xref: /openbmc/linux/fs/xfs/xfs_iomap.c (revision 09138ba68c1487a42c400485e999386a74911dbc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap_btree.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_space.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iomap.h"
25 #include "xfs_trace.h"
26 #include "xfs_quota.h"
27 #include "xfs_dquot_item.h"
28 #include "xfs_dquot.h"
29 #include "xfs_reflink.h"
30 
31 #define XFS_ALLOC_ALIGN(mp, off) \
32 	(((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
33 
34 static int
xfs_alert_fsblock_zero(xfs_inode_t * ip,xfs_bmbt_irec_t * imap)35 xfs_alert_fsblock_zero(
36 	xfs_inode_t	*ip,
37 	xfs_bmbt_irec_t	*imap)
38 {
39 	xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
40 			"Access to block zero in inode %llu "
41 			"start_block: %llx start_off: %llx "
42 			"blkcnt: %llx extent-state: %x",
43 		(unsigned long long)ip->i_ino,
44 		(unsigned long long)imap->br_startblock,
45 		(unsigned long long)imap->br_startoff,
46 		(unsigned long long)imap->br_blockcount,
47 		imap->br_state);
48 	return -EFSCORRUPTED;
49 }
50 
51 u64
xfs_iomap_inode_sequence(struct xfs_inode * ip,u16 iomap_flags)52 xfs_iomap_inode_sequence(
53 	struct xfs_inode	*ip,
54 	u16			iomap_flags)
55 {
56 	u64			cookie = 0;
57 
58 	if (iomap_flags & IOMAP_F_XATTR)
59 		return READ_ONCE(ip->i_af.if_seq);
60 	if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp)
61 		cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32;
62 	return cookie | READ_ONCE(ip->i_df.if_seq);
63 }
64 
65 /*
66  * Check that the iomap passed to us is still valid for the given offset and
67  * length.
68  */
69 static bool
xfs_iomap_valid(struct inode * inode,const struct iomap * iomap)70 xfs_iomap_valid(
71 	struct inode		*inode,
72 	const struct iomap	*iomap)
73 {
74 	struct xfs_inode	*ip = XFS_I(inode);
75 
76 	if (iomap->validity_cookie !=
77 			xfs_iomap_inode_sequence(ip, iomap->flags)) {
78 		trace_xfs_iomap_invalid(ip, iomap);
79 		return false;
80 	}
81 
82 	XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS);
83 	return true;
84 }
85 
86 static const struct iomap_folio_ops xfs_iomap_folio_ops = {
87 	.iomap_valid		= xfs_iomap_valid,
88 };
89 
90 int
xfs_bmbt_to_iomap(struct xfs_inode * ip,struct iomap * iomap,struct xfs_bmbt_irec * imap,unsigned int mapping_flags,u16 iomap_flags,u64 sequence_cookie)91 xfs_bmbt_to_iomap(
92 	struct xfs_inode	*ip,
93 	struct iomap		*iomap,
94 	struct xfs_bmbt_irec	*imap,
95 	unsigned int		mapping_flags,
96 	u16			iomap_flags,
97 	u64			sequence_cookie)
98 {
99 	struct xfs_mount	*mp = ip->i_mount;
100 	struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
101 
102 	if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock)))
103 		return xfs_alert_fsblock_zero(ip, imap);
104 
105 	if (imap->br_startblock == HOLESTARTBLOCK) {
106 		iomap->addr = IOMAP_NULL_ADDR;
107 		iomap->type = IOMAP_HOLE;
108 	} else if (imap->br_startblock == DELAYSTARTBLOCK ||
109 		   isnullstartblock(imap->br_startblock)) {
110 		iomap->addr = IOMAP_NULL_ADDR;
111 		iomap->type = IOMAP_DELALLOC;
112 	} else {
113 		iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock));
114 		if (mapping_flags & IOMAP_DAX)
115 			iomap->addr += target->bt_dax_part_off;
116 
117 		if (imap->br_state == XFS_EXT_UNWRITTEN)
118 			iomap->type = IOMAP_UNWRITTEN;
119 		else
120 			iomap->type = IOMAP_MAPPED;
121 
122 	}
123 	iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
124 	iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
125 	if (mapping_flags & IOMAP_DAX)
126 		iomap->dax_dev = target->bt_daxdev;
127 	else
128 		iomap->bdev = target->bt_bdev;
129 	iomap->flags = iomap_flags;
130 
131 	if (xfs_ipincount(ip) &&
132 	    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
133 		iomap->flags |= IOMAP_F_DIRTY;
134 
135 	iomap->validity_cookie = sequence_cookie;
136 	iomap->folio_ops = &xfs_iomap_folio_ops;
137 	return 0;
138 }
139 
140 static void
xfs_hole_to_iomap(struct xfs_inode * ip,struct iomap * iomap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)141 xfs_hole_to_iomap(
142 	struct xfs_inode	*ip,
143 	struct iomap		*iomap,
144 	xfs_fileoff_t		offset_fsb,
145 	xfs_fileoff_t		end_fsb)
146 {
147 	struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
148 
149 	iomap->addr = IOMAP_NULL_ADDR;
150 	iomap->type = IOMAP_HOLE;
151 	iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
152 	iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
153 	iomap->bdev = target->bt_bdev;
154 	iomap->dax_dev = target->bt_daxdev;
155 }
156 
157 static inline xfs_fileoff_t
xfs_iomap_end_fsb(struct xfs_mount * mp,loff_t offset,loff_t count)158 xfs_iomap_end_fsb(
159 	struct xfs_mount	*mp,
160 	loff_t			offset,
161 	loff_t			count)
162 {
163 	ASSERT(offset <= mp->m_super->s_maxbytes);
164 	return min(XFS_B_TO_FSB(mp, offset + count),
165 		   XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
166 }
167 
168 static xfs_extlen_t
xfs_eof_alignment(struct xfs_inode * ip)169 xfs_eof_alignment(
170 	struct xfs_inode	*ip)
171 {
172 	struct xfs_mount	*mp = ip->i_mount;
173 	xfs_extlen_t		align = 0;
174 
175 	if (!XFS_IS_REALTIME_INODE(ip)) {
176 		/*
177 		 * Round up the allocation request to a stripe unit
178 		 * (m_dalign) boundary if the file size is >= stripe unit
179 		 * size, and we are allocating past the allocation eof.
