1 /*
2 * ARM page table walking.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "exec/page-protection.h"
15 #include "cpu.h"
16 #include "internals.h"
17 #include "cpu-features.h"
18 #include "idau.h"
19
20 typedef struct S1Translate {
21 /*
22 * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
23 * Together with in_space, specifies the architectural translation regime.
24 */
25 ARMMMUIdx in_mmu_idx;
26 /*
27 * in_ptw_idx: specifies which mmuidx to use for the actual
28 * page table descriptor load operations. This will be one of the
29 * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
30 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
31 * this field is updated accordingly.
32 */
33 ARMMMUIdx in_ptw_idx;
34 /*
35 * in_space: the security space for this walk. This plus
36 * the in_mmu_idx specify the architectural translation regime.
37 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
38 * this field is updated accordingly.
39 *
40 * Note that the security space for the in_ptw_idx may be different
41 * from that for the in_mmu_idx. We do not need to explicitly track
42 * the in_ptw_idx security space because:
43 * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
44 * itself specifies the security space
45 * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
46 * space used for ptw reads is the same as that of the security
47 * space of the stage 1 translation for all cases except where
48 * stage 1 is Secure; in that case the only possibilities for
49 * the ptw read are Secure and NonSecure, and the in_ptw_idx
50 * value being Stage2 vs Stage2_S distinguishes those.
51 */
52 ARMSecuritySpace in_space;
53 /*
54 * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
55 * accesses will not update the guest page table access flags
56 * and will not change the state of the softmmu TLBs.
57 */
58 bool in_debug;
59 /*
60 * If this is stage 2 of a stage 1+2 page table walk, then this must
61 * be true if stage 1 is an EL0 access; otherwise this is ignored.
62 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
63 */
64 bool in_s1_is_el0;
65 bool out_rw;
66 bool out_be;
67 ARMSecuritySpace out_space;
68 hwaddr out_virt;
69 hwaddr out_phys;
70 void *out_host;
71 } S1Translate;
72
73 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
74 vaddr address,
75 MMUAccessType access_type, MemOp memop,
76 GetPhysAddrResult *result,
77 ARMMMUFaultInfo *fi);
78
79 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
80 vaddr address,
81 MMUAccessType access_type, MemOp memop,
82 GetPhysAddrResult *result,
83 ARMMMUFaultInfo *fi);
84
85 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
86 int user_rw, int prot_rw, int xn, int pxn,
87 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa);
88
89 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
90 static const uint8_t pamax_map[] = {
91 [0] = 32,
92 [1] = 36,
93 [2] = 40,
94 [3] = 42,
95 [4] = 44,
96 [5] = 48,
97 [6] = 52,
98 };
99
round_down_to_parange_index(uint8_t bit_size)100 uint8_t round_down_to_parange_index(uint8_t bit_size)
101 {
102 for (int i = ARRAY_SIZE(pamax_map) - 1; i >= 0; i--) {
103 if (pamax_map[i] <= bit_size) {
104 return i;
105 }
106 }
107 g_assert_not_reached();
108 }
109
round_down_to_parange_bit_size(uint8_t bit_size)110 uint8_t round_down_to_parange_bit_size(uint8_t bit_size)
111 {
112 return pamax_map[round_down_to_parange_index(bit_size)];
113 }
114
115 /*
116 * The cpu-specific constant value of PAMax; also used by hw/arm/virt.
117 * Note that machvirt_init calls this on a CPU that is inited but not realized!
118 */
arm_pamax(ARMCPU * cpu)119 unsigned int arm_pamax(ARMCPU *cpu)
120 {
121 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
122 unsigned int parange =
123 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
124
125 /*
126 * id_aa64mmfr0 is a read-only register so values outside of the
127 * supported mappings can be considered an implementation error.
128 */
129 assert(parange < ARRAY_SIZE(pamax_map));
130 return pamax_map[parange];
131 }
132
133 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
134 /* v7 or v8 with LPAE */
135 return 40;
136 }
137 /* Anything else */
138 return 32;
139 }
140
141 /*
142 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
143 */
stage_1_mmu_idx(ARMMMUIdx mmu_idx)144 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
145 {
146 switch (mmu_idx) {
147 case ARMMMUIdx_E10_0:
148 return ARMMMUIdx_Stage1_E0;
149 case ARMMMUIdx_E10_1:
150 return ARMMMUIdx_Stage1_E1;
151 case ARMMMUIdx_E10_1_PAN:
152 return ARMMMUIdx_Stage1_E1_PAN;
153 default:
154 return mmu_idx;
155 }
156 }
157
arm_stage1_mmu_idx(CPUARMState * env)158 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
159 {
160 return stage_1_mmu_idx(arm_mmu_idx(env));
161 }
162
163 /*
164 * Return where we should do ptw loads from for a stage 2 walk.
165 * This depends on whether the address we are looking up is a
166 * Secure IPA or a NonSecure IPA, which we know from whether this is
167 * Stage2 or Stage2_S.
168 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
169 */
ptw_idx_for_stage_2(CPUARMState * env,ARMMMUIdx stage2idx)170 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
171 {
172 bool s2walk_secure;
173
174 /*
175 * We're OK to check the current state of the CPU here because
176 * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
177 * changes.
178 * (2) there's no way to do a lookup that cares about Stage 2 for a
179 * different security state to the current one for AArch64, and AArch32
180 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
181 * an NS stage 1+2 lookup while the NS bit is 0.)
182 */
183 if (!arm_el_is_aa64(env, 3)) {
184 return ARMMMUIdx_Phys_NS;
185 }
186
187 switch (arm_security_space_below_el3(env)) {
188 case ARMSS_NonSecure:
189 return ARMMMUIdx_Phys_NS;
190 case ARMSS_Realm:
191 return ARMMMUIdx_Phys_Realm;
192 case ARMSS_Secure:
193 if (stage2idx == ARMMMUIdx_Stage2_S) {
194 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
195 } else {
196 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
197 }
198 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
199 default:
200 g_assert_not_reached();
201 }
202 }
203
regime_translation_big_endian(CPUARMState * env,ARMMMUIdx mmu_idx)204 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
205 {
206 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
207 }
208
209 /* Return the TTBR associated with this translation regime */
regime_ttbr(CPUARMState * env,ARMMMUIdx mmu_idx,int ttbrn)210 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
211 {
212 if (mmu_idx == ARMMMUIdx_Stage2) {
213 return env->cp15.vttbr_el2;
214 }
215 if (mmu_idx == ARMMMUIdx_Stage2_S) {
216 return env->cp15.vsttbr_el2;
217 }
218 if (ttbrn == 0) {
219 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
220 } else {
221 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
222 }
223 }
224
225 /* Return true if the specified stage of address translation is disabled */
regime_translation_disabled(CPUARMState * env,ARMMMUIdx mmu_idx,ARMSecuritySpace space)226 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
227 ARMSecuritySpace space)
228 {
229 uint64_t hcr_el2;
230
231 if (arm_feature(env, ARM_FEATURE_M)) {
232 bool is_secure = arm_space_is_secure(space);
233 switch (env->v7m.mpu_ctrl[is_secure] &
234 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
235 case R_V7M_MPU_CTRL_ENABLE_MASK:
236 /* Enabled, but not for HardFault and NMI */
237 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
238 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
239 /* Enabled for all cases */
240 return false;
241 case 0:
242 default:
243 /*
244 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
245 * we warned about that in armv7m_nvic.c when the guest set it.
246 */
247 return true;
248 }
249 }
250
251
252 switch (mmu_idx) {
253 case ARMMMUIdx_Stage2:
254 case ARMMMUIdx_Stage2_S:
255 /* HCR.DC means HCR.VM behaves as 1 */
256 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
257 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
258
259 case ARMMMUIdx_E10_0:
260 case ARMMMUIdx_E10_1:
261 case ARMMMUIdx_E10_1_PAN:
262 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
263 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
264 if (hcr_el2 & HCR_TGE) {
265 return true;
266 }
267 break;
268
269 case ARMMMUIdx_Stage1_E0:
270 case ARMMMUIdx_Stage1_E1:
271 case ARMMMUIdx_Stage1_E1_PAN:
272 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
273 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
274 if (hcr_el2 & HCR_DC) {
275 return true;
276 }
277 break;
278
279 case ARMMMUIdx_E20_0:
280 case ARMMMUIdx_E20_2:
281 case ARMMMUIdx_E20_2_PAN:
282 case ARMMMUIdx_E2:
283 case ARMMMUIdx_E3:
284 case ARMMMUIdx_E30_0:
285 case ARMMMUIdx_E30_3_PAN:
286 break;
287
288 case ARMMMUIdx_Phys_S:
289 case ARMMMUIdx_Phys_NS:
290 case ARMMMUIdx_Phys_Root:
291 case ARMMMUIdx_Phys_Realm:
292 /* No translation for physical address spaces. */
293 return true;
294
295 default:
296 g_assert_not_reached();
297 }
298
299 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
300 }
301
granule_protection_check(CPUARMState * env,uint64_t paddress,ARMSecuritySpace pspace,ARMMMUFaultInfo * fi)302 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
303 ARMSecuritySpace pspace,
304 ARMMMUFaultInfo *fi)
305 {
306 MemTxAttrs attrs = {
307 .secure = true,
308 .space = ARMSS_Root,
309 };
310 ARMCPU *cpu = env_archcpu(env);
311 uint64_t gpccr = env->cp15.gpccr_el3;
312 unsigned pps, pgs, l0gptsz, level = 0;
313 uint64_t tableaddr, pps_mask, align, entry, index;
314 AddressSpace *as;
315 MemTxResult result;
316 int gpi;
317
318 if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
319 return true;
320 }
321
322 /*
323 * GPC Priority 1 (R_GMGRR):
324 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
325 * the access fails as GPT walk fault at level 0.
326 */
327
328 /*
329 * Configuration of PPS to a value exceeding the implemented
330 * physical address size is invalid.
331 */
332 pps = FIELD_EX64(gpccr, GPCCR, PPS);
333 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
334 goto fault_walk;
335 }
336 pps = pamax_map[pps];
337 pps_mask = MAKE_64BIT_MASK(0, pps);
338
339 switch (FIELD_EX64(gpccr, GPCCR, SH)) {
340 case 0b10: /* outer shareable */
341 break;
342 case 0b00: /* non-shareable */
343 case 0b11: /* inner shareable */
344 /* Inner and Outer non-cacheable requires Outer shareable. */
345 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
346 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
347 goto fault_walk;
348 }
349 break;
350 default: /* reserved */
351 goto fault_walk;
352 }
353
354 switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
355 case 0b00: /* 4KB */
356 pgs = 12;
357 break;
358 case 0b01: /* 64KB */
359 pgs = 16;
360 break;
361 case 0b10: /* 16KB */
362 pgs = 14;
363 break;
364 default: /* reserved */
365 goto fault_walk;
366 }
367
368 /* Note this field is read-only and fixed at reset. */
369 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
370
371 /*
372 * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
373 * R_CPDSB: A NonSecure physical address input exceeding PPS
374 * does not experience any fault.
375 */
376 if (paddress & ~pps_mask) {
377 if (pspace == ARMSS_NonSecure) {
378 return true;
379 }
380 goto fault_size;
381 }
382
383 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
384 tableaddr = env->cp15.gptbr_el3 << 12;
385 if (tableaddr & ~pps_mask) {
386 goto fault_size;
387 }
388
389 /*
390 * BADDR is aligned per a function of PPS and L0GPTSZ.
391 * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
392 * unlike the RES0 bits of the GPT entries (R_XNKFZ).
393 */
394 align = MAX(pps - l0gptsz + 3, 12);
395 align = MAKE_64BIT_MASK(0, align);
396 tableaddr &= ~align;
397
398 as = arm_addressspace(env_cpu(env), attrs);
399
400 /* Level 0 lookup. */
401 index = extract64(paddress, l0gptsz, pps - l0gptsz);
402 tableaddr += index * 8;
403 entry = address_space_ldq_le(as, tableaddr, attrs, &result);
404 if (result != MEMTX_OK) {
405 goto fault_eabt;
406 }
407
408 switch (extract32(entry, 0, 4)) {
409 case 1: /* block descriptor */
410 if (entry >> 8) {
411 goto fault_walk; /* RES0 bits not 0 */
412 }
413 gpi = extract32(entry, 4, 4);
414 goto found;
415 case 3: /* table descriptor */
416 tableaddr = entry & ~0xf;
417 align = MAX(l0gptsz - pgs - 1, 12);
418 align = MAKE_64BIT_MASK(0, align);
419 if (tableaddr & (~pps_mask | align)) {
420 goto fault_walk; /* RES0 bits not 0 */
421 }
422 break;
423 default: /* invalid */
424 goto fault_walk;
425 }
426
427 /* Level 1 lookup */
428 level = 1;
429 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
430 tableaddr += index * 8;
431 entry = address_space_ldq_le(as, tableaddr, attrs, &result);
432 if (result != MEMTX_OK) {
433 goto fault_eabt;
434 }
435
436 switch (extract32(entry, 0, 4)) {
437 case 1: /* contiguous descriptor */
438 if (entry >> 10) {
439 goto fault_walk; /* RES0 bits not 0 */
440 }
441 /*
442 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
443 * and because we cannot invalidate by pa, and thus will always
444 * flush entire tlbs, we don't actually care about the range here
445 * and can simply extract the GPI as the result.
446 */
447 if (extract32(entry, 8, 2) == 0) {
448 goto fault_walk; /* reserved contig */
449 }
450 gpi = extract32(entry, 4, 4);
451 break;
452 default:
453 index = extract64(paddress, pgs, 4);
454 gpi = extract64(entry, index * 4, 4);
455 break;
456 }
457
458 found:
459 switch (gpi) {
460 case 0b0000: /* no access */
461 break;
462 case 0b1111: /* all access */
463 return true;
464 case 0b1000:
465 case 0b1001:
466 case 0b1010:
467 case 0b1011:
468 if (pspace == (gpi & 3)) {
469 return true;
470 }
471 break;
472 default:
473 goto fault_walk; /* reserved */
474 }
475
476 fi->gpcf = GPCF_Fail;
477 goto fault_common;
478 fault_eabt:
479 fi->gpcf = GPCF_EABT;
480 goto fault_common;
481 fault_size:
482 fi->gpcf = GPCF_AddressSize;
483 goto fault_common;
484 fault_walk:
485 fi->gpcf = GPCF_Walk;
486 fault_common:
487 fi->level = level;
488 fi->paddr = paddress;
489 fi->paddr_space = pspace;
490 return false;
491 }
492
S1_attrs_are_device(uint8_t attrs)493 static bool S1_attrs_are_device(uint8_t attrs)
494 {
495 /*
496 * This slightly under-decodes the MAIR_ELx field:
497 * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE;
498 * 0b0000dd1x is UNPREDICTABLE.
