1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/irqdomain.h>
13 #include <linux/uaccess.h>
14
15 #include <clocksource/arm_arch_timer.h>
16 #include <asm/arch_timer.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_hyp.h>
19 #include <asm/kvm_nested.h>
20
21 #include <kvm/arm_vgic.h>
22 #include <kvm/arm_arch_timer.h>
23
24 #include "trace.h"
25
26 static struct timecounter *timecounter;
27 static unsigned int host_vtimer_irq;
28 static unsigned int host_ptimer_irq;
29 static u32 host_vtimer_irq_flags;
30 static u32 host_ptimer_irq_flags;
31
32 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
33
34 static const u8 default_ppi[] = {
35 [TIMER_PTIMER] = 30,
36 [TIMER_VTIMER] = 27,
37 [TIMER_HPTIMER] = 26,
38 [TIMER_HVTIMER] = 28,
39 };
40
41 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
42 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
43 struct arch_timer_context *timer_ctx);
44 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
45 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
46 struct arch_timer_context *timer,
47 enum kvm_arch_timer_regs treg,
48 u64 val);
49 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
50 struct arch_timer_context *timer,
51 enum kvm_arch_timer_regs treg);
52 static bool kvm_arch_timer_get_input_level(int vintid);
53
54 static struct irq_ops arch_timer_irq_ops = {
55 .get_input_level = kvm_arch_timer_get_input_level,
56 };
57
nr_timers(struct kvm_vcpu * vcpu)58 static int nr_timers(struct kvm_vcpu *vcpu)
59 {
60 if (!vcpu_has_nv(vcpu))
61 return NR_KVM_EL0_TIMERS;
62
63 return NR_KVM_TIMERS;
64 }
65
timer_get_ctl(struct arch_timer_context * ctxt)66 u32 timer_get_ctl(struct arch_timer_context *ctxt)
67 {
68 struct kvm_vcpu *vcpu = ctxt->vcpu;
69
70 switch(arch_timer_ctx_index(ctxt)) {
71 case TIMER_VTIMER:
72 return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
73 case TIMER_PTIMER:
74 return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
75 case TIMER_HVTIMER:
76 return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
77 case TIMER_HPTIMER:
78 return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
79 default:
80 WARN_ON(1);
81 return 0;
82 }
83 }
84
timer_get_cval(struct arch_timer_context * ctxt)85 u64 timer_get_cval(struct arch_timer_context *ctxt)
86 {
87 struct kvm_vcpu *vcpu = ctxt->vcpu;
88
89 switch(arch_timer_ctx_index(ctxt)) {
90 case TIMER_VTIMER:
91 return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
92 case TIMER_PTIMER:
93 return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
94 case TIMER_HVTIMER:
95 return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
96 case TIMER_HPTIMER:
97 return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
98 default:
99 WARN_ON(1);
100 return 0;
101 }
102 }
103
timer_get_offset(struct arch_timer_context * ctxt)104 static u64 timer_get_offset(struct arch_timer_context *ctxt)
105 {
106 u64 offset = 0;
107
108 if (!ctxt)
109 return 0;
110
111 if (ctxt->offset.vm_offset)
112 offset += *ctxt->offset.vm_offset;
113 if (ctxt->offset.vcpu_offset)
114 offset += *ctxt->offset.vcpu_offset;
115
116 return offset;
117 }
118
timer_set_ctl(struct arch_timer_context * ctxt,u32 ctl)119 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
120 {
121 struct kvm_vcpu *vcpu = ctxt->vcpu;
122
123 switch(arch_timer_ctx_index(ctxt)) {
124 case TIMER_VTIMER:
125 __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
126 break;
127 case TIMER_PTIMER:
128 __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
129 break;
130 case TIMER_HVTIMER:
131 __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
132 break;
133 case TIMER_HPTIMER:
134 __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
135 break;
136 default:
137 WARN_ON(1);
138 }
139 }
140
timer_set_cval(struct arch_timer_context * ctxt,u64 cval)141 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
142 {
143 struct kvm_vcpu *vcpu = ctxt->vcpu;
144
145 switch(arch_timer_ctx_index(ctxt)) {
146 case TIMER_VTIMER:
147 __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
148 break;
149 case TIMER_PTIMER:
150 __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
151 break;
152 case TIMER_HVTIMER:
153 __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
154 break;
155 case TIMER_HPTIMER:
156 __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
157 break;
158 default:
159 WARN_ON(1);
160 }
161 }
162
timer_set_offset(struct arch_timer_context * ctxt,u64 offset)163 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
164 {
165 if (!ctxt->offset.vm_offset) {
166 WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
167 return;
168 }
169
170 WRITE_ONCE(*ctxt->offset.vm_offset, offset);
171 }
172
kvm_phys_timer_read(void)173 u64 kvm_phys_timer_read(void)
174 {
175 return timecounter->cc->read(timecounter->cc);
176 }
177
get_timer_map(struct kvm_vcpu * vcpu,struct timer_map * map)178 void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
179 {
180 if (vcpu_has_nv(vcpu)) {
181 if (is_hyp_ctxt(vcpu)) {
182 map->direct_vtimer = vcpu_hvtimer(vcpu);
183 map->direct_ptimer = vcpu_hptimer(vcpu);
184 map->emul_vtimer = vcpu_vtimer(vcpu);
185 map->emul_ptimer = vcpu_ptimer(vcpu);
186 } else {
187 map->direct_vtimer = vcpu_vtimer(vcpu);
188 map->direct_ptimer = vcpu_ptimer(vcpu);
189 map->emul_vtimer = vcpu_hvtimer(vcpu);
190 map->emul_ptimer = vcpu_hptimer(vcpu);
191 }
192 } else if (has_vhe()) {
193 map->direct_vtimer = vcpu_vtimer(vcpu);
194 map->direct_ptimer = vcpu_ptimer(vcpu);
195 map->emul_vtimer = NULL;
196 map->emul_ptimer = NULL;
197 } else {
198 map->direct_vtimer = vcpu_vtimer(vcpu);
199 map->direct_ptimer = NULL;
200 map->emul_vtimer = NULL;
201 map->emul_ptimer = vcpu_ptimer(vcpu);
202 }
203
204 trace_kvm_get_timer_map(vcpu->vcpu_id, map);
205 }
206
userspace_irqchip(struct kvm * kvm)207 static inline bool userspace_irqchip(struct kvm *kvm)
208 {
209 return unlikely(!irqchip_in_kernel(kvm));
210 }
211
soft_timer_start(struct hrtimer * hrt,u64 ns)212 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
213 {
214 hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
215 HRTIMER_MODE_ABS_HARD);
216 }
217
soft_timer_cancel(struct hrtimer * hrt)218 static void soft_timer_cancel(struct hrtimer *hrt)
219 {
220 hrtimer_cancel(hrt);
221 }
222
kvm_arch_timer_handler(int irq,void * dev_id)223 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
224 {
225 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
226 struct arch_timer_context *ctx;
227 struct timer_map map;
228
229 /*
230 * We may see a timer interrupt after vcpu_put() has been called which
231 * sets the CPU's vcpu pointer to NULL, because even though the timer
232 * has been disabled in timer_save_state(), the hardware interrupt
233 * signal may not have been retired from the interrupt controller yet.
