xref: /openbmc/linux/drivers/usb/chipidea/udc.c (revision 9144f784f852f9a125cabe9927b986d909bfa439)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - ChipIdea UDC driver
4  *
5  * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
6  *
7  * Author: David Lopo
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmapool.h>
13 #include <linux/err.h>
14 #include <linux/irqreturn.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/usb/ch9.h>
20 #include <linux/usb/gadget.h>
21 #include <linux/usb/otg-fsm.h>
22 #include <linux/usb/chipidea.h>
23 
24 #include "ci.h"
25 #include "udc.h"
26 #include "bits.h"
27 #include "otg.h"
28 #include "otg_fsm.h"
29 #include "trace.h"
30 
31 /* control endpoint description */
32 static const struct usb_endpoint_descriptor
33 ctrl_endpt_out_desc = {
34 	.bLength         = USB_DT_ENDPOINT_SIZE,
35 	.bDescriptorType = USB_DT_ENDPOINT,
36 
37 	.bEndpointAddress = USB_DIR_OUT,
38 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
39 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
40 };
41 
42 static const struct usb_endpoint_descriptor
43 ctrl_endpt_in_desc = {
44 	.bLength         = USB_DT_ENDPOINT_SIZE,
45 	.bDescriptorType = USB_DT_ENDPOINT,
46 
47 	.bEndpointAddress = USB_DIR_IN,
48 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
49 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
50 };
51 
52 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
53 		       struct td_node *node);
54 /**
55  * hw_ep_bit: calculates the bit number
56  * @num: endpoint number
57  * @dir: endpoint direction
58  *
59  * This function returns bit number
60  */
hw_ep_bit(int num,int dir)61 static inline int hw_ep_bit(int num, int dir)
62 {
63 	return num + ((dir == TX) ? 16 : 0);
64 }
65 
ep_to_bit(struct ci_hdrc * ci,int n)66 static inline int ep_to_bit(struct ci_hdrc *ci, int n)
67 {
68 	int fill = 16 - ci->hw_ep_max / 2;
69 
70 	if (n >= ci->hw_ep_max / 2)
71 		n += fill;
72 
73 	return n;
74 }
75 
76 /**
77  * hw_device_state: enables/disables interrupts (execute without interruption)
78  * @ci: the controller
79  * @dma: 0 => disable, !0 => enable and set dma engine
80  *
81  * This function returns an error code
82  */
hw_device_state(struct ci_hdrc * ci,u32 dma)83 static int hw_device_state(struct ci_hdrc *ci, u32 dma)
84 {
85 	if (dma) {
86 		hw_write(ci, OP_ENDPTLISTADDR, ~0, dma);
87 		/* interrupt, error, port change, reset, sleep/suspend */
88 		hw_write(ci, OP_USBINTR, ~0,
89 			     USBi_UI|USBi_UEI|USBi_PCI|USBi_URI);
90 	} else {
91 		hw_write(ci, OP_USBINTR, ~0, 0);
92 	}
93 	return 0;
94 }
95 
96 /**
97  * hw_ep_flush: flush endpoint fifo (execute without interruption)
98  * @ci: the controller
99  * @num: endpoint number
100  * @dir: endpoint direction
101  *
102  * This function returns an error code
103  */
hw_ep_flush(struct ci_hdrc * ci,int num,int dir)104 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir)
105 {
106 	int n = hw_ep_bit(num, dir);
107 
108 	do {
109 		/* flush any pending transfer */
110 		hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n));
111 		while (hw_read(ci, OP_ENDPTFLUSH, BIT(n)))
112 			cpu_relax();
113 	} while (hw_read(ci, OP_ENDPTSTAT, BIT(n)));
114 
115 	return 0;
116 }
117 
118 /**
119  * hw_ep_disable: disables endpoint (execute without interruption)
120  * @ci: the controller
121  * @num: endpoint number
122  * @dir: endpoint direction
123  *
124  * This function returns an error code
125  */
hw_ep_disable(struct ci_hdrc * ci,int num,int dir)126 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir)
127 {
128 	hw_write(ci, OP_ENDPTCTRL + num,
129 		 (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
130 	return 0;
131 }
132 
133 /**
134  * hw_ep_enable: enables endpoint (execute without interruption)
135  * @ci: the controller
136  * @num:  endpoint number
137  * @dir:  endpoint direction
138  * @type: endpoint type
139  *
140  * This function returns an error code
141  */
hw_ep_enable(struct ci_hdrc * ci,int num,int dir,int type)142 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type)
143 {
144 	u32 mask, data;
145 
146 	if (dir == TX) {
147 		mask  = ENDPTCTRL_TXT;  /* type    */
148 		data  = type << __ffs(mask);
149 
150 		mask |= ENDPTCTRL_TXS;  /* unstall */
151 		mask |= ENDPTCTRL_TXR;  /* reset data toggle */
152 		data |= ENDPTCTRL_TXR;
153 		mask |= ENDPTCTRL_TXE;  /* enable  */
154 		data |= ENDPTCTRL_TXE;
155 	} else {
156 		mask  = ENDPTCTRL_RXT;  /* type    */
157 		data  = type << __ffs(mask);
158 
159 		mask |= ENDPTCTRL_RXS;  /* unstall */
160 		mask |= ENDPTCTRL_RXR;  /* reset data toggle */
161 		data |= ENDPTCTRL_RXR;
162 		mask |= ENDPTCTRL_RXE;  /* enable  */
163 		data |= ENDPTCTRL_RXE;
164 	}
165 	hw_write(ci, OP_ENDPTCTRL + num, mask, data);
166 	return 0;
167 }
168 
169 /**
170  * hw_ep_get_halt: return endpoint halt status
171  * @ci: the controller
172  * @num: endpoint number
173  * @dir: endpoint direction
174  *
175  * This function returns 1 if endpoint halted
176  */
hw_ep_get_halt(struct ci_hdrc * ci,int num,int dir)177 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir)
178 {
179 	u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
180 
181 	return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0;
182 }
183 
184 /**
185  * hw_ep_prime: primes endpoint (execute without interruption)
186  * @ci: the controller
187  * @num:     endpoint number
188  * @dir:     endpoint direction
189  * @is_ctrl: true if control endpoint
190  *
191  * This function returns an error code
192  */
hw_ep_prime(struct ci_hdrc * ci,int num,int dir,int is_ctrl)193 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl)
194 {
195 	int n = hw_ep_bit(num, dir);
196 
197 	/* Synchronize before ep prime */
198 	wmb();
199 
200 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
201 		return -EAGAIN;
202 
203 	hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n));
204 
205 	while (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
206 		cpu_relax();
207 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
208 		return -EAGAIN;
209 
210 	/* status shoult be tested according with manual but it doesn't work */
211 	return 0;
212 }
213 
214 /**
215  * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
216  *                 without interruption)
217  * @ci: the controller
218  * @num:   endpoint number
219  * @dir:   endpoint direction
220  * @value: true => stall, false => unstall
221  *
222  * This function returns an error code
223  */
hw_ep_set_halt(struct ci_hdrc * ci,int num,int dir,int value)224 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value)
225 {
226 	if (value != 0 && value != 1)
227 		return -EINVAL;
228 
229 	do {
230 		enum ci_hw_regs reg = OP_ENDPTCTRL + num;
