xref: /openbmc/linux/drivers/net/ethernet/arc/emac_main.c (revision 24f68eb5bf14a74027946970a18bc902e19d986a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2004-2013 Synopsys, Inc. (www.synopsys.com)
4  *
5  * Driver for the ARC EMAC 10100 (hardware revision 5)
6  *
7  * Contributors:
8  *		Amit Bhor
9  *		Sameer Dhavale
10  *		Vineet Gupta
11  */
12 
13 #include <linux/crc32.h>
14 #include <linux/etherdevice.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_mdio.h>
22 #include <linux/of_net.h>
23 
24 #include "emac.h"
25 
26 static void arc_emac_restart(struct net_device *ndev);
27 
28 /**
29  * arc_emac_tx_avail - Return the number of available slots in the tx ring.
30  * @priv: Pointer to ARC EMAC private data structure.
31  *
32  * returns: the number of slots available for transmission in tx the ring.
33  */
arc_emac_tx_avail(struct arc_emac_priv * priv)34 static inline int arc_emac_tx_avail(struct arc_emac_priv *priv)
35 {
36 	return (priv->txbd_dirty + TX_BD_NUM - priv->txbd_curr - 1) % TX_BD_NUM;
37 }
38 
39 /**
40  * arc_emac_adjust_link - Adjust the PHY link duplex.
41  * @ndev:	Pointer to the net_device structure.
42  *
43  * This function is called to change the duplex setting after auto negotiation
44  * is done by the PHY.
45  */
arc_emac_adjust_link(struct net_device * ndev)46 static void arc_emac_adjust_link(struct net_device *ndev)
47 {
48 	struct arc_emac_priv *priv = netdev_priv(ndev);
49 	struct phy_device *phy_dev = ndev->phydev;
50 	unsigned int reg, state_changed = 0;
51 
52 	if (priv->link != phy_dev->link) {
53 		priv->link = phy_dev->link;
54 		state_changed = 1;
55 	}
56 
57 	if (priv->speed != phy_dev->speed) {
58 		priv->speed = phy_dev->speed;
59 		state_changed = 1;
60 		if (priv->set_mac_speed)
61 			priv->set_mac_speed(priv, priv->speed);
62 	}
63 
64 	if (priv->duplex != phy_dev->duplex) {
65 		reg = arc_reg_get(priv, R_CTRL);
66 
67 		if (phy_dev->duplex == DUPLEX_FULL)
68 			reg |= ENFL_MASK;
69 		else
70 			reg &= ~ENFL_MASK;
71 
72 		arc_reg_set(priv, R_CTRL, reg);
73 		priv->duplex = phy_dev->duplex;
74 		state_changed = 1;
75 	}
76 
77 	if (state_changed)
78 		phy_print_status(phy_dev);
79 }
80 
81 /**
82  * arc_emac_get_drvinfo - Get EMAC driver information.
83  * @ndev:	Pointer to net_device structure.
84  * @info:	Pointer to ethtool_drvinfo structure.
85  *
86  * This implements ethtool command for getting the driver information.
87  * Issue "ethtool -i ethX" under linux prompt to execute this function.
88  */
arc_emac_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)89 static void arc_emac_get_drvinfo(struct net_device *ndev,
90 				 struct ethtool_drvinfo *info)
91 {
92 	struct arc_emac_priv *priv = netdev_priv(ndev);
93 
94 	strscpy(info->driver, priv->drv_name, sizeof(info->driver));
95 }
96 
97 static const struct ethtool_ops arc_emac_ethtool_ops = {
98 	.get_drvinfo	= arc_emac_get_drvinfo,
99 	.get_link	= ethtool_op_get_link,
100 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
101 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
102 };
103 
104 #define FIRST_OR_LAST_MASK	(FIRST_MASK | LAST_MASK)
105 
106 /**
107  * arc_emac_tx_clean - clears processed by EMAC Tx BDs.
108  * @ndev:	Pointer to the network device.
109  */
arc_emac_tx_clean(struct net_device * ndev)110 static void arc_emac_tx_clean(struct net_device *ndev)
111 {
112 	struct arc_emac_priv *priv = netdev_priv(ndev);
113 	struct net_device_stats *stats = &ndev->stats;
114 	struct device *dev = ndev->dev.parent;
115 	unsigned int i;
116 
117 	for (i = 0; i < TX_BD_NUM; i++) {
118 		unsigned int *txbd_dirty = &priv->txbd_dirty;
119 		struct arc_emac_bd *txbd = &priv->txbd[*txbd_dirty];
120 		struct buffer_state *tx_buff = &priv->tx_buff[*txbd_dirty];
121 		struct sk_buff *skb = tx_buff->skb;
122 		unsigned int info = le32_to_cpu(txbd->info);
123 
124 		if ((info & FOR_EMAC) || !txbd->data || !skb)
125 			break;
126 
127 		if (unlikely(info & (DROP | DEFR | LTCL | UFLO))) {
128 			stats->tx_errors++;
129 			stats->tx_dropped++;
130 
131 			if (info & DEFR)
132 				stats->tx_carrier_errors++;
133 
134 			if (info & LTCL)
135 				stats->collisions++;
136 
137 			if (info & UFLO)
138 				stats->tx_fifo_errors++;
139 		} else if (likely(info & FIRST_OR_LAST_MASK)) {
140 			stats->tx_packets++;
141 			stats->tx_bytes += skb->len;
142 		}
143 
144 		dma_unmap_single(dev, dma_unmap_addr(tx_buff, addr),
145 				 dma_unmap_len(tx_buff, len), DMA_TO_DEVICE);
146 
147 		/* return the sk_buff to system */
148 		dev_consume_skb_irq(skb);
149 
150 		txbd->data = 0;
151 		txbd->info = 0;
152 		tx_buff->skb = NULL;
153 
154 		*txbd_dirty = (*txbd_dirty + 1) % TX_BD_NUM;
155 	}
156 
157 	/* Ensure that txbd_dirty is visible to tx() before checking
158 	 * for queue stopped.