499 */
500 return (attrs & 0xf0) == 0;
501 }
502
S2_attrs_are_device(uint64_t hcr,uint8_t attrs)503 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
504 {
505 /*
506 * For an S1 page table walk, the stage 1 attributes are always
507 * some form of "this is Normal memory". The combined S1+S2
508 * attributes are therefore only Device if stage 2 specifies Device.
509 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
510 * ie when cacheattrs.attrs bits [3:2] are 0b00.
511 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
512 * when cacheattrs.attrs bit [2] is 0.
513 */
514 if (hcr & HCR_FWB) {
515 return (attrs & 0x4) == 0;
516 } else {
517 return (attrs & 0xc) == 0;
518 }
519 }
520
S2_security_space(ARMSecuritySpace s1_space,ARMMMUIdx s2_mmu_idx)521 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
522 ARMMMUIdx s2_mmu_idx)
523 {
524 /*
525 * Return the security space to use for stage 2 when doing
526 * the S1 page table descriptor load.
527 */
528 if (regime_is_stage2(s2_mmu_idx)) {
529 /*
530 * The security space for ptw reads is almost always the same
531 * as that of the security space of the stage 1 translation.
532 * The only exception is when stage 1 is Secure; in that case
533 * the ptw read might be to the Secure or the NonSecure space
534 * (but never Realm or Root), and the s2_mmu_idx tells us which.
535 * Root translations are always single-stage.
536 */
537 if (s1_space == ARMSS_Secure) {
538 return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
539 } else {
540 assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
541 assert(s1_space != ARMSS_Root);
542 return s1_space;
543 }
544 } else {
545 /* ptw loads are from phys: the mmu idx itself says which space */
546 return arm_phys_to_space(s2_mmu_idx);
547 }
548 }
549
fault_s1ns(ARMSecuritySpace space,ARMMMUIdx s2_mmu_idx)550 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
551 {
552 /*
553 * For stage 2 faults in Secure EL22, S1NS indicates
554 * whether the faulting IPA is in the Secure or NonSecure
555 * IPA space. For all other kinds of fault, it is false.
556 */
557 return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
558 && s2_mmu_idx == ARMMMUIdx_Stage2_S;
559 }
560
561 /* Translate a S1 pagetable walk through S2 if needed. */
S1_ptw_translate(CPUARMState * env,S1Translate * ptw,hwaddr addr,ARMMMUFaultInfo * fi)562 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
563 hwaddr addr, ARMMMUFaultInfo *fi)
564 {
565 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
566 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
567 uint8_t pte_attrs;
568
569 ptw->out_virt = addr;
570
571 if (unlikely(ptw->in_debug)) {
572 /*
573 * From gdbstub, do not use softmmu so that we don't modify the
574 * state of the cpu at all, including softmmu tlb contents.
575 */
576 ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
577 S1Translate s2ptw = {
578 .in_mmu_idx = s2_mmu_idx,
579 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
580 .in_space = s2_space,
581 .in_debug = true,
582 };
583 GetPhysAddrResult s2 = { };
584
585 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, 0, &s2, fi)) {
586 goto fail;
587 }
588
589 ptw->out_phys = s2.f.phys_addr;
590 pte_attrs = s2.cacheattrs.attrs;
591 ptw->out_host = NULL;
592 ptw->out_rw = false;
593 ptw->out_space = s2.f.attrs.space;
594 } else {
595 #ifdef CONFIG_TCG
596 CPUTLBEntryFull *full;
597 int flags;
598
599 env->tlb_fi = fi;
600 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
601 arm_to_core_mmu_idx(s2_mmu_idx),
602 &ptw->out_host, &full);
603 env->tlb_fi = NULL;
604
605 if (unlikely(flags & TLB_INVALID_MASK)) {
606 goto fail;
607 }
608 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
609 ptw->out_rw = full->prot & PAGE_WRITE;
610 pte_attrs = full->extra.arm.pte_attrs;
611 ptw->out_space = full->attrs.space;
612 #else
613 g_assert_not_reached();
614 #endif
615 }
616
617 if (regime_is_stage2(s2_mmu_idx)) {
618 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
619
620 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
621 /*
622 * PTW set and S1 walk touched S2 Device memory:
623 * generate Permission fault.
624 */
625 fi->type = ARMFault_Permission;
626 fi->s2addr = addr;
627 fi->stage2 = true;
628 fi->s1ptw = true;
629 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
630 return false;
631 }
632 }
633
634 ptw->out_be = regime_translation_big_endian(env, mmu_idx);
635 return true;
636
637 fail:
638 assert(fi->type != ARMFault_None);
639 if (fi->type == ARMFault_GPCFOnOutput) {
640 fi->type = ARMFault_GPCFOnWalk;
641 }
642 fi->s2addr = addr;
643 fi->stage2 = regime_is_stage2(s2_mmu_idx);
644 fi->s1ptw = fi->stage2;
645 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
646 return false;
647 }
648
649 /* All loads done in the course of a page table walk go through here. */
arm_ldl_ptw(CPUARMState * env,S1Translate * ptw,ARMMMUFaultInfo * fi)650 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
651 ARMMMUFaultInfo *fi)
652 {
653 CPUState *cs = env_cpu(env);
654 void *host = ptw->out_host;
655 uint32_t data;
656
657 if (likely(host)) {
658 /* Page tables are in RAM, and we have the host address. */
659 data = qatomic_read((uint32_t *)host);
660 if (ptw->out_be) {
661 data = be32_to_cpu(data);
662 } else {
663 data = le32_to_cpu(data);
664 }
665 } else {
666 /* Page tables are in MMIO. */
667 MemTxAttrs attrs = {
668 .space = ptw->out_space,
669 .secure = arm_space_is_secure(ptw->out_space),
670 };
671 AddressSpace *as = arm_addressspace(cs, attrs);
672 MemTxResult result = MEMTX_OK;
673
674 if (ptw->out_be) {
675 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
676 } else {
677 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
678 }
679 if (unlikely(result != MEMTX_OK)) {
680 fi->type = ARMFault_SyncExternalOnWalk;
681 fi->ea = arm_extabort_type(result);
682 return 0;
683 }
684 }
685 return data;
686 }
687
arm_ldq_ptw(CPUARMState * env,S1Translate * ptw,ARMMMUFaultInfo * fi)688 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
689 ARMMMUFaultInfo *fi)
690 {
691 CPUState *cs = env_cpu(env);
692 void *host = ptw->out_host;
693 uint64_t data;
694
695 if (likely(host)) {
696 /* Page tables are in RAM, and we have the host address. */
697 #ifdef CONFIG_ATOMIC64
698 data = qatomic_read__nocheck((uint64_t *)host);
699 if (ptw->out_be) {
700 data = be64_to_cpu(data);
701 } else {
702 data = le64_to_cpu(data);
703 }
704 #else
705 if (ptw->out_be) {
706 data = ldq_be_p(host);
707 } else {
708 data = ldq_le_p(host);
709 }
710 #endif
711 } else {
712 /* Page tables are in MMIO. */
713 MemTxAttrs attrs = {
714 .space = ptw->out_space,
715 .secure = arm_space_is_secure(ptw->out_space),
716 };
717 AddressSpace *as = arm_addressspace(cs, attrs);
718 MemTxResult result = MEMTX_OK;
719
720 if (ptw->out_be) {
721 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
722 } else {
723 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
724 }
725 if (unlikely(result != MEMTX_OK)) {
726 fi->type = ARMFault_SyncExternalOnWalk;
727 fi->ea = arm_extabort_type(result);
728 return 0;
729 }
730 }
731 return data;
732 }
733
arm_casq_ptw(CPUARMState * env,uint64_t old_val,uint64_t new_val,S1Translate * ptw,ARMMMUFaultInfo * fi)734 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
735 uint64_t new_val, S1Translate *ptw,
736 ARMMMUFaultInfo *fi)
737 {
738 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
739 uint64_t cur_val;
740 void *host = ptw->out_host;
741
742 if (unlikely(!host)) {
743 /* Page table in MMIO Memory Region */
744 CPUState *cs = env_cpu(env);
745 MemTxAttrs attrs = {
746 .space = ptw->out_space,
747 .secure = arm_space_is_secure(ptw->out_space),
748 };
749 AddressSpace *as = arm_addressspace(cs, attrs);
750 MemTxResult result = MEMTX_OK;
751 bool need_lock = !bql_locked();
752
753 if (need_lock) {
754 bql_lock();
755 }
756 if (ptw->out_be) {
757 cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
758 if (unlikely(result != MEMTX_OK)) {
759 fi->type = ARMFault_SyncExternalOnWalk;
760 fi->ea = arm_extabort_type(result);
761 if (need_lock) {
762 bql_unlock();
763 }
764 return old_val;
765 }
766 if (cur_val == old_val) {
767 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result);
768 if (unlikely(result != MEMTX_OK)) {
769 fi->type = ARMFault_SyncExternalOnWalk;
770 fi->ea = arm_extabort_type(result);
771 if (need_lock) {
772 bql_unlock();
773 }
774 return old_val;
775 }
776 cur_val = new_val;
777 }
778 } else {
779 cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
780 if (unlikely(result != MEMTX_OK)) {
781 fi->type = ARMFault_SyncExternalOnWalk;
782 fi->ea = arm_extabort_type(result);
783 if (need_lock) {
784 bql_unlock();
785 }
786 return old_val;
787 }
788 if (cur_val == old_val) {
789 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result);
790 if (unlikely(result != MEMTX_OK)) {
791 fi->type = ARMFault_SyncExternalOnWalk;
792 fi->ea = arm_extabort_type(result);
793 if (need_lock) {
794 bql_unlock();
795 }
796 return old_val;
797 }
798 cur_val = new_val;
799 }
800 }
801 if (need_lock) {
802 bql_unlock();
803 }
804 return cur_val;
805 }
806
807 /*
808 * Raising a stage2 Protection fault for an atomic update to a read-only
809 * page is delayed until it is certain that there is a change to make.
810 */
811 if (unlikely(!ptw->out_rw)) {
812 int flags;
813
814 env->tlb_fi = fi;
815 flags = probe_access_full_mmu(env, ptw->out_virt, 0,
816 MMU_DATA_STORE,
817 arm_to_core_mmu_idx(ptw->in_ptw_idx),
818 NULL, NULL);
819 env->tlb_fi = NULL;
820
821 if (unlikely(flags & TLB_INVALID_MASK)) {
822 /*
823 * We know this must be a stage 2 fault because the granule
824 * protection table does not separately track read and write
825 * permission, so all GPC faults are caught in S1_ptw_translate():
826 * we only get here for "readable but not writeable".
827 */
828 assert(fi->type != ARMFault_None);
829 fi->s2addr = ptw->out_virt;
830 fi->stage2 = true;
831 fi->s1ptw = true;
832 fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
833 return 0;
834 }
835
836 /* In case CAS mismatches and we loop, remember writability. */
837 ptw->out_rw = true;
838 }
839
840 if (ptw->out_be) {
841 old_val = cpu_to_be64(old_val);
842 new_val = cpu_to_be64(new_val);
843 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
844 cur_val = be64_to_cpu(cur_val);
845 } else {
846 old_val = cpu_to_le64(old_val);
847 new_val = cpu_to_le64(new_val);
848 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
849 cur_val = le64_to_cpu(cur_val);
850 }
851 return cur_val;
852 #else
853 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
854 g_assert_not_reached();
855 #endif
856 }
857
get_level1_table_address(CPUARMState * env,ARMMMUIdx mmu_idx,uint32_t * table,uint32_t address)858 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
859 uint32_t *table, uint32_t address)
860 {
861 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
862 uint64_t tcr = regime_tcr(env, mmu_idx);
863 int maskshift = extract32(tcr, 0, 3);
864 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
865 uint32_t base_mask;
866
867 if (address & mask) {
868 if (tcr & TTBCR_PD1) {
869 /* Translation table walk disabled for TTBR1 */
870 return false;
871 }
872 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
873 } else {
874 if (tcr & TTBCR_PD0) {
875 /* Translation table walk disabled for TTBR0 */
876 return false;
877 }
878 base_mask = ~((uint32_t)0x3fffu >> maskshift);
879 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
880 }
881 *table |= (address >> 18) & 0x3ffc;
882 return true;
883 }
884
885 /*
886 * Translate section/page access permissions to page R/W protection flags
887 * @env: CPUARMState
888 * @mmu_idx: MMU index indicating required translation regime
889 * @ap: The 3-bit access permissions (AP[2:0])
890 * @domain_prot: The 2-bit domain access permissions
891 * @is_user: TRUE if accessing from PL0
892 */
ap_to_rw_prot_is_user(CPUARMState * env,ARMMMUIdx mmu_idx,int ap,int domain_prot,bool is_user)893 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
894 int ap, int domain_prot, bool is_user)
895 {
896 if (domain_prot == 3) {
897 return PAGE_READ | PAGE_WRITE;
898 }
899
900 switch (ap) {
901 case 0:
902 if (arm_feature(env, ARM_FEATURE_V7)) {
903 return 0;
904 }
905 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
906 case SCTLR_S:
907 return is_user ? 0 : PAGE_READ;
908 case SCTLR_R:
909 return PAGE_READ;
910 default:
911 return 0;
912 }
913 case 1:
914 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
915 case 2:
916 if (is_user) {
917 return PAGE_READ;
918 } else {
919 return PAGE_READ | PAGE_WRITE;
920 }
921 case 3:
922 return PAGE_READ | PAGE_WRITE;
923 case 4: /* Reserved. */
924 return 0;
925 case 5:
926 return is_user ? 0 : PAGE_READ;
927 case 6:
928 return PAGE_READ;
929 case 7:
930 if (!arm_feature(env, ARM_FEATURE_V6K)) {
931 return 0;
932 }
933 return PAGE_READ;
934 default:
935 g_assert_not_reached();
936 }
937 }
938
939 /*
940 * Translate section/page access permissions to page R/W protection flags
941 * @env: CPUARMState
942 * @mmu_idx: MMU index indicating required translation regime
943 * @ap: The 3-bit access permissions (AP[2:0])
944 * @domain_prot: The 2-bit domain access permissions
945 */
ap_to_rw_prot(CPUARMState * env,ARMMMUIdx mmu_idx,int ap,int domain_prot)946 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
947 int ap, int domain_prot)
948 {
949 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
950 regime_is_user(env, mmu_idx));
951 }
952
953 /*
954 * Translate section/page access permissions to page R/W protection flags.
