1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50
51 #include <drm/amdgpu_drm.h>
52
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63
64 MODULE_IMPORT_NS(DMA_BUF);
65
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77 {
78 return ttm_range_man_init(&adev->mman.bdev, type,
79 false, size_in_page);
80 }
81
82 /**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92 {
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 placement->num_busy_placement = 0;
106 return;
107 }
108
109 /* Object isn't an AMDGPU object so ignore */
110 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111 placement->placement = &placements;
112 placement->busy_placement = &placements;
113 placement->num_placement = 1;
114 placement->num_busy_placement = 1;
115 return;
116 }
117
118 abo = ttm_to_amdgpu_bo(bo);
119 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120 placement->num_placement = 0;
121 placement->num_busy_placement = 0;
122 return;
123 }
124
125 switch (bo->resource->mem_type) {
126 case AMDGPU_PL_GDS:
127 case AMDGPU_PL_GWS:
128 case AMDGPU_PL_OA:
129 case AMDGPU_PL_DOORBELL:
130 placement->num_placement = 0;
131 placement->num_busy_placement = 0;
132 return;
133
134 case TTM_PL_VRAM:
135 if (!adev->mman.buffer_funcs_enabled) {
136 /* Move to system memory */
137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 amdgpu_res_cpu_visible(adev, bo->resource)) {
141
142 /* Try evicting to the CPU inaccessible part of VRAM
143 * first, but only set GTT as busy placement, so this
144 * BO will be evicted to GTT rather than causing other
145 * BOs to be evicted from VRAM
146 */
147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 AMDGPU_GEM_DOMAIN_GTT |
149 AMDGPU_GEM_DOMAIN_CPU);
150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 abo->placements[0].lpfn = 0;
152 abo->placement.busy_placement = &abo->placements[1];
153 abo->placement.num_busy_placement = 1;
154 } else {
155 /* Move to GTT memory */
156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 AMDGPU_GEM_DOMAIN_CPU);
158 }
159 break;
160 case TTM_PL_TT:
161 case AMDGPU_PL_PREEMPT:
162 default:
163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 break;
165 }
166 *placement = abo->placement;
167 }
168
169 /**
170 * amdgpu_ttm_map_buffer - Map memory into the GART windows
171 * @bo: buffer object to map
172 * @mem: memory object to map
173 * @mm_cur: range to map
174 * @window: which GART window to use
175 * @ring: DMA ring to use for the copy
176 * @tmz: if we should setup a TMZ enabled mapping
177 * @size: in number of bytes to map, out number of bytes mapped
178 * @addr: resulting address inside the MC address space
179 *
180 * Setup one of the GART windows to access a specific piece of memory or return
181 * the physical address for local memory.
182 */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned int window,struct amdgpu_ring * ring,bool tmz,uint64_t * size,uint64_t * addr)183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 struct ttm_resource *mem,
185 struct amdgpu_res_cursor *mm_cur,
186 unsigned int window, struct amdgpu_ring *ring,
187 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 struct amdgpu_device *adev = ring->adev;
190 unsigned int offset, num_pages, num_dw, num_bytes;
191 uint64_t src_addr, dst_addr;
192 struct amdgpu_job *job;
193 void *cpu_addr;
194 uint64_t flags;
195 unsigned int i;
196 int r;
197
198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200
201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202 return -EINVAL;
203
204 /* Map only what can't be accessed directly */
205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207 mm_cur->start;
208 return 0;
209 }
210
211
212 /*
213 * If start begins at an offset inside the page, then adjust the size
214 * and addr accordingly
215 */
216 offset = mm_cur->start & ~PAGE_MASK;
217
218 num_pages = PFN_UP(*size + offset);
219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220
221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222
223 *addr = adev->gmc.gart_start;
224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225 AMDGPU_GPU_PAGE_SIZE;
226 *addr += offset;
227
228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230
231 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232 AMDGPU_FENCE_OWNER_UNDEFINED,
233 num_dw * 4 + num_bytes,
234 AMDGPU_IB_POOL_DELAYED, &job);
235 if (r)
236 return r;
237
238 src_addr = num_dw * 4;
239 src_addr += job->ibs[0].gpu_addr;
240
241 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244 dst_addr, num_bytes, false);
245
246 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247 WARN_ON(job->ibs[0].length_dw > num_dw);
248
249 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250 if (tmz)
251 flags |= AMDGPU_PTE_TMZ;
252
253 cpu_addr = &job->ibs[0].ptr[num_dw];
254
255 if (mem->mem_type == TTM_PL_TT) {
256 dma_addr_t *dma_addr;
257
258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260 } else {
261 dma_addr_t dma_address;
262
263 dma_address = mm_cur->start;
264 dma_address += adev->vm_manager.vram_base_offset;
265
266 for (i = 0; i < num_pages; ++i) {
267 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268 flags, cpu_addr);
269 dma_address += PAGE_SIZE;
270 }
271 }
272
273 dma_fence_put(amdgpu_job_submit(job));
274 return 0;
275 }
276
277 /**
278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279 * @adev: amdgpu device
280 * @src: buffer/address where to read from
281 * @dst: buffer/address where to write to
282 * @size: number of bytes to copy
283 * @tmz: if a secure copy should be used
284 * @resv: resv object to sync to
285 * @f: Returns the last fence if multiple jobs are submitted.
286 *
287 * The function copies @size bytes from {src->mem + src->offset} to
288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289 * move and different for a BO to BO copy.
290 *
291 */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293 const struct amdgpu_copy_mem *src,
294 const struct amdgpu_copy_mem *dst,
295 uint64_t size, bool tmz,
296 struct dma_resv *resv,
297 struct dma_fence **f)
298 {
299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300 struct amdgpu_res_cursor src_mm, dst_mm;
301 struct dma_fence *fence = NULL;
302 int r = 0;
303
304 if (!adev->mman.buffer_funcs_enabled) {
305 DRM_ERROR("Trying to move memory with ring turned off.\n");
306 return -EINVAL;
307 }
308
309 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311
312 mutex_lock(&adev->mman.gtt_window_lock);
313 while (src_mm.remaining) {
314 uint64_t from, to, cur_size;
315 struct dma_fence *next;
316
317 /* Never copy more than 256MiB at once to avoid a timeout */
318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319
320 /* Map src to window 0 and dst to window 1. */
321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322 0, ring, tmz, &cur_size, &from);
323 if (r)
324 goto error;
325
326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327 1, ring, tmz, &cur_size, &to);
328 if (r)
329 goto error;
330
331 r = amdgpu_copy_buffer(ring, from, to, cur_size,
332 resv, &next, false, true, tmz);
333 if (r)
334 goto error;
335
336 dma_fence_put(fence);
337 fence = next;
338
339 amdgpu_res_next(&src_mm, cur_size);
340 amdgpu_res_next(&dst_mm, cur_size);
341 }
342 error:
343 mutex_unlock(&adev->mman.gtt_window_lock);
344 if (f)
345 *f = dma_fence_get(fence);
346 dma_fence_put(fence);
347 return r;
348 }
349
350 /*
351 * amdgpu_move_blit - Copy an entire buffer to another buffer
352 *
353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354 * help move buffers to and from VRAM.
355 */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)356 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357 bool evict,
358 struct ttm_resource *new_mem,
359 struct ttm_resource *old_mem)
360 {
361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363 struct amdgpu_copy_mem src, dst;
364 struct dma_fence *fence = NULL;
365 int r;
366
367 src.bo = bo;
368 dst.bo = bo;
369 src.mem = old_mem;
370 dst.mem = new_mem;
371 src.offset = 0;
372 dst.offset = 0;
373
374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375 new_mem->size,
376 amdgpu_bo_encrypted(abo),
377 bo->base.resv, &fence);
378 if (r)
379 goto error;
380
381 /* clear the space being freed */
382 if (old_mem->mem_type == TTM_PL_VRAM &&
383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 struct dma_fence *wipe_fence = NULL;
385
386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387 false);
388 if (r) {
389 goto error;
390 } else if (wipe_fence) {
391 dma_fence_put(fence);
392 fence = wipe_fence;
393 }
394 }
395
396 /* Always block for VM page tables before committing the new location */
397 if (bo->type == ttm_bo_type_kernel)
398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 else
400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 dma_fence_put(fence);
402 return r;
403
404 error:
405 if (fence)
406 dma_fence_wait(fence, false);
407 dma_fence_put(fence);
408 return r;
409 }
410
411 /**
412 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
413 * @adev: amdgpu device
414 * @res: the resource to check
415 *
416 * Returns: true if the full resource is CPU visible, false otherwise.
