1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-auth.h>
28
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31
32 #define NVME_MINORS (1U << MINORBITS)
33
34 struct nvme_ns_info {
35 struct nvme_ns_ids ids;
36 u32 nsid;
37 __le32 anagrpid;
38 bool is_shared;
39 bool is_readonly;
40 bool is_ready;
41 bool is_removed;
42 };
43
44 unsigned int admin_timeout = 60;
45 module_param(admin_timeout, uint, 0644);
46 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
47 EXPORT_SYMBOL_GPL(admin_timeout);
48
49 unsigned int nvme_io_timeout = 30;
50 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
51 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
52 EXPORT_SYMBOL_GPL(nvme_io_timeout);
53
54 static unsigned char shutdown_timeout = 5;
55 module_param(shutdown_timeout, byte, 0644);
56 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
57
58 static u8 nvme_max_retries = 5;
59 module_param_named(max_retries, nvme_max_retries, byte, 0644);
60 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
61
62 static unsigned long default_ps_max_latency_us = 100000;
63 module_param(default_ps_max_latency_us, ulong, 0644);
64 MODULE_PARM_DESC(default_ps_max_latency_us,
65 "max power saving latency for new devices; use PM QOS to change per device");
66
67 static bool force_apst;
68 module_param(force_apst, bool, 0644);
69 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
70
71 static unsigned long apst_primary_timeout_ms = 100;
72 module_param(apst_primary_timeout_ms, ulong, 0644);
73 MODULE_PARM_DESC(apst_primary_timeout_ms,
74 "primary APST timeout in ms");
75
76 static unsigned long apst_secondary_timeout_ms = 2000;
77 module_param(apst_secondary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_secondary_timeout_ms,
79 "secondary APST timeout in ms");
80
81 static unsigned long apst_primary_latency_tol_us = 15000;
82 module_param(apst_primary_latency_tol_us, ulong, 0644);
83 MODULE_PARM_DESC(apst_primary_latency_tol_us,
84 "primary APST latency tolerance in us");
85
86 static unsigned long apst_secondary_latency_tol_us = 100000;
87 module_param(apst_secondary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
89 "secondary APST latency tolerance in us");
90
91 /*
92 * nvme_wq - hosts nvme related works that are not reset or delete
93 * nvme_reset_wq - hosts nvme reset works
94 * nvme_delete_wq - hosts nvme delete works
95 *
96 * nvme_wq will host works such as scan, aen handling, fw activation,
97 * keep-alive, periodic reconnects etc. nvme_reset_wq
98 * runs reset works which also flush works hosted on nvme_wq for
99 * serialization purposes. nvme_delete_wq host controller deletion
100 * works which flush reset works for serialization.
101 */
102 struct workqueue_struct *nvme_wq;
103 EXPORT_SYMBOL_GPL(nvme_wq);
104
105 struct workqueue_struct *nvme_reset_wq;
106 EXPORT_SYMBOL_GPL(nvme_reset_wq);
107
108 struct workqueue_struct *nvme_delete_wq;
109 EXPORT_SYMBOL_GPL(nvme_delete_wq);
110
111 static LIST_HEAD(nvme_subsystems);
112 DEFINE_MUTEX(nvme_subsystems_lock);
113
114 static DEFINE_IDA(nvme_instance_ida);
115 static dev_t nvme_ctrl_base_chr_devt;
116 static struct class *nvme_class;
117 static struct class *nvme_subsys_class;
118
119 static DEFINE_IDA(nvme_ns_chr_minor_ida);
120 static dev_t nvme_ns_chr_devt;
121 static struct class *nvme_ns_chr_class;
122
123 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
124 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
125 unsigned nsid);
126 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
127 struct nvme_command *cmd);
128
nvme_queue_scan(struct nvme_ctrl * ctrl)129 void nvme_queue_scan(struct nvme_ctrl *ctrl)
130 {
131 /*
132 * Only new queue scan work when admin and IO queues are both alive
133 */
134 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
135 queue_work(nvme_wq, &ctrl->scan_work);
136 }
137
138 /*
139 * Use this function to proceed with scheduling reset_work for a controller
140 * that had previously been set to the resetting state. This is intended for
141 * code paths that can't be interrupted by other reset attempts. A hot removal
142 * may prevent this from succeeding.
143 */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)144 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
145 {
146 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
147 return -EBUSY;
148 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
149 return -EBUSY;
150 return 0;
151 }
152 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
153
nvme_failfast_work(struct work_struct * work)154 static void nvme_failfast_work(struct work_struct *work)
155 {
156 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
157 struct nvme_ctrl, failfast_work);
158
159 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
160 return;
161
162 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
163 dev_info(ctrl->device, "failfast expired\n");
164 nvme_kick_requeue_lists(ctrl);
165 }
166
nvme_start_failfast_work(struct nvme_ctrl * ctrl)167 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
168 {
169 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
170 return;
171
172 schedule_delayed_work(&ctrl->failfast_work,
173 ctrl->opts->fast_io_fail_tmo * HZ);
174 }
175
nvme_stop_failfast_work(struct nvme_ctrl * ctrl)176 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
177 {
178 if (!ctrl->opts)
179 return;
180
181 cancel_delayed_work_sync(&ctrl->failfast_work);
182 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
183 }
184
185
nvme_reset_ctrl(struct nvme_ctrl * ctrl)186 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
187 {
188 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
189 return -EBUSY;
190 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
191 return -EBUSY;
192 return 0;
193 }
194 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
195
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)196 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
197 {
198 int ret;
199
200 ret = nvme_reset_ctrl(ctrl);
201 if (!ret) {
202 flush_work(&ctrl->reset_work);
203 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
204 ret = -ENETRESET;
205 }
206
207 return ret;
208 }
209
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)210 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
211 {
212 dev_info(ctrl->device,
213 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
214
215 flush_work(&ctrl->reset_work);
216 nvme_stop_ctrl(ctrl);
217 nvme_remove_namespaces(ctrl);
218 ctrl->ops->delete_ctrl(ctrl);
219 nvme_uninit_ctrl(ctrl);
220 }
221
nvme_delete_ctrl_work(struct work_struct * work)222 static void nvme_delete_ctrl_work(struct work_struct *work)
223 {
224 struct nvme_ctrl *ctrl =
225 container_of(work, struct nvme_ctrl, delete_work);
226
227 nvme_do_delete_ctrl(ctrl);
228 }
229
nvme_delete_ctrl(struct nvme_ctrl * ctrl)230 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
231 {
232 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
233 return -EBUSY;
234 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
235 return -EBUSY;
236 return 0;
237 }
238 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
239
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)240 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
241 {
242 /*
243 * Keep a reference until nvme_do_delete_ctrl() complete,
244 * since ->delete_ctrl can free the controller.
245 */
246 nvme_get_ctrl(ctrl);
247 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
248 nvme_do_delete_ctrl(ctrl);
249 nvme_put_ctrl(ctrl);
250 }
251
nvme_error_status(u16 status)252 static blk_status_t nvme_error_status(u16 status)
253 {
254 switch (status & 0x7ff) {
255 case NVME_SC_SUCCESS:
256 return BLK_STS_OK;
257 case NVME_SC_CAP_EXCEEDED:
258 return BLK_STS_NOSPC;
259 case NVME_SC_LBA_RANGE:
260 case NVME_SC_CMD_INTERRUPTED:
261 case NVME_SC_NS_NOT_READY:
262 return BLK_STS_TARGET;
263 case NVME_SC_BAD_ATTRIBUTES:
264 case NVME_SC_ONCS_NOT_SUPPORTED:
265 case NVME_SC_INVALID_OPCODE:
266 case NVME_SC_INVALID_FIELD:
267 case NVME_SC_INVALID_NS:
268 return BLK_STS_NOTSUPP;
269 case NVME_SC_WRITE_FAULT:
270 case NVME_SC_READ_ERROR:
271 case NVME_SC_UNWRITTEN_BLOCK:
272 case NVME_SC_ACCESS_DENIED:
273 case NVME_SC_READ_ONLY:
274 case NVME_SC_COMPARE_FAILED:
275 return BLK_STS_MEDIUM;
276 case NVME_SC_GUARD_CHECK:
277 case NVME_SC_APPTAG_CHECK:
278 case NVME_SC_REFTAG_CHECK:
279 case NVME_SC_INVALID_PI:
280 return BLK_STS_PROTECTION;
281 case NVME_SC_RESERVATION_CONFLICT:
282 return BLK_STS_RESV_CONFLICT;
283 case NVME_SC_HOST_PATH_ERROR:
284 return BLK_STS_TRANSPORT;
285 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
286 return BLK_STS_ZONE_ACTIVE_RESOURCE;
287 case NVME_SC_ZONE_TOO_MANY_OPEN:
288 return BLK_STS_ZONE_OPEN_RESOURCE;
289 default:
290 return BLK_STS_IOERR;
291 }
292 }
293
nvme_retry_req(struct request * req)294 static void nvme_retry_req(struct request *req)
295 {
296 unsigned long delay = 0;
297 u16 crd;
298
299 /* The mask and shift result must be <= 3 */
300 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
301 if (crd)
302 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
303
304 nvme_req(req)->retries++;
305 blk_mq_requeue_request(req, false);
306 blk_mq_delay_kick_requeue_list(req->q, delay);
307 }
308
nvme_log_error(struct request * req)309 static void nvme_log_error(struct request *req)
310 {
311 struct nvme_ns *ns = req->q->queuedata;
312 struct nvme_request *nr = nvme_req(req);
313
314 if (ns) {
315 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
316 ns->disk ? ns->disk->disk_name : "?",
317 nvme_get_opcode_str(nr->cmd->common.opcode),
318 nr->cmd->common.opcode,
319 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
320 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
321 nvme_get_error_status_str(nr->status),
322 nr->status >> 8 & 7, /* Status Code Type */
323 nr->status & 0xff, /* Status Code */
324 nr->status & NVME_SC_MORE ? "MORE " : "",
325 nr->status & NVME_SC_DNR ? "DNR " : "");
326 return;
327 }
328
329 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
330 dev_name(nr->ctrl->device),
331 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
332 nr->cmd->common.opcode,
333 nvme_get_error_status_str(nr->status),
334 nr->status >> 8 & 7, /* Status Code Type */
335 nr->status & 0xff, /* Status Code */
336 nr->status & NVME_SC_MORE ? "MORE " : "",
337 nr->status & NVME_SC_DNR ? "DNR " : "");
338 }
339
340 enum nvme_disposition {
341 COMPLETE,
342 RETRY,
343 FAILOVER,
344 AUTHENTICATE,
345 };
346
nvme_decide_disposition(struct request * req)347 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
348 {
349 if (likely(nvme_req(req)->status == 0))
350 return COMPLETE;
351
352 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
353 return AUTHENTICATE;
354
355 if (blk_noretry_request(req) ||
356 (nvme_req(req)->status & NVME_SC_DNR) ||
357 nvme_req(req)->retries >= nvme_max_retries)
358 return COMPLETE;
359
360 if (req->cmd_flags & REQ_NVME_MPATH) {
361 if (nvme_is_path_error(nvme_req(req)->status) ||
362 blk_queue_dying(req->q))
363 return FAILOVER;
364 } else {
365 if (blk_queue_dying(req->q))
366 return COMPLETE;
367 }
368
369 return RETRY;
370 }
371
nvme_end_req_zoned(struct request * req)372 static inline void nvme_end_req_zoned(struct request *req)
373 {
374 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
375 req_op(req) == REQ_OP_ZONE_APPEND)
376 req->__sector = nvme_lba_to_sect(req->q->queuedata,
377 le64_to_cpu(nvme_req(req)->result.u64));
378 }
379
nvme_end_req(struct request * req)380 void nvme_end_req(struct request *req)
381 {
382 blk_status_t status = nvme_error_status(nvme_req(req)->status);
383
384 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
385 nvme_log_error(req);
386 nvme_end_req_zoned(req);
387 nvme_trace_bio_complete(req);
388 if (req->cmd_flags & REQ_NVME_MPATH)
389 nvme_mpath_end_request(req);
390 blk_mq_end_request(req, status);
391 }
392
nvme_complete_rq(struct request * req)393 void nvme_complete_rq(struct request *req)
394 {
395 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
396
397 trace_nvme_complete_rq(req);
398 nvme_cleanup_cmd(req);
399
400 /*
401 * Completions of long-running commands should not be able to
402 * defer sending of periodic keep alives, since the controller
403 * may have completed processing such commands a long time ago
404 * (arbitrarily close to command submission time).
405 * req->deadline - req->timeout is the command submission time
406 * in jiffies.
407 */
408 if (ctrl->kas &&
409 req->deadline - req->timeout >= ctrl->ka_last_check_time)
410 ctrl->comp_seen = true;
411
412 switch (nvme_decide_disposition(req)) {
413 case COMPLETE:
414 nvme_end_req(req);
415 return;
416 case RETRY:
417 nvme_retry_req(req);
418 return;
419 case FAILOVER:
420 nvme_failover_req(req);
421 return;
422 case AUTHENTICATE:
423 #ifdef CONFIG_NVME_AUTH
424 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
425 nvme_retry_req(req);
426 #else
427 nvme_end_req(req);
428 #endif
429 return;
430 }
431 }
432 EXPORT_SYMBOL_GPL(nvme_complete_rq);
433
nvme_complete_batch_req(struct request * req)434 void nvme_complete_batch_req(struct request *req)
435 {
436 trace_nvme_complete_rq(req);
437 nvme_cleanup_cmd(req);
438 nvme_end_req_zoned(req);
439 }
440 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
441
442 /*
443 * Called to unwind from ->queue_rq on a failed command submission so that the
444 * multipathing code gets called to potentially failover to another path.
445 * The caller needs to unwind all transport specific resource allocations and
446 * must return propagate the return value.
447 */
nvme_host_path_error(struct request * req)448 blk_status_t nvme_host_path_error(struct request *req)
449 {
450 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
451 blk_mq_set_request_complete(req);
452 nvme_complete_rq(req);
453 return BLK_STS_OK;
454 }
455 EXPORT_SYMBOL_GPL(nvme_host_path_error);
456
nvme_cancel_request(struct request * req,void * data)457 bool nvme_cancel_request(struct request *req, void *data)
458 {
459 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
460 "Cancelling I/O %d", req->tag);
461
462 /* don't abort one completed or idle request */
463 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
464 return true;
465
466 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
467 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
468 blk_mq_complete_request(req);
469 return true;
470 }
471 EXPORT_SYMBOL_GPL(nvme_cancel_request);
472
nvme_cancel_tagset(struct nvme_ctrl * ctrl)473 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
474 {
475 if (ctrl->tagset) {
476 blk_mq_tagset_busy_iter(ctrl->tagset,
477 nvme_cancel_request, ctrl);
478 blk_mq_tagset_wait_completed_request(ctrl->tagset);
479 }
480 }
481 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
482
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)483 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
484 {
485 if (ctrl->admin_tagset) {
486 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
487 nvme_cancel_request, ctrl);
488 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
489 }
490 }
491 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
492
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)493 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
494 enum nvme_ctrl_state new_state)
495 {
496 enum nvme_ctrl_state old_state;
497 unsigned long flags;
498 bool changed = false;
499
500 spin_lock_irqsave(&ctrl->lock, flags);
501
502 old_state = nvme_ctrl_state(ctrl);
503 switch (new_state) {
504 case NVME_CTRL_LIVE:
505 switch (old_state) {
506 case NVME_CTRL_NEW:
507 case NVME_CTRL_RESETTING:
508 case NVME_CTRL_CONNECTING:
509 changed = true;
510 fallthrough;
511 default:
512 break;
513 }
514 break;
515 case NVME_CTRL_RESETTING:
516 switch (old_state) {
517 case NVME_CTRL_NEW:
518 case NVME_CTRL_LIVE:
519 changed = true;
520 fallthrough;
521 default:
522 break;
523 }
524 break;
525 case NVME_CTRL_CONNECTING:
526 switch (old_state) {
527 case NVME_CTRL_NEW:
528 case NVME_CTRL_RESETTING:
529 changed = true;
530 fallthrough;
531 default:
532 break;
533 }
534 break;
535 case NVME_CTRL_DELETING:
536 switch (old_state) {
537 case NVME_CTRL_LIVE:
538 case NVME_CTRL_RESETTING:
539 case NVME_CTRL_CONNECTING:
540 changed = true;
541 fallthrough;
542 default:
543 break;
544 }
545 break;
546 case NVME_CTRL_DELETING_NOIO:
547 switch (old_state) {
548 case NVME_CTRL_DELETING:
549 case NVME_CTRL_DEAD:
550 changed = true;
551 fallthrough;
552 default:
553 break;
554 }
555 break;
556 case NVME_CTRL_DEAD:
557 switch (old_state) {
558 case NVME_CTRL_DELETING:
559 changed = true;
560 fallthrough;
561 default:
562 break;
563 }
564 break;
565 default:
566 break;
567 }
568
569 if (changed) {
570 WRITE_ONCE(ctrl->state, new_state);
571 wake_up_all(&ctrl->state_wq);
572 }
573
574 spin_unlock_irqrestore(&ctrl->lock, flags);
575 if (!changed)
576 return false;
577
578 if (new_state == NVME_CTRL_LIVE) {
579 if (old_state == NVME_CTRL_CONNECTING)
580 nvme_stop_failfast_work(ctrl);
581 nvme_kick_requeue_lists(ctrl);
582 } else if (new_state == NVME_CTRL_CONNECTING &&
583 old_state == NVME_CTRL_RESETTING) {
584 nvme_start_failfast_work(ctrl);
585 }
586 return changed;
587 }
588 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
589
590 /*
591 * Waits for the controller state to be resetting, or returns false if it is
592 * not possible to ever transition to that state.