231 		u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
232 		u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
233 
234 		/* data toggle - reserved for EP0 but it's in ESS */
235 		hw_write(ci, reg, mask_xs|mask_xr,
236 			  value ? mask_xs : mask_xr);
237 	} while (value != hw_ep_get_halt(ci, num, dir));
238 
239 	return 0;
240 }
241 
242 /**
243  * hw_port_is_high_speed: test if port is high speed
244  * @ci: the controller
245  *
246  * This function returns true if high speed port
247  */
hw_port_is_high_speed(struct ci_hdrc * ci)248 static int hw_port_is_high_speed(struct ci_hdrc *ci)
249 {
250 	return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) :
251 		hw_read(ci, OP_PORTSC, PORTSC_HSP);
252 }
253 
254 /**
255  * hw_test_and_clear_complete: test & clear complete status (execute without
256  *                             interruption)
257  * @ci: the controller
258  * @n: endpoint number
259  *
260  * This function returns complete status
261  */
hw_test_and_clear_complete(struct ci_hdrc * ci,int n)262 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n)
263 {
264 	n = ep_to_bit(ci, n);
265 	return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n));
266 }
267 
268 /**
269  * hw_test_and_clear_intr_active: test & clear active interrupts (execute
270  *                                without interruption)
271  * @ci: the controller
272  *
273  * This function returns active interrutps
274  */
hw_test_and_clear_intr_active(struct ci_hdrc * ci)275 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci)
276 {
277 	u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci);
278 
279 	hw_write(ci, OP_USBSTS, ~0, reg);
280 	return reg;
281 }
282 
283 /**
284  * hw_test_and_clear_setup_guard: test & clear setup guard (execute without
285  *                                interruption)
286  * @ci: the controller
287  *
288  * This function returns guard value
289  */
hw_test_and_clear_setup_guard(struct ci_hdrc * ci)290 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci)
291 {
292 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0);
293 }
294 
295 /**
296  * hw_test_and_set_setup_guard: test & set setup guard (execute without
297  *                              interruption)
298  * @ci: the controller
299  *
300  * This function returns guard value
301  */
hw_test_and_set_setup_guard(struct ci_hdrc * ci)302 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci)
303 {
304 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
305 }
306 
307 /**
308  * hw_usb_set_address: configures USB address (execute without interruption)
309  * @ci: the controller
310  * @value: new USB address
311  *
312  * This function explicitly sets the address, without the "USBADRA" (advance)
313  * feature, which is not supported by older versions of the controller.
314  */
hw_usb_set_address(struct ci_hdrc * ci,u8 value)315 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value)
316 {
317 	hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR,
318 		 value << __ffs(DEVICEADDR_USBADR));
319 }
320 
321 /**
322  * hw_usb_reset: restart device after a bus reset (execute without
323  *               interruption)
324  * @ci: the controller
325  *
326  * This function returns an error code
327  */
hw_usb_reset(struct ci_hdrc * ci)328 static int hw_usb_reset(struct ci_hdrc *ci)
329 {
330 	hw_usb_set_address(ci, 0);
331 
332 	/* ESS flushes only at end?!? */
333 	hw_write(ci, OP_ENDPTFLUSH,    ~0, ~0);
334 
335 	/* clear setup token semaphores */
336 	hw_write(ci, OP_ENDPTSETUPSTAT, 0,  0);
337 
338 	/* clear complete status */
339 	hw_write(ci, OP_ENDPTCOMPLETE,  0,  0);
340 
341 	/* wait until all bits cleared */
342 	while (hw_read(ci, OP_ENDPTPRIME, ~0))
343 		udelay(10);             /* not RTOS friendly */
344 
345 	/* reset all endpoints ? */
346 
347 	/* reset internal status and wait for further instructions
348 	   no need to verify the port reset status (ESS does it) */
349 
350 	return 0;
351 }
352 
353 /******************************************************************************
354  * UTIL block
355  *****************************************************************************/
356 
add_td_to_list(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq,unsigned int length,struct scatterlist * s)357 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
358 			unsigned int length, struct scatterlist *s)
359 {
360 	int i;
361 	u32 temp;
362 	struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node),
363 						  GFP_ATOMIC);
364 
365 	if (node == NULL)
366 		return -ENOMEM;
367 
368 	node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma);
369 	if (node->ptr == NULL) {
370 		kfree(node);
371 		return -ENOMEM;
372 	}
373 
374 	node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES));
375 	node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES);
376 	node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE);
377 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) {
378 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
379 
380 		if (hwreq->req.length == 0
381 				|| hwreq->req.length % hwep->ep.maxpacket)
382 			mul++;
383 		node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO));
384 	}
385 
386 	if (s) {
387 		temp = (u32) (sg_dma_address(s) + hwreq->req.actual);
388 		node->td_remaining_size = CI_MAX_BUF_SIZE - length;
389 	} else {
390 		temp = (u32) (hwreq->req.dma + hwreq->req.actual);
391 	}
392 
393 	if (length) {
394 		node->ptr->page[0] = cpu_to_le32(temp);
395 		for (i = 1; i < TD_PAGE_COUNT; i++) {
396 			u32 page = temp + i * CI_HDRC_PAGE_SIZE;
397 			page &= ~TD_RESERVED_MASK;
398 			node->ptr->page[i] = cpu_to_le32(page);
399 		}
400 	}
401 
402 	hwreq->req.actual += length;
403 
404 	if (!list_empty(&hwreq->tds)) {
405 		/* get the last entry */
406 		lastnode = list_entry(hwreq->tds.prev,
407 				struct td_node, td);
408 		lastnode->ptr->next = cpu_to_le32(node->dma);
409 	}
410 
411 	INIT_LIST_HEAD(&node->td);
412 	list_add_tail(&node->td, &hwreq->tds);
413 
414 	return 0;
415 }
416 
417 /**
418  * _usb_addr: calculates endpoint address from direction & number
419  * @ep:  endpoint
420  */
_usb_addr(struct ci_hw_ep * ep)421 static inline u8 _usb_addr(struct ci_hw_ep *ep)
422 {
423 	return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
424 }
425 
prepare_td_for_non_sg(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq)426 static int prepare_td_for_non_sg(struct ci_hw_ep *hwep,
427 		struct ci_hw_req *hwreq)
428 {
429 	unsigned int rest = hwreq->req.length;
430 	int pages = TD_PAGE_COUNT;
431 	int ret = 0;
432 
433 	if (rest == 0) {
434 		ret = add_td_to_list(hwep, hwreq, 0, NULL);
435 		if (ret < 0)
436 			return ret;
437 	}
438 
439 	/*
440 	 * The first buffer could be not page aligned.