955 * @ap: The 2-bit simple AP (AP[2:1])
956 * @is_user: TRUE if accessing from PL0
957 */
simple_ap_to_rw_prot_is_user(int ap,bool is_user)958 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
959 {
960 switch (ap) {
961 case 0:
962 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
963 case 1:
964 return PAGE_READ | PAGE_WRITE;
965 case 2:
966 return is_user ? 0 : PAGE_READ;
967 case 3:
968 return PAGE_READ;
969 default:
970 g_assert_not_reached();
971 }
972 }
973
simple_ap_to_rw_prot(CPUARMState * env,ARMMMUIdx mmu_idx,int ap)974 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
975 {
976 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
977 }
978
get_phys_addr_v5(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)979 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
980 uint32_t address, MMUAccessType access_type,
981 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
982 {
983 int level = 1;
984 uint32_t table;
985 uint32_t desc;
986 int type;
987 int ap;
988 int domain = 0;
989 int domain_prot;
990 hwaddr phys_addr;
991 uint32_t dacr;
992
993 /* Pagetable walk. */
994 /* Lookup l1 descriptor. */
995 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
996 /* Section translation fault if page walk is disabled by PD0 or PD1 */
997 fi->type = ARMFault_Translation;
998 goto do_fault;
999 }
1000 if (!S1_ptw_translate(env, ptw, table, fi)) {
1001 goto do_fault;
1002 }
1003 desc = arm_ldl_ptw(env, ptw, fi);
1004 if (fi->type != ARMFault_None) {
1005 goto do_fault;
1006 }
1007 type = (desc & 3);
1008 domain = (desc >> 5) & 0x0f;
1009 if (regime_el(env, ptw->in_mmu_idx) == 1) {
1010 dacr = env->cp15.dacr_ns;
1011 } else {
1012 dacr = env->cp15.dacr_s;
1013 }
1014 domain_prot = (dacr >> (domain * 2)) & 3;
1015 if (type == 0) {
1016 /* Section translation fault. */
1017 fi->type = ARMFault_Translation;
1018 goto do_fault;
1019 }
1020 if (type != 2) {
1021 level = 2;
1022 }
1023 if (domain_prot == 0 || domain_prot == 2) {
1024 fi->type = ARMFault_Domain;
1025 goto do_fault;
1026 }
1027 if (type == 2) {
1028 /* 1Mb section. */
1029 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1030 ap = (desc >> 10) & 3;
1031 result->f.lg_page_size = 20; /* 1MB */
1032 } else {
1033 /* Lookup l2 entry. */
1034 if (type == 1) {
1035 /* Coarse pagetable. */
1036 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1037 } else {
1038 /* Fine pagetable. */
1039 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1040 }
1041 if (!S1_ptw_translate(env, ptw, table, fi)) {
1042 goto do_fault;
1043 }
1044 desc = arm_ldl_ptw(env, ptw, fi);
1045 if (fi->type != ARMFault_None) {
1046 goto do_fault;
1047 }
1048 switch (desc & 3) {
1049 case 0: /* Page translation fault. */
1050 fi->type = ARMFault_Translation;
1051 goto do_fault;
1052 case 1: /* 64k page. */
1053 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1054 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1055 result->f.lg_page_size = 16;
1056 break;
1057 case 2: /* 4k page. */
1058 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1059 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
1060 result->f.lg_page_size = 12;
1061 break;
1062 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
1063 if (type == 1) {
1064 /* ARMv6/XScale extended small page format */
1065 if (arm_feature(env, ARM_FEATURE_XSCALE)
1066 || arm_feature(env, ARM_FEATURE_V6)) {
1067 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1068 result->f.lg_page_size = 12;
1069 } else {
1070 /*
1071 * UNPREDICTABLE in ARMv5; we choose to take a
1072 * page translation fault.
1073 */
1074 fi->type = ARMFault_Translation;
1075 goto do_fault;
1076 }
1077 } else {
1078 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1079 result->f.lg_page_size = 10;
1080 }
1081 ap = (desc >> 4) & 3;
1082 break;
1083 default:
1084 /* Never happens, but compiler isn't smart enough to tell. */
1085 g_assert_not_reached();
1086 }
1087 }
1088 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1089 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1090 if (!(result->f.prot & (1 << access_type))) {
1091 /* Access permission fault. */
1092 fi->type = ARMFault_Permission;
1093 goto do_fault;
1094 }
1095 result->f.phys_addr = phys_addr;
1096 return false;
1097 do_fault:
1098 fi->domain = domain;
1099 fi->level = level;
1100 return true;
1101 }
1102
get_phys_addr_v6(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)1103 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1104 uint32_t address, MMUAccessType access_type,
1105 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1106 {
1107 ARMCPU *cpu = env_archcpu(env);
1108 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1109 int level = 1;
1110 uint32_t table;
1111 uint32_t desc;
1112 uint32_t xn;
1113 uint32_t pxn = 0;
1114 int type;
1115 int ap;
1116 int domain = 0;
1117 int domain_prot;
1118 hwaddr phys_addr;
1119 uint32_t dacr;
1120 bool ns;
1121 ARMSecuritySpace out_space;
1122
1123 /* Pagetable walk. */
1124 /* Lookup l1 descriptor. */
1125 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1126 /* Section translation fault if page walk is disabled by PD0 or PD1 */
1127 fi->type = ARMFault_Translation;
1128 goto do_fault;
1129 }
1130 if (!S1_ptw_translate(env, ptw, table, fi)) {
1131 goto do_fault;
1132 }
1133 desc = arm_ldl_ptw(env, ptw, fi);
1134 if (fi->type != ARMFault_None) {
1135 goto do_fault;
1136 }
1137 type = (desc & 3);
1138 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1139 /* Section translation fault, or attempt to use the encoding
1140 * which is Reserved on implementations without PXN.
1141 */
1142 fi->type = ARMFault_Translation;
1143 goto do_fault;
1144 }
1145 if ((type == 1) || !(desc & (1 << 18))) {
1146 /* Page or Section. */
1147 domain = (desc >> 5) & 0x0f;
1148 }
1149 if (regime_el(env, mmu_idx) == 1) {
1150 dacr = env->cp15.dacr_ns;
1151 } else {
1152 dacr = env->cp15.dacr_s;
1153 }
1154 if (type == 1) {
1155 level = 2;
1156 }
1157 domain_prot = (dacr >> (domain * 2)) & 3;
1158 if (domain_prot == 0 || domain_prot == 2) {
1159 /* Section or Page domain fault */
1160 fi->type = ARMFault_Domain;
1161 goto do_fault;
1162 }
1163 if (type != 1) {
1164 if (desc & (1 << 18)) {
1165 /* Supersection. */
1166 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1167 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1168 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1169 result->f.lg_page_size = 24; /* 16MB */
1170 } else {
1171 /* Section. */
1172 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1173 result->f.lg_page_size = 20; /* 1MB */
1174 }
1175 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1176 xn = desc & (1 << 4);
1177 pxn = desc & 1;
1178 ns = extract32(desc, 19, 1);
1179 } else {
1180 if (cpu_isar_feature(aa32_pxn, cpu)) {
1181 pxn = (desc >> 2) & 1;
1182 }
1183 ns = extract32(desc, 3, 1);
1184 /* Lookup l2 entry. */
1185 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1186 if (!S1_ptw_translate(env, ptw, table, fi)) {
1187 goto do_fault;
1188 }
1189 desc = arm_ldl_ptw(env, ptw, fi);
1190 if (fi->type != ARMFault_None) {
1191 goto do_fault;
1192 }
1193 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1194 switch (desc & 3) {
1195 case 0: /* Page translation fault. */
1196 fi->type = ARMFault_Translation;
1197 goto do_fault;
1198 case 1: /* 64k page. */
1199 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1200 xn = desc & (1 << 15);
1201 result->f.lg_page_size = 16;
1202 break;
1203 case 2: case 3: /* 4k page. */
1204 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1205 xn = desc & 1;
1206 result->f.lg_page_size = 12;
1207 break;
1208 default:
1209 /* Never happens, but compiler isn't smart enough to tell. */
1210 g_assert_not_reached();
1211 }
1212 }
1213 out_space = ptw->in_space;
1214 if (ns) {
1215 /*
1216 * The NS bit will (as required by the architecture) have no effect if
1217 * the CPU doesn't support TZ or this is a non-secure translation
1218 * regime, because the output space will already be non-secure.
1219 */
1220 out_space = ARMSS_NonSecure;
1221 }
1222 if (domain_prot == 3) {
1223 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1224 } else {
1225 int user_rw, prot_rw;
1226
1227 if (arm_feature(env, ARM_FEATURE_V6K) &&
1228 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1229 /* The simplified model uses AP[0] as an access control bit. */
1230 if ((ap & 1) == 0) {
1231 /* Access flag fault. */
1232 fi->type = ARMFault_AccessFlag;
1233 goto do_fault;
1234 }
1235 prot_rw = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1236 user_rw = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1237 } else {
1238 prot_rw = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1239 user_rw = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1240 }
1241
1242 result->f.prot = get_S1prot(env, mmu_idx, false, user_rw, prot_rw,
1243 xn, pxn, result->f.attrs.space, out_space);
1244 if (!(result->f.prot & (1 << access_type))) {
1245 /* Access permission fault. */
1246 fi->type = ARMFault_Permission;
1247 goto do_fault;
1248 }
1249 }
1250 result->f.attrs.space = out_space;
1251 result->f.attrs.secure = arm_space_is_secure(out_space);
1252 result->f.phys_addr = phys_addr;
1253 return false;
1254 do_fault:
1255 fi->domain = domain;
1256 fi->level = level;
1257 return true;
1258 }
1259
1260 /*
1261 * Translate S2 section/page access permissions to protection flags
1262 * @env: CPUARMState
1263 * @s2ap: The 2-bit stage2 access permissions (S2AP)
1264 * @xn: XN (execute-never) bits
1265 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1266 */
get_S2prot_noexecute(int s2ap)1267 static int get_S2prot_noexecute(int s2ap)
1268 {
1269 int prot = 0;
1270
1271 if (s2ap & 1) {
1272 prot |= PAGE_READ;
1273 }
1274 if (s2ap & 2) {
1275 prot |= PAGE_WRITE;
1276 }
1277 return prot;
1278 }
1279
get_S2prot(CPUARMState * env,int s2ap,int xn,bool s1_is_el0)1280 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1281 {
1282 int prot = get_S2prot_noexecute(s2ap);
1283
1284 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1285 switch (xn) {
1286 case 0:
1287 prot |= PAGE_EXEC;
1288 break;
1289 case 1:
1290 if (s1_is_el0) {
1291 prot |= PAGE_EXEC;
1292 }
1293 break;
1294 case 2:
1295 break;
1296 case 3:
1297 if (!s1_is_el0) {
1298 prot |= PAGE_EXEC;
1299 }
1300 break;
1301 default:
1302 g_assert_not_reached();
1303 }
1304 } else {
1305 if (!extract32(xn, 1, 1)) {
1306 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1307 prot |= PAGE_EXEC;
1308 }
1309 }
1310 }
1311 return prot;
1312 }
1313
1314 /*
1315 * Translate section/page access permissions to protection flags
1316 * @env: CPUARMState
1317 * @mmu_idx: MMU index indicating required translation regime
1318 * @is_aa64: TRUE if AArch64
1319 * @user_rw: Translated AP for user access
1320 * @prot_rw: Translated AP for privileged access
1321 * @xn: XN (execute-never) bit
1322 * @pxn: PXN (privileged execute-never) bit
1323 * @in_pa: The original input pa space
1324 * @out_pa: The output pa space, modified by NSTable, NS, and NSE
1325 */
get_S1prot(CPUARMState * env,ARMMMUIdx mmu_idx,bool is_aa64,int user_rw,int prot_rw,int xn,int pxn,ARMSecuritySpace in_pa,ARMSecuritySpace out_pa)1326 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1327 int user_rw, int prot_rw, int xn, int pxn,
1328 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1329 {
1330 ARMCPU *cpu = env_archcpu(env);
1331 bool is_user = regime_is_user(env, mmu_idx);
1332 bool have_wxn;
1333 int wxn = 0;
1334
1335 assert(!regime_is_stage2(mmu_idx));
1336
1337 if (is_user) {
1338 prot_rw = user_rw;
1339 } else {
1340 /*
1341 * PAN controls can forbid data accesses but don't affect insn fetch.
1342 * Plain PAN forbids data accesses if EL0 has data permissions;
1343 * PAN3 forbids data accesses if EL0 has either data or exec perms.
1344 * Note that for AArch64 the 'user can exec' case is exactly !xn.
1345 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1346 * do not affect EPAN.
1347 */
1348 if (user_rw && regime_is_pan(env, mmu_idx)) {
1349 prot_rw = 0;
1350 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1351 regime_is_pan(env, mmu_idx) &&
1352 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1353 prot_rw = 0;
1354 }
1355 }
1356
1357 if (in_pa != out_pa) {
1358 switch (in_pa) {
1359 case ARMSS_Root:
1360 /*
1361 * R_ZWRVD: permission fault for insn fetched from non-Root,
1362 * I_WWBFB: SIF has no effect in EL3.
1363 */
1364 return prot_rw;
1365 case ARMSS_Realm:
1366 /*
1367 * R_PKTDS: permission fault for insn fetched from non-Realm,
1368 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0
1369 * happens during any stage2 translation.
1370 */
1371 switch (mmu_idx) {
1372 case ARMMMUIdx_E2:
1373 case ARMMMUIdx_E20_0:
1374 case ARMMMUIdx_E20_2:
1375 case ARMMMUIdx_E20_2_PAN:
1376 return prot_rw;
1377 default:
1378 break;
1379 }
1380 break;
1381 case ARMSS_Secure:
1382 if (env->cp15.scr_el3 & SCR_SIF) {
1383 return prot_rw;
1384 }
1385 break;
1386 default:
1387 /* Input NonSecure must have output NonSecure. */
1388 g_assert_not_reached();
1389 }
1390 }
1391
1392 /* TODO have_wxn should be replaced with
1393 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1394 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1395 * compatible processors have EL2, which is required for [U]WXN.
1396 */
1397 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1398
1399 if (have_wxn) {
1400 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1401 }
1402
1403 if (is_aa64) {
1404 if (regime_has_2_ranges(mmu_idx) && !is_user) {
1405 xn = pxn || (user_rw & PAGE_WRITE);
1406 }
1407 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1408 switch (regime_el(env, mmu_idx)) {
1409 case 1:
1410 case 3:
1411 if (is_user) {
1412 xn = xn || !(user_rw & PAGE_READ);
1413 } else {
1414 int uwxn = 0;
1415 if (have_wxn) {
1416 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1417 }
1418 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1419 (uwxn && (user_rw & PAGE_WRITE));
1420 }
1421 break;
1422 case 2:
1423 break;
1424 }
1425 } else {
1426 xn = wxn = 0;
1427 }
1428
1429 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1430 return prot_rw;
1431 }
1432 return prot_rw | PAGE_EXEC;
1433 }
1434
aa32_va_parameters(CPUARMState * env,uint32_t va,ARMMMUIdx mmu_idx)1435 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1436 ARMMMUIdx mmu_idx)
1437 {
1438 uint64_t tcr = regime_tcr(env, mmu_idx);
1439 uint32_t el = regime_el(env, mmu_idx);
1440 int select, tsz;
1441 bool epd, hpd;
1442
1443 assert(mmu_idx != ARMMMUIdx_Stage2_S);
1444
1445 if (mmu_idx == ARMMMUIdx_Stage2) {
1446 /* VTCR */
1447 bool sext = extract32(tcr, 4, 1);
1448 bool sign = extract32(tcr, 3, 1);
1449
1450 /*
1451 * If the sign-extend bit is not the same as t0sz[3], the result
1452 * is unpredictable. Flag this as a guest error.