593 */
nvme_wait_reset(struct nvme_ctrl * ctrl)594 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
595 {
596 wait_event(ctrl->state_wq,
597 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
598 nvme_state_terminal(ctrl));
599 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
600 }
601 EXPORT_SYMBOL_GPL(nvme_wait_reset);
602
nvme_free_ns_head(struct kref * ref)603 static void nvme_free_ns_head(struct kref *ref)
604 {
605 struct nvme_ns_head *head =
606 container_of(ref, struct nvme_ns_head, ref);
607
608 nvme_mpath_remove_disk(head);
609 ida_free(&head->subsys->ns_ida, head->instance);
610 cleanup_srcu_struct(&head->srcu);
611 nvme_put_subsystem(head->subsys);
612 kfree(head);
613 }
614
nvme_tryget_ns_head(struct nvme_ns_head * head)615 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
616 {
617 return kref_get_unless_zero(&head->ref);
618 }
619
nvme_put_ns_head(struct nvme_ns_head * head)620 void nvme_put_ns_head(struct nvme_ns_head *head)
621 {
622 kref_put(&head->ref, nvme_free_ns_head);
623 }
624
nvme_free_ns(struct kref * kref)625 static void nvme_free_ns(struct kref *kref)
626 {
627 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
628
629 put_disk(ns->disk);
630 nvme_put_ns_head(ns->head);
631 nvme_put_ctrl(ns->ctrl);
632 kfree(ns);
633 }
634
nvme_get_ns(struct nvme_ns * ns)635 bool nvme_get_ns(struct nvme_ns *ns)
636 {
637 return kref_get_unless_zero(&ns->kref);
638 }
639
nvme_put_ns(struct nvme_ns * ns)640 void nvme_put_ns(struct nvme_ns *ns)
641 {
642 kref_put(&ns->kref, nvme_free_ns);
643 }
644 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
645
nvme_clear_nvme_request(struct request * req)646 static inline void nvme_clear_nvme_request(struct request *req)
647 {
648 nvme_req(req)->status = 0;
649 nvme_req(req)->retries = 0;
650 nvme_req(req)->flags = 0;
651 req->rq_flags |= RQF_DONTPREP;
652 }
653
654 /* initialize a passthrough request */
nvme_init_request(struct request * req,struct nvme_command * cmd)655 void nvme_init_request(struct request *req, struct nvme_command *cmd)
656 {
657 if (req->q->queuedata)
658 req->timeout = NVME_IO_TIMEOUT;
659 else /* no queuedata implies admin queue */
660 req->timeout = NVME_ADMIN_TIMEOUT;
661
662 /* passthru commands should let the driver set the SGL flags */
663 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
664
665 req->cmd_flags |= REQ_FAILFAST_DRIVER;
666 if (req->mq_hctx->type == HCTX_TYPE_POLL)
667 req->cmd_flags |= REQ_POLLED;
668 nvme_clear_nvme_request(req);
669 req->rq_flags |= RQF_QUIET;
670 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
671 }
672 EXPORT_SYMBOL_GPL(nvme_init_request);
673
674 /*
675 * For something we're not in a state to send to the device the default action
676 * is to busy it and retry it after the controller state is recovered. However,
677 * if the controller is deleting or if anything is marked for failfast or
678 * nvme multipath it is immediately failed.
679 *
680 * Note: commands used to initialize the controller will be marked for failfast.
681 * Note: nvme cli/ioctl commands are marked for failfast.
682 */
nvme_fail_nonready_command(struct nvme_ctrl * ctrl,struct request * rq)683 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
684 struct request *rq)
685 {
686 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
687
688 if (state != NVME_CTRL_DELETING_NOIO &&
689 state != NVME_CTRL_DELETING &&
690 state != NVME_CTRL_DEAD &&
691 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
692 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
693 return BLK_STS_RESOURCE;
694 return nvme_host_path_error(rq);
695 }
696 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
697
__nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live)698 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
699 bool queue_live)
700 {
701 struct nvme_request *req = nvme_req(rq);
702
703 /*
704 * currently we have a problem sending passthru commands
705 * on the admin_q if the controller is not LIVE because we can't
706 * make sure that they are going out after the admin connect,
707 * controller enable and/or other commands in the initialization
708 * sequence. until the controller will be LIVE, fail with
709 * BLK_STS_RESOURCE so that they will be rescheduled.
710 */
711 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
712 return false;
713
714 if (ctrl->ops->flags & NVME_F_FABRICS) {
715 /*
716 * Only allow commands on a live queue, except for the connect
717 * command, which is require to set the queue live in the
718 * appropinquate states.
719 */
720 switch (nvme_ctrl_state(ctrl)) {
721 case NVME_CTRL_CONNECTING:
722 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
723 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
724 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
725 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
726 return true;
727 break;
728 default:
729 break;
730 case NVME_CTRL_DEAD:
731 return false;
732 }
733 }
734
735 return queue_live;
736 }
737 EXPORT_SYMBOL_GPL(__nvme_check_ready);
738
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)739 static inline void nvme_setup_flush(struct nvme_ns *ns,
740 struct nvme_command *cmnd)
741 {
742 memset(cmnd, 0, sizeof(*cmnd));
743 cmnd->common.opcode = nvme_cmd_flush;
744 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
745 }
746
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)747 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
748 struct nvme_command *cmnd)
749 {
750 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
751 struct nvme_dsm_range *range;
752 struct bio *bio;
753
754 /*
755 * Some devices do not consider the DSM 'Number of Ranges' field when
756 * determining how much data to DMA. Always allocate memory for maximum
757 * number of segments to prevent device reading beyond end of buffer.
758 */
759 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
760
761 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
762 if (!range) {
763 /*
764 * If we fail allocation our range, fallback to the controller
765 * discard page. If that's also busy, it's safe to return
766 * busy, as we know we can make progress once that's freed.
767 */
768 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
769 return BLK_STS_RESOURCE;
770
771 range = page_address(ns->ctrl->discard_page);
772 }
773
774 if (queue_max_discard_segments(req->q) == 1) {
775 u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req));
776 u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9);
777
778 range[0].cattr = cpu_to_le32(0);
779 range[0].nlb = cpu_to_le32(nlb);
780 range[0].slba = cpu_to_le64(slba);
781 n = 1;
782 } else {
783 __rq_for_each_bio(bio, req) {
784 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
785 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
786
787 if (n < segments) {
788 range[n].cattr = cpu_to_le32(0);
789 range[n].nlb = cpu_to_le32(nlb);
790 range[n].slba = cpu_to_le64(slba);
791 }
792 n++;
793 }
794 }
795
796 if (WARN_ON_ONCE(n != segments)) {
797 if (virt_to_page(range) == ns->ctrl->discard_page)
798 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
799 else
800 kfree(range);
801 return BLK_STS_IOERR;
802 }
803
804 memset(cmnd, 0, sizeof(*cmnd));
805 cmnd->dsm.opcode = nvme_cmd_dsm;
806 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
807 cmnd->dsm.nr = cpu_to_le32(segments - 1);
808 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
809
810 bvec_set_virt(&req->special_vec, range, alloc_size);
811 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
812
813 return BLK_STS_OK;
814 }
815
nvme_set_ref_tag(struct nvme_ns * ns,struct nvme_command * cmnd,struct request * req)816 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
817 struct request *req)
818 {
819 u32 upper, lower;
820 u64 ref48;
821
822 /* both rw and write zeroes share the same reftag format */
823 switch (ns->guard_type) {
824 case NVME_NVM_NS_16B_GUARD:
825 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
826 break;
827 case NVME_NVM_NS_64B_GUARD:
828 ref48 = ext_pi_ref_tag(req);
829 lower = lower_32_bits(ref48);
830 upper = upper_32_bits(ref48);
831
832 cmnd->rw.reftag = cpu_to_le32(lower);
833 cmnd->rw.cdw3 = cpu_to_le32(upper);
834 break;
835 default:
836 break;
837 }
838 }
839
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)840 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
841 struct request *req, struct nvme_command *cmnd)
842 {
843 memset(cmnd, 0, sizeof(*cmnd));
844
845 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
846 return nvme_setup_discard(ns, req, cmnd);
847
848 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
849 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
850 cmnd->write_zeroes.slba =
851 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
852 cmnd->write_zeroes.length =
853 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
854
855 if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC))
856 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
857
858 if (nvme_ns_has_pi(ns)) {
859 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
860
861 switch (ns->pi_type) {
862 case NVME_NS_DPS_PI_TYPE1:
863 case NVME_NS_DPS_PI_TYPE2:
864 nvme_set_ref_tag(ns, cmnd, req);
865 break;
866 }
867 }
868
869 return BLK_STS_OK;
870 }
871
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)872 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
873 struct request *req, struct nvme_command *cmnd,
874 enum nvme_opcode op)
875 {
876 u16 control = 0;
877 u32 dsmgmt = 0;
878
879 if (req->cmd_flags & REQ_FUA)
880 control |= NVME_RW_FUA;
881 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
882 control |= NVME_RW_LR;
883
884 if (req->cmd_flags & REQ_RAHEAD)
885 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
886
887 cmnd->rw.opcode = op;
888 cmnd->rw.flags = 0;
889 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
890 cmnd->rw.cdw2 = 0;
891 cmnd->rw.cdw3 = 0;
892 cmnd->rw.metadata = 0;
893 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
894 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
895 cmnd->rw.reftag = 0;
896 cmnd->rw.apptag = 0;
897 cmnd->rw.appmask = 0;
898
899 if (ns->ms) {
900 /*
901 * If formated with metadata, the block layer always provides a
902 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
903 * we enable the PRACT bit for protection information or set the
904 * namespace capacity to zero to prevent any I/O.
905 */
906 if (!blk_integrity_rq(req)) {
907 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
908 return BLK_STS_NOTSUPP;
909 control |= NVME_RW_PRINFO_PRACT;
910 }
911
912 switch (ns->pi_type) {
913 case NVME_NS_DPS_PI_TYPE3:
914 control |= NVME_RW_PRINFO_PRCHK_GUARD;
915 break;
916 case NVME_NS_DPS_PI_TYPE1:
917 case NVME_NS_DPS_PI_TYPE2:
918 control |= NVME_RW_PRINFO_PRCHK_GUARD |
919 NVME_RW_PRINFO_PRCHK_REF;
920 if (op == nvme_cmd_zone_append)
921 control |= NVME_RW_APPEND_PIREMAP;
922 nvme_set_ref_tag(ns, cmnd, req);
923 break;
924 }
925 }
926
927 cmnd->rw.control = cpu_to_le16(control);
928 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
929 return 0;
930 }
931
nvme_cleanup_cmd(struct request * req)932 void nvme_cleanup_cmd(struct request *req)
933 {
934 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
935 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
936
937 if (req->special_vec.bv_page == ctrl->discard_page)
938 clear_bit_unlock(0, &ctrl->discard_page_busy);
939 else
940 kfree(bvec_virt(&req->special_vec));
941 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
942 }
943 }
944 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
945
nvme_setup_cmd(struct nvme_ns * ns,struct request * req)946 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
947 {
948 struct nvme_command *cmd = nvme_req(req)->cmd;
949 blk_status_t ret = BLK_STS_OK;
950
951 if (!(req->rq_flags & RQF_DONTPREP))
952 nvme_clear_nvme_request(req);
953
954 switch (req_op(req)) {
955 case REQ_OP_DRV_IN:
956 case REQ_OP_DRV_OUT:
957 /* these are setup prior to execution in nvme_init_request() */
958 break;
959 case REQ_OP_FLUSH:
960 nvme_setup_flush(ns, cmd);
961 break;
962 case REQ_OP_ZONE_RESET_ALL:
963 case REQ_OP_ZONE_RESET:
964 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
965 break;
966 case REQ_OP_ZONE_OPEN:
967 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
968 break;
969 case REQ_OP_ZONE_CLOSE:
970 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
971 break;
972 case REQ_OP_ZONE_FINISH:
973 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
974 break;
975 case REQ_OP_WRITE_ZEROES:
976 ret = nvme_setup_write_zeroes(ns, req, cmd);
977 break;
978 case REQ_OP_DISCARD:
979 ret = nvme_setup_discard(ns, req, cmd);
980 break;
981 case REQ_OP_READ:
982 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
983 break;
984 case REQ_OP_WRITE:
985 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
986 break;
987 case REQ_OP_ZONE_APPEND:
988 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
989 break;
990 default:
991 WARN_ON_ONCE(1);
992 return BLK_STS_IOERR;
993 }
994
995 cmd->common.command_id = nvme_cid(req);
996 trace_nvme_setup_cmd(req, cmd);
997 return ret;
998 }
999 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1000
1001 /*
1002 * Return values:
1003 * 0: success
1004 * >0: nvme controller's cqe status response
1005 * <0: kernel error in lieu of controller response
1006 */
nvme_execute_rq(struct request * rq,bool at_head)1007 int nvme_execute_rq(struct request *rq, bool at_head)
1008 {
1009 blk_status_t status;
1010
1011 status = blk_execute_rq(rq, at_head);
1012 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1013 return -EINTR;
1014 if (nvme_req(rq)->status)
1015 return nvme_req(rq)->status;
1016 return blk_status_to_errno(status);
1017 }
1018 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1019
1020 /*
1021 * Returns 0 on success. If the result is negative, it's a Linux error code;
1022 * if the result is positive, it's an NVM Express status code
1023 */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,int qid,int at_head,blk_mq_req_flags_t flags)1024 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1025 union nvme_result *result, void *buffer, unsigned bufflen,
1026 int qid, int at_head, blk_mq_req_flags_t flags)
1027 {
1028 struct request *req;
1029 int ret;
1030
1031 if (qid == NVME_QID_ANY)
1032 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1033 else
1034 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1035 qid - 1);
1036
1037 if (IS_ERR(req))
1038 return PTR_ERR(req);
1039 nvme_init_request(req, cmd);
1040
1041 if (buffer && bufflen) {
1042 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1043 if (ret)
1044 goto out;
1045 }
1046
1047 ret = nvme_execute_rq(req, at_head);
1048 if (result && ret >= 0)
1049 *result = nvme_req(req)->result;
1050 out:
1051 blk_mq_free_request(req);
1052 return ret;
1053 }
1054 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1055
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)1056 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1057 void *buffer, unsigned bufflen)
1058 {
1059 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1060 NVME_QID_ANY, 0, 0);
1061 }
1062 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1063
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1064 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1065 {
1066 u32 effects = 0;
1067
1068 if (ns) {
1069 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1070 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1071 dev_warn_once(ctrl->device,
1072 "IO command:%02x has unusual effects:%08x\n",
1073 opcode, effects);
1074
1075 /*
1076 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1077 * which would deadlock when done on an I/O command. Note that
1078 * We already warn about an unusual effect above.
1079 */
1080 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1081 } else {
1082 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1083 }
1084
1085 return effects;
1086 }
1087 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1088
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1089 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1090 {
1091 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1092
1093 /*
1094 * For simplicity, IO to all namespaces is quiesced even if the command
1095 * effects say only one namespace is affected.
1096 */
1097 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1098 mutex_lock(&ctrl->scan_lock);
1099 mutex_lock(&ctrl->subsys->lock);
1100 nvme_mpath_start_freeze(ctrl->subsys);
1101 nvme_mpath_wait_freeze(ctrl->subsys);
1102 nvme_start_freeze(ctrl);
1103 nvme_wait_freeze(ctrl);
1104 }
1105 return effects;
1106 }
1107 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1108
nvme_passthru_end(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 effects,struct nvme_command * cmd,int status)1109 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1110 struct nvme_command *cmd, int status)
1111 {
1112 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1113 nvme_unfreeze(ctrl);
1114 nvme_mpath_unfreeze(ctrl->subsys);
1115 mutex_unlock(&ctrl->subsys->lock);
1116 mutex_unlock(&ctrl->scan_lock);
1117 }
1118 if (effects & NVME_CMD_EFFECTS_CCC) {
1119 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1120 &ctrl->flags)) {
1121 dev_info(ctrl->device,
1122 "controller capabilities changed, reset may be required to take effect.\n");
1123 }
1124 }
1125 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1126 nvme_queue_scan(ctrl);
1127 flush_work(&ctrl->scan_work);
1128 }
1129 if (ns)
1130 return;
1131
1132 switch (cmd->common.opcode) {
1133 case nvme_admin_set_features:
1134 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1135 case NVME_FEAT_KATO:
1136 /*
1137 * Keep alive commands interval on the host should be
1138 * updated when KATO is modified by Set Features
1139 * commands.
1140 */
1141 if (!status)
1142 nvme_update_keep_alive(ctrl, cmd);
1143 break;
1144 default:
1145 break;
1146 }
1147 break;
1148 default:
1149 break;
1150 }
1151 }
1152 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1153
1154 /*
1155 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1156 *
1157 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1158 * accounting for transport roundtrip times [..].
1159 */
nvme_keep_alive_work_period(struct nvme_ctrl * ctrl)1160 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1161 {
1162 unsigned long delay = ctrl->kato * HZ / 2;
1163
1164 /*
1165 * When using Traffic Based Keep Alive, we need to run
1166 * nvme_keep_alive_work at twice the normal frequency, as one
1167 * command completion can postpone sending a keep alive command
1168 * by up to twice the delay between runs.
1169 */
1170 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1171 delay /= 2;
1172 return delay;
1173 }
1174
nvme_queue_keep_alive_work(struct nvme_ctrl * ctrl)1175 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1176 {
1177 queue_delayed_work(nvme_wq, &ctrl->ka_work,
1178 nvme_keep_alive_work_period(ctrl));
1179 }
1180
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1181 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1182 blk_status_t status)
1183 {
1184 struct nvme_ctrl *ctrl = rq->end_io_data;
1185 unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1186 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1187 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1188
1189 /*
1190 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1191 * at the desired frequency.