417 */
amdgpu_res_cpu_visible(struct amdgpu_device * adev,struct ttm_resource * res)418 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
419 struct ttm_resource *res)
420 {
421 struct amdgpu_res_cursor cursor;
422
423 if (!res)
424 return false;
425
426 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
427 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
428 return true;
429
430 if (res->mem_type != TTM_PL_VRAM)
431 return false;
432
433 amdgpu_res_first(res, 0, res->size, &cursor);
434 while (cursor.remaining) {
435 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
436 return false;
437 amdgpu_res_next(&cursor, cursor.size);
438 }
439
440 return true;
441 }
442
443 /*
444 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
445 *
446 * Called by amdgpu_bo_move()
447 */
amdgpu_res_copyable(struct amdgpu_device * adev,struct ttm_resource * mem)448 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
449 struct ttm_resource *mem)
450 {
451 if (!amdgpu_res_cpu_visible(adev, mem))
452 return false;
453
454 /* ttm_resource_ioremap only supports contiguous memory */
455 if (mem->mem_type == TTM_PL_VRAM &&
456 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
457 return false;
458
459 return true;
460 }
461
462 /*
463 * amdgpu_bo_move - Move a buffer object to a new memory location
464 *
465 * Called by ttm_bo_handle_move_mem()
466 */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)467 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
468 struct ttm_operation_ctx *ctx,
469 struct ttm_resource *new_mem,
470 struct ttm_place *hop)
471 {
472 struct amdgpu_device *adev;
473 struct amdgpu_bo *abo;
474 struct ttm_resource *old_mem = bo->resource;
475 int r;
476
477 if (new_mem->mem_type == TTM_PL_TT ||
478 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
479 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
480 if (r)
481 return r;
482 }
483
484 abo = ttm_to_amdgpu_bo(bo);
485 adev = amdgpu_ttm_adev(bo->bdev);
486
487 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
488 bo->ttm == NULL)) {
489 amdgpu_bo_move_notify(bo, evict, new_mem);
490 ttm_bo_move_null(bo, new_mem);
491 return 0;
492 }
493 if (old_mem->mem_type == TTM_PL_SYSTEM &&
494 (new_mem->mem_type == TTM_PL_TT ||
495 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
496 amdgpu_bo_move_notify(bo, evict, new_mem);
497 ttm_bo_move_null(bo, new_mem);
498 return 0;
499 }
500 if ((old_mem->mem_type == TTM_PL_TT ||
501 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
502 new_mem->mem_type == TTM_PL_SYSTEM) {
503 r = ttm_bo_wait_ctx(bo, ctx);
504 if (r)
505 return r;
506
507 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
508 amdgpu_bo_move_notify(bo, evict, new_mem);
509 ttm_resource_free(bo, &bo->resource);
510 ttm_bo_assign_mem(bo, new_mem);
511 return 0;
512 }
513
514 if (old_mem->mem_type == AMDGPU_PL_GDS ||
515 old_mem->mem_type == AMDGPU_PL_GWS ||
516 old_mem->mem_type == AMDGPU_PL_OA ||
517 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
518 new_mem->mem_type == AMDGPU_PL_GDS ||
519 new_mem->mem_type == AMDGPU_PL_GWS ||
520 new_mem->mem_type == AMDGPU_PL_OA ||
521 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
522 /* Nothing to save here */
523 amdgpu_bo_move_notify(bo, evict, new_mem);
524 ttm_bo_move_null(bo, new_mem);
525 return 0;
526 }
527
528 if (bo->type == ttm_bo_type_device &&
529 new_mem->mem_type == TTM_PL_VRAM &&
530 old_mem->mem_type != TTM_PL_VRAM) {
531 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
532 * accesses the BO after it's moved.
533 */
534 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
535 }
536
537 if (adev->mman.buffer_funcs_enabled &&
538 ((old_mem->mem_type == TTM_PL_SYSTEM &&
539 new_mem->mem_type == TTM_PL_VRAM) ||
540 (old_mem->mem_type == TTM_PL_VRAM &&
541 new_mem->mem_type == TTM_PL_SYSTEM))) {
542 hop->fpfn = 0;
543 hop->lpfn = 0;
544 hop->mem_type = TTM_PL_TT;
545 hop->flags = TTM_PL_FLAG_TEMPORARY;
546 return -EMULTIHOP;
547 }
548
549 amdgpu_bo_move_notify(bo, evict, new_mem);
550 if (adev->mman.buffer_funcs_enabled)
551 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
552 else
553 r = -ENODEV;
554
555 if (r) {
556 /* Check that all memory is CPU accessible */
557 if (!amdgpu_res_copyable(adev, old_mem) ||
558 !amdgpu_res_copyable(adev, new_mem)) {
559 pr_err("Move buffer fallback to memcpy unavailable\n");
560 return r;
561 }
562
563 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
564 if (r)
565 return r;
566 }
567
568 /* update statistics after the move */
569 if (evict)
570 atomic64_inc(&adev->num_evictions);
571 atomic64_add(bo->base.size, &adev->num_bytes_moved);
572 return 0;
573 }
574
575 /*
576 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
577 *
578 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
579 */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)580 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
581 struct ttm_resource *mem)
582 {
583 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
584
585 switch (mem->mem_type) {
586 case TTM_PL_SYSTEM:
587 /* system memory */
588 return 0;
589 case TTM_PL_TT:
590 case AMDGPU_PL_PREEMPT:
591 break;
592 case TTM_PL_VRAM:
593 mem->bus.offset = mem->start << PAGE_SHIFT;
594
595 if (adev->mman.aper_base_kaddr &&
596 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
597 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
598 mem->bus.offset;
599
600 mem->bus.offset += adev->gmc.aper_base;
601 mem->bus.is_iomem = true;
602 break;
603 case AMDGPU_PL_DOORBELL:
604 mem->bus.offset = mem->start << PAGE_SHIFT;
605 mem->bus.offset += adev->doorbell.base;
606 mem->bus.is_iomem = true;
607 mem->bus.caching = ttm_uncached;
608 break;
609 default:
610 return -EINVAL;
611 }
612 return 0;
613 }
614
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)615 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
616 unsigned long page_offset)
617 {
618 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
619 struct amdgpu_res_cursor cursor;
620
621 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
622 &cursor);
623
624 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
625 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
626
627 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
628 }
629
630 /**
631 * amdgpu_ttm_domain_start - Returns GPU start address
632 * @adev: amdgpu device object
633 * @type: type of the memory
634 *
635 * Returns:
636 * GPU start address of a memory domain
637 */
638
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)639 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
640 {
641 switch (type) {
642 case TTM_PL_TT:
643 return adev->gmc.gart_start;
644 case TTM_PL_VRAM:
645 return adev->gmc.vram_start;
646 }
647
648 return 0;
649 }
650
651 /*
652 * TTM backend functions.