234 */
235 if (!vcpu)
236 return IRQ_HANDLED;
237
238 get_timer_map(vcpu, &map);
239
240 if (irq == host_vtimer_irq)
241 ctx = map.direct_vtimer;
242 else
243 ctx = map.direct_ptimer;
244
245 if (kvm_timer_should_fire(ctx))
246 kvm_timer_update_irq(vcpu, true, ctx);
247
248 if (userspace_irqchip(vcpu->kvm) &&
249 !static_branch_unlikely(&has_gic_active_state))
250 disable_percpu_irq(host_vtimer_irq);
251
252 return IRQ_HANDLED;
253 }
254
kvm_counter_compute_delta(struct arch_timer_context * timer_ctx,u64 val)255 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
256 u64 val)
257 {
258 u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
259
260 if (now < val) {
261 u64 ns;
262
263 ns = cyclecounter_cyc2ns(timecounter->cc,
264 val - now,
265 timecounter->mask,
266 &timer_ctx->ns_frac);
267 return ns;
268 }
269
270 return 0;
271 }
272
kvm_timer_compute_delta(struct arch_timer_context * timer_ctx)273 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
274 {
275 return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
276 }
277
kvm_timer_irq_can_fire(struct arch_timer_context * timer_ctx)278 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
279 {
280 WARN_ON(timer_ctx && timer_ctx->loaded);
281 return timer_ctx &&
282 ((timer_get_ctl(timer_ctx) &
283 (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
284 }
285
vcpu_has_wfit_active(struct kvm_vcpu * vcpu)286 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
287 {
288 return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
289 vcpu_get_flag(vcpu, IN_WFIT));
290 }
291
wfit_delay_ns(struct kvm_vcpu * vcpu)292 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
293 {
294 u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
295 struct arch_timer_context *ctx;
296
297 ctx = (vcpu_has_nv(vcpu) && is_hyp_ctxt(vcpu)) ? vcpu_hvtimer(vcpu)
298 : vcpu_vtimer(vcpu);
299
300 return kvm_counter_compute_delta(ctx, val);
301 }
302
303 /*
304 * Returns the earliest expiration time in ns among guest timers.
305 * Note that it will return 0 if none of timers can fire.
306 */
kvm_timer_earliest_exp(struct kvm_vcpu * vcpu)307 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
308 {
309 u64 min_delta = ULLONG_MAX;
310 int i;
311
312 for (i = 0; i < nr_timers(vcpu); i++) {
313 struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
314
315 WARN(ctx->loaded, "timer %d loaded\n", i);
316 if (kvm_timer_irq_can_fire(ctx))
317 min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
318 }
319
320 if (vcpu_has_wfit_active(vcpu))
321 min_delta = min(min_delta, wfit_delay_ns(vcpu));
322
323 /* If none of timers can fire, then return 0 */
324 if (min_delta == ULLONG_MAX)
325 return 0;
326
327 return min_delta;
328 }
329
kvm_bg_timer_expire(struct hrtimer * hrt)330 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
331 {
332 struct arch_timer_cpu *timer;
333 struct kvm_vcpu *vcpu;
334 u64 ns;
335
336 timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
337 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
338
339 /*
340 * Check that the timer has really expired from the guest's
341 * PoV (NTP on the host may have forced it to expire
342 * early). If we should have slept longer, restart it.
343 */
344 ns = kvm_timer_earliest_exp(vcpu);
345 if (unlikely(ns)) {
346 hrtimer_forward_now(hrt, ns_to_ktime(ns));
347 return HRTIMER_RESTART;
348 }
349
350 kvm_vcpu_wake_up(vcpu);
351 return HRTIMER_NORESTART;
352 }
353
kvm_hrtimer_expire(struct hrtimer * hrt)354 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
355 {
356 struct arch_timer_context *ctx;
357 struct kvm_vcpu *vcpu;
358 u64 ns;
359
360 ctx = container_of(hrt, struct arch_timer_context, hrtimer);
361 vcpu = ctx->vcpu;
362
363 trace_kvm_timer_hrtimer_expire(ctx);
364
365 /*
366 * Check that the timer has really expired from the guest's
367 * PoV (NTP on the host may have forced it to expire
368 * early). If not ready, schedule for a later time.
