022 if (env->cur_state->active_lock.ptr != ptr ||
11023 env->cur_state->active_lock.id != id) {
11024 verbose(env, "held lock and object are not in the same allocation\n");
11025 return -EINVAL;
11026 }
11027 return 0;
11028 }
11029
is_bpf_list_api_kfunc(u32 btf_id)11030 static bool is_bpf_list_api_kfunc(u32 btf_id)
11031 {
11032 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11033 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11034 btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11035 btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11036 }
11037
is_bpf_rbtree_api_kfunc(u32 btf_id)11038 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11039 {
11040 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11041 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11042 btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11043 }
11044
is_bpf_graph_api_kfunc(u32 btf_id)11045 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11046 {
11047 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11048 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11049 }
11050
is_sync_callback_calling_kfunc(u32 btf_id)11051 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11052 {
11053 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11054 }
11055
is_rbtree_lock_required_kfunc(u32 btf_id)11056 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11057 {
11058 return is_bpf_rbtree_api_kfunc(btf_id);
11059 }
11060
check_kfunc_is_graph_root_api(struct bpf_verifier_env * env,enum btf_field_type head_field_type,u32 kfunc_btf_id)11061 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11062 enum btf_field_type head_field_type,
11063 u32 kfunc_btf_id)
11064 {
11065 bool ret;
11066
11067 switch (head_field_type) {
11068 case BPF_LIST_HEAD:
11069 ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11070 break;
11071 case BPF_RB_ROOT:
11072 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11073 break;
11074 default:
11075 verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11076 btf_field_type_name(head_field_type));
11077 return false;
11078 }
11079
11080 if (!ret)
11081 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11082 btf_field_type_name(head_field_type));
11083 return ret;
11084 }
11085
check_kfunc_is_graph_node_api(struct bpf_verifier_env * env,enum btf_field_type node_field_type,u32 kfunc_btf_id)11086 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11087 enum btf_field_type node_field_type,
11088 u32 kfunc_btf_id)
11089 {
11090 bool ret;
11091
11092 switch (node_field_type) {
11093 case BPF_LIST_NODE:
11094 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11095 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11096 break;
11097 case BPF_RB_NODE:
11098 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11099 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11100 break;
11101 default:
11102 verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11103 btf_field_type_name(node_field_type));
11104 return false;
11105 }
11106
11107 if (!ret)
11108 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11109 btf_field_type_name(node_field_type));
11110 return ret;
11111 }
11112
11113 static int
__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,struct btf_field ** head_field)11114 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11115 struct bpf_reg_state *reg, u32 regno,
11116 struct bpf_kfunc_call_arg_meta *meta,
11117 enum btf_field_type head_field_type,
11118 struct btf_field **head_field)
11119 {
11120 const char *head_type_name;
11121 struct btf_field *field;
11122 struct btf_record *rec;
11123 u32 head_off;
11124
11125 if (meta->btf != btf_vmlinux) {
11126 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11127 return -EFAULT;
11128 }
11129
11130 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11131 return -EFAULT;
11132
11133 head_type_name = btf_field_type_name(head_field_type);
11134 if (!tnum_is_const(reg->var_off)) {
11135 verbose(env,
11136 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
11137 regno, head_type_name);
11138 return -EINVAL;
11139 }
11140
11141 rec = reg_btf_record(reg);
11142 head_off = reg->off + reg->var_off.value;
11143 field = btf_record_find(rec, head_off, head_field_type);
11144 if (!field) {
11145 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11146 return -EINVAL;
11147 }
11148
11149 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11150 if (check_reg_allocation_locked(env, reg)) {
11151 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11152 rec->spin_lock_off, head_type_name);
11153 return -EINVAL;
11154 }
11155
11156 if (*head_field) {
11157 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11158 return -EFAULT;
11159 }
11160 *head_field = field;
11161 return 0;
11162 }
11163
process_kf_arg_ptr_to_list_head(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11164 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11165 struct bpf_reg_state *reg, u32 regno,
11166 struct bpf_kfunc_call_arg_meta *meta)
11167 {
11168 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11169 &meta->arg_list_head.field);
11170 }
11171
process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11172 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11173 struct bpf_reg_state *reg, u32 regno,
11174 struct bpf_kfunc_call_arg_meta *meta)
11175 {
11176 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11177 &meta->arg_rbtree_root.field);
11178 }
11179
11180 static int
__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,enum btf_field_type node_field_type,struct btf_field ** node_field)11181 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11182 struct bpf_reg_state *reg, u32 regno,
11183 struct bpf_kfunc_call_arg_meta *meta,
11184 enum btf_field_type head_field_type,
11185 enum btf_field_type node_field_type,
11186 struct btf_field **node_field)
11187 {
11188 const char *node_type_name;
11189 const struct btf_type *et, *t;
11190 struct btf_field *field;
11191 u32 node_off;
11192
11193 if (meta->btf != btf_vmlinux) {
11194 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11195 return -EFAULT;
11196 }
11197
11198 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11199 return -EFAULT;
11200
11201 node_type_name = btf_field_type_name(node_field_type);
11202 if (!tnum_is_const(reg->var_off)) {
11203 verbose(env,
11204 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
11205 regno, node_type_name);
11206 return -EINVAL;
11207 }
11208
11209 node_off = reg->off + reg->var_off.value;
11210 field = reg_find_field_offset(reg, node_off, node_field_type);
11211 if (!field || field->offset != node_off) {
11212 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11213 return -EINVAL;
11214 }
11215
11216 field = *node_field;
11217
11218 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11219 t = btf_type_by_id(reg->btf, reg->btf_id);
11220 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11221 field->graph_root.value_btf_id, true)) {
11222 verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11223 "in struct %s, but arg is at offset=%d in struct %s\n",
11224 btf_field_type_name(head_field_type),
11225 btf_field_type_name(node_field_type),
11226 field->graph_root.node_offset,
11227 btf_name_by_offset(field->graph_root.btf, et->name_off),
11228 node_off, btf_name_by_offset(reg->btf, t->name_off));
11229 return -EINVAL;
11230 }
11231 meta->arg_btf = reg->btf;
11232 meta->arg_btf_id = reg->btf_id;
11233
11234 if (node_off != field->graph_root.node_offset) {
11235 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11236 node_off, btf_field_type_name(node_field_type),
11237 field->graph_root.node_offset,
11238 btf_name_by_offset(field->graph_root.btf, et->name_off));
11239 return -EINVAL;
11240 }
11241
11242 return 0;
11243 }
11244
process_kf_arg_ptr_to_list_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11245 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11246 struct bpf_reg_state *reg, u32 regno,
11247 struct bpf_kfunc_call_arg_meta *meta)
11248 {
11249 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11250 BPF_LIST_HEAD, BPF_LIST_NODE,
11251 &meta->arg_list_head.field);
11252 }
11253
process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11254 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11255 struct bpf_reg_state *reg, u32 regno,
11256 struct bpf_kfunc_call_arg_meta *meta)
11257 {
11258 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11259 BPF_RB_ROOT, BPF_RB_NODE,
11260 &meta->arg_rbtree_root.field);
11261 }
11262
check_kfunc_args(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,int insn_idx)11263 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11264 int insn_idx)
11265 {
11266 const char *func_name = meta->func_name, *ref_tname;
11267 const struct btf *btf = meta->btf;
11268 const struct btf_param *args;
11269 struct btf_record *rec;
11270 u32 i, nargs;
11271 int ret;
11272
11273 args = (const struct btf_param *)(meta->func_proto + 1);
11274 nargs = btf_type_vlen(meta->func_proto);
11275 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11276 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11277 MAX_BPF_FUNC_REG_ARGS);
11278 return -EINVAL;
11279 }
11280
11281 /* Check that BTF function arguments match actual types that the
11282 * verifier sees.
11283 */
11284 for (i = 0; i < nargs; i++) {
11285 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1];
11286 const struct btf_type *t, *ref_t, *resolve_ret;
11287 enum bpf_arg_type arg_type = ARG_DONTCARE;
11288 u32 regno = i + 1, ref_id, type_size;
11289 bool is_ret_buf_sz = false;
11290 int kf_arg_type;
11291
11292 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11293
11294 if (is_kfunc_arg_ignore(btf, &args[i]))
11295 continue;
11296
11297 if (btf_type_is_scalar(t)) {
11298 if (reg->type != SCALAR_VALUE) {
11299 verbose(env, "R%d is not a scalar\n", regno);
11300 return -EINVAL;
11301 }
11302
11303 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11304 if (meta->arg_constant.found) {
11305 verbose(env, "verifier internal error: only one constant argument permitted\n");
11306 return -EFAULT;
11307 }
11308 if (!tnum_is_const(reg->var_off)) {
11309 verbose(env, "R%d must be a known constant\n", regno);
11310 return -EINVAL;
11311 }
11312 ret = mark_chain_precision(env, regno);
11313 if (ret < 0)
11314 return ret;
11315 meta->arg_constant.found = true;
11316 meta->arg_constant.value = reg->var_off.value;
11317 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11318 meta->r0_rdonly = true;
11319 is_ret_buf_sz = true;
11320 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11321 is_ret_buf_sz = true;
11322 }
11323
11324 if (is_ret_buf_sz) {
11325 if (meta->r0_size) {
11326 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11327 return -EINVAL;
11328 }
11329
11330 if (!tnum_is_const(reg->var_off)) {
11331 verbose(env, "R%d is not a const\n", regno);
11332 return -EINVAL;
11333 }
11334
11335 meta->r0_size = reg->var_off.value;
11336 ret = mark_chain_precision(env, regno);
11337 if (ret)
11338 return ret;
11339 }
11340 continue;
11341 }
11342
11343 if (!btf_type_is_ptr(t)) {
11344 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11345 return -EINVAL;
11346 }
11347
11348 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11349 (register_is_null(reg) || type_may_be_null(reg->type))) {
11350 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11351 return -EACCES;
11352 }
11353
11354 if (reg->ref_obj_id) {
11355 if (is_kfunc_release(meta) && meta->ref_obj_id) {
11356 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11357 regno, reg->ref_obj_id,
11358 meta->ref_obj_id);
11359 return -EFAULT;
11360 }
11361 meta->ref_obj_id = reg->ref_obj_id;
11362 if (is_kfunc_release(meta))
11363 meta->release_regno = regno;
11364 }
11365
11366 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11367 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11368
11369 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11370 if (kf_arg_type < 0)
11371 return kf_arg_type;
11372
11373 switch (kf_arg_type) {
11374 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11375 case KF_ARG_PTR_TO_BTF_ID:
11376 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11377 break;
11378
11379 if (!is_trusted_reg(reg)) {
11380 if (!is_kfunc_rcu(meta)) {
11381 verbose(env, "R%d must be referenced or trusted\n", regno);
11382 return -EINVAL;
11383 }
11384 if (!is_rcu_reg(reg)) {
11385 verbose(env, "R%d must be a rcu pointer\n", regno);
11386 return -EINVAL;
11387 }
11388 }
11389
11390 fallthrough;
11391 case KF_ARG_PTR_TO_CTX:
11392 /* Trusted arguments have the same offset checks as release arguments */
11393 arg_type |= OBJ_RELEASE;
11394 break;
11395 case KF_ARG_PTR_TO_DYNPTR:
11396 case KF_ARG_PTR_TO_ITER:
11397 case KF_ARG_PTR_TO_LIST_HEAD:
11398 case KF_ARG_PTR_TO_LIST_NODE:
11399 case KF_ARG_PTR_TO_RB_ROOT:
11400 case KF_ARG_PTR_TO_RB_NODE:
11401 case KF_ARG_PTR_TO_MEM:
11402 case KF_ARG_PTR_TO_MEM_SIZE:
11403 case KF_ARG_PTR_TO_CALLBACK:
11404 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11405 /* Trusted by default */
11406 break;
11407 default:
11408 WARN_ON_ONCE(1);
11409 return -EFAULT;
11410 }
11411
11412 if (is_kfunc_release(meta) && reg->ref_obj_id)
11413 arg_type |= OBJ_RELEASE;
11414 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11415 if (ret < 0)
11416 return ret;
11417
11418 switch (kf_arg_type) {
11419 case KF_ARG_PTR_TO_CTX:
11420 if (reg->type != PTR_TO_CTX) {
11421 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11422 return -EINVAL;
11423 }
11424
11425 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11426 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11427 if (ret < 0)
11428 return -EINVAL;
11429 meta->ret_btf_id = ret;
11430 }
11431 break;
11432 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11433 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11434 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11435 return -EINVAL;
11436 }
11437 if (!reg->ref_obj_id) {
11438 verbose(env, "allocated object must be referenced\n");
11439 return -EINVAL;
11440 }
11441 if (meta->btf == btf_vmlinux &&
11442 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11443 meta->arg_btf = reg->btf;
11444 meta->arg_btf_id = reg->btf_id;
11445 }
11446 break;
11447 case KF_ARG_PTR_TO_DYNPTR:
11448 {
11449 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11450 int clone_ref_obj_id = 0;
11451
11452 if (reg->type != PTR_TO_STACK &&
11453 reg->type != CONST_PTR_TO_DYNPTR) {
11454 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11455 return -EINVAL;
11456 }
11457
11458 if (reg->type == CONST_PTR_TO_DYNPTR)
11459 dynptr_arg_type |= MEM_RDONLY;
11460
11461 if (is_kfunc_arg_uninit(btf, &args[i]))
11462 dynptr_arg_type |= MEM_UNINIT;
11463
11464 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11465 dynptr_arg_type |= DYNPTR_TYPE_SKB;
11466 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11467 dynptr_arg_type |= DYNPTR_TYPE_XDP;
11468 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11469 (dynptr_arg_type & MEM_UNINIT)) {
11470 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11471
11472 if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11473 verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11474 return -EFAULT;
11475 }
11476
11477 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11478 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11479 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11480 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11481 return -EFAULT;
11482 }
11483 }
11484
11485 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11486 if (ret < 0)
11487 return ret;
11488
11489 if (!(dynptr_arg_type & MEM_UNINIT)) {
11490 int id = dynptr_id(env, reg);
11491
11492 if (id < 0) {
11493 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11494 return id;
11495 }
11496 meta->initialized_dynptr.id = id;
11497 meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11498 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11499 }
11500
11501 break;
11502 }
11503 case KF_ARG_PTR_TO_ITER:
11504 ret = process_iter_arg(env, regno, insn_idx, meta);
11505 if (ret < 0)
11506 return ret;
11507 break;
11508 case KF_ARG_PTR_TO_LIST_HEAD:
11509 if (reg->type != PTR_TO_MAP_VALUE &&
11510 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11511 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11512 return -EINVAL;
11513 }
11514 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11515 verbose(env, "allocated object must be referenced\n");
11516 return -EINVAL;
11517 }
11518 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11519 if (ret < 0)
11520 return ret;
11521 break;
11522 case KF_ARG_PTR_TO_RB_ROOT:
11523 if (reg->type != PTR_TO_MAP_VALUE &&
11524 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11525 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11526 return -EINVAL;
11527 }
11528 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11529 verbose(env, "allocated object must be referenced\n");
11530 return -EINVAL;
11531 }
11532 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11533 if (ret < 0)
11534 return ret;
11535 break;
11536 case KF_ARG_PTR_TO_LIST_NODE:
11537 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11538 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11539 return -EINVAL;
11540 }
11541 if (!reg->ref_obj_id) {
11542 verbose(env, "allocated object must be referenced\n");
11543 return -EINVAL;
11544 }
11545 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11546 if (ret < 0)
11547 return ret;
11548 break;
11549 case KF_ARG_PTR_TO_RB_NODE:
11550 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11551 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11552 verbose(env, "rbtree_remove node input must be non-owning ref\n");
11553 return -EINVAL;
11554 }
11555 if (in_rbtree_lock_required_cb(env)) {
11556 verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11557 return -EINVAL;
11558 }
11559 } else {
11560 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11561 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11562 return -EINVAL;
11563 }
11564 if (!reg->ref_obj_id) {
11565 verbose(env, "allocated object must be referenced\n");
11566 return -EINVAL;
11567 }
11568 }
11569
11570 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11571 if (ret < 0)
11572 return ret;
11573 break;
11574 case KF_ARG_PTR_TO_BTF_ID:
11575 /* Only base_type is checked, further checks are done here */
11576 if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11577 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11578 !reg2btf_ids[base_type(reg->type)]) {
11579 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11580 verbose(env, "expected %s or socket\n",
11581 reg_type_str(env, base_type(reg->type) |
11582 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11583 return -EINVAL;
11584 }
11585 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11586 if (ret < 0)
11587 return ret;
11588 break;
11589 case KF_ARG_PTR_TO_MEM:
11590 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11591 if (IS_ERR(resolve_ret)) {
11592 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11593 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11594 return -EINVAL;
11595 }
11596 ret = check_mem_reg(env, reg, regno, type_size);
11597 if (ret < 0)
11598 return ret;
11599 break;
11600 case KF_ARG_PTR_TO_MEM_SIZE:
11601 {
11602 struct bpf_reg_state *buff_reg = ®s[regno];
11603 const struct btf_param *buff_arg = &args[i];
11604 struct bpf_reg_state *size_reg = ®s[regno + 1];
11605 const struct btf_param *size_arg = &args[i + 1];
11606
11607 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11608 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11609 if (ret < 0) {
11610 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11611 return ret;
11612 }
11613 }
11614
11615 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11616 if (meta->arg_constant.found) {
11617 verbose(env, "verifier internal error: only one constant argument permitted\n");
11618 return -EFAULT;
11619 }
11620 if (!tnum_is_const(size_reg->var_off)) {
11621 verbose(env, "R%d must be a known constant\n", regno + 1);
11622 return -EINVAL;
11623 }
11624 meta->arg_constant.found = true;
11625 meta->arg_constant.value = size_reg->var_off.value;
11626 }
11627
11628 /* Skip next '__sz' or '__szk' argument */
11629 i++;
11630 break;
11631 }
11632 case KF_ARG_PTR_TO_CALLBACK:
11633 if (reg->type != PTR_TO_FUNC) {
11634 verbose(env, "arg%d expected pointer to func\n", i);
11635 return -EINVAL;
11636 }
11637 meta->subprogno = reg->subprogno;
11638 break;
11639 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11640 if (!type_is_ptr_alloc_obj(reg->type)) {
11641 verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11642 return -EINVAL;
11643 }
11644 if (!type_is_non_owning_ref(reg->type))
11645 meta->arg_owning_ref = true;
11646
11647 rec = reg_btf_record(reg);
11648 if (!rec) {
11649 verbose(env, "verifier internal error: Couldn't find btf_record\n");
11650 return -EFAULT;
11651 }
11652
11653 if (rec->refcount_off < 0) {
11654 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11655 return -EINVAL;
11656 }
11657
11658 meta->arg_btf = reg->btf;
11659 meta->arg_btf_id = reg->btf_id;
11660 break;
11661 }
11662 }
11663
11664 if (is_kfunc_release(meta) && !meta->release_regno) {
11665 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11666 func_name);
11667 return -EINVAL;
11668 }
11669
11670 return 0;
11671 }
11672
fetch_kfunc_meta(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_kfunc_call_arg_meta * meta,const char ** kfunc_name)11673 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11674 struct bpf_insn *insn,
11675 struct bpf_kfunc_call_arg_meta *meta,
11676 const char **kfunc_name)
11677 {
11678 const struct btf_type *func, *func_proto;
11679 u32 func_id, *kfunc_flags;
11680 const char *func_name;
11681 struct btf *desc_btf;
11682
11683 if (kfunc_name)
11684 *kfunc_name = NULL;
11685
11686 if (!insn->imm)
11687 return -EINVAL;
11688
11689 desc_btf = find_kfunc_desc_btf(env, insn->off);
11690 if (IS_ERR(desc_btf))
11691 return PTR_ERR(desc_btf);
11692
11693 func_id = insn->imm;
11694 func = btf_type_by_id(desc_btf, func_id);
11695 func_name = btf_name_by_offset(desc_btf, func->name_off);
11696 if (kfunc_name)
11697 *kfunc_name = func_name;
11698 func_proto = btf_type_by_id(desc_btf, func->type);
11699
11700 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11701 if (!kfunc_flags) {
11702 return -EACCES;
11703 }
11704
11705 memset(meta, 0, sizeof(*meta));
11706 meta->btf = desc_btf;
11707 meta->func_id = func_id;
11708 meta->kfunc_flags = *kfunc_flags;
11709 meta->func_proto = func_proto;
11710 meta->func_name = func_name;
11711
11712 return 0;
11713 }
11714
check_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)11715 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11716 int *insn_idx_p)
11717 {
11718 const struct btf_type *t, *ptr_type;
11719 u32 i, nargs, ptr_type_id, release_ref_obj_id;
11720 struct bpf_reg_state *regs = cur_regs(env);
11721 const char *func_name, *ptr_type_name;
11722 bool sleepable, rcu_lock, rcu_unlock;
11723 struct bpf_kfunc_call_arg_meta meta;
11724 struct bpf_insn_aux_data *insn_aux;
11725 int err, insn_idx = *insn_idx_p;
11726 const struct btf_param *args;
11727 const struct btf_type *ret_t;
11728 struct btf *desc_btf;
11729
11730 /* skip for now, but return error when we find this in fixup_kfunc_call */
11731 if (!insn->imm)
11732 return 0;
11733
11734 err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11735 if (err == -EACCES && func_name)
11736 verbose(env, "calling kernel function %s is not allowed\n", func_name);
11737 if (err)
11738 return err;
11739 desc_btf = meta.btf;
11740 insn_aux = &env->insn_aux_data[insn_idx];
11741
11742 insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11743
11744 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11745 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11746 return -EACCES;
11747 }
11748
11749 sleepable = is_kfunc_sleepable(&meta);
11750 if (sleepable && !env->prog->aux->sleepable) {
11751 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11752 return -EACCES;
11753 }
11754
11755 /* Check the arguments */
11756 err = check_kfunc_args(env, &meta, insn_idx);
11757 if (err < 0)
11758 return err;
11759
11760 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11761 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11762 set_rbtree_add_callback_state);
11763 if (err) {
11764 verbose(env, "kfunc %s#%d failed callback verification\n",
11765 func_name, meta.func_id);
11766 return err;
11767 }
11768 }
11769
11770 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11771 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11772
11773 if (env->cur_state->active_rcu_lock) {
11774 struct bpf_func_state *state;
11775 struct bpf_reg_state *reg;
11776
11777 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11778 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11779 return -EACCES;
11780 }
11781
11782 if (rcu_lock) {
11783 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11784 return -EINVAL;
11785 } else if (rcu_unlock) {
11786 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11787 if (reg->type & MEM_RCU) {
11788 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11789 reg->type |= PTR_UNTRUSTED;
11790 }
11791 }));
11792 env->cur_state->active_rcu_lock = false;
11793 } else if (sleepable) {
11794 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11795 return -EACCES;
11796 }
11797 } else if (rcu_lock) {
11798 env->cur_state->active_rcu_lock = true;
11799 } else if (rcu_unlock) {
11800 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11801 return -EINVAL;
11802 }
11803
11804 /* In case of release function, we get register number of refcounted
11805 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11806 */
11807 if (meta.release_regno) {
11808 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11809 if (err) {
11810 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11811 func_name, meta.func_id);
11812 return err;
11813 }
11814 }
11815
11816 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11817 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11818 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11819 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11820 insn_aux->insert_off = regs[BPF_REG_2].off;
11821 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11822 err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11823 if (err) {
11824 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11825 func_name, meta.func_id);
11826 return err;
11827 }
11828
11829 err = release_reference(env, release_ref_obj_id);
11830 if (err) {
11831 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11832 func_name, meta.func_id);
11833 return err;
11834 }
11835 }
11836
11837 for (i = 0; i < CALLER_SAVED_REGS; i++)
11838 mark_reg_not_init(env, regs, caller_saved[i]);
11839
11840 /* Check return type */
11841 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11842
11843 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11844 /* Only exception is bpf_obj_new_impl */
11845 if (meta.btf != btf_vmlinux ||
11846 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11847 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11848 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11849 return -EINVAL;
11850 }
11851 }
11852
11853 if (btf_type_is_scalar(t)) {
11854 mark_reg_unknown(env, regs, BPF_REG_0);
11855 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11856 } else if (btf_type_is_ptr(t)) {
11857 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11858
11859 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11860 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
11861 struct btf *ret_btf;
11862 u32 ret_btf_id;
11863
11864 if (unlikely(!bpf_global_ma_set))
11865 return -ENOMEM;
11866
11867 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11868 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11869 return -EINVAL;
11870 }
11871
11872 ret_btf = env->prog->aux->btf;
11873 ret_btf_id = meta.arg_constant.value;
11874
11875 /* This may be NULL due to user not supplying a BTF */
11876 if (!ret_btf) {
11877 verbose(env, "bpf_obj_new requires prog BTF\n");
11878 return -EINVAL;
11879 }
11880
11881 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11882 if (!ret_t || !__btf_type_is_struct(ret_t)) {
11883 verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11884 return -EINVAL;
11885 }
11886
11887 mark_reg_known_zero(env, regs, BPF_REG_0);
11888 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11889 regs[BPF_REG_0].btf = ret_btf;
11890 regs[BPF_REG_0].btf_id = ret_btf_id;
11891
11892 insn_aux->obj_new_size = ret_t->size;
11893 insn_aux->kptr_struct_meta =
11894 btf_find_struct_meta(ret_btf, ret_btf_id);
11895 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11896 mark_reg_known_zero(env, regs, BPF_REG_0);
11897 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11898 regs[BPF_REG_0].btf = meta.arg_btf;
11899 regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11900
11901 insn_aux->kptr_struct_meta =
11902 btf_find_struct_meta(meta.arg_btf,
11903 meta.arg_btf_id);
11904 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11905 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11906 struct btf_field *field = meta.arg_list_head.field;
11907
11908 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11909 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11910 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11911 struct btf_field *field = meta.arg_rbtree_root.field;
11912
11913 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11914 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11915 mark_reg_known_zero(env, regs, BPF_REG_0);
11916 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11917 regs[BPF_REG_0].btf = desc_btf;
11918 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11919 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11920 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11921 if (!ret_t || !btf_type_is_struct(ret_t)) {
11922 verbose(env,
11923 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11924 return -EINVAL;
11925 }
11926
11927 mark_reg_known_zero(env, regs, BPF_REG_0);
11928 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11929 regs[BPF_REG_0].btf = desc_btf;
11930 regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11931 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11932 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11933 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11934
11935 mark_reg_known_zero(env, regs, BPF_REG_0);
11936
11937 if (!meta.arg_constant.found) {
11938 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11939 return -EFAULT;
11940 }
11941
11942 regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11943
11944 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11945 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11946
11947 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11948 regs[BPF_REG_0].type |= MEM_RDONLY;
11949 } else {
11950 /* this will set env->seen_direct_write to true */
11951 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11952 verbose(env, "the prog does not allow writes to packet data\n");
11953 return -EINVAL;
11954 }
11955 }
11956
11957 if (!meta.initialized_dynptr.id) {
11958 verbose(env, "verifier internal error: no dynptr id\n");
11959 return -EFAULT;
11960 }
11961 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11962
11963 /* we don't need to set BPF_REG_0's ref obj id
11964 * because packet slices are not refcounted (see
11965 * dynptr_type_refcounted)
11966 */
11967 } else {
11968 verbose(env, "kernel function %s unhandled dynamic return type\n",
11969 meta.func_name);
11970 return -EFAULT;
11971 }
11972 } else if (!__btf_type_is_struct(ptr_type)) {
11973 if (!meta.r0_size) {
11974 __u32 sz;
11975
11976 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
11977 meta.r0_size = sz;
11978 meta.r0_rdonly = true;
11979 }
11980 }
11981 if (!meta.r0_size) {
11982 ptr_type_name = btf_name_by_offset(desc_btf,
11983 ptr_type->name_off);
11984 verbose(env,
11985 "kernel function %s returns pointer type %s %s is not supported\n",
11986 func_name,
11987 btf_type_str(ptr_type),
11988 ptr_type_name);
11989 return -EINVAL;
11990 }
11991
11992 mark_reg_known_zero(env, regs, BPF_REG_0);
11993 regs[BPF_REG_0].type = PTR_TO_MEM;
11994 regs[BPF_REG_0].mem_size = meta.r0_size;
11995
11996 if (meta.r0_rdonly)
11997 regs[BPF_REG_0].type |= MEM_RDONLY;
11998
11999 /* Ensures we don't access the memory after a release_reference() */
12000 if (meta.ref_obj_id)
12001 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12002 } else {
12003 mark_reg_known_zero(env, regs, BPF_REG_0);
12004 regs[BPF_REG_0].btf = desc_btf;
12005 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12006 regs[BPF_REG_0].btf_id = ptr_type_id;
12007
12008 if (is_iter_next_kfunc(&meta)) {
12009 struct bpf_reg_state *cur_iter;
12010
12011 cur_iter = get_iter_from_state(env->cur_state, &meta);
12012
12013 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
12014 regs[BPF_REG_0].type |= MEM_RCU;
12015 else
12016 regs[BPF_REG_0].type |= PTR_TRUSTED;
12017 }
12018 }
12019
12020 if (is_kfunc_ret_null(&meta)) {
12021 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12022 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12023 regs[BPF_REG_0].id = ++env->id_gen;
12024 }
12025 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12026 if (is_kfunc_acquire(&meta)) {
12027 int id = acquire_reference_state(env, insn_idx);
12028
12029 if (id < 0)
12030 return id;
12031 if (is_kfunc_ret_null(&meta))
12032 regs[BPF_REG_0].id = id;
12033 regs[BPF_REG_0].ref_obj_id = id;
12034 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12035 ref_set_non_owning(env, ®s[BPF_REG_0]);
12036 }
12037
12038 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id)
12039 regs[BPF_REG_0].id = ++env->id_gen;
12040 } else if (btf_type_is_void(t)) {
12041 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12042 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
12043 insn_aux->kptr_struct_meta =
12044 btf_find_struct_meta(meta.arg_btf,
12045 meta.arg_btf_id);
12046 }
12047 }
12048 }
12049
12050 nargs = btf_type_vlen(meta.func_proto);
12051 args = (const struct btf_param *)(meta.func_proto + 1);
12052 for (i = 0; i < nargs; i++) {
12053 u32 regno = i + 1;
12054
12055 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12056 if (btf_type_is_ptr(t))
12057 mark_btf_func_reg_size(env, regno, sizeof(void *));
12058 else
12059 /* scalar. ensured by btf_check_kfunc_arg_match() */
12060 mark_btf_func_reg_size(env, regno, t->size);
12061 }
12062
12063 if (is_iter_next_kfunc(&meta)) {
12064 err = process_iter_next_call(env, insn_idx, &meta);
12065 if (err)
12066 return err;
12067 }
12068
12069 return 0;
12070 }
12071
signed_add_overflows(s64 a,s64 b)12072 static bool signed_add_overflows(s64 a, s64 b)
12073 {
12074 /* Do the add in u64, where overflow is well-defined */
12075 s64 res = (s64)((u64)a + (u64)b);
12076
12077 if (b < 0)
12078 return res > a;
12079 return res < a;
12080 }
12081
signed_add32_overflows(s32 a,s32 b)12082 static bool signed_add32_overflows(s32 a, s32 b)
12083 {
12084 /* Do the add in u32, where overflow is well-defined */
12085 s32 res = (s32)((u32)a + (u32)b);
12086
12087 if (b < 0)
12088 return res > a;
12089 return res < a;
12090 }
12091
signed_sub_overflows(s64 a,s64 b)12092 static bool signed_sub_overflows(s64 a, s64 b)
12093 {
12094 /* Do the sub in u64, where overflow is well-defined */
12095 s64 res = (s64)((u64)a - (u64)b);
12096
12097 if (b < 0)
12098 return res < a;
12099 return res > a;
12100 }
12101
signed_sub32_overflows(s32 a,s32 b)12102 static bool signed_sub32_overflows(s32 a, s32 b)
12103 {
12104 /* Do the sub in u32, where overflow is well-defined */
12105 s32 res = (s32)((u32)a - (u32)b);
12106
12107 if (b < 0)
12108 return res < a;
12109 return res > a;
12110 }
12111
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)12112 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12113 const struct bpf_reg_state *reg,
12114 enum bpf_reg_type type)
12115 {
12116 bool known = tnum_is_const(reg->var_off);
12117 s64 val = reg->var_off.value;
12118 s64 smin = reg->smin_value;
12119
12120 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12121 verbose(env, "math between %s pointer and %lld is not allowed\n",
12122 reg_type_str(env, type), val);
12123 return false;
12124 }
12125
12126 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12127 verbose(env, "%s pointer offset %d is not allowed\n",
12128 reg_type_str(env, type), reg->off);
12129 return false;
12130 }
12131
12132 if (smin == S64_MIN) {
12133 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12134 reg_type_str(env, type));
12135 return false;
12136 }
12137
12138 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12139 verbose(env, "value %lld makes %s pointer be out of bounds\n",
12140 smin, reg_type_str(env, type));
12141 return false;
12142 }
12143
12144 return true;
12145 }
12146
12147 enum {
12148 REASON_BOUNDS = -1,
12149 REASON_TYPE = -2,
12150 REASON_PATHS = -3,
12151 REASON_LIMIT = -4,
12152 REASON_STACK = -5,
12153 };
12154
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)12155 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12156 u32 *alu_limit, bool mask_to_left)
12157 {
12158 u32 max = 0, ptr_limit = 0;
12159
12160 switch (ptr_reg->type) {
12161 case PTR_TO_STACK:
12162 /* Offset 0 is out-of-bounds, but acceptable start for the
12163 * left direction, see BPF_REG_FP. Also, unknown scalar
12164 * offset where we would need to deal with min/max bounds is
12165 * currently prohibited for unprivileged.
12166 */
12167 max = MAX_BPF_STACK + mask_to_left;
12168 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12169 break;
12170 case PTR_TO_MAP_VALUE:
12171 max = ptr_reg->map_ptr->value_size;
12172 ptr_limit = (mask_to_left ?
12173 ptr_reg->smin_value :
12174 ptr_reg->umax_value) + ptr_reg->off;
12175 break;
12176 default:
12177 return REASON_TYPE;
12178 }
12179
12180 if (ptr_limit >= max)
12181 return REASON_LIMIT;
12182 *alu_limit = ptr_limit;
12183 return 0;
12184 }
12185
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)12186 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12187 const struct bpf_insn *insn)
12188 {
12189 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12190 }
12191
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)12192 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12193 u32 alu_state, u32 alu_limit)
12194 {
12195 /* If we arrived here from different branches with different
12196 * state or limits to sanitize, then this won't work.
12197 */
12198 if (aux->alu_state &&
12199 (aux->alu_state != alu_state ||
12200 aux->alu_limit != alu_limit))
12201 return REASON_PATHS;
12202
12203 /* Corresponding fixup done in do_misc_fixups(). */
12204 aux->alu_state = alu_state;
12205 aux->alu_limit = alu_limit;
12206 return 0;
12207 }
12208
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)12209 static int sanitize_val_alu(struct bpf_verifier_env *env,
12210 struct bpf_insn *insn)
12211 {
12212 struct bpf_insn_aux_data *aux = cur_aux(env);
12213
12214 if (can_skip_alu_sanitation(env, insn))
12215 return 0;
12216
12217 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12218 }
12219
sanitize_needed(u8 opcode)12220 static bool sanitize_needed(u8 opcode)
12221 {
12222 return opcode == BPF_ADD || opcode == BPF_SUB;
12223 }
12224
12225 struct bpf_sanitize_info {
12226 struct bpf_insn_aux_data aux;
12227 bool mask_to_left;
12228 };
12229
12230 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)12231 sanitize_speculative_path(struct bpf_verifier_env *env,
12232 const struct bpf_insn *insn,
12233 u32 next_idx, u32 curr_idx)
12234 {
12235 struct bpf_verifier_state *branch;
12236 struct bpf_reg_state *regs;
12237
12238 branch = push_stack(env, next_idx, curr_idx, true);
12239 if (branch && insn) {
12240 regs = branch->frame[branch->curframe]->regs;
12241 if (BPF_SRC(insn->code) == BPF_K) {
12242 mark_reg_unknown(env, regs, insn->dst_reg);
12243 } else if (BPF_SRC(insn->code) == BPF_X) {
12244 mark_reg_unknown(env, regs, insn->dst_reg);
12245 mark_reg_unknown(env, regs, insn->src_reg);
12246 }
12247 }
12248 return branch;
12249 }
12250
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)12251 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12252 struct bpf_insn *insn,
12253 const struct bpf_reg_state *ptr_reg,
12254 const struct bpf_reg_state *off_reg,
12255 struct bpf_reg_state *dst_reg,
12256 struct bpf_sanitize_info *info,
12257 const bool commit_window)
12258 {
12259 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12260 struct bpf_verifier_state *vstate = env->cur_state;
12261 bool off_is_imm = tnum_is_const(off_reg->var_off);
12262 bool off_is_neg = off_reg->smin_value < 0;
12263 bool ptr_is_dst_reg = ptr_reg == dst_reg;
12264 u8 opcode = BPF_OP(insn->code);
12265 u32 alu_state, alu_limit;
12266 struct bpf_reg_state tmp;
12267 bool ret;
12268 int err;
12269
12270 if (can_skip_alu_sanitation(env, insn))
12271 return 0;
12272
12273 /* We already marked aux for masking from non-speculative
12274 * paths, thus we got here in the first place. We only care
12275 * to explore bad access from here.
12276 */
12277 if (vstate->speculative)
12278 goto do_sim;
12279
12280 if (!commit_window) {
12281 if (!tnum_is_const(off_reg->var_off) &&
12282 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12283 return REASON_BOUNDS;
12284
12285 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
12286 (opcode == BPF_SUB && !off_is_neg);
12287 }
12288
12289 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12290 if (err < 0)
12291 return err;
12292
12293 if (commit_window) {
12294 /* In commit phase we narrow the masking window based on
12295 * the observed pointer move after the simulated operation.
12296 */
12297 alu_state = info->aux.alu_state;
12298 alu_limit = abs(info->aux.alu_limit - alu_limit);
12299 } else {
12300 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12301 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12302 alu_state |= ptr_is_dst_reg ?