1192 */
1193 if (rtt <= delay) {
1194 delay -= rtt;
1195 } else {
1196 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1197 jiffies_to_msecs(rtt));
1198 delay = 0;
1199 }
1200
1201 blk_mq_free_request(rq);
1202
1203 if (status) {
1204 dev_err(ctrl->device,
1205 "failed nvme_keep_alive_end_io error=%d\n",
1206 status);
1207 return RQ_END_IO_NONE;
1208 }
1209
1210 ctrl->ka_last_check_time = jiffies;
1211 ctrl->comp_seen = false;
1212 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1213 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1214 return RQ_END_IO_NONE;
1215 }
1216
nvme_keep_alive_work(struct work_struct * work)1217 static void nvme_keep_alive_work(struct work_struct *work)
1218 {
1219 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1220 struct nvme_ctrl, ka_work);
1221 bool comp_seen = ctrl->comp_seen;
1222 struct request *rq;
1223
1224 ctrl->ka_last_check_time = jiffies;
1225
1226 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1227 dev_dbg(ctrl->device,
1228 "reschedule traffic based keep-alive timer\n");
1229 ctrl->comp_seen = false;
1230 nvme_queue_keep_alive_work(ctrl);
1231 return;
1232 }
1233
1234 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1235 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1236 if (IS_ERR(rq)) {
1237 /* allocation failure, reset the controller */
1238 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1239 nvme_reset_ctrl(ctrl);
1240 return;
1241 }
1242 nvme_init_request(rq, &ctrl->ka_cmd);
1243
1244 rq->timeout = ctrl->kato * HZ;
1245 rq->end_io = nvme_keep_alive_end_io;
1246 rq->end_io_data = ctrl;
1247 blk_execute_rq_nowait(rq, false);
1248 }
1249
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1250 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1251 {
1252 if (unlikely(ctrl->kato == 0))
1253 return;
1254
1255 nvme_queue_keep_alive_work(ctrl);
1256 }
1257
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1258 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1259 {
1260 if (unlikely(ctrl->kato == 0))
1261 return;
1262
1263 cancel_delayed_work_sync(&ctrl->ka_work);
1264 }
1265 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1266
nvme_update_keep_alive(struct nvme_ctrl * ctrl,struct nvme_command * cmd)1267 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1268 struct nvme_command *cmd)
1269 {
1270 unsigned int new_kato =
1271 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1272
1273 dev_info(ctrl->device,
1274 "keep alive interval updated from %u ms to %u ms\n",
1275 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1276
1277 nvme_stop_keep_alive(ctrl);
1278 ctrl->kato = new_kato;
1279 nvme_start_keep_alive(ctrl);
1280 }
1281
1282 /*
1283 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1284 * flag, thus sending any new CNS opcodes has a big chance of not working.
1285 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1286 * (but not for any later version).
1287 */
nvme_ctrl_limited_cns(struct nvme_ctrl * ctrl)1288 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1289 {
1290 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1291 return ctrl->vs < NVME_VS(1, 2, 0);
1292 return ctrl->vs < NVME_VS(1, 1, 0);
1293 }
1294
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1295 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1296 {
1297 struct nvme_command c = { };
1298 int error;
1299
1300 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1301 c.identify.opcode = nvme_admin_identify;
1302 c.identify.cns = NVME_ID_CNS_CTRL;
1303
1304 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1305 if (!*id)
1306 return -ENOMEM;
1307
1308 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1309 sizeof(struct nvme_id_ctrl));
1310 if (error) {
1311 kfree(*id);
1312 *id = NULL;
1313 }
1314 return error;
1315 }
1316
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1317 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1318 struct nvme_ns_id_desc *cur, bool *csi_seen)
1319 {
1320 const char *warn_str = "ctrl returned bogus length:";
1321 void *data = cur;
1322
1323 switch (cur->nidt) {
1324 case NVME_NIDT_EUI64:
1325 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1326 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1327 warn_str, cur->nidl);
1328 return -1;
1329 }
1330 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1331 return NVME_NIDT_EUI64_LEN;
1332 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1333 return NVME_NIDT_EUI64_LEN;
1334 case NVME_NIDT_NGUID:
1335 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1336 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1337 warn_str, cur->nidl);
1338 return -1;
1339 }
1340 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1341 return NVME_NIDT_NGUID_LEN;
1342 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1343 return NVME_NIDT_NGUID_LEN;
1344 case NVME_NIDT_UUID:
1345 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1346 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1347 warn_str, cur->nidl);
1348 return -1;
1349 }
1350 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1351 return NVME_NIDT_UUID_LEN;
1352 uuid_copy(&ids->uuid, data + sizeof(*cur));
1353 return NVME_NIDT_UUID_LEN;
1354 case NVME_NIDT_CSI:
1355 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1356 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1357 warn_str, cur->nidl);
1358 return -1;
1359 }
1360 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1361 *csi_seen = true;
1362 return NVME_NIDT_CSI_LEN;
1363 default:
1364 /* Skip unknown types */
1365 return cur->nidl;
1366 }
1367 }
1368
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1369 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1370 struct nvme_ns_info *info)
1371 {
1372 struct nvme_command c = { };
1373 bool csi_seen = false;
1374 int status, pos, len;
1375 void *data;
1376
1377 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1378 return 0;
1379 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1380 return 0;
1381
1382 c.identify.opcode = nvme_admin_identify;
1383 c.identify.nsid = cpu_to_le32(info->nsid);
1384 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1385
1386 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1387 if (!data)
1388 return -ENOMEM;
1389
1390 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1391 NVME_IDENTIFY_DATA_SIZE);
1392 if (status) {
1393 dev_warn(ctrl->device,
1394 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1395 info->nsid, status);
1396 goto free_data;
1397 }
1398
1399 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1400 struct nvme_ns_id_desc *cur = data + pos;
1401
1402 if (cur->nidl == 0)
1403 break;
1404
1405 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1406 if (len < 0)
1407 break;
1408
1409 len += sizeof(*cur);
1410 }
1411
1412 if (nvme_multi_css(ctrl) && !csi_seen) {
1413 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1414 info->nsid);
1415 status = -EINVAL;
1416 }
1417
1418 free_data:
1419 kfree(data);
1420 return status;
1421 }
1422
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns ** id)1423 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1424 struct nvme_id_ns **id)
1425 {
1426 struct nvme_command c = { };
1427 int error;
1428
1429 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1430 c.identify.opcode = nvme_admin_identify;
1431 c.identify.nsid = cpu_to_le32(nsid);
1432 c.identify.cns = NVME_ID_CNS_NS;
1433
1434 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1435 if (!*id)
1436 return -ENOMEM;
1437
1438 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1439 if (error) {
1440 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1441 kfree(*id);
1442 *id = NULL;
1443 }
1444 return error;
1445 }
1446
nvme_ns_info_from_identify(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1447 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1448 struct nvme_ns_info *info)
1449 {
1450 struct nvme_ns_ids *ids = &info->ids;
1451 struct nvme_id_ns *id;
1452 int ret;
1453
1454 ret = nvme_identify_ns(ctrl, info->nsid, &id);
1455 if (ret)
1456 return ret;
1457
1458 if (id->ncap == 0) {
1459 /* namespace not allocated or attached */
1460 info->is_removed = true;
1461 ret = -ENODEV;
1462 goto error;
1463 }
1464
1465 info->anagrpid = id->anagrpid;
1466 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1467 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1468 info->is_ready = true;
1469 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1470 dev_info(ctrl->device,
1471 "Ignoring bogus Namespace Identifiers\n");
1472 } else {
1473 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1474 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1475 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1476 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1477 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1478 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1479 }
1480
1481 error:
1482 kfree(id);
1483 return ret;
1484 }
1485
nvme_ns_info_from_id_cs_indep(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1486 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1487 struct nvme_ns_info *info)
1488 {
1489 struct nvme_id_ns_cs_indep *id;
1490 struct nvme_command c = {
1491 .identify.opcode = nvme_admin_identify,
1492 .identify.nsid = cpu_to_le32(info->nsid),
1493 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1494 };
1495 int ret;
1496
1497 id = kmalloc(sizeof(*id), GFP_KERNEL);
1498 if (!id)
1499 return -ENOMEM;
1500
1501 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1502 if (!ret) {
1503 info->anagrpid = id->anagrpid;
1504 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1505 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1506 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1507 }
1508 kfree(id);
1509 return ret;
1510 }
1511
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1512 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1513 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1514 {
1515 union nvme_result res = { 0 };
1516 struct nvme_command c = { };
1517 int ret;
1518
1519 c.features.opcode = op;
1520 c.features.fid = cpu_to_le32(fid);
1521 c.features.dword11 = cpu_to_le32(dword11);
1522
1523 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1524 buffer, buflen, NVME_QID_ANY, 0, 0);
1525 if (ret >= 0 && result)
1526 *result = le32_to_cpu(res.u32);
1527 return ret;
1528 }
1529
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1530 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1531 unsigned int dword11, void *buffer, size_t buflen,
1532 u32 *result)
1533 {
1534 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1535 buflen, result);
1536 }
1537 EXPORT_SYMBOL_GPL(nvme_set_features);
1538
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1539 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1540 unsigned int dword11, void *buffer, size_t buflen,
1541 u32 *result)
1542 {
1543 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1544 buflen, result);
1545 }
1546 EXPORT_SYMBOL_GPL(nvme_get_features);
1547
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1548 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1549 {
1550 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1551 u32 result;
1552 int status, nr_io_queues;
1553
1554 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1555 &result);
1556 if (status < 0)
1557 return status;
1558
1559 /*
1560 * Degraded controllers might return an error when setting the queue
1561 * count. We still want to be able to bring them online and offer
1562 * access to the admin queue, as that might be only way to fix them up.
1563 */
1564 if (status > 0) {
1565 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1566 *count = 0;
1567 } else {
1568 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1569 *count = min(*count, nr_io_queues);
1570 }
1571
1572 return 0;
1573 }
1574 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1575
1576 #define NVME_AEN_SUPPORTED \
1577 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1578 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1579
nvme_enable_aen(struct nvme_ctrl * ctrl)1580 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1581 {
1582 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1583 int status;
1584
1585 if (!supported_aens)
1586 return;
1587
1588 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1589 NULL, 0, &result);
1590 if (status)
1591 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1592 supported_aens);
1593
1594 queue_work(nvme_wq, &ctrl->async_event_work);
1595 }
1596
nvme_ns_open(struct nvme_ns * ns)1597 static int nvme_ns_open(struct nvme_ns *ns)
1598 {
1599
1600 /* should never be called due to GENHD_FL_HIDDEN */
1601 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1602 goto fail;
1603 if (!nvme_get_ns(ns))
1604 goto fail;
1605 if (!try_module_get(ns->ctrl->ops->module))
1606 goto fail_put_ns;
1607
1608 return 0;
1609
1610 fail_put_ns:
1611 nvme_put_ns(ns);
1612 fail:
1613 return -ENXIO;
1614 }
1615
nvme_ns_release(struct nvme_ns * ns)1616 static void nvme_ns_release(struct nvme_ns *ns)
1617 {
1618
1619 module_put(ns->ctrl->ops->module);
1620 nvme_put_ns(ns);
1621 }
1622
nvme_open(struct gendisk * disk,blk_mode_t mode)1623 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1624 {
1625 return nvme_ns_open(disk->private_data);
1626 }
1627
nvme_release(struct gendisk * disk)1628 static void nvme_release(struct gendisk *disk)
1629 {
1630 nvme_ns_release(disk->private_data);
1631 }
1632
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1633 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1634 {
1635 /* some standard values */
1636 geo->heads = 1 << 6;
1637 geo->sectors = 1 << 5;
1638 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1639 return 0;
1640 }
1641
1642 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvme_init_integrity(struct gendisk * disk,struct nvme_ns * ns,u32 max_integrity_segments)1643 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1644 u32 max_integrity_segments)
1645 {
1646 struct blk_integrity integrity = { };
1647
1648 switch (ns->pi_type) {
1649 case NVME_NS_DPS_PI_TYPE3:
1650 switch (ns->guard_type) {
1651 case NVME_NVM_NS_16B_GUARD:
1652 integrity.profile = &t10_pi_type3_crc;
1653 integrity.tag_size = sizeof(u16) + sizeof(u32);
1654 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1655 break;
1656 case NVME_NVM_NS_64B_GUARD:
1657 integrity.profile = &ext_pi_type3_crc64;
1658 integrity.tag_size = sizeof(u16) + 6;
1659 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1660 break;
1661 default:
1662 integrity.profile = NULL;
1663 break;
1664 }
1665 break;
1666 case NVME_NS_DPS_PI_TYPE1:
1667 case NVME_NS_DPS_PI_TYPE2:
1668 switch (ns->guard_type) {
1669 case NVME_NVM_NS_16B_GUARD:
1670 integrity.profile = &t10_pi_type1_crc;
1671 integrity.tag_size = sizeof(u16);
1672 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1673 break;
1674 case NVME_NVM_NS_64B_GUARD:
1675 integrity.profile = &ext_pi_type1_crc64;
1676 integrity.tag_size = sizeof(u16);
1677 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1678 break;
1679 default:
1680 integrity.profile = NULL;
1681 break;
1682 }
1683 break;
1684 default:
1685 integrity.profile = NULL;
1686 break;
1687 }
1688
1689 integrity.tuple_size = ns->ms;
1690 blk_integrity_register(disk, &integrity);
1691 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1692 }
1693 #else
nvme_init_integrity(struct gendisk * disk,struct nvme_ns * ns,u32 max_integrity_segments)1694 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1695 u32 max_integrity_segments)
1696 {
1697 }
1698 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1699
nvme_config_discard(struct gendisk * disk,struct nvme_ns * ns)1700 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1701 {
1702 struct nvme_ctrl *ctrl = ns->ctrl;
1703 struct request_queue *queue = disk->queue;
1704 u32 size = queue_logical_block_size(queue);
1705
1706 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1707 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1708
1709 if (ctrl->max_discard_sectors == 0) {
1710 blk_queue_max_discard_sectors(queue, 0);
1711 return;
1712 }
1713
1714 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1715 NVME_DSM_MAX_RANGES);
1716
1717 queue->limits.discard_granularity = size;
1718
1719 /* If discard is already enabled, don't reset queue limits */
1720 if (queue->limits.max_discard_sectors)
1721 return;
1722
1723 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1724 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1725
1726 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1727 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1728 }
1729
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1730 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1731 {
1732 return uuid_equal(&a->uuid, &b->uuid) &&
1733 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1734 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1735 a->csi == b->csi;
1736 }
1737
nvme_init_ms(struct nvme_ns * ns,struct nvme_id_ns * id)1738 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1739 {
1740 bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1741 unsigned lbaf = nvme_lbaf_index(id->flbas);
1742 struct nvme_ctrl *ctrl = ns->ctrl;
1743 struct nvme_command c = { };
1744 struct nvme_id_ns_nvm *nvm;
1745 int ret = 0;
1746 u32 elbaf;
1747
1748 ns->pi_size = 0;
1749 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1750 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1751 ns->pi_size = sizeof(struct t10_pi_tuple);
1752 ns->guard_type = NVME_NVM_NS_16B_GUARD;
1753 goto set_pi;
1754 }
1755
1756 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1757 if (!nvm)
1758 return -ENOMEM;
1759
1760 c.identify.opcode = nvme_admin_identify;
1761 c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1762 c.identify.cns = NVME_ID_CNS_CS_NS;
1763 c.identify.csi = NVME_CSI_NVM;
1764
1765 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1766 if (ret)
1767 goto free_data;
1768
1769 elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1770
1771 /* no support for storage tag formats right now */
1772 if (nvme_elbaf_sts(elbaf))
1773 goto free_data;
1774
1775 ns->guard_type = nvme_elbaf_guard_type(elbaf);
1776 switch (ns->guard_type) {
1777 case NVME_NVM_NS_64B_GUARD:
1778 ns->pi_size = sizeof(struct crc64_pi_tuple);
1779 break;
1780 case NVME_NVM_NS_16B_GUARD:
1781 ns->pi_size = sizeof(struct t10_pi_tuple);
1782 break;
1783 default:
1784 break;
1785 }
1786
1787 free_data:
1788 kfree(nvm);
1789 set_pi:
1790 if (ns->pi_size && (first || ns->ms == ns->pi_size))
1791 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1792 else
1793 ns->pi_type = 0;
1794
1795 return ret;
1796 }
1797
nvme_configure_metadata(struct nvme_ns * ns,struct nvme_id_ns * id)1798 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1799 {
1800 struct nvme_ctrl *ctrl = ns->ctrl;
1801 int ret;
1802
1803 ret = nvme_init_ms(ns, id);
1804 if (ret)
1805 return ret;
1806
1807 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1808 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1809 return 0;
1810
1811 if (ctrl->ops->flags & NVME_F_FABRICS) {
1812 /*
1813 * The NVMe over Fabrics specification only supports metadata as
1814 * part of the extended data LBA. We rely on HCA/HBA support to
1815 * remap the separate metadata buffer from the block layer.
1816 */
1817 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1818 return 0;
1819
1820 ns->features |= NVME_NS_EXT_LBAS;
1821
1822 /*
1823 * The current fabrics transport drivers support namespace
1824 * metadata formats only if nvme_ns_has_pi() returns true.
1825 * Suppress support for all other formats so the namespace will
1826 * have a 0 capacity and not be usable through the block stack.
1827 *
1828 * Note, this check will need to be modified if any drivers
1829 * gain the ability to use other metadata formats.
1830 */
1831 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1832 ns->features |= NVME_NS_METADATA_SUPPORTED;
1833 } else {
1834 /*
1835 * For PCIe controllers, we can't easily remap the separate
1836 * metadata buffer from the block layer and thus require a
1837 * separate metadata buffer for block layer metadata/PI support.
1838 * We allow extended LBAs for the passthrough interface, though.
1839 */
1840 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1841 ns->features |= NVME_NS_EXT_LBAS;
1842 else
1843 ns->features |= NVME_NS_METADATA_SUPPORTED;
1844 }
1845 return 0;
1846 }
1847
nvme_set_queue_limits(struct nvme_ctrl * ctrl,struct request_queue * q)1848 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1849 struct request_queue *q)
1850 {
1851 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1852
1853 if (ctrl->max_hw_sectors) {
1854 u32 max_segments =
1855 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1856
1857 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1858 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1859 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1860 }
1861 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1862 blk_queue_dma_alignment(q, 3);
1863 blk_queue_write_cache(q, vwc, vwc);
1864 }
1865
nvme_update_disk_info(struct gendisk * disk,struct nvme_ns * ns,struct nvme_id_ns * id)1866 static void nvme_update_disk_info(struct gendisk *disk,
1867 struct nvme_ns *ns, struct nvme_id_ns *id)
1868 {
1869 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1870 u32 bs = 1U << ns->lba_shift;
1871 u32 atomic_bs, phys_bs, io_opt = 0;
1872
1873 /*
1874 * The block layer can't support LBA sizes larger than the page size
1875 * or smaller than a sector size yet, so catch this early and don't
1876 * allow block I/O.