159 	 */
160 	smp_mb();
161 
162 	if (netif_queue_stopped(ndev) && arc_emac_tx_avail(priv))
163 		netif_wake_queue(ndev);
164 }
165 
166 /**
167  * arc_emac_rx - processing of Rx packets.
168  * @ndev:	Pointer to the network device.
169  * @budget:	How many BDs to process on 1 call.
170  *
171  * returns:	Number of processed BDs
172  *
173  * Iterate through Rx BDs and deliver received packages to upper layer.
174  */
arc_emac_rx(struct net_device * ndev,int budget)175 static int arc_emac_rx(struct net_device *ndev, int budget)
176 {
177 	struct arc_emac_priv *priv = netdev_priv(ndev);
178 	struct device *dev = ndev->dev.parent;
179 	unsigned int work_done;
180 
181 	for (work_done = 0; work_done < budget; work_done++) {
182 		unsigned int *last_rx_bd = &priv->last_rx_bd;
183 		struct net_device_stats *stats = &ndev->stats;
184 		struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
185 		struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
186 		unsigned int pktlen, info = le32_to_cpu(rxbd->info);
187 		struct sk_buff *skb;
188 		dma_addr_t addr;
189 
190 		if (unlikely((info & OWN_MASK) == FOR_EMAC))
191 			break;
192 
193 		/* Make a note that we saw a packet at this BD.
194 		 * So next time, driver starts from this + 1
195 		 */
196 		*last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
197 
198 		if (unlikely((info & FIRST_OR_LAST_MASK) !=
199 			     FIRST_OR_LAST_MASK)) {
200 			/* We pre-allocate buffers of MTU size so incoming
201 			 * packets won't be split/chained.
202 			 */
203 			if (net_ratelimit())
204 				netdev_err(ndev, "incomplete packet received\n");
205 
206 			/* Return ownership to EMAC */
207 			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
208 			stats->rx_errors++;
209 			stats->rx_length_errors++;
210 			continue;
211 		}
212 
213 		/* Prepare the BD for next cycle. netif_receive_skb()
214 		 * only if new skb was allocated and mapped to avoid holes
215 		 * in the RX fifo.
216 		 */
217 		skb = netdev_alloc_skb_ip_align(ndev, EMAC_BUFFER_SIZE);
218 		if (unlikely(!skb)) {
219 			if (net_ratelimit())
220 				netdev_err(ndev, "cannot allocate skb\n");
221 			/* Return ownership to EMAC */
222 			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
223 			stats->rx_errors++;
224 			stats->rx_dropped++;
225 			continue;
226 		}
227 
228 		addr = dma_map_single(dev, (void *)skb->data,
229 				      EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
230 		if (dma_mapping_error(dev, addr)) {
231 			if (net_ratelimit())
232 				netdev_err(ndev, "cannot map dma buffer\n");
233 			dev_kfree_skb(skb);
234 			/* Return ownership to EMAC */
235 			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
236 			stats->rx_errors++;
237 			stats->rx_dropped++;
238 			continue;
239 		}
240 
241 		/* unmap previosly mapped skb */
242 		dma_unmap_single(dev, dma_unmap_addr(rx_buff, addr),
243 				 dma_unmap_len(rx_buff, len), DMA_FROM_DEVICE);
244 
245 		pktlen = info & LEN_MASK;
246 		stats->rx_packets++;
247 		stats->rx_bytes += pktlen;
248 		skb_put(rx_buff->skb, pktlen);
249 		rx_buff->skb->dev = ndev;
250 		rx_buff->skb->protocol = eth_type_trans(rx_buff->skb, ndev);
251 
252 		netif_receive_skb(rx_buff->skb);
253 
254 		rx_buff->skb = skb;
255 		dma_unmap_addr_set(rx_buff, addr, addr);
256 		dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
257 
258 		rxbd->data = cpu_to_le32(addr);
259 
260 		/* Make sure pointer to data buffer is set */
261 		wmb();
262 
263 		/* Return ownership to EMAC */
264 		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
265 	}
266 
267 	return work_done;
268 }
269 
270 /**
271  * arc_emac_rx_miss_handle - handle R_MISS register
272  * @ndev:	Pointer to the net_device structure.