369 */
370 ns = kvm_timer_compute_delta(ctx);
371 if (unlikely(ns)) {
372 hrtimer_forward_now(hrt, ns_to_ktime(ns));
373 return HRTIMER_RESTART;
374 }
375
376 kvm_timer_update_irq(vcpu, true, ctx);
377 return HRTIMER_NORESTART;
378 }
379
kvm_timer_should_fire(struct arch_timer_context * timer_ctx)380 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
381 {
382 enum kvm_arch_timers index;
383 u64 cval, now;
384
385 if (!timer_ctx)
386 return false;
387
388 index = arch_timer_ctx_index(timer_ctx);
389
390 if (timer_ctx->loaded) {
391 u32 cnt_ctl = 0;
392
393 switch (index) {
394 case TIMER_VTIMER:
395 case TIMER_HVTIMER:
396 cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
397 break;
398 case TIMER_PTIMER:
399 case TIMER_HPTIMER:
400 cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
401 break;
402 case NR_KVM_TIMERS:
403 /* GCC is braindead */
404 cnt_ctl = 0;
405 break;
406 }
407
408 return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
409 (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
410 !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
411 }
412
413 if (!kvm_timer_irq_can_fire(timer_ctx))
414 return false;
415
416 cval = timer_get_cval(timer_ctx);
417 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
418
419 return cval <= now;
420 }
421
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)422 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
423 {
424 return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
425 }
426
427 /*
428 * Reflect the timer output level into the kvm_run structure
429 */
kvm_timer_update_run(struct kvm_vcpu * vcpu)430 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
431 {
432 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
433 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
434 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
435
436 /* Populate the device bitmap with the timer states */
437 regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
438 KVM_ARM_DEV_EL1_PTIMER);
439 if (kvm_timer_should_fire(vtimer))
440 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
441 if (kvm_timer_should_fire(ptimer))
442 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
443 }
444
kvm_timer_update_irq(struct kvm_vcpu * vcpu,bool new_level,struct arch_timer_context * timer_ctx)445 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
446 struct arch_timer_context *timer_ctx)
447 {
448 int ret;
449
450 timer_ctx->irq.level = new_level;
451 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
452 timer_ctx->irq.level);
453
454 if (!userspace_irqchip(vcpu->kvm)) {
455 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
456 timer_irq(timer_ctx),
457 timer_ctx->irq.level,
458 timer_ctx);
459 WARN_ON(ret);
460 }
461 }
462
463 /* Only called for a fully emulated timer */
timer_emulate(struct arch_timer_context * ctx)464 static void timer_emulate(struct arch_timer_context *ctx)
465 {
466 bool should_fire = kvm_timer_should_fire(ctx);
467
468 trace_kvm_timer_emulate(ctx, should_fire);
469
470 if (should_fire != ctx->irq.level) {
471 kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
472 return;
473 }
474
475 /*
476 * If the timer can fire now, we don't need to have a soft timer
477 * scheduled for the future. If the timer cannot fire at all,
478 * then we also don't need a soft timer.
479 */
480 if (should_fire || !kvm_timer_irq_can_fire(ctx))
481 return;
482
483 soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
484 }
485
set_cntvoff(u64 cntvoff)486 static void set_cntvoff(u64 cntvoff)
487 {
488 kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
489 }
490
set_cntpoff(u64 cntpoff)491 static void set_cntpoff(u64 cntpoff)
492 {
493 if (has_cntpoff())
494 write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
495 }
496
timer_save_state(struct arch_timer_context * ctx)497 static void timer_save_state(struct arch_timer_context *ctx)
498 {
499 struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
500 enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
501 unsigned long flags;
502
503 if (!timer->enabled)
504 return;
505
506 local_irq_save(flags);
507
508 if (!ctx->loaded)
509 goto out;
510
511 switch (index) {
512 u64 cval;
513
514 case TIMER_VTIMER:
515 case TIMER_HVTIMER:
516 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
517 timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
518
519 /* Disable the timer */
520 write_sysreg_el0(0, SYS_CNTV_CTL);
521 isb();
522
523 /*
524 * The kernel may decide to run userspace after
525 * calling vcpu_put, so we reset cntvoff to 0 to
526 * ensure a consistent read between user accesses to
527 * the virtual counter and kernel access to the
528 * physical counter of non-VHE case.
529 *
530 * For VHE, the virtual counter uses a fixed virtual
531 * offset of zero, so no need to zero CNTVOFF_EL2
532 * register, but this is actually useful when switching
533 * between EL1/vEL2 with NV.
534 *
535 * Do it unconditionally, as this is either unavoidable
536 * or dirt cheap.
537 */
538 set_cntvoff(0);
539 break;
540 case TIMER_PTIMER:
541 case TIMER_HPTIMER:
542 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
543 cval = read_sysreg_el0(SYS_CNTP_CVAL);
544
545 cval -= timer_get_offset(ctx);
546
547 timer_set_cval(ctx, cval);
548
549 /* Disable the timer */
550 write_sysreg_el0(0, SYS_CNTP_CTL);
551 isb();
552
553 set_cntpoff(0);
554 break;
555 case NR_KVM_TIMERS:
556 BUG();
557 }
558
559 trace_kvm_timer_save_state(ctx);
560
561 ctx->loaded = false;
562 out:
563 local_irq_restore(flags);
564 }
565
566 /*
567 * Schedule the background timer before calling kvm_vcpu_halt, so that this
568 * thread is removed from its waitqueue and made runnable when there's a timer
569 * interrupt to handle.
570 */
kvm_timer_blocking(struct kvm_vcpu * vcpu)571 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
572 {
573 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
574 struct timer_map map;
575
576 get_timer_map(vcpu, &map);
577
578 /*
579 * If no timers are capable of raising interrupts (disabled or
580 * masked), then there's no more work for us to do.
581 */
582 if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
583 !kvm_timer_irq_can_fire(map.direct_ptimer) &&
584 !kvm_timer_irq_can_fire(map.emul_vtimer) &&
585 !kvm_timer_irq_can_fire(map.emul_ptimer) &&
586 !vcpu_has_wfit_active(vcpu))
587 return;
588
589 /*
590 * At least one guest time will expire. Schedule a background timer.
591 * Set the earliest expiration time among the guest timers.
592 */
593 soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
594 }
595
kvm_timer_unblocking(struct kvm_vcpu * vcpu)596 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
597 {
598 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
599
600 soft_timer_cancel(&timer->bg_timer);
601 }
602
timer_restore_state(struct arch_timer_context * ctx)603 static void timer_restore_state(struct arch_timer_context *ctx)
604 {
605 struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
606 enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
607 unsigned long flags;
608
609 if (!timer->enabled)
610 return;
611
612 local_irq_save(flags);
613
614 if (ctx->loaded)
615 goto out;
616
617 switch (index) {
618 u64 cval, offset;
619
620 case TIMER_VTIMER:
621 case TIMER_HVTIMER:
622 set_cntvoff(timer_get_offset(ctx));
623 write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
624 isb();
625 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
626 break;
627 case TIMER_PTIMER:
628 case TIMER_HPTIMER:
629 cval = timer_get_cval(ctx);
630 offset = timer_get_offset(ctx);
631 set_cntpoff(offset);
632 cval += offset;
633 write_sysreg_el0(cval, SYS_CNTP_CVAL);
634 isb();
635 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
636 break;
637 case NR_KVM_TIMERS:
638 BUG();
639 }
640
641 trace_kvm_timer_restore_state(ctx);
642
643 ctx->loaded = true;
644 out:
645 local_irq_restore(flags);
646 }
647
set_timer_irq_phys_active(struct arch_timer_context * ctx,bool active)648 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
649 {
650 int r;
651 r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
652 WARN_ON(r);
653 }
654
kvm_timer_vcpu_load_gic(struct arch_timer_context * ctx)655 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
656 {
657 struct kvm_vcpu *vcpu = ctx->vcpu;
658 bool phys_active = false;
659
660 /*
661 * Update the timer output so that it is likely to match the
662 * state we're about to restore. If the timer expires between
663 * this point and the register restoration, we'll take the
664 * interrupt anyway.