1453 */
1454 if (sign != sext) {
1455 qemu_log_mask(LOG_GUEST_ERROR,
1456 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1457 }
1458 tsz = sextract32(tcr, 0, 4) + 8;
1459 select = 0;
1460 hpd = false;
1461 epd = false;
1462 } else if (el == 2) {
1463 /* HTCR */
1464 tsz = extract32(tcr, 0, 3);
1465 select = 0;
1466 hpd = extract64(tcr, 24, 1);
1467 epd = false;
1468 } else {
1469 int t0sz = extract32(tcr, 0, 3);
1470 int t1sz = extract32(tcr, 16, 3);
1471
1472 if (t1sz == 0) {
1473 select = va > (0xffffffffu >> t0sz);
1474 } else {
1475 /* Note that we will detect errors later. */
1476 select = va >= ~(0xffffffffu >> t1sz);
1477 }
1478 if (!select) {
1479 tsz = t0sz;
1480 epd = extract32(tcr, 7, 1);
1481 hpd = extract64(tcr, 41, 1);
1482 } else {
1483 tsz = t1sz;
1484 epd = extract32(tcr, 23, 1);
1485 hpd = extract64(tcr, 42, 1);
1486 }
1487 /* For aarch32, hpd0 is not enabled without t2e as well. */
1488 hpd &= extract32(tcr, 6, 1);
1489 }
1490
1491 return (ARMVAParameters) {
1492 .tsz = tsz,
1493 .select = select,
1494 .epd = epd,
1495 .hpd = hpd,
1496 };
1497 }
1498
1499 /*
1500 * check_s2_mmu_setup
1501 * @cpu: ARMCPU
1502 * @is_aa64: True if the translation regime is in AArch64 state
1503 * @tcr: VTCR_EL2 or VSTCR_EL2
1504 * @ds: Effective value of TCR.DS.
1505 * @iasize: Bitsize of IPAs
1506 * @stride: Page-table stride (See the ARM ARM)
1507 *
1508 * Decode the starting level of the S2 lookup, returning INT_MIN if
1509 * the configuration is invalid.
1510 */
check_s2_mmu_setup(ARMCPU * cpu,bool is_aa64,uint64_t tcr,bool ds,int iasize,int stride)1511 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1512 bool ds, int iasize, int stride)
1513 {
1514 int sl0, sl2, startlevel, granulebits, levels;
1515 int s1_min_iasize, s1_max_iasize;
1516
1517 sl0 = extract32(tcr, 6, 2);
1518 if (is_aa64) {
1519 /*
1520 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1521 * so interleave AArch64.S2StartLevel.
1522 */
1523 switch (stride) {
1524 case 9: /* 4KB */
1525 /* SL2 is RES0 unless DS=1 & 4KB granule. */
1526 sl2 = extract64(tcr, 33, 1);
1527 if (ds && sl2) {
1528 if (sl0 != 0) {
1529 goto fail;
1530 }
1531 startlevel = -1;
1532 } else {
1533 startlevel = 2 - sl0;
1534 switch (sl0) {
1535 case 2:
1536 if (arm_pamax(cpu) < 44) {
1537 goto fail;
1538 }
1539 break;
1540 case 3:
1541 if (!cpu_isar_feature(aa64_st, cpu)) {
1542 goto fail;
1543 }
1544 startlevel = 3;
1545 break;
1546 }
1547 }
1548 break;
1549 case 11: /* 16KB */
1550 switch (sl0) {
1551 case 2:
1552 if (arm_pamax(cpu) < 42) {
1553 goto fail;
1554 }
1555 break;
1556 case 3:
1557 if (!ds) {
1558 goto fail;
1559 }
1560 break;
1561 }
1562 startlevel = 3 - sl0;
1563 break;
1564 case 13: /* 64KB */
1565 switch (sl0) {
1566 case 2:
1567 if (arm_pamax(cpu) < 44) {
1568 goto fail;
1569 }
1570 break;
1571 case 3:
1572 goto fail;
1573 }
1574 startlevel = 3 - sl0;
1575 break;
1576 default:
1577 g_assert_not_reached();
1578 }
1579 } else {
1580 /*
1581 * Things are simpler for AArch32 EL2, with only 4k pages.
1582 * There is no separate S2InvalidSL function, but AArch32.S2Walk
1583 * begins with walkparms.sl0 in {'1x'}.
1584 */
1585 assert(stride == 9);
1586 if (sl0 >= 2) {
1587 goto fail;
1588 }
1589 startlevel = 2 - sl0;
1590 }
1591
1592 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */
1593 levels = 3 - startlevel;
1594 granulebits = stride + 3;
1595
1596 s1_min_iasize = levels * stride + granulebits + 1;
1597 s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1598
1599 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1600 return startlevel;
1601 }
1602
1603 fail:
1604 return INT_MIN;
1605 }
1606
lpae_block_desc_valid(ARMCPU * cpu,bool ds,ARMGranuleSize gran,int level)1607 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
1608 ARMGranuleSize gran, int level)
1609 {
1610 /*
1611 * See pseudocode AArch46.BlockDescSupported(): block descriptors
1612 * are not valid at all levels, depending on the page size.
1613 */
1614 switch (gran) {
1615 case Gran4K:
1616 return (level == 0 && ds) || level == 1 || level == 2;
1617 case Gran16K:
1618 return (level == 1 && ds) || level == 2;
1619 case Gran64K:
1620 return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
1621 default:
1622 g_assert_not_reached();
1623 }
1624 }
1625
nv_nv1_enabled(CPUARMState * env,S1Translate * ptw)1626 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw)
1627 {
1628 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
1629 return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1);
1630 }
1631
1632 /**
1633 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1634 *
1635 * Returns false if the translation was successful. Otherwise, phys_ptr,
1636 * attrs, prot and page_size may not be filled in, and the populated fsr
1637 * value provides information on why the translation aborted, in the format
1638 * of a long-format DFSR/IFSR fault register, with the following caveat:
1639 * the WnR bit is never set (the caller must do this).
1640 *
1641 * @env: CPUARMState
1642 * @ptw: Current and next stage parameters for the walk.
1643 * @address: virtual address to get physical address for
1644 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1645 * @memop: memory operation feeding this access, or 0 for none
1646 * @result: set on translation success,
1647 * @fi: set to fault info if the translation fails
1648 */
get_phys_addr_lpae(CPUARMState * env,S1Translate * ptw,uint64_t address,MMUAccessType access_type,MemOp memop,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)1649 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1650 uint64_t address,
1651 MMUAccessType access_type, MemOp memop,
1652 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1653 {
1654 ARMCPU *cpu = env_archcpu(env);
1655 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1656 int32_t level;
1657 ARMVAParameters param;
1658 uint64_t ttbr;
1659 hwaddr descaddr, indexmask, indexmask_grainsize;
1660 uint32_t tableattrs;
1661 target_ulong page_size;
1662 uint64_t attrs;
1663 int32_t stride;
1664 int addrsize, inputsize, outputsize;
1665 uint64_t tcr = regime_tcr(env, mmu_idx);
1666 int ap, xn, pxn;
1667 uint32_t el = regime_el(env, mmu_idx);
1668 uint64_t descaddrmask;
1669 bool aarch64 = arm_el_is_aa64(env, el);
1670 uint64_t descriptor, new_descriptor;
1671 ARMSecuritySpace out_space;
1672 bool device;
1673
1674 /* TODO: This code does not support shareability levels. */
1675 if (aarch64) {
1676 int ps;
1677
1678 param = aa64_va_parameters(env, address, mmu_idx,
1679 access_type != MMU_INST_FETCH,
1680 !arm_el_is_aa64(env, 1));
1681 level = 0;
1682
1683 /*
1684 * If TxSZ is programmed to a value larger than the maximum,
1685 * or smaller than the effective minimum, it is IMPLEMENTATION
1686 * DEFINED whether we behave as if the field were programmed
1687 * within bounds, or if a level 0 Translation fault is generated.
1688 *
1689 * With FEAT_LVA, fault on less than minimum becomes required,
1690 * so our choice is to always raise the fault.
1691 */
1692 if (param.tsz_oob) {
1693 goto do_translation_fault;
1694 }
1695
1696 addrsize = 64 - 8 * param.tbi;
1697 inputsize = 64 - param.tsz;
1698
1699 /*
1700 * Bound PS by PARANGE to find the effective output address size.
1701 * ID_AA64MMFR0 is a read-only register so values outside of the
1702 * supported mappings can be considered an implementation error.
1703 */
1704 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1705 ps = MIN(ps, param.ps);
1706 assert(ps < ARRAY_SIZE(pamax_map));
1707 outputsize = pamax_map[ps];
1708
1709 /*
1710 * With LPA2, the effective output address (OA) size is at most 48 bits
1711 * unless TCR.DS == 1
1712 */
1713 if (!param.ds && param.gran != Gran64K) {
1714 outputsize = MIN(outputsize, 48);
1715 }
1716 } else {
1717 param = aa32_va_parameters(env, address, mmu_idx);
1718 level = 1;
1719 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1720 inputsize = addrsize - param.tsz;
1721 outputsize = 40;
1722 }
1723
1724 /*
1725 * We determined the region when collecting the parameters, but we
1726 * have not yet validated that the address is valid for the region.
1727 * Extract the top bits and verify that they all match select.
1728 *
1729 * For aa32, if inputsize == addrsize, then we have selected the
1730 * region by exclusion in aa32_va_parameters and there is no more
1731 * validation to do here.
1732 */
1733 if (inputsize < addrsize) {
1734 target_ulong top_bits = sextract64(address, inputsize,
1735 addrsize - inputsize);
1736 if (-top_bits != param.select) {
1737 /* The gap between the two regions is a Translation fault */
1738 goto do_translation_fault;
1739 }
1740 }
1741
1742 stride = arm_granule_bits(param.gran) - 3;
1743
1744 /*
1745 * Note that QEMU ignores shareability and cacheability attributes,
1746 * so we don't need to do anything with the SH, ORGN, IRGN fields
1747 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1748 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1749 * implement any ASID-like capability so we can ignore it (instead
1750 * we will always flush the TLB any time the ASID is changed).
1751 */
1752 ttbr = regime_ttbr(env, mmu_idx, param.select);
1753
1754 /*
1755 * Here we should have set up all the parameters for the translation:
1756 * inputsize, ttbr, epd, stride, tbi
1757 */
1758
1759 if (param.epd) {
1760 /*
1761 * Translation table walk disabled => Translation fault on TLB miss
1762 * Note: This is always 0 on 64-bit EL2 and EL3.
1763 */
1764 goto do_translation_fault;
1765 }
1766
1767 if (!regime_is_stage2(mmu_idx)) {
1768 /*
1769 * The starting level depends on the virtual address size (which can
1770 * be up to 48 bits) and the translation granule size. It indicates
1771 * the number of strides (stride bits at a time) needed to
1772 * consume the bits of the input address. In the pseudocode this is:
1773 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1774 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1775 * our 'stride + 3' and 'stride' is our 'stride'.
1776 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1777 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1778 * = 4 - (inputsize - 4) / stride;
1779 */
1780 level = 4 - (inputsize - 4) / stride;
1781 } else {
1782 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1783 inputsize, stride);
1784 if (startlevel == INT_MIN) {
1785 level = 0;
1786 goto do_translation_fault;
1787 }
1788 level = startlevel;
1789 }
1790
1791 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1792 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1793
1794 /* Now we can extract the actual base address from the TTBR */
1795 descaddr = extract64(ttbr, 0, 48);
1796
1797 /*
1798 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1799 *
1800 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1801 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1802 * but we've just cleared the bits above 47, so simplify the test.
1803 */
1804 if (outputsize > 48) {
1805 descaddr |= extract64(ttbr, 2, 4) << 48;
1806 } else if (descaddr >> outputsize) {
1807 level = 0;
1808 fi->type = ARMFault_AddressSize;
1809 goto do_fault;
1810 }
1811
1812 /*
1813 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1814 * and also to mask out CnP (bit 0) which could validly be non-zero.
1815 */
1816 descaddr &= ~indexmask;
1817
1818 /*
1819 * For AArch32, the address field in the descriptor goes up to bit 39
1820 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1821 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1822 * bits as part of the address, which will be checked via outputsize.
1823 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1824 * the highest bits of a 52-bit output are placed elsewhere.
1825 */
1826 if (param.ds) {
1827 descaddrmask = MAKE_64BIT_MASK(0, 50);
1828 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1829 descaddrmask = MAKE_64BIT_MASK(0, 48);
1830 } else {
1831 descaddrmask = MAKE_64BIT_MASK(0, 40);
1832 }
1833 descaddrmask &= ~indexmask_grainsize;
1834 tableattrs = 0;
1835
1836 next_level:
1837 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1838 descaddr &= ~7ULL;
1839
1840 /*
1841 * Process the NSTable bit from the previous level. This changes
1842 * the table address space and the output space from Secure to
1843 * NonSecure. With RME, the EL3 translation regime does not change
1844 * from Root to NonSecure.
1845 */
1846 if (ptw->in_space == ARMSS_Secure
1847 && !regime_is_stage2(mmu_idx)
1848 && extract32(tableattrs, 4, 1)) {
1849 /*
1850 * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1851 * Assert the relative order of the secure/non-secure indexes.
1852 */
1853 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1854 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1855 ptw->in_ptw_idx += 1;
1856 ptw->in_space = ARMSS_NonSecure;
1857 }
1858
1859 if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1860 goto do_fault;
1861 }
1862 descriptor = arm_ldq_ptw(env, ptw, fi);
1863 if (fi->type != ARMFault_None) {
1864 goto do_fault;
1865 }
1866 new_descriptor = descriptor;
1867
1868 restart_atomic_update:
1869 if (!(descriptor & 1) ||
1870 (!(descriptor & 2) &&
1871 !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
1872 /* Invalid, or a block descriptor at an invalid level */
1873 goto do_translation_fault;
1874 }
1875
1876 descaddr = descriptor & descaddrmask;
1877
1878 /*
1879 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1880 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1881 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1882 * raise AddressSizeFault.
1883 */
1884 if (outputsize > 48) {
1885 if (param.ds) {
1886 descaddr |= extract64(descriptor, 8, 2) << 50;
1887 } else {
1888 descaddr |= extract64(descriptor, 12, 4) << 48;
1889 }
1890 } else if (descaddr >> outputsize) {
1891 fi->type = ARMFault_AddressSize;
1892 goto do_fault;
1893 }
1894
1895 if ((descriptor & 2) && (level < 3)) {
1896 /*
1897 * Table entry. The top five bits are attributes which may
1898 * propagate down through lower levels of the table (and
1899 * which are all arranged so that 0 means "no effect", so
1900 * we can gather them up by ORing in the bits at each level).