441 	 * In that case we have to span into one extra td.
442 	 */
443 	if (hwreq->req.dma % PAGE_SIZE)
444 		pages--;
445 
446 	while (rest > 0) {
447 		unsigned int count = min(hwreq->req.length - hwreq->req.actual,
448 			(unsigned int)(pages * CI_HDRC_PAGE_SIZE));
449 
450 		ret = add_td_to_list(hwep, hwreq, count, NULL);
451 		if (ret < 0)
452 			return ret;
453 
454 		rest -= count;
455 	}
456 
457 	if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX
458 	    && (hwreq->req.length % hwep->ep.maxpacket == 0)) {
459 		ret = add_td_to_list(hwep, hwreq, 0, NULL);
460 		if (ret < 0)
461 			return ret;
462 	}
463 
464 	return ret;
465 }
466 
prepare_td_per_sg(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq,struct scatterlist * s)467 static int prepare_td_per_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
468 		struct scatterlist *s)
469 {
470 	unsigned int rest = sg_dma_len(s);
471 	int ret = 0;
472 
473 	hwreq->req.actual = 0;
474 	while (rest > 0) {
475 		unsigned int count = min_t(unsigned int, rest,
476 				CI_MAX_BUF_SIZE);
477 
478 		ret = add_td_to_list(hwep, hwreq, count, s);
479 		if (ret < 0)
480 			return ret;
481 
482 		rest -= count;
483 	}
484 
485 	return ret;
486 }
487 
ci_add_buffer_entry(struct td_node * node,struct scatterlist * s)488 static void ci_add_buffer_entry(struct td_node *node, struct scatterlist *s)
489 {
490 	int empty_td_slot_index = (CI_MAX_BUF_SIZE - node->td_remaining_size)
491 			/ CI_HDRC_PAGE_SIZE;
492 	int i;
493 	u32 token;
494 
495 	token = le32_to_cpu(node->ptr->token) + (sg_dma_len(s) << __ffs(TD_TOTAL_BYTES));
496 	node->ptr->token = cpu_to_le32(token);
497 
498 	for (i = empty_td_slot_index; i < TD_PAGE_COUNT; i++) {
499 		u32 page = (u32) sg_dma_address(s) +
500 			(i - empty_td_slot_index) * CI_HDRC_PAGE_SIZE;
501 
502 		page &= ~TD_RESERVED_MASK;
503 		node->ptr->page[i] = cpu_to_le32(page);
504 	}
505 }
506 
prepare_td_for_sg(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq)507 static int prepare_td_for_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
508 {
509 	struct usb_request *req = &hwreq->req;
510 	struct scatterlist *s = req->sg;
511 	int ret = 0, i = 0;
512 	struct td_node *node = NULL;
513 
514 	if (!s || req->zero || req->length == 0) {
515 		dev_err(hwep->ci->dev, "not supported operation for sg\n");
516 		return -EINVAL;
517 	}
518 
519 	while (i++ < req->num_mapped_sgs) {
520 		if (sg_dma_address(s) % PAGE_SIZE) {
521 			dev_err(hwep->ci->dev, "not page aligned sg buffer\n");
522 			return -EINVAL;
523 		}
524 
525 		if (node && (node->td_remaining_size >= sg_dma_len(s))) {
526 			ci_add_buffer_entry(node, s);
527 			node->td_remaining_size -= sg_dma_len(s);
528 		} else {
529 			ret = prepare_td_per_sg(hwep, hwreq, s);
530 			if (ret)
531 				return ret;
532 
533 			node = list_entry(hwreq->tds.prev,
534 				struct td_node, td);
535 		}
536 
537 		s = sg_next(s);
538 	}
539 
540 	return ret;
541 }
542 
543 /**
544  * _hardware_enqueue: configures a request at hardware level
545  * @hwep:   endpoint
546  * @hwreq:  request
547  *
548  * This function returns an error code
549  */
_hardware_enqueue(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq)550 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
551 {
552 	struct ci_hdrc *ci = hwep->ci;
553 	int ret = 0;
554 	struct td_node *firstnode, *lastnode;
555 
556 	/* don't queue twice */
557 	if (hwreq->req.status == -EALREADY)
558 		return -EALREADY;
559 
560 	hwreq->req.status = -EALREADY;
561 
562 	ret = usb_gadget_map_request_by_dev(ci->dev->parent,
563 					    &hwreq->req, hwep->dir);
564 	if (ret)
565 		return ret;
566 
567 	if (hwreq->req.num_mapped_sgs)
568 		ret = prepare_td_for_sg(hwep, hwreq);
569 	else
570 		ret = prepare_td_for_non_sg(hwep, hwreq);
571 
572 	if (ret)
573 		return ret;
574 
575 	lastnode = list_entry(hwreq->tds.prev,
576 		struct td_node, td);
577 
578 	lastnode->ptr->next = cpu_to_le32(TD_TERMINATE);
579 	if (!hwreq->req.no_interrupt)
580 		lastnode->ptr->token |= cpu_to_le32(TD_IOC);
581 
582 	list_for_each_entry_safe(firstnode, lastnode, &hwreq->tds, td)
583 		trace_ci_prepare_td(hwep, hwreq, firstnode);
584 
585 	firstnode = list_first_entry(&hwreq->tds, struct td_node, td);
586 
587 	wmb();
588 
589 	hwreq->req.actual = 0;
590 	if (!list_empty(&hwep->qh.queue)) {
591 		struct ci_hw_req *hwreqprev;
592 		int n = hw_ep_bit(hwep->num, hwep->dir);
593 		int tmp_stat;
594 		struct td_node *prevlastnode;
595 		u32 next = firstnode->dma & TD_ADDR_MASK;
596 
597 		hwreqprev = list_entry(hwep->qh.queue.prev,
598 				struct ci_hw_req, queue);
599 		prevlastnode = list_entry(hwreqprev->tds.prev,
600 				struct td_node, td);
601 
602 		prevlastnode->ptr->next = cpu_to_le32(next);
603 		wmb();
604 
605 		if (ci->rev == CI_REVISION_22) {
606 			if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
607 				reprime_dtd(ci, hwep, prevlastnode);
608 		}
609 
610 		if (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