653 */
654 struct amdgpu_ttm_tt {
655 struct ttm_tt ttm;
656 struct drm_gem_object *gobj;
657 u64 offset;
658 uint64_t userptr;
659 struct task_struct *usertask;
660 uint32_t userflags;
661 bool bound;
662 int32_t pool_id;
663 };
664
665 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
666
667 #ifdef CONFIG_DRM_AMDGPU_USERPTR
668 /*
669 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
670 * memory and start HMM tracking CPU page table update
671 *
672 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
673 * once afterwards to stop HMM tracking
674 */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct page ** pages,struct hmm_range ** range)675 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
676 struct hmm_range **range)
677 {
678 struct ttm_tt *ttm = bo->tbo.ttm;
679 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
680 unsigned long start = gtt->userptr;
681 struct vm_area_struct *vma;
682 struct mm_struct *mm;
683 bool readonly;
684 int r = 0;
685
686 /* Make sure get_user_pages_done() can cleanup gracefully */
687 *range = NULL;
688
689 mm = bo->notifier.mm;
690 if (unlikely(!mm)) {
691 DRM_DEBUG_DRIVER("BO is not registered?\n");
692 return -EFAULT;
693 }
694
695 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
696 return -ESRCH;
697
698 mmap_read_lock(mm);
699 vma = vma_lookup(mm, start);
700 if (unlikely(!vma)) {
701 r = -EFAULT;
702 goto out_unlock;
703 }
704 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
705 vma->vm_file)) {
706 r = -EPERM;
707 goto out_unlock;
708 }
709
710 readonly = amdgpu_ttm_tt_is_readonly(ttm);
711 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
712 readonly, NULL, pages, range);
713 out_unlock:
714 mmap_read_unlock(mm);
715 if (r)
716 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
717
718 mmput(mm);
719
720 return r;
721 }
722
723 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
724 */
amdgpu_ttm_tt_discard_user_pages(struct ttm_tt * ttm,struct hmm_range * range)725 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
726 struct hmm_range *range)
727 {
728 struct amdgpu_ttm_tt *gtt = (void *)ttm;
729
730 if (gtt && gtt->userptr && range)
731 amdgpu_hmm_range_get_pages_done(range);
732 }
733
734 /*
735 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
736 * Check if the pages backing this ttm range have been invalidated
737 *
738 * Returns: true if pages are still valid
739 */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm,struct hmm_range * range)740 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
741 struct hmm_range *range)
742 {
743 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
744
745 if (!gtt || !gtt->userptr || !range)
746 return false;
747
748 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
749 gtt->userptr, ttm->num_pages);
750
751 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
752
753 return !amdgpu_hmm_range_get_pages_done(range);
754 }
755 #endif
756
757 /*
758 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
759 *
760 * Called by amdgpu_cs_list_validate(). This creates the page list
761 * that backs user memory and will ultimately be mapped into the device
762 * address space.
763 */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct page ** pages)764 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
765 {
766 unsigned long i;
767
768 for (i = 0; i < ttm->num_pages; ++i)
769 ttm->pages[i] = pages ? pages[i] : NULL;
770 }
771
772 /*
773 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
774 *
775 * Called by amdgpu_ttm_backend_bind()
776 **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)777 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
778 struct ttm_tt *ttm)
779 {
780 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
781 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
782 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
783 enum dma_data_direction direction = write ?
784 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
785 int r;
786
787 /* Allocate an SG array and squash pages into it */
788 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
789 (u64)ttm->num_pages << PAGE_SHIFT,
790 GFP_KERNEL);
791 if (r)
792 goto release_sg;
793
794 /* Map SG to device */
795 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
796 if (r)
797 goto release_sg_table;
798
799 /* convert SG to linear array of pages and dma addresses */
800 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
801 ttm->num_pages);
802
803 return 0;
804
805 release_sg_table:
806 sg_free_table(ttm->sg);
807 release_sg:
808 kfree(ttm->sg);
809 ttm->sg = NULL;
810 return r;
811 }
812
813 /*
814 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
815 */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)816 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
817 struct ttm_tt *ttm)
818 {
819 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
820 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
821 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
822 enum dma_data_direction direction = write ?
823 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
824
825 /* double check that we don't free the table twice */
826 if (!ttm->sg || !ttm->sg->sgl)
827 return;
828
829 /* unmap the pages mapped to the device */
830 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
831 sg_free_table(ttm->sg);
832 }
833
834 /*
835 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
836 * MQDn+CtrlStackn where n is the number of XCCs per partition.
837 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
838 * and uses memory type default, UC. The rest of pages_per_xcc are
839 * Ctrl stack and modify their memory type to NC.
840 */
amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device * adev,struct ttm_tt * ttm,uint64_t flags)841 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
842 struct ttm_tt *ttm, uint64_t flags)
843 {
844 struct amdgpu_ttm_tt *gtt = (void *)ttm;
845 uint64_t total_pages = ttm->num_pages;
846 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
847 uint64_t page_idx, pages_per_xcc;
848 int i;
849 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
850 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
851
852 pages_per_xcc = total_pages;
853 do_div(pages_per_xcc, num_xcc);
854
855 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
856 /* MQD page: use default flags */
857 amdgpu_gart_bind(adev,
858 gtt->offset + (page_idx << PAGE_SHIFT),
859 1, >t->ttm.dma_address[page_idx], flags);
860 /*
861 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
862 * the second page of the BO onward.
863 */
864 amdgpu_gart_bind(adev,
865 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
866 pages_per_xcc - 1,
867 >t->ttm.dma_address[page_idx + 1],
868 ctrl_flags);
869 }
870 }
871
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)872 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
873 struct ttm_buffer_object *tbo,
874 uint64_t flags)
875 {
876 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
877 struct ttm_tt *ttm = tbo->ttm;
878 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
879
880 if (amdgpu_bo_encrypted(abo))
881 flags |= AMDGPU_PTE_TMZ;
882
883 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
884 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
885 } else {
886 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
887 gtt->ttm.dma_address, flags);
888 }
889 gtt->bound = true;
890 }
891
892 /*
893 * amdgpu_ttm_backend_bind - Bind GTT memory
894 *
895 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
896 * This handles binding GTT memory to the device address space.
897 */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)898 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
899 struct ttm_tt *ttm,
900 struct ttm_resource *bo_mem)
901 {
902 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
903 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
904 uint64_t flags;
905 int r;
906
907 if (!bo_mem)
908 return -EINVAL;
909
910 if (gtt->bound)
911 return 0;
912
913 if (gtt->userptr) {
914 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
915 if (r) {
916 DRM_ERROR("failed to pin userptr\n");
917 return r;
918 }
919 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
920 if (!ttm->sg) {
921 struct dma_buf_attachment *attach;
922 struct sg_table *sgt;
923
924 attach = gtt->gobj->import_attach;
925 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
926 if (IS_ERR(sgt))
927 return PTR_ERR(sgt);
928
929 ttm->sg = sgt;
930 }
931
932 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
933 ttm->num_pages);
934 }
935
936 if (!ttm->num_pages) {
937 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
938 ttm->num_pages, bo_mem, ttm);
939 }
940
941 if (bo_mem->mem_type != TTM_PL_TT ||
942 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
943 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
944 return 0;
945 }
946
947 /* compute PTE flags relevant to this BO memory */
948 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
949
950 /* bind pages into GART page tables */
951 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
952 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
953 gtt->ttm.dma_address, flags);
954 gtt->bound = true;
955 return 0;
956 }
957
958 /*
959 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
960 * through AGP or GART aperture.
961 *
962 * If bo is accessible through AGP aperture, then use AGP aperture
963 * to access bo; otherwise allocate logical space in GART aperture
964 * and map bo to GART aperture.
965 */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)966 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
967 {
968 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
969 struct ttm_operation_ctx ctx = { false, false };
970 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
971 struct ttm_placement placement;
972 struct ttm_place placements;
973 struct ttm_resource *tmp;
974 uint64_t addr, flags;
975 int r;
976
977 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
978 return 0;
979
980 addr = amdgpu_gmc_agp_addr(bo);
981 if (addr != AMDGPU_BO_INVALID_OFFSET) {
982 bo->resource->start = addr >> PAGE_SHIFT;
983 return 0;
984 }
985
986 /* allocate GART space */
987 placement.num_placement = 1;
988 placement.placement = &placements;
989 placement.num_busy_placement = 1;
990 placement.busy_placement = &placements;
991 placements.fpfn = 0;
992 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
993 placements.mem_type = TTM_PL_TT;
994 placements.flags = bo->resource->placement;
995
996 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
997 if (unlikely(r))
998 return r;
999
1000 /* compute PTE flags for this buffer object */
1001 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1002
1003 /* Bind pages */
1004 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1005 amdgpu_ttm_gart_bind(adev, bo, flags);
1006 amdgpu_gart_invalidate_tlb(adev);
1007 ttm_resource_free(bo, &bo->resource);
1008 ttm_bo_assign_mem(bo, tmp);
1009
1010 return 0;
1011 }
1012
1013 /*
1014 * amdgpu_ttm_recover_gart - Rebind GTT pages
1015 *
1016 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1017 * rebind GTT pages during a GPU reset.
1018 */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1019 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1020 {
1021 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1022 uint64_t flags;
1023
1024 if (!tbo->ttm)
1025 return;
1026
1027 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1028 amdgpu_ttm_gart_bind(adev, tbo, flags);
1029 }
1030
1031 /*
1032 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1033 *
1034 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1035 * ttm_tt_destroy().