180 		 *
181 		 * If mounted with the "-o swalloc" option the alignment is
182 		 * increased from the strip unit size to the stripe width.
183 		 */
184 		if (mp->m_swidth && xfs_has_swalloc(mp))
185 			align = mp->m_swidth;
186 		else if (mp->m_dalign)
187 			align = mp->m_dalign;
188 
189 		if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
190 			align = 0;
191 	}
192 
193 	return align;
194 }
195 
196 /*
197  * Check if last_fsb is outside the last extent, and if so grow it to the next
198  * stripe unit boundary.
199  */
200 xfs_fileoff_t
xfs_iomap_eof_align_last_fsb(struct xfs_inode * ip,xfs_fileoff_t end_fsb)201 xfs_iomap_eof_align_last_fsb(
202 	struct xfs_inode	*ip,
203 	xfs_fileoff_t		end_fsb)
204 {
205 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
206 	xfs_extlen_t		extsz = xfs_get_extsz_hint(ip);
207 	xfs_extlen_t		align = xfs_eof_alignment(ip);
208 	struct xfs_bmbt_irec	irec;
209 	struct xfs_iext_cursor	icur;
210 
211 	ASSERT(!xfs_need_iread_extents(ifp));
212 
213 	/*
214 	 * Always round up the allocation request to the extent hint boundary.
215 	 */
216 	if (extsz) {
217 		if (align)
218 			align = roundup_64(align, extsz);
219 		else
220 			align = extsz;
221 	}
222 
223 	if (align) {
224 		xfs_fileoff_t	aligned_end_fsb = roundup_64(end_fsb, align);
225 
226 		xfs_iext_last(ifp, &icur);
227 		if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
228 		    aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
229 			return aligned_end_fsb;
230 	}
231 
232 	return end_fsb;
233 }
234 
235 int
xfs_iomap_write_direct(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_fileoff_t count_fsb,unsigned int flags,struct xfs_bmbt_irec * imap,u64 * seq)236 xfs_iomap_write_direct(
237 	struct xfs_inode	*ip,
238 	xfs_fileoff_t		offset_fsb,
239 	xfs_fileoff_t		count_fsb,
240 	unsigned int		flags,
241 	struct xfs_bmbt_irec	*imap,
242 	u64			*seq)
243 {
244 	struct xfs_mount	*mp = ip->i_mount;
245 	struct xfs_trans	*tp;
246 	xfs_filblks_t		resaligned;
247 	int			nimaps;
248 	unsigned int		dblocks, rblocks;
249 	bool			force = false;
250 	int			error;
251 	int			bmapi_flags = XFS_BMAPI_PREALLOC;
252 	int			nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
253 
254 	ASSERT(count_fsb > 0);
255 
256 	resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
257 					   xfs_get_extsz_hint(ip));
258 	if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
259 		dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
260 		rblocks = resaligned;
261 	} else {
262 		dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
263 		rblocks = 0;
264 	}
265 
266 	error = xfs_qm_dqattach(ip);
267 	if (error)
268 		return error;
269 
270 	/*
271 	 * For DAX, we do not allocate unwritten extents, but instead we zero
272 	 * the block before we commit the transaction.  Ideally we'd like to do
273 	 * this outside the transaction context, but if we commit and then crash
274 	 * we may not have zeroed the blocks and this will be exposed on
275 	 * recovery of the allocation. Hence we must zero before commit.
276 	 *
277 	 * Further, if we are mapping unwritten extents here, we need to zero
278 	 * and convert them to written so that we don't need an unwritten extent
279 	 * callback for DAX. This also means that we need to be able to dip into
280 	 * the reserve block pool for bmbt block allocation if there is no space
281 	 * left but we need to do unwritten extent conversion.
282 	 */
283 	if (flags & IOMAP_DAX) {
284 		bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
285 		if (imap->br_state == XFS_EXT_UNWRITTEN) {
286 			force = true;
287 			nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
288 			dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
289 		}
290 	}
291 
292 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
293 			rblocks, force, &tp);
294 	if (error)
295 		return error;
296 
297 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, nr_exts);
298 	if (error == -EFBIG)
299 		error = xfs_iext_count_upgrade(tp, ip, nr_exts);
300 	if (error)
301 		goto out_trans_cancel;
302 
303 	/*
304 	 * From this point onwards we overwrite the imap pointer that the
305 	 * caller gave to us.
306 	 */
307 	nimaps = 1;
308 	error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
309 				imap, &nimaps);
310 	if (error)
311 		goto out_trans_cancel;
312 
313 	/*
314 	 * Complete the transaction
315 	 */
316 	error = xfs_trans_commit(tp);
317 	if (error)
318 		goto out_unlock;
319 
320 	if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock)))
321 		error = xfs_alert_fsblock_zero(ip, imap);
322 
323 out_unlock:
324 	*seq = xfs_iomap_inode_sequence(ip, 0);
325 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
326 	return error;
327 
328 out_trans_cancel:
329 	xfs_trans_cancel(tp);
330 	goto out_unlock;
331 }
332 
333 STATIC bool
xfs_quota_need_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t alloc_blocks)334 xfs_quota_need_throttle(
335 	struct xfs_inode	*ip,
336 	xfs_dqtype_t		type,
337 	xfs_fsblock_t		alloc_blocks)
338 {
339 	struct xfs_dquot	*dq = xfs_inode_dquot(ip, type);
340 
341 	if (!dq || !xfs_this_quota_on(ip->i_mount, type))
342 		return false;
343 
344 	/* no hi watermark, no throttle */
345 	if (!dq->q_prealloc_hi_wmark)
346 		return false;
347 
348 	/* under the lo watermark, no throttle */
349 	if (dq->q_blk.reserved + alloc_blocks < dq->q_prealloc_lo_wmark)
350 		return false;
351 
352 	return true;
353 }
354 
355 STATIC void
xfs_quota_calc_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t * qblocks,int * qshift,int64_t * qfreesp)356 xfs_quota_calc_throttle(
357 	struct xfs_inode	*ip,
358 	xfs_dqtype_t		type,
359 	xfs_fsblock_t		*qblocks,
360 	int			*qshift,
361 	int64_t			*qfreesp)
362 {
363 	struct xfs_dquot	*dq = xfs_inode_dquot(ip, type);
364 	int64_t			freesp;
365 	int			shift = 0;
366 
367 	/* no dq, or over hi wmark, squash the prealloc completely */
368 	if (!dq || dq->q_blk.reserved >= dq->q_prealloc_hi_wmark) {
369 		*qblocks = 0;
370 		*qfreesp = 0;
371 		return;
372 	}
373 
374 	freesp = dq->q_prealloc_hi_wmark - dq->q_blk.reserved;
375 	if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) {
376 		shift = 2;
377 		if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT])
378 			shift += 2;
379 		if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT])
380 			shift += 2;
381 	}
382 
383 	if (freesp < *qfreesp)
384 		*qfreesp = freesp;
385 
386 	/* only overwrite the throttle values if we are more aggressive */
387 	if ((freesp >> shift) < (*qblocks >> *qshift)) {
388 		*qblocks = freesp;
389 		*qshift = shift;
390 	}
391 }
392 
393 /*
394  * If we don't have a user specified preallocation size, dynamically increase
395  * the preallocation size as the size of the file grows.  Cap the maximum size
396  * at a single extent or less if the filesystem is near full. The closer the
397  * filesystem is to being full, the smaller the maximum preallocation.