611 			goto done;
612 		do {
613 			hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
614 			tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n));
615 		} while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW));
616 		hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0);
617 		if (tmp_stat)
618 			goto done;
619 	}
620 
621 	/*  QH configuration */
622 	hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma);
623 	hwep->qh.ptr->td.token &=
624 		cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE));
625 
626 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) {
627 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
628 
629 		if (hwreq->req.length == 0
630 				|| hwreq->req.length % hwep->ep.maxpacket)
631 			mul++;
632 		hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT));
633 	}
634 
635 	ret = hw_ep_prime(ci, hwep->num, hwep->dir,
636 			   hwep->type == USB_ENDPOINT_XFER_CONTROL);
637 done:
638 	return ret;
639 }
640 
641 /**
642  * free_pending_td: remove a pending request for the endpoint
643  * @hwep: endpoint
644  */
free_pending_td(struct ci_hw_ep * hwep)645 static void free_pending_td(struct ci_hw_ep *hwep)
646 {
647 	struct td_node *pending = hwep->pending_td;
648 
649 	dma_pool_free(hwep->td_pool, pending->ptr, pending->dma);
650 	hwep->pending_td = NULL;
651 	kfree(pending);
652 }
653 
reprime_dtd(struct ci_hdrc * ci,struct ci_hw_ep * hwep,struct td_node * node)654 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
655 					   struct td_node *node)
656 {
657 	hwep->qh.ptr->td.next = cpu_to_le32(node->dma);
658 	hwep->qh.ptr->td.token &=
659 		cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE));
660 
661 	return hw_ep_prime(ci, hwep->num, hwep->dir,
662 				hwep->type == USB_ENDPOINT_XFER_CONTROL);
663 }
664 
665 /**
666  * _hardware_dequeue: handles a request at hardware level
667  * @hwep: endpoint
668  * @hwreq:  request
669  *
670  * This function returns an error code
671  */
_hardware_dequeue(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq)672 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
673 {
674 	u32 tmptoken;
675 	struct td_node *node, *tmpnode;
676 	unsigned remaining_length;
677 	unsigned actual = hwreq->req.length;
678 	struct ci_hdrc *ci = hwep->ci;
679 
680 	if (hwreq->req.status != -EALREADY)
681 		return -EINVAL;
682 
683 	hwreq->req.status = 0;
684 
685 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
686 		tmptoken = le32_to_cpu(node->ptr->token);
687 		trace_ci_complete_td(hwep, hwreq, node);
688 		if ((TD_STATUS_ACTIVE & tmptoken) != 0) {
689 			int n = hw_ep_bit(hwep->num, hwep->dir);
690 
691 			if (ci->rev == CI_REVISION_24)
692 				if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
693 					reprime_dtd(ci, hwep, node);
694 			hwreq->req.status = -EALREADY;
695 			return -EBUSY;
696 		}
697 
698 		remaining_length = (tmptoken & TD_TOTAL_BYTES);
699 		remaining_length >>= __ffs(TD_TOTAL_BYTES);
700 		actual -= remaining_length;
701 
702 		hwreq->req.status = tmptoken & TD_STATUS;
703 		if ((TD_STATUS_HALTED & hwreq->req.status)) {
704 			hwreq->req.status = -EPIPE;
705 			break;
706 		} else if ((TD_STATUS_DT_ERR & hwreq->req.status)) {
707 			hwreq->req.status = -EPROTO;
708 			break;
709 		} else if ((TD_STATUS_TR_ERR & hwreq->req.status)) {
710 			hwreq->req.status = -EILSEQ;
711 			break;
712 		}
713 
714 		if (remaining_length) {
715 			if (hwep->dir == TX) {
716 				hwreq->req.status = -EPROTO;
717 				break;
718 			}
719 		}
720 		/*
721 		 * As the hardware could still address the freed td
722 		 * which will run the udc unusable, the cleanup of the
723 		 * td has to be delayed by one.
724 		 */
725 		if (hwep->pending_td)
726 			free_pending_td(hwep);
727 
728 		hwep->pending_td = node;
729 		list_del_init(&node->td);
730 	}
731 
732 	usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent,
733 					&hwreq->req, hwep->dir);
734 
735 	hwreq->req.actual += actual;
736 
737 	if (hwreq->req.status)
738 		return hwreq->req.status;
739 
740 	return hwreq->req.actual;
741 }
742 
743 /**
744  * _ep_nuke: dequeues all endpoint requests
745  * @hwep: endpoint
746  *
747  * This function returns an error code
748  * Caller must hold lock
749  */
_ep_nuke(struct ci_hw_ep * hwep)750 static int _ep_nuke(struct ci_hw_ep *hwep)
751 __releases(hwep->lock)
752 __acquires(hwep->lock)
753 {
754 	struct td_node *node, *tmpnode;
755 	if (hwep == NULL)
756 		return -EINVAL;
757 
758 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
759 
760 	while (!list_empty(&hwep->qh.queue)) {
761 
762 		/* pop oldest request */
763 		struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next,
764 						     struct ci_hw_req, queue);
765 
766 		list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
767 			dma_pool_free(hwep->td_pool, node->ptr, node->dma);
768 			list_del_init(&node->td);
769 			node->ptr = NULL;
770 			kfree(node);
771 		}
772 