1036 */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)1037 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1038 struct ttm_tt *ttm)
1039 {
1040 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1041 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1042
1043 /* if the pages have userptr pinning then clear that first */
1044 if (gtt->userptr) {
1045 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1046 } else if (ttm->sg && gtt->gobj->import_attach) {
1047 struct dma_buf_attachment *attach;
1048
1049 attach = gtt->gobj->import_attach;
1050 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1051 ttm->sg = NULL;
1052 }
1053
1054 if (!gtt->bound)
1055 return;
1056
1057 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1058 return;
1059
1060 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1061 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1062 gtt->bound = false;
1063 }
1064
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1065 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1066 struct ttm_tt *ttm)
1067 {
1068 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1069
1070 if (gtt->usertask)
1071 put_task_struct(gtt->usertask);
1072
1073 ttm_tt_fini(>t->ttm);
1074 kfree(gtt);
1075 }
1076
1077 /**
1078 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1079 *
1080 * @bo: The buffer object to create a GTT ttm_tt object around
1081 * @page_flags: Page flags to be added to the ttm_tt object
1082 *
1083 * Called by ttm_tt_create().
1084 */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1085 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1086 uint32_t page_flags)
1087 {
1088 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1089 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1090 struct amdgpu_ttm_tt *gtt;
1091 enum ttm_caching caching;
1092
1093 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1094 if (!gtt)
1095 return NULL;
1096
1097 gtt->gobj = &bo->base;
1098 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1099 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1100 else
1101 gtt->pool_id = abo->xcp_id;
1102
1103 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1104 caching = ttm_write_combined;
1105 else
1106 caching = ttm_cached;
1107
1108 /* allocate space for the uninitialized page entries */
1109 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1110 kfree(gtt);
1111 return NULL;
1112 }
1113 return >t->ttm;
1114 }
1115
1116 /*
1117 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1118 *
1119 * Map the pages of a ttm_tt object to an address space visible
1120 * to the underlying device.
1121 */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1122 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1123 struct ttm_tt *ttm,
1124 struct ttm_operation_ctx *ctx)
1125 {
1126 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1127 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1128 struct ttm_pool *pool;
1129 pgoff_t i;
1130 int ret;
1131
1132 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1133 if (gtt->userptr) {
1134 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1135 if (!ttm->sg)
1136 return -ENOMEM;
1137 return 0;
1138 }
1139
1140 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1141 return 0;
1142
1143 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1144 pool = &adev->mman.ttm_pools[gtt->pool_id];
1145 else
1146 pool = &adev->mman.bdev.pool;
1147 ret = ttm_pool_alloc(pool, ttm, ctx);
1148 if (ret)
1149 return ret;
1150
1151 for (i = 0; i < ttm->num_pages; ++i)
1152 ttm->pages[i]->mapping = bdev->dev_mapping;
1153
1154 return 0;
1155 }
1156
1157 /*
1158 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1159 *
1160 * Unmaps pages of a ttm_tt object from the device address space and
1161 * unpopulates the page array backing it.
1162 */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1163 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1164 struct ttm_tt *ttm)
1165 {
1166 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1167 struct amdgpu_device *adev;
1168 struct ttm_pool *pool;
1169 pgoff_t i;
1170
1171 amdgpu_ttm_backend_unbind(bdev, ttm);
1172
1173 if (gtt->userptr) {
1174 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1175 kfree(ttm->sg);
1176 ttm->sg = NULL;
1177 return;
1178 }
1179
1180 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1181 return;
1182
1183 for (i = 0; i < ttm->num_pages; ++i)
1184 ttm->pages[i]->mapping = NULL;
1185
1186 adev = amdgpu_ttm_adev(bdev);
1187
1188 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1189 pool = &adev->mman.ttm_pools[gtt->pool_id];
1190 else
1191 pool = &adev->mman.bdev.pool;
1192
1193 return ttm_pool_free(pool, ttm);
1194 }
1195
1196 /**
1197 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1198 * task
1199 *
1200 * @tbo: The ttm_buffer_object that contains the userptr
1201 * @user_addr: The returned value
1202 */
amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object * tbo,uint64_t * user_addr)1203 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1204 uint64_t *user_addr)
1205 {
1206 struct amdgpu_ttm_tt *gtt;
1207
1208 if (!tbo->ttm)
1209 return -EINVAL;
1210
1211 gtt = (void *)tbo->ttm;
1212 *user_addr = gtt->userptr;
1213 return 0;
1214 }
1215
1216 /**
1217 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1218 * task
1219 *
1220 * @bo: The ttm_buffer_object to bind this userptr to
1221 * @addr: The address in the current tasks VM space to use
1222 * @flags: Requirements of userptr object.
1223 *
1224 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1225 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1226 * initialize GPU VM for a KFD process.
1227 */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1228 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1229 uint64_t addr, uint32_t flags)
1230 {
1231 struct amdgpu_ttm_tt *gtt;
1232
1233 if (!bo->ttm) {
1234 /* TODO: We want a separate TTM object type for userptrs */
1235 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1236 if (bo->ttm == NULL)
1237 return -ENOMEM;
1238 }
1239
1240 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1241 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1242
1243 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1244 gtt->userptr = addr;
1245 gtt->userflags = flags;
1246
1247 if (gtt->usertask)
1248 put_task_struct(gtt->usertask);
1249 gtt->usertask = current->group_leader;
1250 get_task_struct(gtt->usertask);
1251
1252 return 0;
1253 }
1254
1255 /*
1256 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1257 */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1258 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1259 {
1260 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1261
1262 if (gtt == NULL)
1263 return NULL;
1264
1265 if (gtt->usertask == NULL)
1266 return NULL;
1267
1268 return gtt->usertask->mm;
1269 }
1270
1271 /*
1272 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1273 * address range for the current task.
1274 *
1275 */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end,unsigned long * userptr)1276 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1277 unsigned long end, unsigned long *userptr)
1278 {
1279 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1280 unsigned long size;
1281
1282 if (gtt == NULL || !gtt->userptr)
1283 return false;
1284
1285 /* Return false if no part of the ttm_tt object lies within
1286 * the range
1287 */
1288 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1289 if (gtt->userptr > end || gtt->userptr + size <= start)
1290 return false;
1291
1292 if (userptr)
1293 *userptr = gtt->userptr;
1294 return true;
1295 }
1296
1297 /*
1298 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1299 */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1300 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1301 {
1302 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1303
1304 if (gtt == NULL || !gtt->userptr)
1305 return false;
1306
1307 return true;
1308 }
1309
1310 /*
1311 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1312 */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1313 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1314 {
1315 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1316
1317 if (gtt == NULL)
1318 return false;
1319
1320 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1321 }
1322
1323 /**
1324 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1325 *
1326 * @ttm: The ttm_tt object to compute the flags for
1327 * @mem: The memory registry backing this ttm_tt object
1328 *
1329 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1330 */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1331 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1332 {
1333 uint64_t flags = 0;
1334
1335 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1336 flags |= AMDGPU_PTE_VALID;
1337
1338 if (mem && (mem->mem_type == TTM_PL_TT ||
1339 mem->mem_type == AMDGPU_PL_DOORBELL ||
1340 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1341 flags |= AMDGPU_PTE_SYSTEM;
1342
1343 if (ttm->caching == ttm_cached)
1344 flags |= AMDGPU_PTE_SNOOPED;
1345 }
1346
1347 if (mem && mem->mem_type == TTM_PL_VRAM &&
1348 mem->bus.caching == ttm_cached)
1349 flags |= AMDGPU_PTE_SNOOPED;
1350
1351 return flags;
1352 }
1353
1354 /**
1355 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1356 *
1357 * @adev: amdgpu_device pointer
1358 * @ttm: The ttm_tt object to compute the flags for
1359 * @mem: The memory registry backing this ttm_tt object
1360 *
1361 * Figure out the flags to use for a VM PTE (Page Table Entry).
1362 */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1363 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1364 struct ttm_resource *mem)
1365 {
1366 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1367
1368 flags |= adev->gart.gart_pte_flags;
1369 flags |= AMDGPU_PTE_READABLE;
1370
1371 if (!amdgpu_ttm_tt_is_readonly(ttm))
1372 flags |= AMDGPU_PTE_WRITEABLE;
1373
1374 return flags;
1375 }
1376
1377 /*
1378 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1379 * object.
1380 *
1381 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1382 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1383 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1384 * used to clean out a memory space.
