xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 278002edb19bce2c628fafb0af936e77000f3a5b)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS(DMA_BUF);
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		placement->num_busy_placement = 0;
106 		return;
107 	}
108 
109 	/* Object isn't an AMDGPU object so ignore */
110 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111 		placement->placement = &placements;
112 		placement->busy_placement = &placements;
113 		placement->num_placement = 1;
114 		placement->num_busy_placement = 1;
115 		return;
116 	}
117 
118 	abo = ttm_to_amdgpu_bo(bo);
119 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120 		placement->num_placement = 0;
121 		placement->num_busy_placement = 0;
122 		return;
123 	}
124 
125 	switch (bo->resource->mem_type) {
126 	case AMDGPU_PL_GDS:
127 	case AMDGPU_PL_GWS:
128 	case AMDGPU_PL_OA:
129 	case AMDGPU_PL_DOORBELL:
130 		placement->num_placement = 0;
131 		placement->num_busy_placement = 0;
132 		return;
133 
134 	case TTM_PL_VRAM:
135 		if (!adev->mman.buffer_funcs_enabled) {
136 			/* Move to system memory */
137 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 			   amdgpu_res_cpu_visible(adev, bo->resource)) {
141 
142 			/* Try evicting to the CPU inaccessible part of VRAM
143 			 * first, but only set GTT as busy placement, so this
144 			 * BO will be evicted to GTT rather than causing other
145 			 * BOs to be evicted from VRAM
146 			 */
147 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 							AMDGPU_GEM_DOMAIN_GTT |
149 							AMDGPU_GEM_DOMAIN_CPU);
150 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 			abo->placements[0].lpfn = 0;
152 			abo->placement.busy_placement = &abo->placements[1];
153 			abo->placement.num_busy_placement = 1;
154 		} else {
155 			/* Move to GTT memory */
156 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 							AMDGPU_GEM_DOMAIN_CPU);
158 		}
159 		break;
160 	case TTM_PL_TT:
161 	case AMDGPU_PL_PREEMPT:
162 	default:
163 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 		break;
165 	}
166 	*placement = abo->placement;
167 }
168 
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned int window,struct amdgpu_ring * ring,bool tmz,uint64_t * size,uint64_t * addr)183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 				 struct ttm_resource *mem,
185 				 struct amdgpu_res_cursor *mm_cur,
186 				 unsigned int window, struct amdgpu_ring *ring,
187 				 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 	struct amdgpu_device *adev = ring->adev;
190 	unsigned int offset, num_pages, num_dw, num_bytes;
191 	uint64_t src_addr, dst_addr;
192 	struct amdgpu_job *job;
193 	void *cpu_addr;
194 	uint64_t flags;
195 	unsigned int i;
196 	int r;
197 
198 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200 
201 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202 		return -EINVAL;
203 
204 	/* Map only what can't be accessed directly */
205 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207 			mm_cur->start;
208 		return 0;
209 	}
210 
211 
212 	/*
213 	 * If start begins at an offset inside the page, then adjust the size
214 	 * and addr accordingly
215 	 */
216 	offset = mm_cur->start & ~PAGE_MASK;
217 
218 	num_pages = PFN_UP(*size + offset);
219 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220 
221 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222 
223 	*addr = adev->gmc.gart_start;
224 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225 		AMDGPU_GPU_PAGE_SIZE;
226 	*addr += offset;
227 
228 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230 
231 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232 				     AMDGPU_FENCE_OWNER_UNDEFINED,
233 				     num_dw * 4 + num_bytes,
234 				     AMDGPU_IB_POOL_DELAYED, &job);
235 	if (r)
236 		return r;
237 
238 	src_addr = num_dw * 4;
239 	src_addr += job->ibs[0].gpu_addr;
240 
241 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244 				dst_addr, num_bytes, false);
245 
246 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247 	WARN_ON(job->ibs[0].length_dw > num_dw);
248 
249 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250 	if (tmz)
251 		flags |= AMDGPU_PTE_TMZ;
252 
253 	cpu_addr = &job->ibs[0].ptr[num_dw];
254 
255 	if (mem->mem_type == TTM_PL_TT) {
256 		dma_addr_t *dma_addr;
257 
258 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260 	} else {
261 		dma_addr_t dma_address;
262 
263 		dma_address = mm_cur->start;
264 		dma_address += adev->vm_manager.vram_base_offset;
265 
266 		for (i = 0; i < num_pages; ++i) {
267 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268 					flags, cpu_addr);
269 			dma_address += PAGE_SIZE;
270 		}
271 	}
272 
273 	dma_fence_put(amdgpu_job_submit(job));
274 	return 0;
275 }
276 
277 /**
278  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279  * @adev: amdgpu device
280  * @src: buffer/address where to read from
281  * @dst: buffer/address where to write to
282  * @size: number of bytes to copy
283  * @tmz: if a secure copy should be used
284  * @resv: resv object to sync to
285  * @f: Returns the last fence if multiple jobs are submitted.
286  *
287  * The function copies @size bytes from {src->mem + src->offset} to
288  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289  * move and different for a BO to BO copy.
290  *
291  */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293 			       const struct amdgpu_copy_mem *src,
294 			       const struct amdgpu_copy_mem *dst,
295 			       uint64_t size, bool tmz,
296 			       struct dma_resv *resv,
297 			       struct dma_fence **f)
298 {
299 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300 	struct amdgpu_res_cursor src_mm, dst_mm;
301 	struct dma_fence *fence = NULL;
302 	int r = 0;
303 
304 	if (!adev->mman.buffer_funcs_enabled) {
305 		DRM_ERROR("Trying to move memory with ring turned off.\n");
306 		return -EINVAL;
307 	}
308 
309 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311 
312 	mutex_lock(&adev->mman.gtt_window_lock);
313 	while (src_mm.remaining) {
314 		uint64_t from, to, cur_size;
315 		struct dma_fence *next;
316 
317 		/* Never copy more than 256MiB at once to avoid a timeout */
318 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319 
320 		/* Map src to window 0 and dst to window 1. */
321 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322 					  0, ring, tmz, &cur_size, &from);
323 		if (r)
324 			goto error;
325 
326 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327 					  1, ring, tmz, &cur_size, &to);
328 		if (r)
329 			goto error;
330 
331 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
332 				       resv, &next, false, true, tmz);
333 		if (r)
334 			goto error;
335 
336 		dma_fence_put(fence);
337 		fence = next;
338 
339 		amdgpu_res_next(&src_mm, cur_size);
340 		amdgpu_res_next(&dst_mm, cur_size);
341 	}
342 error:
343 	mutex_unlock(&adev->mman.gtt_window_lock);
344 	if (f)
345 		*f = dma_fence_get(fence);
346 	dma_fence_put(fence);
347 	return r;
348 }
349 
350 /*
351  * amdgpu_move_blit - Copy an entire buffer to another buffer
352  *
353  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354  * help move buffers to and from VRAM.
355  */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)356 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357 			    bool evict,
358 			    struct ttm_resource *new_mem,
359 			    struct ttm_resource *old_mem)
360 {
361 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363 	struct amdgpu_copy_mem src, dst;
364 	struct dma_fence *fence = NULL;
365 	int r;
366 
367 	src.bo = bo;
368 	dst.bo = bo;
369 	src.mem = old_mem;
370 	dst.mem = new_mem;
371 	src.offset = 0;
372 	dst.offset = 0;
373 
374 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375 				       new_mem->size,
376 				       amdgpu_bo_encrypted(abo),
377 				       bo->base.resv, &fence);
378 	if (r)
379 		goto error;
380 
381 	/* clear the space being freed */
382 	if (old_mem->mem_type == TTM_PL_VRAM &&
383 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 		struct dma_fence *wipe_fence = NULL;
385 
386 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387 					false);
388 		if (r) {
389 			goto error;
390 		} else if (wipe_fence) {
391 			dma_fence_put(fence);
392 			fence = wipe_fence;
393 		}
394 	}
395 
396 	/* Always block for VM page tables before committing the new location */
397 	if (bo->type == ttm_bo_type_kernel)
398 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 	else
400 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 	dma_fence_put(fence);
402 	return r;
403 
404 error:
405 	if (fence)
406 		dma_fence_wait(fence, false);
407 	dma_fence_put(fence);
408 	return r;
409 }
410 
411 /**
412  * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
413  * @adev: amdgpu device
414  * @res: the resource to check
415  *
416  * Returns: true if the full resource is CPU visible, false otherwise.