273  */
arc_emac_rx_miss_handle(struct net_device * ndev)274 static void arc_emac_rx_miss_handle(struct net_device *ndev)
275 {
276 	struct arc_emac_priv *priv = netdev_priv(ndev);
277 	struct net_device_stats *stats = &ndev->stats;
278 	unsigned int miss;
279 
280 	miss = arc_reg_get(priv, R_MISS);
281 	if (miss) {
282 		stats->rx_errors += miss;
283 		stats->rx_missed_errors += miss;
284 		priv->rx_missed_errors += miss;
285 	}
286 }
287 
288 /**
289  * arc_emac_rx_stall_check - check RX stall
290  * @ndev:	Pointer to the net_device structure.
291  * @budget:	How many BDs requested to process on 1 call.
292  * @work_done:	How many BDs processed
293  *
294  * Under certain conditions EMAC stop reception of incoming packets and
295  * continuously increment R_MISS register instead of saving data into
296  * provided buffer. This function detect that condition and restart
297  * EMAC.
298  */
arc_emac_rx_stall_check(struct net_device * ndev,int budget,unsigned int work_done)299 static void arc_emac_rx_stall_check(struct net_device *ndev,
300 				    int budget, unsigned int work_done)
301 {
302 	struct arc_emac_priv *priv = netdev_priv(ndev);
303 	struct arc_emac_bd *rxbd;
304 
305 	if (work_done)
306 		priv->rx_missed_errors = 0;
307 
308 	if (priv->rx_missed_errors && budget) {
309 		rxbd = &priv->rxbd[priv->last_rx_bd];
310 		if (le32_to_cpu(rxbd->info) & FOR_EMAC) {
311 			arc_emac_restart(ndev);
312 			priv->rx_missed_errors = 0;
313 		}
314 	}
315 }
316 
317 /**
318  * arc_emac_poll - NAPI poll handler.
319  * @napi:	Pointer to napi_struct structure.
320  * @budget:	How many BDs to process on 1 call.
321  *
322  * returns:	Number of processed BDs
323  */
arc_emac_poll(struct napi_struct * napi,int budget)324 static int arc_emac_poll(struct napi_struct *napi, int budget)
325 {
326 	struct net_device *ndev = napi->dev;
327 	struct arc_emac_priv *priv = netdev_priv(ndev);
328 	unsigned int work_done;
329 
330 	arc_emac_tx_clean(ndev);
331 	arc_emac_rx_miss_handle(ndev);
332 
333 	work_done = arc_emac_rx(ndev, budget);
334 	if (work_done < budget) {
335 		napi_complete_done(napi, work_done);
336 		arc_reg_or(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
337 	}
338 
339 	arc_emac_rx_stall_check(ndev, budget, work_done);
340 
341 	return work_done;
342 }
343 
344 /**
345  * arc_emac_intr - Global interrupt handler for EMAC.
346  * @irq:		irq number.
347  * @dev_instance:	device instance.
348  *
349  * returns: IRQ_HANDLED for all cases.
350  *
351  * ARC EMAC has only 1 interrupt line, and depending on bits raised in
352  * STATUS register we may tell what is a reason for interrupt to fire.
353  */
arc_emac_intr(int irq,void * dev_instance)354 static irqreturn_t arc_emac_intr(int irq, void *dev_instance)
355 {
356 	struct net_device *ndev = dev_instance;
357 	struct arc_emac_priv *priv = netdev_priv(ndev);
358 	struct net_device_stats *stats = &ndev->stats;
359 	unsigned int status;
360 
361 	status = arc_reg_get(priv, R_STATUS);
362 	status &= ~MDIO_MASK;
363 
364 	/* Reset all flags except "MDIO complete" */
365 	arc_reg_set(priv, R_STATUS, status);
366 
367 	if (status & (RXINT_MASK | TXINT_MASK)) {
368 		if (likely(napi_schedule_prep(&priv->napi))) {
369 			arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
370 			__napi_schedule(&priv->napi);
371 		}
372 	}
373 
374 	if (status & ERR_MASK) {
375 		/* MSER/RXCR/RXFR/RXFL interrupt fires on corresponding
376 		 * 8-bit error counter overrun.
377 		 */
378 
379 		if (status & MSER_MASK) {
380 			stats->rx_missed_errors += 0x100;
381 			stats->rx_errors += 0x100;
382 			priv->rx_missed_errors += 0x100;
383 			napi_schedule(&priv->napi);
384 		}
385 
386 		if (status & RXCR_MASK) {
387 			stats->rx_crc_errors += 0x100;
388 			stats->rx_errors += 0x100;
389 		}
390 
391 		if (status & RXFR_MASK) {
392 			stats->rx_frame_errors += 0x100;
393 			stats->rx_errors += 0x100;
394 		}
395 
396 		if (status & RXFL_MASK) {
397 			stats->rx_over_errors += 0x100;
398 			stats->rx_errors += 0x100;
399 		}
400 	}
401 
402 	return IRQ_HANDLED;
403 }
404 
405 #ifdef CONFIG_NET_POLL_CONTROLLER
arc_emac_poll_controller(struct net_device * dev)406 static void arc_emac_poll_controller(struct net_device *dev)
407 {
408 	disable_irq(dev->irq);
409 	arc_emac_intr(dev->irq, dev);
410 	enable_irq(dev->irq);
411 }
412 #endif
413 
414 /**
415  * arc_emac_open - Open the network device.