773 		list_del_init(&hwreq->queue);
774 		hwreq->req.status = -ESHUTDOWN;
775 
776 		if (hwreq->req.complete != NULL) {
777 			spin_unlock(hwep->lock);
778 			usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
779 			spin_lock(hwep->lock);
780 		}
781 	}
782 
783 	if (hwep->pending_td)
784 		free_pending_td(hwep);
785 
786 	return 0;
787 }
788 
_ep_set_halt(struct usb_ep * ep,int value,bool check_transfer)789 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer)
790 {
791 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
792 	int direction, retval = 0;
793 	unsigned long flags;
794 
795 	if (ep == NULL || hwep->ep.desc == NULL)
796 		return -EINVAL;
797 
798 	if (usb_endpoint_xfer_isoc(hwep->ep.desc))
799 		return -EOPNOTSUPP;
800 
801 	spin_lock_irqsave(hwep->lock, flags);
802 
803 	if (value && hwep->dir == TX && check_transfer &&
804 		!list_empty(&hwep->qh.queue) &&
805 			!usb_endpoint_xfer_control(hwep->ep.desc)) {
806 		spin_unlock_irqrestore(hwep->lock, flags);
807 		return -EAGAIN;
808 	}
809 
810 	direction = hwep->dir;
811 	do {
812 		retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value);
813 
814 		if (!value)
815 			hwep->wedge = 0;
816 
817 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
818 			hwep->dir = (hwep->dir == TX) ? RX : TX;
819 
820 	} while (hwep->dir != direction);
821 
822 	spin_unlock_irqrestore(hwep->lock, flags);
823 	return retval;
824 }
825 
826 
827 /**
828  * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
829  * @gadget: gadget
830  *
831  * This function returns an error code
832  */
_gadget_stop_activity(struct usb_gadget * gadget)833 static int _gadget_stop_activity(struct usb_gadget *gadget)
834 {
835 	struct usb_ep *ep;
836 	struct ci_hdrc    *ci = container_of(gadget, struct ci_hdrc, gadget);
837 	unsigned long flags;
838 
839 	/* flush all endpoints */
840 	gadget_for_each_ep(ep, gadget) {
841 		usb_ep_fifo_flush(ep);
842 	}
843 	usb_ep_fifo_flush(&ci->ep0out->ep);
844 	usb_ep_fifo_flush(&ci->ep0in->ep);
845 
846 	/* make sure to disable all endpoints */
847 	gadget_for_each_ep(ep, gadget) {
848 		usb_ep_disable(ep);
849 	}
850 
851 	if (ci->status != NULL) {
852 		usb_ep_free_request(&ci->ep0in->ep, ci->status);
853 		ci->status = NULL;
854 	}
855 
856 	spin_lock_irqsave(&ci->lock, flags);
857 	ci->gadget.speed = USB_SPEED_UNKNOWN;
858 	ci->remote_wakeup = 0;
859 	ci->suspended = 0;
860 	spin_unlock_irqrestore(&ci->lock, flags);
861 
862 	return 0;
863 }
864 
865 /******************************************************************************
866  * ISR block
867  *****************************************************************************/
868 /**
869  * isr_reset_handler: USB reset interrupt handler
870  * @ci: UDC device
871  *
872  * This function resets USB engine after a bus reset occurred
873  */
isr_reset_handler(struct ci_hdrc * ci)874 static void isr_reset_handler(struct ci_hdrc *ci)
875 __releases(ci->lock)
876 __acquires(ci->lock)
877 {
878 	int retval;
879 	u32 intr;
880 
881 	spin_unlock(&ci->lock);
882 	if (ci->gadget.speed != USB_SPEED_UNKNOWN)
883 		usb_gadget_udc_reset(&ci->gadget, ci->driver);
884 
885 	retval = _gadget_stop_activity(&ci->gadget);
886 	if (retval)
887 		goto done;
888 
889 	retval = hw_usb_reset(ci);
890 	if (retval)
891 		goto done;
892 
893 	/* clear SLI */
894 	hw_write(ci, OP_USBSTS, USBi_SLI, USBi_SLI);
895 	intr = hw_read(ci, OP_USBINTR, ~0);
896 	hw_write(ci, OP_USBINTR, ~0, intr | USBi_SLI);
897 
898 	ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC);
899 	if (ci->status == NULL)
900 		retval = -ENOMEM;
901 
902 done:
903 	spin_lock(&ci->lock);
904 
905 	if (retval)
906 		dev_err(ci->dev, "error: %i\n", retval);
907 }
908 
909 /**
910  * isr_get_status_complete: get_status request complete function
911  * @ep:  endpoint
912  * @req: request handled
913  *
914  * Caller must release lock
915  */
isr_get_status_complete(struct usb_ep * ep,struct usb_request * req)916 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
917 {
918 	if (ep == NULL || req == NULL)
919 		return;
920 
921 	kfree(req->buf);
922 	usb_ep_free_request(ep, req);
923 }
924 
925 /**
926  * _ep_queue: queues (submits) an I/O request to an endpoint
927  * @ep:        endpoint
928  * @req:       request
929  * @gfp_flags: GFP flags (not used)
930  *
931  * Caller must hold lock
932  * This function returns an error code
933  */
_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t __maybe_unused gfp_flags)934 static int _ep_queue(struct usb_ep *ep, struct usb_request *req,
935 		    gfp_t __maybe_unused gfp_flags)
936 {
937 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
938 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
939 	struct ci_hdrc *ci = hwep->ci;
940 	int retval = 0;
941 
942 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
943 		return -EINVAL;
944 
945 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
946 		if (req->length)
947 			hwep = (ci->ep0_dir == RX) ?