417  */
amdgpu_res_cpu_visible(struct amdgpu_device * adev,struct ttm_resource * res)418 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
419 			    struct ttm_resource *res)
420 {
421 	struct amdgpu_res_cursor cursor;
422 
423 	if (!res)
424 		return false;
425 
426 	if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
427 	    res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
428 		return true;
429 
430 	if (res->mem_type != TTM_PL_VRAM)
431 		return false;
432 
433 	amdgpu_res_first(res, 0, res->size, &cursor);
434 	while (cursor.remaining) {
435 		if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
436 			return false;
437 		amdgpu_res_next(&cursor, cursor.size);
438 	}
439 
440 	return true;
441 }
442 
443 /*
444  * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
445  *
446  * Called by amdgpu_bo_move()
447  */
amdgpu_res_copyable(struct amdgpu_device * adev,struct ttm_resource * mem)448 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
449 				struct ttm_resource *mem)
450 {
451 	if (!amdgpu_res_cpu_visible(adev, mem))
452 		return false;
453 
454 	/* ttm_resource_ioremap only supports contiguous memory */
455 	if (mem->mem_type == TTM_PL_VRAM &&
456 	    !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
457 		return false;
458 
459 	return true;
460 }
461 
462 /*
463  * amdgpu_bo_move - Move a buffer object to a new memory location
464  *
465  * Called by ttm_bo_handle_move_mem()
466  */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)467 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
468 			  struct ttm_operation_ctx *ctx,
469 			  struct ttm_resource *new_mem,
470 			  struct ttm_place *hop)
471 {
472 	struct amdgpu_device *adev;
473 	struct amdgpu_bo *abo;
474 	struct ttm_resource *old_mem = bo->resource;
475 	int r;
476 
477 	if (new_mem->mem_type == TTM_PL_TT ||
478 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
479 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
480 		if (r)
481 			return r;
482 	}
483 
484 	abo = ttm_to_amdgpu_bo(bo);
485 	adev = amdgpu_ttm_adev(bo->bdev);
486 
487 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
488 			 bo->ttm == NULL)) {
489 		amdgpu_bo_move_notify(bo, evict, new_mem);
490 		ttm_bo_move_null(bo, new_mem);
491 		return 0;
492 	}
493 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
494 	    (new_mem->mem_type == TTM_PL_TT ||
495 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
496 		amdgpu_bo_move_notify(bo, evict, new_mem);
497 		ttm_bo_move_null(bo, new_mem);
498 		return 0;
499 	}
500 	if ((old_mem->mem_type == TTM_PL_TT ||
501 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
502 	    new_mem->mem_type == TTM_PL_SYSTEM) {
503 		r = ttm_bo_wait_ctx(bo, ctx);
504 		if (r)
505 			return r;
506 
507 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
508 		amdgpu_bo_move_notify(bo, evict, new_mem);
509 		ttm_resource_free(bo, &bo->resource);
510 		ttm_bo_assign_mem(bo, new_mem);
511 		return 0;
512 	}
513 
514 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
515 	    old_mem->mem_type == AMDGPU_PL_GWS ||
516 	    old_mem->mem_type == AMDGPU_PL_OA ||
517 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
518 	    new_mem->mem_type == AMDGPU_PL_GDS ||
519 	    new_mem->mem_type == AMDGPU_PL_GWS ||
520 	    new_mem->mem_type == AMDGPU_PL_OA ||
521 	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
522 		/* Nothing to save here */
523 		amdgpu_bo_move_notify(bo, evict, new_mem);
524 		ttm_bo_move_null(bo, new_mem);
525 		return 0;
526 	}
527 
528 	if (bo->type == ttm_bo_type_device &&
529 	    new_mem->mem_type == TTM_PL_VRAM &&
530 	    old_mem->mem_type != TTM_PL_VRAM) {
531 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
532 		 * accesses the BO after it's moved.
533 		 */
534 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
535 	}
536 
537 	if (adev->mman.buffer_funcs_enabled &&
538 	    ((old_mem->mem_type == TTM_PL_SYSTEM &&
539 	      new_mem->mem_type == TTM_PL_VRAM) ||
540 	     (old_mem->mem_type == TTM_PL_VRAM &&
541 	      new_mem->mem_type == TTM_PL_SYSTEM))) {
542 		hop->fpfn = 0;
543 		hop->lpfn = 0;
544 		hop->mem_type = TTM_PL_TT;
545 		hop->flags = TTM_PL_FLAG_TEMPORARY;
546 		return -EMULTIHOP;
547 	}
548 
549 	amdgpu_bo_move_notify(bo, evict, new_mem);
550 	if (adev->mman.buffer_funcs_enabled)
551 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
552 	else
553 		r = -ENODEV;
554 
555 	if (r) {
556 		/* Check that all memory is CPU accessible */
557 		if (!amdgpu_res_copyable(adev, old_mem) ||
558 		    !amdgpu_res_copyable(adev, new_mem)) {
559 			pr_err("Move buffer fallback to memcpy unavailable\n");
560 			return r;
561 		}
562 
563 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
564 		if (r)
565 			return r;
566 	}
567 
568 	/* update statistics after the move */
569 	if (evict)
570 		atomic64_inc(&adev->num_evictions);
571 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
572 	return 0;
573 }
574 
575 /*
576  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
577  *
578  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
579  */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)580 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
581 				     struct ttm_resource *mem)
582 {
583 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
584 
585 	switch (mem->mem_type) {
586 	case TTM_PL_SYSTEM:
587 		/* system memory */
588 		return 0;
589 	case TTM_PL_TT:
590 	case AMDGPU_PL_PREEMPT:
591 		break;
592 	case TTM_PL_VRAM:
593 		mem->bus.offset = mem->start << PAGE_SHIFT;
594 
595 		if (adev->mman.aper_base_kaddr &&
596 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
597 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
598 					mem->bus.offset;
599 
600 		mem->bus.offset += adev->gmc.aper_base;
601 		mem->bus.is_iomem = true;
602 		break;
603 	case AMDGPU_PL_DOORBELL:
604 		mem->bus.offset = mem->start << PAGE_SHIFT;
605 		mem->bus.offset += adev->doorbell.base;
606 		mem->bus.is_iomem = true;
607 		mem->bus.caching = ttm_uncached;
608 		break;
609 	default:
610 		return -EINVAL;
611 	}
612 	return 0;
613 }
614 
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)615 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
616 					   unsigned long page_offset)
617 {
618 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
619 	struct amdgpu_res_cursor cursor;
620 
621 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
622 			 &cursor);
623 
624 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
625 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
626 
627 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
628 }
629 
630 /**
631  * amdgpu_ttm_domain_start - Returns GPU start address
632  * @adev: amdgpu device object
633  * @type: type of the memory
634  *
635  * Returns:
636  * GPU start address of a memory domain
637  */
638 
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)639 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
640 {
641 	switch (type) {
642 	case TTM_PL_TT:
643 		return adev->gmc.gart_start;
644 	case TTM_PL_VRAM:
645 		return adev->gmc.vram_start;
646 	}
647 
648 	return 0;
649 }
650 
651 /*
652  * TTM backend functions.
653  */
654 struct amdgpu_ttm_tt {
655 	struct ttm_tt	ttm;
656 	struct drm_gem_object	*gobj;
657 	u64			offset;
658 	uint64_t		userptr;
659 	struct task_struct	*usertask;
660 	uint32_t		userflags;
661 	bool			bound;
662 	int32_t			pool_id;
663 };
664 
665 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
666 
667 #ifdef CONFIG_DRM_AMDGPU_USERPTR
668 /*
669  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
670  * memory and start HMM tracking CPU page table update
671  *
672  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
673  * once afterwards to stop HMM tracking
674  */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct page ** pages,struct hmm_range ** range)675 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
676 				 struct hmm_range **range)
677 {
678 	struct ttm_tt *ttm = bo->tbo.ttm;
679 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
680 	unsigned long start = gtt->userptr;
681 	struct vm_area_struct *vma;
682 	struct mm_struct *mm;
683 	bool readonly;
684 	int r = 0;
685 
686 	/* Make sure get_user_pages_done() can cleanup gracefully */
687 	*range = NULL;
688 
689 	mm = bo->notifier.mm;
690 	if (unlikely(!mm)) {
691 		DRM_DEBUG_DRIVER("BO is not registered?\n");
692 		return -EFAULT;
693 	}
694 
695 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
696 		return -ESRCH;
697 
698 	mmap_read_lock(mm);
699 	vma = vma_lookup(mm, start);
700 	if (unlikely(!vma)) {
701 		r = -EFAULT;
702 		goto out_unlock;
703 	}
704 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
705 		vma->vm_file)) {
706 		r = -EPERM;
707 		goto out_unlock;
708 	}
709 
710 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
711 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
712 				       readonly, NULL, pages, range);
713 out_unlock:
714 	mmap_read_unlock(mm);
715 	if (r)
716 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
717 
718 	mmput(mm);
719 
720 	return r;
721 }
722 
723 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
724  */
amdgpu_ttm_tt_discard_user_pages(struct ttm_tt * ttm,struct hmm_range * range)725 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
726 				      struct hmm_range *range)
727 {
728 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
729 
730 	if (gtt && gtt->userptr && range)
731 		amdgpu_hmm_range_get_pages_done(range);
732 }
733 
734 /*
735  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
736  * Check if the pages backing this ttm range have been invalidated
737  *
738  * Returns: true if pages are still valid
739  */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm,struct hmm_range * range)740 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
741 				       struct hmm_range *range)
742 {
743 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
744 
745 	if (!gtt || !gtt->userptr || !range)
746 		return false;
747 
748 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
749 		gtt->userptr, ttm->num_pages);
750 
751 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
752 
753 	return !amdgpu_hmm_range_get_pages_done(range);
754 }
755 #endif
756 
757 /*
758  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
759  *
760  * Called by amdgpu_cs_list_validate(). This creates the page list
761  * that backs user memory and will ultimately be mapped into the device
762  * address space.