416  * @ndev:	Pointer to the network device.
417  *
418  * returns: 0, on success or non-zero error value on failure.
419  *
420  * This function sets the MAC address, requests and enables an IRQ
421  * for the EMAC device and starts the Tx queue.
422  * It also connects to the phy device.
423  */
arc_emac_open(struct net_device * ndev)424 static int arc_emac_open(struct net_device *ndev)
425 {
426 	struct arc_emac_priv *priv = netdev_priv(ndev);
427 	struct phy_device *phy_dev = ndev->phydev;
428 	struct device *dev = ndev->dev.parent;
429 	int i;
430 
431 	phy_dev->autoneg = AUTONEG_ENABLE;
432 	phy_dev->speed = 0;
433 	phy_dev->duplex = 0;
434 	linkmode_and(phy_dev->advertising, phy_dev->advertising,
435 		     phy_dev->supported);
436 
437 	priv->last_rx_bd = 0;
438 
439 	/* Allocate and set buffers for Rx BD's */
440 	for (i = 0; i < RX_BD_NUM; i++) {
441 		dma_addr_t addr;
442 		unsigned int *last_rx_bd = &priv->last_rx_bd;
443 		struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
444 		struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
445 
446 		rx_buff->skb = netdev_alloc_skb_ip_align(ndev,
447 							 EMAC_BUFFER_SIZE);
448 		if (unlikely(!rx_buff->skb))
449 			return -ENOMEM;
450 
451 		addr = dma_map_single(dev, (void *)rx_buff->skb->data,
452 				      EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
453 		if (dma_mapping_error(dev, addr)) {
454 			netdev_err(ndev, "cannot dma map\n");
455 			dev_kfree_skb(rx_buff->skb);
456 			return -ENOMEM;
457 		}
458 		dma_unmap_addr_set(rx_buff, addr, addr);
459 		dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
460 
461 		rxbd->data = cpu_to_le32(addr);
462 
463 		/* Make sure pointer to data buffer is set */
464 		wmb();
465 
466 		/* Return ownership to EMAC */
467 		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
468 
469 		*last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
470 	}
471 
472 	priv->txbd_curr = 0;
473 	priv->txbd_dirty = 0;
474 
475 	/* Clean Tx BD's */
476 	memset(priv->txbd, 0, TX_RING_SZ);
477 
478 	/* Initialize logical address filter */
479 	arc_reg_set(priv, R_LAFL, 0);
480 	arc_reg_set(priv, R_LAFH, 0);
481 
482 	/* Set BD ring pointers for device side */
483 	arc_reg_set(priv, R_RX_RING, (unsigned int)priv->rxbd_dma);
484 	arc_reg_set(priv, R_TX_RING, (unsigned int)priv->txbd_dma);
485 
486 	/* Enable interrupts */
487 	arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
488 
489 	/* Set CONTROL */
490 	arc_reg_set(priv, R_CTRL,
491 		    (RX_BD_NUM << 24) |	/* RX BD table length */
492 		    (TX_BD_NUM << 16) |	/* TX BD table length */
493 		    TXRN_MASK | RXRN_MASK);
494 
495 	napi_enable(&priv->napi);
496 
497 	/* Enable EMAC */
498 	arc_reg_or(priv, R_CTRL, EN_MASK);
499 
500 	phy_start(ndev->phydev);
501 
502 	netif_start_queue(ndev);
503 
504 	return 0;
505 }
506 
507 /**
508  * arc_emac_set_rx_mode - Change the receive filtering mode.
509  * @ndev:	Pointer to the network device.
510  *
511  * This function enables/disables promiscuous or all-multicast mode
512  * and updates the multicast filtering list of the network device.