948 			       ci->ep0out : ci->ep0in;
949 		if (!list_empty(&hwep->qh.queue)) {
950 			_ep_nuke(hwep);
951 			dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n",
952 				 _usb_addr(hwep));
953 		}
954 	}
955 
956 	if (usb_endpoint_xfer_isoc(hwep->ep.desc) &&
957 	    hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) {
958 		dev_err(hwep->ci->dev, "request length too big for isochronous\n");
959 		return -EMSGSIZE;
960 	}
961 
962 	if (ci->has_short_pkt_limit &&
963 		hwreq->req.length > CI_MAX_REQ_SIZE) {
964 		dev_err(hwep->ci->dev, "request length too big (max 16KB)\n");
965 		return -EMSGSIZE;
966 	}
967 
968 	/* first nuke then test link, e.g. previous status has not sent */
969 	if (!list_empty(&hwreq->queue)) {
970 		dev_err(hwep->ci->dev, "request already in queue\n");
971 		return -EBUSY;
972 	}
973 
974 	/* push request */
975 	hwreq->req.status = -EINPROGRESS;
976 	hwreq->req.actual = 0;
977 
978 	retval = _hardware_enqueue(hwep, hwreq);
979 
980 	if (retval == -EALREADY)
981 		retval = 0;
982 	if (!retval)
983 		list_add_tail(&hwreq->queue, &hwep->qh.queue);
984 
985 	return retval;
986 }
987 
988 /**
989  * isr_get_status_response: get_status request response
990  * @ci: ci struct
991  * @setup: setup request packet
992  *
993  * This function returns an error code
994  */
isr_get_status_response(struct ci_hdrc * ci,struct usb_ctrlrequest * setup)995 static int isr_get_status_response(struct ci_hdrc *ci,
996 				   struct usb_ctrlrequest *setup)
997 __releases(hwep->lock)
998 __acquires(hwep->lock)
999 {
1000 	struct ci_hw_ep *hwep = ci->ep0in;
1001 	struct usb_request *req = NULL;
1002 	gfp_t gfp_flags = GFP_ATOMIC;
1003 	int dir, num, retval;
1004 
1005 	if (hwep == NULL || setup == NULL)
1006 		return -EINVAL;
1007 
1008 	spin_unlock(hwep->lock);
1009 	req = usb_ep_alloc_request(&hwep->ep, gfp_flags);
1010 	spin_lock(hwep->lock);
1011 	if (req == NULL)
1012 		return -ENOMEM;
1013 
1014 	req->complete = isr_get_status_complete;
1015 	req->length   = 2;
1016 	req->buf      = kzalloc(req->length, gfp_flags);
1017 	if (req->buf == NULL) {
1018 		retval = -ENOMEM;
1019 		goto err_free_req;
1020 	}
1021 
1022 	if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1023 		*(u16 *)req->buf = (ci->remote_wakeup << 1) |
1024 			ci->gadget.is_selfpowered;
1025 	} else if ((setup->bRequestType & USB_RECIP_MASK) \
1026 		   == USB_RECIP_ENDPOINT) {
1027 		dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
1028 			TX : RX;
1029 		num =  le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
1030 		*(u16 *)req->buf = hw_ep_get_halt(ci, num, dir);
1031 	}
1032 	/* else do nothing; reserved for future use */
1033 
1034 	retval = _ep_queue(&hwep->ep, req, gfp_flags);
1035 	if (retval)
1036 		goto err_free_buf;
1037 
1038 	return 0;
1039 
1040  err_free_buf:
1041 	kfree(req->buf);
1042  err_free_req:
1043 	spin_unlock(hwep->lock);
1044 	usb_ep_free_request(&hwep->ep, req);
1045 	spin_lock(hwep->lock);
1046 	return retval;
1047 }
1048 
1049 /**
1050  * isr_setup_status_complete: setup_status request complete function
1051  * @ep:  endpoint
1052  * @req: request handled
1053  *
1054  * Caller must release lock. Put the port in test mode if test mode
1055  * feature is selected.
1056  */
1057 static void
isr_setup_status_complete(struct usb_ep * ep,struct usb_request * req)1058 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
1059 {
1060 	struct ci_hdrc *ci = req->context;
1061 	unsigned long flags;
1062 
1063 	if (req->status < 0)
1064 		return;
1065 
1066 	if (ci->setaddr) {
1067 		hw_usb_set_address(ci, ci->address);
1068 		ci->setaddr = false;
1069 		if (ci->address)
1070 			usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS);
1071 	}
1072 
1073 	spin_lock_irqsave(&ci->lock, flags);
1074 	if (ci->test_mode)
1075 		hw_port_test_set(ci, ci->test_mode);
1076 	spin_unlock_irqrestore(&ci->lock, flags);
1077 }
1078 
1079 /**
1080  * isr_setup_status_phase: queues the status phase of a setup transation
1081  * @ci: ci struct
1082  *
1083  * This function returns an error code
1084  */
isr_setup_status_phase(struct ci_hdrc * ci)1085 static int isr_setup_status_phase(struct ci_hdrc *ci)
1086 {
1087 	struct ci_hw_ep *hwep;
1088 
1089 	/*
1090 	 * Unexpected USB controller behavior, caused by bad signal integrity
1091 	 * or ground reference problems, can lead to isr_setup_status_phase
1092 	 * being called with ci->status equal to NULL.
1093 	 * If this situation occurs, you should review your USB hardware design.
1094 	 */
1095 	if (WARN_ON_ONCE(!ci->status))
1096 		return -EPIPE;
1097 
1098 	hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in;
1099 	ci->status->context = ci;
1100 	ci->status->complete = isr_setup_status_complete;
1101 
1102 	return _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC);
1103 }
1104 
1105 /**
1106  * isr_tr_complete_low: transaction complete low level handler
1107  * @hwep: endpoint
1108  *
1109  * This function returns an error code
1110  * Caller must hold lock
1111  */
isr_tr_complete_low(struct ci_hw_ep * hwep)1112 static int isr_tr_complete_low(struct ci_hw_ep *hwep)
1113 __releases(hwep->lock)
1114 __acquires(hwep->lock)
1115 {
1116 	struct ci_hw_req *hwreq, *hwreqtemp;
1117 	struct ci_hw_ep *hweptemp = hwep;
1118 	int retval = 0;
1119 
1120 	list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue,
1121 			queue) {
1122 		retval = _hardware_dequeue(hwep, hwreq);
1123 		if (retval < 0)
1124 			break;
1125 		list_del_init(&hwreq->queue);
1126 		if (hwreq->req.complete != NULL) {
1127 			spin_unlock(hwep->lock);
1128 			if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) &&
1129 					hwreq->req.length)
1130 				hweptemp = hwep->ci->ep0in;
1131 			usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req);
1132 			spin_lock(hwep->lock);
1133 		}
1134 	}
1135 
1136 	if (retval == -EBUSY)
1137 		retval = 0;
1138 
1139 	return retval;
1140 }
1141 
otg_a_alt_hnp_support(struct ci_hdrc * ci)1142 static int otg_a_alt_hnp_support(struct ci_hdrc *ci)
1143 {
1144 	dev_warn(&ci->gadget.dev,
1145 		"connect the device to an alternate port if you want HNP\n");
1146 	return isr_setup_status_phase(ci);
1147 }
1148 
1149 /**
1150  * isr_setup_packet_handler: setup packet handler
1151  * @ci: UDC descriptor
1152  *
1153  * This function handles setup packet
1154  */
isr_setup_packet_handler(struct ci_hdrc * ci)1155 static void isr_setup_packet_handler(struct ci_hdrc *ci)
1156 __releases(ci->lock)
1157 __acquires(ci->lock)
1158 {
1159 	struct ci_hw_ep *hwep = &ci->ci_hw_ep[0];
1160 	struct usb_ctrlrequest req;
1161 	int type, num, dir, err = -EINVAL;
1162 	u8 tmode = 0;
1163 
1164 	/*
1165 	 * Flush data and handshake transactions of previous
1166 	 * setup packet.