665 */
666 kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
667
668 if (irqchip_in_kernel(vcpu->kvm))
669 phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
670
671 phys_active |= ctx->irq.level;
672
673 set_timer_irq_phys_active(ctx, phys_active);
674 }
675
kvm_timer_vcpu_load_nogic(struct kvm_vcpu * vcpu)676 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
677 {
678 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
679
680 /*
681 * Update the timer output so that it is likely to match the
682 * state we're about to restore. If the timer expires between
683 * this point and the register restoration, we'll take the
684 * interrupt anyway.
685 */
686 kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
687
688 /*
689 * When using a userspace irqchip with the architected timers and a
690 * host interrupt controller that doesn't support an active state, we
691 * must still prevent continuously exiting from the guest, and
692 * therefore mask the physical interrupt by disabling it on the host
693 * interrupt controller when the virtual level is high, such that the
694 * guest can make forward progress. Once we detect the output level
695 * being de-asserted, we unmask the interrupt again so that we exit
696 * from the guest when the timer fires.
697 */
698 if (vtimer->irq.level)
699 disable_percpu_irq(host_vtimer_irq);
700 else
701 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
702 }
703
704 /* If _pred is true, set bit in _set, otherwise set it in _clr */
705 #define assign_clear_set_bit(_pred, _bit, _clr, _set) \
706 do { \
707 if (_pred) \
708 (_set) |= (_bit); \
709 else \
710 (_clr) |= (_bit); \
711 } while (0)
712
kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu * vcpu,struct timer_map * map)713 static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
714 struct timer_map *map)
715 {
716 int hw, ret;
717
718 if (!irqchip_in_kernel(vcpu->kvm))
719 return;
720
721 /*
722 * We only ever unmap the vtimer irq on a VHE system that runs nested
723 * virtualization, in which case we have both a valid emul_vtimer,
724 * emul_ptimer, direct_vtimer, and direct_ptimer.
725 *
726 * Since this is called from kvm_timer_vcpu_load(), a change between
727 * vEL2 and vEL1/0 will have just happened, and the timer_map will
728 * represent this, and therefore we switch the emul/direct mappings
729 * below.
730 */
731 hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
732 if (hw < 0) {
733 kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
734 kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
735
736 ret = kvm_vgic_map_phys_irq(vcpu,
737 map->direct_vtimer->host_timer_irq,
738 timer_irq(map->direct_vtimer),
739 &arch_timer_irq_ops);
740 WARN_ON_ONCE(ret);
741 ret = kvm_vgic_map_phys_irq(vcpu,
742 map->direct_ptimer->host_timer_irq,
743 timer_irq(map->direct_ptimer),
744 &arch_timer_irq_ops);
745 WARN_ON_ONCE(ret);
746
747 /*
748 * The virtual offset behaviour is "interresting", as it
749 * always applies when HCR_EL2.E2H==0, but only when
750 * accessed from EL1 when HCR_EL2.E2H==1. So make sure we
751 * track E2H when putting the HV timer in "direct" mode.
752 */
753 if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
754 struct arch_timer_offset *offs = &map->direct_vtimer->offset;
755
756 if (vcpu_el2_e2h_is_set(vcpu))
757 offs->vcpu_offset = NULL;
758 else
759 offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
760 }
761 }
762 }
763
timer_set_traps(struct kvm_vcpu * vcpu,struct timer_map * map)764 static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
765 {
766 bool tpt, tpc;
767 u64 clr, set;
768
769 /*
770 * No trapping gets configured here with nVHE. See
771 * __timer_enable_traps(), which is where the stuff happens.
772 */
773 if (!has_vhe())
774 return;
775
776 /*
777 * Our default policy is not to trap anything. As we progress
778 * within this function, reality kicks in and we start adding
779 * traps based on emulation requirements.
780 */
781 tpt = tpc = false;
782
783 /*
784 * We have two possibility to deal with a physical offset:
785 *
786 * - Either we have CNTPOFF (yay!) or the offset is 0:
787 * we let the guest freely access the HW
788 *
789 * - or neither of these condition apply:
790 * we trap accesses to the HW, but still use it
791 * after correcting the physical offset
792 */
793 if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
794 tpt = tpc = true;
795
796 /*
797 * Apply the enable bits that the guest hypervisor has requested for
798 * its own guest. We can only add traps that wouldn't have been set
799 * above.
800 */
801 if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
802 u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
803
804 /* Use the VHE format for mental sanity */
805 if (!vcpu_el2_e2h_is_set(vcpu))
806 val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
807
808 tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
809 tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
810 }
811
812 /*
813 * Now that we have collected our requirements, compute the
814 * trap and enable bits.
815 */
816 set = 0;
817 clr = 0;
818
819 assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
820 assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
821
822 /* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
823 sysreg_clear_set(cnthctl_el2, clr, set);
824 }
825
kvm_timer_vcpu_load(struct kvm_vcpu * vcpu)826 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
827 {
828 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
829 struct timer_map map;
830
831 if (unlikely(!timer->enabled))
832 return;
833
834 get_timer_map(vcpu, &map);
835
836 if (static_branch_likely(&has_gic_active_state)) {
837 if (vcpu_has_nv(vcpu))
838 kvm_timer_vcpu_load_nested_switch(vcpu, &map);
839
840 kvm_timer_vcpu_load_gic(map.direct_vtimer);
841 if (map.direct_ptimer)
842 kvm_timer_vcpu_load_gic(map.direct_ptimer);
843 } else {
844 kvm_timer_vcpu_load_nogic(vcpu);
845 }
846
847 kvm_timer_unblocking(vcpu);
848
849 timer_restore_state(map.direct_vtimer);
850 if (map.direct_ptimer)
851 timer_restore_state(map.direct_ptimer);
852 if (map.emul_vtimer)
853 timer_emulate(map.emul_vtimer);
854 if (map.emul_ptimer)
855 timer_emulate(map.emul_ptimer);
856
857 timer_set_traps(vcpu, &map);
858 }
859
kvm_timer_should_notify_user(struct kvm_vcpu * vcpu)860 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
861 {
862 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
863 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
864 struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
865 bool vlevel, plevel;
866
867 if (likely(irqchip_in_kernel(vcpu->kvm)))
868 return false;
869
870 vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
871 plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
872
873 return kvm_timer_should_fire(vtimer) != vlevel ||
874 kvm_timer_should_fire(ptimer) != plevel;
875 }
876
kvm_timer_vcpu_put(struct kvm_vcpu * vcpu)877 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
878 {
879 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
880 struct timer_map map;
881
882 if (unlikely(!timer->enabled))
883 return;
884
885 get_timer_map(vcpu, &map);
886
887 timer_save_state(map.direct_vtimer);
888 if (map.direct_ptimer)
889 timer_save_state(map.direct_ptimer);
890
891 /*
892 * Cancel soft timer emulation, because the only case where we
893 * need it after a vcpu_put is in the context of a sleeping VCPU, and
894 * in that case we already factor in the deadline for the physical
895 * timer when scheduling the bg_timer.