763  */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct page ** pages)764 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
765 {
766 	unsigned long i;
767 
768 	for (i = 0; i < ttm->num_pages; ++i)
769 		ttm->pages[i] = pages ? pages[i] : NULL;
770 }
771 
772 /*
773  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
774  *
775  * Called by amdgpu_ttm_backend_bind()
776  **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)777 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
778 				     struct ttm_tt *ttm)
779 {
780 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
781 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
782 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
783 	enum dma_data_direction direction = write ?
784 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
785 	int r;
786 
787 	/* Allocate an SG array and squash pages into it */
788 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
789 				      (u64)ttm->num_pages << PAGE_SHIFT,
790 				      GFP_KERNEL);
791 	if (r)
792 		goto release_sg;
793 
794 	/* Map SG to device */
795 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
796 	if (r)
797 		goto release_sg_table;
798 
799 	/* convert SG to linear array of pages and dma addresses */
800 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
801 				       ttm->num_pages);
802 
803 	return 0;
804 
805 release_sg_table:
806 	sg_free_table(ttm->sg);
807 release_sg:
808 	kfree(ttm->sg);
809 	ttm->sg = NULL;
810 	return r;
811 }
812 
813 /*
814  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
815  */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)816 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
817 					struct ttm_tt *ttm)
818 {
819 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
820 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
821 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
822 	enum dma_data_direction direction = write ?
823 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
824 
825 	/* double check that we don't free the table twice */
826 	if (!ttm->sg || !ttm->sg->sgl)
827 		return;
828 
829 	/* unmap the pages mapped to the device */
830 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
831 	sg_free_table(ttm->sg);
832 }
833 
834 /*
835  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
836  * MQDn+CtrlStackn where n is the number of XCCs per partition.
837  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
838  * and uses memory type default, UC. The rest of pages_per_xcc are
839  * Ctrl stack and modify their memory type to NC.
840  */
amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device * adev,struct ttm_tt * ttm,uint64_t flags)841 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
842 				struct ttm_tt *ttm, uint64_t flags)
843 {
844 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
845 	uint64_t total_pages = ttm->num_pages;
846 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
847 	uint64_t page_idx, pages_per_xcc;
848 	int i;
849 	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
850 			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
851 
852 	pages_per_xcc = total_pages;
853 	do_div(pages_per_xcc, num_xcc);
854 
855 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
856 		/* MQD page: use default flags */
857 		amdgpu_gart_bind(adev,
858 				gtt->offset + (page_idx << PAGE_SHIFT),
859 				1, &gtt->ttm.dma_address[page_idx], flags);
860 		/*
861 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
862 		 * the second page of the BO onward.
863 		 */
864 		amdgpu_gart_bind(adev,
865 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
866 				pages_per_xcc - 1,
867 				&gtt->ttm.dma_address[page_idx + 1],
868 				ctrl_flags);
869 	}
870 }
871 
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)872 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
873 				 struct ttm_buffer_object *tbo,
874 				 uint64_t flags)
875 {
876 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
877 	struct ttm_tt *ttm = tbo->ttm;
878 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
879 
880 	if (amdgpu_bo_encrypted(abo))
881 		flags |= AMDGPU_PTE_TMZ;
882 
883 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
884 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
885 	} else {
886 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
887 				 gtt->ttm.dma_address, flags);
888 	}
889 	gtt->bound = true;
890 }
891 
892 /*
893  * amdgpu_ttm_backend_bind - Bind GTT memory
894  *
895  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
896  * This handles binding GTT memory to the device address space.
897  */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)898 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
899 				   struct ttm_tt *ttm,
900 				   struct ttm_resource *bo_mem)
901 {
902 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
903 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
904 	uint64_t flags;
905 	int r;
906 
907 	if (!bo_mem)
908 		return -EINVAL;
909 
910 	if (gtt->bound)
911 		return 0;
912 
913 	if (gtt->userptr) {
914 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
915 		if (r) {
916 			DRM_ERROR("failed to pin userptr\n");
917 			return r;
918 		}
919 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
920 		if (!ttm->sg) {
921 			struct dma_buf_attachment *attach;
922 			struct sg_table *sgt;
923 
924 			attach = gtt->gobj->import_attach;
925 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
926 			if (IS_ERR(sgt))
927 				return PTR_ERR(sgt);
928 
929 			ttm->sg = sgt;
930 		}
931 
932 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
933 					       ttm->num_pages);
934 	}
935 
936 	if (!ttm->num_pages) {
937 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
938 		     ttm->num_pages, bo_mem, ttm);
939 	}
940 
941 	if (bo_mem->mem_type != TTM_PL_TT ||
942 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
943 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
944 		return 0;
945 	}
946 
947 	/* compute PTE flags relevant to this BO memory */
948 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
949 
950 	/* bind pages into GART page tables */
951 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
952 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
953 			 gtt->ttm.dma_address, flags);
954 	gtt->bound = true;
955 	return 0;
956 }
957 
958 /*
959  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
960  * through AGP or GART aperture.
961  *
962  * If bo is accessible through AGP aperture, then use AGP aperture
963  * to access bo; otherwise allocate logical space in GART aperture
964  * and map bo to GART aperture.
965  */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)966 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
967 {
968 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
969 	struct ttm_operation_ctx ctx = { false, false };
970 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
971 	struct ttm_placement placement;
972 	struct ttm_place placements;
973 	struct ttm_resource *tmp;
974 	uint64_t addr, flags;
975 	int r;
976 
977 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
978 		return 0;
979 
980 	addr = amdgpu_gmc_agp_addr(bo);
981 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
982 		bo->resource->start = addr >> PAGE_SHIFT;
983 		return 0;
984 	}
985 
986 	/* allocate GART space */
987 	placement.num_placement = 1;
988 	placement.placement = &placements;
989 	placement.num_busy_placement = 1;
990 	placement.busy_placement = &placements;
991 	placements.fpfn = 0;
992 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
993 	placements.mem_type = TTM_PL_TT;
994 	placements.flags = bo->resource->placement;
995 
996 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
997 	if (unlikely(r))
998 		return r;
999 
1000 	/* compute PTE flags for this buffer object */
1001 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1002 
1003 	/* Bind pages */
1004 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1005 	amdgpu_ttm_gart_bind(adev, bo, flags);
1006 	amdgpu_gart_invalidate_tlb(adev);
1007 	ttm_resource_free(bo, &bo->resource);
1008 	ttm_bo_assign_mem(bo, tmp);
1009 
1010 	return 0;
1011 }
1012 
1013 /*
1014  * amdgpu_ttm_recover_gart - Rebind GTT pages
1015  *
1016  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1017  * rebind GTT pages during a GPU reset.
1018  */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1019 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1020 {
1021 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1022 	uint64_t flags;
1023 
1024 	if (!tbo->ttm)
1025 		return;
1026 
1027 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1028 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1029 }
1030 
1031 /*
1032  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1033  *
1034  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1035  * ttm_tt_destroy().