513  */
arc_emac_set_rx_mode(struct net_device * ndev)514 static void arc_emac_set_rx_mode(struct net_device *ndev)
515 {
516 	struct arc_emac_priv *priv = netdev_priv(ndev);
517 
518 	if (ndev->flags & IFF_PROMISC) {
519 		arc_reg_or(priv, R_CTRL, PROM_MASK);
520 	} else {
521 		arc_reg_clr(priv, R_CTRL, PROM_MASK);
522 
523 		if (ndev->flags & IFF_ALLMULTI) {
524 			arc_reg_set(priv, R_LAFL, ~0);
525 			arc_reg_set(priv, R_LAFH, ~0);
526 		} else if (ndev->flags & IFF_MULTICAST) {
527 			struct netdev_hw_addr *ha;
528 			unsigned int filter[2] = { 0, 0 };
529 			int bit;
530 
531 			netdev_for_each_mc_addr(ha, ndev) {
532 				bit = ether_crc_le(ETH_ALEN, ha->addr) >> 26;
533 				filter[bit >> 5] |= 1 << (bit & 31);
534 			}
535 
536 			arc_reg_set(priv, R_LAFL, filter[0]);
537 			arc_reg_set(priv, R_LAFH, filter[1]);
538 		} else {
539 			arc_reg_set(priv, R_LAFL, 0);
540 			arc_reg_set(priv, R_LAFH, 0);
541 		}
542 	}
543 }
544 
545 /**
546  * arc_free_tx_queue - free skb from tx queue
547  * @ndev:	Pointer to the network device.
548  *
549  * This function must be called while EMAC disable
550  */
arc_free_tx_queue(struct net_device * ndev)551 static void arc_free_tx_queue(struct net_device *ndev)
552 {
553 	struct arc_emac_priv *priv = netdev_priv(ndev);
554 	struct device *dev = ndev->dev.parent;
555 	unsigned int i;
556 
557 	for (i = 0; i < TX_BD_NUM; i++) {
558 		struct arc_emac_bd *txbd = &priv->txbd[i];
559 		struct buffer_state *tx_buff = &priv->tx_buff[i];
560 
561 		if (tx_buff->skb) {
562 			dma_unmap_single(dev,
563 					 dma_unmap_addr(tx_buff, addr),
564 					 dma_unmap_len(tx_buff, len),
565 					 DMA_TO_DEVICE);
566 
567 			/* return the sk_buff to system */
568 			dev_kfree_skb_irq(tx_buff->skb);
569 		}
570 
571 		txbd->info = 0;
572 		txbd->data = 0;
573 		tx_buff->skb = NULL;
574 	}
575 }
576 
577 /**
578  * arc_free_rx_queue - free skb from rx queue
579  * @ndev:	Pointer to the network device.
580  *
581  * This function must be called while EMAC disable
582  */
arc_free_rx_queue(struct net_device * ndev)583 static void arc_free_rx_queue(struct net_device *ndev)
584 {
585 	struct arc_emac_priv *priv = netdev_priv(ndev);
586 	struct device *dev = ndev->dev.parent;
587 	unsigned int i;
588 
589 	for (i = 0; i < RX_BD_NUM; i++) {
590 		struct arc_emac_bd *rxbd = &priv->rxbd[i];
591 		struct buffer_state *rx_buff = &priv->rx_buff[i];
592 
593 		if (rx_buff->skb) {
594 			dma_unmap_single(dev,
595 					 dma_unmap_addr(rx_buff, addr),
596 					 dma_unmap_len(rx_buff, len),
597 					 DMA_FROM_DEVICE);
598 
599 			/* return the sk_buff to system */
600 			dev_kfree_skb_irq(rx_buff->skb);
601 		}
602 
603 		rxbd->info = 0;
604 		rxbd->data = 0;
605 		rx_buff->skb = NULL;
606 	}
607 }
608 
609 /**
610  * arc_emac_stop - Close the network device.
611  * @ndev:	Pointer to the network device.
612  *
613  * This function stops the Tx queue, disables interrupts and frees the IRQ for
614  * the EMAC device.
615  * It also disconnects the PHY device associated with the EMAC device.
616  */
arc_emac_stop(struct net_device * ndev)617 static int arc_emac_stop(struct net_device *ndev)
618 {
619 	struct arc_emac_priv *priv = netdev_priv(ndev);
620 
621 	napi_disable(&priv->napi);
622 	netif_stop_queue(ndev);
623 
624 	phy_stop(ndev->phydev);
625 
626 	/* Disable interrupts */
627 	arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
628 
629 	/* Disable EMAC */
630 	arc_reg_clr(priv, R_CTRL, EN_MASK);
631 
632 	/* Return the sk_buff to system */
633 	arc_free_tx_queue(ndev);
634 	arc_free_rx_queue(ndev);
635 
636 	return 0;
637 }
638 
639 /**
640  * arc_emac_stats - Get system network statistics.
641  * @ndev:	Pointer to net_device structure.
642  *
643  * Returns the address of the device statistics structure.
644  * Statistics are updated in interrupt handler.
645  */
arc_emac_stats(struct net_device * ndev)646 static struct net_device_stats *arc_emac_stats(struct net_device *ndev)
647 {
648 	struct arc_emac_priv *priv = netdev_priv(ndev);
649 	struct net_device_stats *stats = &ndev->stats;
650 	unsigned long miss, rxerr;
651 	u8 rxcrc, rxfram, rxoflow;
652 
653 	rxerr = arc_reg_get(priv, R_RXERR);
654 	miss = arc_reg_get(priv, R_MISS);
655 
656 	rxcrc = rxerr;
657 	rxfram = rxerr >> 8;
658 	rxoflow = rxerr >> 16;
659 
660 	stats->rx_errors += miss;
661 	stats->rx_errors += rxcrc + rxfram + rxoflow;
662 
663 	stats->rx_over_errors += rxoflow;
664 	stats->rx_frame_errors += rxfram;
665 	stats->rx_crc_errors += rxcrc;
666 	stats->rx_missed_errors += miss;
667 
668 	return stats;
669 }
670 
671 /**
672  * arc_emac_tx - Starts the data transmission.