896 *
897 * In any case, we re-schedule the hrtimer for the physical timer when
898 * coming back to the VCPU thread in kvm_timer_vcpu_load().
899 */
900 if (map.emul_vtimer)
901 soft_timer_cancel(&map.emul_vtimer->hrtimer);
902 if (map.emul_ptimer)
903 soft_timer_cancel(&map.emul_ptimer->hrtimer);
904
905 if (kvm_vcpu_is_blocking(vcpu))
906 kvm_timer_blocking(vcpu);
907 }
908
909 /*
910 * With a userspace irqchip we have to check if the guest de-asserted the
911 * timer and if so, unmask the timer irq signal on the host interrupt
912 * controller to ensure that we see future timer signals.
913 */
unmask_vtimer_irq_user(struct kvm_vcpu * vcpu)914 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
915 {
916 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
917
918 if (!kvm_timer_should_fire(vtimer)) {
919 kvm_timer_update_irq(vcpu, false, vtimer);
920 if (static_branch_likely(&has_gic_active_state))
921 set_timer_irq_phys_active(vtimer, false);
922 else
923 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
924 }
925 }
926
kvm_timer_sync_user(struct kvm_vcpu * vcpu)927 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
928 {
929 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
930
931 if (unlikely(!timer->enabled))
932 return;
933
934 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
935 unmask_vtimer_irq_user(vcpu);
936 }
937
kvm_timer_vcpu_reset(struct kvm_vcpu * vcpu)938 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
939 {
940 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
941 struct timer_map map;
942
943 get_timer_map(vcpu, &map);
944
945 /*
946 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
947 * and to 0 for ARMv7. We provide an implementation that always
948 * resets the timer to be disabled and unmasked and is compliant with
949 * the ARMv7 architecture.
950 */
951 for (int i = 0; i < nr_timers(vcpu); i++)
952 timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
953
954 /*
955 * A vcpu running at EL2 is in charge of the offset applied to
956 * the virtual timer, so use the physical VM offset, and point
957 * the vcpu offset to CNTVOFF_EL2.
958 */
959 if (vcpu_has_nv(vcpu)) {
960 struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
961
962 offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
963 offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
964 }
965
966 if (timer->enabled) {
967 for (int i = 0; i < nr_timers(vcpu); i++)
968 kvm_timer_update_irq(vcpu, false,
969 vcpu_get_timer(vcpu, i));
970
971 if (irqchip_in_kernel(vcpu->kvm)) {
972 kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
973 if (map.direct_ptimer)
974 kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
975 }
976 }
977
978 if (map.emul_vtimer)
979 soft_timer_cancel(&map.emul_vtimer->hrtimer);
980 if (map.emul_ptimer)
981 soft_timer_cancel(&map.emul_ptimer->hrtimer);
982
983 return 0;
984 }
985
timer_context_init(struct kvm_vcpu * vcpu,int timerid)986 static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
987 {
988 struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
989 struct kvm *kvm = vcpu->kvm;
990
991 ctxt->vcpu = vcpu;
992
993 if (timerid == TIMER_VTIMER)
994 ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
995 else
996 ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
997
998 hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
999 ctxt->hrtimer.function = kvm_hrtimer_expire;
1000
1001 switch (timerid) {
1002 case TIMER_PTIMER:
1003 case TIMER_HPTIMER:
1004 ctxt->host_timer_irq = host_ptimer_irq;
1005 break;
1006 case TIMER_VTIMER:
1007 case TIMER_HVTIMER:
1008 ctxt->host_timer_irq = host_vtimer_irq;
1009 break;
1010 }
1011 }
1012
kvm_timer_vcpu_init(struct kvm_vcpu * vcpu)1013 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
1014 {
1015 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1016
1017 for (int i = 0; i < NR_KVM_TIMERS; i++)
1018 timer_context_init(vcpu, i);
1019
1020 /* Synchronize offsets across timers of a VM if not already provided */
1021 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
1022 timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
1023 timer_set_offset(vcpu_ptimer(vcpu), 0);
1024 }
1025
1026 hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1027 timer->bg_timer.function = kvm_bg_timer_expire;
1028 }
1029
kvm_timer_init_vm(struct kvm * kvm)1030 void kvm_timer_init_vm(struct kvm *kvm)
1031 {
1032 for (int i = 0; i < NR_KVM_TIMERS; i++)
1033 kvm->arch.timer_data.ppi[i] = default_ppi[i];
1034 }
1035
kvm_timer_cpu_up(void)1036 void kvm_timer_cpu_up(void)
1037 {
1038 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1039 if (host_ptimer_irq)
1040 enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
1041 }
1042
kvm_timer_cpu_down(void)1043 void kvm_timer_cpu_down(void)
1044 {
1045 disable_percpu_irq(host_vtimer_irq);
1046 if (host_ptimer_irq)
1047 disable_percpu_irq(host_ptimer_irq);
1048 }
1049
kvm_arm_timer_set_reg(struct kvm_vcpu * vcpu,u64 regid,u64 value)1050 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
1051 {
1052 struct arch_timer_context *timer;
1053
1054 switch (regid) {
1055 case KVM_REG_ARM_TIMER_CTL:
1056 timer = vcpu_vtimer(vcpu);
1057 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1058 break;
1059 case KVM_REG_ARM_TIMER_CNT:
1060 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1061 &vcpu->kvm->arch.flags)) {
1062 timer = vcpu_vtimer(vcpu);
1063 timer_set_offset(timer, kvm_phys_timer_read() - value);
1064 }
1065 break;
1066 case KVM_REG_ARM_TIMER_CVAL:
1067 timer = vcpu_vtimer(vcpu);
1068 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1069 break;
1070 case KVM_REG_ARM_PTIMER_CTL:
1071 timer = vcpu_ptimer(vcpu);
1072 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1073 break;
1074 case KVM_REG_ARM_PTIMER_CNT:
1075 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1076 &vcpu->kvm->arch.flags)) {
1077 timer = vcpu_ptimer(vcpu);
1078 timer_set_offset(timer, kvm_phys_timer_read() - value);
1079 }
1080 break;
1081 case KVM_REG_ARM_PTIMER_CVAL:
1082 timer = vcpu_ptimer(vcpu);
1083 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1084 break;
1085
1086 default:
1087 return -1;
1088 }
1089
1090 return 0;
1091 }
1092
read_timer_ctl(struct arch_timer_context * timer)1093 static u64 read_timer_ctl(struct arch_timer_context *timer)
1094 {
1095 /*
1096 * Set ISTATUS bit if it's expired.