1901 */
1902 tableattrs |= extract64(descriptor, 59, 5);
1903 level++;
1904 indexmask = indexmask_grainsize;
1905 goto next_level;
1906 }
1907
1908 /*
1909 * Block entry at level 1 or 2, or page entry at level 3.
1910 * These are basically the same thing, although the number
1911 * of bits we pull in from the vaddr varies. Note that although
1912 * descaddrmask masks enough of the low bits of the descriptor
1913 * to give a correct page or table address, the address field
1914 * in a block descriptor is smaller; so we need to explicitly
1915 * clear the lower bits here before ORing in the low vaddr bits.
1916 *
1917 * Afterward, descaddr is the final physical address.
1918 */
1919 page_size = (1ULL << ((stride * (4 - level)) + 3));
1920 descaddr &= ~(hwaddr)(page_size - 1);
1921 descaddr |= (address & (page_size - 1));
1922
1923 if (likely(!ptw->in_debug)) {
1924 /*
1925 * Access flag.
1926 * If HA is enabled, prepare to update the descriptor below.
1927 * Otherwise, pass the access fault on to software.
1928 */
1929 if (!(descriptor & (1 << 10))) {
1930 if (param.ha) {
1931 new_descriptor |= 1 << 10; /* AF */
1932 } else {
1933 fi->type = ARMFault_AccessFlag;
1934 goto do_fault;
1935 }
1936 }
1937
1938 /*
1939 * Dirty Bit.
1940 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1941 * bit for writeback. The actual write protection test may still be
1942 * overridden by tableattrs, to be merged below.
1943 */
1944 if (param.hd
1945 && extract64(descriptor, 51, 1) /* DBM */
1946 && access_type == MMU_DATA_STORE) {
1947 if (regime_is_stage2(mmu_idx)) {
1948 new_descriptor |= 1ull << 7; /* set S2AP[1] */
1949 } else {
1950 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1951 }
1952 }
1953 }
1954
1955 /*
1956 * Extract attributes from the (modified) descriptor, and apply
1957 * table descriptors. Stage 2 table descriptors do not include
1958 * any attribute fields. HPD disables all the table attributes
1959 * except NSTable (which we have already handled).
1960 */
1961 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1962 if (!regime_is_stage2(mmu_idx)) {
1963 if (!param.hpd) {
1964 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
1965 /*
1966 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1967 * means "force PL1 access only", which means forcing AP[1] to 0.
1968 */
1969 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1970 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */
1971 }
1972 }
1973
1974 ap = extract32(attrs, 6, 2);
1975 out_space = ptw->in_space;
1976 if (regime_is_stage2(mmu_idx)) {
1977 /*
1978 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
1979 * The bit remains ignored for other security states.
1980 * R_YMCSL: Executing an insn fetched from non-Realm causes
1981 * a stage2 permission fault.
1982 */
1983 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
1984 out_space = ARMSS_NonSecure;
1985 result->f.prot = get_S2prot_noexecute(ap);
1986 } else {
1987 xn = extract64(attrs, 53, 2);
1988 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
1989 }
1990
1991 result->cacheattrs.is_s2_format = true;
1992 result->cacheattrs.attrs = extract32(attrs, 2, 4);
1993 /*
1994 * Security state does not really affect HCR_EL2.FWB;
1995 * we only need to filter FWB for aa32 or other FEAT.
1996 */
1997 device = S2_attrs_are_device(arm_hcr_el2_eff(env),
1998 result->cacheattrs.attrs);
1999 } else {
2000 int nse, ns = extract32(attrs, 5, 1);
2001 uint8_t attrindx;
2002 uint64_t mair;
2003 int user_rw, prot_rw;
2004
2005 switch (out_space) {
2006 case ARMSS_Root:
2007 /*
2008 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
2009 * R_XTYPW: NSE and NS together select the output pa space.
2010 */
2011 nse = extract32(attrs, 11, 1);
2012 out_space = (nse << 1) | ns;
2013 if (out_space == ARMSS_Secure &&
2014 !cpu_isar_feature(aa64_sel2, cpu)) {
2015 out_space = ARMSS_NonSecure;
2016 }
2017 break;
2018 case ARMSS_Secure:
2019 if (ns) {
2020 out_space = ARMSS_NonSecure;
2021 }
2022 break;
2023 case ARMSS_Realm:
2024 switch (mmu_idx) {
2025 case ARMMMUIdx_Stage1_E0:
2026 case ARMMMUIdx_Stage1_E1:
2027 case ARMMMUIdx_Stage1_E1_PAN:
2028 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
2029 break;
2030 case ARMMMUIdx_E2:
2031 case ARMMMUIdx_E20_0:
2032 case ARMMMUIdx_E20_2:
2033 case ARMMMUIdx_E20_2_PAN:
2034 /*
2035 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
2036 * NS changes the output to non-secure space.
2037 */
2038 if (ns) {
2039 out_space = ARMSS_NonSecure;
2040 }
2041 break;
2042 default:
2043 g_assert_not_reached();
2044 }
2045 break;
2046 case ARMSS_NonSecure:
2047 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
2048 break;
2049 default:
2050 g_assert_not_reached();
2051 }
2052 xn = extract64(attrs, 54, 1);
2053 pxn = extract64(attrs, 53, 1);
2054
2055 if (el == 1 && nv_nv1_enabled(env, ptw)) {
2056 /*
2057 * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page
2058 * descriptor bit 54 holds PXN, 53 is RES0, and the effective value
2059 * of UXN is 0. Similarly for bits 59 and 60 in table descriptors
2060 * (which we have already folded into bits 53 and 54 of attrs).
2061 * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0.
2062 * Similarly, APTable[0] from the table descriptor is treated as 0;
2063 * we already folded this into AP[1] and squashing that to 0 does
2064 * the right thing.
2065 */
2066 pxn = xn;
2067 xn = 0;
2068 ap &= ~1;
2069 }
2070
2071 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
2072 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
2073 /*
2074 * Note that we modified ptw->in_space earlier for NSTable, but
2075 * result->f.attrs retains a copy of the original security space.
2076 */
2077 result->f.prot = get_S1prot(env, mmu_idx, aarch64, user_rw, prot_rw,
2078 xn, pxn, result->f.attrs.space, out_space);
2079
2080 /* Index into MAIR registers for cache attributes */
2081 attrindx = extract32(attrs, 2, 3);
2082 mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2083 assert(attrindx <= 7);
2084 result->cacheattrs.is_s2_format = false;
2085 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2086
2087 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2088 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2089 result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */
2090 }
2091 device = S1_attrs_are_device(result->cacheattrs.attrs);
2092 }
2093
2094 /*
2095 * Enable alignment checks on Device memory.
2096 *
2097 * Per R_XCHFJ, the correct ordering for alignment, permission,
2098 * and stage 2 faults is:
2099 * - Alignment fault caused by the memory type
2100 * - Permission fault
2101 * - A stage 2 fault on the memory access
2102 * Perform the alignment check now, so that we recognize it in
2103 * the correct order. Set TLB_CHECK_ALIGNED so that any subsequent
2104 * softmmu tlb hit will also check the alignment; clear along the
2105 * non-device path so that tlb_fill_flags is consistent in the
2106 * event of restart_atomic_update.
2107 *
2108 * In v7, for a CPU without the Virtualization Extensions this
2109 * access is UNPREDICTABLE; we choose to make it take the alignment
2110 * fault as is required for a v7VE CPU. (QEMU doesn't emulate any
2111 * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.)
2112 */
2113 if (device) {
2114 unsigned a_bits = memop_atomicity_bits(memop);
2115 if (address & ((1 << a_bits) - 1)) {
2116 fi->type = ARMFault_Alignment;
2117 goto do_fault;
2118 }
2119 result->f.tlb_fill_flags = TLB_CHECK_ALIGNED;
2120 } else {
2121 result->f.tlb_fill_flags = 0;
2122 }
2123
2124 if (!(result->f.prot & (1 << access_type))) {
2125 fi->type = ARMFault_Permission;
2126 goto do_fault;
2127 }
2128
2129 /* If FEAT_HAFDBS has made changes, update the PTE. */
2130 if (new_descriptor != descriptor) {
2131 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
2132 if (fi->type != ARMFault_None) {
2133 goto do_fault;
2134 }
2135 /*
2136 * I_YZSVV says that if the in-memory descriptor has changed,
2137 * then we must use the information in that new value
2138 * (which might include a different output address, different
2139 * attributes, or generate a fault).
2140 * Restart the handling of the descriptor value from scratch.
2141 */
2142 if (new_descriptor != descriptor) {
2143 descriptor = new_descriptor;
2144 goto restart_atomic_update;
2145 }
2146 }
2147
2148 result->f.attrs.space = out_space;
2149 result->f.attrs.secure = arm_space_is_secure(out_space);
2150
2151 /*
2152 * For FEAT_LPA2 and effective DS, the SH field in the attributes
2153 * was re-purposed for output address bits. The SH attribute in
2154 * that case comes from TCR_ELx, which we extracted earlier.
2155 */
2156 if (param.ds) {
2157 result->cacheattrs.shareability = param.sh;
2158 } else {
2159 result->cacheattrs.shareability = extract32(attrs, 8, 2);
2160 }
2161
2162 result->f.phys_addr = descaddr;
2163 result->f.lg_page_size = ctz64(page_size);
2164 return false;
2165
2166 do_translation_fault:
2167 fi->type = ARMFault_Translation;
2168 do_fault:
2169 if (fi->s1ptw) {
2170 /* Retain the existing stage 2 fi->level */
2171 assert(fi->stage2);
2172 } else {
2173 fi->level = level;
2174 fi->stage2 = regime_is_stage2(mmu_idx);
2175 }
2176 fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
2177 return true;
2178 }
2179
get_phys_addr_pmsav5(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)2180 static bool get_phys_addr_pmsav5(CPUARMState *env,
2181 S1Translate *ptw,
2182 uint32_t address,
2183 MMUAccessType access_type,
2184 GetPhysAddrResult *result,
2185 ARMMMUFaultInfo *fi)
2186 {
2187 int n;
2188 uint32_t mask;
2189 uint32_t base;
2190 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2191 bool is_user = regime_is_user(env, mmu_idx);
2192
2193 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
2194 /* MPU disabled. */
2195 result->f.phys_addr = address;
2196 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2197 return false;
2198 }
2199
2200 result->f.phys_addr = address;
2201 for (n = 7; n >= 0; n--) {
2202 base = env->cp15.c6_region[n];
2203 if ((base & 1) == 0) {
2204 continue;
2205 }
2206 mask = 1 << ((base >> 1) & 0x1f);
2207 /* Keep this shift separate from the above to avoid an
2208 (undefined) << 32. */
2209 mask = (mask << 1) - 1;
2210 if (((base ^ address) & ~mask) == 0) {
2211 break;
2212 }
2213 }
2214 if (n < 0) {
2215 fi->type = ARMFault_Background;
2216 return true;
2217 }
2218
2219 if (access_type == MMU_INST_FETCH) {
2220 mask = env->cp15.pmsav5_insn_ap;
2221 } else {
2222 mask = env->cp15.pmsav5_data_ap;
2223 }
2224 mask = (mask >> (n * 4)) & 0xf;
2225 switch (mask) {
2226 case 0:
2227 fi->type = ARMFault_Permission;
2228 fi->level = 1;
2229 return true;
2230 case 1:
2231 if (is_user) {
2232 fi->type = ARMFault_Permission;
2233 fi->level = 1;
2234 return true;
2235 }
2236 result->f.prot = PAGE_READ | PAGE_WRITE;
2237 break;
2238 case 2:
2239 result->f.prot = PAGE_READ;
2240 if (!is_user) {
2241 result->f.prot |= PAGE_WRITE;
2242 }
2243 break;
2244 case 3:
2245 result->f.prot = PAGE_READ | PAGE_WRITE;
2246 break;
2247 case 5:
2248 if (is_user) {
2249 fi->type = ARMFault_Permission;
2250 fi->level = 1;
2251 return true;
2252 }
2253 result->f.prot = PAGE_READ;
2254 break;
2255 case 6:
2256 result->f.prot = PAGE_READ;
2257 break;
2258 default:
2259 /* Bad permission. */
2260 fi->type = ARMFault_Permission;
2261 fi->level = 1;
2262 return true;
2263 }
2264 result->f.prot |= PAGE_EXEC;
2265 return false;
2266 }
2267
get_phys_addr_pmsav7_default(CPUARMState * env,ARMMMUIdx mmu_idx,int32_t address,uint8_t * prot)2268 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2269 int32_t address, uint8_t *prot)
2270 {
2271 if (!arm_feature(env, ARM_FEATURE_M)) {
2272 *prot = PAGE_READ | PAGE_WRITE;
2273 switch (address) {
2274 case 0xF0000000 ... 0xFFFFFFFF:
2275 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2276 /* hivecs execing is ok */
2277 *prot |= PAGE_EXEC;
2278 }
2279 break;
2280 case 0x00000000 ... 0x7FFFFFFF:
2281 *prot |= PAGE_EXEC;
2282 break;
2283 }
2284 } else {
2285 /* Default system address map for M profile cores.
2286 * The architecture specifies which regions are execute-never;
2287 * at the MPU level no other checks are defined.
2288 */
2289 switch (address) {
2290 case 0x00000000 ... 0x1fffffff: /* ROM */
2291 case 0x20000000 ... 0x3fffffff: /* SRAM */
2292 case 0x60000000 ... 0x7fffffff: /* RAM */
2293 case 0x80000000 ... 0x9fffffff: /* RAM */
2294 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2295 break;
2296 case 0x40000000 ... 0x5fffffff: /* Peripheral */
2297 case 0xa0000000 ... 0xbfffffff: /* Device */
2298 case 0xc0000000 ... 0xdfffffff: /* Device */
2299 case 0xe0000000 ... 0xffffffff: /* System */
2300 *prot = PAGE_READ | PAGE_WRITE;
2301 break;
2302 default:
2303 g_assert_not_reached();
2304 }
2305 }
2306 }
2307
m_is_ppb_region(CPUARMState * env,uint32_t address)2308 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2309 {
2310 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2311 return arm_feature(env, ARM_FEATURE_M) &&
2312 extract32(address, 20, 12) == 0xe00;
2313 }
2314
m_is_system_region(CPUARMState * env,uint32_t address)2315 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2316 {
2317 /*
2318 * True if address is in the M profile system region
2319 * 0xe0000000 - 0xffffffff
2320 */
2321 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2322 }
2323
pmsav7_use_background_region(ARMCPU * cpu,ARMMMUIdx mmu_idx,bool is_secure,bool is_user)2324 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2325 bool is_secure, bool is_user)
2326 {
2327 /*
2328 * Return true if we should use the default memory map as a
2329 * "background" region if there are no hits against any MPU regions.