1036  */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)1037 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1038 				      struct ttm_tt *ttm)
1039 {
1040 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1041 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1042 
1043 	/* if the pages have userptr pinning then clear that first */
1044 	if (gtt->userptr) {
1045 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1046 	} else if (ttm->sg && gtt->gobj->import_attach) {
1047 		struct dma_buf_attachment *attach;
1048 
1049 		attach = gtt->gobj->import_attach;
1050 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1051 		ttm->sg = NULL;
1052 	}
1053 
1054 	if (!gtt->bound)
1055 		return;
1056 
1057 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1058 		return;
1059 
1060 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1061 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1062 	gtt->bound = false;
1063 }
1064 
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1065 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1066 				       struct ttm_tt *ttm)
1067 {
1068 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1069 
1070 	if (gtt->usertask)
1071 		put_task_struct(gtt->usertask);
1072 
1073 	ttm_tt_fini(&gtt->ttm);
1074 	kfree(gtt);
1075 }
1076 
1077 /**
1078  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1079  *
1080  * @bo: The buffer object to create a GTT ttm_tt object around
1081  * @page_flags: Page flags to be added to the ttm_tt object
1082  *
1083  * Called by ttm_tt_create().
1084  */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1085 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1086 					   uint32_t page_flags)
1087 {
1088 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1089 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1090 	struct amdgpu_ttm_tt *gtt;
1091 	enum ttm_caching caching;
1092 
1093 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1094 	if (!gtt)
1095 		return NULL;
1096 
1097 	gtt->gobj = &bo->base;
1098 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1099 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1100 	else
1101 		gtt->pool_id = abo->xcp_id;
1102 
1103 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1104 		caching = ttm_write_combined;
1105 	else
1106 		caching = ttm_cached;
1107 
1108 	/* allocate space for the uninitialized page entries */
1109 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1110 		kfree(gtt);
1111 		return NULL;
1112 	}
1113 	return &gtt->ttm;
1114 }
1115 
1116 /*
1117  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1118  *
1119  * Map the pages of a ttm_tt object to an address space visible
1120  * to the underlying device.
1121  */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1122 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1123 				  struct ttm_tt *ttm,
1124 				  struct ttm_operation_ctx *ctx)
1125 {
1126 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1127 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1128 	struct ttm_pool *pool;
1129 	pgoff_t i;
1130 	int ret;
1131 
1132 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1133 	if (gtt->userptr) {
1134 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1135 		if (!ttm->sg)
1136 			return -ENOMEM;
1137 		return 0;
1138 	}
1139 
1140 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1141 		return 0;
1142 
1143 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1144 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1145 	else
1146 		pool = &adev->mman.bdev.pool;
1147 	ret = ttm_pool_alloc(pool, ttm, ctx);
1148 	if (ret)
1149 		return ret;
1150 
1151 	for (i = 0; i < ttm->num_pages; ++i)
1152 		ttm->pages[i]->mapping = bdev->dev_mapping;
1153 
1154 	return 0;
1155 }
1156 
1157 /*
1158  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1159  *
1160  * Unmaps pages of a ttm_tt object from the device address space and
1161  * unpopulates the page array backing it.
1162  */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1163 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1164 				     struct ttm_tt *ttm)
1165 {
1166 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1167 	struct amdgpu_device *adev;
1168 	struct ttm_pool *pool;
1169 	pgoff_t i;
1170 
1171 	amdgpu_ttm_backend_unbind(bdev, ttm);
1172 
1173 	if (gtt->userptr) {
1174 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1175 		kfree(ttm->sg);
1176 		ttm->sg = NULL;
1177 		return;
1178 	}
1179 
1180 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1181 		return;
1182 
1183 	for (i = 0; i < ttm->num_pages; ++i)
1184 		ttm->pages[i]->mapping = NULL;
1185 
1186 	adev = amdgpu_ttm_adev(bdev);
1187 
1188 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1189 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1190 	else
1191 		pool = &adev->mman.bdev.pool;
1192 
1193 	return ttm_pool_free(pool, ttm);
1194 }
1195 
1196 /**
1197  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1198  * task
1199  *
1200  * @tbo: The ttm_buffer_object that contains the userptr
1201  * @user_addr:  The returned value
1202  */
amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object * tbo,uint64_t * user_addr)1203 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1204 			      uint64_t *user_addr)
1205 {
1206 	struct amdgpu_ttm_tt *gtt;
1207 
1208 	if (!tbo->ttm)
1209 		return -EINVAL;
1210 
1211 	gtt = (void *)tbo->ttm;
1212 	*user_addr = gtt->userptr;
1213 	return 0;
1214 }
1215 
1216 /**
1217  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1218  * task
1219  *
1220  * @bo: The ttm_buffer_object to bind this userptr to
1221  * @addr:  The address in the current tasks VM space to use
1222  * @flags: Requirements of userptr object.
1223  *
1224  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1225  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1226  * initialize GPU VM for a KFD process.
1227  */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1228 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1229 			      uint64_t addr, uint32_t flags)
1230 {
1231 	struct amdgpu_ttm_tt *gtt;
1232 
1233 	if (!bo->ttm) {
1234 		/* TODO: We want a separate TTM object type for userptrs */
1235 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1236 		if (bo->ttm == NULL)
1237 			return -ENOMEM;
1238 	}
1239 
1240 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1241 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1242 
1243 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1244 	gtt->userptr = addr;
1245 	gtt->userflags = flags;
1246 
1247 	if (gtt->usertask)
1248 		put_task_struct(gtt->usertask);
1249 	gtt->usertask = current->group_leader;
1250 	get_task_struct(gtt->usertask);
1251 
1252 	return 0;
1253 }
1254 
1255 /*
1256  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1257  */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1258 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1259 {
1260 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1261 
1262 	if (gtt == NULL)
1263 		return NULL;
1264 
1265 	if (gtt->usertask == NULL)
1266 		return NULL;
1267 
1268 	return gtt->usertask->mm;
1269 }
1270 
1271 /*
1272  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1273  * address range for the current task.
1274  *
1275  */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end,unsigned long * userptr)1276 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1277 				  unsigned long end, unsigned long *userptr)
1278 {
1279 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1280 	unsigned long size;
1281 
1282 	if (gtt == NULL || !gtt->userptr)
1283 		return false;
1284 
1285 	/* Return false if no part of the ttm_tt object lies within
1286 	 * the range
1287 	 */
1288 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1289 	if (gtt->userptr > end || gtt->userptr + size <= start)
1290 		return false;
1291 
1292 	if (userptr)
1293 		*userptr = gtt->userptr;
1294 	return true;
1295 }
1296 
1297 /*
1298  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1299  */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1300 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1301 {
1302 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1303 
1304 	if (gtt == NULL || !gtt->userptr)
1305 		return false;
1306 
1307 	return true;
1308 }
1309 
1310 /*
1311  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1312  */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1313 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1314 {
1315 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1316 
1317 	if (gtt == NULL)
1318 		return false;
1319 
1320 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1321 }
1322 
1323 /**
1324  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1325  *
1326  * @ttm: The ttm_tt object to compute the flags for
1327  * @mem: The memory registry backing this ttm_tt object
1328  *
1329  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1330  */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1331 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1332 {
1333 	uint64_t flags = 0;
1334 
1335 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1336 		flags |= AMDGPU_PTE_VALID;
1337 
1338 	if (mem && (mem->mem_type == TTM_PL_TT ||
1339 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1340 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1341 		flags |= AMDGPU_PTE_SYSTEM;
1342 
1343 		if (ttm->caching == ttm_cached)
1344 			flags |= AMDGPU_PTE_SNOOPED;
1345 	}
1346 
1347 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1348 			mem->bus.caching == ttm_cached)
1349 		flags |= AMDGPU_PTE_SNOOPED;
1350 
1351 	return flags;
1352 }
1353 
1354 /**
1355  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1356  *
1357  * @adev: amdgpu_device pointer
1358  * @ttm: The ttm_tt object to compute the flags for
1359  * @mem: The memory registry backing this ttm_tt object
1360  *
1361  * Figure out the flags to use for a VM PTE (Page Table Entry).
1362  */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1363 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1364 				 struct ttm_resource *mem)
1365 {
1366 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1367 
1368 	flags |= adev->gart.gart_pte_flags;
1369 	flags |= AMDGPU_PTE_READABLE;
1370 
1371 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1372 		flags |= AMDGPU_PTE_WRITEABLE;
1373 
1374 	return flags;
1375 }
1376 
1377 /*
1378  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1379  * object.
1380  *
1381  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1382  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1383  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1384  * used to clean out a memory space.