398  */
399 STATIC xfs_fsblock_t
xfs_iomap_prealloc_size(struct xfs_inode * ip,int whichfork,loff_t offset,loff_t count,struct xfs_iext_cursor * icur)400 xfs_iomap_prealloc_size(
401 	struct xfs_inode	*ip,
402 	int			whichfork,
403 	loff_t			offset,
404 	loff_t			count,
405 	struct xfs_iext_cursor	*icur)
406 {
407 	struct xfs_iext_cursor	ncur = *icur;
408 	struct xfs_bmbt_irec	prev, got;
409 	struct xfs_mount	*mp = ip->i_mount;
410 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
411 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
412 	int64_t			freesp;
413 	xfs_fsblock_t		qblocks;
414 	xfs_fsblock_t		alloc_blocks = 0;
415 	xfs_extlen_t		plen;
416 	int			shift = 0;
417 	int			qshift = 0;
418 
419 	/*
420 	 * As an exception we don't do any preallocation at all if the file is
421 	 * smaller than the minimum preallocation and we are using the default
422 	 * dynamic preallocation scheme, as it is likely this is the only write
423 	 * to the file that is going to be done.
424 	 */
425 	if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
426 		return 0;
427 
428 	/*
429 	 * Use the minimum preallocation size for small files or if we are
430 	 * writing right after a hole.
431 	 */
432 	if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
433 	    !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
434 	    prev.br_startoff + prev.br_blockcount < offset_fsb)
435 		return mp->m_allocsize_blocks;
436 
437 	/*
438 	 * Take the size of the preceding data extents as the basis for the
439 	 * preallocation size. Note that we don't care if the previous extents
440 	 * are written or not.
441 	 */
442 	plen = prev.br_blockcount;
443 	while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
444 		if (plen > XFS_MAX_BMBT_EXTLEN / 2 ||
445 		    isnullstartblock(got.br_startblock) ||
446 		    got.br_startoff + got.br_blockcount != prev.br_startoff ||
447 		    got.br_startblock + got.br_blockcount != prev.br_startblock)
448 			break;
449 		plen += got.br_blockcount;
450 		prev = got;
451 	}
452 
453 	/*
454 	 * If the size of the extents is greater than half the maximum extent
455 	 * length, then use the current offset as the basis.  This ensures that
456 	 * for large files the preallocation size always extends to
457 	 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe
458 	 * unit/width alignment of real extents.
459 	 */
460 	alloc_blocks = plen * 2;
461 	if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
462 		alloc_blocks = XFS_B_TO_FSB(mp, offset);
463 	qblocks = alloc_blocks;
464 
465 	/*
466 	 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc
467 	 * down to the nearest power of two value after throttling. To prevent
468 	 * the round down from unconditionally reducing the maximum supported
469 	 * prealloc size, we round up first, apply appropriate throttling, round
470 	 * down and cap the value to XFS_BMBT_MAX_EXTLEN.
471 	 */
472 	alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN),
473 				       alloc_blocks);
474 
475 	freesp = percpu_counter_read_positive(&mp->m_fdblocks);
476 	if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) {
477 		shift = 2;
478 		if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT])
479 			shift++;
480 		if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT])
481 			shift++;
482 		if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT])
483 			shift++;
484 		if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT])
485 			shift++;
486 	}
487 
488 	/*
489 	 * Check each quota to cap the prealloc size, provide a shift value to
490 	 * throttle with and adjust amount of available space.
491 	 */
492 	if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
493 		xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
494 					&freesp);
495 	if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
496 		xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
497 					&freesp);
498 	if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
499 		xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
500 					&freesp);
501 
502 	/*
503 	 * The final prealloc size is set to the minimum of free space available
504 	 * in each of the quotas and the overall filesystem.
505 	 *
506 	 * The shift throttle value is set to the maximum value as determined by
507 	 * the global low free space values and per-quota low free space values.
508 	 */
509 	alloc_blocks = min(alloc_blocks, qblocks);
510 	shift = max(shift, qshift);
511 
512 	if (shift)
513 		alloc_blocks >>= shift;
514 	/*
515 	 * rounddown_pow_of_two() returns an undefined result if we pass in
516 	 * alloc_blocks = 0.
517 	 */
518 	if (alloc_blocks)
519 		alloc_blocks = rounddown_pow_of_two(alloc_blocks);
520 	if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
521 		alloc_blocks = XFS_MAX_BMBT_EXTLEN;
522 
523 	/*
524 	 * If we are still trying to allocate more space than is
525 	 * available, squash the prealloc hard. This can happen if we
526 	 * have a large file on a small filesystem and the above
527 	 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN.