2330 */
2331 CPUARMState *env = &cpu->env;
2332
2333 if (is_user) {
2334 return false;
2335 }
2336
2337 if (arm_feature(env, ARM_FEATURE_M)) {
2338 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2339 }
2340
2341 if (mmu_idx == ARMMMUIdx_Stage2) {
2342 return false;
2343 }
2344
2345 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2346 }
2347
get_phys_addr_pmsav7(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)2348 static bool get_phys_addr_pmsav7(CPUARMState *env,
2349 S1Translate *ptw,
2350 uint32_t address,
2351 MMUAccessType access_type,
2352 GetPhysAddrResult *result,
2353 ARMMMUFaultInfo *fi)
2354 {
2355 ARMCPU *cpu = env_archcpu(env);
2356 int n;
2357 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2358 bool is_user = regime_is_user(env, mmu_idx);
2359 bool secure = arm_space_is_secure(ptw->in_space);
2360
2361 result->f.phys_addr = address;
2362 result->f.lg_page_size = TARGET_PAGE_BITS;
2363 result->f.prot = 0;
2364
2365 if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
2366 m_is_ppb_region(env, address)) {
2367 /*
2368 * MPU disabled or M profile PPB access: use default memory map.
2369 * The other case which uses the default memory map in the
2370 * v7M ARM ARM pseudocode is exception vector reads from the vector
2371 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2372 * which always does a direct read using address_space_ldl(), rather
2373 * than going via this function, so we don't need to check that here.
2374 */
2375 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2376 } else { /* MPU enabled */
2377 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2378 /* region search */
2379 uint32_t base = env->pmsav7.drbar[n];
2380 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2381 uint32_t rmask;
2382 bool srdis = false;
2383
2384 if (!(env->pmsav7.drsr[n] & 0x1)) {
2385 continue;
2386 }
2387
2388 if (!rsize) {
2389 qemu_log_mask(LOG_GUEST_ERROR,
2390 "DRSR[%d]: Rsize field cannot be 0\n", n);
2391 continue;
2392 }
2393 rsize++;
2394 rmask = (1ull << rsize) - 1;
2395
2396 if (base & rmask) {
2397 qemu_log_mask(LOG_GUEST_ERROR,
2398 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2399 "to DRSR region size, mask = 0x%" PRIx32 "\n",
2400 n, base, rmask);
2401 continue;
2402 }
2403
2404 if (address < base || address > base + rmask) {
2405 /*
2406 * Address not in this region. We must check whether the
2407 * region covers addresses in the same page as our address.
2408 * In that case we must not report a size that covers the
2409 * whole page for a subsequent hit against a different MPU
2410 * region or the background region, because it would result in
2411 * incorrect TLB hits for subsequent accesses to addresses that
2412 * are in this MPU region.
2413 */
2414 if (ranges_overlap(base, rmask,
2415 address & TARGET_PAGE_MASK,
2416 TARGET_PAGE_SIZE)) {
2417 result->f.lg_page_size = 0;
2418 }
2419 continue;
2420 }
2421
2422 /* Region matched */
2423
2424 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2425 int i, snd;
2426 uint32_t srdis_mask;
2427
2428 rsize -= 3; /* sub region size (power of 2) */
2429 snd = ((address - base) >> rsize) & 0x7;
2430 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2431
2432 srdis_mask = srdis ? 0x3 : 0x0;
2433 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2434 /*
2435 * This will check in groups of 2, 4 and then 8, whether
2436 * the subregion bits are consistent. rsize is incremented
2437 * back up to give the region size, considering consistent
2438 * adjacent subregions as one region. Stop testing if rsize
2439 * is already big enough for an entire QEMU page.
2440 */
2441 int snd_rounded = snd & ~(i - 1);
2442 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2443 snd_rounded + 8, i);
2444 if (srdis_mask ^ srdis_multi) {
2445 break;
2446 }
2447 srdis_mask = (srdis_mask << i) | srdis_mask;
2448 rsize++;
2449 }
2450 }
2451 if (srdis) {
2452 continue;
2453 }
2454 if (rsize < TARGET_PAGE_BITS) {
2455 result->f.lg_page_size = rsize;
2456 }
2457 break;
2458 }
2459
2460 if (n == -1) { /* no hits */
2461 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2462 /* background fault */
2463 fi->type = ARMFault_Background;
2464 return true;
2465 }
2466 get_phys_addr_pmsav7_default(env, mmu_idx, address,
2467 &result->f.prot);
2468 } else { /* a MPU hit! */
2469 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2470 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2471
2472 if (m_is_system_region(env, address)) {
2473 /* System space is always execute never */
2474 xn = 1;
2475 }
2476
2477 if (is_user) { /* User mode AP bit decoding */
2478 switch (ap) {
2479 case 0:
2480 case 1:
2481 case 5:
2482 break; /* no access */
2483 case 3:
2484 result->f.prot |= PAGE_WRITE;
2485 /* fall through */
2486 case 2:
2487 case 6:
2488 result->f.prot |= PAGE_READ | PAGE_EXEC;
2489 break;
2490 case 7:
2491 /* for v7M, same as 6; for R profile a reserved value */
2492 if (arm_feature(env, ARM_FEATURE_M)) {
2493 result->f.prot |= PAGE_READ | PAGE_EXEC;
2494 break;
2495 }
2496 /* fall through */
2497 default:
2498 qemu_log_mask(LOG_GUEST_ERROR,
2499 "DRACR[%d]: Bad value for AP bits: 0x%"
2500 PRIx32 "\n", n, ap);
2501 }
2502 } else { /* Priv. mode AP bits decoding */
2503 switch (ap) {
2504 case 0:
2505 break; /* no access */
2506 case 1:
2507 case 2:
2508 case 3:
2509 result->f.prot |= PAGE_WRITE;
2510 /* fall through */
2511 case 5:
2512 case 6:
2513 result->f.prot |= PAGE_READ | PAGE_EXEC;
2514 break;
2515 case 7:
2516 /* for v7M, same as 6; for R profile a reserved value */
2517 if (arm_feature(env, ARM_FEATURE_M)) {
2518 result->f.prot |= PAGE_READ | PAGE_EXEC;
2519 break;
2520 }
2521 /* fall through */
2522 default:
2523 qemu_log_mask(LOG_GUEST_ERROR,
2524 "DRACR[%d]: Bad value for AP bits: 0x%"
2525 PRIx32 "\n", n, ap);
2526 }
2527 }
2528
2529 /* execute never */
2530 if (xn) {
2531 result->f.prot &= ~PAGE_EXEC;
2532 }
2533 }
2534 }
2535
2536 fi->type = ARMFault_Permission;
2537 fi->level = 1;
2538 return !(result->f.prot & (1 << access_type));
2539 }
2540
regime_rbar(CPUARMState * env,ARMMMUIdx mmu_idx,uint32_t secure)2541 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2542 uint32_t secure)
2543 {
2544 if (regime_el(env, mmu_idx) == 2) {
2545 return env->pmsav8.hprbar;
2546 } else {
2547 return env->pmsav8.rbar[secure];
2548 }
2549 }
2550
regime_rlar(CPUARMState * env,ARMMMUIdx mmu_idx,uint32_t secure)2551 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2552 uint32_t secure)
2553 {
2554 if (regime_el(env, mmu_idx) == 2) {
2555 return env->pmsav8.hprlar;
2556 } else {
2557 return env->pmsav8.rlar[secure];
2558 }
2559 }
2560
pmsav8_mpu_lookup(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,bool secure,GetPhysAddrResult * result,ARMMMUFaultInfo * fi,uint32_t * mregion)2561 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2562 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2563 bool secure, GetPhysAddrResult *result,
2564 ARMMMUFaultInfo *fi, uint32_t *mregion)
2565 {
2566 /*
2567 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2568 * that a full phys-to-virt translation does).
2569 * mregion is (if not NULL) set to the region number which matched,
2570 * or -1 if no region number is returned (MPU off, address did not
2571 * hit a region, address hit in multiple regions).
2572 * If the region hit doesn't cover the entire TARGET_PAGE the address
2573 * is within, then we set the result page_size to 1 to force the
2574 * memory system to use a subpage.
2575 */
2576 ARMCPU *cpu = env_archcpu(env);
2577 bool is_user = regime_is_user(env, mmu_idx);
2578 int n;
2579 int matchregion = -1;
2580 bool hit = false;
2581 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2582 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2583 int region_counter;
2584
2585 if (regime_el(env, mmu_idx) == 2) {
2586 region_counter = cpu->pmsav8r_hdregion;
2587 } else {
2588 region_counter = cpu->pmsav7_dregion;
2589 }
2590
2591 result->f.lg_page_size = TARGET_PAGE_BITS;
2592 result->f.phys_addr = address;
2593 result->f.prot = 0;
2594 if (mregion) {
2595 *mregion = -1;
2596 }
2597
2598 if (mmu_idx == ARMMMUIdx_Stage2) {
2599 fi->stage2 = true;
2600 }
2601
2602 /*
2603 * Unlike the ARM ARM pseudocode, we don't need to check whether this
2604 * was an exception vector read from the vector table (which is always
2605 * done using the default system address map), because those accesses
2606 * are done in arm_v7m_load_vector(), which always does a direct
2607 * read using address_space_ldl(), rather than going via this function.
2608 */
2609 if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
2610 /* MPU disabled */
2611 hit = true;
2612 } else if (m_is_ppb_region(env, address)) {
2613 hit = true;
2614 } else {
2615 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2616 hit = true;
2617 }
2618
2619 uint32_t bitmask;
2620 if (arm_feature(env, ARM_FEATURE_M)) {
2621 bitmask = 0x1f;
2622 } else {
2623 bitmask = 0x3f;
2624 fi->level = 0;
2625 }
2626
2627 for (n = region_counter - 1; n >= 0; n--) {
2628 /* region search */
2629 /*
2630 * Note that the base address is bits [31:x] from the register
2631 * with bits [x-1:0] all zeroes, but the limit address is bits
2632 * [31:x] from the register with bits [x:0] all ones. Where x is
2633 * 5 for Cortex-M and 6 for Cortex-R
2634 */
2635 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2636 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2637
2638 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2639 /* Region disabled */
2640 continue;
2641 }
2642
2643 if (address < base || address > limit) {
2644 /*
2645 * Address not in this region. We must check whether the
2646 * region covers addresses in the same page as our address.
2647 * In that case we must not report a size that covers the
2648 * whole page for a subsequent hit against a different MPU
2649 * region or the background region, because it would result in
2650 * incorrect TLB hits for subsequent accesses to addresses that
2651 * are in this MPU region.
2652 */
2653 if (limit >= base &&
2654 ranges_overlap(base, limit - base + 1,
2655 addr_page_base,
2656 TARGET_PAGE_SIZE)) {
2657 result->f.lg_page_size = 0;
2658 }
2659 continue;
2660 }
2661
2662 if (base > addr_page_base || limit < addr_page_limit) {
2663 result->f.lg_page_size = 0;
2664 }
2665
2666 if (matchregion != -1) {
2667 /*
2668 * Multiple regions match -- always a failure (unlike
2669 * PMSAv7 where highest-numbered-region wins)
2670 */
2671 fi->type = ARMFault_Permission;
2672 if (arm_feature(env, ARM_FEATURE_M)) {
2673 fi->level = 1;
2674 }
2675 return true;
2676 }
2677
2678 matchregion = n;
2679 hit = true;
2680 }
2681 }
2682
2683 if (!hit) {
2684 if (arm_feature(env, ARM_FEATURE_M)) {
2685 fi->type = ARMFault_Background;
2686 } else {
2687 fi->type = ARMFault_Permission;
2688 }
2689 return true;
2690 }
2691
2692 if (matchregion == -1) {
2693 /* hit using the background region */
2694 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2695 } else {
2696 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2697 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2698 uint32_t ap = extract32(matched_rbar, 1, 2);
2699 uint32_t xn = extract32(matched_rbar, 0, 1);
2700 bool pxn = false;
2701
2702 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2703 pxn = extract32(matched_rlar, 4, 1);
2704 }
2705
2706 if (m_is_system_region(env, address)) {
2707 /* System space is always execute never */
2708 xn = 1;
2709 }
2710
2711 if (regime_el(env, mmu_idx) == 2) {
2712 result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2713 mmu_idx != ARMMMUIdx_E2);
2714 } else {
2715 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2716 }
2717
2718 if (!arm_feature(env, ARM_FEATURE_M)) {
2719 uint8_t attrindx = extract32(matched_rlar, 1, 3);
2720 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2721 uint8_t sh = extract32(matched_rlar, 3, 2);
2722
2723 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2724 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2725 xn = 0x1;
2726 }
2727
2728 if ((regime_el(env, mmu_idx) == 1) &&
2729 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2730 pxn = 0x1;
2731 }
2732
2733 result->cacheattrs.is_s2_format = false;
2734 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2735 result->cacheattrs.shareability = sh;
2736 }
2737
2738 if (result->f.prot && !xn && !(pxn && !is_user)) {
2739 result->f.prot |= PAGE_EXEC;
2740 }
2741
2742 if (mregion) {
2743 *mregion = matchregion;
2744 }
2745 }
2746
2747 fi->type = ARMFault_Permission;
2748 if (arm_feature(env, ARM_FEATURE_M)) {
2749 fi->level = 1;
2750 }
2751 return !(result->f.prot & (1 << access_type));
2752 }
2753
v8m_is_sau_exempt(CPUARMState * env,uint32_t address,MMUAccessType access_type)2754 static bool v8m_is_sau_exempt(CPUARMState *env,
2755 uint32_t address, MMUAccessType access_type)
2756 {
2757 /*
2758 * The architecture specifies that certain address ranges are
2759 * exempt from v8M SAU/IDAU checks.
2760 */
2761 return
2762 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2763 (address >= 0xe0000000 && address <= 0xe0002fff) ||
2764 (address >= 0xe000e000 && address <= 0xe000efff) ||
2765 (address >= 0xe002e000 && address <= 0xe002efff) ||
2766 (address >= 0xe0040000 && address <= 0xe0041fff) ||
2767 (address >= 0xe00ff000 && address <= 0xe00fffff);
2768 }
2769
v8m_security_lookup(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,bool is_secure,V8M_SAttributes * sattrs)2770 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2771 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2772 bool is_secure, V8M_SAttributes *sattrs)
2773 {
2774 /*
2775 * Look up the security attributes for this address. Compare the
2776 * pseudocode SecurityCheck() function.
2777 * We assume the caller has zero-initialized *sattrs.