1385 */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1386 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1387 const struct ttm_place *place)
1388 {
1389 struct dma_resv_iter resv_cursor;
1390 struct dma_fence *f;
1391
1392 if (!amdgpu_bo_is_amdgpu_bo(bo))
1393 return ttm_bo_eviction_valuable(bo, place);
1394
1395 /* Swapout? */
1396 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1397 return true;
1398
1399 if (bo->type == ttm_bo_type_kernel &&
1400 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1401 return false;
1402
1403 /* If bo is a KFD BO, check if the bo belongs to the current process.
1404 * If true, then return false as any KFD process needs all its BOs to
1405 * be resident to run successfully
1406 */
1407 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1408 DMA_RESV_USAGE_BOOKKEEP, f) {
1409 if (amdkfd_fence_check_mm(f, current->mm))
1410 return false;
1411 }
1412
1413 /* Preemptible BOs don't own system resources managed by the
1414 * driver (pages, VRAM, GART space). They point to resources
1415 * owned by someone else (e.g. pageable memory in user mode
1416 * or a DMABuf). They are used in a preemptible context so we
1417 * can guarantee no deadlocks and good QoS in case of MMU
1418 * notifiers or DMABuf move notifiers from the resource owner.
1419 */
1420 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1421 return false;
1422
1423 if (bo->resource->mem_type == TTM_PL_TT &&
1424 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1425 return false;
1426
1427 return ttm_bo_eviction_valuable(bo, place);
1428 }
1429
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1430 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1431 void *buf, size_t size, bool write)
1432 {
1433 while (size) {
1434 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1435 uint64_t bytes = 4 - (pos & 0x3);
1436 uint32_t shift = (pos & 0x3) * 8;
1437 uint32_t mask = 0xffffffff << shift;
1438 uint32_t value = 0;
1439
1440 if (size < bytes) {
1441 mask &= 0xffffffff >> (bytes - size) * 8;
1442 bytes = size;
1443 }
1444
1445 if (mask != 0xffffffff) {
1446 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1447 if (write) {
1448 value &= ~mask;
1449 value |= (*(uint32_t *)buf << shift) & mask;
1450 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1451 } else {
1452 value = (value & mask) >> shift;
1453 memcpy(buf, &value, bytes);
1454 }
1455 } else {
1456 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1457 }
1458
1459 pos += bytes;
1460 buf += bytes;
1461 size -= bytes;
1462 }
1463 }
1464
amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1465 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1466 unsigned long offset, void *buf,
1467 int len, int write)
1468 {
1469 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1470 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1471 struct amdgpu_res_cursor src_mm;
1472 struct amdgpu_job *job;
1473 struct dma_fence *fence;
1474 uint64_t src_addr, dst_addr;
1475 unsigned int num_dw;
1476 int r, idx;
1477
1478 if (len != PAGE_SIZE)
1479 return -EINVAL;
1480
1481 if (!adev->mman.sdma_access_ptr)
1482 return -EACCES;
1483
1484 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1485 return -ENODEV;
1486
1487 if (write)
1488 memcpy(adev->mman.sdma_access_ptr, buf, len);
1489
1490 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1491 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1492 AMDGPU_FENCE_OWNER_UNDEFINED,
1493 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1494 &job);
1495 if (r)
1496 goto out;
1497
1498 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1499 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1500 src_mm.start;
1501 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1502 if (write)
1503 swap(src_addr, dst_addr);
1504
1505 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1506 PAGE_SIZE, false);
1507
1508 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1509 WARN_ON(job->ibs[0].length_dw > num_dw);
1510
1511 fence = amdgpu_job_submit(job);
1512
1513 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1514 r = -ETIMEDOUT;
1515 dma_fence_put(fence);
1516
1517 if (!(r || write))
1518 memcpy(buf, adev->mman.sdma_access_ptr, len);
1519 out:
1520 drm_dev_exit(idx);
1521 return r;
1522 }
1523
1524 /**
1525 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1526 *
1527 * @bo: The buffer object to read/write
1528 * @offset: Offset into buffer object
1529 * @buf: Secondary buffer to write/read from
1530 * @len: Length in bytes of access
1531 * @write: true if writing
1532 *
1533 * This is used to access VRAM that backs a buffer object via MMIO
1534 * access for debugging purposes.
1535 */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1536 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1537 unsigned long offset, void *buf, int len,
1538 int write)
1539 {
1540 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1541 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1542 struct amdgpu_res_cursor cursor;
1543 int ret = 0;
1544
1545 if (bo->resource->mem_type != TTM_PL_VRAM)
1546 return -EIO;
1547
1548 if (amdgpu_device_has_timeouts_enabled(adev) &&
1549 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1550 return len;
1551
1552 amdgpu_res_first(bo->resource, offset, len, &cursor);
1553 while (cursor.remaining) {
1554 size_t count, size = cursor.size;
1555 loff_t pos = cursor.start;
1556
1557 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1558 size -= count;
1559 if (size) {
1560 /* using MM to access rest vram and handle un-aligned address */
1561 pos += count;
1562 buf += count;
1563 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1564 }
1565
1566 ret += cursor.size;
1567 buf += cursor.size;
1568 amdgpu_res_next(&cursor, cursor.size);
1569 }
1570
1571 return ret;
1572 }
1573
1574 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1575 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1576 {
1577 amdgpu_bo_move_notify(bo, false, NULL);
1578 }
1579
1580 static struct ttm_device_funcs amdgpu_bo_driver = {
1581 .ttm_tt_create = &amdgpu_ttm_tt_create,
1582 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1583 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1584 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1585 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1586 .evict_flags = &amdgpu_evict_flags,
1587 .move = &amdgpu_bo_move,
1588 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1589 .release_notify = &amdgpu_bo_release_notify,
1590 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1591 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1592 .access_memory = &amdgpu_ttm_access_memory,
1593 };
1594
1595 /*
1596 * Firmware Reservation functions
1597 */
1598 /**
1599 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1600 *
1601 * @adev: amdgpu_device pointer
1602 *
1603 * free fw reserved vram if it has been reserved.
1604 */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1605 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1606 {
1607 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1608 NULL, &adev->mman.fw_vram_usage_va);
1609 }
1610
1611 /*
1612 * Driver Reservation functions
1613 */
1614 /**
1615 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1616 *
1617 * @adev: amdgpu_device pointer
1618 *
1619 * free drv reserved vram if it has been reserved.
1620 */
amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device * adev)1621 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1622 {
1623 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1624 NULL,
1625 &adev->mman.drv_vram_usage_va);
1626 }
1627
1628 /**
1629 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1630 *
1631 * @adev: amdgpu_device pointer
1632 *
1633 * create bo vram reservation from fw.
1634 */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1635 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1636 {
1637 uint64_t vram_size = adev->gmc.visible_vram_size;
1638
1639 adev->mman.fw_vram_usage_va = NULL;
1640 adev->mman.fw_vram_usage_reserved_bo = NULL;
1641
1642 if (adev->mman.fw_vram_usage_size == 0 ||
1643 adev->mman.fw_vram_usage_size > vram_size)
1644 return 0;
1645
1646 return amdgpu_bo_create_kernel_at(adev,
1647 adev->mman.fw_vram_usage_start_offset,
1648 adev->mman.fw_vram_usage_size,
1649 &adev->mman.fw_vram_usage_reserved_bo,
1650 &adev->mman.fw_vram_usage_va);
1651 }
1652
1653 /**
1654 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1655 *
1656 * @adev: amdgpu_device pointer
1657 *
1658 * create bo vram reservation from drv.
1659 */
amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device * adev)1660 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1661 {
1662 u64 vram_size = adev->gmc.visible_vram_size;
1663
1664 adev->mman.drv_vram_usage_va = NULL;
1665 adev->mman.drv_vram_usage_reserved_bo = NULL;
1666
1667 if (adev->mman.drv_vram_usage_size == 0 ||
1668 adev->mman.drv_vram_usage_size > vram_size)
1669 return 0;
1670
1671 return amdgpu_bo_create_kernel_at(adev,
1672 adev->mman.drv_vram_usage_start_offset,
1673 adev->mman.drv_vram_usage_size,
1674 &adev->mman.drv_vram_usage_reserved_bo,
1675 &adev->mman.drv_vram_usage_va);
1676 }
1677
1678 /*
1679 * Memoy training reservation functions
1680 */
1681
1682 /**
1683 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1684 *
1685 * @adev: amdgpu_device pointer
1686 *
1687 * free memory training reserved vram if it has been reserved.