528 	 */
529 	while (alloc_blocks && alloc_blocks >= freesp)
530 		alloc_blocks >>= 4;
531 	if (alloc_blocks < mp->m_allocsize_blocks)
532 		alloc_blocks = mp->m_allocsize_blocks;
533 	trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
534 				      mp->m_allocsize_blocks);
535 	return alloc_blocks;
536 }
537 
538 int
xfs_iomap_write_unwritten(xfs_inode_t * ip,xfs_off_t offset,xfs_off_t count,bool update_isize)539 xfs_iomap_write_unwritten(
540 	xfs_inode_t	*ip,
541 	xfs_off_t	offset,
542 	xfs_off_t	count,
543 	bool		update_isize)
544 {
545 	xfs_mount_t	*mp = ip->i_mount;
546 	xfs_fileoff_t	offset_fsb;
547 	xfs_filblks_t	count_fsb;
548 	xfs_filblks_t	numblks_fsb;
549 	int		nimaps;
550 	xfs_trans_t	*tp;
551 	xfs_bmbt_irec_t imap;
552 	struct inode	*inode = VFS_I(ip);
553 	xfs_fsize_t	i_size;
554 	uint		resblks;
555 	int		error;
556 
557 	trace_xfs_unwritten_convert(ip, offset, count);
558 
559 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
560 	count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
561 	count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
562 
563 	/*
564 	 * Reserve enough blocks in this transaction for two complete extent
565 	 * btree splits.  We may be converting the middle part of an unwritten
566 	 * extent and in this case we will insert two new extents in the btree
567 	 * each of which could cause a full split.
568 	 *
569 	 * This reservation amount will be used in the first call to
570 	 * xfs_bmbt_split() to select an AG with enough space to satisfy the
571 	 * rest of the operation.
572 	 */
573 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
574 
575 	/* Attach dquots so that bmbt splits are accounted correctly. */
576 	error = xfs_qm_dqattach(ip);
577 	if (error)
578 		return error;
579 
580 	do {
581 		/*
582 		 * Set up a transaction to convert the range of extents
583 		 * from unwritten to real. Do allocations in a loop until
584 		 * we have covered the range passed in.
585 		 *
586 		 * Note that we can't risk to recursing back into the filesystem
587 		 * here as we might be asked to write out the same inode that we
588 		 * complete here and might deadlock on the iolock.
589 		 */
590 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
591 				0, true, &tp);
592 		if (error)
593 			return error;
594 
595 		error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
596 				XFS_IEXT_WRITE_UNWRITTEN_CNT);
597 		if (error == -EFBIG)
598 			error = xfs_iext_count_upgrade(tp, ip,
599 					XFS_IEXT_WRITE_UNWRITTEN_CNT);
600 		if (error)
601 			goto error_on_bmapi_transaction;
602 
603 		/*
604 		 * Modify the unwritten extent state of the buffer.
605 		 */
606 		nimaps = 1;
607 		error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
608 					XFS_BMAPI_CONVERT, resblks, &imap,
609 					&nimaps);
610 		if (error)
611 			goto error_on_bmapi_transaction;
612 
613 		/*
614 		 * Log the updated inode size as we go.  We have to be careful
615 		 * to only log it up to the actual write offset if it is
616 		 * halfway into a block.
617 		 */
618 		i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
619 		if (i_size > offset + count)
620 			i_size = offset + count;
621 		if (update_isize && i_size > i_size_read(inode))
622 			i_size_write(inode, i_size);
623 		i_size = xfs_new_eof(ip, i_size);
624 		if (i_size) {
625 			ip->i_disk_size = i_size;
626 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
627 		}
628 
629 		error = xfs_trans_commit(tp);
630 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
631 		if (error)
632 			return error;
633 
634 		if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock)))
635 			return xfs_alert_fsblock_zero(ip, &imap);
636 
637 		if ((numblks_fsb = imap.br_blockcount) == 0) {
638 			/*
639 			 * The numblks_fsb value should always get
640 			 * smaller, otherwise the loop is stuck.
641 			 */
642 			ASSERT(imap.br_blockcount);
643 			break;
644 		}
645 		offset_fsb += numblks_fsb;
646 		count_fsb -= numblks_fsb;
647 	} while (count_fsb > 0);
648 
649 	return 0;
650 
651 error_on_bmapi_transaction:
652 	xfs_trans_cancel(tp);
653 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
654 	return error;
655 }
656 
657 static inline bool
imap_needs_alloc(struct inode * inode,unsigned flags,struct xfs_bmbt_irec * imap,int nimaps)658 imap_needs_alloc(
659 	struct inode		*inode,
660 	unsigned		flags,
661 	struct xfs_bmbt_irec	*imap,
662 	int			nimaps)
663 {
664 	/* don't allocate blocks when just zeroing */
665 	if (flags & IOMAP_ZERO)
666 		return false;
667 	if (!nimaps ||
668 	    imap->br_startblock == HOLESTARTBLOCK ||
669 	    imap->br_startblock == DELAYSTARTBLOCK)
670 		return true;
671 	/* we convert unwritten extents before copying the data for DAX */
672 	if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN)
673 		return true;
674 	return false;
675 }
676 
677 static inline bool
imap_needs_cow(struct xfs_inode * ip,unsigned int flags,struct xfs_bmbt_irec * imap,int nimaps)678 imap_needs_cow(
679 	struct xfs_inode	*ip,
680 	unsigned int		flags,
681 	struct xfs_bmbt_irec	*imap,
682 	int			nimaps)
683 {
684 	if (!xfs_is_cow_inode(ip))
685 		return false;
686 
687 	/* when zeroing we don't have to COW holes or unwritten extents */
688 	if (flags & IOMAP_ZERO) {
689 		if (!nimaps ||
690 		    imap->br_startblock == HOLESTARTBLOCK ||
691 		    imap->br_state == XFS_EXT_UNWRITTEN)
692 			return false;
693 	}
694 
695 	return true;
696 }
697 
698 static int
xfs_ilock_for_iomap(struct xfs_inode * ip,unsigned flags,unsigned * lockmode)699 xfs_ilock_for_iomap(
700 	struct xfs_inode	*ip,
701 	unsigned		flags,
702 	unsigned		*lockmode)
703 {
704 	unsigned int		mode = *lockmode;
705 	bool			is_write = flags & (IOMAP_WRITE | IOMAP_ZERO);
706 
707 	/*
708 	 * COW writes may allocate delalloc space or convert unwritten COW
709 	 * extents, so we need to make sure to take the lock exclusively here.
710 	 */
711 	if (xfs_is_cow_inode(ip) && is_write)
712 		mode = XFS_ILOCK_EXCL;
713 
714 	/*
715 	 * Extents not yet cached requires exclusive access, don't block.  This
716 	 * is an opencoded xfs_ilock_data_map_shared() call but with
717 	 * non-blocking behaviour.