1385  */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1386 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1387 					    const struct ttm_place *place)
1388 {
1389 	struct dma_resv_iter resv_cursor;
1390 	struct dma_fence *f;
1391 
1392 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1393 		return ttm_bo_eviction_valuable(bo, place);
1394 
1395 	/* Swapout? */
1396 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1397 		return true;
1398 
1399 	if (bo->type == ttm_bo_type_kernel &&
1400 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1401 		return false;
1402 
1403 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1404 	 * If true, then return false as any KFD process needs all its BOs to
1405 	 * be resident to run successfully
1406 	 */
1407 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1408 				DMA_RESV_USAGE_BOOKKEEP, f) {
1409 		if (amdkfd_fence_check_mm(f, current->mm))
1410 			return false;
1411 	}
1412 
1413 	/* Preemptible BOs don't own system resources managed by the
1414 	 * driver (pages, VRAM, GART space). They point to resources
1415 	 * owned by someone else (e.g. pageable memory in user mode
1416 	 * or a DMABuf). They are used in a preemptible context so we
1417 	 * can guarantee no deadlocks and good QoS in case of MMU
1418 	 * notifiers or DMABuf move notifiers from the resource owner.
1419 	 */
1420 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1421 		return false;
1422 
1423 	if (bo->resource->mem_type == TTM_PL_TT &&
1424 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1425 		return false;
1426 
1427 	return ttm_bo_eviction_valuable(bo, place);
1428 }
1429 
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1430 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1431 				      void *buf, size_t size, bool write)
1432 {
1433 	while (size) {
1434 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1435 		uint64_t bytes = 4 - (pos & 0x3);
1436 		uint32_t shift = (pos & 0x3) * 8;
1437 		uint32_t mask = 0xffffffff << shift;
1438 		uint32_t value = 0;
1439 
1440 		if (size < bytes) {
1441 			mask &= 0xffffffff >> (bytes - size) * 8;
1442 			bytes = size;
1443 		}
1444 
1445 		if (mask != 0xffffffff) {
1446 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1447 			if (write) {
1448 				value &= ~mask;
1449 				value |= (*(uint32_t *)buf << shift) & mask;
1450 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1451 			} else {
1452 				value = (value & mask) >> shift;
1453 				memcpy(buf, &value, bytes);
1454 			}
1455 		} else {
1456 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1457 		}
1458 
1459 		pos += bytes;
1460 		buf += bytes;
1461 		size -= bytes;
1462 	}
1463 }
1464 
amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1465 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1466 					unsigned long offset, void *buf,
1467 					int len, int write)
1468 {
1469 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1470 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1471 	struct amdgpu_res_cursor src_mm;
1472 	struct amdgpu_job *job;
1473 	struct dma_fence *fence;
1474 	uint64_t src_addr, dst_addr;
1475 	unsigned int num_dw;
1476 	int r, idx;
1477 
1478 	if (len != PAGE_SIZE)
1479 		return -EINVAL;
1480 
1481 	if (!adev->mman.sdma_access_ptr)
1482 		return -EACCES;
1483 
1484 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1485 		return -ENODEV;
1486 
1487 	if (write)
1488 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1489 
1490 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1491 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1492 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1493 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1494 				     &job);
1495 	if (r)
1496 		goto out;
1497 
1498 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1499 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1500 		src_mm.start;
1501 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1502 	if (write)
1503 		swap(src_addr, dst_addr);
1504 
1505 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1506 				PAGE_SIZE, false);
1507 
1508 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1509 	WARN_ON(job->ibs[0].length_dw > num_dw);
1510 
1511 	fence = amdgpu_job_submit(job);
1512 
1513 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1514 		r = -ETIMEDOUT;
1515 	dma_fence_put(fence);
1516 
1517 	if (!(r || write))
1518 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1519 out:
1520 	drm_dev_exit(idx);
1521 	return r;
1522 }
1523 
1524 /**
1525  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1526  *
1527  * @bo:  The buffer object to read/write
1528  * @offset:  Offset into buffer object
1529  * @buf:  Secondary buffer to write/read from
1530  * @len: Length in bytes of access
1531  * @write:  true if writing
1532  *
1533  * This is used to access VRAM that backs a buffer object via MMIO
1534  * access for debugging purposes.
1535  */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1536 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1537 				    unsigned long offset, void *buf, int len,
1538 				    int write)
1539 {
1540 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1541 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1542 	struct amdgpu_res_cursor cursor;
1543 	int ret = 0;
1544 
1545 	if (bo->resource->mem_type != TTM_PL_VRAM)
1546 		return -EIO;
1547 
1548 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1549 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1550 		return len;
1551 
1552 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1553 	while (cursor.remaining) {
1554 		size_t count, size = cursor.size;
1555 		loff_t pos = cursor.start;
1556 
1557 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1558 		size -= count;
1559 		if (size) {
1560 			/* using MM to access rest vram and handle un-aligned address */
1561 			pos += count;
1562 			buf += count;
1563 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1564 		}
1565 
1566 		ret += cursor.size;
1567 		buf += cursor.size;
1568 		amdgpu_res_next(&cursor, cursor.size);
1569 	}
1570 
1571 	return ret;
1572 }
1573 
1574 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1575 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1576 {
1577 	amdgpu_bo_move_notify(bo, false, NULL);
1578 }
1579 
1580 static struct ttm_device_funcs amdgpu_bo_driver = {
1581 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1582 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1583 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1584 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1585 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1586 	.evict_flags = &amdgpu_evict_flags,
1587 	.move = &amdgpu_bo_move,
1588 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1589 	.release_notify = &amdgpu_bo_release_notify,
1590 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1591 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1592 	.access_memory = &amdgpu_ttm_access_memory,
1593 };
1594 
1595 /*
1596  * Firmware Reservation functions
1597  */
1598 /**
1599  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1600  *
1601  * @adev: amdgpu_device pointer
1602  *
1603  * free fw reserved vram if it has been reserved.
1604  */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1605 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1606 {
1607 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1608 		NULL, &adev->mman.fw_vram_usage_va);
1609 }
1610 
1611 /*
1612  * Driver Reservation functions
1613  */
1614 /**
1615  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1616  *
1617  * @adev: amdgpu_device pointer
1618  *
1619  * free drv reserved vram if it has been reserved.
1620  */
amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device * adev)1621 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1622 {
1623 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1624 						  NULL,
1625 						  &adev->mman.drv_vram_usage_va);
1626 }
1627 
1628 /**
1629  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1630  *
1631  * @adev: amdgpu_device pointer
1632  *
1633  * create bo vram reservation from fw.
1634  */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1635 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1636 {
1637 	uint64_t vram_size = adev->gmc.visible_vram_size;
1638 
1639 	adev->mman.fw_vram_usage_va = NULL;
1640 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1641 
1642 	if (adev->mman.fw_vram_usage_size == 0 ||
1643 	    adev->mman.fw_vram_usage_size > vram_size)
1644 		return 0;
1645 
1646 	return amdgpu_bo_create_kernel_at(adev,
1647 					  adev->mman.fw_vram_usage_start_offset,
1648 					  adev->mman.fw_vram_usage_size,
1649 					  &adev->mman.fw_vram_usage_reserved_bo,
1650 					  &adev->mman.fw_vram_usage_va);
1651 }
1652 
1653 /**
1654  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1655  *
1656  * @adev: amdgpu_device pointer
1657  *
1658  * create bo vram reservation from drv.
1659  */
amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device * adev)1660 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1661 {
1662 	u64 vram_size = adev->gmc.visible_vram_size;
1663 
1664 	adev->mman.drv_vram_usage_va = NULL;
1665 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1666 
1667 	if (adev->mman.drv_vram_usage_size == 0 ||
1668 	    adev->mman.drv_vram_usage_size > vram_size)
1669 		return 0;
1670 
1671 	return amdgpu_bo_create_kernel_at(adev,
1672 					  adev->mman.drv_vram_usage_start_offset,
1673 					  adev->mman.drv_vram_usage_size,
1674 					  &adev->mman.drv_vram_usage_reserved_bo,
1675 					  &adev->mman.drv_vram_usage_va);
1676 }
1677 
1678 /*
1679  * Memoy training reservation functions
1680  */
1681 
1682 /**
1683  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1684  *
1685  * @adev: amdgpu_device pointer
1686  *
1687  * free memory training reserved vram if it has been reserved.
1688  */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1689 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1690 {
1691 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1692 
1693 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1694 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1695 	ctx->c2p_bo = NULL;
1696 
1697 	return 0;
1698 }
1699 
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev,uint32_t reserve_size)1700 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1701 						uint32_t reserve_size)
1702 {
1703 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1704 
1705 	memset(ctx, 0, sizeof(*ctx));
1706 
1707 	ctx->c2p_train_data_offset =
1708 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1709 	ctx->p2c_train_data_offset =
1710 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1711 	ctx->train_data_size =
1712 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1713 
1714 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1715 			ctx->train_data_size,
1716 			ctx->p2c_train_data_offset,
1717 			ctx->c2p_train_data_offset);
1718 }
1719 
1720 /*
1721  * reserve TMR memory at the top of VRAM which holds
1722  * IP Discovery data and is protected by PSP.