2778 */
2779 ARMCPU *cpu = env_archcpu(env);
2780 int r;
2781 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2782 int idau_region = IREGION_NOTVALID;
2783 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2784 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2785
2786 if (cpu->idau) {
2787 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2788 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2789
2790 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2791 &idau_nsc);
2792 }
2793
2794 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2795 /* 0xf0000000..0xffffffff is always S for insn fetches */
2796 return;
2797 }
2798
2799 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2800 sattrs->ns = !is_secure;
2801 return;
2802 }
2803
2804 if (idau_region != IREGION_NOTVALID) {
2805 sattrs->irvalid = true;
2806 sattrs->iregion = idau_region;
2807 }
2808
2809 switch (env->sau.ctrl & 3) {
2810 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2811 break;
2812 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2813 sattrs->ns = true;
2814 break;
2815 default: /* SAU.ENABLE == 1 */
2816 for (r = 0; r < cpu->sau_sregion; r++) {
2817 if (env->sau.rlar[r] & 1) {
2818 uint32_t base = env->sau.rbar[r] & ~0x1f;
2819 uint32_t limit = env->sau.rlar[r] | 0x1f;
2820
2821 if (base <= address && limit >= address) {
2822 if (base > addr_page_base || limit < addr_page_limit) {
2823 sattrs->subpage = true;
2824 }
2825 if (sattrs->srvalid) {
2826 /*
2827 * If we hit in more than one region then we must report
2828 * as Secure, not NS-Callable, with no valid region
2829 * number info.
2830 */
2831 sattrs->ns = false;
2832 sattrs->nsc = false;
2833 sattrs->sregion = 0;
2834 sattrs->srvalid = false;
2835 break;
2836 } else {
2837 if (env->sau.rlar[r] & 2) {
2838 sattrs->nsc = true;
2839 } else {
2840 sattrs->ns = true;
2841 }
2842 sattrs->srvalid = true;
2843 sattrs->sregion = r;
2844 }
2845 } else {
2846 /*
2847 * Address not in this region. We must check whether the
2848 * region covers addresses in the same page as our address.
2849 * In that case we must not report a size that covers the
2850 * whole page for a subsequent hit against a different MPU
2851 * region or the background region, because it would result
2852 * in incorrect TLB hits for subsequent accesses to
2853 * addresses that are in this MPU region.
2854 */
2855 if (limit >= base &&
2856 ranges_overlap(base, limit - base + 1,
2857 addr_page_base,
2858 TARGET_PAGE_SIZE)) {
2859 sattrs->subpage = true;
2860 }
2861 }
2862 }
2863 }
2864 break;
2865 }
2866
2867 /*
2868 * The IDAU will override the SAU lookup results if it specifies
2869 * higher security than the SAU does.
2870 */
2871 if (!idau_ns) {
2872 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2873 sattrs->ns = false;
2874 sattrs->nsc = idau_nsc;
2875 }
2876 }
2877 }
2878
get_phys_addr_pmsav8(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)2879 static bool get_phys_addr_pmsav8(CPUARMState *env,
2880 S1Translate *ptw,
2881 uint32_t address,
2882 MMUAccessType access_type,
2883 GetPhysAddrResult *result,
2884 ARMMMUFaultInfo *fi)
2885 {
2886 V8M_SAttributes sattrs = {};
2887 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2888 bool secure = arm_space_is_secure(ptw->in_space);
2889 bool ret;
2890
2891 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2892 v8m_security_lookup(env, address, access_type, mmu_idx,
2893 secure, &sattrs);
2894 if (access_type == MMU_INST_FETCH) {
2895 /*
2896 * Instruction fetches always use the MMU bank and the
2897 * transaction attribute determined by the fetch address,
2898 * regardless of CPU state. This is painful for QEMU
2899 * to handle, because it would mean we need to encode
2900 * into the mmu_idx not just the (user, negpri) information
2901 * for the current security state but also that for the
2902 * other security state, which would balloon the number
2903 * of mmu_idx values needed alarmingly.
2904 * Fortunately we can avoid this because it's not actually
2905 * possible to arbitrarily execute code from memory with
2906 * the wrong security attribute: it will always generate
2907 * an exception of some kind or another, apart from the
2908 * special case of an NS CPU executing an SG instruction
2909 * in S&NSC memory. So we always just fail the translation
2910 * here and sort things out in the exception handler
2911 * (including possibly emulating an SG instruction).
2912 */
2913 if (sattrs.ns != !secure) {
2914 if (sattrs.nsc) {
2915 fi->type = ARMFault_QEMU_NSCExec;
2916 } else {
2917 fi->type = ARMFault_QEMU_SFault;
2918 }
2919 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2920 result->f.phys_addr = address;
2921 result->f.prot = 0;
2922 return true;
2923 }
2924 } else {
2925 /*
2926 * For data accesses we always use the MMU bank indicated
2927 * by the current CPU state, but the security attributes
2928 * might downgrade a secure access to nonsecure.
2929 */
2930 if (sattrs.ns) {
2931 result->f.attrs.secure = false;
2932 result->f.attrs.space = ARMSS_NonSecure;
2933 } else if (!secure) {
2934 /*
2935 * NS access to S memory must fault.
2936 * Architecturally we should first check whether the
2937 * MPU information for this address indicates that we
2938 * are doing an unaligned access to Device memory, which
2939 * should generate a UsageFault instead. QEMU does not
2940 * currently check for that kind of unaligned access though.
2941 * If we added it we would need to do so as a special case
2942 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2943 */
2944 fi->type = ARMFault_QEMU_SFault;
2945 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2946 result->f.phys_addr = address;
2947 result->f.prot = 0;
2948 return true;
2949 }
2950 }
2951 }
2952
2953 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2954 result, fi, NULL);
2955 if (sattrs.subpage) {
2956 result->f.lg_page_size = 0;
2957 }
2958 return ret;
2959 }
2960
2961 /*
2962 * Translate from the 4-bit stage 2 representation of
2963 * memory attributes (without cache-allocation hints) to
2964 * the 8-bit representation of the stage 1 MAIR registers
2965 * (which includes allocation hints).
2966 *
2967 * ref: shared/translation/attrs/S2AttrDecode()
2968 * .../S2ConvertAttrsHints()
2969 */
convert_stage2_attrs(uint64_t hcr,uint8_t s2attrs)2970 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2971 {
2972 uint8_t hiattr = extract32(s2attrs, 2, 2);
2973 uint8_t loattr = extract32(s2attrs, 0, 2);
2974 uint8_t hihint = 0, lohint = 0;
2975
2976 if (hiattr != 0) { /* normal memory */
2977 if (hcr & HCR_CD) { /* cache disabled */
2978 hiattr = loattr = 1; /* non-cacheable */
2979 } else {
2980 if (hiattr != 1) { /* Write-through or write-back */
2981 hihint = 3; /* RW allocate */
2982 }
2983 if (loattr != 1) { /* Write-through or write-back */
2984 lohint = 3; /* RW allocate */
2985 }
2986 }
2987 }
2988
2989 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2990 }
2991
2992 /*
2993 * Combine either inner or outer cacheability attributes for normal
2994 * memory, according to table D4-42 and pseudocode procedure
2995 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2996 *
2997 * NB: only stage 1 includes allocation hints (RW bits), leading to
2998 * some asymmetry.
2999 */
combine_cacheattr_nibble(uint8_t s1,uint8_t s2)3000 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
3001 {
3002 if (s1 == 4 || s2 == 4) {
3003 /* non-cacheable has precedence */
3004 return 4;
3005 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
3006 /* stage 1 write-through takes precedence */
3007 return s1;
3008 } else if (extract32(s2, 2, 2) == 2) {
3009 /* stage 2 write-through takes precedence, but the allocation hint
3010 * is still taken from stage 1
3011 */
3012 return (2 << 2) | extract32(s1, 0, 2);
3013 } else { /* write-back */
3014 return s1;
3015 }
3016 }
3017
3018 /*
3019 * Combine the memory type and cacheability attributes of
3020 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
3021 * combined attributes in MAIR_EL1 format.
3022 */
combined_attrs_nofwb(uint64_t hcr,ARMCacheAttrs s1,ARMCacheAttrs s2)3023 static uint8_t combined_attrs_nofwb(uint64_t hcr,
3024 ARMCacheAttrs s1, ARMCacheAttrs s2)
3025 {
3026 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
3027
3028 if (s2.is_s2_format) {
3029 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
3030 } else {
3031 s2_mair_attrs = s2.attrs;
3032 }
3033
3034 s1lo = extract32(s1.attrs, 0, 4);
3035 s2lo = extract32(s2_mair_attrs, 0, 4);
3036 s1hi = extract32(s1.attrs, 4, 4);
3037 s2hi = extract32(s2_mair_attrs, 4, 4);
3038
3039 /* Combine memory type and cacheability attributes */
3040 if (s1hi == 0 || s2hi == 0) {
3041 /* Device has precedence over normal */
3042 if (s1lo == 0 || s2lo == 0) {
3043 /* nGnRnE has precedence over anything */
3044 ret_attrs = 0;
3045 } else if (s1lo == 4 || s2lo == 4) {
3046 /* non-Reordering has precedence over Reordering */
3047 ret_attrs = 4; /* nGnRE */
3048 } else if (s1lo == 8 || s2lo == 8) {
3049 /* non-Gathering has precedence over Gathering */
3050 ret_attrs = 8; /* nGRE */
3051 } else {
3052 ret_attrs = 0xc; /* GRE */
3053 }
3054 } else { /* Normal memory */
3055 /* Outer/inner cacheability combine independently */
3056 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
3057 | combine_cacheattr_nibble(s1lo, s2lo);
3058 }
3059 return ret_attrs;
3060 }
3061
force_cacheattr_nibble_wb(uint8_t attr)3062 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
3063 {
3064 /*
3065 * Given the 4 bits specifying the outer or inner cacheability
3066 * in MAIR format, return a value specifying Normal Write-Back,
3067 * with the allocation and transient hints taken from the input
3068 * if the input specified some kind of cacheable attribute.
3069 */
3070 if (attr == 0 || attr == 4) {
3071 /*
3072 * 0 == an UNPREDICTABLE encoding
3073 * 4 == Non-cacheable
3074 * Either way, force Write-Back RW allocate non-transient
3075 */
3076 return 0xf;
3077 }
3078 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
3079 return attr | 4;
3080 }
3081
3082 /*
3083 * Combine the memory type and cacheability attributes of
3084 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
3085 * combined attributes in MAIR_EL1 format.
3086 */
combined_attrs_fwb(ARMCacheAttrs s1,ARMCacheAttrs s2)3087 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
3088 {
3089 assert(s2.is_s2_format && !s1.is_s2_format);
3090
3091 switch (s2.attrs) {
3092 case 7:
3093 /* Use stage 1 attributes */
3094 return s1.attrs;
3095 case 6:
3096 /*
3097 * Force Normal Write-Back. Note that if S1 is Normal cacheable
3098 * then we take the allocation hints from it; otherwise it is
3099 * RW allocate, non-transient.
3100 */
3101 if ((s1.attrs & 0xf0) == 0) {
3102 /* S1 is Device */
3103 return 0xff;
3104 }
3105 /* Need to check the Inner and Outer nibbles separately */
3106 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
3107 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
3108 case 5:
3109 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
3110 if ((s1.attrs & 0xf0) == 0) {
3111 return s1.attrs;
3112 }
3113 return 0x44;
3114 case 0 ... 3:
3115 /* Force Device, of subtype specified by S2 */
3116 return s2.attrs << 2;
3117 default:
3118 /*
3119 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
3120 * arbitrarily force Device.
3121 */
3122 return 0;
3123 }
3124 }
3125
3126 /*
3127 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
3128 * and CombineS1S2Desc()
3129 *
3130 * @env: CPUARMState
3131 * @s1: Attributes from stage 1 walk
3132 * @s2: Attributes from stage 2 walk
3133 */
combine_cacheattrs(uint64_t hcr,ARMCacheAttrs s1,ARMCacheAttrs s2)3134 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
3135 ARMCacheAttrs s1, ARMCacheAttrs s2)
3136 {
3137 ARMCacheAttrs ret;
3138 bool tagged = false;
3139
3140 assert(!s1.is_s2_format);
3141 ret.is_s2_format = false;
3142
3143 if (s1.attrs == 0xf0) {
3144 tagged = true;
3145 s1.attrs = 0xff;
3146 }
3147
3148 /* Combine shareability attributes (table D4-43) */
3149 if (s1.shareability == 2 || s2.shareability == 2) {
3150 /* if either are outer-shareable, the result is outer-shareable */
3151 ret.shareability = 2;
3152 } else if (s1.shareability == 3 || s2.shareability == 3) {
3153 /* if either are inner-shareable, the result is inner-shareable */
3154 ret.shareability = 3;
3155 } else {
3156 /* both non-shareable */
3157 ret.shareability = 0;
3158 }
3159
3160 /* Combine memory type and cacheability attributes */
3161 if (hcr & HCR_FWB) {
3162 ret.attrs = combined_attrs_fwb(s1, s2);
3163 } else {
3164 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3165 }
3166
3167 /*
3168 * Any location for which the resultant memory type is any
3169 * type of Device memory is always treated as Outer Shareable.
3170 * Any location for which the resultant memory type is Normal
3171 * Inner Non-cacheable, Outer Non-cacheable is always treated
3172 * as Outer Shareable.
3173 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3174 */
3175 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3176 ret.shareability = 2;
3177 }
3178
3179 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3180 if (tagged && ret.attrs == 0xff) {
3181 ret.attrs = 0xf0;
3182 }
3183
3184 return ret;
3185 }
3186
3187 /*
3188 * MMU disabled. S1 addresses within aa64 translation regimes are
3189 * still checked for bounds -- see AArch64.S1DisabledOutput().
3190 */
get_phys_addr_disabled(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3191 static bool get_phys_addr_disabled(CPUARMState *env,
3192 S1Translate *ptw,
3193 vaddr address,
3194 MMUAccessType access_type,
3195 GetPhysAddrResult *result,
3196 ARMMMUFaultInfo *fi)
3197 {
3198 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3199 uint8_t memattr = 0x00; /* Device nGnRnE */
3200 uint8_t shareability = 0; /* non-shareable */
3201 int r_el;
3202
3203 switch (mmu_idx) {
3204 case ARMMMUIdx_Stage2:
3205 case ARMMMUIdx_Stage2_S:
3206 case ARMMMUIdx_Phys_S:
3207 case ARMMMUIdx_Phys_NS:
3208 case ARMMMUIdx_Phys_Root:
3209 case ARMMMUIdx_Phys_Realm:
3210 break;
3211
3212 default:
3213 r_el = regime_el(env, mmu_idx);
3214 if (arm_el_is_aa64(env, r_el)) {
3215 int pamax = arm_pamax(env_archcpu(env));
3216 uint64_t tcr = env->cp15.tcr_el[r_el];
3217 int addrtop, tbi;
3218
3219 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3220 if (access_type == MMU_INST_FETCH) {
3221 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3222 }
3223 tbi = (tbi >> extract64(address, 55, 1)) & 1;
3224 addrtop = (tbi ? 55 : 63);
3225
3226 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3227 fi->type = ARMFault_AddressSize;
3228 fi->level = 0;
3229 fi->stage2 = false;
3230 return 1;
3231 }
3232
3233 /*
3234 * When TBI is disabled, we've just validated that all of the
3235 * bits above PAMax are zero, so logically we only need to
3236 * clear the top byte for TBI. But it's clearer to follow
3237 * the pseudocode set of addrdesc.paddress.