718 	 */
719 	if (xfs_need_iread_extents(&ip->i_df)) {
720 		if (flags & IOMAP_NOWAIT)
721 			return -EAGAIN;
722 		mode = XFS_ILOCK_EXCL;
723 	}
724 
725 relock:
726 	if (flags & IOMAP_NOWAIT) {
727 		if (!xfs_ilock_nowait(ip, mode))
728 			return -EAGAIN;
729 	} else {
730 		xfs_ilock(ip, mode);
731 	}
732 
733 	/*
734 	 * The reflink iflag could have changed since the earlier unlocked
735 	 * check, so if we got ILOCK_SHARED for a write and but we're now a
736 	 * reflink inode we have to switch to ILOCK_EXCL and relock.
737 	 */
738 	if (mode == XFS_ILOCK_SHARED && is_write && xfs_is_cow_inode(ip)) {
739 		xfs_iunlock(ip, mode);
740 		mode = XFS_ILOCK_EXCL;
741 		goto relock;
742 	}
743 
744 	*lockmode = mode;
745 	return 0;
746 }
747 
748 /*
749  * Check that the imap we are going to return to the caller spans the entire
750  * range that the caller requested for the IO.
751  */
752 static bool
imap_spans_range(struct xfs_bmbt_irec * imap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)753 imap_spans_range(
754 	struct xfs_bmbt_irec	*imap,
755 	xfs_fileoff_t		offset_fsb,
756 	xfs_fileoff_t		end_fsb)
757 {
758 	if (imap->br_startoff > offset_fsb)
759 		return false;
760 	if (imap->br_startoff + imap->br_blockcount < end_fsb)
761 		return false;
762 	return true;
763 }
764 
765 static int
xfs_direct_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)766 xfs_direct_write_iomap_begin(
767 	struct inode		*inode,
768 	loff_t			offset,
769 	loff_t			length,
770 	unsigned		flags,
771 	struct iomap		*iomap,
772 	struct iomap		*srcmap)
773 {
774 	struct xfs_inode	*ip = XFS_I(inode);
775 	struct xfs_mount	*mp = ip->i_mount;
776 	struct xfs_bmbt_irec	imap, cmap;
777 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
778 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, length);
779 	int			nimaps = 1, error = 0;
780 	bool			shared = false;
781 	u16			iomap_flags = 0;
782 	unsigned int		lockmode = XFS_ILOCK_SHARED;
783 	u64			seq;
784 
785 	ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
786 
787 	if (xfs_is_shutdown(mp))
788 		return -EIO;
789 
790 	/*
791 	 * Writes that span EOF might trigger an IO size update on completion,
792 	 * so consider them to be dirty for the purposes of O_DSYNC even if
793 	 * there is no other metadata changes pending or have been made here.
794 	 */
795 	if (offset + length > i_size_read(inode))
796 		iomap_flags |= IOMAP_F_DIRTY;
797 
798 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
799 	if (error)
800 		return error;
801 
802 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
803 			       &nimaps, 0);
804 	if (error)
805 		goto out_unlock;
806 
807 	if (imap_needs_cow(ip, flags, &imap, nimaps)) {
808 		error = -EAGAIN;
809 		if (flags & IOMAP_NOWAIT)
810 			goto out_unlock;
811 
812 		/* may drop and re-acquire the ilock */
813 		error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
814 				&lockmode,
815 				(flags & IOMAP_DIRECT) || IS_DAX(inode));
816 		if (error)
817 			goto out_unlock;
818 		if (shared)
819 			goto out_found_cow;
820 		end_fsb = imap.br_startoff + imap.br_blockcount;
821 		length = XFS_FSB_TO_B(mp, end_fsb) - offset;
822 	}
823 
824 	if (imap_needs_alloc(inode, flags, &imap, nimaps))
825 		goto allocate_blocks;
826 
827 	/*
828 	 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
829 	 * a single map so that we avoid partial IO failures due to the rest of
830 	 * the I/O range not covered by this map triggering an EAGAIN condition
831 	 * when it is subsequently mapped and aborting the I/O.
832 	 */
833 	if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
834 		error = -EAGAIN;
835 		if (!imap_spans_range(&imap, offset_fsb, end_fsb))
836 			goto out_unlock;
837 	}
838 
839 	/*
840 	 * For overwrite only I/O, we cannot convert unwritten extents without
841 	 * requiring sub-block zeroing.  This can only be done under an
842 	 * exclusive IOLOCK, hence return -EAGAIN if this is not a written
843 	 * extent to tell the caller to try again.
844 	 */
845 	if (flags & IOMAP_OVERWRITE_ONLY) {
846 		error = -EAGAIN;
847 		if (imap.br_state != XFS_EXT_NORM &&
848 	            ((offset | length) & mp->m_blockmask))
849 			goto out_unlock;
850 	}
851 
852 	seq = xfs_iomap_inode_sequence(ip, iomap_flags);
853 	xfs_iunlock(ip, lockmode);
854 	trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
855 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
856 
857 allocate_blocks:
858 	error = -EAGAIN;
859 	if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
860 		goto out_unlock;
861 
862 	/*
863 	 * We cap the maximum length we map to a sane size  to keep the chunks
864 	 * of work done where somewhat symmetric with the work writeback does.
865 	 * This is a completely arbitrary number pulled out of thin air as a
866 	 * best guess for initial testing.
867 	 *
868 	 * Note that the values needs to be less than 32-bits wide until the
869 	 * lower level functions are updated.