1723  */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1724 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1725 {
1726 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1727 	bool mem_train_support = false;
1728 	uint32_t reserve_size = 0;
1729 	int ret;
1730 
1731 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1732 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1733 			mem_train_support = true;
1734 		else
1735 			DRM_DEBUG("memory training does not support!\n");
1736 	}
1737 
1738 	/*
1739 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1740 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1741 	 *
1742 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1743 	 * discovery data and G6 memory training data respectively
1744 	 */
1745 	if (adev->bios)
1746 		reserve_size =
1747 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1748 
1749 	if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3))
1750 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1751 	else if (!reserve_size)
1752 		reserve_size = DISCOVERY_TMR_OFFSET;
1753 
1754 	if (mem_train_support) {
1755 		/* reserve vram for mem train according to TMR location */
1756 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1757 		ret = amdgpu_bo_create_kernel_at(adev,
1758 						 ctx->c2p_train_data_offset,
1759 						 ctx->train_data_size,
1760 						 &ctx->c2p_bo,
1761 						 NULL);
1762 		if (ret) {
1763 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1764 			amdgpu_ttm_training_reserve_vram_fini(adev);
1765 			return ret;
1766 		}
1767 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1768 	}
1769 
1770 	if (!adev->gmc.is_app_apu) {
1771 		ret = amdgpu_bo_create_kernel_at(
1772 			adev, adev->gmc.real_vram_size - reserve_size,
1773 			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1774 		if (ret) {
1775 			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1776 			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1777 					      NULL, NULL);
1778 			return ret;
1779 		}
1780 	} else {
1781 		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1782 	}
1783 
1784 	return 0;
1785 }
1786 
amdgpu_ttm_pools_init(struct amdgpu_device * adev)1787 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1788 {
1789 	int i;
1790 
1791 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1792 		return 0;
1793 
1794 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1795 				       sizeof(*adev->mman.ttm_pools),
1796 				       GFP_KERNEL);
1797 	if (!adev->mman.ttm_pools)
1798 		return -ENOMEM;
1799 
1800 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1801 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1802 			      adev->gmc.mem_partitions[i].numa.node,
1803 			      false, false);
1804 	}
1805 	return 0;
1806 }
1807 
amdgpu_ttm_pools_fini(struct amdgpu_device * adev)1808 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1809 {
1810 	int i;
1811 
1812 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1813 		return;
1814 
1815 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1816 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1817 
1818 	kfree(adev->mman.ttm_pools);
1819 	adev->mman.ttm_pools = NULL;
1820 }
1821 
1822 /*
1823  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1824  * gtt/vram related fields.
1825  *
1826  * This initializes all of the memory space pools that the TTM layer
1827  * will need such as the GTT space (system memory mapped to the device),
1828  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1829  * can be mapped per VMID.
1830  */
amdgpu_ttm_init(struct amdgpu_device * adev)1831 int amdgpu_ttm_init(struct amdgpu_device *adev)
1832 {
1833 	uint64_t gtt_size;
1834 	int r;
1835 
1836 	mutex_init(&adev->mman.gtt_window_lock);
1837 
1838 	dma_set_max_seg_size(adev->dev, UINT_MAX);
1839 	/* No others user of address space so set it to 0 */
1840 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1841 			       adev_to_drm(adev)->anon_inode->i_mapping,
1842 			       adev_to_drm(adev)->vma_offset_manager,
1843 			       adev->need_swiotlb,
1844 			       dma_addressing_limited(adev->dev));
1845 	if (r) {
1846 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1847 		return r;
1848 	}
1849 
1850 	r = amdgpu_ttm_pools_init(adev);
1851 	if (r) {
1852 		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1853 		return r;
1854 	}
1855 	adev->mman.initialized = true;
1856 
1857 	/* Initialize VRAM pool with all of VRAM divided into pages */
1858 	r = amdgpu_vram_mgr_init(adev);
1859 	if (r) {
1860 		DRM_ERROR("Failed initializing VRAM heap.\n");
1861 		return r;
1862 	}
1863 
1864 	/* Change the size here instead of the init above so only lpfn is affected */
1865 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1866 #ifdef CONFIG_64BIT
1867 #ifdef CONFIG_X86
1868 	if (adev->gmc.xgmi.connected_to_cpu)
1869 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1870 				adev->gmc.visible_vram_size);
1871 
1872 	else if (adev->gmc.is_app_apu)
1873 		DRM_DEBUG_DRIVER(
1874 			"No need to ioremap when real vram size is 0\n");
1875 	else
1876 #endif
1877 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1878 				adev->gmc.visible_vram_size);
1879 #endif
1880 
1881 	/*
1882 	 *The reserved vram for firmware must be pinned to the specified
1883 	 *place on the VRAM, so reserve it early.
1884 	 */
1885 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1886 	if (r)
1887 		return r;
1888 
1889 	/*
1890 	 *The reserved vram for driver must be pinned to the specified
1891 	 *place on the VRAM, so reserve it early.
1892 	 */
1893 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1894 	if (r)
1895 		return r;
1896 
1897 	/*
1898 	 * only NAVI10 and onwards ASIC support for IP discovery.
1899 	 * If IP discovery enabled, a block of memory should be
1900 	 * reserved for IP discovey.
1901 	 */
1902 	if (adev->mman.discovery_bin) {
1903 		r = amdgpu_ttm_reserve_tmr(adev);
1904 		if (r)
1905 			return r;
1906 	}
1907 
1908 	/* allocate memory as required for VGA
1909 	 * This is used for VGA emulation and pre-OS scanout buffers to
1910 	 * avoid display artifacts while transitioning between pre-OS
1911 	 * and driver.
1912 	 */
1913 	if (!adev->gmc.is_app_apu) {
1914 		r = amdgpu_bo_create_kernel_at(adev, 0,
1915 					       adev->mman.stolen_vga_size,
1916 					       &adev->mman.stolen_vga_memory,
1917 					       NULL);
1918 		if (r)
1919 			return r;
1920 
1921 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1922 					       adev->mman.stolen_extended_size,
1923 					       &adev->mman.stolen_extended_memory,
1924 					       NULL);
1925 
1926 		if (r)
1927 			return r;
1928 
1929 		r = amdgpu_bo_create_kernel_at(adev,
1930 					       adev->mman.stolen_reserved_offset,
1931 					       adev->mman.stolen_reserved_size,
1932 					       &adev->mman.stolen_reserved_memory,
1933 					       NULL);
1934 		if (r)
1935 			return r;
1936 	} else {
1937 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1938 	}
1939 
1940 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1941 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1942 
1943 	/* Compute GTT size, either based on TTM limit
1944 	 * or whatever the user passed on module init.