12303 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12304
12305 /* Limit pruning on unknown scalars to enable deep search for
12306 * potential masking differences from other program paths.
12307 */
12308 if (!off_is_imm)
12309 env->explore_alu_limits = true;
12310 }
12311
12312 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12313 if (err < 0)
12314 return err;
12315 do_sim:
12316 /* If we're in commit phase, we're done here given we already
12317 * pushed the truncated dst_reg into the speculative verification
12318 * stack.
12319 *
12320 * Also, when register is a known constant, we rewrite register-based
12321 * operation to immediate-based, and thus do not need masking (and as
12322 * a consequence, do not need to simulate the zero-truncation either).
12323 */
12324 if (commit_window || off_is_imm)
12325 return 0;
12326
12327 /* Simulate and find potential out-of-bounds access under
12328 * speculative execution from truncation as a result of
12329 * masking when off was not within expected range. If off
12330 * sits in dst, then we temporarily need to move ptr there
12331 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12332 * for cases where we use K-based arithmetic in one direction
12333 * and truncated reg-based in the other in order to explore
12334 * bad access.
12335 */
12336 if (!ptr_is_dst_reg) {
12337 tmp = *dst_reg;
12338 copy_register_state(dst_reg, ptr_reg);
12339 }
12340 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12341 env->insn_idx);
12342 if (!ptr_is_dst_reg && ret)
12343 *dst_reg = tmp;
12344 return !ret ? REASON_STACK : 0;
12345 }
12346
sanitize_mark_insn_seen(struct bpf_verifier_env * env)12347 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12348 {
12349 struct bpf_verifier_state *vstate = env->cur_state;
12350
12351 /* If we simulate paths under speculation, we don't update the
12352 * insn as 'seen' such that when we verify unreachable paths in
12353 * the non-speculative domain, sanitize_dead_code() can still
12354 * rewrite/sanitize them.
12355 */
12356 if (!vstate->speculative)
12357 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12358 }
12359
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)12360 static int sanitize_err(struct bpf_verifier_env *env,
12361 const struct bpf_insn *insn, int reason,
12362 const struct bpf_reg_state *off_reg,
12363 const struct bpf_reg_state *dst_reg)
12364 {
12365 static const char *err = "pointer arithmetic with it prohibited for !root";
12366 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12367 u32 dst = insn->dst_reg, src = insn->src_reg;
12368
12369 switch (reason) {
12370 case REASON_BOUNDS:
12371 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12372 off_reg == dst_reg ? dst : src, err);
12373 break;
12374 case REASON_TYPE:
12375 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12376 off_reg == dst_reg ? src : dst, err);
12377 break;
12378 case REASON_PATHS:
12379 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12380 dst, op, err);
12381 break;
12382 case REASON_LIMIT:
12383 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12384 dst, op, err);
12385 break;
12386 case REASON_STACK:
12387 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12388 dst, err);
12389 break;
12390 default:
12391 verbose(env, "verifier internal error: unknown reason (%d)\n",
12392 reason);
12393 break;
12394 }
12395
12396 return -EACCES;
12397 }
12398
12399 /* check that stack access falls within stack limits and that 'reg' doesn't
12400 * have a variable offset.
12401 *
12402 * Variable offset is prohibited for unprivileged mode for simplicity since it
12403 * requires corresponding support in Spectre masking for stack ALU. See also
12404 * retrieve_ptr_limit().
12405 *
12406 *
12407 * 'off' includes 'reg->off'.
12408 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)12409 static int check_stack_access_for_ptr_arithmetic(
12410 struct bpf_verifier_env *env,
12411 int regno,
12412 const struct bpf_reg_state *reg,
12413 int off)
12414 {
12415 if (!tnum_is_const(reg->var_off)) {
12416 char tn_buf[48];
12417
12418 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12419 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12420 regno, tn_buf, off);
12421 return -EACCES;
12422 }
12423
12424 if (off >= 0 || off < -MAX_BPF_STACK) {
12425 verbose(env, "R%d stack pointer arithmetic goes out of range, "
12426 "prohibited for !root; off=%d\n", regno, off);
12427 return -EACCES;
12428 }
12429
12430 return 0;
12431 }
12432
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)12433 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12434 const struct bpf_insn *insn,
12435 const struct bpf_reg_state *dst_reg)
12436 {
12437 u32 dst = insn->dst_reg;
12438
12439 /* For unprivileged we require that resulting offset must be in bounds
12440 * in order to be able to sanitize access later on.
12441 */
12442 if (env->bypass_spec_v1)
12443 return 0;
12444
12445 switch (dst_reg->type) {
12446 case PTR_TO_STACK:
12447 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12448 dst_reg->off + dst_reg->var_off.value))
12449 return -EACCES;
12450 break;
12451 case PTR_TO_MAP_VALUE:
12452 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12453 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12454 "prohibited for !root\n", dst);
12455 return -EACCES;
12456 }
12457 break;
12458 default:
12459 break;
12460 }
12461
12462 return 0;
12463 }
12464
12465 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12466 * Caller should also handle BPF_MOV case separately.
12467 * If we return -EACCES, caller may want to try again treating pointer as a
12468 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
12469 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)12470 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12471 struct bpf_insn *insn,
12472 const struct bpf_reg_state *ptr_reg,
12473 const struct bpf_reg_state *off_reg)
12474 {
12475 struct bpf_verifier_state *vstate = env->cur_state;
12476 struct bpf_func_state *state = vstate->frame[vstate->curframe];
12477 struct bpf_reg_state *regs = state->regs, *dst_reg;
12478 bool known = tnum_is_const(off_reg->var_off);
12479 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12480 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12481 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12482 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12483 struct bpf_sanitize_info info = {};
12484 u8 opcode = BPF_OP(insn->code);
12485 u32 dst = insn->dst_reg;
12486 int ret;
12487
12488 dst_reg = ®s[dst];
12489
12490 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12491 smin_val > smax_val || umin_val > umax_val) {
12492 /* Taint dst register if offset had invalid bounds derived from
12493 * e.g. dead branches.
12494 */
12495 __mark_reg_unknown(env, dst_reg);
12496 return 0;
12497 }
12498
12499 if (BPF_CLASS(insn->code) != BPF_ALU64) {
12500 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
12501 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12502 __mark_reg_unknown(env, dst_reg);
12503 return 0;
12504 }
12505
12506 verbose(env,
12507 "R%d 32-bit pointer arithmetic prohibited\n",
12508 dst);
12509 return -EACCES;
12510 }
12511
12512 if (ptr_reg->type & PTR_MAYBE_NULL) {
12513 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12514 dst, reg_type_str(env, ptr_reg->type));
12515 return -EACCES;
12516 }
12517
12518 switch (base_type(ptr_reg->type)) {
12519 case PTR_TO_FLOW_KEYS:
12520 if (known)
12521 break;
12522 fallthrough;
12523 case CONST_PTR_TO_MAP:
12524 /* smin_val represents the known value */
12525 if (known && smin_val == 0 && opcode == BPF_ADD)
12526 break;
12527 fallthrough;
12528 case PTR_TO_PACKET_END:
12529 case PTR_TO_SOCKET:
12530 case PTR_TO_SOCK_COMMON:
12531 case PTR_TO_TCP_SOCK:
12532 case PTR_TO_XDP_SOCK:
12533 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12534 dst, reg_type_str(env, ptr_reg->type));
12535 return -EACCES;
12536 default:
12537 break;
12538 }
12539
12540 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12541 * The id may be overwritten later if we create a new variable offset.
12542 */
12543 dst_reg->type = ptr_reg->type;
12544 dst_reg->id = ptr_reg->id;
12545
12546 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12547 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12548 return -EINVAL;
12549
12550 /* pointer types do not carry 32-bit bounds at the moment. */
12551 __mark_reg32_unbounded(dst_reg);
12552
12553 if (sanitize_needed(opcode)) {
12554 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12555 &info, false);
12556 if (ret < 0)
12557 return sanitize_err(env, insn, ret, off_reg, dst_reg);
12558 }
12559
12560 switch (opcode) {
12561 case BPF_ADD:
12562 /* We can take a fixed offset as long as it doesn't overflow
12563 * the s32 'off' field
12564 */
12565 if (known && (ptr_reg->off + smin_val ==
12566 (s64)(s32)(ptr_reg->off + smin_val))) {
12567 /* pointer += K. Accumulate it into fixed offset */
12568 dst_reg->smin_value = smin_ptr;
12569 dst_reg->smax_value = smax_ptr;
12570 dst_reg->umin_value = umin_ptr;
12571 dst_reg->umax_value = umax_ptr;
12572 dst_reg->var_off = ptr_reg->var_off;
12573 dst_reg->off = ptr_reg->off + smin_val;
12574 dst_reg->raw = ptr_reg->raw;
12575 break;
12576 }
12577 /* A new variable offset is created. Note that off_reg->off
12578 * == 0, since it's a scalar.
12579 * dst_reg gets the pointer type and since some positive
12580 * integer value was added to the pointer, give it a new 'id'
12581 * if it's a PTR_TO_PACKET.
12582 * this creates a new 'base' pointer, off_reg (variable) gets
12583 * added into the variable offset, and we copy the fixed offset
12584 * from ptr_reg.
12585 */
12586 if (signed_add_overflows(smin_ptr, smin_val) ||
12587 signed_add_overflows(smax_ptr, smax_val)) {
12588 dst_reg->smin_value = S64_MIN;
12589 dst_reg->smax_value = S64_MAX;
12590 } else {
12591 dst_reg->smin_value = smin_ptr + smin_val;
12592 dst_reg->smax_value = smax_ptr + smax_val;
12593 }
12594 if (umin_ptr + umin_val < umin_ptr ||
12595 umax_ptr + umax_val < umax_ptr) {
12596 dst_reg->umin_value = 0;
12597 dst_reg->umax_value = U64_MAX;
12598 } else {
12599 dst_reg->umin_value = umin_ptr + umin_val;
12600 dst_reg->umax_value = umax_ptr + umax_val;
12601 }
12602 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12603 dst_reg->off = ptr_reg->off;
12604 dst_reg->raw = ptr_reg->raw;
12605 if (reg_is_pkt_pointer(ptr_reg)) {
12606 dst_reg->id = ++env->id_gen;
12607 /* something was added to pkt_ptr, set range to zero */
12608 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12609 }
12610 break;
12611 case BPF_SUB:
12612 if (dst_reg == off_reg) {
12613 /* scalar -= pointer. Creates an unknown scalar */
12614 verbose(env, "R%d tried to subtract pointer from scalar\n",
12615 dst);
12616 return -EACCES;
12617 }
12618 /* We don't allow subtraction from FP, because (according to
12619 * test_verifier.c test "invalid fp arithmetic", JITs might not
12620 * be able to deal with it.
12621 */
12622 if (ptr_reg->type == PTR_TO_STACK) {
12623 verbose(env, "R%d subtraction from stack pointer prohibited\n",
12624 dst);
12625 return -EACCES;
12626 }
12627 if (known && (ptr_reg->off - smin_val ==
12628 (s64)(s32)(ptr_reg->off - smin_val))) {
12629 /* pointer -= K. Subtract it from fixed offset */
12630 dst_reg->smin_value = smin_ptr;
12631 dst_reg->smax_value = smax_ptr;
12632 dst_reg->umin_value = umin_ptr;
12633 dst_reg->umax_value = umax_ptr;
12634 dst_reg->var_off = ptr_reg->var_off;
12635 dst_reg->id = ptr_reg->id;
12636 dst_reg->off = ptr_reg->off - smin_val;
12637 dst_reg->raw = ptr_reg->raw;
12638 break;
12639 }
12640 /* A new variable offset is created. If the subtrahend is known
12641 * nonnegative, then any reg->range we had before is still good.
12642 */
12643 if (signed_sub_overflows(smin_ptr, smax_val) ||
12644 signed_sub_overflows(smax_ptr, smin_val)) {
12645 /* Overflow possible, we know nothing */
12646 dst_reg->smin_value = S64_MIN;
12647 dst_reg->smax_value = S64_MAX;
12648 } else {
12649 dst_reg->smin_value = smin_ptr - smax_val;
12650 dst_reg->smax_value = smax_ptr - smin_val;
12651 }
12652 if (umin_ptr < umax_val) {
12653 /* Overflow possible, we know nothing */
12654 dst_reg->umin_value = 0;
12655 dst_reg->umax_value = U64_MAX;
12656 } else {
12657 /* Cannot overflow (as long as bounds are consistent) */
12658 dst_reg->umin_value = umin_ptr - umax_val;
12659 dst_reg->umax_value = umax_ptr - umin_val;
12660 }
12661 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12662 dst_reg->off = ptr_reg->off;
12663 dst_reg->raw = ptr_reg->raw;
12664 if (reg_is_pkt_pointer(ptr_reg)) {
12665 dst_reg->id = ++env->id_gen;
12666 /* something was added to pkt_ptr, set range to zero */
12667 if (smin_val < 0)
12668 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12669 }
12670 break;
12671 case BPF_AND:
12672 case BPF_OR:
12673 case BPF_XOR:
12674 /* bitwise ops on pointers are troublesome, prohibit. */
12675 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12676 dst, bpf_alu_string[opcode >> 4]);
12677 return -EACCES;
12678 default:
12679 /* other operators (e.g. MUL,LSH) produce non-pointer results */
12680 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12681 dst, bpf_alu_string[opcode >> 4]);
12682 return -EACCES;
12683 }
12684
12685 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12686 return -EINVAL;
12687 reg_bounds_sync(dst_reg);
12688 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12689 return -EACCES;
12690 if (sanitize_needed(opcode)) {
12691 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12692 &info, true);
12693 if (ret < 0)
12694 return sanitize_err(env, insn, ret, off_reg, dst_reg);
12695 }
12696
12697 return 0;
12698 }
12699
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12700 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12701 struct bpf_reg_state *src_reg)
12702 {
12703 s32 smin_val = src_reg->s32_min_value;
12704 s32 smax_val = src_reg->s32_max_value;
12705 u32 umin_val = src_reg->u32_min_value;
12706 u32 umax_val = src_reg->u32_max_value;
12707
12708 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12709 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12710 dst_reg->s32_min_value = S32_MIN;
12711 dst_reg->s32_max_value = S32_MAX;
12712 } else {
12713 dst_reg->s32_min_value += smin_val;
12714 dst_reg->s32_max_value += smax_val;
12715 }
12716 if (dst_reg->u32_min_value + umin_val < umin_val ||
12717 dst_reg->u32_max_value + umax_val < umax_val) {
12718 dst_reg->u32_min_value = 0;
12719 dst_reg->u32_max_value = U32_MAX;
12720 } else {
12721 dst_reg->u32_min_value += umin_val;
12722 dst_reg->u32_max_value += umax_val;
12723 }
12724 }
12725
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12726 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12727 struct bpf_reg_state *src_reg)
12728 {
12729 s64 smin_val = src_reg->smin_value;
12730 s64 smax_val = src_reg->smax_value;
12731 u64 umin_val = src_reg->umin_value;
12732 u64 umax_val = src_reg->umax_value;
12733
12734 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12735 signed_add_overflows(dst_reg->smax_value, smax_val)) {
12736 dst_reg->smin_value = S64_MIN;
12737 dst_reg->smax_value = S64_MAX;
12738 } else {
12739 dst_reg->smin_value += smin_val;
12740 dst_reg->smax_value += smax_val;
12741 }
12742 if (dst_reg->umin_value + umin_val < umin_val ||
12743 dst_reg->umax_value + umax_val < umax_val) {
12744 dst_reg->umin_value = 0;
12745 dst_reg->umax_value = U64_MAX;
12746 } else {
12747 dst_reg->umin_value += umin_val;
12748 dst_reg->umax_value += umax_val;
12749 }
12750 }
12751
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12752 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12753 struct bpf_reg_state *src_reg)
12754 {
12755 s32 smin_val = src_reg->s32_min_value;
12756 s32 smax_val = src_reg->s32_max_value;
12757 u32 umin_val = src_reg->u32_min_value;
12758 u32 umax_val = src_reg->u32_max_value;
12759
12760 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12761 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12762 /* Overflow possible, we know nothing */
12763 dst_reg->s32_min_value = S32_MIN;
12764 dst_reg->s32_max_value = S32_MAX;
12765 } else {
12766 dst_reg->s32_min_value -= smax_val;
12767 dst_reg->s32_max_value -= smin_val;
12768 }
12769 if (dst_reg->u32_min_value < umax_val) {
12770 /* Overflow possible, we know nothing */
12771 dst_reg->u32_min_value = 0;
12772 dst_reg->u32_max_value = U32_MAX;
12773 } else {
12774 /* Cannot overflow (as long as bounds are consistent) */
12775 dst_reg->u32_min_value -= umax_val;
12776 dst_reg->u32_max_value -= umin_val;
12777 }
12778 }
12779
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12780 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12781 struct bpf_reg_state *src_reg)
12782 {
12783 s64 smin_val = src_reg->smin_value;
12784 s64 smax_val = src_reg->smax_value;
12785 u64 umin_val = src_reg->umin_value;
12786 u64 umax_val = src_reg->umax_value;
12787
12788 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12789 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12790 /* Overflow possible, we know nothing */
12791 dst_reg->smin_value = S64_MIN;
12792 dst_reg->smax_value = S64_MAX;
12793 } else {
12794 dst_reg->smin_value -= smax_val;
12795 dst_reg->smax_value -= smin_val;
12796 }
12797 if (dst_reg->umin_value < umax_val) {
12798 /* Overflow possible, we know nothing */
12799 dst_reg->umin_value = 0;
12800 dst_reg->umax_value = U64_MAX;
12801 } else {
12802 /* Cannot overflow (as long as bounds are consistent) */
12803 dst_reg->umin_value -= umax_val;
12804 dst_reg->umax_value -= umin_val;
12805 }
12806 }
12807
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12808 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12809 struct bpf_reg_state *src_reg)
12810 {
12811 s32 smin_val = src_reg->s32_min_value;
12812 u32 umin_val = src_reg->u32_min_value;
12813 u32 umax_val = src_reg->u32_max_value;
12814
12815 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12816 /* Ain't nobody got time to multiply that sign */
12817 __mark_reg32_unbounded(dst_reg);
12818 return;
12819 }
12820 /* Both values are positive, so we can work with unsigned and
12821 * copy the result to signed (unless it exceeds S32_MAX).
12822 */
12823 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12824 /* Potential overflow, we know nothing */
12825 __mark_reg32_unbounded(dst_reg);
12826 return;
12827 }
12828 dst_reg->u32_min_value *= umin_val;
12829 dst_reg->u32_max_value *= umax_val;
12830 if (dst_reg->u32_max_value > S32_MAX) {
12831 /* Overflow possible, we know nothing */
12832 dst_reg->s32_min_value = S32_MIN;
12833 dst_reg->s32_max_value = S32_MAX;
12834 } else {
12835 dst_reg->s32_min_value = dst_reg->u32_min_value;
12836 dst_reg->s32_max_value = dst_reg->u32_max_value;
12837 }
12838 }
12839
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12840 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12841 struct bpf_reg_state *src_reg)
12842 {
12843 s64 smin_val = src_reg->smin_value;
12844 u64 umin_val = src_reg->umin_value;
12845 u64 umax_val = src_reg->umax_value;
12846
12847 if (smin_val < 0 || dst_reg->smin_value < 0) {
12848 /* Ain't nobody got time to multiply that sign */
12849 __mark_reg64_unbounded(dst_reg);
12850 return;
12851 }
12852 /* Both values are positive, so we can work with unsigned and
12853 * copy the result to signed (unless it exceeds S64_MAX).
12854 */
12855 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12856 /* Potential overflow, we know nothing */
12857 __mark_reg64_unbounded(dst_reg);
12858 return;
12859 }
12860 dst_reg->umin_value *= umin_val;
12861 dst_reg->umax_value *= umax_val;
12862 if (dst_reg->umax_value > S64_MAX) {
12863 /* Overflow possible, we know nothing */
12864 dst_reg->smin_value = S64_MIN;
12865 dst_reg->smax_value = S64_MAX;
12866 } else {
12867 dst_reg->smin_value = dst_reg->umin_value;
12868 dst_reg->smax_value = dst_reg->umax_value;
12869 }
12870 }
12871
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12872 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12873 struct bpf_reg_state *src_reg)
12874 {
12875 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12876 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12877 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12878 s32 smin_val = src_reg->s32_min_value;
12879 u32 umax_val = src_reg->u32_max_value;
12880
12881 if (src_known && dst_known) {
12882 __mark_reg32_known(dst_reg, var32_off.value);
12883 return;
12884 }
12885
12886 /* We get our minimum from the var_off, since that's inherently
12887 * bitwise. Our maximum is the minimum of the operands' maxima.
12888 */
12889 dst_reg->u32_min_value = var32_off.value;
12890 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12891 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12892 /* Lose signed bounds when ANDing negative numbers,
12893 * ain't nobody got time for that.
12894 */
12895 dst_reg->s32_min_value = S32_MIN;
12896 dst_reg->s32_max_value = S32_MAX;
12897 } else {
12898 /* ANDing two positives gives a positive, so safe to
12899 * cast result into s64.
12900 */
12901 dst_reg->s32_min_value = dst_reg->u32_min_value;
12902 dst_reg->s32_max_value = dst_reg->u32_max_value;
12903 }
12904 }
12905
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12906 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12907 struct bpf_reg_state *src_reg)
12908 {
12909 bool src_known = tnum_is_const(src_reg->var_off);
12910 bool dst_known = tnum_is_const(dst_reg->var_off);
12911 s64 smin_val = src_reg->smin_value;
12912 u64 umax_val = src_reg->umax_value;
12913
12914 if (src_known && dst_known) {
12915 __mark_reg_known(dst_reg, dst_reg->var_off.value);
12916 return;
12917 }
12918
12919 /* We get our minimum from the var_off, since that's inherently
12920 * bitwise. Our maximum is the minimum of the operands' maxima.
12921 */
12922 dst_reg->umin_value = dst_reg->var_off.value;
12923 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12924 if (dst_reg->smin_value < 0 || smin_val < 0) {
12925 /* Lose signed bounds when ANDing negative numbers,
12926 * ain't nobody got time for that.
12927 */
12928 dst_reg->smin_value = S64_MIN;
12929 dst_reg->smax_value = S64_MAX;
12930 } else {
12931 /* ANDing two positives gives a positive, so safe to
12932 * cast result into s64.
12933 */
12934 dst_reg->smin_value = dst_reg->umin_value;
12935 dst_reg->smax_value = dst_reg->umax_value;
12936 }
12937 /* We may learn something more from the var_off */
12938 __update_reg_bounds(dst_reg);
12939 }
12940
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12941 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12942 struct bpf_reg_state *src_reg)
12943 {
12944 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12945 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12946 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12947 s32 smin_val = src_reg->s32_min_value;
12948 u32 umin_val = src_reg->u32_min_value;
12949
12950 if (src_known && dst_known) {
12951 __mark_reg32_known(dst_reg, var32_off.value);
12952 return;
12953 }
12954
12955 /* We get our maximum from the var_off, and our minimum is the
12956 * maximum of the operands' minima
12957 */
12958 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12959 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12960 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12961 /* Lose signed bounds when ORing negative numbers,
12962 * ain't nobody got time for that.
12963 */
12964 dst_reg->s32_min_value = S32_MIN;
12965 dst_reg->s32_max_value = S32_MAX;
12966 } else {
12967 /* ORing two positives gives a positive, so safe to
12968 * cast result into s64.
12969 */
12970 dst_reg->s32_min_value = dst_reg->u32_min_value;
12971 dst_reg->s32_max_value = dst_reg->u32_max_value;
12972 }
12973 }
12974
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12975 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
12976 struct bpf_reg_state *src_reg)
12977 {
12978 bool src_known = tnum_is_const(src_reg->var_off);
12979 bool dst_known = tnum_is_const(dst_reg->var_off);
12980 s64 smin_val = src_reg->smin_value;
12981 u64 umin_val = src_reg->umin_value;
12982
12983 if (src_known && dst_known) {
12984 __mark_reg_known(dst_reg, dst_reg->var_off.value);
12985 return;
12986 }
12987
12988 /* We get our maximum from the var_off, and our minimum is the
12989 * maximum of the operands' minima
12990 */
12991 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
12992 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12993 if (dst_reg->smin_value < 0 || smin_val < 0) {
12994 /* Lose signed bounds when ORing negative numbers,
12995 * ain't nobody got time for that.
12996 */
12997 dst_reg->smin_value = S64_MIN;
12998 dst_reg->smax_value = S64_MAX;
12999 } else {
13000 /* ORing two positives gives a positive, so safe to
13001 * cast result into s64.
13002 */
13003 dst_reg->smin_value = dst_reg->umin_value;
13004 dst_reg->smax_value = dst_reg->umax_value;
13005 }
13006 /* We may learn something more from the var_off */
13007 __update_reg_bounds(dst_reg);
13008 }
13009
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13010 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13011 struct bpf_reg_state *src_reg)
13012 {
13013 bool src_known = tnum_subreg_is_const(src_reg->var_off);
13014 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13015 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13016 s32 smin_val = src_reg->s32_min_value;
13017
13018 if (src_known && dst_known) {
13019 __mark_reg32_known(dst_reg, var32_off.value);
13020 return;
13021 }
13022
13023 /* We get both minimum and maximum from the var32_off. */
13024 dst_reg->u32_min_value = var32_off.value;
13025 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13026
13027 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13028 /* XORing two positive sign numbers gives a positive,
13029 * so safe to cast u32 result into s32.
13030 */
13031 dst_reg->s32_min_value = dst_reg->u32_min_value;
13032 dst_reg->s32_max_value = dst_reg->u32_max_value;
13033 } else {
13034 dst_reg->s32_min_value = S32_MIN;
13035 dst_reg->s32_max_value = S32_MAX;
13036 }
13037 }
13038
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13039 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13040 struct bpf_reg_state *src_reg)
13041 {
13042 bool src_known = tnum_is_const(src_reg->var_off);
13043 bool dst_known = tnum_is_const(dst_reg->var_off);
13044 s64 smin_val = src_reg->smin_value;
13045
13046 if (src_known && dst_known) {
13047 /* dst_reg->var_off.value has been updated earlier */
13048 __mark_reg_known(dst_reg, dst_reg->var_off.value);
13049 return;
13050 }
13051
13052 /* We get both minimum and maximum from the var_off. */
13053 dst_reg->umin_value = dst_reg->var_off.value;
13054 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13055
13056 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13057 /* XORing two positive sign numbers gives a positive,
13058 * so safe to cast u64 result into s64.
13059 */
13060 dst_reg->smin_value = dst_reg->umin_value;
13061 dst_reg->smax_value = dst_reg->umax_value;
13062 } else {
13063 dst_reg->smin_value = S64_MIN;
13064 dst_reg->smax_value = S64_MAX;
13065 }
13066
13067 __update_reg_bounds(dst_reg);
13068 }
13069
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)13070 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13071 u64 umin_val, u64 umax_val)
13072 {
13073 /* We lose all sign bit information (except what we can pick
13074 * up from var_off)
13075 */
13076 dst_reg->s32_min_value = S32_MIN;
13077 dst_reg->s32_max_value = S32_MAX;
13078 /* If we might shift our top bit out, then we know nothing */
13079 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13080 dst_reg->u32_min_value = 0;
13081 dst_reg->u32_max_value = U32_MAX;
13082 } else {
13083 dst_reg->u32_min_value <<= umin_val;
13084 dst_reg->u32_max_value <<= umax_val;
13085 }
13086 }
13087
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13088 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13089 struct bpf_reg_state *src_reg)
13090 {
13091 u32 umax_val = src_reg->u32_max_value;
13092 u32 umin_val = src_reg->u32_min_value;
13093 /* u32 alu operation will zext upper bits */
13094 struct tnum subreg = tnum_subreg(dst_reg->var_off);
13095
13096 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13097 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13098 /* Not required but being careful mark reg64 bounds as unknown so
13099 * that we are forced to pick them up from tnum and zext later and
13100 * if some path skips this step we are still safe.
13101 */
13102 __mark_reg64_unbounded(dst_reg);
13103 __update_reg32_bounds(dst_reg);
13104 }
13105
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)13106 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13107 u64 umin_val, u64 umax_val)
13108 {
13109 /* Special case <<32 because it is a common compiler pattern to sign
13110 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13111 * positive we know this shift will also be positive so we can track
13112 * bounds correctly. Otherwise we lose all sign bit information except
13113 * what we can pick up from var_off. Perhaps we can generalize this
13114 * later to shifts of any length.
13115 */
13116 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13117 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13118 else
13119 dst_reg->smax_value = S64_MAX;
13120
13121 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13122 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13123 else
13124 dst_reg->smin_value = S64_MIN;
13125
13126 /* If we might shift our top bit out, then we know nothing */
13127 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13128 dst_reg->umin_value = 0;
13129 dst_reg->umax_value = U64_MAX;
13130 } else {
13131 dst_reg->umin_value <<= umin_val;
13132 dst_reg->umax_value <<= umax_val;
13133 }
13134 }
13135
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13136 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13137 struct bpf_reg_state *src_reg)
13138 {
13139 u64 umax_val = src_reg->umax_value;
13140 u64 umin_val = src_reg->umin_value;
13141
13142 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
13143 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13144 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13145
13146 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13147 /* We may learn something more from the var_off */
13148 __update_reg_bounds(dst_reg);
13149 }
13150
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13151 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13152 struct bpf_reg_state *src_reg)
13153 {
13154 struct tnum subreg = tnum_subreg(dst_reg->var_off);
13155 u32 umax_val = src_reg->u32_max_value;
13156 u32 umin_val = src_reg->u32_min_value;
13157
13158 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
13159 * be negative, then either:
13160 * 1) src_reg might be zero, so the sign bit of the result is
13161 * unknown, so we lose our signed bounds
13162 * 2) it's known negative, thus the unsigned bounds capture the
13163 * signed bounds
13164 * 3) the signed bounds cross zero, so they tell us nothing
13165 * about the result
13166 * If the value in dst_reg is known nonnegative, then again the
13167 * unsigned bounds capture the signed bounds.
13168 * Thus, in all cases it suffices to blow away our signed bounds
13169 * and rely on inferring new ones from the unsigned bounds and
13170 * var_off of the result.
13171 */
13172 dst_reg->s32_min_value = S32_MIN;
13173 dst_reg->s32_max_value = S32_MAX;
13174
13175 dst_reg->var_off = tnum_rshift(subreg, umin_val);
13176 dst_reg->u32_min_value >>= umax_val;
13177 dst_reg->u32_max_value >>= umin_val;
13178
13179 __mark_reg64_unbounded(dst_reg);
13180 __update_reg32_bounds(dst_reg);
13181 }
13182
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13183 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13184 struct bpf_reg_state *src_reg)
13185 {
13186 u64 umax_val = src_reg->umax_value;
13187 u64 umin_val = src_reg->umin_value;
13188
13189 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
13190 * be negative, then either:
13191 * 1) src_reg might be zero, so the sign bit of the result is
13192 * unknown, so we lose our signed bounds
13193 * 2) it's known negative, thus the unsigned bounds capture the
13194 * signed bounds
13195 * 3) the signed bounds cross zero, so they tell us nothing
13196 * about the result
13197 * If the value in dst_reg is known nonnegative, then again the
13198 * unsigned bounds capture the signed bounds.
13199 * Thus, in all cases it suffices to blow away our signed bounds
13200 * and rely on inferring new ones from the unsigned bounds and
13201 * var_off of the result.
13202 */
13203 dst_reg->smin_value = S64_MIN;
13204 dst_reg->smax_value = S64_MAX;
13205 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13206 dst_reg->umin_value >>= umax_val;
13207 dst_reg->umax_value >>= umin_val;
13208
13209 /* Its not easy to operate on alu32 bounds here because it depends
13210 * on bits being shifted in. Take easy way out and mark unbounded
13211 * so we can recalculate later from tnum.
13212 */
13213 __mark_reg32_unbounded(dst_reg);
13214 __update_reg_bounds(dst_reg);
13215 }
13216
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13217 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13218 struct bpf_reg_state *src_reg)
13219 {
13220 u64 umin_val = src_reg->u32_min_value;
13221
13222 /* Upon reaching here, src_known is true and
13223 * umax_val is equal to umin_val.
13224 */
13225 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13226 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13227
13228 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13229
13230 /* blow away the dst_reg umin_value/umax_value and rely on
13231 * dst_reg var_off to refine the result.
13232 */
13233 dst_reg->u32_min_value = 0;
13234 dst_reg->u32_max_value = U32_MAX;
13235
13236 __mark_reg64_unbounded(dst_reg);
13237 __update_reg32_bounds(dst_reg);
13238 }
13239
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13240 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13241 struct bpf_reg_state *src_reg)
13242 {
13243 u64 umin_val = src_reg->umin_value;
13244
13245 /* Upon reaching here, src_known is true and umax_val is equal
13246 * to umin_val.
13247 */
13248 dst_reg->smin_value >>= umin_val;
13249 dst_reg->smax_value >>= umin_val;
13250
13251 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13252
13253 /* blow away the dst_reg umin_value/umax_value and rely on
13254 * dst_reg var_off to refine the result.
13255 */
13256 dst_reg->umin_value = 0;
13257 dst_reg->umax_value = U64_MAX;
13258
13259 /* Its not easy to operate on alu32 bounds here because it depends
13260 * on bits being shifted in from upper 32-bits. Take easy way out
13261 * and mark unbounded so we can recalculate later from tnum.
13262 */
13263 __mark_reg32_unbounded(dst_reg);
13264 __update_reg_bounds(dst_reg);
13265 }
13266
13267 /* WARNING: This function does calculations on 64-bit values, but the actual
13268 * execution may occur on 32-bit values. Therefore, things like bitshifts
13269 * need extra checks in the 32-bit case.
13270 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)13271 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13272 struct bpf_insn *insn,
13273 struct bpf_reg_state *dst_reg,
13274 struct bpf_reg_state src_reg)
13275 {
13276 struct bpf_reg_state *regs = cur_regs(env);
13277 u8 opcode = BPF_OP(insn->code);
13278 bool src_known;
13279 s64 smin_val, smax_val;
13280 u64 umin_val, umax_val;
13281 s32 s32_min_val, s32_max_val;
13282 u32 u32_min_val, u32_max_val;
13283 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13284 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13285 int ret;
13286
13287 smin_val = src_reg.smin_value;
13288 smax_val = src_reg.smax_value;
13289 umin_val = src_reg.umin_value;
13290 umax_val = src_reg.umax_value;
13291
13292 s32_min_val = src_reg.s32_min_value;
13293 s32_max_val = src_reg.s32_max_value;
13294 u32_min_val = src_reg.u32_min_value;
13295 u32_max_val = src_reg.u32_max_value;
13296
13297 if (alu32) {
13298 src_known = tnum_subreg_is_const(src_reg.var_off);
13299 if ((src_known &&
13300 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13301 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13302 /* Taint dst register if offset had invalid bounds
13303 * derived from e.g. dead branches.
13304 */
13305 __mark_reg_unknown(env, dst_reg);
13306 return 0;
13307 }
13308 } else {
13309 src_known = tnum_is_const(src_reg.var_off);
13310 if ((src_known &&
13311 (smin_val != smax_val || umin_val != umax_val)) ||
13312 smin_val > smax_val || umin_val > umax_val) {
13313 /* Taint dst register if offset had invalid bounds
13314 * derived from e.g. dead branches.
13315 */
13316 __mark_reg_unknown(env, dst_reg);
13317 return 0;
13318 }
13319 }
13320
13321 if (!src_known &&
13322 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13323 __mark_reg_unknown(env, dst_reg);
13324 return 0;
13325 }
13326
13327 if (sanitize_needed(opcode)) {
13328 ret = sanitize_val_alu(env, insn);
13329 if (ret < 0)
13330 return sanitize_err(env, insn, ret, NULL, NULL);
13331 }
13332
13333 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13334 * There are two classes of instructions: The first class we track both
13335 * alu32 and alu64 sign/unsigned bounds independently this provides the
13336 * greatest amount of precision when alu operations are mixed with jmp32
13337 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13338 * and BPF_OR. This is possible because these ops have fairly easy to
13339 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13340 * See alu32 verifier tests for examples. The second class of
13341 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13342 * with regards to tracking sign/unsigned bounds because the bits may
13343 * cross subreg boundaries in the alu64 case. When this happens we mark
13344 * the reg unbounded in the subreg bound space and use the resulting
13345 * tnum to calculate an approximation of the sign/unsigned bounds.
13346 */
13347 switch (opcode) {
13348 case BPF_ADD:
13349 scalar32_min_max_add(dst_reg, &src_reg);
13350 scalar_min_max_add(dst_reg, &src_reg);
13351 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13352 break;
13353 case BPF_SUB:
13354 scalar32_min_max_sub(dst_reg, &src_reg);
13355 scalar_min_max_sub(dst_reg, &src_reg);
13356 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13357 break;
13358 case BPF_MUL:
13359 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13360 scalar32_min_max_mul(dst_reg, &src_reg);
13361 scalar_min_max_mul(dst_reg, &src_reg);
13362 break;
13363 case BPF_AND:
13364 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13365 scalar32_min_max_and(dst_reg, &src_reg);
13366 scalar_min_max_and(dst_reg, &src_reg);
13367 break;
13368 case BPF_OR:
13369 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13370 scalar32_min_max_or(dst_reg, &src_reg);
13371 scalar_min_max_or(dst_reg, &src_reg);
13372 break;
13373 case BPF_XOR:
13374 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13375 scalar32_min_max_xor(dst_reg, &src_reg);
13376 scalar_min_max_xor(dst_reg, &src_reg);
13377 break;
13378 case BPF_LSH:
13379 if (umax_val >= insn_bitness) {
13380 /* Shifts greater than 31 or 63 are undefined.
13381 * This includes shifts by a negative number.
13382 */
13383 mark_reg_unknown(env, regs, insn->dst_reg);
13384 break;
13385 }
13386 if (alu32)
13387 scalar32_min_max_lsh(dst_reg, &src_reg);
13388 else
13389 scalar_min_max_lsh(dst_reg, &src_reg);
13390 break;
13391 case BPF_RSH:
13392 if (umax_val >= insn_bitness) {
13393 /* Shifts greater than 31 or 63 are undefined.