3238 */
3239 address = extract64(address, 0, 52);
3240 }
3241
3242 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3243 if (r_el == 1) {
3244 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
3245 if (hcr & HCR_DC) {
3246 if (hcr & HCR_DCT) {
3247 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
3248 } else {
3249 memattr = 0xff; /* Normal, WB, RWA */
3250 }
3251 }
3252 }
3253 if (memattr == 0) {
3254 if (access_type == MMU_INST_FETCH) {
3255 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3256 memattr = 0xee; /* Normal, WT, RA, NT */
3257 } else {
3258 memattr = 0x44; /* Normal, NC, No */
3259 }
3260 }
3261 shareability = 2; /* outer shareable */
3262 }
3263 result->cacheattrs.is_s2_format = false;
3264 break;
3265 }
3266
3267 result->f.phys_addr = address;
3268 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3269 result->f.lg_page_size = TARGET_PAGE_BITS;
3270 result->cacheattrs.shareability = shareability;
3271 result->cacheattrs.attrs = memattr;
3272 return false;
3273 }
3274
get_phys_addr_twostage(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,MemOp memop,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3275 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3276 vaddr address,
3277 MMUAccessType access_type, MemOp memop,
3278 GetPhysAddrResult *result,
3279 ARMMMUFaultInfo *fi)
3280 {
3281 hwaddr ipa;
3282 int s1_prot, s1_lgpgsz;
3283 ARMSecuritySpace in_space = ptw->in_space;
3284 bool ret, ipa_secure, s1_guarded;
3285 ARMCacheAttrs cacheattrs1;
3286 ARMSecuritySpace ipa_space;
3287 uint64_t hcr;
3288
3289 ret = get_phys_addr_nogpc(env, ptw, address, access_type,
3290 memop, result, fi);
3291
3292 /* If S1 fails, return early. */
3293 if (ret) {
3294 return ret;
3295 }
3296
3297 ipa = result->f.phys_addr;
3298 ipa_secure = result->f.attrs.secure;
3299 ipa_space = result->f.attrs.space;
3300
3301 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3302 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3303 ptw->in_space = ipa_space;
3304 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3305
3306 /*
3307 * S1 is done, now do S2 translation.
3308 * Save the stage1 results so that we may merge prot and cacheattrs later.
3309 */
3310 s1_prot = result->f.prot;
3311 s1_lgpgsz = result->f.lg_page_size;
3312 s1_guarded = result->f.extra.arm.guarded;
3313 cacheattrs1 = result->cacheattrs;
3314 memset(result, 0, sizeof(*result));
3315
3316 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type,
3317 memop, result, fi);
3318 fi->s2addr = ipa;
3319
3320 /* Combine the S1 and S2 perms. */
3321 result->f.prot &= s1_prot;
3322
3323 /* If S2 fails, return early. */
3324 if (ret) {
3325 return ret;
3326 }
3327
3328 /*
3329 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3330 * this means "don't put this in the TLB"; in this case, return a
3331 * result with lg_page_size == 0 to achieve that. Otherwise,
3332 * use the maximum of the S1 & S2 page size, so that invalidation
3333 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3334 * we know the combined result permissions etc only cover the minimum
3335 * of the S1 and S2 page size, because we know that the common TLB code
3336 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3337 * and passing a larger page size value only affects invalidations.)
3338 */
3339 if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3340 s1_lgpgsz < TARGET_PAGE_BITS) {
3341 result->f.lg_page_size = 0;
3342 } else if (result->f.lg_page_size < s1_lgpgsz) {
3343 result->f.lg_page_size = s1_lgpgsz;
3344 }
3345
3346 /* Combine the S1 and S2 cache attributes. */
3347 hcr = arm_hcr_el2_eff_secstate(env, in_space);
3348 if (hcr & HCR_DC) {
3349 /*
3350 * HCR.DC forces the first stage attributes to
3351 * Normal Non-Shareable,
3352 * Inner Write-Back Read-Allocate Write-Allocate,
3353 * Outer Write-Back Read-Allocate Write-Allocate.
3354 * Do not overwrite Tagged within attrs.
3355 */
3356 if (cacheattrs1.attrs != 0xf0) {
3357 cacheattrs1.attrs = 0xff;
3358 }
3359 cacheattrs1.shareability = 0;
3360 }
3361 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3362 result->cacheattrs);
3363
3364 /* No BTI GP information in stage 2, we just use the S1 value */
3365 result->f.extra.arm.guarded = s1_guarded;
3366
3367 /*
3368 * Check if IPA translates to secure or non-secure PA space.
3369 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3370 */
3371 if (in_space == ARMSS_Secure) {
3372 result->f.attrs.secure =
3373 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3374 && (ipa_secure
3375 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3376 result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3377 }
3378
3379 return false;
3380 }
3381
get_phys_addr_nogpc(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,MemOp memop,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3382 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3383 vaddr address,
3384 MMUAccessType access_type, MemOp memop,
3385 GetPhysAddrResult *result,
3386 ARMMMUFaultInfo *fi)
3387 {
3388 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3389 ARMMMUIdx s1_mmu_idx;
3390
3391 /*
3392 * The page table entries may downgrade Secure to NonSecure, but
3393 * cannot upgrade a NonSecure translation regime's attributes
3394 * to Secure or Realm.
3395 */
3396 result->f.attrs.space = ptw->in_space;
3397 result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
3398
3399 switch (mmu_idx) {
3400 case ARMMMUIdx_Phys_S:
3401 case ARMMMUIdx_Phys_NS:
3402 case ARMMMUIdx_Phys_Root:
3403 case ARMMMUIdx_Phys_Realm:
3404 /* Checking Phys early avoids special casing later vs regime_el. */
3405 return get_phys_addr_disabled(env, ptw, address, access_type,
3406 result, fi);
3407
3408 case ARMMMUIdx_Stage1_E0:
3409 case ARMMMUIdx_Stage1_E1:
3410 case ARMMMUIdx_Stage1_E1_PAN:
3411 /*
3412 * First stage lookup uses second stage for ptw; only
3413 * Secure has both S and NS IPA and starts with Stage2_S.
3414 */
3415 ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
3416 ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3417 break;
3418
3419 case ARMMMUIdx_Stage2:
3420 case ARMMMUIdx_Stage2_S:
3421 /*
3422 * Second stage lookup uses physical for ptw; whether this is S or
3423 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3424 * the Secure EL2&0 regime.
3425 */
3426 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3427 break;
3428
3429 case ARMMMUIdx_E10_0:
3430 s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3431 goto do_twostage;
3432 case ARMMMUIdx_E10_1:
3433 s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3434 goto do_twostage;
3435 case ARMMMUIdx_E10_1_PAN:
3436 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3437 do_twostage:
3438 /*
3439 * Call ourselves recursively to do the stage 1 and then stage 2
3440 * translations if mmu_idx is a two-stage regime, and EL2 present.
3441 * Otherwise, a stage1+stage2 translation is just stage 1.
3442 */
3443 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3444 if (arm_feature(env, ARM_FEATURE_EL2) &&
3445 !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
3446 return get_phys_addr_twostage(env, ptw, address, access_type,
3447 memop, result, fi);
3448 }
3449 /* fall through */
3450
3451 default:
3452 /* Single stage uses physical for ptw. */
3453 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3454 break;
3455 }
3456
3457 result->f.attrs.user = regime_is_user(env, mmu_idx);
3458
3459 /*
3460 * Fast Context Switch Extension. This doesn't exist at all in v8.
3461 * In v7 and earlier it affects all stage 1 translations.
3462 */
3463 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3464 && !arm_feature(env, ARM_FEATURE_V8)) {
3465 if (regime_el(env, mmu_idx) == 3) {
3466 address += env->cp15.fcseidr_s;
3467 } else {
3468 address += env->cp15.fcseidr_ns;
3469 }
3470 }
3471
3472 if (arm_feature(env, ARM_FEATURE_PMSA)) {
3473 bool ret;
3474 result->f.lg_page_size = TARGET_PAGE_BITS;
3475
3476 if (arm_feature(env, ARM_FEATURE_V8)) {
3477 /* PMSAv8 */
3478 ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
3479 result, fi);
3480 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3481 /* PMSAv7 */
3482 ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
3483 result, fi);
3484 } else {
3485 /* Pre-v7 MPU */
3486 ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
3487 result, fi);
3488 }
3489 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3490 " mmu_idx %u -> %s (prot %c%c%c)\n",
3491 access_type == MMU_DATA_LOAD ? "reading" :
3492 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3493 (uint32_t)address, mmu_idx,
3494 ret ? "Miss" : "Hit",
3495 result->f.prot & PAGE_READ ? 'r' : '-',
3496 result->f.prot & PAGE_WRITE ? 'w' : '-',
3497 result->f.prot & PAGE_EXEC ? 'x' : '-');
3498
3499 return ret;
3500 }
3501
3502 /* Definitely a real MMU, not an MPU */
3503
3504 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
3505 return get_phys_addr_disabled(env, ptw, address, access_type,
3506 result, fi);
3507 }
3508
3509 if (regime_using_lpae_format(env, mmu_idx)) {
3510 return get_phys_addr_lpae(env, ptw, address, access_type,
3511 memop, result, fi);
3512 } else if (arm_feature(env, ARM_FEATURE_V7) ||
3513 regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3514 return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3515 } else {
3516 return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3517 }
3518 }
3519
get_phys_addr_gpc(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,MemOp memop,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3520 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3521 vaddr address,
3522 MMUAccessType access_type, MemOp memop,
3523 GetPhysAddrResult *result,
3524 ARMMMUFaultInfo *fi)
3525 {
3526 if (get_phys_addr_nogpc(env, ptw, address, access_type,
3527 memop, result, fi)) {
3528 return true;
3529 }
3530 if (!granule_protection_check(env, result->f.phys_addr,
3531 result->f.attrs.space, fi)) {
3532 fi->type = ARMFault_GPCFOnOutput;
3533 return true;
3534 }
3535 return false;
3536 }
3537
get_phys_addr_with_space_nogpc(CPUARMState * env,vaddr address,MMUAccessType access_type,MemOp memop,ARMMMUIdx mmu_idx,ARMSecuritySpace space,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3538 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address,
3539 MMUAccessType access_type, MemOp memop,
3540 ARMMMUIdx mmu_idx, ARMSecuritySpace space,
3541 GetPhysAddrResult *result,
3542 ARMMMUFaultInfo *fi)
3543 {
3544 S1Translate ptw = {
3545 .in_mmu_idx = mmu_idx,
3546 .in_space = space,
3547 };
3548 return get_phys_addr_nogpc(env, &ptw, address, access_type,
3549 memop, result, fi);
3550 }
3551
get_phys_addr(CPUARMState * env,vaddr address,MMUAccessType access_type,MemOp memop,ARMMMUIdx mmu_idx,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3552 bool get_phys_addr(CPUARMState *env, vaddr address,
3553 MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx,
3554 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3555 {
3556 S1Translate ptw = {
3557 .in_mmu_idx = mmu_idx,
3558 };
3559 ARMSecuritySpace ss;
3560
3561 switch (mmu_idx) {
3562 case ARMMMUIdx_E10_0:
3563 case ARMMMUIdx_E10_1:
3564 case ARMMMUIdx_E10_1_PAN:
3565 case ARMMMUIdx_E20_0:
3566 case ARMMMUIdx_E20_2:
3567 case ARMMMUIdx_E20_2_PAN:
3568 case ARMMMUIdx_Stage1_E0:
3569 case ARMMMUIdx_Stage1_E1:
3570 case ARMMMUIdx_Stage1_E1_PAN:
3571 case ARMMMUIdx_E2:
3572 ss = arm_security_space_below_el3(env);
3573 break;
3574 case ARMMMUIdx_Stage2:
3575 /*
3576 * For Secure EL2, we need this index to be NonSecure;
3577 * otherwise this will already be NonSecure or Realm.
3578 */
3579 ss = arm_security_space_below_el3(env);
3580 if (ss == ARMSS_Secure) {
3581 ss = ARMSS_NonSecure;
3582 }
3583 break;
3584 case ARMMMUIdx_Phys_NS:
3585 case ARMMMUIdx_MPrivNegPri:
3586 case ARMMMUIdx_MUserNegPri:
3587 case ARMMMUIdx_MPriv:
3588 case ARMMMUIdx_MUser:
3589 ss = ARMSS_NonSecure;
3590 break;
3591 case ARMMMUIdx_Stage2_S:
3592 case ARMMMUIdx_Phys_S:
3593 case ARMMMUIdx_MSPrivNegPri:
3594 case ARMMMUIdx_MSUserNegPri:
3595 case ARMMMUIdx_MSPriv:
3596 case ARMMMUIdx_MSUser:
3597 ss = ARMSS_Secure;
3598 break;
3599 case ARMMMUIdx_E3:
3600 case ARMMMUIdx_E30_0:
3601 case ARMMMUIdx_E30_3_PAN:
3602 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3603 cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3604 ss = ARMSS_Root;
3605 } else {
3606 ss = ARMSS_Secure;
3607 }
3608 break;
3609 case ARMMMUIdx_Phys_Root:
3610 ss = ARMSS_Root;
3611 break;
3612 case ARMMMUIdx_Phys_Realm:
3613 ss = ARMSS_Realm;
3614 break;
3615 default:
3616 g_assert_not_reached();
3617 }
3618
3619 ptw.in_space = ss;
3620 return get_phys_addr_gpc(env, &ptw, address, access_type,
3621 memop, result, fi);
3622 }
3623
arm_cpu_get_phys_page_attrs_debug(CPUState * cs,vaddr addr,MemTxAttrs * attrs)3624 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3625 MemTxAttrs *attrs)
3626 {
3627 ARMCPU *cpu = ARM_CPU(cs);
3628 CPUARMState *env = &cpu->env;
3629 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3630 ARMSecuritySpace ss = arm_security_space(env);
3631 S1Translate ptw = {
3632 .in_mmu_idx = mmu_idx,
3633 .in_space = ss,
3634 .in_debug = true,
3635 };
3636 GetPhysAddrResult res = {};
3637 ARMMMUFaultInfo fi = {};
3638 bool ret;
3639
3640 ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, 0, &res, &fi);
3641 *attrs = res.f.attrs;
3642
3643 if (ret) {
3644 return -1;
3645 }
3646 return res.f.phys_addr;
3647 }
3648