1167 	 */
1168 	_ep_nuke(ci->ep0out);
1169 	_ep_nuke(ci->ep0in);
1170 
1171 	/* read_setup_packet */
1172 	do {
1173 		hw_test_and_set_setup_guard(ci);
1174 		memcpy(&req, &hwep->qh.ptr->setup, sizeof(req));
1175 	} while (!hw_test_and_clear_setup_guard(ci));
1176 
1177 	type = req.bRequestType;
1178 
1179 	ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
1180 
1181 	switch (req.bRequest) {
1182 	case USB_REQ_CLEAR_FEATURE:
1183 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1184 				le16_to_cpu(req.wValue) ==
1185 				USB_ENDPOINT_HALT) {
1186 			if (req.wLength != 0)
1187 				break;
1188 			num  = le16_to_cpu(req.wIndex);
1189 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1190 			num &= USB_ENDPOINT_NUMBER_MASK;
1191 			if (dir == TX)
1192 				num += ci->hw_ep_max / 2;
1193 			if (!ci->ci_hw_ep[num].wedge) {
1194 				spin_unlock(&ci->lock);
1195 				err = usb_ep_clear_halt(
1196 					&ci->ci_hw_ep[num].ep);
1197 				spin_lock(&ci->lock);
1198 				if (err)
1199 					break;
1200 			}
1201 			err = isr_setup_status_phase(ci);
1202 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
1203 				le16_to_cpu(req.wValue) ==
1204 				USB_DEVICE_REMOTE_WAKEUP) {
1205 			if (req.wLength != 0)
1206 				break;
1207 			ci->remote_wakeup = 0;
1208 			err = isr_setup_status_phase(ci);
1209 		} else {
1210 			goto delegate;
1211 		}
1212 		break;
1213 	case USB_REQ_GET_STATUS:
1214 		if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) ||
1215 			le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) &&
1216 		    type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
1217 		    type != (USB_DIR_IN|USB_RECIP_INTERFACE))
1218 			goto delegate;
1219 		if (le16_to_cpu(req.wLength) != 2 ||
1220 		    le16_to_cpu(req.wValue)  != 0)
1221 			break;
1222 		err = isr_get_status_response(ci, &req);
1223 		break;
1224 	case USB_REQ_SET_ADDRESS:
1225 		if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
1226 			goto delegate;
1227 		if (le16_to_cpu(req.wLength) != 0 ||
1228 		    le16_to_cpu(req.wIndex)  != 0)
1229 			break;
1230 		ci->address = (u8)le16_to_cpu(req.wValue);
1231 		ci->setaddr = true;
1232 		err = isr_setup_status_phase(ci);
1233 		break;
1234 	case USB_REQ_SET_FEATURE:
1235 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1236 				le16_to_cpu(req.wValue) ==
1237 				USB_ENDPOINT_HALT) {
1238 			if (req.wLength != 0)
1239 				break;
1240 			num  = le16_to_cpu(req.wIndex);
1241 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1242 			num &= USB_ENDPOINT_NUMBER_MASK;
1243 			if (dir == TX)
1244 				num += ci->hw_ep_max / 2;
1245 
1246 			spin_unlock(&ci->lock);
1247 			err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false);
1248 			spin_lock(&ci->lock);
1249 			if (!err)
1250 				isr_setup_status_phase(ci);
1251 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
1252 			if (req.wLength != 0)
1253 				break;
1254 			switch (le16_to_cpu(req.wValue)) {
1255 			case USB_DEVICE_REMOTE_WAKEUP:
1256 				ci->remote_wakeup = 1;
1257 				err = isr_setup_status_phase(ci);
1258 				break;
1259 			case USB_DEVICE_TEST_MODE:
1260 				tmode = le16_to_cpu(req.wIndex) >> 8;
1261 				switch (tmode) {
1262 				case USB_TEST_J:
1263 				case USB_TEST_K:
1264 				case USB_TEST_SE0_NAK:
1265 				case USB_TEST_PACKET:
1266 				case USB_TEST_FORCE_ENABLE:
1267 					ci->test_mode = tmode;
1268 					err = isr_setup_status_phase(
1269 							ci);
1270 					break;
1271 				default:
1272 					break;
1273 				}
1274 				break;
1275 			case USB_DEVICE_B_HNP_ENABLE:
1276 				if (ci_otg_is_fsm_mode(ci)) {
1277 					ci->gadget.b_hnp_enable = 1;
1278 					err = isr_setup_status_phase(
1279 							ci);
1280 				}
1281 				break;
1282 			case USB_DEVICE_A_ALT_HNP_SUPPORT:
1283 				if (ci_otg_is_fsm_mode(ci))
1284 					err = otg_a_alt_hnp_support(ci);
1285 				break;
1286 			case USB_DEVICE_A_HNP_SUPPORT:
1287 				if (ci_otg_is_fsm_mode(ci)) {
1288 					ci->gadget.a_hnp_support = 1;
1289 					err = isr_setup_status_phase(
1290 							ci);
1291 				}
1292 				break;
1293 			default:
1294 				goto delegate;
1295 			}
1296 		} else {
1297 			goto delegate;
1298 		}
1299 		break;
1300 	default:
1301 delegate:
1302 		if (req.wLength == 0)   /* no data phase */
1303 			ci->ep0_dir = TX;
1304 
1305 		spin_unlock(&ci->lock);
1306 		err = ci->driver->setup(&ci->gadget, &req);
1307 		spin_lock(&ci->lock);
1308 		break;
1309 	}
1310 
1311 	if (err < 0) {
1312 		spin_unlock(&ci->lock);
1313 		if (_ep_set_halt(&hwep->ep, 1, false))
1314 			dev_err(ci->dev, "error: _ep_set_halt\n");
1315 		spin_lock(&ci->lock);
1316 	}
1317 }
1318 
1319 /**
1320  * isr_tr_complete_handler: transaction complete interrupt handler
1321  * @ci: UDC descriptor
1322  *
1323  * This function handles traffic events
1324  */
isr_tr_complete_handler(struct ci_hdrc * ci)1325 static void isr_tr_complete_handler(struct ci_hdrc *ci)
1326 __releases(ci->lock)
1327 __acquires(ci->lock)
1328 {
1329 	unsigned i;
1330 	int err;
1331 
1332 	for (i = 0; i < ci->hw_ep_max; i++) {
1333 		struct ci_hw_ep *hwep  = &ci->ci_hw_ep[i];
1334 
1335 		if (hwep->ep.desc == NULL)
1336 			continue;   /* not configured */
1337 
1338 		if (hw_test_and_clear_complete(ci, i)) {
1339 			err = isr_tr_complete_low(hwep);
1340 			if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1341 				if (err > 0)   /* needs status phase */
1342 					err = isr_setup_status_phase(ci);
1343 				if (err < 0) {
1344 					spin_unlock(&ci->lock);
1345 					if (_ep_set_halt(&hwep->ep, 1, false))
1346 						dev_err(ci->dev,
1347 						"error: _ep_set_halt\n");
1348 					spin_lock(&ci->lock);
1349 				}
1350 			}
1351 		}
1352 
1353 		/* Only handle setup packet below */
1354 		if (i == 0 &&
1355 			hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0)))
1356 			isr_setup_packet_handler(ci);
1357 	}
1358 }
1359 