13394 * This includes shifts by a negative number.
13395 */
13396 mark_reg_unknown(env, regs, insn->dst_reg);
13397 break;
13398 }
13399 if (alu32)
13400 scalar32_min_max_rsh(dst_reg, &src_reg);
13401 else
13402 scalar_min_max_rsh(dst_reg, &src_reg);
13403 break;
13404 case BPF_ARSH:
13405 if (umax_val >= insn_bitness) {
13406 /* Shifts greater than 31 or 63 are undefined.
13407 * This includes shifts by a negative number.
13408 */
13409 mark_reg_unknown(env, regs, insn->dst_reg);
13410 break;
13411 }
13412 if (alu32)
13413 scalar32_min_max_arsh(dst_reg, &src_reg);
13414 else
13415 scalar_min_max_arsh(dst_reg, &src_reg);
13416 break;
13417 default:
13418 mark_reg_unknown(env, regs, insn->dst_reg);
13419 break;
13420 }
13421
13422 /* ALU32 ops are zero extended into 64bit register */
13423 if (alu32)
13424 zext_32_to_64(dst_reg);
13425 reg_bounds_sync(dst_reg);
13426 return 0;
13427 }
13428
13429 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13430 * and var_off.
13431 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)13432 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13433 struct bpf_insn *insn)
13434 {
13435 struct bpf_verifier_state *vstate = env->cur_state;
13436 struct bpf_func_state *state = vstate->frame[vstate->curframe];
13437 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13438 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13439 u8 opcode = BPF_OP(insn->code);
13440 int err;
13441
13442 dst_reg = ®s[insn->dst_reg];
13443 src_reg = NULL;
13444 if (dst_reg->type != SCALAR_VALUE)
13445 ptr_reg = dst_reg;
13446 else
13447 /* Make sure ID is cleared otherwise dst_reg min/max could be
13448 * incorrectly propagated into other registers by find_equal_scalars()
13449 */
13450 dst_reg->id = 0;
13451 if (BPF_SRC(insn->code) == BPF_X) {
13452 src_reg = ®s[insn->src_reg];
13453 if (src_reg->type != SCALAR_VALUE) {
13454 if (dst_reg->type != SCALAR_VALUE) {
13455 /* Combining two pointers by any ALU op yields
13456 * an arbitrary scalar. Disallow all math except
13457 * pointer subtraction
13458 */
13459 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13460 mark_reg_unknown(env, regs, insn->dst_reg);
13461 return 0;
13462 }
13463 verbose(env, "R%d pointer %s pointer prohibited\n",
13464 insn->dst_reg,
13465 bpf_alu_string[opcode >> 4]);
13466 return -EACCES;
13467 } else {
13468 /* scalar += pointer
13469 * This is legal, but we have to reverse our
13470 * src/dest handling in computing the range
13471 */
13472 err = mark_chain_precision(env, insn->dst_reg);
13473 if (err)
13474 return err;
13475 return adjust_ptr_min_max_vals(env, insn,
13476 src_reg, dst_reg);
13477 }
13478 } else if (ptr_reg) {
13479 /* pointer += scalar */
13480 err = mark_chain_precision(env, insn->src_reg);
13481 if (err)
13482 return err;
13483 return adjust_ptr_min_max_vals(env, insn,
13484 dst_reg, src_reg);
13485 } else if (dst_reg->precise) {
13486 /* if dst_reg is precise, src_reg should be precise as well */
13487 err = mark_chain_precision(env, insn->src_reg);
13488 if (err)
13489 return err;
13490 }
13491 } else {
13492 /* Pretend the src is a reg with a known value, since we only
13493 * need to be able to read from this state.
13494 */
13495 off_reg.type = SCALAR_VALUE;
13496 __mark_reg_known(&off_reg, insn->imm);
13497 src_reg = &off_reg;
13498 if (ptr_reg) /* pointer += K */
13499 return adjust_ptr_min_max_vals(env, insn,
13500 ptr_reg, src_reg);
13501 }
13502
13503 /* Got here implies adding two SCALAR_VALUEs */
13504 if (WARN_ON_ONCE(ptr_reg)) {
13505 print_verifier_state(env, state, true);
13506 verbose(env, "verifier internal error: unexpected ptr_reg\n");
13507 return -EINVAL;
13508 }
13509 if (WARN_ON(!src_reg)) {
13510 print_verifier_state(env, state, true);
13511 verbose(env, "verifier internal error: no src_reg\n");
13512 return -EINVAL;
13513 }
13514 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13515 }
13516
13517 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)13518 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13519 {
13520 struct bpf_reg_state *regs = cur_regs(env);
13521 u8 opcode = BPF_OP(insn->code);
13522 int err;
13523
13524 if (opcode == BPF_END || opcode == BPF_NEG) {
13525 if (opcode == BPF_NEG) {
13526 if (BPF_SRC(insn->code) != BPF_K ||
13527 insn->src_reg != BPF_REG_0 ||
13528 insn->off != 0 || insn->imm != 0) {
13529 verbose(env, "BPF_NEG uses reserved fields\n");
13530 return -EINVAL;
13531 }
13532 } else {
13533 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13534 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13535 (BPF_CLASS(insn->code) == BPF_ALU64 &&
13536 BPF_SRC(insn->code) != BPF_TO_LE)) {
13537 verbose(env, "BPF_END uses reserved fields\n");
13538 return -EINVAL;
13539 }
13540 }
13541
13542 /* check src operand */
13543 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13544 if (err)
13545 return err;
13546
13547 if (is_pointer_value(env, insn->dst_reg)) {
13548 verbose(env, "R%d pointer arithmetic prohibited\n",
13549 insn->dst_reg);
13550 return -EACCES;
13551 }
13552
13553 /* check dest operand */
13554 err = check_reg_arg(env, insn->dst_reg, DST_OP);
13555 if (err)
13556 return err;
13557
13558 } else if (opcode == BPF_MOV) {
13559
13560 if (BPF_SRC(insn->code) == BPF_X) {
13561 if (insn->imm != 0) {
13562 verbose(env, "BPF_MOV uses reserved fields\n");
13563 return -EINVAL;
13564 }
13565
13566 if (BPF_CLASS(insn->code) == BPF_ALU) {
13567 if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13568 verbose(env, "BPF_MOV uses reserved fields\n");
13569 return -EINVAL;
13570 }
13571 } else {
13572 if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13573 insn->off != 32) {
13574 verbose(env, "BPF_MOV uses reserved fields\n");
13575 return -EINVAL;
13576 }
13577 }
13578
13579 /* check src operand */
13580 err = check_reg_arg(env, insn->src_reg, SRC_OP);
13581 if (err)
13582 return err;
13583 } else {
13584 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13585 verbose(env, "BPF_MOV uses reserved fields\n");
13586 return -EINVAL;
13587 }
13588 }
13589
13590 /* check dest operand, mark as required later */
13591 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13592 if (err)
13593 return err;
13594
13595 if (BPF_SRC(insn->code) == BPF_X) {
13596 struct bpf_reg_state *src_reg = regs + insn->src_reg;
13597 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13598 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13599 !tnum_is_const(src_reg->var_off);
13600
13601 if (BPF_CLASS(insn->code) == BPF_ALU64) {
13602 if (insn->off == 0) {
13603 /* case: R1 = R2
13604 * copy register state to dest reg
13605 */
13606 if (need_id)
13607 /* Assign src and dst registers the same ID
13608 * that will be used by find_equal_scalars()
13609 * to propagate min/max range.
13610 */
13611 src_reg->id = ++env->id_gen;
13612 copy_register_state(dst_reg, src_reg);
13613 dst_reg->live |= REG_LIVE_WRITTEN;
13614 dst_reg->subreg_def = DEF_NOT_SUBREG;
13615 } else {
13616 /* case: R1 = (s8, s16 s32)R2 */
13617 if (is_pointer_value(env, insn->src_reg)) {
13618 verbose(env,
13619 "R%d sign-extension part of pointer\n",
13620 insn->src_reg);
13621 return -EACCES;
13622 } else if (src_reg->type == SCALAR_VALUE) {
13623 bool no_sext;
13624
13625 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13626 if (no_sext && need_id)
13627 src_reg->id = ++env->id_gen;
13628 copy_register_state(dst_reg, src_reg);
13629 if (!no_sext)
13630 dst_reg->id = 0;
13631 coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13632 dst_reg->live |= REG_LIVE_WRITTEN;
13633 dst_reg->subreg_def = DEF_NOT_SUBREG;
13634 } else {
13635 mark_reg_unknown(env, regs, insn->dst_reg);
13636 }
13637 }
13638 } else {
13639 /* R1 = (u32) R2 */
13640 if (is_pointer_value(env, insn->src_reg)) {
13641 verbose(env,
13642 "R%d partial copy of pointer\n",
13643 insn->src_reg);
13644 return -EACCES;
13645 } else if (src_reg->type == SCALAR_VALUE) {
13646 if (insn->off == 0) {
13647 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13648
13649 if (is_src_reg_u32 && need_id)
13650 src_reg->id = ++env->id_gen;
13651 copy_register_state(dst_reg, src_reg);
13652 /* Make sure ID is cleared if src_reg is not in u32
13653 * range otherwise dst_reg min/max could be incorrectly
13654 * propagated into src_reg by find_equal_scalars()
13655 */
13656 if (!is_src_reg_u32)
13657 dst_reg->id = 0;
13658 dst_reg->live |= REG_LIVE_WRITTEN;
13659 dst_reg->subreg_def = env->insn_idx + 1;
13660 } else {
13661 /* case: W1 = (s8, s16)W2 */
13662 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13663
13664 if (no_sext && need_id)
13665 src_reg->id = ++env->id_gen;
13666 copy_register_state(dst_reg, src_reg);
13667 if (!no_sext)
13668 dst_reg->id = 0;
13669 dst_reg->live |= REG_LIVE_WRITTEN;
13670 dst_reg->subreg_def = env->insn_idx + 1;
13671 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13672 }
13673 } else {
13674 mark_reg_unknown(env, regs,
13675 insn->dst_reg);
13676 }
13677 zext_32_to_64(dst_reg);
13678 reg_bounds_sync(dst_reg);
13679 }
13680 } else {
13681 /* case: R = imm
13682 * remember the value we stored into this reg
13683 */
13684 /* clear any state __mark_reg_known doesn't set */
13685 mark_reg_unknown(env, regs, insn->dst_reg);
13686 regs[insn->dst_reg].type = SCALAR_VALUE;
13687 if (BPF_CLASS(insn->code) == BPF_ALU64) {
13688 __mark_reg_known(regs + insn->dst_reg,
13689 insn->imm);
13690 } else {
13691 __mark_reg_known(regs + insn->dst_reg,
13692 (u32)insn->imm);
13693 }
13694 }
13695
13696 } else if (opcode > BPF_END) {
13697 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13698 return -EINVAL;
13699
13700 } else { /* all other ALU ops: and, sub, xor, add, ... */
13701
13702 if (BPF_SRC(insn->code) == BPF_X) {
13703 if (insn->imm != 0 || insn->off > 1 ||
13704 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13705 verbose(env, "BPF_ALU uses reserved fields\n");
13706 return -EINVAL;
13707 }
13708 /* check src1 operand */
13709 err = check_reg_arg(env, insn->src_reg, SRC_OP);
13710 if (err)
13711 return err;
13712 } else {
13713 if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13714 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13715 verbose(env, "BPF_ALU uses reserved fields\n");
13716 return -EINVAL;
13717 }
13718 }
13719
13720 /* check src2 operand */
13721 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13722 if (err)
13723 return err;
13724
13725 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13726 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13727 verbose(env, "div by zero\n");
13728 return -EINVAL;
13729 }
13730
13731 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13732 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13733 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13734
13735 if (insn->imm < 0 || insn->imm >= size) {
13736 verbose(env, "invalid shift %d\n", insn->imm);
13737 return -EINVAL;
13738 }
13739 }
13740
13741 /* check dest operand */
13742 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13743 if (err)
13744 return err;
13745
13746 return adjust_reg_min_max_vals(env, insn);
13747 }
13748
13749 return 0;
13750 }
13751
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)13752 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13753 struct bpf_reg_state *dst_reg,
13754 enum bpf_reg_type type,
13755 bool range_right_open)
13756 {
13757 struct bpf_func_state *state;
13758 struct bpf_reg_state *reg;
13759 int new_range;
13760
13761 if (dst_reg->off < 0 ||
13762 (dst_reg->off == 0 && range_right_open))
13763 /* This doesn't give us any range */
13764 return;
13765
13766 if (dst_reg->umax_value > MAX_PACKET_OFF ||
13767 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13768 /* Risk of overflow. For instance, ptr + (1<<63) may be less
13769 * than pkt_end, but that's because it's also less than pkt.
13770 */
13771 return;
13772
13773 new_range = dst_reg->off;
13774 if (range_right_open)
13775 new_range++;
13776
13777 /* Examples for register markings:
13778 *
13779 * pkt_data in dst register:
13780 *
13781 * r2 = r3;
13782 * r2 += 8;
13783 * if (r2 > pkt_end) goto <handle exception>
13784 * <access okay>
13785 *
13786 * r2 = r3;
13787 * r2 += 8;
13788 * if (r2 < pkt_end) goto <access okay>
13789 * <handle exception>
13790 *
13791 * Where:
13792 * r2 == dst_reg, pkt_end == src_reg
13793 * r2=pkt(id=n,off=8,r=0)
13794 * r3=pkt(id=n,off=0,r=0)
13795 *
13796 * pkt_data in src register:
13797 *
13798 * r2 = r3;
13799 * r2 += 8;
13800 * if (pkt_end >= r2) goto <access okay>
13801 * <handle exception>
13802 *
13803 * r2 = r3;
13804 * r2 += 8;
13805 * if (pkt_end <= r2) goto <handle exception>
13806 * <access okay>
13807 *
13808 * Where:
13809 * pkt_end == dst_reg, r2 == src_reg
13810 * r2=pkt(id=n,off=8,r=0)
13811 * r3=pkt(id=n,off=0,r=0)
13812 *
13813 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13814 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13815 * and [r3, r3 + 8-1) respectively is safe to access depending on
13816 * the check.
13817 */
13818
13819 /* If our ids match, then we must have the same max_value. And we
13820 * don't care about the other reg's fixed offset, since if it's too big
13821 * the range won't allow anything.
13822 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13823 */
13824 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13825 if (reg->type == type && reg->id == dst_reg->id)
13826 /* keep the maximum range already checked */
13827 reg->range = max(reg->range, new_range);
13828 }));
13829 }
13830
is_branch32_taken(struct bpf_reg_state * reg,u32 val,u8 opcode)13831 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13832 {
13833 struct tnum subreg = tnum_subreg(reg->var_off);
13834 s32 sval = (s32)val;
13835
13836 switch (opcode) {
13837 case BPF_JEQ:
13838 if (tnum_is_const(subreg))
13839 return !!tnum_equals_const(subreg, val);
13840 else if (val < reg->u32_min_value || val > reg->u32_max_value)
13841 return 0;
13842 break;
13843 case BPF_JNE:
13844 if (tnum_is_const(subreg))
13845 return !tnum_equals_const(subreg, val);
13846 else if (val < reg->u32_min_value || val > reg->u32_max_value)
13847 return 1;
13848 break;
13849 case BPF_JSET:
13850 if ((~subreg.mask & subreg.value) & val)
13851 return 1;
13852 if (!((subreg.mask | subreg.value) & val))
13853 return 0;
13854 break;
13855 case BPF_JGT:
13856 if (reg->u32_min_value > val)
13857 return 1;
13858 else if (reg->u32_max_value <= val)
13859 return 0;
13860 break;
13861 case BPF_JSGT:
13862 if (reg->s32_min_value > sval)
13863 return 1;
13864 else if (reg->s32_max_value <= sval)
13865 return 0;
13866 break;
13867 case BPF_JLT:
13868 if (reg->u32_max_value < val)
13869 return 1;
13870 else if (reg->u32_min_value >= val)
13871 return 0;
13872 break;
13873 case BPF_JSLT:
13874 if (reg->s32_max_value < sval)
13875 return 1;
13876 else if (reg->s32_min_value >= sval)
13877 return 0;
13878 break;
13879 case BPF_JGE:
13880 if (reg->u32_min_value >= val)
13881 return 1;
13882 else if (reg->u32_max_value < val)
13883 return 0;
13884 break;
13885 case BPF_JSGE:
13886 if (reg->s32_min_value >= sval)
13887 return 1;
13888 else if (reg->s32_max_value < sval)
13889 return 0;
13890 break;
13891 case BPF_JLE:
13892 if (reg->u32_max_value <= val)
13893 return 1;
13894 else if (reg->u32_min_value > val)
13895 return 0;
13896 break;
13897 case BPF_JSLE:
13898 if (reg->s32_max_value <= sval)
13899 return 1;
13900 else if (reg->s32_min_value > sval)
13901 return 0;
13902 break;
13903 }
13904
13905 return -1;
13906 }
13907
13908
is_branch64_taken(struct bpf_reg_state * reg,u64 val,u8 opcode)13909 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13910 {
13911 s64 sval = (s64)val;
13912
13913 switch (opcode) {
13914 case BPF_JEQ:
13915 if (tnum_is_const(reg->var_off))
13916 return !!tnum_equals_const(reg->var_off, val);
13917 else if (val < reg->umin_value || val > reg->umax_value)
13918 return 0;
13919 break;
13920 case BPF_JNE:
13921 if (tnum_is_const(reg->var_off))
13922 return !tnum_equals_const(reg->var_off, val);
13923 else if (val < reg->umin_value || val > reg->umax_value)
13924 return 1;
13925 break;
13926 case BPF_JSET:
13927 if ((~reg->var_off.mask & reg->var_off.value) & val)
13928 return 1;
13929 if (!((reg->var_off.mask | reg->var_off.value) & val))
13930 return 0;
13931 break;
13932 case BPF_JGT:
13933 if (reg->umin_value > val)
13934 return 1;
13935 else if (reg->umax_value <= val)
13936 return 0;
13937 break;
13938 case BPF_JSGT:
13939 if (reg->smin_value > sval)
13940 return 1;
13941 else if (reg->smax_value <= sval)
13942 return 0;
13943 break;
13944 case BPF_JLT:
13945 if (reg->umax_value < val)
13946 return 1;
13947 else if (reg->umin_value >= val)
13948 return 0;
13949 break;
13950 case BPF_JSLT:
13951 if (reg->smax_value < sval)
13952 return 1;
13953 else if (reg->smin_value >= sval)
13954 return 0;
13955 break;
13956 case BPF_JGE:
13957 if (reg->umin_value >= val)
13958 return 1;
13959 else if (reg->umax_value < val)
13960 return 0;
13961 break;
13962 case BPF_JSGE:
13963 if (reg->smin_value >= sval)
13964 return 1;
13965 else if (reg->smax_value < sval)
13966 return 0;
13967 break;
13968 case BPF_JLE:
13969 if (reg->umax_value <= val)
13970 return 1;
13971 else if (reg->umin_value > val)
13972 return 0;
13973 break;
13974 case BPF_JSLE:
13975 if (reg->smax_value <= sval)
13976 return 1;
13977 else if (reg->smin_value > sval)
13978 return 0;
13979 break;
13980 }
13981
13982 return -1;
13983 }
13984
13985 /* compute branch direction of the expression "if (reg opcode val) goto target;"
13986 * and return:
13987 * 1 - branch will be taken and "goto target" will be executed
13988 * 0 - branch will not be taken and fall-through to next insn
13989 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
13990 * range [0,10]
13991 */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)13992 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
13993 bool is_jmp32)
13994 {
13995 if (__is_pointer_value(false, reg)) {
13996 if (!reg_not_null(reg))
13997 return -1;
13998
13999 /* If pointer is valid tests against zero will fail so we can
14000 * use this to direct branch taken.
14001 */
14002 if (val != 0)
14003 return -1;
14004
14005 switch (opcode) {
14006 case BPF_JEQ:
14007 return 0;
14008 case BPF_JNE:
14009 return 1;
14010 default:
14011 return -1;
14012 }
14013 }
14014
14015 if (is_jmp32)
14016 return is_branch32_taken(reg, val, opcode);
14017 return is_branch64_taken(reg, val, opcode);
14018 }
14019
flip_opcode(u32 opcode)14020 static int flip_opcode(u32 opcode)
14021 {
14022 /* How can we transform "a <op> b" into "b <op> a"? */
14023 static const u8 opcode_flip[16] = {
14024 /* these stay the same */
14025 [BPF_JEQ >> 4] = BPF_JEQ,
14026 [BPF_JNE >> 4] = BPF_JNE,
14027 [BPF_JSET >> 4] = BPF_JSET,
14028 /* these swap "lesser" and "greater" (L and G in the opcodes) */
14029 [BPF_JGE >> 4] = BPF_JLE,
14030 [BPF_JGT >> 4] = BPF_JLT,
14031 [BPF_JLE >> 4] = BPF_JGE,
14032 [BPF_JLT >> 4] = BPF_JGT,
14033 [BPF_JSGE >> 4] = BPF_JSLE,
14034 [BPF_JSGT >> 4] = BPF_JSLT,
14035 [BPF_JSLE >> 4] = BPF_JSGE,
14036 [BPF_JSLT >> 4] = BPF_JSGT
14037 };
14038 return opcode_flip[opcode >> 4];
14039 }
14040
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)14041 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14042 struct bpf_reg_state *src_reg,
14043 u8 opcode)
14044 {
14045 struct bpf_reg_state *pkt;
14046
14047 if (src_reg->type == PTR_TO_PACKET_END) {
14048 pkt = dst_reg;
14049 } else if (dst_reg->type == PTR_TO_PACKET_END) {
14050 pkt = src_reg;
14051 opcode = flip_opcode(opcode);
14052 } else {
14053 return -1;
14054 }
14055
14056 if (pkt->range >= 0)
14057 return -1;
14058
14059 switch (opcode) {
14060 case BPF_JLE:
14061 /* pkt <= pkt_end */
14062 fallthrough;
14063 case BPF_JGT:
14064 /* pkt > pkt_end */
14065 if (pkt->range == BEYOND_PKT_END)
14066 /* pkt has at last one extra byte beyond pkt_end */
14067 return opcode == BPF_JGT;
14068 break;
14069 case BPF_JLT:
14070 /* pkt < pkt_end */
14071 fallthrough;
14072 case BPF_JGE:
14073 /* pkt >= pkt_end */
14074 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14075 return opcode == BPF_JGE;
14076 break;
14077 }
14078 return -1;
14079 }
14080
14081 /* Adjusts the register min/max values in the case that the dst_reg is the
14082 * variable register that we are working on, and src_reg is a constant or we're
14083 * simply doing a BPF_K check.
14084 * In JEQ/JNE cases we also adjust the var_off values.
14085 */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)14086 static void reg_set_min_max(struct bpf_reg_state *true_reg,
14087 struct bpf_reg_state *false_reg,
14088 u64 val, u32 val32,
14089 u8 opcode, bool is_jmp32)
14090 {
14091 struct tnum false_32off = tnum_subreg(false_reg->var_off);
14092 struct tnum false_64off = false_reg->var_off;
14093 struct tnum true_32off = tnum_subreg(true_reg->var_off);
14094 struct tnum true_64off = true_reg->var_off;
14095 s64 sval = (s64)val;
14096 s32 sval32 = (s32)val32;
14097
14098 /* If the dst_reg is a pointer, we can't learn anything about its
14099 * variable offset from the compare (unless src_reg were a pointer into
14100 * the same object, but we don't bother with that.
14101 * Since false_reg and true_reg have the same type by construction, we
14102 * only need to check one of them for pointerness.
14103 */
14104 if (__is_pointer_value(false, false_reg))
14105 return;
14106
14107 switch (opcode) {
14108 /* JEQ/JNE comparison doesn't change the register equivalence.
14109 *
14110 * r1 = r2;
14111 * if (r1 == 42) goto label;
14112 * ...
14113 * label: // here both r1 and r2 are known to be 42.
14114 *
14115 * Hence when marking register as known preserve it's ID.
14116 */
14117 case BPF_JEQ:
14118 if (is_jmp32) {
14119 __mark_reg32_known(true_reg, val32);
14120 true_32off = tnum_subreg(true_reg->var_off);
14121 } else {
14122 ___mark_reg_known(true_reg, val);
14123 true_64off = true_reg->var_off;
14124 }
14125 break;
14126 case BPF_JNE:
14127 if (is_jmp32) {
14128 __mark_reg32_known(false_reg, val32);
14129 false_32off = tnum_subreg(false_reg->var_off);
14130 } else {
14131 ___mark_reg_known(false_reg, val);
14132 false_64off = false_reg->var_off;
14133 }
14134 break;
14135 case BPF_JSET:
14136 if (is_jmp32) {
14137 false_32off = tnum_and(false_32off, tnum_const(~val32));
14138 if (is_power_of_2(val32))
14139 true_32off = tnum_or(true_32off,
14140 tnum_const(val32));
14141 } else {
14142 false_64off = tnum_and(false_64off, tnum_const(~val));
14143 if (is_power_of_2(val))
14144 true_64off = tnum_or(true_64off,
14145 tnum_const(val));
14146 }
14147 break;
14148 case BPF_JGE:
14149 case BPF_JGT:
14150 {
14151 if (is_jmp32) {
14152 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
14153 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
14154
14155 false_reg->u32_max_value = min(false_reg->u32_max_value,
14156 false_umax);
14157 true_reg->u32_min_value = max(true_reg->u32_min_value,
14158 true_umin);
14159 } else {
14160 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
14161 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
14162
14163 false_reg->umax_value = min(false_reg->umax_value, false_umax);
14164 true_reg->umin_value = max(true_reg->umin_value, true_umin);
14165 }
14166 break;
14167 }
14168 case BPF_JSGE:
14169 case BPF_JSGT:
14170 {
14171 if (is_jmp32) {
14172 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
14173 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
14174
14175 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
14176 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
14177 } else {
14178 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
14179 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
14180
14181 false_reg->smax_value = min(false_reg->smax_value, false_smax);
14182 true_reg->smin_value = max(true_reg->smin_value, true_smin);
14183 }
14184 break;
14185 }
14186 case BPF_JLE:
14187 case BPF_JLT:
14188 {
14189 if (is_jmp32) {
14190 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
14191 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
14192
14193 false_reg->u32_min_value = max(false_reg->u32_min_value,
14194 false_umin);
14195 true_reg->u32_max_value = min(true_reg->u32_max_value,
14196 true_umax);
14197 } else {
14198 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
14199 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
14200
14201 false_reg->umin_value = max(false_reg->umin_value, false_umin);
14202 true_reg->umax_value = min(true_reg->umax_value, true_umax);
14203 }
14204 break;
14205 }
14206 case BPF_JSLE:
14207 case BPF_JSLT:
14208 {
14209 if (is_jmp32) {
14210 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
14211 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
14212
14213 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
14214 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
14215 } else {
14216 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
14217 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
14218
14219 false_reg->smin_value = max(false_reg->smin_value, false_smin);
14220 true_reg->smax_value = min(true_reg->smax_value, true_smax);
14221 }
14222 break;
14223 }
14224 default:
14225 return;
14226 }
14227
14228 if (is_jmp32) {
14229 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
14230 tnum_subreg(false_32off));
14231 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
14232 tnum_subreg(true_32off));
14233 __reg_combine_32_into_64(false_reg);
14234 __reg_combine_32_into_64(true_reg);
14235 } else {
14236 false_reg->var_off = false_64off;
14237 true_reg->var_off = true_64off;
14238 __reg_combine_64_into_32(false_reg);
14239 __reg_combine_64_into_32(true_reg);
14240 }
14241 }
14242
14243 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
14244 * the variable reg.
14245 */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)14246 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
14247 struct bpf_reg_state *false_reg,
14248 u64 val, u32 val32,
14249 u8 opcode, bool is_jmp32)
14250 {
14251 opcode = flip_opcode(opcode);
14252 /* This uses zero as "not present in table"; luckily the zero opcode,
14253 * BPF_JA, can't get here.
14254 */
14255 if (opcode)
14256 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
14257 }
14258
14259 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)14260 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
14261 struct bpf_reg_state *dst_reg)
14262 {
14263 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
14264 dst_reg->umin_value);
14265 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
14266 dst_reg->umax_value);
14267 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
14268 dst_reg->smin_value);
14269 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
14270 dst_reg->smax_value);
14271 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
14272 dst_reg->var_off);
14273 reg_bounds_sync(src_reg);
14274 reg_bounds_sync(dst_reg);
14275 }
14276
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)14277 static void reg_combine_min_max(struct bpf_reg_state *true_src,
14278 struct bpf_reg_state *true_dst,
14279 struct bpf_reg_state *false_src,
14280 struct bpf_reg_state *false_dst,
14281 u8 opcode)
14282 {
14283 switch (opcode) {
14284 case BPF_JEQ:
14285 __reg_combine_min_max(true_src, true_dst);
14286 break;
14287 case BPF_JNE:
14288 __reg_combine_min_max(false_src, false_dst);
14289 break;
14290 }
14291 }
14292
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)14293 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14294 struct bpf_reg_state *reg, u32 id,
14295 bool is_null)
14296 {
14297 if (type_may_be_null(reg->type) && reg->id == id &&
14298 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14299 /* Old offset (both fixed and variable parts) should have been
14300 * known-zero, because we don't allow pointer arithmetic on
14301 * pointers that might be NULL. If we see this happening, don't
14302 * convert the register.
14303 *
14304 * But in some cases, some helpers that return local kptrs
14305 * advance offset for the returned pointer. In those cases, it
14306 * is fine to expect to see reg->off.
14307 */
14308 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14309 return;
14310 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14311 WARN_ON_ONCE(reg->off))
14312 return;
14313
14314 if (is_null) {
14315 reg->type = SCALAR_VALUE;
14316 /* We don't need id and ref_obj_id from this point
14317 * onwards anymore, thus we should better reset it,
14318 * so that state pruning has chances to take effect.
14319 */
14320 reg->id = 0;
14321 reg->ref_obj_id = 0;
14322
14323 return;
14324 }
14325
14326 mark_ptr_not_null_reg(reg);
14327
14328 if (!reg_may_point_to_spin_lock(reg)) {
14329 /* For not-NULL ptr, reg->ref_obj_id will be reset
14330 * in release_reference().
14331 *
14332 * reg->id is still used by spin_lock ptr. Other
14333 * than spin_lock ptr type, reg->id can be reset.
14334 */
14335 reg->id = 0;
14336 }
14337 }
14338 }
14339
14340 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14341 * be folded together at some point.
14342 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)14343 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14344 bool is_null)
14345 {
14346 struct bpf_func_state *state = vstate->frame[vstate->curframe];
14347 struct bpf_reg_state *regs = state->regs, *reg;
14348 u32 ref_obj_id = regs[regno].ref_obj_id;
14349 u32 id = regs[regno].id;
14350
14351 if (ref_obj_id && ref_obj_id == id && is_null)
14352 /* regs[regno] is in the " == NULL" branch.
14353 * No one could have freed the reference state before
14354 * doing the NULL check.
14355 */
14356 WARN_ON_ONCE(release_reference_state(state, id));
14357
14358 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14359 mark_ptr_or_null_reg(state, reg, id, is_null);
14360 }));
14361 }
14362
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)14363 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14364 struct bpf_reg_state *dst_reg,
14365 struct bpf_reg_state *src_reg,
14366 struct bpf_verifier_state *this_branch,
14367 struct bpf_verifier_state *other_branch)
14368 {
14369 if (BPF_SRC(insn->code) != BPF_X)
14370 return false;
14371
14372 /* Pointers are always 64-bit. */
14373 if (BPF_CLASS(insn->code) == BPF_JMP32)
14374 return false;
14375
14376 switch (BPF_OP(insn->code)) {
14377 case BPF_JGT:
14378 if ((dst_reg->type == PTR_TO_PACKET &&
14379 src_reg->type == PTR_TO_PACKET_END) ||
14380 (dst_reg->type == PTR_TO_PACKET_META &&
14381 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14382 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14383 find_good_pkt_pointers(this_branch, dst_reg,
14384 dst_reg->type, false);
14385 mark_pkt_end(other_branch, insn->dst_reg, true);
14386 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14387 src_reg->type == PTR_TO_PACKET) ||
14388 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14389 src_reg->type == PTR_TO_PACKET_META)) {
14390 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
14391 find_good_pkt_pointers(other_branch, src_reg,
14392 src_reg->type, true);
14393 mark_pkt_end(this_branch, insn->src_reg, false);
14394 } else {
14395 return false;
14396 }
14397 break;
14398 case BPF_JLT:
14399 if ((dst_reg->type == PTR_TO_PACKET &&
14400 src_reg->type == PTR_TO_PACKET_END) ||
14401 (dst_reg->type == PTR_TO_PACKET_META &&
14402 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14403 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14404 find_good_pkt_pointers(other_branch, dst_reg,
14405 dst_reg->type, true);
14406 mark_pkt_end(this_branch, insn->dst_reg, false);
14407 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14408 src_reg->type == PTR_TO_PACKET) ||
14409 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14410 src_reg->type == PTR_TO_PACKET_META)) {
14411 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
14412 find_good_pkt_pointers(this_branch, src_reg,
14413 src_reg->type, false);
14414 mark_pkt_end(other_branch, insn->src_reg, true);
14415 } else {
14416 return false;
14417 }
14418 break;
14419 case BPF_JGE:
14420 if ((dst_reg->type == PTR_TO_PACKET &&
14421 src_reg->type == PTR_TO_PACKET_END) ||
14422 (dst_reg->type == PTR_TO_PACKET_META &&
14423 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14424 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14425 find_good_pkt_pointers(this_branch, dst_reg,
14426 dst_reg->type, true);
14427 mark_pkt_end(other_branch, insn->dst_reg, false);
14428 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14429 src_reg->type == PTR_TO_PACKET) ||
14430 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14431 src_reg->type == PTR_TO_PACKET_META)) {
14432 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14433 find_good_pkt_pointers(other_branch, src_reg,
14434 src_reg->type, false);
14435 mark_pkt_end(this_branch, insn->src_reg, true);
14436 } else {
14437 return false;
14438 }
14439 break;
14440 case BPF_JLE:
14441 if ((dst_reg->type == PTR_TO_PACKET &&
14442 src_reg->type == PTR_TO_PACKET_END) ||
14443 (dst_reg->type == PTR_TO_PACKET_META &&
14444 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14445 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14446 find_good_pkt_pointers(other_branch, dst_reg,
14447 dst_reg->type, false);
14448 mark_pkt_end(this_branch, insn->dst_reg, true);
14449 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14450 src_reg->type == PTR_TO_PACKET) ||
14451 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14452 src_reg->type == PTR_TO_PACKET_META)) {
14453 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14454 find_good_pkt_pointers(this_branch, src_reg,
14455 src_reg->type, true);
14456 mark_pkt_end(other_branch, insn->src_reg, false);
14457 } else {
14458 return false;
14459 }
14460 break;
14461 default:
14462 return false;
14463 }
14464
14465 return true;
14466 }
14467
find_equal_scalars(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg)14468 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14469 struct bpf_reg_state *known_reg)
14470 {
14471 struct bpf_func_state *state;
14472 struct bpf_reg_state *reg;
14473
14474 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14475 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) {
14476 s32 saved_subreg_def = reg->subreg_def;
14477 copy_register_state(reg, known_reg);
14478 reg->subreg_def = saved_subreg_def;
14479 }
14480 }));
14481 }
14482
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)14483 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14484 struct bpf_insn *insn, int *insn_idx)
14485 {
14486 struct bpf_verifier_state *this_branch = env->cur_state;
14487 struct bpf_verifier_state *other_branch;
14488 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14489 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14490 struct bpf_reg_state *eq_branch_regs;
14491 u8 opcode = BPF_OP(insn->code);
14492 bool is_jmp32;
14493 int pred = -1;
14494 int err;
14495
14496 /* Only conditional jumps are expected to reach here. */
14497 if (opcode == BPF_JA || opcode > BPF_JSLE) {
14498 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14499 return -EINVAL;
14500 }
14501
14502 /* check src2 operand */
14503 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14504 if (err)
14505 return err;
14506
14507 dst_reg = ®s[insn->dst_reg];
14508 if (BPF_SRC(insn->code) == BPF_X) {
14509 if (insn->imm != 0) {
14510 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14511 return -EINVAL;
14512 }
14513
14514 /* check src1 operand */
14515 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14516 if (err)
14517 return err;
14518
14519 src_reg = ®s[insn->src_reg];
14520 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14521 is_pointer_value(env, insn->src_reg)) {
14522 verbose(env, "R%d pointer comparison prohibited\n",
14523 insn->src_reg);
14524 return -EACCES;
14525 }
14526 } else {
14527 if (insn->src_reg != BPF_REG_0) {
14528 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14529 return -EINVAL;
14530 }
14531 }
14532
14533 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14534
14535 if (BPF_SRC(insn->code) == BPF_K) {
14536 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14537 } else if (src_reg->type == SCALAR_VALUE &&
14538 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14539 pred = is_branch_taken(dst_reg,
14540 tnum_subreg(src_reg->var_off).value,
14541 opcode,
14542 is_jmp32);
14543 } else if (src_reg->type == SCALAR_VALUE &&
14544 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14545 pred = is_branch_taken(dst_reg,
14546 src_reg->var_off.value,
14547 opcode,
14548 is_jmp32);
14549 } else if (dst_reg->type == SCALAR_VALUE &&
14550 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14551 pred = is_branch_taken(src_reg,
14552 tnum_subreg(dst_reg->var_off).value,
14553 flip_opcode(opcode),
14554 is_jmp32);
14555 } else if (dst_reg->type == SCALAR_VALUE &&
14556 !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14557 pred = is_branch_taken(src_reg,
14558 dst_reg->var_off.value,
14559 flip_opcode(opcode),
14560 is_jmp32);
14561 } else if (reg_is_pkt_pointer_any(dst_reg) &&
14562 reg_is_pkt_pointer_any(src_reg) &&
14563 !is_jmp32) {
14564 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14565 }
14566
14567 if (pred >= 0) {
14568 /* If we get here with a dst_reg pointer type it is because
14569 * above is_branch_taken() special cased the 0 comparison.