1877 */
1878 if (ns->lba_shift > PAGE_SHIFT || ns->lba_shift < SECTOR_SHIFT) {
1879 capacity = 0;
1880 bs = (1 << 9);
1881 }
1882
1883 blk_integrity_unregister(disk);
1884
1885 atomic_bs = phys_bs = bs;
1886 if (id->nabo == 0) {
1887 /*
1888 * Bit 1 indicates whether NAWUPF is defined for this namespace
1889 * and whether it should be used instead of AWUPF. If NAWUPF ==
1890 * 0 then AWUPF must be used instead.
1891 */
1892 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1893 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1894 else
1895 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1896 }
1897
1898 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1899 /* NPWG = Namespace Preferred Write Granularity */
1900 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1901 /* NOWS = Namespace Optimal Write Size */
1902 io_opt = bs * (1 + le16_to_cpu(id->nows));
1903 }
1904
1905 blk_queue_logical_block_size(disk->queue, bs);
1906 /*
1907 * Linux filesystems assume writing a single physical block is
1908 * an atomic operation. Hence limit the physical block size to the
1909 * value of the Atomic Write Unit Power Fail parameter.
1910 */
1911 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1912 blk_queue_io_min(disk->queue, phys_bs);
1913 blk_queue_io_opt(disk->queue, io_opt);
1914
1915 /*
1916 * Register a metadata profile for PI, or the plain non-integrity NVMe
1917 * metadata masquerading as Type 0 if supported, otherwise reject block
1918 * I/O to namespaces with metadata except when the namespace supports
1919 * PI, as it can strip/insert in that case.
1920 */
1921 if (ns->ms) {
1922 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1923 (ns->features & NVME_NS_METADATA_SUPPORTED))
1924 nvme_init_integrity(disk, ns,
1925 ns->ctrl->max_integrity_segments);
1926 else if (!nvme_ns_has_pi(ns))
1927 capacity = 0;
1928 }
1929
1930 set_capacity_and_notify(disk, capacity);
1931
1932 nvme_config_discard(disk, ns);
1933 blk_queue_max_write_zeroes_sectors(disk->queue,
1934 ns->ctrl->max_zeroes_sectors);
1935 }
1936
nvme_ns_is_readonly(struct nvme_ns * ns,struct nvme_ns_info * info)1937 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1938 {
1939 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1940 }
1941
nvme_first_scan(struct gendisk * disk)1942 static inline bool nvme_first_scan(struct gendisk *disk)
1943 {
1944 /* nvme_alloc_ns() scans the disk prior to adding it */
1945 return !disk_live(disk);
1946 }
1947
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id)1948 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1949 {
1950 struct nvme_ctrl *ctrl = ns->ctrl;
1951 u32 iob;
1952
1953 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1954 is_power_of_2(ctrl->max_hw_sectors))
1955 iob = ctrl->max_hw_sectors;
1956 else
1957 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1958
1959 if (!iob)
1960 return;
1961
1962 if (!is_power_of_2(iob)) {
1963 if (nvme_first_scan(ns->disk))
1964 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1965 ns->disk->disk_name, iob);
1966 return;
1967 }
1968
1969 if (blk_queue_is_zoned(ns->disk->queue)) {
1970 if (nvme_first_scan(ns->disk))
1971 pr_warn("%s: ignoring zoned namespace IO boundary\n",
1972 ns->disk->disk_name);
1973 return;
1974 }
1975
1976 blk_queue_chunk_sectors(ns->queue, iob);
1977 }
1978
nvme_update_ns_info_generic(struct nvme_ns * ns,struct nvme_ns_info * info)1979 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1980 struct nvme_ns_info *info)
1981 {
1982 blk_mq_freeze_queue(ns->disk->queue);
1983 nvme_set_queue_limits(ns->ctrl, ns->queue);
1984 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1985 blk_mq_unfreeze_queue(ns->disk->queue);
1986
1987 if (nvme_ns_head_multipath(ns->head)) {
1988 blk_mq_freeze_queue(ns->head->disk->queue);
1989 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
1990 nvme_mpath_revalidate_paths(ns);
1991 blk_stack_limits(&ns->head->disk->queue->limits,
1992 &ns->queue->limits, 0);
1993 ns->head->disk->flags |= GENHD_FL_HIDDEN;
1994 blk_mq_unfreeze_queue(ns->head->disk->queue);
1995 }
1996
1997 /* Hide the block-interface for these devices */
1998 ns->disk->flags |= GENHD_FL_HIDDEN;
1999 set_bit(NVME_NS_READY, &ns->flags);
2000
2001 return 0;
2002 }
2003
nvme_update_ns_info_block(struct nvme_ns * ns,struct nvme_ns_info * info)2004 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2005 struct nvme_ns_info *info)
2006 {
2007 struct nvme_id_ns *id;
2008 unsigned lbaf;
2009 int ret;
2010
2011 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2012 if (ret)
2013 return ret;
2014
2015 if (id->ncap == 0) {
2016 /* namespace not allocated or attached */
2017 info->is_removed = true;
2018 ret = -ENODEV;
2019 goto error;
2020 }
2021
2022 blk_mq_freeze_queue(ns->disk->queue);
2023 lbaf = nvme_lbaf_index(id->flbas);
2024 ns->lba_shift = id->lbaf[lbaf].ds;
2025 nvme_set_queue_limits(ns->ctrl, ns->queue);
2026
2027 ret = nvme_configure_metadata(ns, id);
2028 if (ret < 0) {
2029 blk_mq_unfreeze_queue(ns->disk->queue);
2030 goto out;
2031 }
2032 nvme_set_chunk_sectors(ns, id);
2033 nvme_update_disk_info(ns->disk, ns, id);
2034
2035 if (ns->head->ids.csi == NVME_CSI_ZNS) {
2036 ret = nvme_update_zone_info(ns, lbaf);
2037 if (ret) {
2038 blk_mq_unfreeze_queue(ns->disk->queue);
2039 goto out;
2040 }
2041 }
2042
2043 /*
2044 * Only set the DEAC bit if the device guarantees that reads from
2045 * deallocated data return zeroes. While the DEAC bit does not
2046 * require that, it must be a no-op if reads from deallocated data
2047 * do not return zeroes.
2048 */
2049 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2050 ns->features |= NVME_NS_DEAC;
2051 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2052 set_bit(NVME_NS_READY, &ns->flags);
2053 blk_mq_unfreeze_queue(ns->disk->queue);
2054
2055 if (blk_queue_is_zoned(ns->queue)) {
2056 ret = nvme_revalidate_zones(ns);
2057 if (ret && !nvme_first_scan(ns->disk))
2058 goto out;
2059 }
2060
2061 if (nvme_ns_head_multipath(ns->head)) {
2062 blk_mq_freeze_queue(ns->head->disk->queue);
2063 nvme_update_disk_info(ns->head->disk, ns, id);
2064 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2065 nvme_mpath_revalidate_paths(ns);
2066 blk_stack_limits(&ns->head->disk->queue->limits,
2067 &ns->queue->limits, 0);
2068 disk_update_readahead(ns->head->disk);
2069 blk_mq_unfreeze_queue(ns->head->disk->queue);
2070 }
2071
2072 ret = 0;
2073 out:
2074 /*
2075 * If probing fails due an unsupported feature, hide the block device,
2076 * but still allow other access.
2077 */
2078 if (ret == -ENODEV) {
2079 ns->disk->flags |= GENHD_FL_HIDDEN;
2080 set_bit(NVME_NS_READY, &ns->flags);
2081 ret = 0;
2082 }
2083
2084 error:
2085 kfree(id);
2086 return ret;
2087 }
2088
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_ns_info * info)2089 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2090 {
2091 switch (info->ids.csi) {
2092 case NVME_CSI_ZNS:
2093 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2094 dev_info(ns->ctrl->device,
2095 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2096 info->nsid);
2097 return nvme_update_ns_info_generic(ns, info);
2098 }
2099 return nvme_update_ns_info_block(ns, info);
2100 case NVME_CSI_NVM:
2101 return nvme_update_ns_info_block(ns, info);
2102 default:
2103 dev_info(ns->ctrl->device,
2104 "block device for nsid %u not supported (csi %u)\n",
2105 info->nsid, info->ids.csi);
2106 return nvme_update_ns_info_generic(ns, info);
2107 }
2108 }
2109
2110 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2111 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2112 bool send)
2113 {
2114 struct nvme_ctrl *ctrl = data;
2115 struct nvme_command cmd = { };
2116
2117 if (send)
2118 cmd.common.opcode = nvme_admin_security_send;
2119 else
2120 cmd.common.opcode = nvme_admin_security_recv;
2121 cmd.common.nsid = 0;
2122 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2123 cmd.common.cdw11 = cpu_to_le32(len);
2124
2125 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2126 NVME_QID_ANY, 1, 0);
2127 }
2128
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2129 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2130 {
2131 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2132 if (!ctrl->opal_dev)
2133 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2134 else if (was_suspended)
2135 opal_unlock_from_suspend(ctrl->opal_dev);
2136 } else {
2137 free_opal_dev(ctrl->opal_dev);
2138 ctrl->opal_dev = NULL;
2139 }
2140 }
2141 #else
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2142 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2143 {
2144 }
2145 #endif /* CONFIG_BLK_SED_OPAL */
2146
2147 #ifdef CONFIG_BLK_DEV_ZONED
nvme_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)2148 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2149 unsigned int nr_zones, report_zones_cb cb, void *data)
2150 {
2151 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2152 data);
2153 }
2154 #else
2155 #define nvme_report_zones NULL
2156 #endif /* CONFIG_BLK_DEV_ZONED */
2157
2158 const struct block_device_operations nvme_bdev_ops = {
2159 .owner = THIS_MODULE,
2160 .ioctl = nvme_ioctl,
2161 .compat_ioctl = blkdev_compat_ptr_ioctl,
2162 .open = nvme_open,
2163 .release = nvme_release,
2164 .getgeo = nvme_getgeo,
2165 .report_zones = nvme_report_zones,
2166 .pr_ops = &nvme_pr_ops,
2167 };
2168
nvme_wait_ready(struct nvme_ctrl * ctrl,u32 mask,u32 val,u32 timeout,const char * op)2169 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2170 u32 timeout, const char *op)
2171 {
2172 unsigned long timeout_jiffies = jiffies + timeout * HZ;
2173 u32 csts;
2174 int ret;
2175
2176 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2177 if (csts == ~0)
2178 return -ENODEV;
2179 if ((csts & mask) == val)
2180 break;
2181
2182 usleep_range(1000, 2000);
2183 if (fatal_signal_pending(current))
2184 return -EINTR;
2185 if (time_after(jiffies, timeout_jiffies)) {
2186 dev_err(ctrl->device,
2187 "Device not ready; aborting %s, CSTS=0x%x\n",
2188 op, csts);
2189 return -ENODEV;
2190 }
2191 }
2192
2193 return ret;
2194 }
2195
nvme_disable_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2196 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2197 {
2198 int ret;
2199
2200 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2201 if (shutdown)
2202 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2203 else
2204 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2205
2206 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2207 if (ret)
2208 return ret;
2209
2210 if (shutdown) {
2211 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2212 NVME_CSTS_SHST_CMPLT,
2213 ctrl->shutdown_timeout, "shutdown");
2214 }
2215 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2216 msleep(NVME_QUIRK_DELAY_AMOUNT);
2217 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2218 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2219 }
2220 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2221
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2222 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2223 {
2224 unsigned dev_page_min;
2225 u32 timeout;
2226 int ret;
2227
2228 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2229 if (ret) {
2230 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2231 return ret;
2232 }
2233 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2234
2235 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2236 dev_err(ctrl->device,
2237 "Minimum device page size %u too large for host (%u)\n",
2238 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2239 return -ENODEV;
2240 }
2241
2242 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2243 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2244 else
2245 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2246
2247 /*
2248 * Setting CRIME results in CSTS.RDY before the media is ready. This
2249 * makes it possible for media related commands to return the error
2250 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2251 * restructured to handle retries, disable CC.CRIME.
2252 */
2253 ctrl->ctrl_config &= ~NVME_CC_CRIME;
2254
2255 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2256 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2257 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2258 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2259 if (ret)
2260 return ret;
2261
2262 /* Flush write to device (required if transport is PCI) */
2263 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2264 if (ret)
2265 return ret;
2266
2267 /* CAP value may change after initial CC write */
2268 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2269 if (ret)
2270 return ret;
2271
2272 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2273 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2274 u32 crto, ready_timeout;
2275
2276 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2277 if (ret) {
2278 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2279 ret);
2280 return ret;
2281 }
2282
2283 /*
2284 * CRTO should always be greater or equal to CAP.TO, but some
2285 * devices are known to get this wrong. Use the larger of the
2286 * two values.
2287 */
2288 ready_timeout = NVME_CRTO_CRWMT(crto);
2289
2290 if (ready_timeout < timeout)
2291 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2292 crto, ctrl->cap);
2293 else
2294 timeout = ready_timeout;
2295 }
2296
2297 ctrl->ctrl_config |= NVME_CC_ENABLE;
2298 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2299 if (ret)
2300 return ret;
2301 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2302 (timeout + 1) / 2, "initialisation");
2303 }
2304 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2305
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2306 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2307 {
2308 __le64 ts;
2309 int ret;
2310
2311 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2312 return 0;
2313
2314 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2315 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2316 NULL);
2317 if (ret)
2318 dev_warn_once(ctrl->device,
2319 "could not set timestamp (%d)\n", ret);
2320 return ret;
2321 }
2322
nvme_configure_host_options(struct nvme_ctrl * ctrl)2323 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2324 {
2325 struct nvme_feat_host_behavior *host;
2326 u8 acre = 0, lbafee = 0;
2327 int ret;
2328
2329 /* Don't bother enabling the feature if retry delay is not reported */
2330 if (ctrl->crdt[0])
2331 acre = NVME_ENABLE_ACRE;
2332 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2333 lbafee = NVME_ENABLE_LBAFEE;
2334
2335 if (!acre && !lbafee)
2336 return 0;
2337
2338 host = kzalloc(sizeof(*host), GFP_KERNEL);
2339 if (!host)
2340 return 0;
2341
2342 host->acre = acre;
2343 host->lbafee = lbafee;
2344 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2345 host, sizeof(*host), NULL);
2346 kfree(host);
2347 return ret;
2348 }
2349
2350 /*
2351 * The function checks whether the given total (exlat + enlat) latency of
2352 * a power state allows the latter to be used as an APST transition target.
2353 * It does so by comparing the latency to the primary and secondary latency
2354 * tolerances defined by module params. If there's a match, the corresponding
2355 * timeout value is returned and the matching tolerance index (1 or 2) is
2356 * reported.
2357 */
nvme_apst_get_transition_time(u64 total_latency,u64 * transition_time,unsigned * last_index)2358 static bool nvme_apst_get_transition_time(u64 total_latency,
2359 u64 *transition_time, unsigned *last_index)
2360 {
2361 if (total_latency <= apst_primary_latency_tol_us) {
2362 if (*last_index == 1)
2363 return false;
2364 *last_index = 1;
2365 *transition_time = apst_primary_timeout_ms;
2366 return true;
2367 }
2368 if (apst_secondary_timeout_ms &&
2369 total_latency <= apst_secondary_latency_tol_us) {
2370 if (*last_index <= 2)
2371 return false;
2372 *last_index = 2;
2373 *transition_time = apst_secondary_timeout_ms;
2374 return true;
2375 }
2376 return false;
2377 }
2378
2379 /*
2380 * APST (Autonomous Power State Transition) lets us program a table of power
2381 * state transitions that the controller will perform automatically.
2382 *
2383 * Depending on module params, one of the two supported techniques will be used:
2384 *
2385 * - If the parameters provide explicit timeouts and tolerances, they will be
2386 * used to build a table with up to 2 non-operational states to transition to.
2387 * The default parameter values were selected based on the values used by
2388 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2389 * regeneration of the APST table in the event of switching between external
2390 * and battery power, the timeouts and tolerances reflect a compromise
2391 * between values used by Microsoft for AC and battery scenarios.
2392 * - If not, we'll configure the table with a simple heuristic: we are willing
2393 * to spend at most 2% of the time transitioning between power states.
2394 * Therefore, when running in any given state, we will enter the next
2395 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2396 * microseconds, as long as that state's exit latency is under the requested
2397 * maximum latency.
2398 *
2399 * We will not autonomously enter any non-operational state for which the total
2400 * latency exceeds ps_max_latency_us.
2401 *
2402 * Users can set ps_max_latency_us to zero to turn off APST.
2403 */
nvme_configure_apst(struct nvme_ctrl * ctrl)2404 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2405 {
2406 struct nvme_feat_auto_pst *table;
2407 unsigned apste = 0;
2408 u64 max_lat_us = 0;
2409 __le64 target = 0;
2410 int max_ps = -1;
2411 int state;
2412 int ret;
2413 unsigned last_lt_index = UINT_MAX;
2414
2415 /*
2416 * If APST isn't supported or if we haven't been initialized yet,
2417 * then don't do anything.
2418 */
2419 if (!ctrl->apsta)
2420 return 0;
2421
2422 if (ctrl->npss > 31) {
2423 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2424 return 0;
2425 }
2426
2427 table = kzalloc(sizeof(*table), GFP_KERNEL);
2428 if (!table)
2429 return 0;
2430
2431 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2432 /* Turn off APST. */
2433 dev_dbg(ctrl->device, "APST disabled\n");
2434 goto done;
2435 }
2436
2437 /*
2438 * Walk through all states from lowest- to highest-power.
2439 * According to the spec, lower-numbered states use more power. NPSS,
2440 * despite the name, is the index of the lowest-power state, not the
2441 * number of states.
2442 */
2443 for (state = (int)ctrl->npss; state >= 0; state--) {
2444 u64 total_latency_us, exit_latency_us, transition_ms;
2445
2446 if (target)
2447 table->entries[state] = target;
2448
2449 /*
2450 * Don't allow transitions to the deepest state if it's quirked
2451 * off.