1688 */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1689 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1690 {
1691 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1692
1693 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1694 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1695 ctx->c2p_bo = NULL;
1696
1697 return 0;
1698 }
1699
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev,uint32_t reserve_size)1700 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1701 uint32_t reserve_size)
1702 {
1703 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1704
1705 memset(ctx, 0, sizeof(*ctx));
1706
1707 ctx->c2p_train_data_offset =
1708 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1709 ctx->p2c_train_data_offset =
1710 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1711 ctx->train_data_size =
1712 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1713
1714 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1715 ctx->train_data_size,
1716 ctx->p2c_train_data_offset,
1717 ctx->c2p_train_data_offset);
1718 }
1719
1720 /*
1721 * reserve TMR memory at the top of VRAM which holds
1722 * IP Discovery data and is protected by PSP.
1723 */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1724 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1725 {
1726 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1727 bool mem_train_support = false;
1728 uint32_t reserve_size = 0;
1729 int ret;
1730
1731 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1732 if (amdgpu_atomfirmware_mem_training_supported(adev))
1733 mem_train_support = true;
1734 else
1735 DRM_DEBUG("memory training does not support!\n");
1736 }
1737
1738 /*
1739 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1740 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1741 *
1742 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1743 * discovery data and G6 memory training data respectively
1744 */
1745 if (adev->bios)
1746 reserve_size =
1747 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1748
1749 if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3))
1750 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1751 else if (!reserve_size)
1752 reserve_size = DISCOVERY_TMR_OFFSET;
1753
1754 if (mem_train_support) {
1755 /* reserve vram for mem train according to TMR location */
1756 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1757 ret = amdgpu_bo_create_kernel_at(adev,
1758 ctx->c2p_train_data_offset,
1759 ctx->train_data_size,
1760 &ctx->c2p_bo,
1761 NULL);
1762 if (ret) {
1763 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1764 amdgpu_ttm_training_reserve_vram_fini(adev);
1765 return ret;
1766 }
1767 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1768 }
1769
1770 if (!adev->gmc.is_app_apu) {
1771 ret = amdgpu_bo_create_kernel_at(
1772 adev, adev->gmc.real_vram_size - reserve_size,
1773 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1774 if (ret) {
1775 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1776 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1777 NULL, NULL);
1778 return ret;
1779 }
1780 } else {
1781 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1782 }
1783
1784 return 0;
1785 }
1786
amdgpu_ttm_pools_init(struct amdgpu_device * adev)1787 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1788 {
1789 int i;
1790
1791 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1792 return 0;
1793
1794 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1795 sizeof(*adev->mman.ttm_pools),
1796 GFP_KERNEL);
1797 if (!adev->mman.ttm_pools)
1798 return -ENOMEM;
1799
1800 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1801 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1802 adev->gmc.mem_partitions[i].numa.node,
1803 false, false);
1804 }
1805 return 0;
1806 }
1807
amdgpu_ttm_pools_fini(struct amdgpu_device * adev)1808 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1809 {
1810 int i;
1811
1812 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1813 return;
1814
1815 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1816 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1817
1818 kfree(adev->mman.ttm_pools);
1819 adev->mman.ttm_pools = NULL;
1820 }
1821
1822 /*
1823 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1824 * gtt/vram related fields.
1825 *
1826 * This initializes all of the memory space pools that the TTM layer
1827 * will need such as the GTT space (system memory mapped to the device),
1828 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1829 * can be mapped per VMID.
1830 */
amdgpu_ttm_init(struct amdgpu_device * adev)1831 int amdgpu_ttm_init(struct amdgpu_device *adev)
1832 {
1833 uint64_t gtt_size;
1834 int r;
1835
1836 mutex_init(&adev->mman.gtt_window_lock);
1837
1838 dma_set_max_seg_size(adev->dev, UINT_MAX);
1839 /* No others user of address space so set it to 0 */
1840 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1841 adev_to_drm(adev)->anon_inode->i_mapping,
1842 adev_to_drm(adev)->vma_offset_manager,
1843 adev->need_swiotlb,
1844 dma_addressing_limited(adev->dev));
1845 if (r) {
1846 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1847 return r;
1848 }
1849
1850 r = amdgpu_ttm_pools_init(adev);
1851 if (r) {
1852 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1853 return r;
1854 }
1855 adev->mman.initialized = true;
1856
1857 /* Initialize VRAM pool with all of VRAM divided into pages */
1858 r = amdgpu_vram_mgr_init(adev);
1859 if (r) {
1860 DRM_ERROR("Failed initializing VRAM heap.\n");
1861 return r;
1862 }
1863
1864 /* Change the size here instead of the init above so only lpfn is affected */
1865 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1866 #ifdef CONFIG_64BIT
1867 #ifdef CONFIG_X86
1868 if (adev->gmc.xgmi.connected_to_cpu)
1869 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1870 adev->gmc.visible_vram_size);
1871
1872 else if (adev->gmc.is_app_apu)
1873 DRM_DEBUG_DRIVER(
1874 "No need to ioremap when real vram size is 0\n");
1875 else
1876 #endif
1877 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1878 adev->gmc.visible_vram_size);
1879 #endif
1880
1881 /*
1882 *The reserved vram for firmware must be pinned to the specified
1883 *place on the VRAM, so reserve it early.
1884 */
1885 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1886 if (r)
1887 return r;
1888
1889 /*
1890 *The reserved vram for driver must be pinned to the specified
1891 *place on the VRAM, so reserve it early.
1892 */
1893 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1894 if (r)
1895 return r;
1896
1897 /*
1898 * only NAVI10 and onwards ASIC support for IP discovery.
1899 * If IP discovery enabled, a block of memory should be
1900 * reserved for IP discovey.
1901 */
1902 if (adev->mman.discovery_bin) {
1903 r = amdgpu_ttm_reserve_tmr(adev);
1904 if (r)
1905 return r;
1906 }
1907
1908 /* allocate memory as required for VGA
1909 * This is used for VGA emulation and pre-OS scanout buffers to
1910 * avoid display artifacts while transitioning between pre-OS
1911 * and driver.
1912 */
1913 if (!adev->gmc.is_app_apu) {
1914 r = amdgpu_bo_create_kernel_at(adev, 0,
1915 adev->mman.stolen_vga_size,
1916 &adev->mman.stolen_vga_memory,
1917 NULL);
1918 if (r)
1919 return r;
1920
1921 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1922 adev->mman.stolen_extended_size,
1923 &adev->mman.stolen_extended_memory,
1924 NULL);
1925
1926 if (r)
1927 return r;
1928
1929 r = amdgpu_bo_create_kernel_at(adev,
1930 adev->mman.stolen_reserved_offset,
1931 adev->mman.stolen_reserved_size,
1932 &adev->mman.stolen_reserved_memory,
1933 NULL);
1934 if (r)
1935 return r;
1936 } else {
1937 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1938 }
1939
1940 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1941 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1942
1943 /* Compute GTT size, either based on TTM limit
1944 * or whatever the user passed on module init.