14570 */
14571 if (!__is_pointer_value(false, dst_reg))
14572 err = mark_chain_precision(env, insn->dst_reg);
14573 if (BPF_SRC(insn->code) == BPF_X && !err &&
14574 !__is_pointer_value(false, src_reg))
14575 err = mark_chain_precision(env, insn->src_reg);
14576 if (err)
14577 return err;
14578 }
14579
14580 if (pred == 1) {
14581 /* Only follow the goto, ignore fall-through. If needed, push
14582 * the fall-through branch for simulation under speculative
14583 * execution.
14584 */
14585 if (!env->bypass_spec_v1 &&
14586 !sanitize_speculative_path(env, insn, *insn_idx + 1,
14587 *insn_idx))
14588 return -EFAULT;
14589 if (env->log.level & BPF_LOG_LEVEL)
14590 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14591 *insn_idx += insn->off;
14592 return 0;
14593 } else if (pred == 0) {
14594 /* Only follow the fall-through branch, since that's where the
14595 * program will go. If needed, push the goto branch for
14596 * simulation under speculative execution.
14597 */
14598 if (!env->bypass_spec_v1 &&
14599 !sanitize_speculative_path(env, insn,
14600 *insn_idx + insn->off + 1,
14601 *insn_idx))
14602 return -EFAULT;
14603 if (env->log.level & BPF_LOG_LEVEL)
14604 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14605 return 0;
14606 }
14607
14608 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14609 false);
14610 if (!other_branch)
14611 return -EFAULT;
14612 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14613
14614 /* detect if we are comparing against a constant value so we can adjust
14615 * our min/max values for our dst register.
14616 * this is only legit if both are scalars (or pointers to the same
14617 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14618 * because otherwise the different base pointers mean the offsets aren't
14619 * comparable.
14620 */
14621 if (BPF_SRC(insn->code) == BPF_X) {
14622 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
14623
14624 if (dst_reg->type == SCALAR_VALUE &&
14625 src_reg->type == SCALAR_VALUE) {
14626 if (tnum_is_const(src_reg->var_off) ||
14627 (is_jmp32 &&
14628 tnum_is_const(tnum_subreg(src_reg->var_off))))
14629 reg_set_min_max(&other_branch_regs[insn->dst_reg],
14630 dst_reg,
14631 src_reg->var_off.value,
14632 tnum_subreg(src_reg->var_off).value,
14633 opcode, is_jmp32);
14634 else if (tnum_is_const(dst_reg->var_off) ||
14635 (is_jmp32 &&
14636 tnum_is_const(tnum_subreg(dst_reg->var_off))))
14637 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14638 src_reg,
14639 dst_reg->var_off.value,
14640 tnum_subreg(dst_reg->var_off).value,
14641 opcode, is_jmp32);
14642 else if (!is_jmp32 &&
14643 (opcode == BPF_JEQ || opcode == BPF_JNE))
14644 /* Comparing for equality, we can combine knowledge */
14645 reg_combine_min_max(&other_branch_regs[insn->src_reg],
14646 &other_branch_regs[insn->dst_reg],
14647 src_reg, dst_reg, opcode);
14648 if (src_reg->id &&
14649 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14650 find_equal_scalars(this_branch, src_reg);
14651 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14652 }
14653
14654 }
14655 } else if (dst_reg->type == SCALAR_VALUE) {
14656 reg_set_min_max(&other_branch_regs[insn->dst_reg],
14657 dst_reg, insn->imm, (u32)insn->imm,
14658 opcode, is_jmp32);
14659 }
14660
14661 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14662 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14663 find_equal_scalars(this_branch, dst_reg);
14664 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14665 }
14666
14667 /* if one pointer register is compared to another pointer
14668 * register check if PTR_MAYBE_NULL could be lifted.
14669 * E.g. register A - maybe null
14670 * register B - not null
14671 * for JNE A, B, ... - A is not null in the false branch;
14672 * for JEQ A, B, ... - A is not null in the true branch.
14673 *
14674 * Since PTR_TO_BTF_ID points to a kernel struct that does
14675 * not need to be null checked by the BPF program, i.e.,
14676 * could be null even without PTR_MAYBE_NULL marking, so
14677 * only propagate nullness when neither reg is that type.
14678 */
14679 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14680 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14681 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14682 base_type(src_reg->type) != PTR_TO_BTF_ID &&
14683 base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14684 eq_branch_regs = NULL;
14685 switch (opcode) {
14686 case BPF_JEQ:
14687 eq_branch_regs = other_branch_regs;
14688 break;
14689 case BPF_JNE:
14690 eq_branch_regs = regs;
14691 break;
14692 default:
14693 /* do nothing */
14694 break;
14695 }
14696 if (eq_branch_regs) {
14697 if (type_may_be_null(src_reg->type))
14698 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14699 else
14700 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14701 }
14702 }
14703
14704 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14705 * NOTE: these optimizations below are related with pointer comparison
14706 * which will never be JMP32.
14707 */
14708 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14709 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14710 type_may_be_null(dst_reg->type)) {
14711 /* Mark all identical registers in each branch as either
14712 * safe or unknown depending R == 0 or R != 0 conditional.
14713 */
14714 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14715 opcode == BPF_JNE);
14716 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14717 opcode == BPF_JEQ);
14718 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
14719 this_branch, other_branch) &&
14720 is_pointer_value(env, insn->dst_reg)) {
14721 verbose(env, "R%d pointer comparison prohibited\n",
14722 insn->dst_reg);
14723 return -EACCES;
14724 }
14725 if (env->log.level & BPF_LOG_LEVEL)
14726 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14727 return 0;
14728 }
14729
14730 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)14731 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14732 {
14733 struct bpf_insn_aux_data *aux = cur_aux(env);
14734 struct bpf_reg_state *regs = cur_regs(env);
14735 struct bpf_reg_state *dst_reg;
14736 struct bpf_map *map;
14737 int err;
14738
14739 if (BPF_SIZE(insn->code) != BPF_DW) {
14740 verbose(env, "invalid BPF_LD_IMM insn\n");
14741 return -EINVAL;
14742 }
14743 if (insn->off != 0) {
14744 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14745 return -EINVAL;
14746 }
14747
14748 err = check_reg_arg(env, insn->dst_reg, DST_OP);
14749 if (err)
14750 return err;
14751
14752 dst_reg = ®s[insn->dst_reg];
14753 if (insn->src_reg == 0) {
14754 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14755
14756 dst_reg->type = SCALAR_VALUE;
14757 __mark_reg_known(®s[insn->dst_reg], imm);
14758 return 0;
14759 }
14760
14761 /* All special src_reg cases are listed below. From this point onwards
14762 * we either succeed and assign a corresponding dst_reg->type after
14763 * zeroing the offset, or fail and reject the program.
14764 */
14765 mark_reg_known_zero(env, regs, insn->dst_reg);
14766
14767 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14768 dst_reg->type = aux->btf_var.reg_type;
14769 switch (base_type(dst_reg->type)) {
14770 case PTR_TO_MEM:
14771 dst_reg->mem_size = aux->btf_var.mem_size;
14772 break;
14773 case PTR_TO_BTF_ID:
14774 dst_reg->btf = aux->btf_var.btf;
14775 dst_reg->btf_id = aux->btf_var.btf_id;
14776 break;
14777 default:
14778 verbose(env, "bpf verifier is misconfigured\n");
14779 return -EFAULT;
14780 }
14781 return 0;
14782 }
14783
14784 if (insn->src_reg == BPF_PSEUDO_FUNC) {
14785 struct bpf_prog_aux *aux = env->prog->aux;
14786 u32 subprogno = find_subprog(env,
14787 env->insn_idx + insn->imm + 1);
14788
14789 if (!aux->func_info) {
14790 verbose(env, "missing btf func_info\n");
14791 return -EINVAL;
14792 }
14793 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14794 verbose(env, "callback function not static\n");
14795 return -EINVAL;
14796 }
14797
14798 dst_reg->type = PTR_TO_FUNC;
14799 dst_reg->subprogno = subprogno;
14800 return 0;
14801 }
14802
14803 map = env->used_maps[aux->map_index];
14804 dst_reg->map_ptr = map;
14805
14806 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14807 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14808 dst_reg->type = PTR_TO_MAP_VALUE;
14809 dst_reg->off = aux->map_off;
14810 WARN_ON_ONCE(map->max_entries != 1);
14811 /* We want reg->id to be same (0) as map_value is not distinct */
14812 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14813 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14814 dst_reg->type = CONST_PTR_TO_MAP;
14815 } else {
14816 verbose(env, "bpf verifier is misconfigured\n");
14817 return -EINVAL;
14818 }
14819
14820 return 0;
14821 }
14822
may_access_skb(enum bpf_prog_type type)14823 static bool may_access_skb(enum bpf_prog_type type)
14824 {
14825 switch (type) {
14826 case BPF_PROG_TYPE_SOCKET_FILTER:
14827 case BPF_PROG_TYPE_SCHED_CLS:
14828 case BPF_PROG_TYPE_SCHED_ACT:
14829 return true;
14830 default:
14831 return false;
14832 }
14833 }
14834
14835 /* verify safety of LD_ABS|LD_IND instructions:
14836 * - they can only appear in the programs where ctx == skb
14837 * - since they are wrappers of function calls, they scratch R1-R5 registers,
14838 * preserve R6-R9, and store return value into R0
14839 *
14840 * Implicit input:
14841 * ctx == skb == R6 == CTX
14842 *
14843 * Explicit input:
14844 * SRC == any register
14845 * IMM == 32-bit immediate
14846 *
14847 * Output:
14848 * R0 - 8/16/32-bit skb data converted to cpu endianness
14849 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)14850 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14851 {
14852 struct bpf_reg_state *regs = cur_regs(env);
14853 static const int ctx_reg = BPF_REG_6;
14854 u8 mode = BPF_MODE(insn->code);
14855 int i, err;
14856
14857 if (!may_access_skb(resolve_prog_type(env->prog))) {
14858 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14859 return -EINVAL;
14860 }
14861
14862 if (!env->ops->gen_ld_abs) {
14863 verbose(env, "bpf verifier is misconfigured\n");
14864 return -EINVAL;
14865 }
14866
14867 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14868 BPF_SIZE(insn->code) == BPF_DW ||
14869 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14870 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14871 return -EINVAL;
14872 }
14873
14874 /* check whether implicit source operand (register R6) is readable */
14875 err = check_reg_arg(env, ctx_reg, SRC_OP);
14876 if (err)
14877 return err;
14878
14879 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14880 * gen_ld_abs() may terminate the program at runtime, leading to
14881 * reference leak.
14882 */
14883 err = check_reference_leak(env);
14884 if (err) {
14885 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14886 return err;
14887 }
14888
14889 if (env->cur_state->active_lock.ptr) {
14890 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14891 return -EINVAL;
14892 }
14893
14894 if (env->cur_state->active_rcu_lock) {
14895 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14896 return -EINVAL;
14897 }
14898
14899 if (regs[ctx_reg].type != PTR_TO_CTX) {
14900 verbose(env,
14901 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14902 return -EINVAL;
14903 }
14904
14905 if (mode == BPF_IND) {
14906 /* check explicit source operand */
14907 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14908 if (err)
14909 return err;
14910 }
14911
14912 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
14913 if (err < 0)
14914 return err;
14915
14916 /* reset caller saved regs to unreadable */
14917 for (i = 0; i < CALLER_SAVED_REGS; i++) {
14918 mark_reg_not_init(env, regs, caller_saved[i]);
14919 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14920 }
14921
14922 /* mark destination R0 register as readable, since it contains
14923 * the value fetched from the packet.
14924 * Already marked as written above.
14925 */
14926 mark_reg_unknown(env, regs, BPF_REG_0);
14927 /* ld_abs load up to 32-bit skb data. */
14928 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14929 return 0;
14930 }
14931
check_return_code(struct bpf_verifier_env * env)14932 static int check_return_code(struct bpf_verifier_env *env)
14933 {
14934 struct tnum enforce_attach_type_range = tnum_unknown;
14935 const struct bpf_prog *prog = env->prog;
14936 struct bpf_reg_state *reg;
14937 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
14938 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14939 int err;
14940 struct bpf_func_state *frame = env->cur_state->frame[0];
14941 const bool is_subprog = frame->subprogno;
14942
14943 /* LSM and struct_ops func-ptr's return type could be "void" */
14944 if (!is_subprog) {
14945 switch (prog_type) {
14946 case BPF_PROG_TYPE_LSM:
14947 if (prog->expected_attach_type == BPF_LSM_CGROUP)
14948 /* See below, can be 0 or 0-1 depending on hook. */
14949 break;
14950 fallthrough;
14951 case BPF_PROG_TYPE_STRUCT_OPS:
14952 if (!prog->aux->attach_func_proto->type)
14953 return 0;
14954 break;
14955 default:
14956 break;
14957 }
14958 }
14959
14960 /* eBPF calling convention is such that R0 is used
14961 * to return the value from eBPF program.
14962 * Make sure that it's readable at this time
14963 * of bpf_exit, which means that program wrote
14964 * something into it earlier
14965 */
14966 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14967 if (err)
14968 return err;
14969
14970 if (is_pointer_value(env, BPF_REG_0)) {
14971 verbose(env, "R0 leaks addr as return value\n");
14972 return -EACCES;
14973 }
14974
14975 reg = cur_regs(env) + BPF_REG_0;
14976
14977 if (frame->in_async_callback_fn) {
14978 /* enforce return zero from async callbacks like timer */
14979 if (reg->type != SCALAR_VALUE) {
14980 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
14981 reg_type_str(env, reg->type));
14982 return -EINVAL;
14983 }
14984
14985 if (!tnum_in(const_0, reg->var_off)) {
14986 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
14987 return -EINVAL;
14988 }
14989 return 0;
14990 }
14991
14992 if (is_subprog) {
14993 if (reg->type != SCALAR_VALUE) {
14994 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
14995 reg_type_str(env, reg->type));
14996 return -EINVAL;
14997 }
14998 return 0;
14999 }
15000
15001 switch (prog_type) {
15002 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15003 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15004 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15005 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15006 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15007 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15008 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
15009 range = tnum_range(1, 1);
15010 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15011 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15012 range = tnum_range(0, 3);
15013 break;
15014 case BPF_PROG_TYPE_CGROUP_SKB:
15015 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15016 range = tnum_range(0, 3);
15017 enforce_attach_type_range = tnum_range(2, 3);
15018 }
15019 break;
15020 case BPF_PROG_TYPE_CGROUP_SOCK:
15021 case BPF_PROG_TYPE_SOCK_OPS:
15022 case BPF_PROG_TYPE_CGROUP_DEVICE:
15023 case BPF_PROG_TYPE_CGROUP_SYSCTL:
15024 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15025 break;
15026 case BPF_PROG_TYPE_RAW_TRACEPOINT:
15027 if (!env->prog->aux->attach_btf_id)
15028 return 0;
15029 range = tnum_const(0);
15030 break;
15031 case BPF_PROG_TYPE_TRACING:
15032 switch (env->prog->expected_attach_type) {
15033 case BPF_TRACE_FENTRY:
15034 case BPF_TRACE_FEXIT:
15035 range = tnum_const(0);
15036 break;
15037 case BPF_TRACE_RAW_TP:
15038 case BPF_MODIFY_RETURN:
15039 return 0;
15040 case BPF_TRACE_ITER:
15041 break;
15042 default:
15043 return -ENOTSUPP;
15044 }
15045 break;
15046 case BPF_PROG_TYPE_SK_LOOKUP:
15047 range = tnum_range(SK_DROP, SK_PASS);
15048 break;
15049
15050 case BPF_PROG_TYPE_LSM:
15051 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15052 /* Regular BPF_PROG_TYPE_LSM programs can return
15053 * any value.
15054 */
15055 return 0;
15056 }
15057 if (!env->prog->aux->attach_func_proto->type) {
15058 /* Make sure programs that attach to void
15059 * hooks don't try to modify return value.
15060 */
15061 range = tnum_range(1, 1);
15062 }
15063 break;
15064
15065 case BPF_PROG_TYPE_NETFILTER:
15066 range = tnum_range(NF_DROP, NF_ACCEPT);
15067 break;
15068 case BPF_PROG_TYPE_EXT:
15069 /* freplace program can return anything as its return value
15070 * depends on the to-be-replaced kernel func or bpf program.
15071 */
15072 default:
15073 return 0;
15074 }
15075
15076 if (reg->type != SCALAR_VALUE) {
15077 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
15078 reg_type_str(env, reg->type));
15079 return -EINVAL;
15080 }
15081
15082 if (!tnum_in(range, reg->var_off)) {
15083 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
15084 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
15085 prog_type == BPF_PROG_TYPE_LSM &&
15086 !prog->aux->attach_func_proto->type)
15087 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15088 return -EINVAL;
15089 }
15090
15091 if (!tnum_is_unknown(enforce_attach_type_range) &&
15092 tnum_in(enforce_attach_type_range, reg->var_off))
15093 env->prog->enforce_expected_attach_type = 1;
15094 return 0;
15095 }
15096
15097 /* non-recursive DFS pseudo code
15098 * 1 procedure DFS-iterative(G,v):
15099 * 2 label v as discovered
15100 * 3 let S be a stack
15101 * 4 S.push(v)
15102 * 5 while S is not empty
15103 * 6 t <- S.peek()
15104 * 7 if t is what we're looking for:
15105 * 8 return t
15106 * 9 for all edges e in G.adjacentEdges(t) do
15107 * 10 if edge e is already labelled
15108 * 11 continue with the next edge
15109 * 12 w <- G.adjacentVertex(t,e)
15110 * 13 if vertex w is not discovered and not explored
15111 * 14 label e as tree-edge
15112 * 15 label w as discovered
15113 * 16 S.push(w)
15114 * 17 continue at 5
15115 * 18 else if vertex w is discovered
15116 * 19 label e as back-edge
15117 * 20 else
15118 * 21 // vertex w is explored
15119 * 22 label e as forward- or cross-edge
15120 * 23 label t as explored
15121 * 24 S.pop()
15122 *
15123 * convention:
15124 * 0x10 - discovered
15125 * 0x11 - discovered and fall-through edge labelled
15126 * 0x12 - discovered and fall-through and branch edges labelled
15127 * 0x20 - explored
15128 */
15129
15130 enum {
15131 DISCOVERED = 0x10,
15132 EXPLORED = 0x20,
15133 FALLTHROUGH = 1,
15134 BRANCH = 2,
15135 };
15136
mark_prune_point(struct bpf_verifier_env * env,int idx)15137 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15138 {
15139 env->insn_aux_data[idx].prune_point = true;
15140 }
15141
is_prune_point(struct bpf_verifier_env * env,int insn_idx)15142 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15143 {
15144 return env->insn_aux_data[insn_idx].prune_point;
15145 }
15146
mark_force_checkpoint(struct bpf_verifier_env * env,int idx)15147 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15148 {
15149 env->insn_aux_data[idx].force_checkpoint = true;
15150 }
15151
is_force_checkpoint(struct bpf_verifier_env * env,int insn_idx)15152 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15153 {
15154 return env->insn_aux_data[insn_idx].force_checkpoint;
15155 }
15156
mark_calls_callback(struct bpf_verifier_env * env,int idx)15157 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
15158 {
15159 env->insn_aux_data[idx].calls_callback = true;
15160 }
15161
calls_callback(struct bpf_verifier_env * env,int insn_idx)15162 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
15163 {
15164 return env->insn_aux_data[insn_idx].calls_callback;
15165 }
15166
15167 enum {
15168 DONE_EXPLORING = 0,
15169 KEEP_EXPLORING = 1,
15170 };
15171
15172 /* t, w, e - match pseudo-code above:
15173 * t - index of current instruction
15174 * w - next instruction
15175 * e - edge
15176 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env)15177 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
15178 {
15179 int *insn_stack = env->cfg.insn_stack;
15180 int *insn_state = env->cfg.insn_state;
15181
15182 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15183 return DONE_EXPLORING;
15184
15185 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15186 return DONE_EXPLORING;
15187
15188 if (w < 0 || w >= env->prog->len) {
15189 verbose_linfo(env, t, "%d: ", t);
15190 verbose(env, "jump out of range from insn %d to %d\n", t, w);
15191 return -EINVAL;
15192 }
15193
15194 if (e == BRANCH) {
15195 /* mark branch target for state pruning */
15196 mark_prune_point(env, w);
15197 mark_jmp_point(env, w);
15198 }
15199
15200 if (insn_state[w] == 0) {
15201 /* tree-edge */
15202 insn_state[t] = DISCOVERED | e;
15203 insn_state[w] = DISCOVERED;
15204 if (env->cfg.cur_stack >= env->prog->len)
15205 return -E2BIG;
15206 insn_stack[env->cfg.cur_stack++] = w;
15207 return KEEP_EXPLORING;
15208 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15209 if (env->bpf_capable)
15210 return DONE_EXPLORING;
15211 verbose_linfo(env, t, "%d: ", t);
15212 verbose_linfo(env, w, "%d: ", w);
15213 verbose(env, "back-edge from insn %d to %d\n", t, w);
15214 return -EINVAL;
15215 } else if (insn_state[w] == EXPLORED) {
15216 /* forward- or cross-edge */
15217 insn_state[t] = DISCOVERED | e;
15218 } else {
15219 verbose(env, "insn state internal bug\n");
15220 return -EFAULT;
15221 }
15222 return DONE_EXPLORING;
15223 }
15224
visit_func_call_insn(int t,struct bpf_insn * insns,struct bpf_verifier_env * env,bool visit_callee)15225 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15226 struct bpf_verifier_env *env,
15227 bool visit_callee)
15228 {
15229 int ret, insn_sz;
15230
15231 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
15232 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
15233 if (ret)
15234 return ret;
15235
15236 mark_prune_point(env, t + insn_sz);
15237 /* when we exit from subprog, we need to record non-linear history */
15238 mark_jmp_point(env, t + insn_sz);
15239
15240 if (visit_callee) {
15241 mark_prune_point(env, t);
15242 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
15243 }
15244 return ret;
15245 }
15246
15247 /* Visits the instruction at index t and returns one of the following:
15248 * < 0 - an error occurred
15249 * DONE_EXPLORING - the instruction was fully explored
15250 * KEEP_EXPLORING - there is still work to be done before it is fully explored
15251 */
visit_insn(int t,struct bpf_verifier_env * env)15252 static int visit_insn(int t, struct bpf_verifier_env *env)
15253 {
15254 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15255 int ret, off, insn_sz;
15256
15257 if (bpf_pseudo_func(insn))
15258 return visit_func_call_insn(t, insns, env, true);
15259
15260 /* All non-branch instructions have a single fall-through edge. */
15261 if (BPF_CLASS(insn->code) != BPF_JMP &&
15262 BPF_CLASS(insn->code) != BPF_JMP32) {
15263 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
15264 return push_insn(t, t + insn_sz, FALLTHROUGH, env);
15265 }
15266
15267 switch (BPF_OP(insn->code)) {
15268 case BPF_EXIT:
15269 return DONE_EXPLORING;
15270
15271 case BPF_CALL:
15272 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15273 /* Mark this call insn as a prune point to trigger
15274 * is_state_visited() check before call itself is
15275 * processed by __check_func_call(). Otherwise new
15276 * async state will be pushed for further exploration.
15277 */
15278 mark_prune_point(env, t);
15279 /* For functions that invoke callbacks it is not known how many times
15280 * callback would be called. Verifier models callback calling functions
15281 * by repeatedly visiting callback bodies and returning to origin call
15282 * instruction.
15283 * In order to stop such iteration verifier needs to identify when a
15284 * state identical some state from a previous iteration is reached.
15285 * Check below forces creation of checkpoint before callback calling
15286 * instruction to allow search for such identical states.
15287 */
15288 if (is_sync_callback_calling_insn(insn)) {
15289 mark_calls_callback(env, t);
15290 mark_force_checkpoint(env, t);
15291 mark_prune_point(env, t);
15292 mark_jmp_point(env, t);
15293 }
15294 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15295 struct bpf_kfunc_call_arg_meta meta;
15296
15297 ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15298 if (ret == 0 && is_iter_next_kfunc(&meta)) {
15299 mark_prune_point(env, t);
15300 /* Checking and saving state checkpoints at iter_next() call
15301 * is crucial for fast convergence of open-coded iterator loop
15302 * logic, so we need to force it. If we don't do that,
15303 * is_state_visited() might skip saving a checkpoint, causing
15304 * unnecessarily long sequence of not checkpointed
15305 * instructions and jumps, leading to exhaustion of jump
15306 * history buffer, and potentially other undesired outcomes.
15307 * It is expected that with correct open-coded iterators
15308 * convergence will happen quickly, so we don't run a risk of
15309 * exhausting memory.
15310 */
15311 mark_force_checkpoint(env, t);
15312 }
15313 }
15314 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15315
15316 case BPF_JA:
15317 if (BPF_SRC(insn->code) != BPF_K)
15318 return -EINVAL;
15319
15320 if (BPF_CLASS(insn->code) == BPF_JMP)
15321 off = insn->off;
15322 else
15323 off = insn->imm;
15324
15325 /* unconditional jump with single edge */
15326 ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
15327 if (ret)
15328 return ret;
15329
15330 mark_prune_point(env, t + off + 1);
15331 mark_jmp_point(env, t + off + 1);
15332
15333 return ret;
15334
15335 default:
15336 /* conditional jump with two edges */
15337 mark_prune_point(env, t);
15338
15339 ret = push_insn(t, t + 1, FALLTHROUGH, env);
15340 if (ret)
15341 return ret;
15342
15343 return push_insn(t, t + insn->off + 1, BRANCH, env);
15344 }
15345 }
15346
15347 /* non-recursive depth-first-search to detect loops in BPF program
15348 * loop == back-edge in directed graph
15349 */
check_cfg(struct bpf_verifier_env * env)15350 static int check_cfg(struct bpf_verifier_env *env)
15351 {
15352 int insn_cnt = env->prog->len;
15353 int *insn_stack, *insn_state;
15354 int ret = 0;
15355 int i;
15356
15357 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15358 if (!insn_state)
15359 return -ENOMEM;
15360
15361 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15362 if (!insn_stack) {
15363 kvfree(insn_state);
15364 return -ENOMEM;
15365 }
15366
15367 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15368 insn_stack[0] = 0; /* 0 is the first instruction */
15369 env->cfg.cur_stack = 1;
15370
15371 while (env->cfg.cur_stack > 0) {
15372 int t = insn_stack[env->cfg.cur_stack - 1];
15373
15374 ret = visit_insn(t, env);
15375 switch (ret) {
15376 case DONE_EXPLORING:
15377 insn_state[t] = EXPLORED;
15378 env->cfg.cur_stack--;
15379 break;
15380 case KEEP_EXPLORING:
15381 break;
15382 default:
15383 if (ret > 0) {
15384 verbose(env, "visit_insn internal bug\n");
15385 ret = -EFAULT;
15386 }
15387 goto err_free;
15388 }
15389 }
15390
15391 if (env->cfg.cur_stack < 0) {
15392 verbose(env, "pop stack internal bug\n");
15393 ret = -EFAULT;
15394 goto err_free;
15395 }
15396
15397 for (i = 0; i < insn_cnt; i++) {
15398 struct bpf_insn *insn = &env->prog->insnsi[i];
15399
15400 if (insn_state[i] != EXPLORED) {
15401 verbose(env, "unreachable insn %d\n", i);
15402 ret = -EINVAL;
15403 goto err_free;
15404 }
15405 if (bpf_is_ldimm64(insn)) {
15406 if (insn_state[i + 1] != 0) {
15407 verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
15408 ret = -EINVAL;
15409 goto err_free;
15410 }
15411 i++; /* skip second half of ldimm64 */
15412 }
15413 }
15414 ret = 0; /* cfg looks good */
15415
15416 err_free:
15417 kvfree(insn_state);
15418 kvfree(insn_stack);
15419 env->cfg.insn_state = env->cfg.insn_stack = NULL;
15420 return ret;
15421 }
15422
check_abnormal_return(struct bpf_verifier_env * env)15423 static int check_abnormal_return(struct bpf_verifier_env *env)
15424 {
15425 int i;
15426
15427 for (i = 1; i < env->subprog_cnt; i++) {
15428 if (env->subprog_info[i].has_ld_abs) {
15429 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15430 return -EINVAL;
15431 }
15432 if (env->subprog_info[i].has_tail_call) {
15433 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15434 return -EINVAL;
15435 }
15436 }
15437 return 0;
15438 }
15439
15440 /* The minimum supported BTF func info size */
15441 #define MIN_BPF_FUNCINFO_SIZE 8
15442 #define MAX_FUNCINFO_REC_SIZE 252
15443
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15444 static int check_btf_func(struct bpf_verifier_env *env,
15445 const union bpf_attr *attr,
15446 bpfptr_t uattr)
15447 {
15448 const struct btf_type *type, *func_proto, *ret_type;
15449 u32 i, nfuncs, urec_size, min_size;
15450 u32 krec_size = sizeof(struct bpf_func_info);
15451 struct bpf_func_info *krecord;
15452 struct bpf_func_info_aux *info_aux = NULL;
15453 struct bpf_prog *prog;
15454 const struct btf *btf;
15455 bpfptr_t urecord;
15456 u32 prev_offset = 0;
15457 bool scalar_return;
15458 int ret = -ENOMEM;
15459
15460 nfuncs = attr->func_info_cnt;
15461 if (!nfuncs) {
15462 if (check_abnormal_return(env))
15463 return -EINVAL;
15464 return 0;
15465 }
15466
15467 if (nfuncs != env->subprog_cnt) {
15468 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15469 return -EINVAL;
15470 }
15471
15472 urec_size = attr->func_info_rec_size;
15473 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15474 urec_size > MAX_FUNCINFO_REC_SIZE ||
15475 urec_size % sizeof(u32)) {
15476 verbose(env, "invalid func info rec size %u\n", urec_size);
15477 return -EINVAL;
15478 }
15479
15480 prog = env->prog;
15481 btf = prog->aux->btf;
15482
15483 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15484 min_size = min_t(u32, krec_size, urec_size);
15485
15486 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15487 if (!krecord)
15488 return -ENOMEM;
15489 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15490 if (!info_aux)
15491 goto err_free;
15492
15493 for (i = 0; i < nfuncs; i++) {
15494 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15495 if (ret) {
15496 if (ret == -E2BIG) {
15497 verbose(env, "nonzero tailing record in func info");
15498 /* set the size kernel expects so loader can zero
15499 * out the rest of the record.
15500 */
15501 if (copy_to_bpfptr_offset(uattr,
15502 offsetof(union bpf_attr, func_info_rec_size),
15503 &min_size, sizeof(min_size)))
15504 ret = -EFAULT;
15505 }
15506 goto err_free;
15507 }
15508
15509 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15510 ret = -EFAULT;
15511 goto err_free;
15512 }
15513
15514 /* check insn_off */
15515 ret = -EINVAL;
15516 if (i == 0) {
15517 if (krecord[i].insn_off) {
15518 verbose(env,
15519 "nonzero insn_off %u for the first func info record",
15520 krecord[i].insn_off);
15521 goto err_free;
15522 }
15523 } else if (krecord[i].insn_off <= prev_offset) {
15524 verbose(env,
15525 "same or smaller insn offset (%u) than previous func info record (%u)",
15526 krecord[i].insn_off, prev_offset);
15527 goto err_free;
15528 }
15529
15530 if (env->subprog_info[i].start != krecord[i].insn_off) {
15531 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15532 goto err_free;
15533 }
15534
15535 /* check type_id */
15536 type = btf_type_by_id(btf, krecord[i].type_id);
15537 if (!type || !btf_type_is_func(type)) {
15538 verbose(env, "invalid type id %d in func info",
15539 krecord[i].type_id);
15540 goto err_free;
15541 }
15542 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15543
15544 func_proto = btf_type_by_id(btf, type->type);
15545 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15546 /* btf_func_check() already verified it during BTF load */
15547 goto err_free;
15548 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15549 scalar_return =
15550 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15551 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15552 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15553 goto err_free;
15554 }
15555 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15556 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15557 goto err_free;
15558 }
15559
15560 prev_offset = krecord[i].insn_off;
15561 bpfptr_add(&urecord, urec_size);
15562 }
15563
15564 prog->aux->func_info = krecord;
15565 prog->aux->func_info_cnt = nfuncs;
15566 prog->aux->func_info_aux = info_aux;
15567 return 0;
15568
15569 err_free:
15570 kvfree(krecord);
15571 kfree(info_aux);
15572 return ret;
15573 }
15574
adjust_btf_func(struct bpf_verifier_env * env)15575 static void adjust_btf_func(struct bpf_verifier_env *env)
15576 {
15577 struct bpf_prog_aux *aux = env->prog->aux;
15578 int i;
15579
15580 if (!aux->func_info)
15581 return;
15582
15583 for (i = 0; i < env->subprog_cnt; i++)
15584 aux->func_info[i].insn_off = env->subprog_info[i].start;
15585 }
15586
15587 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
15588 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
15589
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15590 static int check_btf_line(struct bpf_verifier_env *env,
15591 const union bpf_attr *attr,
15592 bpfptr_t uattr)
15593 {
15594 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15595 struct bpf_subprog_info *sub;
15596 struct bpf_line_info *linfo;
15597 struct bpf_prog *prog;
15598 const struct btf *btf;
15599 bpfptr_t ulinfo;
15600 int err;
15601
15602 nr_linfo = attr->line_info_cnt;
15603 if (!nr_linfo)
15604 return 0;
15605 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15606 return -EINVAL;
15607
15608 rec_size = attr->line_info_rec_size;
15609 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15610 rec_size > MAX_LINEINFO_REC_SIZE ||
15611 rec_size & (sizeof(u32) - 1))
15612 return -EINVAL;
15613
15614 /* Need to zero it in case the userspace may
15615 * pass in a smaller bpf_line_info object.
15616 */
15617 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15618 GFP_KERNEL | __GFP_NOWARN);
15619 if (!linfo)
15620 return -ENOMEM;
15621
15622 prog = env->prog;
15623 btf = prog->aux->btf;
15624
15625 s = 0;
15626 sub = env->subprog_info;
15627 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15628 expected_size = sizeof(struct bpf_line_info);
15629 ncopy = min_t(u32, expected_size, rec_size);
15630 for (i = 0; i < nr_linfo; i++) {
15631 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15632 if (err) {
15633 if (err == -E2BIG) {
15634 verbose(env, "nonzero tailing record in line_info");
15635 if (copy_to_bpfptr_offset(uattr,
15636 offsetof(union bpf_attr, line_info_rec_size),
15637 &expected_size, sizeof(expected_size)))
15638 err = -EFAULT;
15639 }
15640 goto err_free;
15641 }
15642
15643 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15644 err = -EFAULT;
15645 goto err_free;
15646 }
15647
15648 /*
15649 * Check insn_off to ensure
15650 * 1) strictly increasing AND
15651 * 2) bounded by prog->len
15652 *
15653 * The linfo[0].insn_off == 0 check logically falls into
15654 * the later "missing bpf_line_info for func..." case
15655 * because the first linfo[0].insn_off must be the
15656 * first sub also and the first sub must have
15657 * subprog_info[0].start == 0.
15658 */
15659 if ((i && linfo[i].insn_off <= prev_offset) ||
15660 linfo[i].insn_off >= prog->len) {
15661 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15662 i, linfo[i].insn_off, prev_offset,
15663 prog->len);
15664 err = -EINVAL;
15665 goto err_free;
15666 }
15667
15668 if (!prog->insnsi[linfo[i].insn_off].code) {
15669 verbose(env,
15670 "Invalid insn code at line_info[%u].insn_off\n",
15671 i);
15672 err = -EINVAL;
15673 goto err_free;
15674 }
15675
15676 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15677 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15678 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15679 err = -EINVAL;
15680 goto err_free;
15681 }
15682
15683 if (s != env->subprog_cnt) {
15684 if (linfo[i].insn_off == sub[s].start) {
15685 sub[s].linfo_idx = i;
15686 s++;
15687 } else if (sub[s].start < linfo[i].insn_off) {
15688 verbose(env, "missing bpf_line_info for func#%u\n", s);
15689 err = -EINVAL;
15690 goto err_free;
15691 }
15692 }
15693
15694 prev_offset = linfo[i].insn_off;
15695 bpfptr_add(&ulinfo, rec_size);
15696 }
15697
15698 if (s != env->subprog_cnt) {
15699 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15700 env->subprog_cnt - s, s);
15701 err = -EINVAL;
15702 goto err_free;
15703 }
15704
15705 prog->aux->linfo = linfo;
15706 prog->aux->nr_linfo = nr_linfo;
15707
15708 return 0;
15709
15710 err_free:
15711 kvfree(linfo);
15712 return err;
15713 }
15714
15715 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
15716 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
15717
check_core_relo(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15718 static int check_core_relo(struct bpf_verifier_env *env,
15719 const union bpf_attr *attr,
15720 bpfptr_t uattr)
15721 {
15722 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15723 struct bpf_core_relo core_relo = {};
15724 struct bpf_prog *prog = env->prog;
15725 const struct btf *btf = prog->aux->btf;
15726 struct bpf_core_ctx ctx = {
15727 .log = &env->log,
15728 .btf = btf,
15729 };
15730 bpfptr_t u_core_relo;
15731 int err;
15732
15733 nr_core_relo = attr->core_relo_cnt;
15734 if (!nr_core_relo)
15735 return 0;
15736 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15737 return -EINVAL;
15738
15739 rec_size = attr->core_relo_rec_size;
15740 if (rec_size < MIN_CORE_RELO_SIZE ||
15741 rec_size > MAX_CORE_RELO_SIZE ||
15742 rec_size % sizeof(u32))
15743 return -EINVAL;
15744
15745 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15746 expected_size = sizeof(struct bpf_core_relo);
15747 ncopy = min_t(u32, expected_size, rec_size);
15748
15749 /* Unlike func_info and line_info, copy and apply each CO-RE
15750 * relocation record one at a time.