2452 */
2453 if (state == ctrl->npss &&
2454 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2455 continue;
2456
2457 /*
2458 * Is this state a useful non-operational state for higher-power
2459 * states to autonomously transition to?
2460 */
2461 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2462 continue;
2463
2464 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2465 if (exit_latency_us > ctrl->ps_max_latency_us)
2466 continue;
2467
2468 total_latency_us = exit_latency_us +
2469 le32_to_cpu(ctrl->psd[state].entry_lat);
2470
2471 /*
2472 * This state is good. It can be used as the APST idle target
2473 * for higher power states.
2474 */
2475 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2476 if (!nvme_apst_get_transition_time(total_latency_us,
2477 &transition_ms, &last_lt_index))
2478 continue;
2479 } else {
2480 transition_ms = total_latency_us + 19;
2481 do_div(transition_ms, 20);
2482 if (transition_ms > (1 << 24) - 1)
2483 transition_ms = (1 << 24) - 1;
2484 }
2485
2486 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2487 if (max_ps == -1)
2488 max_ps = state;
2489 if (total_latency_us > max_lat_us)
2490 max_lat_us = total_latency_us;
2491 }
2492
2493 if (max_ps == -1)
2494 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2495 else
2496 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2497 max_ps, max_lat_us, (int)sizeof(*table), table);
2498 apste = 1;
2499
2500 done:
2501 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2502 table, sizeof(*table), NULL);
2503 if (ret)
2504 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2505 kfree(table);
2506 return ret;
2507 }
2508
nvme_set_latency_tolerance(struct device * dev,s32 val)2509 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2510 {
2511 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2512 u64 latency;
2513
2514 switch (val) {
2515 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2516 case PM_QOS_LATENCY_ANY:
2517 latency = U64_MAX;
2518 break;
2519
2520 default:
2521 latency = val;
2522 }
2523
2524 if (ctrl->ps_max_latency_us != latency) {
2525 ctrl->ps_max_latency_us = latency;
2526 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2527 nvme_configure_apst(ctrl);
2528 }
2529 }
2530
2531 struct nvme_core_quirk_entry {
2532 /*
2533 * NVMe model and firmware strings are padded with spaces. For
2534 * simplicity, strings in the quirk table are padded with NULLs
2535 * instead.
2536 */
2537 u16 vid;
2538 const char *mn;
2539 const char *fr;
2540 unsigned long quirks;
2541 };
2542
2543 static const struct nvme_core_quirk_entry core_quirks[] = {
2544 {
2545 /*
2546 * This Toshiba device seems to die using any APST states. See:
2547 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2548 */
2549 .vid = 0x1179,
2550 .mn = "THNSF5256GPUK TOSHIBA",
2551 .quirks = NVME_QUIRK_NO_APST,
2552 },
2553 {
2554 /*
2555 * This LiteON CL1-3D*-Q11 firmware version has a race
2556 * condition associated with actions related to suspend to idle
2557 * LiteON has resolved the problem in future firmware
2558 */
2559 .vid = 0x14a4,
2560 .fr = "22301111",
2561 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2562 },
2563 {
2564 /*
2565 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2566 * aborts I/O during any load, but more easily reproducible
2567 * with discards (fstrim).
2568 *
2569 * The device is left in a state where it is also not possible
2570 * to use "nvme set-feature" to disable APST, but booting with
2571 * nvme_core.default_ps_max_latency=0 works.
2572 */
2573 .vid = 0x1e0f,
2574 .mn = "KCD6XVUL6T40",
2575 .quirks = NVME_QUIRK_NO_APST,
2576 },
2577 {
2578 /*
2579 * The external Samsung X5 SSD fails initialization without a
2580 * delay before checking if it is ready and has a whole set of
2581 * other problems. To make this even more interesting, it
2582 * shares the PCI ID with internal Samsung 970 Evo Plus that
2583 * does not need or want these quirks.
2584 */
2585 .vid = 0x144d,
2586 .mn = "Samsung Portable SSD X5",
2587 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2588 NVME_QUIRK_NO_DEEPEST_PS |
2589 NVME_QUIRK_IGNORE_DEV_SUBNQN,
2590 }
2591 };
2592
2593 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)2594 static bool string_matches(const char *idstr, const char *match, size_t len)
2595 {
2596 size_t matchlen;
2597
2598 if (!match)
2599 return true;
2600
2601 matchlen = strlen(match);
2602 WARN_ON_ONCE(matchlen > len);
2603
2604 if (memcmp(idstr, match, matchlen))
2605 return false;
2606
2607 for (; matchlen < len; matchlen++)
2608 if (idstr[matchlen] != ' ')
2609 return false;
2610
2611 return true;
2612 }
2613
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)2614 static bool quirk_matches(const struct nvme_id_ctrl *id,
2615 const struct nvme_core_quirk_entry *q)
2616 {
2617 return q->vid == le16_to_cpu(id->vid) &&
2618 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2619 string_matches(id->fr, q->fr, sizeof(id->fr));
2620 }
2621
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2622 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2623 struct nvme_id_ctrl *id)
2624 {
2625 size_t nqnlen;
2626 int off;
2627
2628 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2629 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2630 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2631 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2632 return;
2633 }
2634
2635 if (ctrl->vs >= NVME_VS(1, 2, 1))
2636 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2637 }
2638
2639 /*
2640 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2641 * Base Specification 2.0. It is slightly different from the format
2642 * specified there due to historic reasons, and we can't change it now.
2643 */
2644 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2645 "nqn.2014.08.org.nvmexpress:%04x%04x",
2646 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2647 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2648 off += sizeof(id->sn);
2649 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2650 off += sizeof(id->mn);
2651 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2652 }
2653
nvme_release_subsystem(struct device * dev)2654 static void nvme_release_subsystem(struct device *dev)
2655 {
2656 struct nvme_subsystem *subsys =
2657 container_of(dev, struct nvme_subsystem, dev);
2658
2659 if (subsys->instance >= 0)
2660 ida_free(&nvme_instance_ida, subsys->instance);
2661 kfree(subsys);
2662 }
2663
nvme_destroy_subsystem(struct kref * ref)2664 static void nvme_destroy_subsystem(struct kref *ref)
2665 {
2666 struct nvme_subsystem *subsys =
2667 container_of(ref, struct nvme_subsystem, ref);
2668
2669 mutex_lock(&nvme_subsystems_lock);
2670 list_del(&subsys->entry);
2671 mutex_unlock(&nvme_subsystems_lock);
2672
2673 ida_destroy(&subsys->ns_ida);
2674 device_del(&subsys->dev);
2675 put_device(&subsys->dev);
2676 }
2677
nvme_put_subsystem(struct nvme_subsystem * subsys)2678 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2679 {
2680 kref_put(&subsys->ref, nvme_destroy_subsystem);
2681 }
2682
__nvme_find_get_subsystem(const char * subsysnqn)2683 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2684 {
2685 struct nvme_subsystem *subsys;
2686
2687 lockdep_assert_held(&nvme_subsystems_lock);
2688
2689 /*
2690 * Fail matches for discovery subsystems. This results
2691 * in each discovery controller bound to a unique subsystem.
2692 * This avoids issues with validating controller values
2693 * that can only be true when there is a single unique subsystem.
2694 * There may be multiple and completely independent entities
2695 * that provide discovery controllers.
2696 */
2697 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2698 return NULL;
2699
2700 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2701 if (strcmp(subsys->subnqn, subsysnqn))
2702 continue;
2703 if (!kref_get_unless_zero(&subsys->ref))
2704 continue;
2705 return subsys;
2706 }
2707
2708 return NULL;
2709 }
2710
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)2711 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2712 {
2713 return ctrl->opts && ctrl->opts->discovery_nqn;
2714 }
2715
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2716 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2717 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2718 {
2719 struct nvme_ctrl *tmp;
2720
2721 lockdep_assert_held(&nvme_subsystems_lock);
2722
2723 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2724 if (nvme_state_terminal(tmp))
2725 continue;
2726
2727 if (tmp->cntlid == ctrl->cntlid) {
2728 dev_err(ctrl->device,
2729 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2730 ctrl->cntlid, dev_name(tmp->device),
2731 subsys->subnqn);
2732 return false;
2733 }
2734
2735 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2736 nvme_discovery_ctrl(ctrl))
2737 continue;
2738
2739 dev_err(ctrl->device,
2740 "Subsystem does not support multiple controllers\n");
2741 return false;
2742 }
2743
2744 return true;
2745 }
2746
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2747 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2748 {
2749 struct nvme_subsystem *subsys, *found;
2750 int ret;
2751
2752 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2753 if (!subsys)
2754 return -ENOMEM;
2755
2756 subsys->instance = -1;
2757 mutex_init(&subsys->lock);
2758 kref_init(&subsys->ref);
2759 INIT_LIST_HEAD(&subsys->ctrls);
2760 INIT_LIST_HEAD(&subsys->nsheads);
2761 nvme_init_subnqn(subsys, ctrl, id);
2762 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2763 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2764 subsys->vendor_id = le16_to_cpu(id->vid);
2765 subsys->cmic = id->cmic;
2766
2767 /* Versions prior to 1.4 don't necessarily report a valid type */
2768 if (id->cntrltype == NVME_CTRL_DISC ||
2769 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2770 subsys->subtype = NVME_NQN_DISC;
2771 else
2772 subsys->subtype = NVME_NQN_NVME;
2773
2774 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2775 dev_err(ctrl->device,
2776 "Subsystem %s is not a discovery controller",
2777 subsys->subnqn);
2778 kfree(subsys);
2779 return -EINVAL;
2780 }
2781 subsys->awupf = le16_to_cpu(id->awupf);
2782 nvme_mpath_default_iopolicy(subsys);
2783
2784 subsys->dev.class = nvme_subsys_class;
2785 subsys->dev.release = nvme_release_subsystem;
2786 subsys->dev.groups = nvme_subsys_attrs_groups;
2787 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2788 device_initialize(&subsys->dev);
2789
2790 mutex_lock(&nvme_subsystems_lock);
2791 found = __nvme_find_get_subsystem(subsys->subnqn);
2792 if (found) {
2793 put_device(&subsys->dev);
2794 subsys = found;
2795
2796 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2797 ret = -EINVAL;
2798 goto out_put_subsystem;
2799 }
2800 } else {
2801 ret = device_add(&subsys->dev);
2802 if (ret) {
2803 dev_err(ctrl->device,
2804 "failed to register subsystem device.\n");
2805 put_device(&subsys->dev);
2806 goto out_unlock;
2807 }
2808 ida_init(&subsys->ns_ida);
2809 list_add_tail(&subsys->entry, &nvme_subsystems);
2810 }
2811
2812 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2813 dev_name(ctrl->device));
2814 if (ret) {
2815 dev_err(ctrl->device,
2816 "failed to create sysfs link from subsystem.\n");
2817 goto out_put_subsystem;
2818 }
2819
2820 if (!found)
2821 subsys->instance = ctrl->instance;
2822 ctrl->subsys = subsys;
2823 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2824 mutex_unlock(&nvme_subsystems_lock);
2825 return 0;
2826
2827 out_put_subsystem:
2828 nvme_put_subsystem(subsys);
2829 out_unlock:
2830 mutex_unlock(&nvme_subsystems_lock);
2831 return ret;
2832 }
2833
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)2834 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2835 void *log, size_t size, u64 offset)
2836 {
2837 struct nvme_command c = { };
2838 u32 dwlen = nvme_bytes_to_numd(size);
2839
2840 c.get_log_page.opcode = nvme_admin_get_log_page;
2841 c.get_log_page.nsid = cpu_to_le32(nsid);
2842 c.get_log_page.lid = log_page;
2843 c.get_log_page.lsp = lsp;
2844 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2845 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2846 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2847 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2848 c.get_log_page.csi = csi;
2849
2850 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2851 }
2852
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)2853 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2854 struct nvme_effects_log **log)
2855 {
2856 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2857 int ret;
2858
2859 if (cel)
2860 goto out;
2861
2862 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2863 if (!cel)
2864 return -ENOMEM;
2865
2866 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2867 cel, sizeof(*cel), 0);
2868 if (ret) {
2869 kfree(cel);
2870 return ret;
2871 }
2872
2873 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2874 out:
2875 *log = cel;
2876 return 0;
2877 }
2878
nvme_mps_to_sectors(struct nvme_ctrl * ctrl,u32 units)2879 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2880 {
2881 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2882
2883 if (check_shl_overflow(1U, units + page_shift - 9, &val))
2884 return UINT_MAX;
2885 return val;
2886 }
2887
nvme_init_non_mdts_limits(struct nvme_ctrl * ctrl)2888 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2889 {
2890 struct nvme_command c = { };
2891 struct nvme_id_ctrl_nvm *id;
2892 int ret;
2893
2894 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2895 ctrl->max_discard_sectors = UINT_MAX;
2896 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2897 } else {
2898 ctrl->max_discard_sectors = 0;
2899 ctrl->max_discard_segments = 0;
2900 }
2901
2902 /*
2903 * Even though NVMe spec explicitly states that MDTS is not applicable
2904 * to the write-zeroes, we are cautious and limit the size to the
2905 * controllers max_hw_sectors value, which is based on the MDTS field
2906 * and possibly other limiting factors.
2907 */
2908 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2909 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2910 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2911 else
2912 ctrl->max_zeroes_sectors = 0;
2913
2914 if (ctrl->subsys->subtype != NVME_NQN_NVME ||
2915 nvme_ctrl_limited_cns(ctrl) ||
2916 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
2917 return 0;
2918
2919 id = kzalloc(sizeof(*id), GFP_KERNEL);
2920 if (!id)
2921 return -ENOMEM;
2922
2923 c.identify.opcode = nvme_admin_identify;
2924 c.identify.cns = NVME_ID_CNS_CS_CTRL;
2925 c.identify.csi = NVME_CSI_NVM;
2926
2927 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2928 if (ret)
2929 goto free_data;
2930
2931 if (id->dmrl)
2932 ctrl->max_discard_segments = id->dmrl;
2933 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
2934 if (id->wzsl)
2935 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2936
2937 free_data:
2938 if (ret > 0)
2939 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
2940 kfree(id);
2941 return ret;
2942 }
2943
nvme_init_known_nvm_effects(struct nvme_ctrl * ctrl)2944 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
2945 {
2946 struct nvme_effects_log *log = ctrl->effects;
2947
2948 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2949 NVME_CMD_EFFECTS_NCC |
2950 NVME_CMD_EFFECTS_CSE_MASK);
2951 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2952 NVME_CMD_EFFECTS_CSE_MASK);
2953
2954 /*
2955 * The spec says the result of a security receive command depends on
2956 * the previous security send command. As such, many vendors log this
2957 * command as one to submitted only when no other commands to the same
2958 * namespace are outstanding. The intention is to tell the host to
2959 * prevent mixing security send and receive.
2960 *
2961 * This driver can only enforce such exclusive access against IO
2962 * queues, though. We are not readily able to enforce such a rule for
2963 * two commands to the admin queue, which is the only queue that
2964 * matters for this command.
2965 *
2966 * Rather than blindly freezing the IO queues for this effect that
2967 * doesn't even apply to IO, mask it off.
2968 */
2969 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
2970
2971 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2972 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2973 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2974 }
2975
nvme_init_effects(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2976 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2977 {
2978 int ret = 0;
2979
2980 if (ctrl->effects)
2981 return 0;
2982
2983 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2984 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2985 if (ret < 0)
2986 return ret;
2987 }
2988
2989 if (!ctrl->effects) {
2990 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2991 if (!ctrl->effects)
2992 return -ENOMEM;
2993 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
2994 }
2995
2996 nvme_init_known_nvm_effects(ctrl);
2997 return 0;
2998 }
2999
nvme_init_identify(struct nvme_ctrl * ctrl)3000 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3001 {
3002 struct nvme_id_ctrl *id;
3003 u32 max_hw_sectors;
3004 bool prev_apst_enabled;
3005 int ret;
3006
3007 ret = nvme_identify_ctrl(ctrl, &id);
3008 if (ret) {
3009 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3010 return -EIO;
3011 }
3012
3013 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3014 ctrl->cntlid = le16_to_cpu(id->cntlid);
3015
3016 if (!ctrl->identified) {
3017 unsigned int i;
3018
3019 /*
3020 * Check for quirks. Quirk can depend on firmware version,
3021 * so, in principle, the set of quirks present can change
3022 * across a reset. As a possible future enhancement, we
3023 * could re-scan for quirks every time we reinitialize
3024 * the device, but we'd have to make sure that the driver
3025 * behaves intelligently if the quirks change.