870 	 */
871 	length = min_t(loff_t, length, 1024 * PAGE_SIZE);
872 	end_fsb = xfs_iomap_end_fsb(mp, offset, length);
873 
874 	if (offset + length > XFS_ISIZE(ip))
875 		end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
876 	else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
877 		end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
878 	xfs_iunlock(ip, lockmode);
879 
880 	error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
881 			flags, &imap, &seq);
882 	if (error)
883 		return error;
884 
885 	trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
886 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
887 				 iomap_flags | IOMAP_F_NEW, seq);
888 
889 out_found_cow:
890 	length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
891 	trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
892 	if (imap.br_startblock != HOLESTARTBLOCK) {
893 		seq = xfs_iomap_inode_sequence(ip, 0);
894 		error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
895 		if (error)
896 			goto out_unlock;
897 	}
898 	seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
899 	xfs_iunlock(ip, lockmode);
900 	return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq);
901 
902 out_unlock:
903 	if (lockmode)
904 		xfs_iunlock(ip, lockmode);
905 	return error;
906 }
907 
908 const struct iomap_ops xfs_direct_write_iomap_ops = {
909 	.iomap_begin		= xfs_direct_write_iomap_begin,
910 };
911 
912 static int
xfs_dax_write_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)913 xfs_dax_write_iomap_end(
914 	struct inode		*inode,
915 	loff_t			pos,
916 	loff_t			length,
917 	ssize_t			written,
918 	unsigned		flags,
919 	struct iomap		*iomap)
920 {
921 	struct xfs_inode	*ip = XFS_I(inode);
922 
923 	if (!xfs_is_cow_inode(ip))
924 		return 0;
925 
926 	if (!written) {
927 		xfs_reflink_cancel_cow_range(ip, pos, length, true);
928 		return 0;
929 	}
930 
931 	return xfs_reflink_end_cow(ip, pos, written);
932 }
933 
934 const struct iomap_ops xfs_dax_write_iomap_ops = {
935 	.iomap_begin	= xfs_direct_write_iomap_begin,
936 	.iomap_end	= xfs_dax_write_iomap_end,
937 };
938 
939 static int
xfs_buffered_write_iomap_begin(struct inode * inode,loff_t offset,loff_t count,unsigned flags,struct iomap * iomap,struct iomap * srcmap)940 xfs_buffered_write_iomap_begin(
941 	struct inode		*inode,
942 	loff_t			offset,
943 	loff_t			count,
944 	unsigned		flags,
945 	struct iomap		*iomap,
946 	struct iomap		*srcmap)
947 {
948 	struct xfs_inode	*ip = XFS_I(inode);
949 	struct xfs_mount	*mp = ip->i_mount;
950 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
951 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, count);
952 	struct xfs_bmbt_irec	imap, cmap;
953 	struct xfs_iext_cursor	icur, ccur;
954 	xfs_fsblock_t		prealloc_blocks = 0;
955 	bool			eof = false, cow_eof = false, shared = false;
956 	int			allocfork = XFS_DATA_FORK;
957 	int			error = 0;
958 	unsigned int		lockmode = XFS_ILOCK_EXCL;
959 	u64			seq;
960 
961 	if (xfs_is_shutdown(mp))
962 		return -EIO;
963 
964 	/* we can't use delayed allocations when using extent size hints */
965 	if (xfs_get_extsz_hint(ip))
966 		return xfs_direct_write_iomap_begin(inode, offset, count,
967 				flags, iomap, srcmap);
968 
969 	ASSERT(!XFS_IS_REALTIME_INODE(ip));
970 
971 	error = xfs_qm_dqattach(ip);
972 	if (error)
973 		return error;
974 
975 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
976 	if (error)
977 		return error;
978 
979 	if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
980 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
981 		error = -EFSCORRUPTED;
982 		goto out_unlock;
983 	}
984 
985 	XFS_STATS_INC(mp, xs_blk_mapw);
986 
987 	error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
988 	if (error)
989 		goto out_unlock;
990 
991 	/*
992 	 * Search the data fork first to look up our source mapping.  We
993 	 * always need the data fork map, as we have to return it to the
994 	 * iomap code so that the higher level write code can read data in to
995 	 * perform read-modify-write cycles for unaligned writes.
996 	 */
997 	eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
998 	if (eof)
999 		imap.br_startoff = end_fsb; /* fake hole until the end */
1000 
1001 	/* We never need to allocate blocks for zeroing or unsharing a hole. */
1002 	if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) &&
1003 	    imap.br_startoff > offset_fsb) {
1004 		xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
1005 		goto out_unlock;
1006 	}
1007 
1008 	/*
1009 	 * For zeroing, trim a delalloc extent that extends beyond the EOF
1010 	 * block.  If it starts beyond the EOF block, convert it to an
1011 	 * unwritten extent.
1012 	 */
1013 	if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb &&
1014 	    isnullstartblock(imap.br_startblock)) {
1015 		xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
1016 
1017 		if (offset_fsb >= eof_fsb)
1018 			goto convert_delay;
1019 		if (end_fsb > eof_fsb) {
1020 			end_fsb = eof_fsb;
1021 			xfs_trim_extent(&imap, offset_fsb,
1022 					end_fsb - offset_fsb);
1023 		}
1024 	}
1025 
1026 	/*
1027 	 * Search the COW fork extent list even if we did not find a data fork
1028 	 * extent.  This serves two purposes: first this implements the
1029 	 * speculative preallocation using cowextsize, so that we also unshare
1030 	 * block adjacent to shared blocks instead of just the shared blocks
1031 	 * themselves.  Second the lookup in the extent list is generally faster
1032 	 * than going out to the shared extent tree.
1033 	 */
1034 	if (xfs_is_cow_inode(ip)) {
1035 		if (!ip->i_cowfp) {
1036 			ASSERT(!xfs_is_reflink_inode(ip));
1037 			xfs_ifork_init_cow(ip);
1038 		}
1039 		cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
1040 				&ccur, &cmap);
1041 		if (!cow_eof && cmap.br_startoff <= offset_fsb) {
1042 			trace_xfs_reflink_cow_found(ip, &cmap);
1043 			goto found_cow;
1044 		}
1045 	}
1046 
1047 	if (imap.br_startoff <= offset_fsb) {
1048 		/*
1049 		 * For reflink files we may need a delalloc reservation when
1050 		 * overwriting shared extents.   This includes zeroing of
1051 		 * existing extents that contain data.
1052 		 */
1053 		if (!xfs_is_cow_inode(ip) ||
1054 		    ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
1055 			trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1056 					&imap);
1057 			goto found_imap;
1058 		}
1059 
1060 		xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1061 
1062 		/* Trim the mapping to the nearest shared extent boundary. */
1063 		error = xfs_bmap_trim_cow(ip, &imap, &shared);
1064 		if (error)
1065 			goto out_unlock;
1066 
1067 		/* Not shared?  Just report the (potentially capped) extent. */
1068 		if (!shared) {
1069 			trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1070 					&imap);
1071 			goto found_imap;
1072 		}
1073 
1074 		/*
1075 		 * Fork all the shared blocks from our write offset until the
1076 		 * end of the extent.
1077 		 */
1078 		allocfork = XFS_COW_FORK;
1079 		end_fsb = imap.br_startoff + imap.br_blockcount;
1080 	} else {
1081 		/*
1082 		 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
1083 		 * pages to keep the chunks of work done where somewhat
1084 		 * symmetric with the work writeback does.  This is a completely
1085 		 * arbitrary number pulled out of thin air.
1086 		 *
1087 		 * Note that the values needs to be less than 32-bits wide until
1088 		 * the lower level functions are updated.