15751 */
15752 for (i = 0; i < nr_core_relo; i++) {
15753 /* future proofing when sizeof(bpf_core_relo) changes */
15754 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15755 if (err) {
15756 if (err == -E2BIG) {
15757 verbose(env, "nonzero tailing record in core_relo");
15758 if (copy_to_bpfptr_offset(uattr,
15759 offsetof(union bpf_attr, core_relo_rec_size),
15760 &expected_size, sizeof(expected_size)))
15761 err = -EFAULT;
15762 }
15763 break;
15764 }
15765
15766 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15767 err = -EFAULT;
15768 break;
15769 }
15770
15771 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15772 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15773 i, core_relo.insn_off, prog->len);
15774 err = -EINVAL;
15775 break;
15776 }
15777
15778 err = bpf_core_apply(&ctx, &core_relo, i,
15779 &prog->insnsi[core_relo.insn_off / 8]);
15780 if (err)
15781 break;
15782 bpfptr_add(&u_core_relo, rec_size);
15783 }
15784 return err;
15785 }
15786
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15787 static int check_btf_info(struct bpf_verifier_env *env,
15788 const union bpf_attr *attr,
15789 bpfptr_t uattr)
15790 {
15791 struct btf *btf;
15792 int err;
15793
15794 if (!attr->func_info_cnt && !attr->line_info_cnt) {
15795 if (check_abnormal_return(env))
15796 return -EINVAL;
15797 return 0;
15798 }
15799
15800 btf = btf_get_by_fd(attr->prog_btf_fd);
15801 if (IS_ERR(btf))
15802 return PTR_ERR(btf);
15803 if (btf_is_kernel(btf)) {
15804 btf_put(btf);
15805 return -EACCES;
15806 }
15807 env->prog->aux->btf = btf;
15808
15809 err = check_btf_func(env, attr, uattr);
15810 if (err)
15811 return err;
15812
15813 err = check_btf_line(env, attr, uattr);
15814 if (err)
15815 return err;
15816
15817 err = check_core_relo(env, attr, uattr);
15818 if (err)
15819 return err;
15820
15821 return 0;
15822 }
15823
15824 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)15825 static bool range_within(struct bpf_reg_state *old,
15826 struct bpf_reg_state *cur)
15827 {
15828 return old->umin_value <= cur->umin_value &&
15829 old->umax_value >= cur->umax_value &&
15830 old->smin_value <= cur->smin_value &&
15831 old->smax_value >= cur->smax_value &&
15832 old->u32_min_value <= cur->u32_min_value &&
15833 old->u32_max_value >= cur->u32_max_value &&
15834 old->s32_min_value <= cur->s32_min_value &&
15835 old->s32_max_value >= cur->s32_max_value;
15836 }
15837
15838 /* If in the old state two registers had the same id, then they need to have
15839 * the same id in the new state as well. But that id could be different from
15840 * the old state, so we need to track the mapping from old to new ids.
15841 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15842 * regs with old id 5 must also have new id 9 for the new state to be safe. But
15843 * regs with a different old id could still have new id 9, we don't care about
15844 * that.
15845 * So we look through our idmap to see if this old id has been seen before. If
15846 * so, we require the new id to match; otherwise, we add the id pair to the map.
15847 */
check_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)15848 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15849 {
15850 struct bpf_id_pair *map = idmap->map;
15851 unsigned int i;
15852
15853 /* either both IDs should be set or both should be zero */
15854 if (!!old_id != !!cur_id)
15855 return false;
15856
15857 if (old_id == 0) /* cur_id == 0 as well */
15858 return true;
15859
15860 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15861 if (!map[i].old) {
15862 /* Reached an empty slot; haven't seen this id before */
15863 map[i].old = old_id;
15864 map[i].cur = cur_id;
15865 return true;
15866 }
15867 if (map[i].old == old_id)
15868 return map[i].cur == cur_id;
15869 if (map[i].cur == cur_id)
15870 return false;
15871 }
15872 /* We ran out of idmap slots, which should be impossible */
15873 WARN_ON_ONCE(1);
15874 return false;
15875 }
15876
15877 /* Similar to check_ids(), but allocate a unique temporary ID
15878 * for 'old_id' or 'cur_id' of zero.
15879 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15880 */
check_scalar_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)15881 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15882 {
15883 old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15884 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15885
15886 return check_ids(old_id, cur_id, idmap);
15887 }
15888
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)15889 static void clean_func_state(struct bpf_verifier_env *env,
15890 struct bpf_func_state *st)
15891 {
15892 enum bpf_reg_liveness live;
15893 int i, j;
15894
15895 for (i = 0; i < BPF_REG_FP; i++) {
15896 live = st->regs[i].live;
15897 /* liveness must not touch this register anymore */
15898 st->regs[i].live |= REG_LIVE_DONE;
15899 if (!(live & REG_LIVE_READ))
15900 /* since the register is unused, clear its state
15901 * to make further comparison simpler
15902 */
15903 __mark_reg_not_init(env, &st->regs[i]);
15904 }
15905
15906 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15907 live = st->stack[i].spilled_ptr.live;
15908 /* liveness must not touch this stack slot anymore */
15909 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15910 if (!(live & REG_LIVE_READ)) {
15911 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15912 for (j = 0; j < BPF_REG_SIZE; j++)
15913 st->stack[i].slot_type[j] = STACK_INVALID;
15914 }
15915 }
15916 }
15917
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)15918 static void clean_verifier_state(struct bpf_verifier_env *env,
15919 struct bpf_verifier_state *st)
15920 {
15921 int i;
15922
15923 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15924 /* all regs in this state in all frames were already marked */
15925 return;
15926
15927 for (i = 0; i <= st->curframe; i++)
15928 clean_func_state(env, st->frame[i]);
15929 }
15930
15931 /* the parentage chains form a tree.
15932 * the verifier states are added to state lists at given insn and
15933 * pushed into state stack for future exploration.
15934 * when the verifier reaches bpf_exit insn some of the verifer states
15935 * stored in the state lists have their final liveness state already,
15936 * but a lot of states will get revised from liveness point of view when
15937 * the verifier explores other branches.
15938 * Example:
15939 * 1: r0 = 1
15940 * 2: if r1 == 100 goto pc+1
15941 * 3: r0 = 2
15942 * 4: exit
15943 * when the verifier reaches exit insn the register r0 in the state list of
15944 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15945 * of insn 2 and goes exploring further. At the insn 4 it will walk the
15946 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15947 *
15948 * Since the verifier pushes the branch states as it sees them while exploring
15949 * the program the condition of walking the branch instruction for the second
15950 * time means that all states below this branch were already explored and
15951 * their final liveness marks are already propagated.
15952 * Hence when the verifier completes the search of state list in is_state_visited()
15953 * we can call this clean_live_states() function to mark all liveness states
15954 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15955 * will not be used.
15956 * This function also clears the registers and stack for states that !READ
15957 * to simplify state merging.
15958 *
15959 * Important note here that walking the same branch instruction in the callee
15960 * doesn't meant that the states are DONE. The verifier has to compare
15961 * the callsites
15962 */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)15963 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15964 struct bpf_verifier_state *cur)
15965 {
15966 struct bpf_verifier_state_list *sl;
15967
15968 sl = *explored_state(env, insn);
15969 while (sl) {
15970 if (sl->state.branches)
15971 goto next;
15972 if (sl->state.insn_idx != insn ||
15973 !same_callsites(&sl->state, cur))
15974 goto next;
15975 clean_verifier_state(env, &sl->state);
15976 next:
15977 sl = sl->next;
15978 }
15979 }
15980
regs_exact(const struct bpf_reg_state * rold,const struct bpf_reg_state * rcur,struct bpf_idmap * idmap)15981 static bool regs_exact(const struct bpf_reg_state *rold,
15982 const struct bpf_reg_state *rcur,
15983 struct bpf_idmap *idmap)
15984 {
15985 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15986 check_ids(rold->id, rcur->id, idmap) &&
15987 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15988 }
15989
15990 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap,bool exact)15991 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
15992 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
15993 {
15994 if (exact)
15995 return regs_exact(rold, rcur, idmap);
15996
15997 if (!(rold->live & REG_LIVE_READ))
15998 /* explored state didn't use this */
15999 return true;
16000 if (rold->type == NOT_INIT)
16001 /* explored state can't have used this */
16002 return true;
16003 if (rcur->type == NOT_INIT)
16004 return false;
16005
16006 /* Enforce that register types have to match exactly, including their
16007 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16008 * rule.
16009 *
16010 * One can make a point that using a pointer register as unbounded
16011 * SCALAR would be technically acceptable, but this could lead to
16012 * pointer leaks because scalars are allowed to leak while pointers
16013 * are not. We could make this safe in special cases if root is
16014 * calling us, but it's probably not worth the hassle.
16015 *
16016 * Also, register types that are *not* MAYBE_NULL could technically be
16017 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16018 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16019 * to the same map).
16020 * However, if the old MAYBE_NULL register then got NULL checked,
16021 * doing so could have affected others with the same id, and we can't
16022 * check for that because we lost the id when we converted to
16023 * a non-MAYBE_NULL variant.
16024 * So, as a general rule we don't allow mixing MAYBE_NULL and
16025 * non-MAYBE_NULL registers as well.
16026 */
16027 if (rold->type != rcur->type)
16028 return false;
16029
16030 switch (base_type(rold->type)) {
16031 case SCALAR_VALUE:
16032 if (env->explore_alu_limits) {
16033 /* explore_alu_limits disables tnum_in() and range_within()
16034 * logic and requires everything to be strict
16035 */
16036 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16037 check_scalar_ids(rold->id, rcur->id, idmap);
16038 }
16039 if (!rold->precise)
16040 return true;
16041 /* Why check_ids() for scalar registers?
16042 *
16043 * Consider the following BPF code:
16044 * 1: r6 = ... unbound scalar, ID=a ...
16045 * 2: r7 = ... unbound scalar, ID=b ...
16046 * 3: if (r6 > r7) goto +1
16047 * 4: r6 = r7
16048 * 5: if (r6 > X) goto ...
16049 * 6: ... memory operation using r7 ...
16050 *
16051 * First verification path is [1-6]:
16052 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16053 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16054 * r7 <= X, because r6 and r7 share same id.
16055 * Next verification path is [1-4, 6].
16056 *
16057 * Instruction (6) would be reached in two states:
16058 * I. r6{.id=b}, r7{.id=b} via path 1-6;
16059 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16060 *
16061 * Use check_ids() to distinguish these states.
16062 * ---
16063 * Also verify that new value satisfies old value range knowledge.
16064 */
16065 return range_within(rold, rcur) &&
16066 tnum_in(rold->var_off, rcur->var_off) &&
16067 check_scalar_ids(rold->id, rcur->id, idmap);
16068 case PTR_TO_MAP_KEY:
16069 case PTR_TO_MAP_VALUE:
16070 case PTR_TO_MEM:
16071 case PTR_TO_BUF:
16072 case PTR_TO_TP_BUFFER:
16073 /* If the new min/max/var_off satisfy the old ones and
16074 * everything else matches, we are OK.
16075 */
16076 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16077 range_within(rold, rcur) &&
16078 tnum_in(rold->var_off, rcur->var_off) &&
16079 check_ids(rold->id, rcur->id, idmap) &&
16080 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16081 case PTR_TO_PACKET_META:
16082 case PTR_TO_PACKET:
16083 /* We must have at least as much range as the old ptr
16084 * did, so that any accesses which were safe before are
16085 * still safe. This is true even if old range < old off,
16086 * since someone could have accessed through (ptr - k), or
16087 * even done ptr -= k in a register, to get a safe access.
16088 */
16089 if (rold->range > rcur->range)
16090 return false;
16091 /* If the offsets don't match, we can't trust our alignment;
16092 * nor can we be sure that we won't fall out of range.
16093 */
16094 if (rold->off != rcur->off)
16095 return false;
16096 /* id relations must be preserved */
16097 if (!check_ids(rold->id, rcur->id, idmap))
16098 return false;
16099 /* new val must satisfy old val knowledge */
16100 return range_within(rold, rcur) &&
16101 tnum_in(rold->var_off, rcur->var_off);
16102 case PTR_TO_STACK:
16103 /* two stack pointers are equal only if they're pointing to
16104 * the same stack frame, since fp-8 in foo != fp-8 in bar
16105 */
16106 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16107 default:
16108 return regs_exact(rold, rcur, idmap);
16109 }
16110 }
16111
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap,bool exact)16112 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16113 struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
16114 {
16115 int i, spi;
16116
16117 /* walk slots of the explored stack and ignore any additional
16118 * slots in the current stack, since explored(safe) state
16119 * didn't use them
16120 */
16121 for (i = 0; i < old->allocated_stack; i++) {
16122 struct bpf_reg_state *old_reg, *cur_reg;
16123
16124 spi = i / BPF_REG_SIZE;
16125
16126 if (exact &&
16127 (i >= cur->allocated_stack ||
16128 old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16129 cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
16130 return false;
16131
16132 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
16133 i += BPF_REG_SIZE - 1;
16134 /* explored state didn't use this */
16135 continue;
16136 }
16137
16138 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16139 continue;
16140
16141 if (env->allow_uninit_stack &&
16142 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16143 continue;
16144
16145 /* explored stack has more populated slots than current stack
16146 * and these slots were used
16147 */
16148 if (i >= cur->allocated_stack)
16149 return false;
16150
16151 /* if old state was safe with misc data in the stack
16152 * it will be safe with zero-initialized stack.
16153 * The opposite is not true
16154 */
16155 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16156 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16157 continue;
16158 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16159 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16160 /* Ex: old explored (safe) state has STACK_SPILL in
16161 * this stack slot, but current has STACK_MISC ->
16162 * this verifier states are not equivalent,
16163 * return false to continue verification of this path
16164 */
16165 return false;
16166 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16167 continue;
16168 /* Both old and cur are having same slot_type */
16169 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16170 case STACK_SPILL:
16171 /* when explored and current stack slot are both storing
16172 * spilled registers, check that stored pointers types
16173 * are the same as well.
16174 * Ex: explored safe path could have stored
16175 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16176 * but current path has stored:
16177 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16178 * such verifier states are not equivalent.
16179 * return false to continue verification of this path
16180 */
16181 if (!regsafe(env, &old->stack[spi].spilled_ptr,
16182 &cur->stack[spi].spilled_ptr, idmap, exact))
16183 return false;
16184 break;
16185 case STACK_DYNPTR:
16186 old_reg = &old->stack[spi].spilled_ptr;
16187 cur_reg = &cur->stack[spi].spilled_ptr;
16188 if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16189 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16190 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16191 return false;
16192 break;
16193 case STACK_ITER:
16194 old_reg = &old->stack[spi].spilled_ptr;
16195 cur_reg = &cur->stack[spi].spilled_ptr;
16196 /* iter.depth is not compared between states as it
16197 * doesn't matter for correctness and would otherwise
16198 * prevent convergence; we maintain it only to prevent
16199 * infinite loop check triggering, see
16200 * iter_active_depths_differ()
16201 */
16202 if (old_reg->iter.btf != cur_reg->iter.btf ||
16203 old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16204 old_reg->iter.state != cur_reg->iter.state ||
16205 /* ignore {old_reg,cur_reg}->iter.depth, see above */
16206 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16207 return false;
16208 break;
16209 case STACK_MISC:
16210 case STACK_ZERO:
16211 case STACK_INVALID:
16212 continue;
16213 /* Ensure that new unhandled slot types return false by default */
16214 default:
16215 return false;
16216 }
16217 }
16218 return true;
16219 }
16220
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap)16221 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16222 struct bpf_idmap *idmap)
16223 {
16224 int i;
16225
16226 if (old->acquired_refs != cur->acquired_refs)
16227 return false;
16228
16229 for (i = 0; i < old->acquired_refs; i++) {
16230 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16231 return false;
16232 }
16233
16234 return true;
16235 }
16236
16237 /* compare two verifier states
16238 *
16239 * all states stored in state_list are known to be valid, since
16240 * verifier reached 'bpf_exit' instruction through them
16241 *
16242 * this function is called when verifier exploring different branches of
16243 * execution popped from the state stack. If it sees an old state that has
16244 * more strict register state and more strict stack state then this execution
16245 * branch doesn't need to be explored further, since verifier already
16246 * concluded that more strict state leads to valid finish.
16247 *
16248 * Therefore two states are equivalent if register state is more conservative
16249 * and explored stack state is more conservative than the current one.
16250 * Example:
16251 * explored current
16252 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16253 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16254 *
16255 * In other words if current stack state (one being explored) has more
16256 * valid slots than old one that already passed validation, it means
16257 * the verifier can stop exploring and conclude that current state is valid too
16258 *
16259 * Similarly with registers. If explored state has register type as invalid
16260 * whereas register type in current state is meaningful, it means that
16261 * the current state will reach 'bpf_exit' instruction safely
16262 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,bool exact)16263 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16264 struct bpf_func_state *cur, bool exact)
16265 {
16266 int i;
16267
16268 if (old->callback_depth > cur->callback_depth)
16269 return false;
16270
16271 for (i = 0; i < MAX_BPF_REG; i++)
16272 if (!regsafe(env, &old->regs[i], &cur->regs[i],
16273 &env->idmap_scratch, exact))
16274 return false;
16275
16276 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16277 return false;
16278
16279 if (!refsafe(old, cur, &env->idmap_scratch))
16280 return false;
16281
16282 return true;
16283 }
16284
reset_idmap_scratch(struct bpf_verifier_env * env)16285 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16286 {
16287 env->idmap_scratch.tmp_id_gen = env->id_gen;
16288 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16289 }
16290
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur,bool exact)16291 static bool states_equal(struct bpf_verifier_env *env,
16292 struct bpf_verifier_state *old,
16293 struct bpf_verifier_state *cur,
16294 bool exact)
16295 {
16296 int i;
16297
16298 if (old->curframe != cur->curframe)
16299 return false;
16300
16301 reset_idmap_scratch(env);
16302
16303 /* Verification state from speculative execution simulation
16304 * must never prune a non-speculative execution one.
16305 */
16306 if (old->speculative && !cur->speculative)
16307 return false;
16308
16309 if (old->active_lock.ptr != cur->active_lock.ptr)
16310 return false;
16311
16312 /* Old and cur active_lock's have to be either both present
16313 * or both absent.
16314 */
16315 if (!!old->active_lock.id != !!cur->active_lock.id)
16316 return false;
16317
16318 if (old->active_lock.id &&
16319 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16320 return false;
16321
16322 if (old->active_rcu_lock != cur->active_rcu_lock)
16323 return false;
16324
16325 /* for states to be equal callsites have to be the same
16326 * and all frame states need to be equivalent
16327 */
16328 for (i = 0; i <= old->curframe; i++) {
16329 if (old->frame[i]->callsite != cur->frame[i]->callsite)
16330 return false;
16331 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16332 return false;
16333 }
16334 return true;
16335 }
16336
16337 /* Return 0 if no propagation happened. Return negative error code if error
16338 * happened. Otherwise, return the propagated bit.
16339 */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)16340 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16341 struct bpf_reg_state *reg,
16342 struct bpf_reg_state *parent_reg)
16343 {
16344 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16345 u8 flag = reg->live & REG_LIVE_READ;
16346 int err;
16347
16348 /* When comes here, read flags of PARENT_REG or REG could be any of
16349 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16350 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16351 */
16352 if (parent_flag == REG_LIVE_READ64 ||
16353 /* Or if there is no read flag from REG. */
16354 !flag ||
16355 /* Or if the read flag from REG is the same as PARENT_REG. */
16356 parent_flag == flag)
16357 return 0;
16358
16359 err = mark_reg_read(env, reg, parent_reg, flag);
16360 if (err)
16361 return err;
16362
16363 return flag;
16364 }
16365
16366 /* A write screens off any subsequent reads; but write marks come from the
16367 * straight-line code between a state and its parent. When we arrive at an
16368 * equivalent state (jump target or such) we didn't arrive by the straight-line
16369 * code, so read marks in the state must propagate to the parent regardless
16370 * of the state's write marks. That's what 'parent == state->parent' comparison
16371 * in mark_reg_read() is for.
16372 */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)16373 static int propagate_liveness(struct bpf_verifier_env *env,
16374 const struct bpf_verifier_state *vstate,
16375 struct bpf_verifier_state *vparent)
16376 {
16377 struct bpf_reg_state *state_reg, *parent_reg;
16378 struct bpf_func_state *state, *parent;
16379 int i, frame, err = 0;
16380
16381 if (vparent->curframe != vstate->curframe) {
16382 WARN(1, "propagate_live: parent frame %d current frame %d\n",
16383 vparent->curframe, vstate->curframe);
16384 return -EFAULT;
16385 }
16386 /* Propagate read liveness of registers... */
16387 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16388 for (frame = 0; frame <= vstate->curframe; frame++) {
16389 parent = vparent->frame[frame];
16390 state = vstate->frame[frame];
16391 parent_reg = parent->regs;
16392 state_reg = state->regs;
16393 /* We don't need to worry about FP liveness, it's read-only */
16394 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16395 err = propagate_liveness_reg(env, &state_reg[i],
16396 &parent_reg[i]);
16397 if (err < 0)
16398 return err;
16399 if (err == REG_LIVE_READ64)
16400 mark_insn_zext(env, &parent_reg[i]);
16401 }
16402
16403 /* Propagate stack slots. */
16404 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16405 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16406 parent_reg = &parent->stack[i].spilled_ptr;
16407 state_reg = &state->stack[i].spilled_ptr;
16408 err = propagate_liveness_reg(env, state_reg,
16409 parent_reg);
16410 if (err < 0)
16411 return err;
16412 }
16413 }
16414 return 0;
16415 }
16416
16417 /* find precise scalars in the previous equivalent state and
16418 * propagate them into the current state
16419 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)16420 static int propagate_precision(struct bpf_verifier_env *env,
16421 const struct bpf_verifier_state *old)
16422 {
16423 struct bpf_reg_state *state_reg;
16424 struct bpf_func_state *state;
16425 int i, err = 0, fr;
16426 bool first;
16427
16428 for (fr = old->curframe; fr >= 0; fr--) {
16429 state = old->frame[fr];
16430 state_reg = state->regs;
16431 first = true;
16432 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16433 if (state_reg->type != SCALAR_VALUE ||
16434 !state_reg->precise ||
16435 !(state_reg->live & REG_LIVE_READ))
16436 continue;
16437 if (env->log.level & BPF_LOG_LEVEL2) {
16438 if (first)
16439 verbose(env, "frame %d: propagating r%d", fr, i);
16440 else
16441 verbose(env, ",r%d", i);
16442 }
16443 bt_set_frame_reg(&env->bt, fr, i);
16444 first = false;
16445 }
16446
16447 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16448 if (!is_spilled_reg(&state->stack[i]))
16449 continue;
16450 state_reg = &state->stack[i].spilled_ptr;
16451 if (state_reg->type != SCALAR_VALUE ||
16452 !state_reg->precise ||
16453 !(state_reg->live & REG_LIVE_READ))
16454 continue;
16455 if (env->log.level & BPF_LOG_LEVEL2) {
16456 if (first)
16457 verbose(env, "frame %d: propagating fp%d",
16458 fr, (-i - 1) * BPF_REG_SIZE);
16459 else
16460 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16461 }
16462 bt_set_frame_slot(&env->bt, fr, i);
16463 first = false;
16464 }
16465 if (!first)
16466 verbose(env, "\n");
16467 }
16468
16469 err = mark_chain_precision_batch(env);
16470 if (err < 0)
16471 return err;
16472
16473 return 0;
16474 }
16475
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)16476 static bool states_maybe_looping(struct bpf_verifier_state *old,
16477 struct bpf_verifier_state *cur)
16478 {
16479 struct bpf_func_state *fold, *fcur;
16480 int i, fr = cur->curframe;
16481
16482 if (old->curframe != fr)
16483 return false;
16484
16485 fold = old->frame[fr];
16486 fcur = cur->frame[fr];
16487 for (i = 0; i < MAX_BPF_REG; i++)
16488 if (memcmp(&fold->regs[i], &fcur->regs[i],
16489 offsetof(struct bpf_reg_state, parent)))
16490 return false;
16491 return true;
16492 }
16493
is_iter_next_insn(struct bpf_verifier_env * env,int insn_idx)16494 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16495 {
16496 return env->insn_aux_data[insn_idx].is_iter_next;
16497 }
16498
16499 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16500 * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16501 * states to match, which otherwise would look like an infinite loop. So while
16502 * iter_next() calls are taken care of, we still need to be careful and
16503 * prevent erroneous and too eager declaration of "ininite loop", when
16504 * iterators are involved.
16505 *
16506 * Here's a situation in pseudo-BPF assembly form:
16507 *
16508 * 0: again: ; set up iter_next() call args
16509 * 1: r1 = &it ; <CHECKPOINT HERE>
16510 * 2: call bpf_iter_num_next ; this is iter_next() call
16511 * 3: if r0 == 0 goto done
16512 * 4: ... something useful here ...
16513 * 5: goto again ; another iteration
16514 * 6: done:
16515 * 7: r1 = &it
16516 * 8: call bpf_iter_num_destroy ; clean up iter state
16517 * 9: exit
16518 *
16519 * This is a typical loop. Let's assume that we have a prune point at 1:,
16520 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16521 * again`, assuming other heuristics don't get in a way).
16522 *
16523 * When we first time come to 1:, let's say we have some state X. We proceed
16524 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16525 * Now we come back to validate that forked ACTIVE state. We proceed through
16526 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16527 * are converging. But the problem is that we don't know that yet, as this
16528 * convergence has to happen at iter_next() call site only. So if nothing is
16529 * done, at 1: verifier will use bounded loop logic and declare infinite
16530 * looping (and would be *technically* correct, if not for iterator's
16531 * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16532 * don't want that. So what we do in process_iter_next_call() when we go on
16533 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16534 * a different iteration. So when we suspect an infinite loop, we additionally
16535 * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16536 * pretend we are not looping and wait for next iter_next() call.
16537 *
16538 * This only applies to ACTIVE state. In DRAINED state we don't expect to
16539 * loop, because that would actually mean infinite loop, as DRAINED state is
16540 * "sticky", and so we'll keep returning into the same instruction with the
16541 * same state (at least in one of possible code paths).
16542 *
16543 * This approach allows to keep infinite loop heuristic even in the face of
16544 * active iterator. E.g., C snippet below is and will be detected as
16545 * inifintely looping:
16546 *
16547 * struct bpf_iter_num it;
16548 * int *p, x;
16549 *
16550 * bpf_iter_num_new(&it, 0, 10);
16551 * while ((p = bpf_iter_num_next(&t))) {
16552 * x = p;
16553 * while (x--) {} // <<-- infinite loop here
16554 * }
16555 *
16556 */
iter_active_depths_differ(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)16557 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16558 {
16559 struct bpf_reg_state *slot, *cur_slot;
16560 struct bpf_func_state *state;
16561 int i, fr;
16562
16563 for (fr = old->curframe; fr >= 0; fr--) {
16564 state = old->frame[fr];
16565 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16566 if (state->stack[i].slot_type[0] != STACK_ITER)
16567 continue;
16568
16569 slot = &state->stack[i].spilled_ptr;
16570 if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16571 continue;
16572
16573 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16574 if (cur_slot->iter.depth != slot->iter.depth)
16575 return true;
16576 }
16577 }
16578 return false;
16579 }
16580
is_state_visited(struct bpf_verifier_env * env,int insn_idx)16581 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16582 {
16583 struct bpf_verifier_state_list *new_sl;
16584 struct bpf_verifier_state_list *sl, **pprev;
16585 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
16586 int i, j, n, err, states_cnt = 0;
16587 bool force_new_state, add_new_state, force_exact;
16588
16589 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
16590 /* Avoid accumulating infinitely long jmp history */
16591 cur->jmp_history_cnt > 40;
16592
16593 /* bpf progs typically have pruning point every 4 instructions
16594 * http://vger.kernel.org/bpfconf2019.html#session-1
16595 * Do not add new state for future pruning if the verifier hasn't seen
16596 * at least 2 jumps and at least 8 instructions.
16597 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16598 * In tests that amounts to up to 50% reduction into total verifier
16599 * memory consumption and 20% verifier time speedup.
16600 */
16601 add_new_state = force_new_state;
16602 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16603 env->insn_processed - env->prev_insn_processed >= 8)
16604 add_new_state = true;
16605
16606 pprev = explored_state(env, insn_idx);
16607 sl = *pprev;
16608
16609 clean_live_states(env, insn_idx, cur);
16610
16611 while (sl) {
16612 states_cnt++;
16613 if (sl->state.insn_idx != insn_idx)
16614 goto next;
16615
16616 if (sl->state.branches) {
16617 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16618
16619 if (frame->in_async_callback_fn &&
16620 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16621 /* Different async_entry_cnt means that the verifier is
16622 * processing another entry into async callback.
16623 * Seeing the same state is not an indication of infinite
16624 * loop or infinite recursion.
16625 * But finding the same state doesn't mean that it's safe
16626 * to stop processing the current state. The previous state
16627 * hasn't yet reached bpf_exit, since state.branches > 0.
16628 * Checking in_async_callback_fn alone is not enough either.
16629 * Since the verifier still needs to catch infinite loops
16630 * inside async callbacks.
16631 */
16632 goto skip_inf_loop_check;
16633 }
16634 /* BPF open-coded iterators loop detection is special.
16635 * states_maybe_looping() logic is too simplistic in detecting
16636 * states that *might* be equivalent, because it doesn't know
16637 * about ID remapping, so don't even perform it.
16638 * See process_iter_next_call() and iter_active_depths_differ()
16639 * for overview of the logic. When current and one of parent
16640 * states are detected as equivalent, it's a good thing: we prove
16641 * convergence and can stop simulating further iterations.
16642 * It's safe to assume that iterator loop will finish, taking into
16643 * account iter_next() contract of eventually returning
16644 * sticky NULL result.
16645 *
16646 * Note, that states have to be compared exactly in this case because
16647 * read and precision marks might not be finalized inside the loop.
16648 * E.g. as in the program below:
16649 *
16650 * 1. r7 = -16
16651 * 2. r6 = bpf_get_prandom_u32()
16652 * 3. while (bpf_iter_num_next(&fp[-8])) {
16653 * 4. if (r6 != 42) {
16654 * 5. r7 = -32
16655 * 6. r6 = bpf_get_prandom_u32()
16656 * 7. continue
16657 * 8. }
16658 * 9. r0 = r10
16659 * 10. r0 += r7
16660 * 11. r8 = *(u64 *)(r0 + 0)
16661 * 12. r6 = bpf_get_prandom_u32()
16662 * 13. }
16663 *
16664 * Here verifier would first visit path 1-3, create a checkpoint at 3
16665 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
16666 * not have read or precision mark for r7 yet, thus inexact states
16667 * comparison would discard current state with r7=-32
16668 * => unsafe memory access at 11 would not be caught.
16669 */
16670 if (is_iter_next_insn(env, insn_idx)) {
16671 if (states_equal(env, &sl->state, cur, true)) {
16672 struct bpf_func_state *cur_frame;
16673 struct bpf_reg_state *iter_state, *iter_reg;
16674 int spi;
16675
16676 cur_frame = cur->frame[cur->curframe];
16677 /* btf_check_iter_kfuncs() enforces that
16678 * iter state pointer is always the first arg
16679 */
16680 iter_reg = &cur_frame->regs[BPF_REG_1];
16681 /* current state is valid due to states_equal(),
16682 * so we can assume valid iter and reg state,
16683 * no need for extra (re-)validations
16684 */
16685 spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16686 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16687 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
16688 update_loop_entry(cur, &sl->state);
16689 goto hit;
16690 }
16691 }
16692 goto skip_inf_loop_check;
16693 }
16694 if (calls_callback(env, insn_idx)) {
16695 if (states_equal(env, &sl->state, cur, true))
16696 goto hit;
16697 goto skip_inf_loop_check;
16698 }
16699 /* attempt to detect infinite loop to avoid unnecessary doomed work */
16700 if (states_maybe_looping(&sl->state, cur) &&
16701 states_equal(env, &sl->state, cur, false) &&
16702 !iter_active_depths_differ(&sl->state, cur) &&
16703 sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
16704 verbose_linfo(env, insn_idx, "; ");
16705 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16706 verbose(env, "cur state:");
16707 print_verifier_state(env, cur->frame[cur->curframe], true);
16708 verbose(env, "old state:");
16709 print_verifier_state(env, sl->state.frame[cur->curframe], true);
16710 return -EINVAL;
16711 }
16712 /* if the verifier is processing a loop, avoid adding new state
16713 * too often, since different loop iterations have distinct
16714 * states and may not help future pruning.
16715 * This threshold shouldn't be too low to make sure that
16716 * a loop with large bound will be rejected quickly.
16717 * The most abusive loop will be:
16718 * r1 += 1
16719 * if r1 < 1000000 goto pc-2
16720 * 1M insn_procssed limit / 100 == 10k peak states.
16721 * This threshold shouldn't be too high either, since states
16722 * at the end of the loop are likely to be useful in pruning.
16723 */
16724 skip_inf_loop_check:
16725 if (!force_new_state &&
16726 env->jmps_processed - env->prev_jmps_processed < 20 &&
16727 env->insn_processed - env->prev_insn_processed < 100)
16728 add_new_state = false;
16729 goto miss;
16730 }
16731 /* If sl->state is a part of a loop and this loop's entry is a part of
16732 * current verification path then states have to be compared exactly.
16733 * 'force_exact' is needed to catch the following case:
16734 *
16735 * initial Here state 'succ' was processed first,
16736 * | it was eventually tracked to produce a
16737 * V state identical to 'hdr'.
16738 * .---------> hdr All branches from 'succ' had been explored
16739 * | | and thus 'succ' has its .branches == 0.
16740 * | V
16741 * | .------... Suppose states 'cur' and 'succ' correspond
16742 * | | | to the same instruction + callsites.
16743 * | V V In such case it is necessary to check
16744 * | ... ... if 'succ' and 'cur' are states_equal().
16745 * | | | If 'succ' and 'cur' are a part of the
16746 * | V V same loop exact flag has to be set.
16747 * | succ <- cur To check if that is the case, verify
16748 * | | if loop entry of 'succ' is in current
16749 * | V DFS path.
16750 * | ...
16751 * | |
16752 * '----'
16753 *
16754 * Additional details are in the comment before get_loop_entry().
16755 */
16756 loop_entry = get_loop_entry(&sl->state);
16757 force_exact = loop_entry && loop_entry->branches > 0;
16758 if (states_equal(env, &sl->state, cur, force_exact)) {
16759 if (force_exact)
16760 update_loop_entry(cur, loop_entry);
16761 hit:
16762 sl->hit_cnt++;
16763 /* reached equivalent register/stack state,
16764 * prune the search.
16765 * Registers read by the continuation are read by us.
16766 * If we have any write marks in env->cur_state, they
16767 * will prevent corresponding reads in the continuation
16768 * from reaching our parent (an explored_state). Our
16769 * own state will get the read marks recorded, but
16770 * they'll be immediately forgotten as we're pruning
16771 * this state and will pop a new one.
16772 */
16773 err = propagate_liveness(env, &sl->state, cur);
16774
16775 /* if previous state reached the exit with precision and
16776 * current state is equivalent to it (except precsion marks)
16777 * the precision needs to be propagated back in
16778 * the current state.
16779 */
16780 err = err ? : push_jmp_history(env, cur);
16781 err = err ? : propagate_precision(env, &sl->state);
16782 if (err)
16783 return err;
16784 return 1;
16785 }
16786 miss:
16787 /* when new state is not going to be added do not increase miss count.
16788 * Otherwise several loop iterations will remove the state
16789 * recorded earlier. The goal of these heuristics is to have
16790 * states from some iterations of the loop (some in the beginning
16791 * and some at the end) to help pruning.
16792 */
16793 if (add_new_state)
16794 sl->miss_cnt++;
16795 /* heuristic to determine whether this state is beneficial
16796 * to keep checking from state equivalence point of view.
16797 * Higher numbers increase max_states_per_insn and verification time,
16798 * but do not meaningfully decrease insn_processed.
16799 * 'n' controls how many times state could miss before eviction.
16800 * Use bigger 'n' for checkpoints because evicting checkpoint states
16801 * too early would hinder iterator convergence.
16802 */
16803 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
16804 if (sl->miss_cnt > sl->hit_cnt * n + n) {
16805 /* the state is unlikely to be useful. Remove it to
16806 * speed up verification
16807 */
16808 *pprev = sl->next;
16809 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
16810 !sl->state.used_as_loop_entry) {
16811 u32 br = sl->state.branches;
16812
16813 WARN_ONCE(br,
16814 "BUG live_done but branches_to_explore %d\n",
16815 br);
16816 free_verifier_state(&sl->state, false);
16817 kfree(sl);
16818 env->peak_states--;
16819 } else {
16820 /* cannot free this state, since parentage chain may
16821 * walk it later. Add it for free_list instead to
16822 * be freed at the end of verification
16823 */
16824 sl->next = env->free_list;
16825 env->free_list = sl;
16826 }
16827 sl = *pprev;
16828 continue;
16829 }
16830 next:
16831 pprev = &sl->next;
16832 sl = *pprev;
16833 }
16834
16835 if (env->max_states_per_insn < states_cnt)
16836 env->max_states_per_insn = states_cnt;
16837
16838 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16839 return 0;
16840
16841 if (!add_new_state)
16842 return 0;
16843
16844 /* There were no equivalent states, remember the current one.
16845 * Technically the current state is not proven to be safe yet,
16846 * but it will either reach outer most bpf_exit (which means it's safe)
16847 * or it will be rejected. When there are no loops the verifier won't be
16848 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16849 * again on the way to bpf_exit.
16850 * When looping the sl->state.branches will be > 0 and this state
16851 * will not be considered for equivalence until branches == 0.