3026 */
3027 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3028 if (quirk_matches(id, &core_quirks[i]))
3029 ctrl->quirks |= core_quirks[i].quirks;
3030 }
3031
3032 ret = nvme_init_subsystem(ctrl, id);
3033 if (ret)
3034 goto out_free;
3035
3036 ret = nvme_init_effects(ctrl, id);
3037 if (ret)
3038 goto out_free;
3039 }
3040 memcpy(ctrl->subsys->firmware_rev, id->fr,
3041 sizeof(ctrl->subsys->firmware_rev));
3042
3043 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3044 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3045 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3046 }
3047
3048 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3049 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3050 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3051
3052 ctrl->oacs = le16_to_cpu(id->oacs);
3053 ctrl->oncs = le16_to_cpu(id->oncs);
3054 ctrl->mtfa = le16_to_cpu(id->mtfa);
3055 ctrl->oaes = le32_to_cpu(id->oaes);
3056 ctrl->wctemp = le16_to_cpu(id->wctemp);
3057 ctrl->cctemp = le16_to_cpu(id->cctemp);
3058
3059 atomic_set(&ctrl->abort_limit, id->acl + 1);
3060 ctrl->vwc = id->vwc;
3061 if (id->mdts)
3062 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3063 else
3064 max_hw_sectors = UINT_MAX;
3065 ctrl->max_hw_sectors =
3066 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3067
3068 nvme_set_queue_limits(ctrl, ctrl->admin_q);
3069 ctrl->sgls = le32_to_cpu(id->sgls);
3070 ctrl->kas = le16_to_cpu(id->kas);
3071 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3072 ctrl->ctratt = le32_to_cpu(id->ctratt);
3073
3074 ctrl->cntrltype = id->cntrltype;
3075 ctrl->dctype = id->dctype;
3076
3077 if (id->rtd3e) {
3078 /* us -> s */
3079 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3080
3081 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3082 shutdown_timeout, 60);
3083
3084 if (ctrl->shutdown_timeout != shutdown_timeout)
3085 dev_info(ctrl->device,
3086 "Shutdown timeout set to %u seconds\n",
3087 ctrl->shutdown_timeout);
3088 } else
3089 ctrl->shutdown_timeout = shutdown_timeout;
3090
3091 ctrl->npss = id->npss;
3092 ctrl->apsta = id->apsta;
3093 prev_apst_enabled = ctrl->apst_enabled;
3094 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3095 if (force_apst && id->apsta) {
3096 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3097 ctrl->apst_enabled = true;
3098 } else {
3099 ctrl->apst_enabled = false;
3100 }
3101 } else {
3102 ctrl->apst_enabled = id->apsta;
3103 }
3104 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3105
3106 if (ctrl->ops->flags & NVME_F_FABRICS) {
3107 ctrl->icdoff = le16_to_cpu(id->icdoff);
3108 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3109 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3110 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3111
3112 /*
3113 * In fabrics we need to verify the cntlid matches the
3114 * admin connect
3115 */
3116 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3117 dev_err(ctrl->device,
3118 "Mismatching cntlid: Connect %u vs Identify "
3119 "%u, rejecting\n",
3120 ctrl->cntlid, le16_to_cpu(id->cntlid));
3121 ret = -EINVAL;
3122 goto out_free;
3123 }
3124
3125 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3126 dev_err(ctrl->device,
3127 "keep-alive support is mandatory for fabrics\n");
3128 ret = -EINVAL;
3129 goto out_free;
3130 }
3131 } else {
3132 ctrl->hmpre = le32_to_cpu(id->hmpre);
3133 ctrl->hmmin = le32_to_cpu(id->hmmin);
3134 ctrl->hmminds = le32_to_cpu(id->hmminds);
3135 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3136 }
3137
3138 ret = nvme_mpath_init_identify(ctrl, id);
3139 if (ret < 0)
3140 goto out_free;
3141
3142 if (ctrl->apst_enabled && !prev_apst_enabled)
3143 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3144 else if (!ctrl->apst_enabled && prev_apst_enabled)
3145 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3146
3147 out_free:
3148 kfree(id);
3149 return ret;
3150 }
3151
3152 /*
3153 * Initialize the cached copies of the Identify data and various controller
3154 * register in our nvme_ctrl structure. This should be called as soon as
3155 * the admin queue is fully up and running.
3156 */
nvme_init_ctrl_finish(struct nvme_ctrl * ctrl,bool was_suspended)3157 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3158 {
3159 int ret;
3160
3161 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3162 if (ret) {
3163 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3164 return ret;
3165 }
3166
3167 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3168
3169 if (ctrl->vs >= NVME_VS(1, 1, 0))
3170 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3171
3172 ret = nvme_init_identify(ctrl);
3173 if (ret)
3174 return ret;
3175
3176 ret = nvme_configure_apst(ctrl);
3177 if (ret < 0)
3178 return ret;
3179
3180 ret = nvme_configure_timestamp(ctrl);
3181 if (ret < 0)
3182 return ret;
3183
3184 ret = nvme_configure_host_options(ctrl);
3185 if (ret < 0)
3186 return ret;
3187
3188 nvme_configure_opal(ctrl, was_suspended);
3189
3190 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3191 /*
3192 * Do not return errors unless we are in a controller reset,
3193 * the controller works perfectly fine without hwmon.
3194 */
3195 ret = nvme_hwmon_init(ctrl);
3196 if (ret == -EINTR)
3197 return ret;
3198 }
3199
3200 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3201 ctrl->identified = true;
3202
3203 return 0;
3204 }
3205 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3206
nvme_dev_open(struct inode * inode,struct file * file)3207 static int nvme_dev_open(struct inode *inode, struct file *file)
3208 {
3209 struct nvme_ctrl *ctrl =
3210 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3211
3212 switch (nvme_ctrl_state(ctrl)) {
3213 case NVME_CTRL_LIVE:
3214 break;
3215 default:
3216 return -EWOULDBLOCK;
3217 }
3218
3219 nvme_get_ctrl(ctrl);
3220 if (!try_module_get(ctrl->ops->module)) {
3221 nvme_put_ctrl(ctrl);
3222 return -EINVAL;
3223 }
3224
3225 file->private_data = ctrl;
3226 return 0;
3227 }
3228
nvme_dev_release(struct inode * inode,struct file * file)3229 static int nvme_dev_release(struct inode *inode, struct file *file)
3230 {
3231 struct nvme_ctrl *ctrl =
3232 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3233
3234 module_put(ctrl->ops->module);
3235 nvme_put_ctrl(ctrl);
3236 return 0;
3237 }
3238
3239 static const struct file_operations nvme_dev_fops = {
3240 .owner = THIS_MODULE,
3241 .open = nvme_dev_open,
3242 .release = nvme_dev_release,
3243 .unlocked_ioctl = nvme_dev_ioctl,
3244 .compat_ioctl = compat_ptr_ioctl,
3245 .uring_cmd = nvme_dev_uring_cmd,
3246 };
3247
nvme_find_ns_head(struct nvme_ctrl * ctrl,unsigned nsid)3248 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3249 unsigned nsid)
3250 {
3251 struct nvme_ns_head *h;
3252
3253 lockdep_assert_held(&ctrl->subsys->lock);
3254
3255 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3256 /*
3257 * Private namespaces can share NSIDs under some conditions.
3258 * In that case we can't use the same ns_head for namespaces
3259 * with the same NSID.
3260 */
3261 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3262 continue;
3263 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3264 return h;
3265 }
3266
3267 return NULL;
3268 }
3269
nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3270 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3271 struct nvme_ns_ids *ids)
3272 {
3273 bool has_uuid = !uuid_is_null(&ids->uuid);
3274 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3275 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3276 struct nvme_ns_head *h;
3277
3278 lockdep_assert_held(&subsys->lock);
3279
3280 list_for_each_entry(h, &subsys->nsheads, entry) {
3281 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3282 return -EINVAL;
3283 if (has_nguid &&
3284 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3285 return -EINVAL;
3286 if (has_eui64 &&
3287 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3288 return -EINVAL;
3289 }
3290
3291 return 0;
3292 }
3293
nvme_cdev_rel(struct device * dev)3294 static void nvme_cdev_rel(struct device *dev)
3295 {
3296 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3297 }
3298
nvme_cdev_del(struct cdev * cdev,struct device * cdev_device)3299 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3300 {
3301 cdev_device_del(cdev, cdev_device);
3302 put_device(cdev_device);
3303 }
3304
nvme_cdev_add(struct cdev * cdev,struct device * cdev_device,const struct file_operations * fops,struct module * owner)3305 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3306 const struct file_operations *fops, struct module *owner)
3307 {
3308 int minor, ret;
3309
3310 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3311 if (minor < 0)
3312 return minor;
3313 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3314 cdev_device->class = nvme_ns_chr_class;
3315 cdev_device->release = nvme_cdev_rel;
3316 device_initialize(cdev_device);
3317 cdev_init(cdev, fops);
3318 cdev->owner = owner;
3319 ret = cdev_device_add(cdev, cdev_device);
3320 if (ret)
3321 put_device(cdev_device);
3322
3323 return ret;
3324 }
3325
nvme_ns_chr_open(struct inode * inode,struct file * file)3326 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3327 {
3328 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3329 }
3330
nvme_ns_chr_release(struct inode * inode,struct file * file)3331 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3332 {
3333 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3334 return 0;
3335 }
3336
3337 static const struct file_operations nvme_ns_chr_fops = {
3338 .owner = THIS_MODULE,
3339 .open = nvme_ns_chr_open,
3340 .release = nvme_ns_chr_release,
3341 .unlocked_ioctl = nvme_ns_chr_ioctl,
3342 .compat_ioctl = compat_ptr_ioctl,
3343 .uring_cmd = nvme_ns_chr_uring_cmd,
3344 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3345 };
3346
nvme_add_ns_cdev(struct nvme_ns * ns)3347 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3348 {
3349 int ret;
3350
3351 ns->cdev_device.parent = ns->ctrl->device;
3352 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3353 ns->ctrl->instance, ns->head->instance);
3354 if (ret)
3355 return ret;
3356
3357 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3358 ns->ctrl->ops->module);
3359 }
3360
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3361 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3362 struct nvme_ns_info *info)
3363 {
3364 struct nvme_ns_head *head;
3365 size_t size = sizeof(*head);
3366 int ret = -ENOMEM;
3367
3368 #ifdef CONFIG_NVME_MULTIPATH
3369 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3370 #endif
3371
3372 head = kzalloc(size, GFP_KERNEL);
3373 if (!head)
3374 goto out;
3375 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3376 if (ret < 0)
3377 goto out_free_head;
3378 head->instance = ret;
3379 INIT_LIST_HEAD(&head->list);
3380 ret = init_srcu_struct(&head->srcu);
3381 if (ret)
3382 goto out_ida_remove;
3383 head->subsys = ctrl->subsys;
3384 head->ns_id = info->nsid;
3385 head->ids = info->ids;
3386 head->shared = info->is_shared;
3387 kref_init(&head->ref);
3388
3389 if (head->ids.csi) {
3390 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3391 if (ret)
3392 goto out_cleanup_srcu;
3393 } else
3394 head->effects = ctrl->effects;
3395
3396 ret = nvme_mpath_alloc_disk(ctrl, head);
3397 if (ret)
3398 goto out_cleanup_srcu;
3399
3400 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3401
3402 kref_get(&ctrl->subsys->ref);
3403
3404 return head;
3405 out_cleanup_srcu:
3406 cleanup_srcu_struct(&head->srcu);
3407 out_ida_remove:
3408 ida_free(&ctrl->subsys->ns_ida, head->instance);
3409 out_free_head:
3410 kfree(head);
3411 out:
3412 if (ret > 0)
3413 ret = blk_status_to_errno(nvme_error_status(ret));
3414 return ERR_PTR(ret);
3415 }
3416
nvme_global_check_duplicate_ids(struct nvme_subsystem * this,struct nvme_ns_ids * ids)3417 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3418 struct nvme_ns_ids *ids)
3419 {
3420 struct nvme_subsystem *s;
3421 int ret = 0;
3422
3423 /*
3424 * Note that this check is racy as we try to avoid holding the global
3425 * lock over the whole ns_head creation. But it is only intended as
3426 * a sanity check anyway.
3427 */
3428 mutex_lock(&nvme_subsystems_lock);
3429 list_for_each_entry(s, &nvme_subsystems, entry) {
3430 if (s == this)
3431 continue;
3432 mutex_lock(&s->lock);
3433 ret = nvme_subsys_check_duplicate_ids(s, ids);
3434 mutex_unlock(&s->lock);
3435 if (ret)
3436 break;
3437 }
3438 mutex_unlock(&nvme_subsystems_lock);
3439
3440 return ret;
3441 }
3442
nvme_init_ns_head(struct nvme_ns * ns,struct nvme_ns_info * info)3443 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3444 {
3445 struct nvme_ctrl *ctrl = ns->ctrl;
3446 struct nvme_ns_head *head = NULL;
3447 int ret;
3448
3449 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3450 if (ret) {
3451 /*
3452 * We've found two different namespaces on two different
3453 * subsystems that report the same ID. This is pretty nasty
3454 * for anything that actually requires unique device
3455 * identification. In the kernel we need this for multipathing,
3456 * and in user space the /dev/disk/by-id/ links rely on it.
3457 *
3458 * If the device also claims to be multi-path capable back off
3459 * here now and refuse the probe the second device as this is a
3460 * recipe for data corruption. If not this is probably a
3461 * cheap consumer device if on the PCIe bus, so let the user
3462 * proceed and use the shiny toy, but warn that with changing
3463 * probing order (which due to our async probing could just be
3464 * device taking longer to startup) the other device could show
3465 * up at any time.
3466 */
3467 nvme_print_device_info(ctrl);
3468 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3469 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3470 info->is_shared)) {
3471 dev_err(ctrl->device,
3472 "ignoring nsid %d because of duplicate IDs\n",
3473 info->nsid);
3474 return ret;
3475 }
3476
3477 dev_err(ctrl->device,
3478 "clearing duplicate IDs for nsid %d\n", info->nsid);
3479 dev_err(ctrl->device,
3480 "use of /dev/disk/by-id/ may cause data corruption\n");
3481 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3482 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3483 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3484 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3485 }
3486
3487 mutex_lock(&ctrl->subsys->lock);
3488 head = nvme_find_ns_head(ctrl, info->nsid);
3489 if (!head) {
3490 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3491 if (ret) {
3492 dev_err(ctrl->device,
3493 "duplicate IDs in subsystem for nsid %d\n",
3494 info->nsid);
3495 goto out_unlock;
3496 }
3497 head = nvme_alloc_ns_head(ctrl, info);
3498 if (IS_ERR(head)) {
3499 ret = PTR_ERR(head);
3500 goto out_unlock;
3501 }
3502 } else {
3503 ret = -EINVAL;
3504 if (!info->is_shared || !head->shared) {
3505 dev_err(ctrl->device,
3506 "Duplicate unshared namespace %d\n",
3507 info->nsid);
3508 goto out_put_ns_head;
3509 }
3510 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3511 dev_err(ctrl->device,
3512 "IDs don't match for shared namespace %d\n",
3513 info->nsid);
3514 goto out_put_ns_head;
3515 }
3516
3517 if (!multipath) {
3518 dev_warn(ctrl->device,
3519 "Found shared namespace %d, but multipathing not supported.\n",
3520 info->nsid);
3521 dev_warn_once(ctrl->device,
3522 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3523 }
3524 }
3525
3526 list_add_tail_rcu(&ns->siblings, &head->list);
3527 ns->head = head;
3528 mutex_unlock(&ctrl->subsys->lock);
3529 return 0;
3530
3531 out_put_ns_head:
3532 nvme_put_ns_head(head);
3533 out_unlock:
3534 mutex_unlock(&ctrl->subsys->lock);
3535 return ret;
3536 }
3537
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)3538 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3539 {
3540 struct nvme_ns *ns, *ret = NULL;
3541 int srcu_idx;
3542
3543 srcu_idx = srcu_read_lock(&ctrl->srcu);
3544 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
3545 srcu_read_lock_held(&ctrl->srcu)) {
3546 if (ns->head->ns_id == nsid) {
3547 if (!nvme_get_ns(ns))
3548 continue;
3549 ret = ns;
3550 break;
3551 }
3552 if (ns->head->ns_id > nsid)
3553 break;
3554 }
3555 srcu_read_unlock(&ctrl->srcu, srcu_idx);
3556 return ret;
3557 }
3558 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3559
3560 /*
3561 * Add the namespace to the controller list while keeping the list ordered.
3562 */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)3563 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3564 {
3565 struct nvme_ns *tmp;
3566
3567 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3568 if (tmp->head->ns_id < ns->head->ns_id) {
3569 list_add_rcu(&ns->list, &tmp->list);
3570 return;
3571 }
3572 }
3573 list_add(&ns->list, &ns->ctrl->namespaces);
3574 }
3575
nvme_alloc_ns(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3576 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3577 {
3578 struct nvme_ns *ns;
3579 struct gendisk *disk;
3580 int node = ctrl->numa_node;
3581
3582 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3583 if (!ns)
3584 return;
3585
3586 disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3587 if (IS_ERR(disk))
3588 goto out_free_ns;
3589 disk->fops = &nvme_bdev_ops;
3590 disk->private_data = ns;
3591
3592 ns->disk = disk;
3593 ns->queue = disk->queue;
3594
3595 if (ctrl->opts && ctrl->opts->data_digest)
3596 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3597
3598 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3599 if (ctrl->ops->supports_pci_p2pdma &&
3600 ctrl->ops->supports_pci_p2pdma(ctrl))
3601 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3602
3603 ns->ctrl = ctrl;
3604 kref_init(&ns->kref);
3605
3606 if (nvme_init_ns_head(ns, info))
3607 goto out_cleanup_disk;
3608
3609 /*
3610 * If multipathing is enabled, the device name for all disks and not
3611 * just those that represent shared namespaces needs to be based on the
3612 * subsystem instance. Using the controller instance for private
3613 * namespaces could lead to naming collisions between shared and private
3614 * namespaces if they don't use a common numbering scheme.
3615 *
3616 * If multipathing is not enabled, disk names must use the controller
3617 * instance as shared namespaces will show up as multiple block
3618 * devices.
3619 */
3620 if (nvme_ns_head_multipath(ns->head)) {
3621 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3622 ctrl->instance, ns->head->instance);
3623 disk->flags |= GENHD_FL_HIDDEN;
3624 } else if (multipath) {
3625 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3626 ns->head->instance);
3627 } else {
3628 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3629 ns->head->instance);
3630 }
3631
3632 if (nvme_update_ns_info(ns, info))
3633 goto out_unlink_ns;
3634
3635 mutex_lock(&ctrl->namespaces_lock);
3636 /*
3637 * Ensure that no namespaces are added to the ctrl list after the queues
3638 * are frozen, thereby avoiding a deadlock between scan and reset.