1089 		 */
1090 		count = min_t(loff_t, count, 1024 * PAGE_SIZE);
1091 		end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1092 
1093 		if (xfs_is_always_cow_inode(ip))
1094 			allocfork = XFS_COW_FORK;
1095 	}
1096 
1097 	if (eof && offset + count > XFS_ISIZE(ip)) {
1098 		/*
1099 		 * Determine the initial size of the preallocation.
1100 		 * We clean up any extra preallocation when the file is closed.
1101 		 */
1102 		if (xfs_has_allocsize(mp))
1103 			prealloc_blocks = mp->m_allocsize_blocks;
1104 		else if (allocfork == XFS_DATA_FORK)
1105 			prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1106 						offset, count, &icur);
1107 		else
1108 			prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1109 						offset, count, &ccur);
1110 		if (prealloc_blocks) {
1111 			xfs_extlen_t	align;
1112 			xfs_off_t	end_offset;
1113 			xfs_fileoff_t	p_end_fsb;
1114 
1115 			end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
1116 			p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
1117 					prealloc_blocks;
1118 
1119 			align = xfs_eof_alignment(ip);
1120 			if (align)
1121 				p_end_fsb = roundup_64(p_end_fsb, align);
1122 
1123 			p_end_fsb = min(p_end_fsb,
1124 				XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1125 			ASSERT(p_end_fsb > offset_fsb);
1126 			prealloc_blocks = p_end_fsb - end_fsb;
1127 		}
1128 	}
1129 
1130 	if (allocfork == XFS_COW_FORK) {
1131 		error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1132 				end_fsb - offset_fsb, prealloc_blocks, &cmap,
1133 				&ccur, cow_eof);
1134 		if (error)
1135 			goto out_unlock;
1136 
1137 		trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
1138 		goto found_cow;
1139 	}
1140 
1141 	error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1142 			end_fsb - offset_fsb, prealloc_blocks, &imap, &icur,
1143 			eof);
1144 	if (error)
1145 		goto out_unlock;
1146 
1147 	/*
1148 	 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
1149 	 * them out if the write happens to fail.
1150 	 */
1151 	seq = xfs_iomap_inode_sequence(ip, IOMAP_F_NEW);
1152 	xfs_iunlock(ip, lockmode);
1153 	trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
1154 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_NEW, seq);
1155 
1156 found_imap:
1157 	seq = xfs_iomap_inode_sequence(ip, 0);
1158 	xfs_iunlock(ip, lockmode);
1159 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
1160 
1161 convert_delay:
1162 	xfs_iunlock(ip, lockmode);
1163 	truncate_pagecache(inode, offset);
1164 	error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset,
1165 					   iomap, NULL);
1166 	if (error)
1167 		return error;
1168 
1169 	trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap);
1170 	return 0;
1171 
1172 found_cow:
1173 	seq = xfs_iomap_inode_sequence(ip, 0);
1174 	if (imap.br_startoff <= offset_fsb) {
1175 		error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
1176 		if (error)
1177 			goto out_unlock;
1178 		seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1179 		xfs_iunlock(ip, lockmode);
1180 		return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1181 					 IOMAP_F_SHARED, seq);
1182 	}
1183 
1184 	xfs_trim_extent(&cmap, offset_fsb, imap.br_startoff - offset_fsb);
1185 	xfs_iunlock(ip, lockmode);
1186 	return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 0, seq);
1187 
1188 out_unlock:
1189 	xfs_iunlock(ip, lockmode);
1190 	return error;
1191 }
1192 
1193 static int
xfs_buffered_write_delalloc_punch(struct inode * inode,loff_t offset,loff_t length)1194 xfs_buffered_write_delalloc_punch(
1195 	struct inode		*inode,
1196 	loff_t			offset,
1197 	loff_t			length)
1198 {
1199 	return xfs_bmap_punch_delalloc_range(XFS_I(inode), offset,
1200 			offset + length);
1201 }
1202 
1203 static int
xfs_buffered_write_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1204 xfs_buffered_write_iomap_end(
1205 	struct inode		*inode,
1206 	loff_t			offset,
1207 	loff_t			length,
1208 	ssize_t			written,
1209 	unsigned		flags,
1210 	struct iomap		*iomap)
1211 {
1212 
1213 	struct xfs_mount	*mp = XFS_M(inode->i_sb);
1214 	int			error;
1215 
1216 	error = iomap_file_buffered_write_punch_delalloc(inode, iomap, offset,
1217 			length, written, &xfs_buffered_write_delalloc_punch);
1218 	if (error && !xfs_is_shutdown(mp)) {
1219 		xfs_alert(mp, "%s: unable to clean up ino 0x%llx",
1220 			__func__, XFS_I(inode)->i_ino);
1221 		return error;
1222 	}
1223 	return 0;
1224 }
1225 
1226 const struct iomap_ops xfs_buffered_write_iomap_ops = {
1227 	.iomap_begin		= xfs_buffered_write_iomap_begin,
1228 	.iomap_end		= xfs_buffered_write_iomap_end,
1229 };
1230 
1231 /*
1232  * iomap_page_mkwrite() will never fail in a way that requires delalloc extents
1233  * that it allocated to be revoked. Hence we do not need an .iomap_end method
1234  * for this operation.