16852 */
16853 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16854 if (!new_sl)
16855 return -ENOMEM;
16856 env->total_states++;
16857 env->peak_states++;
16858 env->prev_jmps_processed = env->jmps_processed;
16859 env->prev_insn_processed = env->insn_processed;
16860
16861 /* forget precise markings we inherited, see __mark_chain_precision */
16862 if (env->bpf_capable)
16863 mark_all_scalars_imprecise(env, cur);
16864
16865 /* add new state to the head of linked list */
16866 new = &new_sl->state;
16867 err = copy_verifier_state(new, cur);
16868 if (err) {
16869 free_verifier_state(new, false);
16870 kfree(new_sl);
16871 return err;
16872 }
16873 new->insn_idx = insn_idx;
16874 WARN_ONCE(new->branches != 1,
16875 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16876
16877 cur->parent = new;
16878 cur->first_insn_idx = insn_idx;
16879 cur->dfs_depth = new->dfs_depth + 1;
16880 clear_jmp_history(cur);
16881 new_sl->next = *explored_state(env, insn_idx);
16882 *explored_state(env, insn_idx) = new_sl;
16883 /* connect new state to parentage chain. Current frame needs all
16884 * registers connected. Only r6 - r9 of the callers are alive (pushed
16885 * to the stack implicitly by JITs) so in callers' frames connect just
16886 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16887 * the state of the call instruction (with WRITTEN set), and r0 comes
16888 * from callee with its full parentage chain, anyway.
16889 */
16890 /* clear write marks in current state: the writes we did are not writes
16891 * our child did, so they don't screen off its reads from us.
16892 * (There are no read marks in current state, because reads always mark
16893 * their parent and current state never has children yet. Only
16894 * explored_states can get read marks.)
16895 */
16896 for (j = 0; j <= cur->curframe; j++) {
16897 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16898 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16899 for (i = 0; i < BPF_REG_FP; i++)
16900 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16901 }
16902
16903 /* all stack frames are accessible from callee, clear them all */
16904 for (j = 0; j <= cur->curframe; j++) {
16905 struct bpf_func_state *frame = cur->frame[j];
16906 struct bpf_func_state *newframe = new->frame[j];
16907
16908 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16909 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16910 frame->stack[i].spilled_ptr.parent =
16911 &newframe->stack[i].spilled_ptr;
16912 }
16913 }
16914 return 0;
16915 }
16916
16917 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)16918 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16919 {
16920 switch (base_type(type)) {
16921 case PTR_TO_CTX:
16922 case PTR_TO_SOCKET:
16923 case PTR_TO_SOCK_COMMON:
16924 case PTR_TO_TCP_SOCK:
16925 case PTR_TO_XDP_SOCK:
16926 case PTR_TO_BTF_ID:
16927 return false;
16928 default:
16929 return true;
16930 }
16931 }
16932
16933 /* If an instruction was previously used with particular pointer types, then we
16934 * need to be careful to avoid cases such as the below, where it may be ok
16935 * for one branch accessing the pointer, but not ok for the other branch:
16936 *
16937 * R1 = sock_ptr
16938 * goto X;
16939 * ...
16940 * R1 = some_other_valid_ptr;
16941 * goto X;
16942 * ...
16943 * R2 = *(u32 *)(R1 + 0);
16944 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)16945 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16946 {
16947 return src != prev && (!reg_type_mismatch_ok(src) ||
16948 !reg_type_mismatch_ok(prev));
16949 }
16950
save_aux_ptr_type(struct bpf_verifier_env * env,enum bpf_reg_type type,bool allow_trust_missmatch)16951 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16952 bool allow_trust_missmatch)
16953 {
16954 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16955
16956 if (*prev_type == NOT_INIT) {
16957 /* Saw a valid insn
16958 * dst_reg = *(u32 *)(src_reg + off)
16959 * save type to validate intersecting paths
16960 */
16961 *prev_type = type;
16962 } else if (reg_type_mismatch(type, *prev_type)) {
16963 /* Abuser program is trying to use the same insn
16964 * dst_reg = *(u32*) (src_reg + off)
16965 * with different pointer types:
16966 * src_reg == ctx in one branch and
16967 * src_reg == stack|map in some other branch.
16968 * Reject it.
16969 */
16970 if (allow_trust_missmatch &&
16971 base_type(type) == PTR_TO_BTF_ID &&
16972 base_type(*prev_type) == PTR_TO_BTF_ID) {
16973 /*
16974 * Have to support a use case when one path through
16975 * the program yields TRUSTED pointer while another
16976 * is UNTRUSTED. Fallback to UNTRUSTED to generate
16977 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
16978 */
16979 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
16980 } else {
16981 verbose(env, "same insn cannot be used with different pointers\n");
16982 return -EINVAL;
16983 }
16984 }
16985
16986 return 0;
16987 }
16988
do_check(struct bpf_verifier_env * env)16989 static int do_check(struct bpf_verifier_env *env)
16990 {
16991 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16992 struct bpf_verifier_state *state = env->cur_state;
16993 struct bpf_insn *insns = env->prog->insnsi;
16994 struct bpf_reg_state *regs;
16995 int insn_cnt = env->prog->len;
16996 bool do_print_state = false;
16997 int prev_insn_idx = -1;
16998
16999 for (;;) {
17000 struct bpf_insn *insn;
17001 u8 class;
17002 int err;
17003
17004 env->prev_insn_idx = prev_insn_idx;
17005 if (env->insn_idx >= insn_cnt) {
17006 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17007 env->insn_idx, insn_cnt);
17008 return -EFAULT;
17009 }
17010
17011 insn = &insns[env->insn_idx];
17012 class = BPF_CLASS(insn->code);
17013
17014 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17015 verbose(env,
17016 "BPF program is too large. Processed %d insn\n",
17017 env->insn_processed);
17018 return -E2BIG;
17019 }
17020
17021 state->last_insn_idx = env->prev_insn_idx;
17022
17023 if (is_prune_point(env, env->insn_idx)) {
17024 err = is_state_visited(env, env->insn_idx);
17025 if (err < 0)
17026 return err;
17027 if (err == 1) {
17028 /* found equivalent state, can prune the search */
17029 if (env->log.level & BPF_LOG_LEVEL) {
17030 if (do_print_state)
17031 verbose(env, "\nfrom %d to %d%s: safe\n",
17032 env->prev_insn_idx, env->insn_idx,
17033 env->cur_state->speculative ?
17034 " (speculative execution)" : "");
17035 else
17036 verbose(env, "%d: safe\n", env->insn_idx);
17037 }
17038 goto process_bpf_exit;
17039 }
17040 }
17041
17042 if (is_jmp_point(env, env->insn_idx)) {
17043 err = push_jmp_history(env, state);
17044 if (err)
17045 return err;
17046 }
17047
17048 if (signal_pending(current))
17049 return -EAGAIN;
17050
17051 if (need_resched())
17052 cond_resched();
17053
17054 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17055 verbose(env, "\nfrom %d to %d%s:",
17056 env->prev_insn_idx, env->insn_idx,
17057 env->cur_state->speculative ?
17058 " (speculative execution)" : "");
17059 print_verifier_state(env, state->frame[state->curframe], true);
17060 do_print_state = false;
17061 }
17062
17063 if (env->log.level & BPF_LOG_LEVEL) {
17064 const struct bpf_insn_cbs cbs = {
17065 .cb_call = disasm_kfunc_name,
17066 .cb_print = verbose,
17067 .private_data = env,
17068 };
17069
17070 if (verifier_state_scratched(env))
17071 print_insn_state(env, state->frame[state->curframe]);
17072
17073 verbose_linfo(env, env->insn_idx, "; ");
17074 env->prev_log_pos = env->log.end_pos;
17075 verbose(env, "%d: ", env->insn_idx);
17076 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17077 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17078 env->prev_log_pos = env->log.end_pos;
17079 }
17080
17081 if (bpf_prog_is_offloaded(env->prog->aux)) {
17082 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17083 env->prev_insn_idx);
17084 if (err)
17085 return err;
17086 }
17087
17088 regs = cur_regs(env);
17089 sanitize_mark_insn_seen(env);
17090 prev_insn_idx = env->insn_idx;
17091
17092 if (class == BPF_ALU || class == BPF_ALU64) {
17093 err = check_alu_op(env, insn);
17094 if (err)
17095 return err;
17096
17097 } else if (class == BPF_LDX) {
17098 enum bpf_reg_type src_reg_type;
17099
17100 /* check for reserved fields is already done */
17101
17102 /* check src operand */
17103 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17104 if (err)
17105 return err;
17106
17107 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17108 if (err)
17109 return err;
17110
17111 src_reg_type = regs[insn->src_reg].type;
17112
17113 /* check that memory (src_reg + off) is readable,
17114 * the state of dst_reg will be updated by this func
17115 */
17116 err = check_mem_access(env, env->insn_idx, insn->src_reg,
17117 insn->off, BPF_SIZE(insn->code),
17118 BPF_READ, insn->dst_reg, false,
17119 BPF_MODE(insn->code) == BPF_MEMSX);
17120 if (err)
17121 return err;
17122
17123 err = save_aux_ptr_type(env, src_reg_type, true);
17124 if (err)
17125 return err;
17126 } else if (class == BPF_STX) {
17127 enum bpf_reg_type dst_reg_type;
17128
17129 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17130 err = check_atomic(env, env->insn_idx, insn);
17131 if (err)
17132 return err;
17133 env->insn_idx++;
17134 continue;
17135 }
17136
17137 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17138 verbose(env, "BPF_STX uses reserved fields\n");
17139 return -EINVAL;
17140 }
17141
17142 /* check src1 operand */
17143 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17144 if (err)
17145 return err;
17146 /* check src2 operand */
17147 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17148 if (err)
17149 return err;
17150
17151 dst_reg_type = regs[insn->dst_reg].type;
17152
17153 /* check that memory (dst_reg + off) is writeable */
17154 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17155 insn->off, BPF_SIZE(insn->code),
17156 BPF_WRITE, insn->src_reg, false, false);
17157 if (err)
17158 return err;
17159
17160 err = save_aux_ptr_type(env, dst_reg_type, false);
17161 if (err)
17162 return err;
17163 } else if (class == BPF_ST) {
17164 enum bpf_reg_type dst_reg_type;
17165
17166 if (BPF_MODE(insn->code) != BPF_MEM ||
17167 insn->src_reg != BPF_REG_0) {
17168 verbose(env, "BPF_ST uses reserved fields\n");
17169 return -EINVAL;
17170 }
17171 /* check src operand */
17172 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17173 if (err)
17174 return err;
17175
17176 dst_reg_type = regs[insn->dst_reg].type;
17177
17178 /* check that memory (dst_reg + off) is writeable */
17179 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17180 insn->off, BPF_SIZE(insn->code),
17181 BPF_WRITE, -1, false, false);
17182 if (err)
17183 return err;
17184
17185 err = save_aux_ptr_type(env, dst_reg_type, false);
17186 if (err)
17187 return err;
17188 } else if (class == BPF_JMP || class == BPF_JMP32) {
17189 u8 opcode = BPF_OP(insn->code);
17190
17191 env->jmps_processed++;
17192 if (opcode == BPF_CALL) {
17193 if (BPF_SRC(insn->code) != BPF_K ||
17194 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17195 && insn->off != 0) ||
17196 (insn->src_reg != BPF_REG_0 &&
17197 insn->src_reg != BPF_PSEUDO_CALL &&
17198 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17199 insn->dst_reg != BPF_REG_0 ||
17200 class == BPF_JMP32) {
17201 verbose(env, "BPF_CALL uses reserved fields\n");
17202 return -EINVAL;
17203 }
17204
17205 if (env->cur_state->active_lock.ptr) {
17206 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17207 (insn->src_reg == BPF_PSEUDO_CALL) ||
17208 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17209 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17210 verbose(env, "function calls are not allowed while holding a lock\n");
17211 return -EINVAL;
17212 }
17213 }
17214 if (insn->src_reg == BPF_PSEUDO_CALL)
17215 err = check_func_call(env, insn, &env->insn_idx);
17216 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
17217 err = check_kfunc_call(env, insn, &env->insn_idx);
17218 else
17219 err = check_helper_call(env, insn, &env->insn_idx);
17220 if (err)
17221 return err;
17222
17223 mark_reg_scratched(env, BPF_REG_0);
17224 } else if (opcode == BPF_JA) {
17225 if (BPF_SRC(insn->code) != BPF_K ||
17226 insn->src_reg != BPF_REG_0 ||
17227 insn->dst_reg != BPF_REG_0 ||
17228 (class == BPF_JMP && insn->imm != 0) ||
17229 (class == BPF_JMP32 && insn->off != 0)) {
17230 verbose(env, "BPF_JA uses reserved fields\n");
17231 return -EINVAL;
17232 }
17233
17234 if (class == BPF_JMP)
17235 env->insn_idx += insn->off + 1;
17236 else
17237 env->insn_idx += insn->imm + 1;
17238 continue;
17239
17240 } else if (opcode == BPF_EXIT) {
17241 if (BPF_SRC(insn->code) != BPF_K ||
17242 insn->imm != 0 ||
17243 insn->src_reg != BPF_REG_0 ||
17244 insn->dst_reg != BPF_REG_0 ||
17245 class == BPF_JMP32) {
17246 verbose(env, "BPF_EXIT uses reserved fields\n");
17247 return -EINVAL;
17248 }
17249
17250 if (env->cur_state->active_lock.ptr &&
17251 !in_rbtree_lock_required_cb(env)) {
17252 verbose(env, "bpf_spin_unlock is missing\n");
17253 return -EINVAL;
17254 }
17255
17256 if (env->cur_state->active_rcu_lock &&
17257 !in_rbtree_lock_required_cb(env)) {
17258 verbose(env, "bpf_rcu_read_unlock is missing\n");
17259 return -EINVAL;
17260 }
17261
17262 /* We must do check_reference_leak here before
17263 * prepare_func_exit to handle the case when
17264 * state->curframe > 0, it may be a callback
17265 * function, for which reference_state must
17266 * match caller reference state when it exits.
17267 */
17268 err = check_reference_leak(env);
17269 if (err)
17270 return err;
17271
17272 if (state->curframe) {
17273 /* exit from nested function */
17274 err = prepare_func_exit(env, &env->insn_idx);
17275 if (err)
17276 return err;
17277 do_print_state = true;
17278 continue;
17279 }
17280
17281 err = check_return_code(env);
17282 if (err)
17283 return err;
17284 process_bpf_exit:
17285 mark_verifier_state_scratched(env);
17286 update_branch_counts(env, env->cur_state);
17287 err = pop_stack(env, &prev_insn_idx,
17288 &env->insn_idx, pop_log);
17289 if (err < 0) {
17290 if (err != -ENOENT)
17291 return err;
17292 break;
17293 } else {
17294 do_print_state = true;
17295 continue;
17296 }
17297 } else {
17298 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17299 if (err)
17300 return err;
17301 }
17302 } else if (class == BPF_LD) {
17303 u8 mode = BPF_MODE(insn->code);
17304
17305 if (mode == BPF_ABS || mode == BPF_IND) {
17306 err = check_ld_abs(env, insn);
17307 if (err)
17308 return err;
17309
17310 } else if (mode == BPF_IMM) {
17311 err = check_ld_imm(env, insn);
17312 if (err)
17313 return err;
17314
17315 env->insn_idx++;
17316 sanitize_mark_insn_seen(env);
17317 } else {
17318 verbose(env, "invalid BPF_LD mode\n");
17319 return -EINVAL;
17320 }
17321 } else {
17322 verbose(env, "unknown insn class %d\n", class);
17323 return -EINVAL;
17324 }
17325
17326 env->insn_idx++;
17327 }
17328
17329 return 0;
17330 }
17331
find_btf_percpu_datasec(struct btf * btf)17332 static int find_btf_percpu_datasec(struct btf *btf)
17333 {
17334 const struct btf_type *t;
17335 const char *tname;
17336 int i, n;
17337
17338 /*
17339 * Both vmlinux and module each have their own ".data..percpu"
17340 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17341 * types to look at only module's own BTF types.
17342 */
17343 n = btf_nr_types(btf);
17344 if (btf_is_module(btf))
17345 i = btf_nr_types(btf_vmlinux);
17346 else
17347 i = 1;
17348
17349 for(; i < n; i++) {
17350 t = btf_type_by_id(btf, i);
17351 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17352 continue;
17353
17354 tname = btf_name_by_offset(btf, t->name_off);
17355 if (!strcmp(tname, ".data..percpu"))
17356 return i;
17357 }
17358
17359 return -ENOENT;
17360 }
17361
17362 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)17363 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17364 struct bpf_insn *insn,
17365 struct bpf_insn_aux_data *aux)
17366 {
17367 const struct btf_var_secinfo *vsi;
17368 const struct btf_type *datasec;
17369 struct btf_mod_pair *btf_mod;
17370 const struct btf_type *t;
17371 const char *sym_name;
17372 bool percpu = false;
17373 u32 type, id = insn->imm;
17374 struct btf *btf;
17375 s32 datasec_id;
17376 u64 addr;
17377 int i, btf_fd, err;
17378
17379 btf_fd = insn[1].imm;
17380 if (btf_fd) {
17381 btf = btf_get_by_fd(btf_fd);
17382 if (IS_ERR(btf)) {
17383 verbose(env, "invalid module BTF object FD specified.\n");
17384 return -EINVAL;
17385 }
17386 } else {
17387 if (!btf_vmlinux) {
17388 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17389 return -EINVAL;
17390 }
17391 btf = btf_vmlinux;
17392 btf_get(btf);
17393 }
17394
17395 t = btf_type_by_id(btf, id);
17396 if (!t) {
17397 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17398 err = -ENOENT;
17399 goto err_put;
17400 }
17401
17402 if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17403 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17404 err = -EINVAL;
17405 goto err_put;
17406 }
17407
17408 sym_name = btf_name_by_offset(btf, t->name_off);
17409 addr = kallsyms_lookup_name(sym_name);
17410 if (!addr) {
17411 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17412 sym_name);
17413 err = -ENOENT;
17414 goto err_put;
17415 }
17416 insn[0].imm = (u32)addr;
17417 insn[1].imm = addr >> 32;
17418
17419 if (btf_type_is_func(t)) {
17420 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17421 aux->btf_var.mem_size = 0;
17422 goto check_btf;
17423 }
17424
17425 datasec_id = find_btf_percpu_datasec(btf);
17426 if (datasec_id > 0) {
17427 datasec = btf_type_by_id(btf, datasec_id);
17428 for_each_vsi(i, datasec, vsi) {
17429 if (vsi->type == id) {
17430 percpu = true;
17431 break;
17432 }
17433 }
17434 }
17435
17436 type = t->type;
17437 t = btf_type_skip_modifiers(btf, type, NULL);
17438 if (percpu) {
17439 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17440 aux->btf_var.btf = btf;
17441 aux->btf_var.btf_id = type;
17442 } else if (!btf_type_is_struct(t)) {
17443 const struct btf_type *ret;
17444 const char *tname;
17445 u32 tsize;
17446
17447 /* resolve the type size of ksym. */
17448 ret = btf_resolve_size(btf, t, &tsize);
17449 if (IS_ERR(ret)) {
17450 tname = btf_name_by_offset(btf, t->name_off);
17451 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17452 tname, PTR_ERR(ret));
17453 err = -EINVAL;
17454 goto err_put;
17455 }
17456 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17457 aux->btf_var.mem_size = tsize;
17458 } else {
17459 aux->btf_var.reg_type = PTR_TO_BTF_ID;
17460 aux->btf_var.btf = btf;
17461 aux->btf_var.btf_id = type;
17462 }
17463 check_btf:
17464 /* check whether we recorded this BTF (and maybe module) already */
17465 for (i = 0; i < env->used_btf_cnt; i++) {
17466 if (env->used_btfs[i].btf == btf) {
17467 btf_put(btf);
17468 return 0;
17469 }
17470 }
17471
17472 if (env->used_btf_cnt >= MAX_USED_BTFS) {
17473 err = -E2BIG;
17474 goto err_put;
17475 }
17476
17477 btf_mod = &env->used_btfs[env->used_btf_cnt];
17478 btf_mod->btf = btf;
17479 btf_mod->module = NULL;
17480
17481 /* if we reference variables from kernel module, bump its refcount */
17482 if (btf_is_module(btf)) {
17483 btf_mod->module = btf_try_get_module(btf);
17484 if (!btf_mod->module) {
17485 err = -ENXIO;
17486 goto err_put;
17487 }
17488 }
17489
17490 env->used_btf_cnt++;
17491
17492 return 0;
17493 err_put:
17494 btf_put(btf);
17495 return err;
17496 }
17497
is_tracing_prog_type(enum bpf_prog_type type)17498 static bool is_tracing_prog_type(enum bpf_prog_type type)
17499 {
17500 switch (type) {
17501 case BPF_PROG_TYPE_KPROBE:
17502 case BPF_PROG_TYPE_TRACEPOINT:
17503 case BPF_PROG_TYPE_PERF_EVENT:
17504 case BPF_PROG_TYPE_RAW_TRACEPOINT:
17505 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17506 return true;
17507 default:
17508 return false;
17509 }
17510 }
17511
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)17512 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17513 struct bpf_map *map,
17514 struct bpf_prog *prog)
17515
17516 {
17517 enum bpf_prog_type prog_type = resolve_prog_type(prog);
17518
17519 if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17520 btf_record_has_field(map->record, BPF_RB_ROOT)) {
17521 if (is_tracing_prog_type(prog_type)) {
17522 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17523 return -EINVAL;
17524 }
17525 }
17526
17527 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17528 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17529 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17530 return -EINVAL;
17531 }
17532
17533 if (is_tracing_prog_type(prog_type)) {
17534 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17535 return -EINVAL;
17536 }
17537 }
17538
17539 if (btf_record_has_field(map->record, BPF_TIMER)) {
17540 if (is_tracing_prog_type(prog_type)) {
17541 verbose(env, "tracing progs cannot use bpf_timer yet\n");
17542 return -EINVAL;
17543 }
17544 }
17545
17546 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17547 !bpf_offload_prog_map_match(prog, map)) {
17548 verbose(env, "offload device mismatch between prog and map\n");
17549 return -EINVAL;
17550 }
17551
17552 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17553 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17554 return -EINVAL;
17555 }
17556
17557 if (prog->aux->sleepable)
17558 switch (map->map_type) {
17559 case BPF_MAP_TYPE_HASH:
17560 case BPF_MAP_TYPE_LRU_HASH:
17561 case BPF_MAP_TYPE_ARRAY:
17562 case BPF_MAP_TYPE_PERCPU_HASH:
17563 case BPF_MAP_TYPE_PERCPU_ARRAY:
17564 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17565 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17566 case BPF_MAP_TYPE_HASH_OF_MAPS:
17567 case BPF_MAP_TYPE_RINGBUF:
17568 case BPF_MAP_TYPE_USER_RINGBUF:
17569 case BPF_MAP_TYPE_INODE_STORAGE:
17570 case BPF_MAP_TYPE_SK_STORAGE:
17571 case BPF_MAP_TYPE_TASK_STORAGE:
17572 case BPF_MAP_TYPE_CGRP_STORAGE:
17573 break;
17574 default:
17575 verbose(env,
17576 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17577 return -EINVAL;
17578 }
17579
17580 return 0;
17581 }
17582
bpf_map_is_cgroup_storage(struct bpf_map * map)17583 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17584 {
17585 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17586 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17587 }
17588
17589 /* find and rewrite pseudo imm in ld_imm64 instructions:
17590 *
17591 * 1. if it accesses map FD, replace it with actual map pointer.
17592 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17593 *
17594 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17595 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)17596 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17597 {
17598 struct bpf_insn *insn = env->prog->insnsi;
17599 int insn_cnt = env->prog->len;
17600 int i, j, err;
17601
17602 err = bpf_prog_calc_tag(env->prog);
17603 if (err)
17604 return err;
17605
17606 for (i = 0; i < insn_cnt; i++, insn++) {
17607 if (BPF_CLASS(insn->code) == BPF_LDX &&
17608 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17609 insn->imm != 0)) {
17610 verbose(env, "BPF_LDX uses reserved fields\n");
17611 return -EINVAL;
17612 }
17613
17614 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17615 struct bpf_insn_aux_data *aux;
17616 struct bpf_map *map;
17617 struct fd f;
17618 u64 addr;
17619 u32 fd;
17620
17621 if (i == insn_cnt - 1 || insn[1].code != 0 ||
17622 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17623 insn[1].off != 0) {
17624 verbose(env, "invalid bpf_ld_imm64 insn\n");
17625 return -EINVAL;
17626 }
17627
17628 if (insn[0].src_reg == 0)
17629 /* valid generic load 64-bit imm */
17630 goto next_insn;
17631
17632 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17633 aux = &env->insn_aux_data[i];
17634 err = check_pseudo_btf_id(env, insn, aux);
17635 if (err)
17636 return err;
17637 goto next_insn;
17638 }
17639
17640 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17641 aux = &env->insn_aux_data[i];
17642 aux->ptr_type = PTR_TO_FUNC;
17643 goto next_insn;
17644 }
17645
17646 /* In final convert_pseudo_ld_imm64() step, this is
17647 * converted into regular 64-bit imm load insn.
17648 */
17649 switch (insn[0].src_reg) {
17650 case BPF_PSEUDO_MAP_VALUE:
17651 case BPF_PSEUDO_MAP_IDX_VALUE:
17652 break;
17653 case BPF_PSEUDO_MAP_FD:
17654 case BPF_PSEUDO_MAP_IDX:
17655 if (insn[1].imm == 0)
17656 break;
17657 fallthrough;
17658 default:
17659 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17660 return -EINVAL;
17661 }
17662
17663 switch (insn[0].src_reg) {
17664 case BPF_PSEUDO_MAP_IDX_VALUE:
17665 case BPF_PSEUDO_MAP_IDX:
17666 if (bpfptr_is_null(env->fd_array)) {
17667 verbose(env, "fd_idx without fd_array is invalid\n");
17668 return -EPROTO;
17669 }
17670 if (copy_from_bpfptr_offset(&fd, env->fd_array,
17671 insn[0].imm * sizeof(fd),
17672 sizeof(fd)))
17673 return -EFAULT;
17674 break;
17675 default:
17676 fd = insn[0].imm;
17677 break;
17678 }
17679
17680 f = fdget(fd);
17681 map = __bpf_map_get(f);
17682 if (IS_ERR(map)) {
17683 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
17684 return PTR_ERR(map);
17685 }
17686
17687 err = check_map_prog_compatibility(env, map, env->prog);
17688 if (err) {
17689 fdput(f);
17690 return err;
17691 }
17692
17693 aux = &env->insn_aux_data[i];
17694 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17695 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17696 addr = (unsigned long)map;
17697 } else {
17698 u32 off = insn[1].imm;
17699
17700 if (off >= BPF_MAX_VAR_OFF) {
17701 verbose(env, "direct value offset of %u is not allowed\n", off);
17702 fdput(f);
17703 return -EINVAL;
17704 }
17705
17706 if (!map->ops->map_direct_value_addr) {
17707 verbose(env, "no direct value access support for this map type\n");
17708 fdput(f);
17709 return -EINVAL;
17710 }
17711
17712 err = map->ops->map_direct_value_addr(map, &addr, off);
17713 if (err) {
17714 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17715 map->value_size, off);
17716 fdput(f);
17717 return err;
17718 }
17719
17720 aux->map_off = off;
17721 addr += off;
17722 }
17723
17724 insn[0].imm = (u32)addr;
17725 insn[1].imm = addr >> 32;
17726
17727 /* check whether we recorded this map already */
17728 for (j = 0; j < env->used_map_cnt; j++) {
17729 if (env->used_maps[j] == map) {
17730 aux->map_index = j;
17731 fdput(f);
17732 goto next_insn;
17733 }
17734 }
17735
17736 if (env->used_map_cnt >= MAX_USED_MAPS) {
17737 fdput(f);
17738 return -E2BIG;
17739 }
17740
17741 if (env->prog->aux->sleepable)
17742 atomic64_inc(&map->sleepable_refcnt);
17743 /* hold the map. If the program is rejected by verifier,
17744 * the map will be released by release_maps() or it
17745 * will be used by the valid program until it's unloaded
17746 * and all maps are released in bpf_free_used_maps()
17747 */
17748 bpf_map_inc(map);
17749
17750 aux->map_index = env->used_map_cnt;
17751 env->used_maps[env->used_map_cnt++] = map;
17752
17753 if (bpf_map_is_cgroup_storage(map) &&
17754 bpf_cgroup_storage_assign(env->prog->aux, map)) {
17755 verbose(env, "only one cgroup storage of each type is allowed\n");
17756 fdput(f);
17757 return -EBUSY;
17758 }
17759
17760 fdput(f);
17761 next_insn:
17762 insn++;
17763 i++;
17764 continue;
17765 }
17766
17767 /* Basic sanity check before we invest more work here. */
17768 if (!bpf_opcode_in_insntable(insn->code)) {
17769 verbose(env, "unknown opcode %02x\n", insn->code);
17770 return -EINVAL;
17771 }
17772 }
17773
17774 /* now all pseudo BPF_LD_IMM64 instructions load valid
17775 * 'struct bpf_map *' into a register instead of user map_fd.
17776 * These pointers will be used later by verifier to validate map access.
17777 */
17778 return 0;
17779 }
17780
17781 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)17782 static void release_maps(struct bpf_verifier_env *env)
17783 {
17784 __bpf_free_used_maps(env->prog->aux, env->used_maps,
17785 env->used_map_cnt);
17786 }
17787
17788 /* drop refcnt of maps used by the rejected program */
release_btfs(struct bpf_verifier_env * env)17789 static void release_btfs(struct bpf_verifier_env *env)
17790 {
17791 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17792 env->used_btf_cnt);
17793 }
17794
17795 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)17796 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17797 {
17798 struct bpf_insn *insn = env->prog->insnsi;
17799 int insn_cnt = env->prog->len;
17800 int i;
17801
17802 for (i = 0; i < insn_cnt; i++, insn++) {
17803 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17804 continue;
17805 if (insn->src_reg == BPF_PSEUDO_FUNC)
17806 continue;
17807 insn->src_reg = 0;
17808 }
17809 }
17810
17811 /* single env->prog->insni[off] instruction was replaced with the range
17812 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
17813 * [0, off) and [off, end) to new locations, so the patched range stays zero
17814 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)17815 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17816 struct bpf_insn_aux_data *new_data,
17817 struct bpf_prog *new_prog, u32 off, u32 cnt)
17818 {
17819 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17820 struct bpf_insn *insn = new_prog->insnsi;
17821 u32 old_seen = old_data[off].seen;
17822 u32 prog_len;
17823 int i;
17824
17825 /* aux info at OFF always needs adjustment, no matter fast path
17826 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17827 * original insn at old prog.
17828 */
17829 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17830
17831 if (cnt == 1)
17832 return;
17833 prog_len = new_prog->len;
17834
17835 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17836 memcpy(new_data + off + cnt - 1, old_data + off,
17837 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17838 for (i = off; i < off + cnt - 1; i++) {
17839 /* Expand insni[off]'s seen count to the patched range. */
17840 new_data[i].seen = old_seen;
17841 new_data[i].zext_dst = insn_has_def32(env, insn + i);
17842 }
17843 env->insn_aux_data = new_data;
17844 vfree(old_data);
17845 }
17846
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)17847 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17848 {
17849 int i;
17850
17851 if (len == 1)
17852 return;
17853 /* NOTE: fake 'exit' subprog should be updated as well. */
17854 for (i = 0; i <= env->subprog_cnt; i++) {
17855 if (env->subprog_info[i].start <= off)
17856 continue;
17857 env->subprog_info[i].start += len - 1;
17858 }
17859 }
17860
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)17861 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17862 {
17863 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17864 int i, sz = prog->aux->size_poke_tab;
17865 struct bpf_jit_poke_descriptor *desc;
17866
17867 for (i = 0; i < sz; i++) {
17868 desc = &tab[i];
17869 if (desc->insn_idx <= off)
17870 continue;
17871 desc->insn_idx += len - 1;
17872 }
17873 }
17874
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)17875 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17876 const struct bpf_insn *patch, u32 len)
17877 {
17878 struct bpf_prog *new_prog;
17879 struct bpf_insn_aux_data *new_data = NULL;
17880
17881 if (len > 1) {
17882 new_data = vzalloc(array_size(env->prog->len + len - 1,
17883 sizeof(struct bpf_insn_aux_data)));
17884 if (!new_data)
17885 return NULL;
17886 }
17887
17888 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17889 if (IS_ERR(new_prog)) {
17890 if (PTR_ERR(new_prog) == -ERANGE)
17891 verbose(env,
17892 "insn %d cannot be patched due to 16-bit range\n",
17893 env->insn_aux_data[off].orig_idx);
17894 vfree(new_data);
17895 return NULL;
17896 }
17897 adjust_insn_aux_data(env, new_data, new_prog, off, len);
17898 adjust_subprog_starts(env, off, len);
17899 adjust_poke_descs(new_prog, off, len);
17900 return new_prog;
17901 }
17902
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)17903 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17904 u32 off, u32 cnt)
17905 {
17906 int i, j;
17907
17908 /* find first prog starting at or after off (first to remove) */
17909 for (i = 0; i < env->subprog_cnt; i++)
17910 if (env->subprog_info[i].start >= off)
17911 break;
17912 /* find first prog starting at or after off + cnt (first to stay) */
17913 for (j = i; j < env->subprog_cnt; j++)
17914 if (env->subprog_info[j].start >= off + cnt)
17915 break;
17916 /* if j doesn't start exactly at off + cnt, we are just removing
17917 * the front of previous prog
17918 */
17919 if (env->subprog_info[j].start != off + cnt)
17920 j--;
17921
17922 if (j > i) {
17923 struct bpf_prog_aux *aux = env->prog->aux;
17924 int move;
17925
17926 /* move fake 'exit' subprog as well */
17927 move = env->subprog_cnt + 1 - j;
17928
17929 memmove(env->subprog_info + i,
17930 env->subprog_info + j,
17931 sizeof(*env->subprog_info) * move);
17932 env->subprog_cnt -= j - i;
17933
17934 /* remove func_info */
17935 if (aux->func_info) {
17936 move = aux->func_info_cnt - j;
17937
17938 memmove(aux->func_info + i,
17939 aux->func_info + j,
17940 sizeof(*aux->func_info) * move);
17941 aux->func_info_cnt -= j - i;
17942 /* func_info->insn_off is set after all code rewrites,
17943 * in adjust_btf_func() - no need to adjust
17944 */
17945 }
17946 } else {
17947 /* convert i from "first prog to remove" to "first to adjust" */
17948 if (env->subprog_info[i].start == off)
17949 i++;
17950 }
17951
17952 /* update fake 'exit' subprog as well */
17953 for (; i <= env->subprog_cnt; i++)
17954 env->subprog_info[i].start -= cnt;
17955
17956 return 0;
17957 }
17958
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)17959 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17960 u32 cnt)
17961 {
17962 struct bpf_prog *prog = env->prog;
17963 u32 i, l_off, l_cnt, nr_linfo;
17964 struct bpf_line_info *linfo;
17965
17966 nr_linfo = prog->aux->nr_linfo;
17967 if (!nr_linfo)
17968 return 0;
17969
17970 linfo = prog->aux->linfo;
17971
17972 /* find first line info to remove, count lines to be removed */
17973 for (i = 0; i < nr_linfo; i++)
17974 if (linfo[i].insn_off >= off)
17975 break;
17976
17977 l_off = i;
17978 l_cnt = 0;
17979 for (; i < nr_linfo; i++)
17980 if (linfo[i].insn_off < off + cnt)
17981 l_cnt++;
17982 else
17983 break;
17984
17985 /* First live insn doesn't match first live linfo, it needs to "inherit"
17986 * last removed linfo. prog is already modified, so prog->len == off
17987 * means no live instructions after (tail of the program was removed).
17988 */
17989 if (prog->len != off && l_cnt &&
17990 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
17991 l_cnt--;
17992 linfo[--i].insn_off = off + cnt;
17993 }
17994
17995 /* remove the line info which refer to the removed instructions */
17996 if (l_cnt) {
17997 memmove(linfo + l_off, linfo + i,
17998 sizeof(*linfo) * (nr_linfo - i));
17999
18000 prog->aux->nr_linfo -= l_cnt;
18001 nr_linfo = prog->aux->nr_linfo;
18002 }
18003
18004 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
18005 for (i = l_off; i < nr_linfo; i++)
18006 linfo[i].insn_off -= cnt;
18007
18008 /* fix up all subprogs (incl. 'exit') which start >= off */
18009 for (i = 0; i <= env->subprog_cnt; i++)
18010 if (env->subprog_info[i].linfo_idx > l_off) {
18011 /* program may have started in the removed region but
18012 * may not be fully removed
18013 */
18014 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18015 env->subprog_info[i].linfo_idx -= l_cnt;
18016 else
18017 env->subprog_info[i].linfo_idx = l_off;
18018 }
18019
18020 return 0;
18021 }
18022
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)18023 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18024 {
18025 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18026 unsigned int orig_prog_len = env->prog->len;
18027 int err;
18028
18029 if (bpf_prog_is_offloaded(env->prog->aux))
18030 bpf_prog_offload_remove_insns(env, off, cnt);
18031
18032 err = bpf_remove_insns(env->prog, off, cnt);
18033 if (err)
18034 return err;
18035
18036 err = adjust_subprog_starts_after_remove(env, off, cnt);
18037 if (err)
18038 return err;
18039
18040 err = bpf_adj_linfo_after_remove(env, off, cnt);
18041 if (err)
18042 return err;
18043
18044 memmove(aux_data + off, aux_data + off + cnt,
18045 sizeof(*aux_data) * (orig_prog_len - off - cnt));
18046
18047 return 0;
18048 }
18049
18050 /* The verifier does more data flow analysis than llvm and will not
18051 * explore branches that are dead at run time. Malicious programs can
18052 * have dead code too. Therefore replace all dead at-run-time code
18053 * with 'ja -1'.
18054 *
18055 * Just nops are not optimal, e.g. if they would sit at the end of the
18056 * program and through another bug we would manage to jump there, then
18057 * we'd execute beyond program memory otherwise. Returning exception
18058 * code also wouldn't work since we can have subprogs where the dead
18059 * code could be located.