1097 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
1098 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
1099 * regardless of ENABLE bit for our implementation convenience.
1100 */
1101 u32 ctl = timer_get_ctl(timer);
1102
1103 if (!kvm_timer_compute_delta(timer))
1104 ctl |= ARCH_TIMER_CTRL_IT_STAT;
1105
1106 return ctl;
1107 }
1108
kvm_arm_timer_get_reg(struct kvm_vcpu * vcpu,u64 regid)1109 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
1110 {
1111 switch (regid) {
1112 case KVM_REG_ARM_TIMER_CTL:
1113 return kvm_arm_timer_read(vcpu,
1114 vcpu_vtimer(vcpu), TIMER_REG_CTL);
1115 case KVM_REG_ARM_TIMER_CNT:
1116 return kvm_arm_timer_read(vcpu,
1117 vcpu_vtimer(vcpu), TIMER_REG_CNT);
1118 case KVM_REG_ARM_TIMER_CVAL:
1119 return kvm_arm_timer_read(vcpu,
1120 vcpu_vtimer(vcpu), TIMER_REG_CVAL);
1121 case KVM_REG_ARM_PTIMER_CTL:
1122 return kvm_arm_timer_read(vcpu,
1123 vcpu_ptimer(vcpu), TIMER_REG_CTL);
1124 case KVM_REG_ARM_PTIMER_CNT:
1125 return kvm_arm_timer_read(vcpu,
1126 vcpu_ptimer(vcpu), TIMER_REG_CNT);
1127 case KVM_REG_ARM_PTIMER_CVAL:
1128 return kvm_arm_timer_read(vcpu,
1129 vcpu_ptimer(vcpu), TIMER_REG_CVAL);
1130 }
1131 return (u64)-1;
1132 }
1133
kvm_arm_timer_read(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg)1134 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
1135 struct arch_timer_context *timer,
1136 enum kvm_arch_timer_regs treg)
1137 {
1138 u64 val;
1139
1140 switch (treg) {
1141 case TIMER_REG_TVAL:
1142 val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
1143 val = lower_32_bits(val);
1144 break;
1145
1146 case TIMER_REG_CTL:
1147 val = read_timer_ctl(timer);
1148 break;
1149
1150 case TIMER_REG_CVAL:
1151 val = timer_get_cval(timer);
1152 break;
1153
1154 case TIMER_REG_CNT:
1155 val = kvm_phys_timer_read() - timer_get_offset(timer);
1156 break;
1157
1158 case TIMER_REG_VOFF:
1159 val = *timer->offset.vcpu_offset;
1160 break;
1161
1162 default:
1163 BUG();
1164 }
1165
1166 return val;
1167 }
1168
kvm_arm_timer_read_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg)1169 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
1170 enum kvm_arch_timers tmr,
1171 enum kvm_arch_timer_regs treg)
1172 {
1173 struct arch_timer_context *timer;
1174 struct timer_map map;
1175 u64 val;
1176
1177 get_timer_map(vcpu, &map);
1178 timer = vcpu_get_timer(vcpu, tmr);
1179
1180 if (timer == map.emul_vtimer || timer == map.emul_ptimer)
1181 return kvm_arm_timer_read(vcpu, timer, treg);
1182
1183 preempt_disable();
1184 timer_save_state(timer);
1185
1186 val = kvm_arm_timer_read(vcpu, timer, treg);
1187
1188 timer_restore_state(timer);
1189 preempt_enable();
1190
1191 return val;
1192 }
1193
kvm_arm_timer_write(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg,u64 val)1194 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
1195 struct arch_timer_context *timer,
1196 enum kvm_arch_timer_regs treg,
1197 u64 val)
1198 {
1199 switch (treg) {
1200 case TIMER_REG_TVAL:
1201 timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
1202 break;
1203
1204 case TIMER_REG_CTL:
1205 timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
1206 break;
1207
1208 case TIMER_REG_CVAL:
1209 timer_set_cval(timer, val);
1210 break;
1211
1212 case TIMER_REG_VOFF:
1213 *timer->offset.vcpu_offset = val;
1214 break;
1215
1216 default:
1217 BUG();
1218 }
1219 }
1220
kvm_arm_timer_write_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg,u64 val)1221 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
1222 enum kvm_arch_timers tmr,
1223 enum kvm_arch_timer_regs treg,
1224 u64 val)
1225 {
1226 struct arch_timer_context *timer;
1227 struct timer_map map;
1228
1229 get_timer_map(vcpu, &map);
1230 timer = vcpu_get_timer(vcpu, tmr);
1231 if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
1232 soft_timer_cancel(&timer->hrtimer);
1233 kvm_arm_timer_write(vcpu, timer, treg, val);
1234 timer_emulate(timer);
1235 } else {
1236 preempt_disable();
1237 timer_save_state(timer);
1238 kvm_arm_timer_write(vcpu, timer, treg, val);
1239 timer_restore_state(timer);
1240 preempt_enable();
1241 }
1242 }
1243
timer_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)1244 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
1245 {
1246 if (vcpu)
1247 irqd_set_forwarded_to_vcpu(d);
1248 else
1249 irqd_clr_forwarded_to_vcpu(d);
1250
1251 return 0;
1252 }
1253
timer_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)1254 static int timer_irq_set_irqchip_state(struct irq_data *d,
1255 enum irqchip_irq_state which, bool val)
1256 {
1257 if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1258 return irq_chip_set_parent_state(d, which, val);
1259
1260 if (val)
1261 irq_chip_mask_parent(d);
1262 else
1263 irq_chip_unmask_parent(d);
1264
1265 return 0;
1266 }
1267
timer_irq_eoi(struct irq_data * d)1268 static void timer_irq_eoi(struct irq_data *d)
1269 {
1270 if (!irqd_is_forwarded_to_vcpu(d))
1271 irq_chip_eoi_parent(d);
1272 }
1273
timer_irq_ack(struct irq_data * d)1274 static void timer_irq_ack(struct irq_data *d)
1275 {
1276 d = d->parent_data;
1277 if (d->chip->irq_ack)
1278 d->chip->irq_ack(d);
1279 }
1280
1281 static struct irq_chip timer_chip = {
1282 .name = "KVM",
1283 .irq_ack = timer_irq_ack,
1284 .irq_mask = irq_chip_mask_parent,
1285 .irq_unmask = irq_chip_unmask_parent,
1286 .irq_eoi = timer_irq_eoi,
1287 .irq_set_type = irq_chip_set_type_parent,