1235  */
1236 const struct iomap_ops xfs_page_mkwrite_iomap_ops = {
1237 	.iomap_begin		= xfs_buffered_write_iomap_begin,
1238 };
1239 
1240 static int
xfs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1241 xfs_read_iomap_begin(
1242 	struct inode		*inode,
1243 	loff_t			offset,
1244 	loff_t			length,
1245 	unsigned		flags,
1246 	struct iomap		*iomap,
1247 	struct iomap		*srcmap)
1248 {
1249 	struct xfs_inode	*ip = XFS_I(inode);
1250 	struct xfs_mount	*mp = ip->i_mount;
1251 	struct xfs_bmbt_irec	imap;
1252 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1253 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, length);
1254 	int			nimaps = 1, error = 0;
1255 	bool			shared = false;
1256 	unsigned int		lockmode = XFS_ILOCK_SHARED;
1257 	u64			seq;
1258 
1259 	ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
1260 
1261 	if (xfs_is_shutdown(mp))
1262 		return -EIO;
1263 
1264 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1265 	if (error)
1266 		return error;
1267 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1268 			       &nimaps, 0);
1269 	if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode)))
1270 		error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
1271 	seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0);
1272 	xfs_iunlock(ip, lockmode);
1273 
1274 	if (error)
1275 		return error;
1276 	trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
1277 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
1278 				 shared ? IOMAP_F_SHARED : 0, seq);
1279 }
1280 
1281 const struct iomap_ops xfs_read_iomap_ops = {
1282 	.iomap_begin		= xfs_read_iomap_begin,
1283 };
1284 
1285 static int
xfs_seek_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1286 xfs_seek_iomap_begin(
1287 	struct inode		*inode,
1288 	loff_t			offset,
1289 	loff_t			length,
1290 	unsigned		flags,
1291 	struct iomap		*iomap,
1292 	struct iomap		*srcmap)
1293 {
1294 	struct xfs_inode	*ip = XFS_I(inode);
1295 	struct xfs_mount	*mp = ip->i_mount;
1296 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1297 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + length);
1298 	xfs_fileoff_t		cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
1299 	struct xfs_iext_cursor	icur;
1300 	struct xfs_bmbt_irec	imap, cmap;
1301 	int			error = 0;
1302 	unsigned		lockmode;
1303 	u64			seq;
1304 
1305 	if (xfs_is_shutdown(mp))
1306 		return -EIO;
1307 
1308 	lockmode = xfs_ilock_data_map_shared(ip);
1309 	error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1310 	if (error)
1311 		goto out_unlock;
1312 
1313 	if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
1314 		/*
1315 		 * If we found a data extent we are done.
1316 		 */
1317 		if (imap.br_startoff <= offset_fsb)
1318 			goto done;
1319 		data_fsb = imap.br_startoff;
1320 	} else {
1321 		/*
1322 		 * Fake a hole until the end of the file.
1323 		 */
1324 		data_fsb = xfs_iomap_end_fsb(mp, offset, length);
1325 	}
1326 
1327 	/*
1328 	 * If a COW fork extent covers the hole, report it - capped to the next
1329 	 * data fork extent:
1330 	 */
1331 	if (xfs_inode_has_cow_data(ip) &&
1332 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1333 		cow_fsb = cmap.br_startoff;
1334 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
1335 		if (data_fsb < cow_fsb + cmap.br_blockcount)
1336 			end_fsb = min(end_fsb, data_fsb);
1337 		xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb);
1338 		seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1339 		error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1340 				IOMAP_F_SHARED, seq);
1341 		/*
1342 		 * This is a COW extent, so we must probe the page cache
1343 		 * because there could be dirty page cache being backed
1344 		 * by this extent.
1345 		 */
1346 		iomap->type = IOMAP_UNWRITTEN;
1347 		goto out_unlock;
1348 	}
1349 
1350 	/*
1351 	 * Else report a hole, capped to the next found data or COW extent.
1352 	 */
1353 	if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
1354 		imap.br_blockcount = cow_fsb - offset_fsb;
1355 	else
1356 		imap.br_blockcount = data_fsb - offset_fsb;
1357 	imap.br_startoff = offset_fsb;
1358 	imap.br_startblock = HOLESTARTBLOCK;
1359 	imap.br_state = XFS_EXT_NORM;
1360 done:
1361 	seq = xfs_iomap_inode_sequence(ip, 0);
1362 	xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1363 	error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
1364 out_unlock:
1365 	xfs_iunlock(ip, lockmode);
1366 	return error;
1367 }
1368 
1369 const struct iomap_ops xfs_seek_iomap_ops = {
1370 	.iomap_begin		= xfs_seek_iomap_begin,
1371 };
1372 
1373 static int
xfs_xattr_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1374 xfs_xattr_iomap_begin(
1375 	struct inode		*inode,
1376 	loff_t			offset,
1377 	loff_t			length,
1378 	unsigned		flags,
1379 	struct iomap		*iomap,
1380 	struct iomap		*srcmap)
1381 {
1382 	struct xfs_inode	*ip = XFS_I(inode);
1383 	struct xfs_mount	*mp = ip->i_mount;
1384 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1385 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + length);
1386 	struct xfs_bmbt_irec	imap;
1387 	int			nimaps = 1, error = 0;
1388 	unsigned		lockmode;
1389 	int			seq;
1390 
1391 	if (xfs_is_shutdown(mp))
1392 		return -EIO;
1393 
1394 	lockmode = xfs_ilock_attr_map_shared(ip);
1395 
1396 	/* if there are no attribute fork or extents, return ENOENT */
1397 	if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) {
1398 		error = -ENOENT;
1399 		goto out_unlock;
1400 	}
1401 
1402 	ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL);
1403 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1404 			       &nimaps, XFS_BMAPI_ATTRFORK);
1405 out_unlock:
1406 
1407 	seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR);
1408 	xfs_iunlock(ip, lockmode);
1409 
1410 	if (error)
1411 		return error;
1412 	ASSERT(nimaps);
1413 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq);
1414 }
1415 
1416 const struct iomap_ops xfs_xattr_iomap_ops = {
1417 	.iomap_begin		= xfs_xattr_iomap_begin,
1418 };
1419 
1420 int
xfs_zero_range(struct xfs_inode * ip,loff_t pos,loff_t len,bool * did_zero)1421 xfs_zero_range(
1422 	struct xfs_inode	*ip,
1423 	loff_t			pos,
1424 	loff_t			len,
1425 	bool			*did_zero)
1426 {
1427 	struct inode		*inode = VFS_I(ip);
1428 
1429 	if (IS_DAX(inode))
1430 		return dax_zero_range(inode, pos, len, did_zero,
1431 				      &xfs_dax_write_iomap_ops);
1432 	return iomap_zero_range(inode, pos, len, did_zero,
1433 				&xfs_buffered_write_iomap_ops);
1434 }
1435 
1436 int
xfs_truncate_page(struct xfs_inode * ip,loff_t pos,bool * did_zero)1437 xfs_truncate_page(
1438 	struct xfs_inode	*ip,
1439 	loff_t			pos,
1440 	bool			*did_zero)
1441 {
1442 	struct inode		*inode = VFS_I(ip);
1443 
1444 	if (IS_DAX(inode))
1445 		return dax_truncate_page(inode, pos, did_zero,
1446 					&xfs_dax_write_iomap_ops);
1447 	return iomap_truncate_page(inode, pos, did_zero,
1448 				   &xfs_buffered_write_iomap_ops);
1449 }
1450