18060 */
sanitize_dead_code(struct bpf_verifier_env * env)18061 static void sanitize_dead_code(struct bpf_verifier_env *env)
18062 {
18063 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18064 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18065 struct bpf_insn *insn = env->prog->insnsi;
18066 const int insn_cnt = env->prog->len;
18067 int i;
18068
18069 for (i = 0; i < insn_cnt; i++) {
18070 if (aux_data[i].seen)
18071 continue;
18072 memcpy(insn + i, &trap, sizeof(trap));
18073 aux_data[i].zext_dst = false;
18074 }
18075 }
18076
insn_is_cond_jump(u8 code)18077 static bool insn_is_cond_jump(u8 code)
18078 {
18079 u8 op;
18080
18081 op = BPF_OP(code);
18082 if (BPF_CLASS(code) == BPF_JMP32)
18083 return op != BPF_JA;
18084
18085 if (BPF_CLASS(code) != BPF_JMP)
18086 return false;
18087
18088 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18089 }
18090
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)18091 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18092 {
18093 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18094 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18095 struct bpf_insn *insn = env->prog->insnsi;
18096 const int insn_cnt = env->prog->len;
18097 int i;
18098
18099 for (i = 0; i < insn_cnt; i++, insn++) {
18100 if (!insn_is_cond_jump(insn->code))
18101 continue;
18102
18103 if (!aux_data[i + 1].seen)
18104 ja.off = insn->off;
18105 else if (!aux_data[i + 1 + insn->off].seen)
18106 ja.off = 0;
18107 else
18108 continue;
18109
18110 if (bpf_prog_is_offloaded(env->prog->aux))
18111 bpf_prog_offload_replace_insn(env, i, &ja);
18112
18113 memcpy(insn, &ja, sizeof(ja));
18114 }
18115 }
18116
opt_remove_dead_code(struct bpf_verifier_env * env)18117 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18118 {
18119 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18120 int insn_cnt = env->prog->len;
18121 int i, err;
18122
18123 for (i = 0; i < insn_cnt; i++) {
18124 int j;
18125
18126 j = 0;
18127 while (i + j < insn_cnt && !aux_data[i + j].seen)
18128 j++;
18129 if (!j)
18130 continue;
18131
18132 err = verifier_remove_insns(env, i, j);
18133 if (err)
18134 return err;
18135 insn_cnt = env->prog->len;
18136 }
18137
18138 return 0;
18139 }
18140
opt_remove_nops(struct bpf_verifier_env * env)18141 static int opt_remove_nops(struct bpf_verifier_env *env)
18142 {
18143 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18144 struct bpf_insn *insn = env->prog->insnsi;
18145 int insn_cnt = env->prog->len;
18146 int i, err;
18147
18148 for (i = 0; i < insn_cnt; i++) {
18149 if (memcmp(&insn[i], &ja, sizeof(ja)))
18150 continue;
18151
18152 err = verifier_remove_insns(env, i, 1);
18153 if (err)
18154 return err;
18155 insn_cnt--;
18156 i--;
18157 }
18158
18159 return 0;
18160 }
18161
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)18162 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18163 const union bpf_attr *attr)
18164 {
18165 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18166 struct bpf_insn_aux_data *aux = env->insn_aux_data;
18167 int i, patch_len, delta = 0, len = env->prog->len;
18168 struct bpf_insn *insns = env->prog->insnsi;
18169 struct bpf_prog *new_prog;
18170 bool rnd_hi32;
18171
18172 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18173 zext_patch[1] = BPF_ZEXT_REG(0);
18174 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18175 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18176 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18177 for (i = 0; i < len; i++) {
18178 int adj_idx = i + delta;
18179 struct bpf_insn insn;
18180 int load_reg;
18181
18182 insn = insns[adj_idx];
18183 load_reg = insn_def_regno(&insn);
18184 if (!aux[adj_idx].zext_dst) {
18185 u8 code, class;
18186 u32 imm_rnd;
18187
18188 if (!rnd_hi32)
18189 continue;
18190
18191 code = insn.code;
18192 class = BPF_CLASS(code);
18193 if (load_reg == -1)
18194 continue;
18195
18196 /* NOTE: arg "reg" (the fourth one) is only used for
18197 * BPF_STX + SRC_OP, so it is safe to pass NULL
18198 * here.
18199 */
18200 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18201 if (class == BPF_LD &&
18202 BPF_MODE(code) == BPF_IMM)
18203 i++;
18204 continue;
18205 }
18206
18207 /* ctx load could be transformed into wider load. */
18208 if (class == BPF_LDX &&
18209 aux[adj_idx].ptr_type == PTR_TO_CTX)
18210 continue;
18211
18212 imm_rnd = get_random_u32();
18213 rnd_hi32_patch[0] = insn;
18214 rnd_hi32_patch[1].imm = imm_rnd;
18215 rnd_hi32_patch[3].dst_reg = load_reg;
18216 patch = rnd_hi32_patch;
18217 patch_len = 4;
18218 goto apply_patch_buffer;
18219 }
18220
18221 /* Add in an zero-extend instruction if a) the JIT has requested
18222 * it or b) it's a CMPXCHG.
18223 *
18224 * The latter is because: BPF_CMPXCHG always loads a value into
18225 * R0, therefore always zero-extends. However some archs'
18226 * equivalent instruction only does this load when the
18227 * comparison is successful. This detail of CMPXCHG is
18228 * orthogonal to the general zero-extension behaviour of the
18229 * CPU, so it's treated independently of bpf_jit_needs_zext.
18230 */
18231 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18232 continue;
18233
18234 /* Zero-extension is done by the caller. */
18235 if (bpf_pseudo_kfunc_call(&insn))
18236 continue;
18237
18238 if (WARN_ON(load_reg == -1)) {
18239 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18240 return -EFAULT;
18241 }
18242
18243 zext_patch[0] = insn;
18244 zext_patch[1].dst_reg = load_reg;
18245 zext_patch[1].src_reg = load_reg;
18246 patch = zext_patch;
18247 patch_len = 2;
18248 apply_patch_buffer:
18249 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18250 if (!new_prog)
18251 return -ENOMEM;
18252 env->prog = new_prog;
18253 insns = new_prog->insnsi;
18254 aux = env->insn_aux_data;
18255 delta += patch_len - 1;
18256 }
18257
18258 return 0;
18259 }
18260
18261 /* convert load instructions that access fields of a context type into a
18262 * sequence of instructions that access fields of the underlying structure:
18263 * struct __sk_buff -> struct sk_buff
18264 * struct bpf_sock_ops -> struct sock
18265 */
convert_ctx_accesses(struct bpf_verifier_env * env)18266 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18267 {
18268 const struct bpf_verifier_ops *ops = env->ops;
18269 int i, cnt, size, ctx_field_size, delta = 0;
18270 const int insn_cnt = env->prog->len;
18271 struct bpf_insn insn_buf[16], *insn;
18272 u32 target_size, size_default, off;
18273 struct bpf_prog *new_prog;
18274 enum bpf_access_type type;
18275 bool is_narrower_load;
18276
18277 if (ops->gen_prologue || env->seen_direct_write) {
18278 if (!ops->gen_prologue) {
18279 verbose(env, "bpf verifier is misconfigured\n");
18280 return -EINVAL;
18281 }
18282 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18283 env->prog);
18284 if (cnt >= ARRAY_SIZE(insn_buf)) {
18285 verbose(env, "bpf verifier is misconfigured\n");
18286 return -EINVAL;
18287 } else if (cnt) {
18288 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18289 if (!new_prog)
18290 return -ENOMEM;
18291
18292 env->prog = new_prog;
18293 delta += cnt - 1;
18294 }
18295 }
18296
18297 if (bpf_prog_is_offloaded(env->prog->aux))
18298 return 0;
18299
18300 insn = env->prog->insnsi + delta;
18301
18302 for (i = 0; i < insn_cnt; i++, insn++) {
18303 bpf_convert_ctx_access_t convert_ctx_access;
18304 u8 mode;
18305
18306 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18307 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18308 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18309 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18310 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18311 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18312 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18313 type = BPF_READ;
18314 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18315 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18316 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18317 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18318 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18319 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18320 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18321 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18322 type = BPF_WRITE;
18323 } else {
18324 continue;
18325 }
18326
18327 if (type == BPF_WRITE &&
18328 env->insn_aux_data[i + delta].sanitize_stack_spill) {
18329 struct bpf_insn patch[] = {
18330 *insn,
18331 BPF_ST_NOSPEC(),
18332 };
18333
18334 cnt = ARRAY_SIZE(patch);
18335 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18336 if (!new_prog)
18337 return -ENOMEM;
18338
18339 delta += cnt - 1;
18340 env->prog = new_prog;
18341 insn = new_prog->insnsi + i + delta;
18342 continue;
18343 }
18344
18345 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18346 case PTR_TO_CTX:
18347 if (!ops->convert_ctx_access)
18348 continue;
18349 convert_ctx_access = ops->convert_ctx_access;
18350 break;
18351 case PTR_TO_SOCKET:
18352 case PTR_TO_SOCK_COMMON:
18353 convert_ctx_access = bpf_sock_convert_ctx_access;
18354 break;
18355 case PTR_TO_TCP_SOCK:
18356 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18357 break;
18358 case PTR_TO_XDP_SOCK:
18359 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18360 break;
18361 case PTR_TO_BTF_ID:
18362 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18363 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18364 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18365 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18366 * any faults for loads into such types. BPF_WRITE is disallowed
18367 * for this case.
18368 */
18369 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18370 if (type == BPF_READ) {
18371 if (BPF_MODE(insn->code) == BPF_MEM)
18372 insn->code = BPF_LDX | BPF_PROBE_MEM |
18373 BPF_SIZE((insn)->code);
18374 else
18375 insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18376 BPF_SIZE((insn)->code);
18377 env->prog->aux->num_exentries++;
18378 }
18379 continue;
18380 default:
18381 continue;
18382 }
18383
18384 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18385 size = BPF_LDST_BYTES(insn);
18386 mode = BPF_MODE(insn->code);
18387
18388 /* If the read access is a narrower load of the field,
18389 * convert to a 4/8-byte load, to minimum program type specific
18390 * convert_ctx_access changes. If conversion is successful,
18391 * we will apply proper mask to the result.
18392 */
18393 is_narrower_load = size < ctx_field_size;
18394 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18395 off = insn->off;
18396 if (is_narrower_load) {
18397 u8 size_code;
18398
18399 if (type == BPF_WRITE) {
18400 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18401 return -EINVAL;
18402 }
18403
18404 size_code = BPF_H;
18405 if (ctx_field_size == 4)
18406 size_code = BPF_W;
18407 else if (ctx_field_size == 8)
18408 size_code = BPF_DW;
18409
18410 insn->off = off & ~(size_default - 1);
18411 insn->code = BPF_LDX | BPF_MEM | size_code;
18412 }
18413
18414 target_size = 0;
18415 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18416 &target_size);
18417 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18418 (ctx_field_size && !target_size)) {
18419 verbose(env, "bpf verifier is misconfigured\n");
18420 return -EINVAL;
18421 }
18422
18423 if (is_narrower_load && size < target_size) {
18424 u8 shift = bpf_ctx_narrow_access_offset(
18425 off, size, size_default) * 8;
18426 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18427 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18428 return -EINVAL;
18429 }
18430 if (ctx_field_size <= 4) {
18431 if (shift)
18432 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18433 insn->dst_reg,
18434 shift);
18435 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18436 (1 << size * 8) - 1);
18437 } else {
18438 if (shift)
18439 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18440 insn->dst_reg,
18441 shift);
18442 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18443 (1ULL << size * 8) - 1);
18444 }
18445 }
18446 if (mode == BPF_MEMSX)
18447 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18448 insn->dst_reg, insn->dst_reg,
18449 size * 8, 0);
18450
18451 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18452 if (!new_prog)
18453 return -ENOMEM;
18454
18455 delta += cnt - 1;
18456
18457 /* keep walking new program and skip insns we just inserted */
18458 env->prog = new_prog;
18459 insn = new_prog->insnsi + i + delta;
18460 }
18461
18462 return 0;
18463 }
18464
jit_subprogs(struct bpf_verifier_env * env)18465 static int jit_subprogs(struct bpf_verifier_env *env)
18466 {
18467 struct bpf_prog *prog = env->prog, **func, *tmp;
18468 int i, j, subprog_start, subprog_end = 0, len, subprog;
18469 struct bpf_map *map_ptr;
18470 struct bpf_insn *insn;
18471 void *old_bpf_func;
18472 int err, num_exentries;
18473
18474 if (env->subprog_cnt <= 1)
18475 return 0;
18476
18477 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18478 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18479 continue;
18480
18481 /* Upon error here we cannot fall back to interpreter but
18482 * need a hard reject of the program. Thus -EFAULT is
18483 * propagated in any case.
18484 */
18485 subprog = find_subprog(env, i + insn->imm + 1);
18486 if (subprog < 0) {
18487 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18488 i + insn->imm + 1);
18489 return -EFAULT;
18490 }
18491 /* temporarily remember subprog id inside insn instead of
18492 * aux_data, since next loop will split up all insns into funcs
18493 */
18494 insn->off = subprog;
18495 /* remember original imm in case JIT fails and fallback
18496 * to interpreter will be needed
18497 */
18498 env->insn_aux_data[i].call_imm = insn->imm;
18499 /* point imm to __bpf_call_base+1 from JITs point of view */
18500 insn->imm = 1;
18501 if (bpf_pseudo_func(insn))
18502 /* jit (e.g. x86_64) may emit fewer instructions
18503 * if it learns a u32 imm is the same as a u64 imm.
18504 * Force a non zero here.
18505 */
18506 insn[1].imm = 1;
18507 }
18508
18509 err = bpf_prog_alloc_jited_linfo(prog);
18510 if (err)
18511 goto out_undo_insn;
18512
18513 err = -ENOMEM;
18514 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18515 if (!func)
18516 goto out_undo_insn;
18517
18518 for (i = 0; i < env->subprog_cnt; i++) {
18519 subprog_start = subprog_end;
18520 subprog_end = env->subprog_info[i + 1].start;
18521
18522 len = subprog_end - subprog_start;
18523 /* bpf_prog_run() doesn't call subprogs directly,
18524 * hence main prog stats include the runtime of subprogs.
18525 * subprogs don't have IDs and not reachable via prog_get_next_id
18526 * func[i]->stats will never be accessed and stays NULL
18527 */
18528 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18529 if (!func[i])
18530 goto out_free;
18531 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18532 len * sizeof(struct bpf_insn));
18533 func[i]->type = prog->type;
18534 func[i]->len = len;
18535 if (bpf_prog_calc_tag(func[i]))
18536 goto out_free;
18537 func[i]->is_func = 1;
18538 func[i]->aux->func_idx = i;
18539 /* Below members will be freed only at prog->aux */
18540 func[i]->aux->btf = prog->aux->btf;
18541 func[i]->aux->func_info = prog->aux->func_info;
18542 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18543 func[i]->aux->poke_tab = prog->aux->poke_tab;
18544 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18545
18546 for (j = 0; j < prog->aux->size_poke_tab; j++) {
18547 struct bpf_jit_poke_descriptor *poke;
18548
18549 poke = &prog->aux->poke_tab[j];
18550 if (poke->insn_idx < subprog_end &&
18551 poke->insn_idx >= subprog_start)
18552 poke->aux = func[i]->aux;
18553 }
18554
18555 func[i]->aux->name[0] = 'F';
18556 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18557 func[i]->jit_requested = 1;
18558 func[i]->blinding_requested = prog->blinding_requested;
18559 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18560 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18561 func[i]->aux->linfo = prog->aux->linfo;
18562 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18563 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18564 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18565 num_exentries = 0;
18566 insn = func[i]->insnsi;
18567 for (j = 0; j < func[i]->len; j++, insn++) {
18568 if (BPF_CLASS(insn->code) == BPF_LDX &&
18569 (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18570 BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18571 num_exentries++;
18572 }
18573 func[i]->aux->num_exentries = num_exentries;
18574 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18575 func[i] = bpf_int_jit_compile(func[i]);
18576 if (!func[i]->jited) {
18577 err = -ENOTSUPP;
18578 goto out_free;
18579 }
18580 cond_resched();
18581 }
18582
18583 /* at this point all bpf functions were successfully JITed
18584 * now populate all bpf_calls with correct addresses and
18585 * run last pass of JIT
18586 */
18587 for (i = 0; i < env->subprog_cnt; i++) {
18588 insn = func[i]->insnsi;
18589 for (j = 0; j < func[i]->len; j++, insn++) {
18590 if (bpf_pseudo_func(insn)) {
18591 subprog = insn->off;
18592 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18593 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18594 continue;
18595 }
18596 if (!bpf_pseudo_call(insn))
18597 continue;
18598 subprog = insn->off;
18599 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18600 }
18601
18602 /* we use the aux data to keep a list of the start addresses
18603 * of the JITed images for each function in the program
18604 *
18605 * for some architectures, such as powerpc64, the imm field
18606 * might not be large enough to hold the offset of the start
18607 * address of the callee's JITed image from __bpf_call_base
18608 *
18609 * in such cases, we can lookup the start address of a callee
18610 * by using its subprog id, available from the off field of
18611 * the call instruction, as an index for this list
18612 */
18613 func[i]->aux->func = func;
18614 func[i]->aux->func_cnt = env->subprog_cnt;
18615 }
18616 for (i = 0; i < env->subprog_cnt; i++) {
18617 old_bpf_func = func[i]->bpf_func;
18618 tmp = bpf_int_jit_compile(func[i]);
18619 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18620 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18621 err = -ENOTSUPP;
18622 goto out_free;
18623 }
18624 cond_resched();
18625 }
18626
18627 /* finally lock prog and jit images for all functions and
18628 * populate kallsysm. Begin at the first subprogram, since
18629 * bpf_prog_load will add the kallsyms for the main program.
18630 */
18631 for (i = 1; i < env->subprog_cnt; i++) {
18632 bpf_prog_lock_ro(func[i]);
18633 bpf_prog_kallsyms_add(func[i]);
18634 }
18635
18636 /* Last step: make now unused interpreter insns from main
18637 * prog consistent for later dump requests, so they can
18638 * later look the same as if they were interpreted only.
18639 */
18640 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18641 if (bpf_pseudo_func(insn)) {
18642 insn[0].imm = env->insn_aux_data[i].call_imm;
18643 insn[1].imm = insn->off;
18644 insn->off = 0;
18645 continue;
18646 }
18647 if (!bpf_pseudo_call(insn))
18648 continue;
18649 insn->off = env->insn_aux_data[i].call_imm;
18650 subprog = find_subprog(env, i + insn->off + 1);
18651 insn->imm = subprog;
18652 }
18653
18654 prog->jited = 1;
18655 prog->bpf_func = func[0]->bpf_func;
18656 prog->jited_len = func[0]->jited_len;
18657 prog->aux->extable = func[0]->aux->extable;
18658 prog->aux->num_exentries = func[0]->aux->num_exentries;
18659 prog->aux->func = func;
18660 prog->aux->func_cnt = env->subprog_cnt;
18661 bpf_prog_jit_attempt_done(prog);
18662 return 0;
18663 out_free:
18664 /* We failed JIT'ing, so at this point we need to unregister poke
18665 * descriptors from subprogs, so that kernel is not attempting to
18666 * patch it anymore as we're freeing the subprog JIT memory.
18667 */
18668 for (i = 0; i < prog->aux->size_poke_tab; i++) {
18669 map_ptr = prog->aux->poke_tab[i].tail_call.map;
18670 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18671 }
18672 /* At this point we're guaranteed that poke descriptors are not
18673 * live anymore. We can just unlink its descriptor table as it's
18674 * released with the main prog.
18675 */
18676 for (i = 0; i < env->subprog_cnt; i++) {
18677 if (!func[i])
18678 continue;
18679 func[i]->aux->poke_tab = NULL;
18680 bpf_jit_free(func[i]);
18681 }
18682 kfree(func);
18683 out_undo_insn:
18684 /* cleanup main prog to be interpreted */
18685 prog->jit_requested = 0;
18686 prog->blinding_requested = 0;
18687 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18688 if (!bpf_pseudo_call(insn))
18689 continue;
18690 insn->off = 0;
18691 insn->imm = env->insn_aux_data[i].call_imm;
18692 }
18693 bpf_prog_jit_attempt_done(prog);
18694 return err;
18695 }
18696
fixup_call_args(struct bpf_verifier_env * env)18697 static int fixup_call_args(struct bpf_verifier_env *env)
18698 {
18699 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18700 struct bpf_prog *prog = env->prog;
18701 struct bpf_insn *insn = prog->insnsi;
18702 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18703 int i, depth;
18704 #endif
18705 int err = 0;
18706
18707 if (env->prog->jit_requested &&
18708 !bpf_prog_is_offloaded(env->prog->aux)) {
18709 err = jit_subprogs(env);
18710 if (err == 0)
18711 return 0;
18712 if (err == -EFAULT)
18713 return err;
18714 }
18715 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18716 if (has_kfunc_call) {
18717 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18718 return -EINVAL;
18719 }
18720 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18721 /* When JIT fails the progs with bpf2bpf calls and tail_calls
18722 * have to be rejected, since interpreter doesn't support them yet.
18723 */
18724 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18725 return -EINVAL;
18726 }
18727 for (i = 0; i < prog->len; i++, insn++) {
18728 if (bpf_pseudo_func(insn)) {
18729 /* When JIT fails the progs with callback calls
18730 * have to be rejected, since interpreter doesn't support them yet.
18731 */
18732 verbose(env, "callbacks are not allowed in non-JITed programs\n");
18733 return -EINVAL;
18734 }
18735
18736 if (!bpf_pseudo_call(insn))
18737 continue;
18738 depth = get_callee_stack_depth(env, insn, i);
18739 if (depth < 0)
18740 return depth;
18741 bpf_patch_call_args(insn, depth);
18742 }
18743 err = 0;
18744 #endif
18745 return err;
18746 }
18747
18748 /* replace a generic kfunc with a specialized version if necessary */
specialize_kfunc(struct bpf_verifier_env * env,u32 func_id,u16 offset,unsigned long * addr)18749 static void specialize_kfunc(struct bpf_verifier_env *env,
18750 u32 func_id, u16 offset, unsigned long *addr)
18751 {
18752 struct bpf_prog *prog = env->prog;
18753 bool seen_direct_write;
18754 void *xdp_kfunc;
18755 bool is_rdonly;
18756
18757 if (bpf_dev_bound_kfunc_id(func_id)) {
18758 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18759 if (xdp_kfunc) {
18760 *addr = (unsigned long)xdp_kfunc;
18761 return;
18762 }
18763 /* fallback to default kfunc when not supported by netdev */
18764 }
18765
18766 if (offset)
18767 return;
18768
18769 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18770 seen_direct_write = env->seen_direct_write;
18771 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18772
18773 if (is_rdonly)
18774 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18775
18776 /* restore env->seen_direct_write to its original value, since
18777 * may_access_direct_pkt_data mutates it
18778 */
18779 env->seen_direct_write = seen_direct_write;
18780 }
18781 }
18782
__fixup_collection_insert_kfunc(struct bpf_insn_aux_data * insn_aux,u16 struct_meta_reg,u16 node_offset_reg,struct bpf_insn * insn,struct bpf_insn * insn_buf,int * cnt)18783 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18784 u16 struct_meta_reg,
18785 u16 node_offset_reg,
18786 struct bpf_insn *insn,
18787 struct bpf_insn *insn_buf,
18788 int *cnt)
18789 {
18790 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18791 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18792
18793 insn_buf[0] = addr[0];
18794 insn_buf[1] = addr[1];
18795 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18796 insn_buf[3] = *insn;
18797 *cnt = 4;
18798 }
18799
fixup_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn * insn_buf,int insn_idx,int * cnt)18800 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18801 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18802 {
18803 const struct bpf_kfunc_desc *desc;
18804
18805 if (!insn->imm) {
18806 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18807 return -EINVAL;
18808 }
18809
18810 *cnt = 0;
18811
18812 /* insn->imm has the btf func_id. Replace it with an offset relative to
18813 * __bpf_call_base, unless the JIT needs to call functions that are
18814 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18815 */
18816 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18817 if (!desc) {
18818 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18819 insn->imm);
18820 return -EFAULT;
18821 }
18822
18823 if (!bpf_jit_supports_far_kfunc_call())
18824 insn->imm = BPF_CALL_IMM(desc->addr);
18825 if (insn->off)
18826 return 0;
18827 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
18828 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18829 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18830 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18831
18832 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18833 insn_buf[1] = addr[0];
18834 insn_buf[2] = addr[1];
18835 insn_buf[3] = *insn;
18836 *cnt = 4;
18837 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18838 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18839 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18840 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18841
18842 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18843 !kptr_struct_meta) {
18844 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18845 insn_idx);
18846 return -EFAULT;
18847 }
18848
18849 insn_buf[0] = addr[0];
18850 insn_buf[1] = addr[1];
18851 insn_buf[2] = *insn;
18852 *cnt = 3;
18853 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18854 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18855 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18856 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18857 int struct_meta_reg = BPF_REG_3;
18858 int node_offset_reg = BPF_REG_4;
18859
18860 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18861 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18862 struct_meta_reg = BPF_REG_4;
18863 node_offset_reg = BPF_REG_5;
18864 }
18865
18866 if (!kptr_struct_meta) {
18867 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18868 insn_idx);
18869 return -EFAULT;
18870 }
18871
18872 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18873 node_offset_reg, insn, insn_buf, cnt);
18874 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18875 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18876 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18877 *cnt = 1;
18878 }
18879 return 0;
18880 }
18881
18882 /* Do various post-verification rewrites in a single program pass.
18883 * These rewrites simplify JIT and interpreter implementations.
18884 */
do_misc_fixups(struct bpf_verifier_env * env)18885 static int do_misc_fixups(struct bpf_verifier_env *env)
18886 {
18887 struct bpf_prog *prog = env->prog;
18888 enum bpf_attach_type eatype = prog->expected_attach_type;
18889 enum bpf_prog_type prog_type = resolve_prog_type(prog);
18890 struct bpf_insn *insn = prog->insnsi;
18891 const struct bpf_func_proto *fn;
18892 const int insn_cnt = prog->len;
18893 const struct bpf_map_ops *ops;
18894 struct bpf_insn_aux_data *aux;
18895 struct bpf_insn insn_buf[16];
18896 struct bpf_prog *new_prog;
18897 struct bpf_map *map_ptr;
18898 int i, ret, cnt, delta = 0;
18899
18900 for (i = 0; i < insn_cnt; i++, insn++) {
18901 /* Make divide-by-zero exceptions impossible. */
18902 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18903 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18904 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18905 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18906 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18907 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18908 struct bpf_insn *patchlet;
18909 struct bpf_insn chk_and_div[] = {
18910 /* [R,W]x div 0 -> 0 */
18911 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18912 BPF_JNE | BPF_K, insn->src_reg,
18913 0, 2, 0),
18914 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18915 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18916 *insn,
18917 };
18918 struct bpf_insn chk_and_mod[] = {
18919 /* [R,W]x mod 0 -> [R,W]x */
18920 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18921 BPF_JEQ | BPF_K, insn->src_reg,
18922 0, 1 + (is64 ? 0 : 1), 0),
18923 *insn,
18924 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18925 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18926 };
18927
18928 patchlet = isdiv ? chk_and_div : chk_and_mod;
18929 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18930 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18931
18932 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18933 if (!new_prog)
18934 return -ENOMEM;
18935
18936 delta += cnt - 1;
18937 env->prog = prog = new_prog;
18938 insn = new_prog->insnsi + i + delta;
18939 continue;
18940 }
18941
18942 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18943 if (BPF_CLASS(insn->code) == BPF_LD &&
18944 (BPF_MODE(insn->code) == BPF_ABS ||
18945 BPF_MODE(insn->code) == BPF_IND)) {
18946 cnt = env->ops->gen_ld_abs(insn, insn_buf);
18947 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18948 verbose(env, "bpf verifier is misconfigured\n");
18949 return -EINVAL;
18950 }
18951
18952 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18953 if (!new_prog)
18954 return -ENOMEM;
18955
18956 delta += cnt - 1;
18957 env->prog = prog = new_prog;
18958 insn = new_prog->insnsi + i + delta;
18959 continue;
18960 }
18961
18962 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
18963 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18964 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18965 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18966 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
18967 struct bpf_insn *patch = &insn_buf[0];
18968 bool issrc, isneg, isimm;
18969 u32 off_reg;
18970
18971 aux = &env->insn_aux_data[i + delta];
18972 if (!aux->alu_state ||
18973 aux->alu_state == BPF_ALU_NON_POINTER)
18974 continue;
18975
18976 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
18977 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
18978 BPF_ALU_SANITIZE_SRC;
18979 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
18980
18981 off_reg = issrc ? insn->src_reg : insn->dst_reg;
18982 if (isimm) {
18983 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18984 } else {
18985 if (isneg)
18986 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18987 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18988 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
18989 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
18990 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
18991 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
18992 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
18993 }
18994 if (!issrc)
18995 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
18996 insn->src_reg = BPF_REG_AX;
18997 if (isneg)
18998 insn->code = insn->code == code_add ?
18999 code_sub : code_add;
19000 *patch++ = *insn;
19001 if (issrc && isneg && !isimm)
19002 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19003 cnt = patch - insn_buf;
19004
19005 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19006 if (!new_prog)
19007 return -ENOMEM;
19008
19009 delta += cnt - 1;
19010 env->prog = prog = new_prog;
19011 insn = new_prog->insnsi + i + delta;
19012 continue;
19013 }
19014
19015 if (insn->code != (BPF_JMP | BPF_CALL))
19016 continue;
19017 if (insn->src_reg == BPF_PSEUDO_CALL)
19018 continue;
19019 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19020 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
19021 if (ret)
19022 return ret;
19023 if (cnt == 0)
19024 continue;
19025
19026 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19027 if (!new_prog)
19028 return -ENOMEM;
19029
19030 delta += cnt - 1;
19031 env->prog = prog = new_prog;
19032 insn = new_prog->insnsi + i + delta;
19033 continue;
19034 }
19035
19036 if (insn->imm == BPF_FUNC_get_route_realm)
19037 prog->dst_needed = 1;
19038 if (insn->imm == BPF_FUNC_get_prandom_u32)
19039 bpf_user_rnd_init_once();
19040 if (insn->imm == BPF_FUNC_override_return)
19041 prog->kprobe_override = 1;
19042 if (insn->imm == BPF_FUNC_tail_call) {
19043 /* If we tail call into other programs, we
19044 * cannot make any assumptions since they can
19045 * be replaced dynamically during runtime in
19046 * the program array.
19047 */
19048 prog->cb_access = 1;
19049 if (!allow_tail_call_in_subprogs(env))
19050 prog->aux->stack_depth = MAX_BPF_STACK;
19051 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19052
19053 /* mark bpf_tail_call as different opcode to avoid
19054 * conditional branch in the interpreter for every normal
19055 * call and to prevent accidental JITing by JIT compiler
19056 * that doesn't support bpf_tail_call yet
19057 */
19058 insn->imm = 0;
19059 insn->code = BPF_JMP | BPF_TAIL_CALL;
19060
19061 aux = &env->insn_aux_data[i + delta];
19062 if (env->bpf_capable && !prog->blinding_requested &&
19063 prog->jit_requested &&
19064 !bpf_map_key_poisoned(aux) &&
19065 !bpf_map_ptr_poisoned(aux) &&
19066 !bpf_map_ptr_unpriv(aux)) {
19067 struct bpf_jit_poke_descriptor desc = {
19068 .reason = BPF_POKE_REASON_TAIL_CALL,
19069 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19070 .tail_call.key = bpf_map_key_immediate(aux),
19071 .insn_idx = i + delta,
19072 };
19073
19074 ret = bpf_jit_add_poke_descriptor(prog, &desc);
19075 if (ret < 0) {
19076 verbose(env, "adding tail call poke descriptor failed\n");
19077 return ret;
19078 }
19079
19080 insn->imm = ret + 1;
19081 continue;
19082 }
19083
19084 if (!bpf_map_ptr_unpriv(aux))
19085 continue;
19086
19087 /* instead of changing every JIT dealing with tail_call
19088 * emit two extra insns:
19089 * if (index >= max_entries) goto out;
19090 * index &= array->index_mask;
19091 * to avoid out-of-bounds cpu speculation
19092 */
19093 if (bpf_map_ptr_poisoned(aux)) {
19094 verbose(env, "tail_call abusing map_ptr\n");
19095 return -EINVAL;
19096 }
19097
19098 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19099 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19100 map_ptr->max_entries, 2);
19101 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19102 container_of(map_ptr,
19103 struct bpf_array,
19104 map)->index_mask);
19105 insn_buf[2] = *insn;
19106 cnt = 3;
19107 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19108 if (!new_prog)
19109 return -ENOMEM;
19110
19111 delta += cnt - 1;
19112 env->prog = prog = new_prog;
19113 insn = new_prog->insnsi + i + delta;
19114 continue;
19115 }
19116
19117 if (insn->imm == BPF_FUNC_timer_set_callback) {
19118 /* The verifier will process callback_fn as many times as necessary
19119 * with different maps and the register states prepared by
19120 * set_timer_callback_state will be accurate.
19121 *
19122 * The following use case is valid:
19123 * map1 is shared by prog1, prog2, prog3.
19124 * prog1 calls bpf_timer_init for some map1 elements
19125 * prog2 calls bpf_timer_set_callback for some map1 elements.
19126 * Those that were not bpf_timer_init-ed will return -EINVAL.
19127 * prog3 calls bpf_timer_start for some map1 elements.
19128 * Those that were not both bpf_timer_init-ed and
19129 * bpf_timer_set_callback-ed will return -EINVAL.
19130 */
19131 struct bpf_insn ld_addrs[2] = {
19132 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19133 };
19134
19135 insn_buf[0] = ld_addrs[0];
19136 insn_buf[1] = ld_addrs[1];
19137 insn_buf[2] = *insn;
19138 cnt = 3;
19139
19140 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19141 if (!new_prog)
19142 return -ENOMEM;
19143
19144 delta += cnt - 1;
19145 env->prog = prog = new_prog;
19146 insn = new_prog->insnsi + i + delta;
19147 goto patch_call_imm;
19148 }
19149
19150 if (is_storage_get_function(insn->imm)) {
19151 if (!env->prog->aux->sleepable ||
19152 env->insn_aux_data[i + delta].storage_get_func_atomic)
19153 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19154 else
19155 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19156 insn_buf[1] = *insn;
19157 cnt = 2;
19158
19159 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19160 if (!new_prog)
19161 return -ENOMEM;
19162
19163 delta += cnt - 1;
19164 env->prog = prog = new_prog;
19165 insn = new_prog->insnsi + i + delta;
19166 goto patch_call_imm;
19167 }
19168
19169 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19170 * and other inlining handlers are currently limited to 64 bit
19171 * only.