1945 */
1946 if (amdgpu_gtt_size == -1)
1947 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1948 else
1949 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1950
1951 /* Initialize GTT memory pool */
1952 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1953 if (r) {
1954 DRM_ERROR("Failed initializing GTT heap.\n");
1955 return r;
1956 }
1957 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1958 (unsigned int)(gtt_size / (1024 * 1024)));
1959
1960 /* Initiailize doorbell pool on PCI BAR */
1961 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1962 if (r) {
1963 DRM_ERROR("Failed initializing doorbell heap.\n");
1964 return r;
1965 }
1966
1967 /* Create a boorbell page for kernel usages */
1968 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1969 if (r) {
1970 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1971 return r;
1972 }
1973
1974 /* Initialize preemptible memory pool */
1975 r = amdgpu_preempt_mgr_init(adev);
1976 if (r) {
1977 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1978 return r;
1979 }
1980
1981 /* Initialize various on-chip memory pools */
1982 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1983 if (r) {
1984 DRM_ERROR("Failed initializing GDS heap.\n");
1985 return r;
1986 }
1987
1988 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1989 if (r) {
1990 DRM_ERROR("Failed initializing gws heap.\n");
1991 return r;
1992 }
1993
1994 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1995 if (r) {
1996 DRM_ERROR("Failed initializing oa heap.\n");
1997 return r;
1998 }
1999 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2000 AMDGPU_GEM_DOMAIN_GTT,
2001 &adev->mman.sdma_access_bo, NULL,
2002 &adev->mman.sdma_access_ptr))
2003 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2004
2005 return 0;
2006 }
2007
2008 /*
2009 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2010 */
amdgpu_ttm_fini(struct amdgpu_device * adev)2011 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2012 {
2013 int idx;
2014
2015 if (!adev->mman.initialized)
2016 return;
2017
2018 amdgpu_ttm_pools_fini(adev);
2019
2020 amdgpu_ttm_training_reserve_vram_fini(adev);
2021 /* return the stolen vga memory back to VRAM */
2022 if (!adev->gmc.is_app_apu) {
2023 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2024 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2025 /* return the FW reserved memory back to VRAM */
2026 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2027 NULL);
2028 if (adev->mman.stolen_reserved_size)
2029 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2030 NULL, NULL);
2031 }
2032 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2033 &adev->mman.sdma_access_ptr);
2034 amdgpu_ttm_fw_reserve_vram_fini(adev);
2035 amdgpu_ttm_drv_reserve_vram_fini(adev);
2036
2037 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2038
2039 if (adev->mman.aper_base_kaddr)
2040 iounmap(adev->mman.aper_base_kaddr);
2041 adev->mman.aper_base_kaddr = NULL;
2042
2043 drm_dev_exit(idx);
2044 }
2045
2046 amdgpu_vram_mgr_fini(adev);
2047 amdgpu_gtt_mgr_fini(adev);
2048 amdgpu_preempt_mgr_fini(adev);
2049 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2050 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2051 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2052 ttm_device_fini(&adev->mman.bdev);
2053 adev->mman.initialized = false;
2054 DRM_INFO("amdgpu: ttm finalized\n");
2055 }
2056
2057 /**
2058 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2059 *
2060 * @adev: amdgpu_device pointer
2061 * @enable: true when we can use buffer functions.
2062 *
2063 * Enable/disable use of buffer functions during suspend/resume. This should
2064 * only be called at bootup or when userspace isn't running.
2065 */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)2066 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2067 {
2068 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2069 uint64_t size;
2070 int r;
2071
2072 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2073 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2074 return;
2075
2076 if (enable) {
2077 struct amdgpu_ring *ring;
2078 struct drm_gpu_scheduler *sched;
2079
2080 ring = adev->mman.buffer_funcs_ring;
2081 sched = &ring->sched;
2082 r = drm_sched_entity_init(&adev->mman.high_pr,
2083 DRM_SCHED_PRIORITY_KERNEL, &sched,
2084 1, NULL);
2085 if (r) {
2086 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2087 r);
2088 return;
2089 }
2090
2091 r = drm_sched_entity_init(&adev->mman.low_pr,
2092 DRM_SCHED_PRIORITY_NORMAL, &sched,
2093 1, NULL);
2094 if (r) {
2095 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2096 r);
2097 goto error_free_entity;
2098 }
2099 } else {
2100 drm_sched_entity_destroy(&adev->mman.high_pr);
2101 drm_sched_entity_destroy(&adev->mman.low_pr);
2102 dma_fence_put(man->move);
2103 man->move = NULL;
2104 }
2105
2106 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2107 if (enable)
2108 size = adev->gmc.real_vram_size;
2109 else
2110 size = adev->gmc.visible_vram_size;
2111 man->size = size;
2112 adev->mman.buffer_funcs_enabled = enable;
2113
2114 return;
2115
2116 error_free_entity:
2117 drm_sched_entity_destroy(&adev->mman.high_pr);
2118 }
2119
amdgpu_ttm_prepare_job(struct amdgpu_device * adev,bool direct_submit,unsigned int num_dw,struct dma_resv * resv,bool vm_needs_flush,struct amdgpu_job ** job,bool delayed)2120 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2121 bool direct_submit,
2122 unsigned int num_dw,
2123 struct dma_resv *resv,
2124 bool vm_needs_flush,
2125 struct amdgpu_job **job,
2126 bool delayed)
2127 {
2128 enum amdgpu_ib_pool_type pool = direct_submit ?
2129 AMDGPU_IB_POOL_DIRECT :
2130 AMDGPU_IB_POOL_DELAYED;
2131 int r;
2132 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2133 &adev->mman.high_pr;
2134 r = amdgpu_job_alloc_with_ib(adev, entity,
2135 AMDGPU_FENCE_OWNER_UNDEFINED,
2136 num_dw * 4, pool, job);
2137 if (r)
2138 return r;
2139
2140 if (vm_needs_flush) {
2141 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2142 adev->gmc.pdb0_bo :
2143 adev->gart.bo);
2144 (*job)->vm_needs_flush = true;
2145 }
2146 if (!resv)
2147 return 0;
2148
2149 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2150 DMA_RESV_USAGE_BOOKKEEP);
2151 }
2152
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,bool tmz)2153 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2154 uint64_t dst_offset, uint32_t byte_count,
2155 struct dma_resv *resv,
2156 struct dma_fence **fence, bool direct_submit,
2157 bool vm_needs_flush, bool tmz)
2158 {
2159 struct amdgpu_device *adev = ring->adev;
2160 unsigned int num_loops, num_dw;
2161 struct amdgpu_job *job;
2162 uint32_t max_bytes;
2163 unsigned int i;
2164 int r;
2165
2166 if (!direct_submit && !ring->sched.ready) {
2167 DRM_ERROR("Trying to move memory with ring turned off.\n");
2168 return -EINVAL;
2169 }
2170
2171 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2172 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2173 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2174 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2175 resv, vm_needs_flush, &job, false);
2176 if (r)
2177 return r;
2178
2179 for (i = 0; i < num_loops; i++) {
2180 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2181
2182 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2183 dst_offset, cur_size_in_bytes, tmz);
2184
2185 src_offset += cur_size_in_bytes;
2186 dst_offset += cur_size_in_bytes;
2187 byte_count -= cur_size_in_bytes;
2188 }
2189
2190 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2191 WARN_ON(job->ibs[0].length_dw > num_dw);
2192 if (direct_submit)
2193 r = amdgpu_job_submit_direct(job, ring, fence);
2194 else
2195 *fence = amdgpu_job_submit(job);
2196 if (r)
2197 goto error_free;
2198
2199 return r;
2200
2201 error_free:
2202 amdgpu_job_free(job);
2203 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2204 return r;
2205 }
2206
amdgpu_ttm_fill_mem(struct amdgpu_ring * ring,uint32_t src_data,uint64_t dst_addr,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool vm_needs_flush,bool delayed)2207 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2208 uint64_t dst_addr, uint32_t byte_count,
2209 struct dma_resv *resv,
2210 struct dma_fence **fence,
2211 bool vm_needs_flush, bool delayed)
2212 {
2213 struct amdgpu_device *adev = ring->adev;
2214 unsigned int num_loops, num_dw;
2215 struct amdgpu_job *job;
2216 uint32_t max_bytes;
2217 unsigned int i;
2218 int r;
2219
2220 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2221 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2222 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2223 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2224 &job, delayed);
2225 if (r)
2226 return r;
2227
2228 for (i = 0; i < num_loops; i++) {
2229 uint32_t cur_size = min(byte_count, max_bytes);
2230
2231 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2232 cur_size);
2233
2234 dst_addr += cur_size;
2235 byte_count -= cur_size;
2236 }
2237
2238 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2239 WARN_ON(job->ibs[0].length_dw > num_dw);
2240 *fence = amdgpu_job_submit(job);
2241 return 0;
2242 }
2243
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** f,bool delayed)2244 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2245 uint32_t src_data,
2246 struct dma_resv *resv,
2247 struct dma_fence **f,
2248 bool delayed)
2249 {
2250 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2251 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2252 struct dma_fence *fence = NULL;
2253 struct amdgpu_res_cursor dst;
2254 int r;
2255
2256 if (!adev->mman.buffer_funcs_enabled) {
2257 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2258 return -EINVAL;
2259 }
2260
2261 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2262
2263 mutex_lock(&adev->mman.gtt_window_lock);
2264 while (dst.remaining) {
2265 struct dma_fence *next;
2266 uint64_t cur_size, to;
2267
2268 /* Never fill more than 256MiB at once to avoid timeouts */
2269 cur_size = min(dst.size, 256ULL << 20);
2270
2271 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2272 1, ring, false, &cur_size, &to);
2273 if (r)
2274 goto error;
2275
2276 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2277 &next, true, delayed);
2278 if (r)
2279 goto error;
2280
2281 dma_fence_put(fence);
2282 fence = next;
2283
2284 amdgpu_res_next(&dst, cur_size);
2285 }
2286 error:
2287 mutex_unlock(&adev->mman.gtt_window_lock);
2288 if (f)
2289 *f = dma_fence_get(fence);
2290 dma_fence_put(fence);
2291 return r;
2292 }
2293
2294 /**
2295 * amdgpu_ttm_evict_resources - evict memory buffers
2296 * @adev: amdgpu device object
2297 * @mem_type: evicted BO's memory type
2298 *
2299 * Evicts all @mem_type buffers on the lru list of the memory type.