673  * @skb:	sk_buff pointer that contains data to be Transmitted.
674  * @ndev:	Pointer to net_device structure.
675  *
676  * returns: NETDEV_TX_OK, on success
677  *		NETDEV_TX_BUSY, if any of the descriptors are not free.
678  *
679  * This function is invoked from upper layers to initiate transmission.
680  */
arc_emac_tx(struct sk_buff * skb,struct net_device * ndev)681 static netdev_tx_t arc_emac_tx(struct sk_buff *skb, struct net_device *ndev)
682 {
683 	struct arc_emac_priv *priv = netdev_priv(ndev);
684 	unsigned int len, *txbd_curr = &priv->txbd_curr;
685 	struct net_device_stats *stats = &ndev->stats;
686 	__le32 *info = &priv->txbd[*txbd_curr].info;
687 	struct device *dev = ndev->dev.parent;
688 	dma_addr_t addr;
689 
690 	if (skb_padto(skb, ETH_ZLEN))
691 		return NETDEV_TX_OK;
692 
693 	len = max_t(unsigned int, ETH_ZLEN, skb->len);
694 
695 	if (unlikely(!arc_emac_tx_avail(priv))) {
696 		netif_stop_queue(ndev);
697 		netdev_err(ndev, "BUG! Tx Ring full when queue awake!\n");
698 		return NETDEV_TX_BUSY;
699 	}
700 
701 	addr = dma_map_single(dev, (void *)skb->data, len, DMA_TO_DEVICE);
702 
703 	if (unlikely(dma_mapping_error(dev, addr))) {
704 		stats->tx_dropped++;
705 		stats->tx_errors++;
706 		dev_kfree_skb_any(skb);
707 		return NETDEV_TX_OK;
708 	}
709 	dma_unmap_addr_set(&priv->tx_buff[*txbd_curr], addr, addr);
710 	dma_unmap_len_set(&priv->tx_buff[*txbd_curr], len, len);
711 
712 	priv->txbd[*txbd_curr].data = cpu_to_le32(addr);
713 
714 	/* Make sure pointer to data buffer is set */
715 	wmb();
716 
717 	skb_tx_timestamp(skb);
718 
719 	*info = cpu_to_le32(FOR_EMAC | FIRST_OR_LAST_MASK | len);
720 
721 	/* Make sure info word is set */
722 	wmb();
723 
724 	priv->tx_buff[*txbd_curr].skb = skb;
725 
726 	/* Increment index to point to the next BD */
727 	*txbd_curr = (*txbd_curr + 1) % TX_BD_NUM;
728 
729 	/* Ensure that tx_clean() sees the new txbd_curr before
730 	 * checking the queue status. This prevents an unneeded wake
731 	 * of the queue in tx_clean().
732 	 */
733 	smp_mb();
734 
735 	if (!arc_emac_tx_avail(priv)) {
736 		netif_stop_queue(ndev);
737 		/* Refresh tx_dirty */
738 		smp_mb();
739 		if (arc_emac_tx_avail(priv))
740 			netif_start_queue(ndev);
741 	}
742 
743 	arc_reg_set(priv, R_STATUS, TXPL_MASK);
744 
745 	return NETDEV_TX_OK;
746 }
747 
arc_emac_set_address_internal(struct net_device * ndev)748 static void arc_emac_set_address_internal(struct net_device *ndev)
749 {
750 	struct arc_emac_priv *priv = netdev_priv(ndev);
751 	unsigned int addr_low, addr_hi;
752 
753 	addr_low = le32_to_cpu(*(__le32 *)&ndev->dev_addr[0]);
754 	addr_hi = le16_to_cpu(*(__le16 *)&ndev->dev_addr[4]);
755 
756 	arc_reg_set(priv, R_ADDRL, addr_low);
757 	arc_reg_set(priv, R_ADDRH, addr_hi);
758 }
759 
760 /**
761  * arc_emac_set_address - Set the MAC address for this device.
762  * @ndev:	Pointer to net_device structure.
763  * @p:		6 byte Address to be written as MAC address.
764  *
765  * This function copies the HW address from the sockaddr structure to the
766  * net_device structure and updates the address in HW.
767  *
768  * returns:	-EBUSY if the net device is busy or 0 if the address is set
769  *		successfully.