1288 .irq_set_vcpu_affinity = timer_irq_set_vcpu_affinity,
1289 .irq_set_irqchip_state = timer_irq_set_irqchip_state,
1290 };
1291
timer_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1292 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1293 unsigned int nr_irqs, void *arg)
1294 {
1295 irq_hw_number_t hwirq = (uintptr_t)arg;
1296
1297 return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1298 &timer_chip, NULL);
1299 }
1300
timer_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1301 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1302 unsigned int nr_irqs)
1303 {
1304 }
1305
1306 static const struct irq_domain_ops timer_domain_ops = {
1307 .alloc = timer_irq_domain_alloc,
1308 .free = timer_irq_domain_free,
1309 };
1310
kvm_irq_fixup_flags(unsigned int virq,u32 * flags)1311 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1312 {
1313 *flags = irq_get_trigger_type(virq);
1314 if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1315 kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1316 virq);
1317 *flags = IRQF_TRIGGER_LOW;
1318 }
1319 }
1320
kvm_irq_init(struct arch_timer_kvm_info * info)1321 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1322 {
1323 struct irq_domain *domain = NULL;
1324
1325 if (info->virtual_irq <= 0) {
1326 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1327 info->virtual_irq);
1328 return -ENODEV;
1329 }
1330
1331 host_vtimer_irq = info->virtual_irq;
1332 kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1333
1334 if (kvm_vgic_global_state.no_hw_deactivation) {
1335 struct fwnode_handle *fwnode;
1336 struct irq_data *data;
1337
1338 fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1339 if (!fwnode)
1340 return -ENOMEM;
1341
1342 /* Assume both vtimer and ptimer in the same parent */
1343 data = irq_get_irq_data(host_vtimer_irq);
1344 domain = irq_domain_create_hierarchy(data->domain, 0,
1345 NR_KVM_TIMERS, fwnode,
1346 &timer_domain_ops, NULL);
1347 if (!domain) {
1348 irq_domain_free_fwnode(fwnode);
1349 return -ENOMEM;
1350 }
1351
1352 arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1353 WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1354 (void *)TIMER_VTIMER));
1355 }
1356
1357 if (info->physical_irq > 0) {
1358 host_ptimer_irq = info->physical_irq;
1359 kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1360
1361 if (domain)
1362 WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1363 (void *)TIMER_PTIMER));
1364 }
1365
1366 return 0;
1367 }
1368
kvm_timer_hyp_init(bool has_gic)1369 int __init kvm_timer_hyp_init(bool has_gic)
1370 {
1371 struct arch_timer_kvm_info *info;
1372 int err;
1373
1374 info = arch_timer_get_kvm_info();
1375 timecounter = &info->timecounter;
1376
1377 if (!timecounter->cc) {
1378 kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1379 return -ENODEV;
1380 }
1381
1382 err = kvm_irq_init(info);
1383 if (err)
1384 return err;
1385
1386 /* First, do the virtual EL1 timer irq */
1387
1388 err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1389 "kvm guest vtimer", kvm_get_running_vcpus());
1390 if (err) {
1391 kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1392 host_vtimer_irq, err);
1393 return err;
1394 }
1395
1396 if (has_gic) {
1397 err = irq_set_vcpu_affinity(host_vtimer_irq,
1398 kvm_get_running_vcpus());
1399 if (err) {
1400 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1401 goto out_free_vtimer_irq;
1402 }
1403
1404 static_branch_enable(&has_gic_active_state);
1405 }
1406
1407 kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1408
1409 /* Now let's do the physical EL1 timer irq */
1410
1411 if (info->physical_irq > 0) {
1412 err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1413 "kvm guest ptimer", kvm_get_running_vcpus());
1414 if (err) {
1415 kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1416 host_ptimer_irq, err);
1417 goto out_free_vtimer_irq;
1418 }
1419
1420 if (has_gic) {
1421 err = irq_set_vcpu_affinity(host_ptimer_irq,
1422 kvm_get_running_vcpus());
1423 if (err) {
1424 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1425 goto out_free_ptimer_irq;
1426 }
1427 }
1428
1429 kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1430 } else if (has_vhe()) {
1431 kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1432 info->physical_irq);
1433 err = -ENODEV;
1434 goto out_free_vtimer_irq;
1435 }
1436
1437 return 0;
1438
1439 out_free_ptimer_irq:
1440 if (info->physical_irq > 0)
1441 free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
1442 out_free_vtimer_irq:
1443 free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1444 return err;
1445 }
1446
kvm_timer_vcpu_terminate(struct kvm_vcpu * vcpu)1447 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1448 {
1449 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1450
1451 soft_timer_cancel(&timer->bg_timer);
1452 }
1453
timer_irqs_are_valid(struct kvm_vcpu * vcpu)1454 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1455 {
1456 u32 ppis = 0;
1457 bool valid;
1458
1459 mutex_lock(&vcpu->kvm->arch.config_lock);
1460
1461 for (int i = 0; i < nr_timers(vcpu); i++) {
1462 struct arch_timer_context *ctx;
1463 int irq;
1464
1465 ctx = vcpu_get_timer(vcpu, i);
1466 irq = timer_irq(ctx);
1467 if (kvm_vgic_set_owner(vcpu, irq, ctx))
1468 break;
1469
1470 /*
1471 * We know by construction that we only have PPIs, so
1472 * all values are less than 32.