19172 */
19173 if (prog->jit_requested && BITS_PER_LONG == 64 &&
19174 (insn->imm == BPF_FUNC_map_lookup_elem ||
19175 insn->imm == BPF_FUNC_map_update_elem ||
19176 insn->imm == BPF_FUNC_map_delete_elem ||
19177 insn->imm == BPF_FUNC_map_push_elem ||
19178 insn->imm == BPF_FUNC_map_pop_elem ||
19179 insn->imm == BPF_FUNC_map_peek_elem ||
19180 insn->imm == BPF_FUNC_redirect_map ||
19181 insn->imm == BPF_FUNC_for_each_map_elem ||
19182 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19183 aux = &env->insn_aux_data[i + delta];
19184 if (bpf_map_ptr_poisoned(aux))
19185 goto patch_call_imm;
19186
19187 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19188 ops = map_ptr->ops;
19189 if (insn->imm == BPF_FUNC_map_lookup_elem &&
19190 ops->map_gen_lookup) {
19191 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19192 if (cnt == -EOPNOTSUPP)
19193 goto patch_map_ops_generic;
19194 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19195 verbose(env, "bpf verifier is misconfigured\n");
19196 return -EINVAL;
19197 }
19198
19199 new_prog = bpf_patch_insn_data(env, i + delta,
19200 insn_buf, cnt);
19201 if (!new_prog)
19202 return -ENOMEM;
19203
19204 delta += cnt - 1;
19205 env->prog = prog = new_prog;
19206 insn = new_prog->insnsi + i + delta;
19207 continue;
19208 }
19209
19210 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19211 (void *(*)(struct bpf_map *map, void *key))NULL));
19212 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19213 (long (*)(struct bpf_map *map, void *key))NULL));
19214 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19215 (long (*)(struct bpf_map *map, void *key, void *value,
19216 u64 flags))NULL));
19217 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19218 (long (*)(struct bpf_map *map, void *value,
19219 u64 flags))NULL));
19220 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19221 (long (*)(struct bpf_map *map, void *value))NULL));
19222 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19223 (long (*)(struct bpf_map *map, void *value))NULL));
19224 BUILD_BUG_ON(!__same_type(ops->map_redirect,
19225 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19226 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19227 (long (*)(struct bpf_map *map,
19228 bpf_callback_t callback_fn,
19229 void *callback_ctx,
19230 u64 flags))NULL));
19231 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19232 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19233
19234 patch_map_ops_generic:
19235 switch (insn->imm) {
19236 case BPF_FUNC_map_lookup_elem:
19237 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19238 continue;
19239 case BPF_FUNC_map_update_elem:
19240 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19241 continue;
19242 case BPF_FUNC_map_delete_elem:
19243 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19244 continue;
19245 case BPF_FUNC_map_push_elem:
19246 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19247 continue;
19248 case BPF_FUNC_map_pop_elem:
19249 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19250 continue;
19251 case BPF_FUNC_map_peek_elem:
19252 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19253 continue;
19254 case BPF_FUNC_redirect_map:
19255 insn->imm = BPF_CALL_IMM(ops->map_redirect);
19256 continue;
19257 case BPF_FUNC_for_each_map_elem:
19258 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19259 continue;
19260 case BPF_FUNC_map_lookup_percpu_elem:
19261 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19262 continue;
19263 }
19264
19265 goto patch_call_imm;
19266 }
19267
19268 /* Implement bpf_jiffies64 inline. */
19269 if (prog->jit_requested && BITS_PER_LONG == 64 &&
19270 insn->imm == BPF_FUNC_jiffies64) {
19271 struct bpf_insn ld_jiffies_addr[2] = {
19272 BPF_LD_IMM64(BPF_REG_0,
19273 (unsigned long)&jiffies),
19274 };
19275
19276 insn_buf[0] = ld_jiffies_addr[0];
19277 insn_buf[1] = ld_jiffies_addr[1];
19278 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19279 BPF_REG_0, 0);
19280 cnt = 3;
19281
19282 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19283 cnt);
19284 if (!new_prog)
19285 return -ENOMEM;
19286
19287 delta += cnt - 1;
19288 env->prog = prog = new_prog;
19289 insn = new_prog->insnsi + i + delta;
19290 continue;
19291 }
19292
19293 /* Implement bpf_get_func_arg inline. */
19294 if (prog_type == BPF_PROG_TYPE_TRACING &&
19295 insn->imm == BPF_FUNC_get_func_arg) {
19296 /* Load nr_args from ctx - 8 */
19297 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19298 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19299 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19300 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19301 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19302 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19303 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19304 insn_buf[7] = BPF_JMP_A(1);
19305 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19306 cnt = 9;
19307
19308 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19309 if (!new_prog)
19310 return -ENOMEM;
19311
19312 delta += cnt - 1;
19313 env->prog = prog = new_prog;
19314 insn = new_prog->insnsi + i + delta;
19315 continue;
19316 }
19317
19318 /* Implement bpf_get_func_ret inline. */
19319 if (prog_type == BPF_PROG_TYPE_TRACING &&
19320 insn->imm == BPF_FUNC_get_func_ret) {
19321 if (eatype == BPF_TRACE_FEXIT ||
19322 eatype == BPF_MODIFY_RETURN) {
19323 /* Load nr_args from ctx - 8 */
19324 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19325 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19326 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19327 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19328 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19329 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19330 cnt = 6;
19331 } else {
19332 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19333 cnt = 1;
19334 }
19335
19336 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19337 if (!new_prog)
19338 return -ENOMEM;
19339
19340 delta += cnt - 1;
19341 env->prog = prog = new_prog;
19342 insn = new_prog->insnsi + i + delta;
19343 continue;
19344 }
19345
19346 /* Implement get_func_arg_cnt inline. */
19347 if (prog_type == BPF_PROG_TYPE_TRACING &&
19348 insn->imm == BPF_FUNC_get_func_arg_cnt) {
19349 /* Load nr_args from ctx - 8 */
19350 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19351
19352 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19353 if (!new_prog)
19354 return -ENOMEM;
19355
19356 env->prog = prog = new_prog;
19357 insn = new_prog->insnsi + i + delta;
19358 continue;
19359 }
19360
19361 /* Implement bpf_get_func_ip inline. */
19362 if (prog_type == BPF_PROG_TYPE_TRACING &&
19363 insn->imm == BPF_FUNC_get_func_ip) {
19364 /* Load IP address from ctx - 16 */
19365 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19366
19367 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19368 if (!new_prog)
19369 return -ENOMEM;
19370
19371 env->prog = prog = new_prog;
19372 insn = new_prog->insnsi + i + delta;
19373 continue;
19374 }
19375
19376 patch_call_imm:
19377 fn = env->ops->get_func_proto(insn->imm, env->prog);
19378 /* all functions that have prototype and verifier allowed
19379 * programs to call them, must be real in-kernel functions
19380 */
19381 if (!fn->func) {
19382 verbose(env,
19383 "kernel subsystem misconfigured func %s#%d\n",
19384 func_id_name(insn->imm), insn->imm);
19385 return -EFAULT;
19386 }
19387 insn->imm = fn->func - __bpf_call_base;
19388 }
19389
19390 /* Since poke tab is now finalized, publish aux to tracker. */
19391 for (i = 0; i < prog->aux->size_poke_tab; i++) {
19392 map_ptr = prog->aux->poke_tab[i].tail_call.map;
19393 if (!map_ptr->ops->map_poke_track ||
19394 !map_ptr->ops->map_poke_untrack ||
19395 !map_ptr->ops->map_poke_run) {
19396 verbose(env, "bpf verifier is misconfigured\n");
19397 return -EINVAL;
19398 }
19399
19400 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19401 if (ret < 0) {
19402 verbose(env, "tracking tail call prog failed\n");
19403 return ret;
19404 }
19405 }
19406
19407 sort_kfunc_descs_by_imm_off(env->prog);
19408
19409 return 0;
19410 }
19411
inline_bpf_loop(struct bpf_verifier_env * env,int position,s32 stack_base,u32 callback_subprogno,u32 * cnt)19412 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19413 int position,
19414 s32 stack_base,
19415 u32 callback_subprogno,
19416 u32 *cnt)
19417 {
19418 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19419 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19420 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19421 int reg_loop_max = BPF_REG_6;
19422 int reg_loop_cnt = BPF_REG_7;
19423 int reg_loop_ctx = BPF_REG_8;
19424
19425 struct bpf_prog *new_prog;
19426 u32 callback_start;
19427 u32 call_insn_offset;
19428 s32 callback_offset;
19429
19430 /* This represents an inlined version of bpf_iter.c:bpf_loop,
19431 * be careful to modify this code in sync.
19432 */
19433 struct bpf_insn insn_buf[] = {
19434 /* Return error and jump to the end of the patch if
19435 * expected number of iterations is too big.
19436 */
19437 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19438 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19439 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19440 /* spill R6, R7, R8 to use these as loop vars */
19441 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19442 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19443 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19444 /* initialize loop vars */
19445 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19446 BPF_MOV32_IMM(reg_loop_cnt, 0),
19447 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19448 /* loop header,
19449 * if reg_loop_cnt >= reg_loop_max skip the loop body
19450 */
19451 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19452 /* callback call,
19453 * correct callback offset would be set after patching
19454 */
19455 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19456 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19457 BPF_CALL_REL(0),
19458 /* increment loop counter */
19459 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19460 /* jump to loop header if callback returned 0 */
19461 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19462 /* return value of bpf_loop,
19463 * set R0 to the number of iterations
19464 */
19465 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19466 /* restore original values of R6, R7, R8 */
19467 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19468 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19469 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19470 };
19471
19472 *cnt = ARRAY_SIZE(insn_buf);
19473 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19474 if (!new_prog)
19475 return new_prog;
19476
19477 /* callback start is known only after patching */
19478 callback_start = env->subprog_info[callback_subprogno].start;
19479 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19480 call_insn_offset = position + 12;
19481 callback_offset = callback_start - call_insn_offset - 1;
19482 new_prog->insnsi[call_insn_offset].imm = callback_offset;
19483
19484 return new_prog;
19485 }
19486
is_bpf_loop_call(struct bpf_insn * insn)19487 static bool is_bpf_loop_call(struct bpf_insn *insn)
19488 {
19489 return insn->code == (BPF_JMP | BPF_CALL) &&
19490 insn->src_reg == 0 &&
19491 insn->imm == BPF_FUNC_loop;
19492 }
19493
19494 /* For all sub-programs in the program (including main) check
19495 * insn_aux_data to see if there are bpf_loop calls that require
19496 * inlining. If such calls are found the calls are replaced with a
19497 * sequence of instructions produced by `inline_bpf_loop` function and
19498 * subprog stack_depth is increased by the size of 3 registers.
19499 * This stack space is used to spill values of the R6, R7, R8. These
19500 * registers are used to store the loop bound, counter and context
19501 * variables.
19502 */
optimize_bpf_loop(struct bpf_verifier_env * env)19503 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19504 {
19505 struct bpf_subprog_info *subprogs = env->subprog_info;
19506 int i, cur_subprog = 0, cnt, delta = 0;
19507 struct bpf_insn *insn = env->prog->insnsi;
19508 int insn_cnt = env->prog->len;
19509 u16 stack_depth = subprogs[cur_subprog].stack_depth;
19510 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19511 u16 stack_depth_extra = 0;
19512
19513 for (i = 0; i < insn_cnt; i++, insn++) {
19514 struct bpf_loop_inline_state *inline_state =
19515 &env->insn_aux_data[i + delta].loop_inline_state;
19516
19517 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
19518 struct bpf_prog *new_prog;
19519
19520 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
19521 new_prog = inline_bpf_loop(env,
19522 i + delta,
19523 -(stack_depth + stack_depth_extra),
19524 inline_state->callback_subprogno,
19525 &cnt);
19526 if (!new_prog)
19527 return -ENOMEM;
19528
19529 delta += cnt - 1;
19530 env->prog = new_prog;
19531 insn = new_prog->insnsi + i + delta;
19532 }
19533
19534 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19535 subprogs[cur_subprog].stack_depth += stack_depth_extra;
19536 cur_subprog++;
19537 stack_depth = subprogs[cur_subprog].stack_depth;
19538 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19539 stack_depth_extra = 0;
19540 }
19541 }
19542
19543 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19544
19545 return 0;
19546 }
19547
free_states(struct bpf_verifier_env * env)19548 static void free_states(struct bpf_verifier_env *env)
19549 {
19550 struct bpf_verifier_state_list *sl, *sln;
19551 int i;
19552
19553 sl = env->free_list;
19554 while (sl) {
19555 sln = sl->next;
19556 free_verifier_state(&sl->state, false);
19557 kfree(sl);
19558 sl = sln;
19559 }
19560 env->free_list = NULL;
19561
19562 if (!env->explored_states)
19563 return;
19564
19565 for (i = 0; i < state_htab_size(env); i++) {
19566 sl = env->explored_states[i];
19567
19568 while (sl) {
19569 sln = sl->next;
19570 free_verifier_state(&sl->state, false);
19571 kfree(sl);
19572 sl = sln;
19573 }
19574 env->explored_states[i] = NULL;
19575 }
19576 }
19577
do_check_common(struct bpf_verifier_env * env,int subprog)19578 static int do_check_common(struct bpf_verifier_env *env, int subprog)
19579 {
19580 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19581 struct bpf_verifier_state *state;
19582 struct bpf_reg_state *regs;
19583 int ret, i;
19584
19585 env->prev_linfo = NULL;
19586 env->pass_cnt++;
19587
19588 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19589 if (!state)
19590 return -ENOMEM;
19591 state->curframe = 0;
19592 state->speculative = false;
19593 state->branches = 1;
19594 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19595 if (!state->frame[0]) {
19596 kfree(state);
19597 return -ENOMEM;
19598 }
19599 env->cur_state = state;
19600 init_func_state(env, state->frame[0],
19601 BPF_MAIN_FUNC /* callsite */,
19602 0 /* frameno */,
19603 subprog);
19604 state->first_insn_idx = env->subprog_info[subprog].start;
19605 state->last_insn_idx = -1;
19606
19607 regs = state->frame[state->curframe]->regs;
19608 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19609 ret = btf_prepare_func_args(env, subprog, regs);
19610 if (ret)
19611 goto out;
19612 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19613 if (regs[i].type == PTR_TO_CTX)
19614 mark_reg_known_zero(env, regs, i);
19615 else if (regs[i].type == SCALAR_VALUE)
19616 mark_reg_unknown(env, regs, i);
19617 else if (base_type(regs[i].type) == PTR_TO_MEM) {
19618 const u32 mem_size = regs[i].mem_size;
19619
19620 mark_reg_known_zero(env, regs, i);
19621 regs[i].mem_size = mem_size;
19622 regs[i].id = ++env->id_gen;
19623 }
19624 }
19625 } else {
19626 /* 1st arg to a function */
19627 regs[BPF_REG_1].type = PTR_TO_CTX;
19628 mark_reg_known_zero(env, regs, BPF_REG_1);
19629 ret = btf_check_subprog_arg_match(env, subprog, regs);
19630 if (ret == -EFAULT)
19631 /* unlikely verifier bug. abort.
19632 * ret == 0 and ret < 0 are sadly acceptable for
19633 * main() function due to backward compatibility.
19634 * Like socket filter program may be written as:
19635 * int bpf_prog(struct pt_regs *ctx)
19636 * and never dereference that ctx in the program.
19637 * 'struct pt_regs' is a type mismatch for socket
19638 * filter that should be using 'struct __sk_buff'.
19639 */
19640 goto out;
19641 }
19642
19643 ret = do_check(env);
19644 out:
19645 /* check for NULL is necessary, since cur_state can be freed inside
19646 * do_check() under memory pressure.
19647 */
19648 if (env->cur_state) {
19649 free_verifier_state(env->cur_state, true);
19650 env->cur_state = NULL;
19651 }
19652 while (!pop_stack(env, NULL, NULL, false));
19653 if (!ret && pop_log)
19654 bpf_vlog_reset(&env->log, 0);
19655 free_states(env);
19656 return ret;
19657 }
19658
19659 /* Verify all global functions in a BPF program one by one based on their BTF.
19660 * All global functions must pass verification. Otherwise the whole program is rejected.
19661 * Consider:
19662 * int bar(int);
19663 * int foo(int f)
19664 * {
19665 * return bar(f);
19666 * }
19667 * int bar(int b)
19668 * {
19669 * ...
19670 * }
19671 * foo() will be verified first for R1=any_scalar_value. During verification it
19672 * will be assumed that bar() already verified successfully and call to bar()
19673 * from foo() will be checked for type match only. Later bar() will be verified
19674 * independently to check that it's safe for R1=any_scalar_value.
19675 */
do_check_subprogs(struct bpf_verifier_env * env)19676 static int do_check_subprogs(struct bpf_verifier_env *env)
19677 {
19678 struct bpf_prog_aux *aux = env->prog->aux;
19679 int i, ret;
19680
19681 if (!aux->func_info)
19682 return 0;
19683
19684 for (i = 1; i < env->subprog_cnt; i++) {
19685 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19686 continue;
19687 env->insn_idx = env->subprog_info[i].start;
19688 WARN_ON_ONCE(env->insn_idx == 0);
19689 ret = do_check_common(env, i);
19690 if (ret) {
19691 return ret;
19692 } else if (env->log.level & BPF_LOG_LEVEL) {
19693 verbose(env,
19694 "Func#%d is safe for any args that match its prototype\n",
19695 i);
19696 }
19697 }
19698 return 0;
19699 }
19700
do_check_main(struct bpf_verifier_env * env)19701 static int do_check_main(struct bpf_verifier_env *env)
19702 {
19703 int ret;
19704
19705 env->insn_idx = 0;
19706 ret = do_check_common(env, 0);
19707 if (!ret)
19708 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19709 return ret;
19710 }
19711
19712
print_verification_stats(struct bpf_verifier_env * env)19713 static void print_verification_stats(struct bpf_verifier_env *env)
19714 {
19715 int i;
19716
19717 if (env->log.level & BPF_LOG_STATS) {
19718 verbose(env, "verification time %lld usec\n",
19719 div_u64(env->verification_time, 1000));
19720 verbose(env, "stack depth ");
19721 for (i = 0; i < env->subprog_cnt; i++) {
19722 u32 depth = env->subprog_info[i].stack_depth;
19723
19724 verbose(env, "%d", depth);
19725 if (i + 1 < env->subprog_cnt)
19726 verbose(env, "+");
19727 }
19728 verbose(env, "\n");
19729 }
19730 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19731 "total_states %d peak_states %d mark_read %d\n",
19732 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19733 env->max_states_per_insn, env->total_states,
19734 env->peak_states, env->longest_mark_read_walk);
19735 }
19736
check_struct_ops_btf_id(struct bpf_verifier_env * env)19737 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19738 {
19739 const struct btf_type *t, *func_proto;
19740 const struct bpf_struct_ops *st_ops;
19741 const struct btf_member *member;
19742 struct bpf_prog *prog = env->prog;
19743 u32 btf_id, member_idx;
19744 const char *mname;
19745
19746 if (!prog->gpl_compatible) {
19747 verbose(env, "struct ops programs must have a GPL compatible license\n");
19748 return -EINVAL;
19749 }
19750
19751 btf_id = prog->aux->attach_btf_id;
19752 st_ops = bpf_struct_ops_find(btf_id);
19753 if (!st_ops) {
19754 verbose(env, "attach_btf_id %u is not a supported struct\n",
19755 btf_id);
19756 return -ENOTSUPP;
19757 }
19758
19759 t = st_ops->type;
19760 member_idx = prog->expected_attach_type;
19761 if (member_idx >= btf_type_vlen(t)) {
19762 verbose(env, "attach to invalid member idx %u of struct %s\n",
19763 member_idx, st_ops->name);
19764 return -EINVAL;
19765 }
19766
19767 member = &btf_type_member(t)[member_idx];
19768 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19769 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19770 NULL);
19771 if (!func_proto) {
19772 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19773 mname, member_idx, st_ops->name);
19774 return -EINVAL;
19775 }
19776
19777 if (st_ops->check_member) {
19778 int err = st_ops->check_member(t, member, prog);
19779
19780 if (err) {
19781 verbose(env, "attach to unsupported member %s of struct %s\n",
19782 mname, st_ops->name);
19783 return err;
19784 }
19785 }
19786
19787 prog->aux->attach_func_proto = func_proto;
19788 prog->aux->attach_func_name = mname;
19789 env->ops = st_ops->verifier_ops;
19790
19791 return 0;
19792 }
19793 #define SECURITY_PREFIX "security_"
19794
check_attach_modify_return(unsigned long addr,const char * func_name)19795 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19796 {
19797 if (within_error_injection_list(addr) ||
19798 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
19799 return 0;
19800
19801 return -EINVAL;
19802 }
19803
19804 /* list of non-sleepable functions that are otherwise on
19805 * ALLOW_ERROR_INJECTION list
19806 */
19807 BTF_SET_START(btf_non_sleepable_error_inject)
19808 /* Three functions below can be called from sleepable and non-sleepable context.
19809 * Assume non-sleepable from bpf safety point of view.
19810 */
BTF_ID(func,__filemap_add_folio)19811 BTF_ID(func, __filemap_add_folio)
19812 BTF_ID(func, should_fail_alloc_page)
19813 BTF_ID(func, should_failslab)
19814 BTF_SET_END(btf_non_sleepable_error_inject)
19815
19816 static int check_non_sleepable_error_inject(u32 btf_id)
19817 {
19818 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19819 }
19820
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)19821 int bpf_check_attach_target(struct bpf_verifier_log *log,
19822 const struct bpf_prog *prog,
19823 const struct bpf_prog *tgt_prog,
19824 u32 btf_id,
19825 struct bpf_attach_target_info *tgt_info)
19826 {
19827 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19828 const char prefix[] = "btf_trace_";
19829 int ret = 0, subprog = -1, i;
19830 const struct btf_type *t;
19831 bool conservative = true;
19832 const char *tname;
19833 struct btf *btf;
19834 long addr = 0;
19835 struct module *mod = NULL;
19836
19837 if (!btf_id) {
19838 bpf_log(log, "Tracing programs must provide btf_id\n");
19839 return -EINVAL;
19840 }
19841 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19842 if (!btf) {
19843 bpf_log(log,
19844 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19845 return -EINVAL;
19846 }
19847 t = btf_type_by_id(btf, btf_id);
19848 if (!t) {
19849 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19850 return -EINVAL;
19851 }
19852 tname = btf_name_by_offset(btf, t->name_off);
19853 if (!tname) {
19854 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19855 return -EINVAL;
19856 }
19857 if (tgt_prog) {
19858 struct bpf_prog_aux *aux = tgt_prog->aux;
19859
19860 if (bpf_prog_is_dev_bound(prog->aux) &&
19861 !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19862 bpf_log(log, "Target program bound device mismatch");
19863 return -EINVAL;
19864 }
19865
19866 for (i = 0; i < aux->func_info_cnt; i++)
19867 if (aux->func_info[i].type_id == btf_id) {
19868 subprog = i;
19869 break;
19870 }
19871 if (subprog == -1) {
19872 bpf_log(log, "Subprog %s doesn't exist\n", tname);
19873 return -EINVAL;
19874 }
19875 conservative = aux->func_info_aux[subprog].unreliable;
19876 if (prog_extension) {
19877 if (conservative) {
19878 bpf_log(log,
19879 "Cannot replace static functions\n");
19880 return -EINVAL;
19881 }
19882 if (!prog->jit_requested) {
19883 bpf_log(log,
19884 "Extension programs should be JITed\n");
19885 return -EINVAL;
19886 }
19887 }
19888 if (!tgt_prog->jited) {
19889 bpf_log(log, "Can attach to only JITed progs\n");
19890 return -EINVAL;
19891 }
19892 if (tgt_prog->type == prog->type) {
19893 /* Cannot fentry/fexit another fentry/fexit program.
19894 * Cannot attach program extension to another extension.
19895 * It's ok to attach fentry/fexit to extension program.
19896 */
19897 bpf_log(log, "Cannot recursively attach\n");
19898 return -EINVAL;
19899 }
19900 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19901 prog_extension &&
19902 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19903 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19904 /* Program extensions can extend all program types
19905 * except fentry/fexit. The reason is the following.
19906 * The fentry/fexit programs are used for performance
19907 * analysis, stats and can be attached to any program
19908 * type except themselves. When extension program is
19909 * replacing XDP function it is necessary to allow
19910 * performance analysis of all functions. Both original
19911 * XDP program and its program extension. Hence
19912 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19913 * allowed. If extending of fentry/fexit was allowed it
19914 * would be possible to create long call chain
19915 * fentry->extension->fentry->extension beyond
19916 * reasonable stack size. Hence extending fentry is not
19917 * allowed.
19918 */
19919 bpf_log(log, "Cannot extend fentry/fexit\n");
19920 return -EINVAL;
19921 }
19922 } else {
19923 if (prog_extension) {
19924 bpf_log(log, "Cannot replace kernel functions\n");
19925 return -EINVAL;
19926 }
19927 }
19928
19929 switch (prog->expected_attach_type) {
19930 case BPF_TRACE_RAW_TP:
19931 if (tgt_prog) {
19932 bpf_log(log,
19933 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19934 return -EINVAL;
19935 }
19936 if (!btf_type_is_typedef(t)) {
19937 bpf_log(log, "attach_btf_id %u is not a typedef\n",
19938 btf_id);
19939 return -EINVAL;
19940 }
19941 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
19942 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
19943 btf_id, tname);
19944 return -EINVAL;
19945 }
19946 tname += sizeof(prefix) - 1;
19947 t = btf_type_by_id(btf, t->type);
19948 if (!btf_type_is_ptr(t))
19949 /* should never happen in valid vmlinux build */
19950 return -EINVAL;
19951 t = btf_type_by_id(btf, t->type);
19952 if (!btf_type_is_func_proto(t))
19953 /* should never happen in valid vmlinux build */
19954 return -EINVAL;
19955
19956 break;
19957 case BPF_TRACE_ITER:
19958 if (!btf_type_is_func(t)) {
19959 bpf_log(log, "attach_btf_id %u is not a function\n",
19960 btf_id);
19961 return -EINVAL;
19962 }
19963 t = btf_type_by_id(btf, t->type);
19964 if (!btf_type_is_func_proto(t))
19965 return -EINVAL;
19966 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19967 if (ret)
19968 return ret;
19969 break;
19970 default:
19971 if (!prog_extension)
19972 return -EINVAL;
19973 fallthrough;
19974 case BPF_MODIFY_RETURN:
19975 case BPF_LSM_MAC:
19976 case BPF_LSM_CGROUP:
19977 case BPF_TRACE_FENTRY:
19978 case BPF_TRACE_FEXIT:
19979 if (!btf_type_is_func(t)) {
19980 bpf_log(log, "attach_btf_id %u is not a function\n",
19981 btf_id);
19982 return -EINVAL;
19983 }
19984 if (prog_extension &&
19985 btf_check_type_match(log, prog, btf, t))
19986 return -EINVAL;
19987 t = btf_type_by_id(btf, t->type);
19988 if (!btf_type_is_func_proto(t))
19989 return -EINVAL;
19990
19991 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
19992 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
19993 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
19994 return -EINVAL;
19995
19996 if (tgt_prog && conservative)
19997 t = NULL;
19998
19999 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20000 if (ret < 0)
20001 return ret;
20002
20003 if (tgt_prog) {
20004 if (subprog == 0)
20005 addr = (long) tgt_prog->bpf_func;
20006 else
20007 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
20008 } else {
20009 if (btf_is_module(btf)) {
20010 mod = btf_try_get_module(btf);
20011 if (mod)
20012 addr = find_kallsyms_symbol_value(mod, tname);
20013 else
20014 addr = 0;
20015 } else {
20016 addr = kallsyms_lookup_name(tname);
20017 }
20018 if (!addr) {
20019 module_put(mod);
20020 bpf_log(log,
20021 "The address of function %s cannot be found\n",
20022 tname);
20023 return -ENOENT;
20024 }
20025 }
20026
20027 if (prog->aux->sleepable) {
20028 ret = -EINVAL;
20029 switch (prog->type) {
20030 case BPF_PROG_TYPE_TRACING:
20031
20032 /* fentry/fexit/fmod_ret progs can be sleepable if they are
20033 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20034 */
20035 if (!check_non_sleepable_error_inject(btf_id) &&
20036 within_error_injection_list(addr))
20037 ret = 0;
20038 /* fentry/fexit/fmod_ret progs can also be sleepable if they are
20039 * in the fmodret id set with the KF_SLEEPABLE flag.
20040 */
20041 else {
20042 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20043 prog);
20044
20045 if (flags && (*flags & KF_SLEEPABLE))
20046 ret = 0;
20047 }
20048 break;
20049 case BPF_PROG_TYPE_LSM:
20050 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
20051 * Only some of them are sleepable.
20052 */
20053 if (bpf_lsm_is_sleepable_hook(btf_id))
20054 ret = 0;
20055 break;
20056 default:
20057 break;
20058 }
20059 if (ret) {
20060 module_put(mod);
20061 bpf_log(log, "%s is not sleepable\n", tname);
20062 return ret;
20063 }
20064 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
20065 if (tgt_prog) {
20066 module_put(mod);
20067 bpf_log(log, "can't modify return codes of BPF programs\n");
20068 return -EINVAL;
20069 }
20070 ret = -EINVAL;
20071 if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
20072 !check_attach_modify_return(addr, tname))
20073 ret = 0;
20074 if (ret) {
20075 module_put(mod);
20076 bpf_log(log, "%s() is not modifiable\n", tname);
20077 return ret;
20078 }
20079 }
20080
20081 break;
20082 }
20083 tgt_info->tgt_addr = addr;
20084 tgt_info->tgt_name = tname;
20085 tgt_info->tgt_type = t;
20086 tgt_info->tgt_mod = mod;
20087 return 0;
20088 }
20089
BTF_SET_START(btf_id_deny)20090 BTF_SET_START(btf_id_deny)
20091 BTF_ID_UNUSED
20092 #ifdef CONFIG_SMP
20093 BTF_ID(func, migrate_disable)
20094 BTF_ID(func, migrate_enable)
20095 #endif
20096 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20097 BTF_ID(func, rcu_read_unlock_strict)
20098 #endif
20099 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20100 BTF_ID(func, preempt_count_add)
20101 BTF_ID(func, preempt_count_sub)
20102 #endif
20103 #ifdef CONFIG_PREEMPT_RCU
20104 BTF_ID(func, __rcu_read_lock)
20105 BTF_ID(func, __rcu_read_unlock)
20106 #endif
20107 BTF_SET_END(btf_id_deny)
20108
20109 static bool can_be_sleepable(struct bpf_prog *prog)
20110 {
20111 if (prog->type == BPF_PROG_TYPE_TRACING) {
20112 switch (prog->expected_attach_type) {
20113 case BPF_TRACE_FENTRY:
20114 case BPF_TRACE_FEXIT:
20115 case BPF_MODIFY_RETURN:
20116 case BPF_TRACE_ITER:
20117 return true;
20118 default:
20119 return false;
20120 }
20121 }
20122 return prog->type == BPF_PROG_TYPE_LSM ||
20123 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20124 prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20125 }
20126
check_attach_btf_id(struct bpf_verifier_env * env)20127 static int check_attach_btf_id(struct bpf_verifier_env *env)
20128 {
20129 struct bpf_prog *prog = env->prog;
20130 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20131 struct bpf_attach_target_info tgt_info = {};
20132 u32 btf_id = prog->aux->attach_btf_id;
20133 struct bpf_trampoline *tr;
20134 int ret;
20135 u64 key;
20136
20137 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20138 if (prog->aux->sleepable)
20139 /* attach_btf_id checked to be zero already */
20140 return 0;
20141 verbose(env, "Syscall programs can only be sleepable\n");
20142 return -EINVAL;
20143 }
20144
20145 if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20146 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20147 return -EINVAL;
20148 }
20149
20150 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20151 return check_struct_ops_btf_id(env);
20152
20153 if (prog->type != BPF_PROG_TYPE_TRACING &&
20154 prog->type != BPF_PROG_TYPE_LSM &&
20155 prog->type != BPF_PROG_TYPE_EXT)
20156 return 0;
20157
20158 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20159 if (ret)
20160 return ret;
20161
20162 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20163 /* to make freplace equivalent to their targets, they need to
20164 * inherit env->ops and expected_attach_type for the rest of the
20165 * verification
20166 */
20167 env->ops = bpf_verifier_ops[tgt_prog->type];
20168 prog->expected_attach_type = tgt_prog->expected_attach_type;
20169 }
20170
20171 /* store info about the attachment target that will be used later */
20172 prog->aux->attach_func_proto = tgt_info.tgt_type;
20173 prog->aux->attach_func_name = tgt_info.tgt_name;
20174 prog->aux->mod = tgt_info.tgt_mod;
20175
20176 if (tgt_prog) {
20177 prog->aux->saved_dst_prog_type = tgt_prog->type;
20178 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20179 }
20180
20181 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20182 prog->aux->attach_btf_trace = true;
20183 return 0;
20184 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20185 if (!bpf_iter_prog_supported(prog))
20186 return -EINVAL;
20187 return 0;
20188 }
20189
20190 if (prog->type == BPF_PROG_TYPE_LSM) {
20191 ret = bpf_lsm_verify_prog(&env->log, prog);
20192 if (ret < 0)
20193 return ret;
20194 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
20195 btf_id_set_contains(&btf_id_deny, btf_id)) {
20196 return -EINVAL;
20197 }
20198
20199 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20200 tr = bpf_trampoline_get(key, &tgt_info);
20201 if (!tr)
20202 return -ENOMEM;
20203
20204 if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20205 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20206
20207 prog->aux->dst_trampoline = tr;
20208 return 0;
20209 }
20210
bpf_get_btf_vmlinux(void)20211 struct btf *bpf_get_btf_vmlinux(void)
20212 {
20213 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20214 mutex_lock(&bpf_verifier_lock);
20215 if (!btf_vmlinux)
20216 btf_vmlinux = btf_parse_vmlinux();
20217 mutex_unlock(&bpf_verifier_lock);
20218 }
20219 return btf_vmlinux;
20220 }
20221
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,bpfptr_t uattr,__u32 uattr_size)20222 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20223 {
20224 u64 start_time = ktime_get_ns();
20225 struct bpf_verifier_env *env;
20226 int i, len, ret = -EINVAL, err;
20227 u32 log_true_size;
20228 bool is_priv;
20229
20230 /* no program is valid */
20231 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20232 return -EINVAL;
20233
20234 /* 'struct bpf_verifier_env' can be global, but since it's not small,
20235 * allocate/free it every time bpf_check() is called
20236 */
20237 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20238 if (!env)
20239 return -ENOMEM;
20240
20241 env->bt.env = env;
20242
20243 len = (*prog)->len;
20244 env->insn_aux_data =
20245 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20246 ret = -ENOMEM;
20247 if (!env->insn_aux_data)
20248 goto err_free_env;
20249 for (i = 0; i < len; i++)
20250 env->insn_aux_data[i].orig_idx = i;
20251 env->prog = *prog;
20252 env->ops = bpf_verifier_ops[env->prog->type];
20253 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20254 is_priv = bpf_capable();
20255
20256 bpf_get_btf_vmlinux();
20257
20258 /* grab the mutex to protect few globals used by verifier */
20259 if (!is_priv)
20260 mutex_lock(&bpf_verifier_lock);
20261
20262 /* user could have requested verbose verifier output
20263 * and supplied buffer to store the verification trace
20264 */
20265 ret = bpf_vlog_init(&env->log, attr->log_level,
20266 (char __user *) (unsigned long) attr->log_buf,
20267 attr->log_size);
20268 if (ret)
20269 goto err_unlock;
20270
20271 mark_verifier_state_clean(env);
20272
20273 if (IS_ERR(btf_vmlinux)) {
20274 /* Either gcc or pahole or kernel are broken. */
20275 verbose(env, "in-kernel BTF is malformed\n");
20276 ret = PTR_ERR(btf_vmlinux);
20277 goto skip_full_check;
20278 }
20279
20280 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20281 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20282 env->strict_alignment = true;
20283 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20284 env->strict_alignment = false;
20285
20286 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20287 env->allow_uninit_stack = bpf_allow_uninit_stack();
20288 env->bypass_spec_v1 = bpf_bypass_spec_v1();
20289 env->bypass_spec_v4 = bpf_bypass_spec_v4();
20290 env->bpf_capable = bpf_capable();
20291
20292 if (is_priv)
20293 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20294
20295 env->explored_states = kvcalloc(state_htab_size(env),
20296 sizeof(struct bpf_verifier_state_list *),
20297 GFP_USER);
20298 ret = -ENOMEM;
20299 if (!env->explored_states)
20300 goto skip_full_check;
20301
20302 ret = add_subprog_and_kfunc(env);
20303 if (ret < 0)
20304 goto skip_full_check;
20305
20306 ret = check_subprogs(env);
20307 if (ret < 0)
20308 goto skip_full_check;
20309
20310 ret = check_btf_info(env, attr, uattr);
20311 if (ret < 0)
20312 goto skip_full_check;
20313
20314 ret = check_attach_btf_id(env);
20315 if (ret)
20316 goto skip_full_check;
20317
20318 ret = resolve_pseudo_ldimm64(env);
20319 if (ret < 0)
20320 goto skip_full_check;
20321
20322 if (bpf_prog_is_offloaded(env->prog->aux)) {
20323 ret = bpf_prog_offload_verifier_prep(env->prog);
20324 if (ret)
20325 goto skip_full_check;
20326 }
20327
20328 ret = check_cfg(env);
20329 if (ret < 0)
20330 goto skip_full_check;
20331
20332 ret = do_check_subprogs(env);
20333 ret = ret ?: do_check_main(env);
20334
20335 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20336 ret = bpf_prog_offload_finalize(env);
20337
20338 skip_full_check:
20339 kvfree(env->explored_states);
20340
20341 if (ret == 0)
20342 ret = check_max_stack_depth(env);
20343
20344 /* instruction rewrites happen after this point */
20345 if (ret == 0)
20346 ret = optimize_bpf_loop(env);
20347
20348 if (is_priv) {
20349 if (ret == 0)
20350 opt_hard_wire_dead_code_branches(env);
20351 if (ret == 0)
20352 ret = opt_remove_dead_code(env);
20353 if (ret == 0)
20354 ret = opt_remove_nops(env);
20355 } else {
20356 if (ret == 0)
20357 sanitize_dead_code(env);
20358 }
20359
20360 if (ret == 0)
20361 /* program is valid, convert *(u32*)(ctx + off) accesses */
20362 ret = convert_ctx_accesses(env);
20363
20364 if (ret == 0)
20365 ret = do_misc_fixups(env);
20366
20367 /* do 32-bit optimization after insn patching has done so those patched
20368 * insns could be handled correctly.
20369 */
20370 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20371 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20372 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20373 : false;
20374 }
20375
20376 if (ret == 0)
20377 ret = fixup_call_args(env);
20378
20379 env->verification_time = ktime_get_ns() - start_time;
20380 print_verification_stats(env);
20381 env->prog->aux->verified_insns = env->insn_processed;
20382
20383 /* preserve original error even if log finalization is successful */
20384 err = bpf_vlog_finalize(&env->log, &log_true_size);
20385 if (err)
20386 ret = err;
20387
20388 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20389 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20390 &log_true_size, sizeof(log_true_size))) {
20391 ret = -EFAULT;
20392 goto err_release_maps;
20393 }
20394
20395 if (ret)
20396 goto err_release_maps;
20397
20398 if (env->used_map_cnt) {
20399 /* if program passed verifier, update used_maps in bpf_prog_info */
20400 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20401 sizeof(env->used_maps[0]),
20402 GFP_KERNEL);
20403
20404 if (!env->prog->aux->used_maps) {
20405 ret = -ENOMEM;
20406 goto err_release_maps;
20407 }
20408
20409 memcpy(env->prog->aux->used_maps, env->used_maps,
20410 sizeof(env->used_maps[0]) * env->used_map_cnt);
20411 env->prog->aux->used_map_cnt = env->used_map_cnt;
20412 }
20413 if (env->used_btf_cnt) {
20414 /* if program passed verifier, update used_btfs in bpf_prog_aux */
20415 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20416 sizeof(env->used_btfs[0]),
20417 GFP_KERNEL);
20418 if (!env->prog->aux->used_btfs) {
20419 ret = -ENOMEM;
20420 goto err_release_maps;
20421 }
20422
20423 memcpy(env->prog->aux->used_btfs, env->used_btfs,
20424 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20425 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20426 }
20427 if (env->used_map_cnt || env->used_btf_cnt) {
20428 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
20429 * bpf_ld_imm64 instructions
20430 */
20431 convert_pseudo_ld_imm64(env);
20432 }
20433
20434 adjust_btf_func(env);
20435
20436 err_release_maps:
20437 if (!env->prog->aux->used_maps)
20438 /* if we didn't copy map pointers into bpf_prog_info, release
20439 * them now. Otherwise free_used_maps() will release them.
20440 */
20441 release_maps(env);
20442 if (!env->prog->aux->used_btfs)
20443 release_btfs(env);
20444
20445 /* extension progs temporarily inherit the attach_type of their targets
20446 for verification purposes, so set it back to zero before returning
20447 */
20448 if (env->prog->type == BPF_PROG_TYPE_EXT)
20449 env->prog->expected_attach_type = 0;
20450
20451 *prog = env->prog;
20452 err_unlock:
20453 if (!is_priv)
20454 mutex_unlock(&bpf_verifier_lock);
20455 vfree(env->insn_aux_data);
20456 err_free_env:
20457 kvfree(env);
20458 return ret;
20459 }
20460