2300 *
2301 * Returns:
2302 * 0 for success or a negative error code on failure.
2303 */
amdgpu_ttm_evict_resources(struct amdgpu_device * adev,int mem_type)2304 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2305 {
2306 struct ttm_resource_manager *man;
2307
2308 switch (mem_type) {
2309 case TTM_PL_VRAM:
2310 case TTM_PL_TT:
2311 case AMDGPU_PL_GWS:
2312 case AMDGPU_PL_GDS:
2313 case AMDGPU_PL_OA:
2314 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2315 break;
2316 default:
2317 DRM_ERROR("Trying to evict invalid memory type\n");
2318 return -EINVAL;
2319 }
2320
2321 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2322 }
2323
2324 #if defined(CONFIG_DEBUG_FS)
2325
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2326 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2327 {
2328 struct amdgpu_device *adev = m->private;
2329
2330 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2331 }
2332
2333 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2334
2335 /*
2336 * amdgpu_ttm_vram_read - Linear read access to VRAM
2337 *
2338 * Accesses VRAM via MMIO for debugging purposes.
2339 */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2340 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2341 size_t size, loff_t *pos)
2342 {
2343 struct amdgpu_device *adev = file_inode(f)->i_private;
2344 ssize_t result = 0;
2345
2346 if (size & 0x3 || *pos & 0x3)
2347 return -EINVAL;
2348
2349 if (*pos >= adev->gmc.mc_vram_size)
2350 return -ENXIO;
2351
2352 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2353 while (size) {
2354 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2355 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2356
2357 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2358 if (copy_to_user(buf, value, bytes))
2359 return -EFAULT;
2360
2361 result += bytes;
2362 buf += bytes;
2363 *pos += bytes;
2364 size -= bytes;
2365 }
2366
2367 return result;
2368 }
2369
2370 /*
2371 * amdgpu_ttm_vram_write - Linear write access to VRAM
2372 *
2373 * Accesses VRAM via MMIO for debugging purposes.
2374 */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2375 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2376 size_t size, loff_t *pos)
2377 {
2378 struct amdgpu_device *adev = file_inode(f)->i_private;
2379 ssize_t result = 0;
2380 int r;
2381
2382 if (size & 0x3 || *pos & 0x3)
2383 return -EINVAL;
2384
2385 if (*pos >= adev->gmc.mc_vram_size)
2386 return -ENXIO;
2387
2388 while (size) {
2389 uint32_t value;
2390
2391 if (*pos >= adev->gmc.mc_vram_size)
2392 return result;
2393
2394 r = get_user(value, (uint32_t *)buf);
2395 if (r)
2396 return r;
2397
2398 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2399
2400 result += 4;
2401 buf += 4;
2402 *pos += 4;
2403 size -= 4;
2404 }
2405
2406 return result;
2407 }
2408
2409 static const struct file_operations amdgpu_ttm_vram_fops = {
2410 .owner = THIS_MODULE,
2411 .read = amdgpu_ttm_vram_read,
2412 .write = amdgpu_ttm_vram_write,
2413 .llseek = default_llseek,
2414 };
2415
2416 /*
2417 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2418 *
2419 * This function is used to read memory that has been mapped to the
2420 * GPU and the known addresses are not physical addresses but instead
2421 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2422 */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2423 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2424 size_t size, loff_t *pos)
2425 {
2426 struct amdgpu_device *adev = file_inode(f)->i_private;
2427 struct iommu_domain *dom;
2428 ssize_t result = 0;
2429 int r;
2430
2431 /* retrieve the IOMMU domain if any for this device */
2432 dom = iommu_get_domain_for_dev(adev->dev);
2433
2434 while (size) {
2435 phys_addr_t addr = *pos & PAGE_MASK;
2436 loff_t off = *pos & ~PAGE_MASK;
2437 size_t bytes = PAGE_SIZE - off;
2438 unsigned long pfn;
2439 struct page *p;
2440 void *ptr;
2441
2442 bytes = min(bytes, size);
2443
2444 /* Translate the bus address to a physical address. If
2445 * the domain is NULL it means there is no IOMMU active
2446 * and the address translation is the identity
2447 */
2448 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2449
2450 pfn = addr >> PAGE_SHIFT;
2451 if (!pfn_valid(pfn))
2452 return -EPERM;
2453
2454 p = pfn_to_page(pfn);
2455 if (p->mapping != adev->mman.bdev.dev_mapping)
2456 return -EPERM;
2457
2458 ptr = kmap_local_page(p);
2459 r = copy_to_user(buf, ptr + off, bytes);
2460 kunmap_local(ptr);
2461 if (r)
2462 return -EFAULT;
2463
2464 size -= bytes;
2465 *pos += bytes;
2466 result += bytes;
2467 }
2468
2469 return result;
2470 }
2471
2472 /*
2473 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2474 *
2475 * This function is used to write memory that has been mapped to the
2476 * GPU and the known addresses are not physical addresses but instead
2477 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2478 */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2479 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2480 size_t size, loff_t *pos)
2481 {
2482 struct amdgpu_device *adev = file_inode(f)->i_private;
2483 struct iommu_domain *dom;
2484 ssize_t result = 0;
2485 int r;
2486
2487 dom = iommu_get_domain_for_dev(adev->dev);
2488
2489 while (size) {
2490 phys_addr_t addr = *pos & PAGE_MASK;
2491 loff_t off = *pos & ~PAGE_MASK;
2492 size_t bytes = PAGE_SIZE - off;
2493 unsigned long pfn;
2494 struct page *p;
2495 void *ptr;
2496
2497 bytes = min(bytes, size);
2498
2499 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2500
2501 pfn = addr >> PAGE_SHIFT;
2502 if (!pfn_valid(pfn))
2503 return -EPERM;
2504
2505 p = pfn_to_page(pfn);
2506 if (p->mapping != adev->mman.bdev.dev_mapping)
2507 return -EPERM;
2508
2509 ptr = kmap_local_page(p);
2510 r = copy_from_user(ptr + off, buf, bytes);
2511 kunmap_local(ptr);
2512 if (r)
2513 return -EFAULT;
2514
2515 size -= bytes;
2516 *pos += bytes;
2517 result += bytes;
2518 }
2519
2520 return result;
2521 }
2522
2523 static const struct file_operations amdgpu_ttm_iomem_fops = {
2524 .owner = THIS_MODULE,
2525 .read = amdgpu_iomem_read,
2526 .write = amdgpu_iomem_write,
2527 .llseek = default_llseek
2528 };
2529
2530 #endif
2531
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2532 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2533 {
2534 #if defined(CONFIG_DEBUG_FS)
2535 struct drm_minor *minor = adev_to_drm(adev)->primary;
2536 struct dentry *root = minor->debugfs_root;
2537
2538 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2539 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2540 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2541 &amdgpu_ttm_iomem_fops);
2542 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2543 &amdgpu_ttm_page_pool_fops);
2544 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2545 TTM_PL_VRAM),
2546 root, "amdgpu_vram_mm");
2547 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2548 TTM_PL_TT),
2549 root, "amdgpu_gtt_mm");
2550 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2551 AMDGPU_PL_GDS),
2552 root, "amdgpu_gds_mm");
2553 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2554 AMDGPU_PL_GWS),
2555 root, "amdgpu_gws_mm");
2556 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2557 AMDGPU_PL_OA),
2558 root, "amdgpu_oa_mm");
2559
2560 #endif
2561 }
2562