770  */
arc_emac_set_address(struct net_device * ndev,void * p)771 static int arc_emac_set_address(struct net_device *ndev, void *p)
772 {
773 	struct sockaddr *addr = p;
774 
775 	if (netif_running(ndev))
776 		return -EBUSY;
777 
778 	if (!is_valid_ether_addr(addr->sa_data))
779 		return -EADDRNOTAVAIL;
780 
781 	eth_hw_addr_set(ndev, addr->sa_data);
782 
783 	arc_emac_set_address_internal(ndev);
784 
785 	return 0;
786 }
787 
788 /**
789  * arc_emac_restart - Restart EMAC
790  * @ndev:	Pointer to net_device structure.
791  *
792  * This function do hardware reset of EMAC in order to restore
793  * network packets reception.
794  */
arc_emac_restart(struct net_device * ndev)795 static void arc_emac_restart(struct net_device *ndev)
796 {
797 	struct arc_emac_priv *priv = netdev_priv(ndev);
798 	struct net_device_stats *stats = &ndev->stats;
799 	int i;
800 
801 	if (net_ratelimit())
802 		netdev_warn(ndev, "restarting stalled EMAC\n");
803 
804 	netif_stop_queue(ndev);
805 
806 	/* Disable interrupts */
807 	arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
808 
809 	/* Disable EMAC */
810 	arc_reg_clr(priv, R_CTRL, EN_MASK);
811 
812 	/* Return the sk_buff to system */
813 	arc_free_tx_queue(ndev);
814 
815 	/* Clean Tx BD's */
816 	priv->txbd_curr = 0;
817 	priv->txbd_dirty = 0;
818 	memset(priv->txbd, 0, TX_RING_SZ);
819 
820 	for (i = 0; i < RX_BD_NUM; i++) {
821 		struct arc_emac_bd *rxbd = &priv->rxbd[i];
822 		unsigned int info = le32_to_cpu(rxbd->info);
823 
824 		if (!(info & FOR_EMAC)) {
825 			stats->rx_errors++;
826 			stats->rx_dropped++;
827 		}
828 		/* Return ownership to EMAC */
829 		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
830 	}
831 	priv->last_rx_bd = 0;
832 
833 	/* Make sure info is visible to EMAC before enable */
834 	wmb();
835 
836 	/* Enable interrupts */
837 	arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
838 
839 	/* Enable EMAC */
840 	arc_reg_or(priv, R_CTRL, EN_MASK);
841 
842 	netif_start_queue(ndev);
843 }
844 
845 static const struct net_device_ops arc_emac_netdev_ops = {
846 	.ndo_open		= arc_emac_open,
847 	.ndo_stop		= arc_emac_stop,
848 	.ndo_start_xmit		= arc_emac_tx,
849 	.ndo_set_mac_address	= arc_emac_set_address,
850 	.ndo_get_stats		= arc_emac_stats,
851 	.ndo_set_rx_mode	= arc_emac_set_rx_mode,
852 	.ndo_eth_ioctl		= phy_do_ioctl_running,
853 #ifdef CONFIG_NET_POLL_CONTROLLER
854 	.ndo_poll_controller	= arc_emac_poll_controller,
855 #endif
856 };
857 
arc_emac_probe(struct net_device * ndev,int interface)858 int arc_emac_probe(struct net_device *ndev, int interface)
859 {
860 	struct device *dev = ndev->dev.parent;
861 	struct resource res_regs;
862 	struct device_node *phy_node;
863 	struct phy_device *phydev = NULL;
864 	struct arc_emac_priv *priv;
865 	unsigned int id, clock_frequency, irq;
866 	int err;
867 
868 	/* Get PHY from device tree */
869 	phy_node = of_parse_phandle(dev->of_node, "phy", 0);
870 	if (!phy_node) {
871 		dev_err(dev, "failed to retrieve phy description from device tree\n");
872 		return -ENODEV;
873 	}
874 
875 	/* Get EMAC registers base address from device tree */
876 	err = of_address_to_resource(dev->of_node, 0, &res_regs);
877 	if (err) {
878 		dev_err(dev, "failed to retrieve registers base from device tree\n");
879 		err = -ENODEV;
880 		goto out_put_node;
881 	}
882 
883 	/* Get IRQ from device tree */
884 	irq = irq_of_parse_and_map(dev->of_node, 0);
885 	if (!irq) {
886 		dev_err(dev, "failed to retrieve <irq> value from device tree\n");
887 		err = -ENODEV;
888 		goto out_put_node;
889 	}
890 
891 	ndev->netdev_ops = &arc_emac_netdev_ops;
892 	ndev->ethtool_ops = &arc_emac_ethtool_ops;
893 	ndev->watchdog_timeo = TX_TIMEOUT;
894 
895 	priv = netdev_priv(ndev);
896 	priv->dev = dev;
897 
898 	priv->regs = devm_ioremap_resource(dev, &res_regs);
899 	if (IS_ERR(priv->regs)) {
900 		err = PTR_ERR(priv->regs);