1945 	 */
1946 	if (amdgpu_gtt_size == -1)
1947 		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1948 	else
1949 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1950 
1951 	/* Initialize GTT memory pool */
1952 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1953 	if (r) {
1954 		DRM_ERROR("Failed initializing GTT heap.\n");
1955 		return r;
1956 	}
1957 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1958 		 (unsigned int)(gtt_size / (1024 * 1024)));
1959 
1960 	/* Initiailize doorbell pool on PCI BAR */
1961 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1962 	if (r) {
1963 		DRM_ERROR("Failed initializing doorbell heap.\n");
1964 		return r;
1965 	}
1966 
1967 	/* Create a boorbell page for kernel usages */
1968 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1969 	if (r) {
1970 		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1971 		return r;
1972 	}
1973 
1974 	/* Initialize preemptible memory pool */
1975 	r = amdgpu_preempt_mgr_init(adev);
1976 	if (r) {
1977 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1978 		return r;
1979 	}
1980 
1981 	/* Initialize various on-chip memory pools */
1982 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1983 	if (r) {
1984 		DRM_ERROR("Failed initializing GDS heap.\n");
1985 		return r;
1986 	}
1987 
1988 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1989 	if (r) {
1990 		DRM_ERROR("Failed initializing gws heap.\n");
1991 		return r;
1992 	}
1993 
1994 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1995 	if (r) {
1996 		DRM_ERROR("Failed initializing oa heap.\n");
1997 		return r;
1998 	}
1999 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2000 				AMDGPU_GEM_DOMAIN_GTT,
2001 				&adev->mman.sdma_access_bo, NULL,
2002 				&adev->mman.sdma_access_ptr))
2003 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2004 
2005 	return 0;
2006 }
2007 
2008 /*
2009  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2010  */
amdgpu_ttm_fini(struct amdgpu_device * adev)2011 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2012 {
2013 	int idx;
2014 
2015 	if (!adev->mman.initialized)
2016 		return;
2017 
2018 	amdgpu_ttm_pools_fini(adev);
2019 
2020 	amdgpu_ttm_training_reserve_vram_fini(adev);
2021 	/* return the stolen vga memory back to VRAM */
2022 	if (!adev->gmc.is_app_apu) {
2023 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2024 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2025 		/* return the FW reserved memory back to VRAM */
2026 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2027 				      NULL);
2028 		if (adev->mman.stolen_reserved_size)
2029 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2030 					      NULL, NULL);
2031 	}
2032 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2033 					&adev->mman.sdma_access_ptr);
2034 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2035 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2036 
2037 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2038 
2039 		if (adev->mman.aper_base_kaddr)
2040 			iounmap(adev->mman.aper_base_kaddr);
2041 		adev->mman.aper_base_kaddr = NULL;
2042 
2043 		drm_dev_exit(idx);
2044 	}
2045 
2046 	amdgpu_vram_mgr_fini(adev);
2047 	amdgpu_gtt_mgr_fini(adev);
2048 	amdgpu_preempt_mgr_fini(adev);
2049 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2050 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2051 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2052 	ttm_device_fini(&adev->mman.bdev);
2053 	adev->mman.initialized = false;
2054 	DRM_INFO("amdgpu: ttm finalized\n");
2055 }
2056 
2057 /**
2058  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2059  *
2060  * @adev: amdgpu_device pointer
2061  * @enable: true when we can use buffer functions.
2062  *
2063  * Enable/disable use of buffer functions during suspend/resume. This should
2064  * only be called at bootup or when userspace isn't running.
2065  */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)2066 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2067 {
2068 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2069 	uint64_t size;
2070 	int r;
2071 
2072 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2073 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2074 		return;
2075 
2076 	if (enable) {
2077 		struct amdgpu_ring *ring;
2078 		struct drm_gpu_scheduler *sched;
2079 
2080 		ring = adev->mman.buffer_funcs_ring;
2081 		sched = &ring->sched;
2082 		r = drm_sched_entity_init(&adev->mman.high_pr,
2083 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2084 					  1, NULL);
2085 		if (r) {
2086 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2087 				  r);
2088 			return;
2089 		}
2090 
2091 		r = drm_sched_entity_init(&adev->mman.low_pr,
2092 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2093 					  1, NULL);
2094 		if (r) {
2095 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2096 				  r);
2097 			goto error_free_entity;
2098 		}
2099 	} else {
2100 		drm_sched_entity_destroy(&adev->mman.high_pr);
2101 		drm_sched_entity_destroy(&adev->mman.low_pr);
2102 		dma_fence_put(man->move);
2103 		man->move = NULL;
2104 	}
2105 
2106 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2107 	if (enable)
2108 		size = adev->gmc.real_vram_size;
2109 	else
2110 		size = adev->gmc.visible_vram_size;
2111 	man->size = size;
2112 	adev->mman.buffer_funcs_enabled = enable;
2113 
2114 	return;
2115 
2116 error_free_entity:
2117 	drm_sched_entity_destroy(&adev->mman.high_pr);
2118 }
2119 
amdgpu_ttm_prepare_job(struct amdgpu_device * adev,bool direct_submit,unsigned int num_dw,struct dma_resv * resv,bool vm_needs_flush,struct amdgpu_job ** job,bool delayed)2120 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2121 				  bool direct_submit,
2122 				  unsigned int num_dw,
2123 				  struct dma_resv *resv,
2124 				  bool vm_needs_flush,
2125 				  struct amdgpu_job **job,
2126 				  bool delayed)
2127 {
2128 	enum amdgpu_ib_pool_type pool = direct_submit ?
2129 		AMDGPU_IB_POOL_DIRECT :
2130 		AMDGPU_IB_POOL_DELAYED;
2131 	int r;
2132 	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2133 						    &adev->mman.high_pr;
2134 	r = amdgpu_job_alloc_with_ib(adev, entity,
2135 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2136 				     num_dw * 4, pool, job);
2137 	if (r)
2138 		return r;
2139 
2140 	if (vm_needs_flush) {
2141 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2142 							adev->gmc.pdb0_bo :
2143 							adev->gart.bo);
2144 		(*job)->vm_needs_flush = true;
2145 	}
2146 	if (!resv)
2147 		return 0;
2148 
2149 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2150 						   DMA_RESV_USAGE_BOOKKEEP);
2151 }
2152 
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,bool tmz)2153 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2154 		       uint64_t dst_offset, uint32_t byte_count,
2155 		       struct dma_resv *resv,
2156 		       struct dma_fence **fence, bool direct_submit,
2157 		       bool vm_needs_flush, bool tmz)
2158 {
2159 	struct amdgpu_device *adev = ring->adev;
2160 	unsigned int num_loops, num_dw;
2161 	struct amdgpu_job *job;
2162 	uint32_t max_bytes;
2163 	unsigned int i;
2164 	int r;
2165 
2166 	if (!direct_submit && !ring->sched.ready) {
2167 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2168 		return -EINVAL;
2169 	}
2170 
2171 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2172 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2173 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2174 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2175 				   resv, vm_needs_flush, &job, false);
2176 	if (r)
2177 		return r;
2178 
2179 	for (i = 0; i < num_loops; i++) {
2180 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2181 
2182 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2183 					dst_offset, cur_size_in_bytes, tmz);
2184 
2185 		src_offset += cur_size_in_bytes;
2186 		dst_offset += cur_size_in_bytes;
2187 		byte_count -= cur_size_in_bytes;
2188 	}
2189 
2190 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2191 	WARN_ON(job->ibs[0].length_dw > num_dw);
2192 	if (direct_submit)
2193 		r = amdgpu_job_submit_direct(job, ring, fence);
2194 	else
2195 		*fence = amdgpu_job_submit(job);
2196 	if (r)
2197 		goto error_free;
2198 
2199 	return r;
2200 
2201 error_free:
2202 	amdgpu_job_free(job);
2203 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2204 	return r;
2205 }
2206 
amdgpu_ttm_fill_mem(struct amdgpu_ring * ring,uint32_t src_data,uint64_t dst_addr,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool vm_needs_flush,bool delayed)2207 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2208 			       uint64_t dst_addr, uint32_t byte_count,
2209 			       struct dma_resv *resv,
2210 			       struct dma_fence **fence,
2211 			       bool vm_needs_flush, bool delayed)
2212 {
2213 	struct amdgpu_device *adev = ring->adev;
2214 	unsigned int num_loops, num_dw;
2215 	struct amdgpu_job *job;
2216 	uint32_t max_bytes;
2217 	unsigned int i;
2218 	int r;
2219 
2220 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2221 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2222 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2223 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2224 				   &job, delayed);
2225 	if (r)
2226 		return r;
2227 
2228 	for (i = 0; i < num_loops; i++) {
2229 		uint32_t cur_size = min(byte_count, max_bytes);
2230 
2231 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2232 					cur_size);
2233 
2234 		dst_addr += cur_size;
2235 		byte_count -= cur_size;
2236 	}
2237 
2238 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2239 	WARN_ON(job->ibs[0].length_dw > num_dw);
2240 	*fence = amdgpu_job_submit(job);
2241 	return 0;
2242 }
2243 
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** f,bool delayed)2244 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2245 			uint32_t src_data,
2246 			struct dma_resv *resv,
2247 			struct dma_fence **f,
2248 			bool delayed)
2249 {
2250 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2251 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2252 	struct dma_fence *fence = NULL;
2253 	struct amdgpu_res_cursor dst;
2254 	int r;
2255 
2256 	if (!adev->mman.buffer_funcs_enabled) {
2257 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2258 		return -EINVAL;
2259 	}
2260 
2261 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2262 
2263 	mutex_lock(&adev->mman.gtt_window_lock);
2264 	while (dst.remaining) {
2265 		struct dma_fence *next;
2266 		uint64_t cur_size, to;
2267 
2268 		/* Never fill more than 256MiB at once to avoid timeouts */
2269 		cur_size = min(dst.size, 256ULL << 20);
2270 
2271 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2272 					  1, ring, false, &cur_size, &to);
2273 		if (r)
2274 			goto error;
2275 
2276 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2277 					&next, true, delayed);
2278 		if (r)
2279 			goto error;
2280 
2281 		dma_fence_put(fence);
2282 		fence = next;
2283 
2284 		amdgpu_res_next(&dst, cur_size);
2285 	}
2286 error:
2287 	mutex_unlock(&adev->mman.gtt_window_lock);
2288 	if (f)
2289 		*f = dma_fence_get(fence);
2290 	dma_fence_put(fence);
2291 	return r;
2292 }
2293 
2294 /**
2295  * amdgpu_ttm_evict_resources - evict memory buffers
2296  * @adev: amdgpu device object
2297  * @mem_type: evicted BO's memory type
2298  *
2299  * Evicts all @mem_type buffers on the lru list of the memory type.