3639 */
3640 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3641 mutex_unlock(&ctrl->namespaces_lock);
3642 goto out_unlink_ns;
3643 }
3644 nvme_ns_add_to_ctrl_list(ns);
3645 mutex_unlock(&ctrl->namespaces_lock);
3646 synchronize_srcu(&ctrl->srcu);
3647 nvme_get_ctrl(ctrl);
3648
3649 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3650 goto out_cleanup_ns_from_list;
3651
3652 if (!nvme_ns_head_multipath(ns->head))
3653 nvme_add_ns_cdev(ns);
3654
3655 nvme_mpath_add_disk(ns, info->anagrpid);
3656 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3657
3658 return;
3659
3660 out_cleanup_ns_from_list:
3661 nvme_put_ctrl(ctrl);
3662 mutex_lock(&ctrl->namespaces_lock);
3663 list_del_rcu(&ns->list);
3664 mutex_unlock(&ctrl->namespaces_lock);
3665 synchronize_srcu(&ctrl->srcu);
3666 out_unlink_ns:
3667 mutex_lock(&ctrl->subsys->lock);
3668 list_del_rcu(&ns->siblings);
3669 if (list_empty(&ns->head->list))
3670 list_del_init(&ns->head->entry);
3671 mutex_unlock(&ctrl->subsys->lock);
3672 nvme_put_ns_head(ns->head);
3673 out_cleanup_disk:
3674 put_disk(disk);
3675 out_free_ns:
3676 kfree(ns);
3677 }
3678
nvme_ns_remove(struct nvme_ns * ns)3679 static void nvme_ns_remove(struct nvme_ns *ns)
3680 {
3681 bool last_path = false;
3682
3683 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3684 return;
3685
3686 clear_bit(NVME_NS_READY, &ns->flags);
3687 set_capacity(ns->disk, 0);
3688 nvme_fault_inject_fini(&ns->fault_inject);
3689
3690 /*
3691 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3692 * this ns going back into current_path.
3693 */
3694 synchronize_srcu(&ns->head->srcu);
3695
3696 /* wait for concurrent submissions */
3697 if (nvme_mpath_clear_current_path(ns))
3698 synchronize_srcu(&ns->head->srcu);
3699
3700 mutex_lock(&ns->ctrl->subsys->lock);
3701 list_del_rcu(&ns->siblings);
3702 if (list_empty(&ns->head->list)) {
3703 list_del_init(&ns->head->entry);
3704 last_path = true;
3705 }
3706 mutex_unlock(&ns->ctrl->subsys->lock);
3707
3708 /* guarantee not available in head->list */
3709 synchronize_srcu(&ns->head->srcu);
3710
3711 if (!nvme_ns_head_multipath(ns->head))
3712 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3713 del_gendisk(ns->disk);
3714
3715 mutex_lock(&ns->ctrl->namespaces_lock);
3716 list_del_rcu(&ns->list);
3717 mutex_unlock(&ns->ctrl->namespaces_lock);
3718 synchronize_srcu(&ns->ctrl->srcu);
3719
3720 if (last_path)
3721 nvme_mpath_shutdown_disk(ns->head);
3722 nvme_put_ns(ns);
3723 }
3724
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)3725 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3726 {
3727 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3728
3729 if (ns) {
3730 nvme_ns_remove(ns);
3731 nvme_put_ns(ns);
3732 }
3733 }
3734
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_info * info)3735 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3736 {
3737 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3738
3739 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3740 dev_err(ns->ctrl->device,
3741 "identifiers changed for nsid %d\n", ns->head->ns_id);
3742 goto out;
3743 }
3744
3745 ret = nvme_update_ns_info(ns, info);
3746 out:
3747 /*
3748 * Only remove the namespace if we got a fatal error back from the
3749 * device, otherwise ignore the error and just move on.
3750 *
3751 * TODO: we should probably schedule a delayed retry here.
3752 */
3753 if (ret > 0 && (ret & NVME_SC_DNR))
3754 nvme_ns_remove(ns);
3755 }
3756
nvme_scan_ns(struct nvme_ctrl * ctrl,unsigned nsid)3757 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3758 {
3759 struct nvme_ns_info info = { .nsid = nsid };
3760 struct nvme_ns *ns;
3761 int ret;
3762
3763 if (nvme_identify_ns_descs(ctrl, &info))
3764 return;
3765
3766 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3767 dev_warn(ctrl->device,
3768 "command set not reported for nsid: %d\n", nsid);
3769 return;
3770 }
3771
3772 /*
3773 * If available try to use the Command Set Idependent Identify Namespace
3774 * data structure to find all the generic information that is needed to
3775 * set up a namespace. If not fall back to the legacy version.
3776 */
3777 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3778 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3779 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3780 else
3781 ret = nvme_ns_info_from_identify(ctrl, &info);
3782
3783 if (info.is_removed)
3784 nvme_ns_remove_by_nsid(ctrl, nsid);
3785
3786 /*
3787 * Ignore the namespace if it is not ready. We will get an AEN once it
3788 * becomes ready and restart the scan.
3789 */
3790 if (ret || !info.is_ready)
3791 return;
3792
3793 ns = nvme_find_get_ns(ctrl, nsid);
3794 if (ns) {
3795 nvme_validate_ns(ns, &info);
3796 nvme_put_ns(ns);
3797 } else {
3798 nvme_alloc_ns(ctrl, &info);
3799 }
3800 }
3801
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)3802 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3803 unsigned nsid)
3804 {
3805 struct nvme_ns *ns, *next;
3806 LIST_HEAD(rm_list);
3807
3808 mutex_lock(&ctrl->namespaces_lock);
3809 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3810 if (ns->head->ns_id > nsid) {
3811 list_del_rcu(&ns->list);
3812 synchronize_srcu(&ctrl->srcu);
3813 list_add_tail_rcu(&ns->list, &rm_list);
3814 }
3815 }
3816 mutex_unlock(&ctrl->namespaces_lock);
3817
3818 list_for_each_entry_safe(ns, next, &rm_list, list)
3819 nvme_ns_remove(ns);
3820 }
3821
nvme_scan_ns_list(struct nvme_ctrl * ctrl)3822 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3823 {
3824 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3825 __le32 *ns_list;
3826 u32 prev = 0;
3827 int ret = 0, i;
3828
3829 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3830 if (!ns_list)
3831 return -ENOMEM;
3832
3833 for (;;) {
3834 struct nvme_command cmd = {
3835 .identify.opcode = nvme_admin_identify,
3836 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
3837 .identify.nsid = cpu_to_le32(prev),
3838 };
3839
3840 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3841 NVME_IDENTIFY_DATA_SIZE);
3842 if (ret) {
3843 dev_warn(ctrl->device,
3844 "Identify NS List failed (status=0x%x)\n", ret);
3845 goto free;
3846 }
3847
3848 for (i = 0; i < nr_entries; i++) {
3849 u32 nsid = le32_to_cpu(ns_list[i]);
3850
3851 if (!nsid) /* end of the list? */
3852 goto out;
3853 nvme_scan_ns(ctrl, nsid);
3854 while (++prev < nsid)
3855 nvme_ns_remove_by_nsid(ctrl, prev);
3856 }
3857 }
3858 out:
3859 nvme_remove_invalid_namespaces(ctrl, prev);
3860 free:
3861 kfree(ns_list);
3862 return ret;
3863 }
3864
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)3865 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3866 {
3867 struct nvme_id_ctrl *id;
3868 u32 nn, i;
3869
3870 if (nvme_identify_ctrl(ctrl, &id))
3871 return;
3872 nn = le32_to_cpu(id->nn);
3873 kfree(id);
3874
3875 for (i = 1; i <= nn; i++)
3876 nvme_scan_ns(ctrl, i);
3877
3878 nvme_remove_invalid_namespaces(ctrl, nn);
3879 }
3880
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)3881 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3882 {
3883 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3884 __le32 *log;
3885 int error;
3886
3887 log = kzalloc(log_size, GFP_KERNEL);
3888 if (!log)
3889 return;
3890
3891 /*
3892 * We need to read the log to clear the AEN, but we don't want to rely
3893 * on it for the changed namespace information as userspace could have
3894 * raced with us in reading the log page, which could cause us to miss
3895 * updates.
3896 */
3897 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
3898 NVME_CSI_NVM, log, log_size, 0);
3899 if (error)
3900 dev_warn(ctrl->device,
3901 "reading changed ns log failed: %d\n", error);
3902
3903 kfree(log);
3904 }
3905
nvme_scan_work(struct work_struct * work)3906 static void nvme_scan_work(struct work_struct *work)
3907 {
3908 struct nvme_ctrl *ctrl =
3909 container_of(work, struct nvme_ctrl, scan_work);
3910 int ret;
3911
3912 /* No tagset on a live ctrl means IO queues could not created */
3913 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
3914 return;
3915
3916 /*
3917 * Identify controller limits can change at controller reset due to
3918 * new firmware download, even though it is not common we cannot ignore
3919 * such scenario. Controller's non-mdts limits are reported in the unit
3920 * of logical blocks that is dependent on the format of attached
3921 * namespace. Hence re-read the limits at the time of ns allocation.
3922 */
3923 ret = nvme_init_non_mdts_limits(ctrl);
3924 if (ret < 0) {
3925 dev_warn(ctrl->device,
3926 "reading non-mdts-limits failed: %d\n", ret);
3927 return;
3928 }
3929
3930 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3931 dev_info(ctrl->device, "rescanning namespaces.\n");
3932 nvme_clear_changed_ns_log(ctrl);
3933 }
3934
3935 mutex_lock(&ctrl->scan_lock);
3936 if (nvme_ctrl_limited_cns(ctrl)) {
3937 nvme_scan_ns_sequential(ctrl);
3938 } else {
3939 /*
3940 * Fall back to sequential scan if DNR is set to handle broken
3941 * devices which should support Identify NS List (as per the VS
3942 * they report) but don't actually support it.
3943 */
3944 ret = nvme_scan_ns_list(ctrl);
3945 if (ret > 0 && ret & NVME_SC_DNR)
3946 nvme_scan_ns_sequential(ctrl);
3947 }
3948 mutex_unlock(&ctrl->scan_lock);
3949 }
3950
3951 /*
3952 * This function iterates the namespace list unlocked to allow recovery from
3953 * controller failure. It is up to the caller to ensure the namespace list is
3954 * not modified by scan work while this function is executing.
3955 */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)3956 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3957 {
3958 struct nvme_ns *ns, *next;
3959 LIST_HEAD(ns_list);
3960
3961 /*
3962 * make sure to requeue I/O to all namespaces as these
3963 * might result from the scan itself and must complete
3964 * for the scan_work to make progress
3965 */
3966 nvme_mpath_clear_ctrl_paths(ctrl);
3967
3968 /*
3969 * Unquiesce io queues so any pending IO won't hang, especially
3970 * those submitted from scan work
3971 */
3972 nvme_unquiesce_io_queues(ctrl);
3973
3974 /* prevent racing with ns scanning */
3975 flush_work(&ctrl->scan_work);
3976
3977 /*
3978 * The dead states indicates the controller was not gracefully
3979 * disconnected. In that case, we won't be able to flush any data while
3980 * removing the namespaces' disks; fail all the queues now to avoid
3981 * potentially having to clean up the failed sync later.
3982 */
3983 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
3984 nvme_mark_namespaces_dead(ctrl);
3985
3986 /* this is a no-op when called from the controller reset handler */
3987 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
3988
3989 mutex_lock(&ctrl->namespaces_lock);
3990 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
3991 mutex_unlock(&ctrl->namespaces_lock);
3992 synchronize_srcu(&ctrl->srcu);
3993
3994 list_for_each_entry_safe(ns, next, &ns_list, list)
3995 nvme_ns_remove(ns);
3996 }
3997 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3998
nvme_class_uevent(const struct device * dev,struct kobj_uevent_env * env)3999 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4000 {
4001 const struct nvme_ctrl *ctrl =
4002 container_of(dev, struct nvme_ctrl, ctrl_device);
4003 struct nvmf_ctrl_options *opts = ctrl->opts;
4004 int ret;
4005
4006 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4007 if (ret)
4008 return ret;
4009
4010 if (opts) {
4011 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4012 if (ret)
4013 return ret;
4014
4015 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4016 opts->trsvcid ?: "none");
4017 if (ret)
4018 return ret;
4019
4020 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4021 opts->host_traddr ?: "none");
4022 if (ret)
4023 return ret;
4024
4025 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4026 opts->host_iface ?: "none");
4027 }
4028 return ret;
4029 }
4030
nvme_change_uevent(struct nvme_ctrl * ctrl,char * envdata)4031 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4032 {
4033 char *envp[2] = { envdata, NULL };
4034
4035 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4036 }
4037
nvme_aen_uevent(struct nvme_ctrl * ctrl)4038 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4039 {
4040 char *envp[2] = { NULL, NULL };
4041 u32 aen_result = ctrl->aen_result;
4042
4043 ctrl->aen_result = 0;
4044 if (!aen_result)
4045 return;
4046
4047 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4048 if (!envp[0])
4049 return;
4050 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4051 kfree(envp[0]);
4052 }
4053
nvme_async_event_work(struct work_struct * work)4054 static void nvme_async_event_work(struct work_struct *work)
4055 {
4056 struct nvme_ctrl *ctrl =
4057 container_of(work, struct nvme_ctrl, async_event_work);
4058
4059 nvme_aen_uevent(ctrl);
4060
4061 /*
4062 * The transport drivers must guarantee AER submission here is safe by
4063 * flushing ctrl async_event_work after changing the controller state
4064 * from LIVE and before freeing the admin queue.
4065 */
4066 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4067 ctrl->ops->submit_async_event(ctrl);
4068 }
4069
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4070 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4071 {
4072
4073 u32 csts;
4074
4075 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4076 return false;
4077
4078 if (csts == ~0)
4079 return false;
4080
4081 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4082 }
4083
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4084 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4085 {
4086 struct nvme_fw_slot_info_log *log;
4087
4088 log = kmalloc(sizeof(*log), GFP_KERNEL);
4089 if (!log)
4090 return;
4091
4092 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4093 log, sizeof(*log), 0))
4094 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4095 kfree(log);
4096 }
4097
nvme_fw_act_work(struct work_struct * work)4098 static void nvme_fw_act_work(struct work_struct *work)
4099 {
4100 struct nvme_ctrl *ctrl = container_of(work,
4101 struct nvme_ctrl, fw_act_work);
4102 unsigned long fw_act_timeout;
4103
4104 nvme_auth_stop(ctrl);
4105
4106 if (ctrl->mtfa)
4107 fw_act_timeout = jiffies +
4108 msecs_to_jiffies(ctrl->mtfa * 100);
4109 else
4110 fw_act_timeout = jiffies +
4111 msecs_to_jiffies(admin_timeout * 1000);
4112
4113 nvme_quiesce_io_queues(ctrl);
4114 while (nvme_ctrl_pp_status(ctrl)) {
4115 if (time_after(jiffies, fw_act_timeout)) {
4116 dev_warn(ctrl->device,
4117 "Fw activation timeout, reset controller\n");
4118 nvme_try_sched_reset(ctrl);
4119 return;
4120 }
4121 msleep(100);
4122 }
4123
4124 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4125 return;
4126
4127 nvme_unquiesce_io_queues(ctrl);
4128 /* read FW slot information to clear the AER */
4129 nvme_get_fw_slot_info(ctrl);
4130
4131 queue_work(nvme_wq, &ctrl->async_event_work);
4132 }
4133
nvme_aer_type(u32 result)4134 static u32 nvme_aer_type(u32 result)
4135 {
4136 return result & 0x7;
4137 }
4138
nvme_aer_subtype(u32 result)4139 static u32 nvme_aer_subtype(u32 result)
4140 {
4141 return (result & 0xff00) >> 8;
4142 }
4143
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4144 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4145 {
4146 u32 aer_notice_type = nvme_aer_subtype(result);
4147 bool requeue = true;
4148
4149 switch (aer_notice_type) {
4150 case NVME_AER_NOTICE_NS_CHANGED:
4151 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4152 nvme_queue_scan(ctrl);
4153 break;
4154 case NVME_AER_NOTICE_FW_ACT_STARTING:
4155 /*
4156 * We are (ab)using the RESETTING state to prevent subsequent
4157 * recovery actions from interfering with the controller's
4158 * firmware activation.
4159 */
4160 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4161 requeue = false;
4162 queue_work(nvme_wq, &ctrl->fw_act_work);
4163 }
4164 break;
4165 #ifdef CONFIG_NVME_MULTIPATH
4166 case NVME_AER_NOTICE_ANA:
4167 if (!ctrl->ana_log_buf)
4168 break;
4169 queue_work(nvme_wq, &ctrl->ana_work);
4170 break;
4171 #endif
4172 case NVME_AER_NOTICE_DISC_CHANGED:
4173 ctrl->aen_result = result;
4174 break;
4175 default:
4176 dev_warn(ctrl->device, "async event result %08x\n", result);
4177 }
4178 return requeue;
4179 }
4180
nvme_handle_aer_persistent_error(struct nvme_ctrl * ctrl)4181 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4182 {
4183 dev_warn(ctrl->device, "resetting controller due to AER\n");
4184 nvme_reset_ctrl(ctrl);
4185 }
4186
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4187 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4188 volatile union nvme_result *res)
4189 {
4190 u32 result = le32_to_cpu(res->u32);
4191 u32 aer_type = nvme_aer_type(result);
4192 u32 aer_subtype = nvme_aer_subtype(result);
4193 bool requeue = true;
4194
4195 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4196 return;
4197
4198 trace_nvme_async_event(ctrl, result);
4199 switch (aer_type) {
4200 case NVME_AER_NOTICE:
4201 requeue = nvme_handle_aen_notice(ctrl, result);
4202 break;
4203 case NVME_AER_ERROR:
4204 /*
4205 * For a persistent internal error, don't run async_event_work
4206 * to submit a new AER. The controller reset will do it.