1473 */
1474 ppis |= BIT(irq);
1475 }
1476
1477 valid = hweight32(ppis) == nr_timers(vcpu);
1478
1479 if (valid)
1480 set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
1481
1482 mutex_unlock(&vcpu->kvm->arch.config_lock);
1483
1484 return valid;
1485 }
1486
kvm_arch_timer_get_input_level(int vintid)1487 static bool kvm_arch_timer_get_input_level(int vintid)
1488 {
1489 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1490
1491 if (WARN(!vcpu, "No vcpu context!\n"))
1492 return false;
1493
1494 for (int i = 0; i < nr_timers(vcpu); i++) {
1495 struct arch_timer_context *ctx;
1496
1497 ctx = vcpu_get_timer(vcpu, i);
1498 if (timer_irq(ctx) == vintid)
1499 return kvm_timer_should_fire(ctx);
1500 }
1501
1502 /* A timer IRQ has fired, but no matching timer was found? */
1503 WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
1504
1505 return false;
1506 }
1507
kvm_timer_enable(struct kvm_vcpu * vcpu)1508 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1509 {
1510 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1511 struct timer_map map;
1512 int ret;
1513
1514 if (timer->enabled)
1515 return 0;
1516
1517 /* Without a VGIC we do not map virtual IRQs to physical IRQs */
1518 if (!irqchip_in_kernel(vcpu->kvm))
1519 goto no_vgic;
1520
1521 /*
1522 * At this stage, we have the guarantee that the vgic is both
1523 * available and initialized.
1524 */
1525 if (!timer_irqs_are_valid(vcpu)) {
1526 kvm_debug("incorrectly configured timer irqs\n");
1527 return -EINVAL;
1528 }
1529
1530 get_timer_map(vcpu, &map);
1531
1532 ret = kvm_vgic_map_phys_irq(vcpu,
1533 map.direct_vtimer->host_timer_irq,
1534 timer_irq(map.direct_vtimer),
1535 &arch_timer_irq_ops);
1536 if (ret)
1537 return ret;
1538
1539 if (map.direct_ptimer) {
1540 ret = kvm_vgic_map_phys_irq(vcpu,
1541 map.direct_ptimer->host_timer_irq,
1542 timer_irq(map.direct_ptimer),
1543 &arch_timer_irq_ops);
1544 }
1545
1546 if (ret)
1547 return ret;
1548
1549 no_vgic:
1550 timer->enabled = 1;
1551 return 0;
1552 }
1553
1554 /* If we have CNTPOFF, permanently set ECV to enable it */
kvm_timer_init_vhe(void)1555 void kvm_timer_init_vhe(void)
1556 {
1557 if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
1558 sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
1559 }
1560
kvm_arm_timer_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1561 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1562 {
1563 int __user *uaddr = (int __user *)(long)attr->addr;
1564 int irq, idx, ret = 0;
1565
1566 if (!irqchip_in_kernel(vcpu->kvm))
1567 return -EINVAL;
1568
1569 if (get_user(irq, uaddr))
1570 return -EFAULT;
1571
1572 if (!(irq_is_ppi(irq)))
1573 return -EINVAL;
1574
1575 mutex_lock(&vcpu->kvm->arch.config_lock);
1576
1577 if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
1578 &vcpu->kvm->arch.flags)) {
1579 ret = -EBUSY;
1580 goto out;
1581 }
1582
1583 switch (attr->attr) {
1584 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1585 idx = TIMER_VTIMER;
1586 break;
1587 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1588 idx = TIMER_PTIMER;
1589 break;
1590 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1591 idx = TIMER_HVTIMER;
1592 break;
1593 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1594 idx = TIMER_HPTIMER;
1595 break;
1596 default:
1597 ret = -ENXIO;
1598 goto out;
1599 }
1600
1601 /*
1602 * We cannot validate the IRQ unicity before we run, so take it at
1603 * face value. The verdict will be given on first vcpu run, for each
1604 * vcpu. Yes this is late. Blame it on the stupid API.
1605 */
1606 vcpu->kvm->arch.timer_data.ppi[idx] = irq;
1607
1608 out:
1609 mutex_unlock(&vcpu->kvm->arch.config_lock);
1610 return ret;
1611 }
1612
kvm_arm_timer_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1613 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1614 {
1615 int __user *uaddr = (int __user *)(long)attr->addr;
1616 struct arch_timer_context *timer;
1617 int irq;
1618
1619 switch (attr->attr) {
1620 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1621 timer = vcpu_vtimer(vcpu);
1622 break;
1623 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1624 timer = vcpu_ptimer(vcpu);
1625 break;
1626 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1627 timer = vcpu_hvtimer(vcpu);
1628 break;
1629 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1630 timer = vcpu_hptimer(vcpu);
1631 break;
1632 default:
1633 return -ENXIO;
1634 }
1635
1636 irq = timer_irq(timer);
1637 return put_user(irq, uaddr);
1638 }
1639
kvm_arm_timer_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1640 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1641 {
1642 switch (attr->attr) {
1643 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1644 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1645 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1646 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1647 return 0;
1648 }
1649
1650 return -ENXIO;
1651 }
1652
kvm_vm_ioctl_set_counter_offset(struct kvm * kvm,struct kvm_arm_counter_offset * offset)1653 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1654 struct kvm_arm_counter_offset *offset)
1655 {
1656 int ret = 0;
1657
1658 if (offset->reserved)
1659 return -EINVAL;
1660
1661 mutex_lock(&kvm->lock);
1662
1663 if (lock_all_vcpus(kvm)) {
1664 set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
1665
1666 /*
1667 * If userspace decides to set the offset using this
1668 * API rather than merely restoring the counter
1669 * values, the offset applies to both the virtual and
1670 * physical views.
1671 */
1672 kvm->arch.timer_data.voffset = offset->counter_offset;
1673 kvm->arch.timer_data.poffset = offset->counter_offset;
1674
1675 unlock_all_vcpus(kvm);
1676 } else {
1677 ret = -EBUSY;
1678 }
1679
1680 mutex_unlock(&kvm->lock);
1681
1682 return ret;
1683 }
1684