901 		goto out_put_node;
902 	}
903 
904 	dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs);
905 
906 	if (priv->clk) {
907 		err = clk_prepare_enable(priv->clk);
908 		if (err) {
909 			dev_err(dev, "failed to enable clock\n");
910 			goto out_put_node;
911 		}
912 
913 		clock_frequency = clk_get_rate(priv->clk);
914 	} else {
915 		/* Get CPU clock frequency from device tree */
916 		if (of_property_read_u32(dev->of_node, "clock-frequency",
917 					 &clock_frequency)) {
918 			dev_err(dev, "failed to retrieve <clock-frequency> from device tree\n");
919 			err = -EINVAL;
920 			goto out_put_node;
921 		}
922 	}
923 
924 	id = arc_reg_get(priv, R_ID);
925 
926 	/* Check for EMAC revision 5 or 7, magic number */
927 	if (!(id == 0x0005fd02 || id == 0x0007fd02)) {
928 		dev_err(dev, "ARC EMAC not detected, id=0x%x\n", id);
929 		err = -ENODEV;
930 		goto out_clken;
931 	}
932 	dev_info(dev, "ARC EMAC detected with id: 0x%x\n", id);
933 
934 	/* Set poll rate so that it polls every 1 ms */
935 	arc_reg_set(priv, R_POLLRATE, clock_frequency / 1000000);
936 
937 	ndev->irq = irq;
938 	dev_info(dev, "IRQ is %d\n", ndev->irq);
939 
940 	/* Register interrupt handler for device */
941 	err = devm_request_irq(dev, ndev->irq, arc_emac_intr, 0,
942 			       ndev->name, ndev);
943 	if (err) {
944 		dev_err(dev, "could not allocate IRQ\n");
945 		goto out_clken;
946 	}
947 
948 	/* Get MAC address from device tree */
949 	err = of_get_ethdev_address(dev->of_node, ndev);
950 	if (err)
951 		eth_hw_addr_random(ndev);
952 
953 	arc_emac_set_address_internal(ndev);
954 	dev_info(dev, "MAC address is now %pM\n", ndev->dev_addr);
955 
956 	/* Do 1 allocation instead of 2 separate ones for Rx and Tx BD rings */
957 	priv->rxbd = dmam_alloc_coherent(dev, RX_RING_SZ + TX_RING_SZ,
958 					 &priv->rxbd_dma, GFP_KERNEL);
959 
960 	if (!priv->rxbd) {
961 		dev_err(dev, "failed to allocate data buffers\n");
962 		err = -ENOMEM;
963 		goto out_clken;
964 	}
965 
966 	priv->txbd = priv->rxbd + RX_BD_NUM;
967 
968 	priv->txbd_dma = priv->rxbd_dma + RX_RING_SZ;
969 	dev_dbg(dev, "EMAC Device addr: Rx Ring [0x%x], Tx Ring[%x]\n",
970 		(unsigned int)priv->rxbd_dma, (unsigned int)priv->txbd_dma);
971 
972 	err = arc_mdio_probe(priv);
973 	if (err) {
974 		dev_err(dev, "failed to probe MII bus\n");
975 		goto out_clken;
976 	}
977 
978 	phydev = of_phy_connect(ndev, phy_node, arc_emac_adjust_link, 0,
979 				interface);
980 	if (!phydev) {
981 		dev_err(dev, "of_phy_connect() failed\n");
982 		err = -ENODEV;
983 		goto out_mdio;
984 	}
985 
986 	dev_info(dev, "connected to %s phy with id 0x%x\n",
987 		 phydev->drv->name, phydev->phy_id);
988 
989 	netif_napi_add_weight(ndev, &priv->napi, arc_emac_poll,
990 			      ARC_EMAC_NAPI_WEIGHT);
991 
992 	err = register_netdev(ndev);
993 	if (err) {
994 		dev_err(dev, "failed to register network device\n");
995 		goto out_netif_api;
996 	}
997 
998 	of_node_put(phy_node);
999 	return 0;
1000 
1001 out_netif_api:
1002 	netif_napi_del(&priv->napi);
1003 	phy_disconnect(phydev);
1004 out_mdio:
1005 	arc_mdio_remove(priv);
1006 out_clken:
1007 	if (priv->clk)
1008 		clk_disable_unprepare(priv->clk);
1009 out_put_node:
1010 	of_node_put(phy_node);
1011 
1012 	return err;
1013 }
1014 EXPORT_SYMBOL_GPL(arc_emac_probe);
1015 
arc_emac_remove(struct net_device * ndev)1016 void arc_emac_remove(struct net_device *ndev)
1017 {
1018 	struct arc_emac_priv *priv = netdev_priv(ndev);
1019 
1020 	phy_disconnect(ndev->phydev);
1021 	arc_mdio_remove(priv);
1022 	unregister_netdev(ndev);
1023 	netif_napi_del(&priv->napi);
1024 
1025 	if (!IS_ERR(priv->clk))
1026 		clk_disable_unprepare(priv->clk);
1027 }
1028 EXPORT_SYMBOL_GPL(arc_emac_remove);
1029 
1030 MODULE_AUTHOR("Alexey Brodkin <abrodkin@synopsys.com>");
1031 MODULE_DESCRIPTION("ARC EMAC driver");
1032 MODULE_LICENSE("GPL");
1033