4207 */
4208 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4209 nvme_handle_aer_persistent_error(ctrl);
4210 return;
4211 }
4212 fallthrough;
4213 case NVME_AER_SMART:
4214 case NVME_AER_CSS:
4215 case NVME_AER_VS:
4216 ctrl->aen_result = result;
4217 break;
4218 default:
4219 break;
4220 }
4221
4222 if (requeue)
4223 queue_work(nvme_wq, &ctrl->async_event_work);
4224 }
4225 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4226
nvme_alloc_admin_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int cmd_size)4227 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4228 const struct blk_mq_ops *ops, unsigned int cmd_size)
4229 {
4230 int ret;
4231
4232 memset(set, 0, sizeof(*set));
4233 set->ops = ops;
4234 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4235 if (ctrl->ops->flags & NVME_F_FABRICS)
4236 /* Reserved for fabric connect and keep alive */
4237 set->reserved_tags = 2;
4238 set->numa_node = ctrl->numa_node;
4239 set->flags = BLK_MQ_F_NO_SCHED;
4240 if (ctrl->ops->flags & NVME_F_BLOCKING)
4241 set->flags |= BLK_MQ_F_BLOCKING;
4242 set->cmd_size = cmd_size;
4243 set->driver_data = ctrl;
4244 set->nr_hw_queues = 1;
4245 set->timeout = NVME_ADMIN_TIMEOUT;
4246 ret = blk_mq_alloc_tag_set(set);
4247 if (ret)
4248 return ret;
4249
4250 ctrl->admin_q = blk_mq_init_queue(set);
4251 if (IS_ERR(ctrl->admin_q)) {
4252 ret = PTR_ERR(ctrl->admin_q);
4253 goto out_free_tagset;
4254 }
4255
4256 if (ctrl->ops->flags & NVME_F_FABRICS) {
4257 ctrl->fabrics_q = blk_mq_init_queue(set);
4258 if (IS_ERR(ctrl->fabrics_q)) {
4259 ret = PTR_ERR(ctrl->fabrics_q);
4260 goto out_cleanup_admin_q;
4261 }
4262 }
4263
4264 ctrl->admin_tagset = set;
4265 return 0;
4266
4267 out_cleanup_admin_q:
4268 blk_mq_destroy_queue(ctrl->admin_q);
4269 blk_put_queue(ctrl->admin_q);
4270 out_free_tagset:
4271 blk_mq_free_tag_set(set);
4272 ctrl->admin_q = NULL;
4273 ctrl->fabrics_q = NULL;
4274 return ret;
4275 }
4276 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4277
nvme_remove_admin_tag_set(struct nvme_ctrl * ctrl)4278 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4279 {
4280 blk_mq_destroy_queue(ctrl->admin_q);
4281 blk_put_queue(ctrl->admin_q);
4282 if (ctrl->ops->flags & NVME_F_FABRICS) {
4283 blk_mq_destroy_queue(ctrl->fabrics_q);
4284 blk_put_queue(ctrl->fabrics_q);
4285 }
4286 blk_mq_free_tag_set(ctrl->admin_tagset);
4287 }
4288 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4289
nvme_alloc_io_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int nr_maps,unsigned int cmd_size)4290 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4291 const struct blk_mq_ops *ops, unsigned int nr_maps,
4292 unsigned int cmd_size)
4293 {
4294 int ret;
4295
4296 memset(set, 0, sizeof(*set));
4297 set->ops = ops;
4298 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4299 /*
4300 * Some Apple controllers requires tags to be unique across admin and
4301 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4302 */
4303 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4304 set->reserved_tags = NVME_AQ_DEPTH;
4305 else if (ctrl->ops->flags & NVME_F_FABRICS)
4306 /* Reserved for fabric connect */
4307 set->reserved_tags = 1;
4308 set->numa_node = ctrl->numa_node;
4309 set->flags = BLK_MQ_F_SHOULD_MERGE;
4310 if (ctrl->ops->flags & NVME_F_BLOCKING)
4311 set->flags |= BLK_MQ_F_BLOCKING;
4312 set->cmd_size = cmd_size,
4313 set->driver_data = ctrl;
4314 set->nr_hw_queues = ctrl->queue_count - 1;
4315 set->timeout = NVME_IO_TIMEOUT;
4316 set->nr_maps = nr_maps;
4317 ret = blk_mq_alloc_tag_set(set);
4318 if (ret)
4319 return ret;
4320
4321 if (ctrl->ops->flags & NVME_F_FABRICS) {
4322 ctrl->connect_q = blk_mq_init_queue(set);
4323 if (IS_ERR(ctrl->connect_q)) {
4324 ret = PTR_ERR(ctrl->connect_q);
4325 goto out_free_tag_set;
4326 }
4327 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4328 ctrl->connect_q);
4329 }
4330
4331 ctrl->tagset = set;
4332 return 0;
4333
4334 out_free_tag_set:
4335 blk_mq_free_tag_set(set);
4336 ctrl->connect_q = NULL;
4337 return ret;
4338 }
4339 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4340
nvme_remove_io_tag_set(struct nvme_ctrl * ctrl)4341 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4342 {
4343 if (ctrl->ops->flags & NVME_F_FABRICS) {
4344 blk_mq_destroy_queue(ctrl->connect_q);
4345 blk_put_queue(ctrl->connect_q);
4346 }
4347 blk_mq_free_tag_set(ctrl->tagset);
4348 }
4349 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4350
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4351 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4352 {
4353 nvme_mpath_stop(ctrl);
4354 nvme_auth_stop(ctrl);
4355 nvme_stop_keep_alive(ctrl);
4356 nvme_stop_failfast_work(ctrl);
4357 flush_work(&ctrl->async_event_work);
4358 cancel_work_sync(&ctrl->fw_act_work);
4359 if (ctrl->ops->stop_ctrl)
4360 ctrl->ops->stop_ctrl(ctrl);
4361 }
4362 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4363
nvme_start_ctrl(struct nvme_ctrl * ctrl)4364 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4365 {
4366 nvme_start_keep_alive(ctrl);
4367
4368 nvme_enable_aen(ctrl);
4369
4370 /*
4371 * persistent discovery controllers need to send indication to userspace
4372 * to re-read the discovery log page to learn about possible changes
4373 * that were missed. We identify persistent discovery controllers by
4374 * checking that they started once before, hence are reconnecting back.
4375 */
4376 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4377 nvme_discovery_ctrl(ctrl))
4378 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4379
4380 if (ctrl->queue_count > 1) {
4381 nvme_queue_scan(ctrl);
4382 nvme_unquiesce_io_queues(ctrl);
4383 nvme_mpath_update(ctrl);
4384 }
4385
4386 nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4387 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4388 }
4389 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4390
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)4391 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4392 {
4393 nvme_hwmon_exit(ctrl);
4394 nvme_fault_inject_fini(&ctrl->fault_inject);
4395 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4396 cdev_device_del(&ctrl->cdev, ctrl->device);
4397 nvme_put_ctrl(ctrl);
4398 }
4399 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4400
nvme_free_cels(struct nvme_ctrl * ctrl)4401 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4402 {
4403 struct nvme_effects_log *cel;
4404 unsigned long i;
4405
4406 xa_for_each(&ctrl->cels, i, cel) {
4407 xa_erase(&ctrl->cels, i);
4408 kfree(cel);
4409 }
4410
4411 xa_destroy(&ctrl->cels);
4412 }
4413
nvme_free_ctrl(struct device * dev)4414 static void nvme_free_ctrl(struct device *dev)
4415 {
4416 struct nvme_ctrl *ctrl =
4417 container_of(dev, struct nvme_ctrl, ctrl_device);
4418 struct nvme_subsystem *subsys = ctrl->subsys;
4419
4420 if (!subsys || ctrl->instance != subsys->instance)
4421 ida_free(&nvme_instance_ida, ctrl->instance);
4422
4423 nvme_free_cels(ctrl);
4424 nvme_mpath_uninit(ctrl);
4425 cleanup_srcu_struct(&ctrl->srcu);
4426 nvme_auth_stop(ctrl);
4427 nvme_auth_free(ctrl);
4428 __free_page(ctrl->discard_page);
4429 free_opal_dev(ctrl->opal_dev);
4430
4431 if (subsys) {
4432 mutex_lock(&nvme_subsystems_lock);
4433 list_del(&ctrl->subsys_entry);
4434 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4435 mutex_unlock(&nvme_subsystems_lock);
4436 }
4437
4438 ctrl->ops->free_ctrl(ctrl);
4439
4440 if (subsys)
4441 nvme_put_subsystem(subsys);
4442 }
4443
4444 /*
4445 * Initialize a NVMe controller structures. This needs to be called during
4446 * earliest initialization so that we have the initialized structured around
4447 * during probing.
4448 */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)4449 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4450 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4451 {
4452 int ret;
4453
4454 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4455 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4456 spin_lock_init(&ctrl->lock);
4457 mutex_init(&ctrl->namespaces_lock);
4458
4459 ret = init_srcu_struct(&ctrl->srcu);
4460 if (ret)
4461 return ret;
4462
4463 mutex_init(&ctrl->scan_lock);
4464 INIT_LIST_HEAD(&ctrl->namespaces);
4465 xa_init(&ctrl->cels);
4466 ctrl->dev = dev;
4467 ctrl->ops = ops;
4468 ctrl->quirks = quirks;
4469 ctrl->numa_node = NUMA_NO_NODE;
4470 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4471 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4472 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4473 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4474 init_waitqueue_head(&ctrl->state_wq);
4475
4476 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4477 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4478 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4479 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4480
4481 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4482 PAGE_SIZE);
4483 ctrl->discard_page = alloc_page(GFP_KERNEL);
4484 if (!ctrl->discard_page) {
4485 ret = -ENOMEM;
4486 goto out;
4487 }
4488
4489 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4490 if (ret < 0)
4491 goto out;
4492 ctrl->instance = ret;
4493
4494 device_initialize(&ctrl->ctrl_device);
4495 ctrl->device = &ctrl->ctrl_device;
4496 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4497 ctrl->instance);
4498 ctrl->device->class = nvme_class;
4499 ctrl->device->parent = ctrl->dev;
4500 if (ops->dev_attr_groups)
4501 ctrl->device->groups = ops->dev_attr_groups;
4502 else
4503 ctrl->device->groups = nvme_dev_attr_groups;
4504 ctrl->device->release = nvme_free_ctrl;
4505 dev_set_drvdata(ctrl->device, ctrl);
4506 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4507 if (ret)
4508 goto out_release_instance;
4509
4510 nvme_get_ctrl(ctrl);
4511 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4512 ctrl->cdev.owner = ops->module;
4513 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4514 if (ret)
4515 goto out_free_name;
4516
4517 /*
4518 * Initialize latency tolerance controls. The sysfs files won't
4519 * be visible to userspace unless the device actually supports APST.
4520 */
4521 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4522 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4523 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4524
4525 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4526 nvme_mpath_init_ctrl(ctrl);
4527 ret = nvme_auth_init_ctrl(ctrl);
4528 if (ret)
4529 goto out_free_cdev;
4530
4531 return 0;
4532 out_free_cdev:
4533 nvme_fault_inject_fini(&ctrl->fault_inject);
4534 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4535 cdev_device_del(&ctrl->cdev, ctrl->device);
4536 out_free_name:
4537 nvme_put_ctrl(ctrl);
4538 kfree_const(ctrl->device->kobj.name);
4539 out_release_instance:
4540 ida_free(&nvme_instance_ida, ctrl->instance);
4541 out:
4542 if (ctrl->discard_page)
4543 __free_page(ctrl->discard_page);
4544 cleanup_srcu_struct(&ctrl->srcu);
4545 return ret;
4546 }
4547 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4548
4549 /* let I/O to all namespaces fail in preparation for surprise removal */
nvme_mark_namespaces_dead(struct nvme_ctrl * ctrl)4550 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4551 {
4552 struct nvme_ns *ns;
4553 int srcu_idx;
4554
4555 srcu_idx = srcu_read_lock(&ctrl->srcu);
4556 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4557 srcu_read_lock_held(&ctrl->srcu))
4558 blk_mark_disk_dead(ns->disk);
4559 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4560 }
4561 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4562
nvme_unfreeze(struct nvme_ctrl * ctrl)4563 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4564 {
4565 struct nvme_ns *ns;
4566 int srcu_idx;
4567
4568 srcu_idx = srcu_read_lock(&ctrl->srcu);
4569 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4570 srcu_read_lock_held(&ctrl->srcu))
4571 blk_mq_unfreeze_queue(ns->queue);
4572 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4573 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4574 }
4575 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4576
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)4577 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4578 {
4579 struct nvme_ns *ns;
4580 int srcu_idx;
4581
4582 srcu_idx = srcu_read_lock(&ctrl->srcu);
4583 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4584 srcu_read_lock_held(&ctrl->srcu)) {
4585 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4586 if (timeout <= 0)
4587 break;
4588 }
4589 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4590 return timeout;
4591 }
4592 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4593
nvme_wait_freeze(struct nvme_ctrl * ctrl)4594 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4595 {
4596 struct nvme_ns *ns;
4597 int srcu_idx;
4598
4599 srcu_idx = srcu_read_lock(&ctrl->srcu);
4600 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4601 srcu_read_lock_held(&ctrl->srcu))
4602 blk_mq_freeze_queue_wait(ns->queue);
4603 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4604 }
4605 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4606
nvme_start_freeze(struct nvme_ctrl * ctrl)4607 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4608 {
4609 struct nvme_ns *ns;
4610 int srcu_idx;
4611
4612 set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4613 srcu_idx = srcu_read_lock(&ctrl->srcu);
4614 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4615 srcu_read_lock_held(&ctrl->srcu))
4616 blk_freeze_queue_start(ns->queue);
4617 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4618 }
4619 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4620
nvme_quiesce_io_queues(struct nvme_ctrl * ctrl)4621 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4622 {
4623 if (!ctrl->tagset)
4624 return;
4625 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4626 blk_mq_quiesce_tagset(ctrl->tagset);
4627 else
4628 blk_mq_wait_quiesce_done(ctrl->tagset);
4629 }
4630 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4631
nvme_unquiesce_io_queues(struct nvme_ctrl * ctrl)4632 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4633 {
4634 if (!ctrl->tagset)
4635 return;
4636 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4637 blk_mq_unquiesce_tagset(ctrl->tagset);
4638 }
4639 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4640
nvme_quiesce_admin_queue(struct nvme_ctrl * ctrl)4641 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4642 {
4643 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4644 blk_mq_quiesce_queue(ctrl->admin_q);
4645 else
4646 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4647 }
4648 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4649
nvme_unquiesce_admin_queue(struct nvme_ctrl * ctrl)4650 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4651 {
4652 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4653 blk_mq_unquiesce_queue(ctrl->admin_q);
4654 }
4655 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4656
nvme_sync_io_queues(struct nvme_ctrl * ctrl)4657 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4658 {
4659 struct nvme_ns *ns;
4660 int srcu_idx;
4661
4662 srcu_idx = srcu_read_lock(&ctrl->srcu);
4663 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4664 srcu_read_lock_held(&ctrl->srcu))
4665 blk_sync_queue(ns->queue);
4666 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4667 }
4668 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4669
nvme_sync_queues(struct nvme_ctrl * ctrl)4670 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4671 {
4672 nvme_sync_io_queues(ctrl);
4673 if (ctrl->admin_q)
4674 blk_sync_queue(ctrl->admin_q);
4675 }
4676 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4677
nvme_ctrl_from_file(struct file * file)4678 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4679 {
4680 if (file->f_op != &nvme_dev_fops)
4681 return NULL;
4682 return file->private_data;
4683 }
4684 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4685
4686 /*
4687 * Check we didn't inadvertently grow the command structure sizes:
4688 */
_nvme_check_size(void)4689 static inline void _nvme_check_size(void)
4690 {
4691 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4692 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4693 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4694 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4695 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4696 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4697 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4698 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4699 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4700 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4701 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4702 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4703 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4704 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4705 NVME_IDENTIFY_DATA_SIZE);
4706 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4707 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4708 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4709 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4710 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4711 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4712 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4713 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4714 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4715 }
4716
4717
nvme_core_init(void)4718 static int __init nvme_core_init(void)
4719 {
4720 int result = -ENOMEM;
4721
4722 _nvme_check_size();
4723
4724 nvme_wq = alloc_workqueue("nvme-wq",
4725 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4726 if (!nvme_wq)
4727 goto out;
4728
4729 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4730 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4731 if (!nvme_reset_wq)
4732 goto destroy_wq;
4733
4734 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4735 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4736 if (!nvme_delete_wq)
4737 goto destroy_reset_wq;
4738
4739 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4740 NVME_MINORS, "nvme");
4741 if (result < 0)
4742 goto destroy_delete_wq;
4743
4744 nvme_class = class_create("nvme");
4745 if (IS_ERR(nvme_class)) {
4746 result = PTR_ERR(nvme_class);
4747 goto unregister_chrdev;
4748 }
4749 nvme_class->dev_uevent = nvme_class_uevent;
4750
4751 nvme_subsys_class = class_create("nvme-subsystem");
4752 if (IS_ERR(nvme_subsys_class)) {
4753 result = PTR_ERR(nvme_subsys_class);
4754 goto destroy_class;
4755 }
4756
4757 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4758 "nvme-generic");
4759 if (result < 0)
4760 goto destroy_subsys_class;
4761
4762 nvme_ns_chr_class = class_create("nvme-generic");
4763 if (IS_ERR(nvme_ns_chr_class)) {
4764 result = PTR_ERR(nvme_ns_chr_class);
4765 goto unregister_generic_ns;
4766 }
4767
4768 result = nvme_init_auth();
4769 if (result)
4770 goto destroy_ns_chr;
4771 return 0;
4772
4773 destroy_ns_chr:
4774 class_destroy(nvme_ns_chr_class);
4775 unregister_generic_ns:
4776 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4777 destroy_subsys_class:
4778 class_destroy(nvme_subsys_class);
4779 destroy_class:
4780 class_destroy(nvme_class);
4781 unregister_chrdev:
4782 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4783 destroy_delete_wq:
4784 destroy_workqueue(nvme_delete_wq);
4785 destroy_reset_wq:
4786 destroy_workqueue(nvme_reset_wq);
4787 destroy_wq:
4788 destroy_workqueue(nvme_wq);
4789 out:
4790 return result;
4791 }
4792
nvme_core_exit(void)4793 static void __exit nvme_core_exit(void)
4794 {
4795 nvme_exit_auth();
4796 class_destroy(nvme_ns_chr_class);
4797 class_destroy(nvme_subsys_class);
4798 class_destroy(nvme_class);
4799 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4800 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4801 destroy_workqueue(nvme_delete_wq);
4802 destroy_workqueue(nvme_reset_wq);
4803 destroy_workqueue(nvme_wq);
4804 ida_destroy(&nvme_ns_chr_minor_ida);
4805 ida_destroy(&nvme_instance_ida);
4806 }
4807
4808 MODULE_LICENSE("GPL");
4809 MODULE_VERSION("1.0");
4810 module_init(nvme_core_init);
4811 module_exit(nvme_core_exit);
4812