2300  *
2301  * Returns:
2302  * 0 for success or a negative error code on failure.
2303  */
amdgpu_ttm_evict_resources(struct amdgpu_device * adev,int mem_type)2304 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2305 {
2306 	struct ttm_resource_manager *man;
2307 
2308 	switch (mem_type) {
2309 	case TTM_PL_VRAM:
2310 	case TTM_PL_TT:
2311 	case AMDGPU_PL_GWS:
2312 	case AMDGPU_PL_GDS:
2313 	case AMDGPU_PL_OA:
2314 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2315 		break;
2316 	default:
2317 		DRM_ERROR("Trying to evict invalid memory type\n");
2318 		return -EINVAL;
2319 	}
2320 
2321 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2322 }
2323 
2324 #if defined(CONFIG_DEBUG_FS)
2325 
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2326 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2327 {
2328 	struct amdgpu_device *adev = m->private;
2329 
2330 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2331 }
2332 
2333 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2334 
2335 /*
2336  * amdgpu_ttm_vram_read - Linear read access to VRAM
2337  *
2338  * Accesses VRAM via MMIO for debugging purposes.
2339  */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2340 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2341 				    size_t size, loff_t *pos)
2342 {
2343 	struct amdgpu_device *adev = file_inode(f)->i_private;
2344 	ssize_t result = 0;
2345 
2346 	if (size & 0x3 || *pos & 0x3)
2347 		return -EINVAL;
2348 
2349 	if (*pos >= adev->gmc.mc_vram_size)
2350 		return -ENXIO;
2351 
2352 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2353 	while (size) {
2354 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2355 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2356 
2357 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2358 		if (copy_to_user(buf, value, bytes))
2359 			return -EFAULT;
2360 
2361 		result += bytes;
2362 		buf += bytes;
2363 		*pos += bytes;
2364 		size -= bytes;
2365 	}
2366 
2367 	return result;
2368 }
2369 
2370 /*
2371  * amdgpu_ttm_vram_write - Linear write access to VRAM
2372  *
2373  * Accesses VRAM via MMIO for debugging purposes.
2374  */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2375 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2376 				    size_t size, loff_t *pos)
2377 {
2378 	struct amdgpu_device *adev = file_inode(f)->i_private;
2379 	ssize_t result = 0;
2380 	int r;
2381 
2382 	if (size & 0x3 || *pos & 0x3)
2383 		return -EINVAL;
2384 
2385 	if (*pos >= adev->gmc.mc_vram_size)
2386 		return -ENXIO;
2387 
2388 	while (size) {
2389 		uint32_t value;
2390 
2391 		if (*pos >= adev->gmc.mc_vram_size)
2392 			return result;
2393 
2394 		r = get_user(value, (uint32_t *)buf);
2395 		if (r)
2396 			return r;
2397 
2398 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2399 
2400 		result += 4;
2401 		buf += 4;
2402 		*pos += 4;
2403 		size -= 4;
2404 	}
2405 
2406 	return result;
2407 }
2408 
2409 static const struct file_operations amdgpu_ttm_vram_fops = {
2410 	.owner = THIS_MODULE,
2411 	.read = amdgpu_ttm_vram_read,
2412 	.write = amdgpu_ttm_vram_write,
2413 	.llseek = default_llseek,
2414 };
2415 
2416 /*
2417  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2418  *
2419  * This function is used to read memory that has been mapped to the
2420  * GPU and the known addresses are not physical addresses but instead
2421  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2422  */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2423 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2424 				 size_t size, loff_t *pos)
2425 {
2426 	struct amdgpu_device *adev = file_inode(f)->i_private;
2427 	struct iommu_domain *dom;
2428 	ssize_t result = 0;
2429 	int r;
2430 
2431 	/* retrieve the IOMMU domain if any for this device */
2432 	dom = iommu_get_domain_for_dev(adev->dev);
2433 
2434 	while (size) {
2435 		phys_addr_t addr = *pos & PAGE_MASK;
2436 		loff_t off = *pos & ~PAGE_MASK;
2437 		size_t bytes = PAGE_SIZE - off;
2438 		unsigned long pfn;
2439 		struct page *p;
2440 		void *ptr;
2441 
2442 		bytes = min(bytes, size);
2443 
2444 		/* Translate the bus address to a physical address.  If
2445 		 * the domain is NULL it means there is no IOMMU active
2446 		 * and the address translation is the identity
2447 		 */
2448 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2449 
2450 		pfn = addr >> PAGE_SHIFT;
2451 		if (!pfn_valid(pfn))
2452 			return -EPERM;
2453 
2454 		p = pfn_to_page(pfn);
2455 		if (p->mapping != adev->mman.bdev.dev_mapping)
2456 			return -EPERM;
2457 
2458 		ptr = kmap_local_page(p);
2459 		r = copy_to_user(buf, ptr + off, bytes);
2460 		kunmap_local(ptr);
2461 		if (r)
2462 			return -EFAULT;
2463 
2464 		size -= bytes;
2465 		*pos += bytes;
2466 		result += bytes;
2467 	}
2468 
2469 	return result;
2470 }
2471 
2472 /*
2473  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2474  *
2475  * This function is used to write memory that has been mapped to the
2476  * GPU and the known addresses are not physical addresses but instead
2477  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2478  */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2479 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2480 				 size_t size, loff_t *pos)
2481 {
2482 	struct amdgpu_device *adev = file_inode(f)->i_private;
2483 	struct iommu_domain *dom;
2484 	ssize_t result = 0;
2485 	int r;
2486 
2487 	dom = iommu_get_domain_for_dev(adev->dev);
2488 
2489 	while (size) {
2490 		phys_addr_t addr = *pos & PAGE_MASK;
2491 		loff_t off = *pos & ~PAGE_MASK;
2492 		size_t bytes = PAGE_SIZE - off;
2493 		unsigned long pfn;
2494 		struct page *p;
2495 		void *ptr;
2496 
2497 		bytes = min(bytes, size);
2498 
2499 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2500 
2501 		pfn = addr >> PAGE_SHIFT;
2502 		if (!pfn_valid(pfn))
2503 			return -EPERM;
2504 
2505 		p = pfn_to_page(pfn);
2506 		if (p->mapping != adev->mman.bdev.dev_mapping)
2507 			return -EPERM;
2508 
2509 		ptr = kmap_local_page(p);
2510 		r = copy_from_user(ptr + off, buf, bytes);
2511 		kunmap_local(ptr);
2512 		if (r)
2513 			return -EFAULT;
2514 
2515 		size -= bytes;
2516 		*pos += bytes;
2517 		result += bytes;
2518 	}
2519 
2520 	return result;
2521 }
2522 
2523 static const struct file_operations amdgpu_ttm_iomem_fops = {
2524 	.owner = THIS_MODULE,
2525 	.read = amdgpu_iomem_read,
2526 	.write = amdgpu_iomem_write,
2527 	.llseek = default_llseek
2528 };
2529 
2530 #endif
2531 
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2532 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2533 {
2534 #if defined(CONFIG_DEBUG_FS)
2535 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2536 	struct dentry *root = minor->debugfs_root;
2537 
2538 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2539 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2540 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2541 			    &amdgpu_ttm_iomem_fops);
2542 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2543 			    &amdgpu_ttm_page_pool_fops);
2544 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2545 							     TTM_PL_VRAM),
2546 					    root, "amdgpu_vram_mm");
2547 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2548 							     TTM_PL_TT),
2549 					    root, "amdgpu_gtt_mm");
2550 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2551 							     AMDGPU_PL_GDS),
2552 					    root, "amdgpu_gds_mm");
2553 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2554 							     AMDGPU_PL_GWS),
2555 					    root, "amdgpu_gws_mm");
2556 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2557 							     AMDGPU_PL_OA),
2558 					    root, "amdgpu_oa_mm");
2559 
2560 #endif
2561 }
2562