1360 /******************************************************************************
1361  * ENDPT block
1362  *****************************************************************************/
1363 /*
1364  * ep_enable: configure endpoint, making it usable
1365  *
1366  * Check usb_ep_enable() at "usb_gadget.h" for details
1367  */
ep_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)1368 static int ep_enable(struct usb_ep *ep,
1369 		     const struct usb_endpoint_descriptor *desc)
1370 {
1371 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1372 	int retval = 0;
1373 	unsigned long flags;
1374 	u32 cap = 0;
1375 
1376 	if (ep == NULL || desc == NULL)
1377 		return -EINVAL;
1378 
1379 	spin_lock_irqsave(hwep->lock, flags);
1380 
1381 	/* only internal SW should enable ctrl endpts */
1382 
1383 	if (!list_empty(&hwep->qh.queue)) {
1384 		dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n");
1385 		spin_unlock_irqrestore(hwep->lock, flags);
1386 		return -EBUSY;
1387 	}
1388 
1389 	hwep->ep.desc = desc;
1390 
1391 	hwep->dir  = usb_endpoint_dir_in(desc) ? TX : RX;
1392 	hwep->num  = usb_endpoint_num(desc);
1393 	hwep->type = usb_endpoint_type(desc);
1394 
1395 	hwep->ep.maxpacket = usb_endpoint_maxp(desc);
1396 	hwep->ep.mult = usb_endpoint_maxp_mult(desc);
1397 
1398 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1399 		cap |= QH_IOS;
1400 
1401 	cap |= QH_ZLT;
1402 	cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT;
1403 	/*
1404 	 * For ISO-TX, we set mult at QH as the largest value, and use
1405 	 * MultO at TD as real mult value.
1406 	 */
1407 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX)
1408 		cap |= 3 << __ffs(QH_MULT);
1409 
1410 	hwep->qh.ptr->cap = cpu_to_le32(cap);
1411 
1412 	hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE);   /* needed? */
1413 
1414 	if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1415 		dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n");
1416 		retval = -EINVAL;
1417 	}
1418 
1419 	/*
1420 	 * Enable endpoints in the HW other than ep0 as ep0
1421 	 * is always enabled
1422 	 */
1423 	if (hwep->num)
1424 		retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir,
1425 				       hwep->type);
1426 
1427 	spin_unlock_irqrestore(hwep->lock, flags);
1428 	return retval;
1429 }
1430 
1431 /*
1432  * ep_disable: endpoint is no longer usable
1433  *
1434  * Check usb_ep_disable() at "usb_gadget.h" for details
1435  */
ep_disable(struct usb_ep * ep)1436 static int ep_disable(struct usb_ep *ep)
1437 {
1438 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1439 	int direction, retval = 0;
1440 	unsigned long flags;
1441 
1442 	if (ep == NULL)
1443 		return -EINVAL;
1444 	else if (hwep->ep.desc == NULL)
1445 		return -EBUSY;
1446 
1447 	spin_lock_irqsave(hwep->lock, flags);
1448 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1449 		spin_unlock_irqrestore(hwep->lock, flags);
1450 		return 0;
1451 	}
1452 
1453 	/* only internal SW should disable ctrl endpts */
1454 
1455 	direction = hwep->dir;
1456 	do {
1457 		retval |= _ep_nuke(hwep);
1458 		retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir);
1459 
1460 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1461 			hwep->dir = (hwep->dir == TX) ? RX : TX;
1462 
1463 	} while (hwep->dir != direction);
1464 
1465 	hwep->ep.desc = NULL;
1466 
1467 	spin_unlock_irqrestore(hwep->lock, flags);
1468 	return retval;
1469 }
1470 
1471 /*
1472  * ep_alloc_request: allocate a request object to use with this endpoint
1473  *
1474  * Check usb_ep_alloc_request() at "usb_gadget.h" for details
1475  */
ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)1476 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
1477 {
1478 	struct ci_hw_req *hwreq;
1479 
1480 	if (ep == NULL)
1481 		return NULL;
1482 
1483 	hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags);
1484 	if (hwreq != NULL) {
1485 		INIT_LIST_HEAD(&hwreq->queue);
1486 		INIT_LIST_HEAD(&hwreq->tds);
1487 	}
1488 
1489 	return (hwreq == NULL) ? NULL : &hwreq->req;
1490 }
1491 
1492 /*
1493  * ep_free_request: frees a request object
1494  *
1495  * Check usb_ep_free_request() at "usb_gadget.h" for details
1496  */
ep_free_request(struct usb_ep * ep,struct usb_request * req)1497 static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
1498 {
1499 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1500 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1501 	struct td_node *node, *tmpnode;
1502 	unsigned long flags;
1503 
1504 	if (ep == NULL || req == NULL) {
1505 		return;
1506 	} else if (!list_empty(&hwreq->queue)) {
1507 		dev_err(hwep->ci->dev, "freeing queued request\n");
1508 		return;
1509 	}
1510 
1511 	spin_lock_irqsave(hwep->lock, flags);
1512 
1513 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1514 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1515 		list_del_init(&node->td);
1516 		node->ptr = NULL;
1517 		kfree(node);
1518 	}
1519 
1520 	kfree(hwreq);
1521 
1522 	spin_unlock_irqrestore(hwep->lock, flags);
1523 }
1524 
1525 /*
1526  * ep_queue: queues (submits) an I/O request to an endpoint
1527  *
1528  * Check usb_ep_queue()* at usb_gadget.h" for details
1529  */
ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t __maybe_unused gfp_flags)1530 static int ep_queue(struct usb_ep *ep, struct usb_request *req,
1531 		    gfp_t __maybe_unused gfp_flags)
1532 {
1533 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1534 	int retval = 0;
1535 	unsigned long flags;
1536 
1537 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1538 		return -EINVAL;
1539 
1540 	spin_lock_irqsave(hwep->lock, flags);
1541 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1542 		spin_unlock_irqrestore(hwep->lock, flags);
1543 		return 0;
1544 	}
1545 	retval = _ep_queue(ep, req, gfp_flags);
1546 	spin_unlock_irqrestore(hwep->lock, flags);
1547 	return retval;
1548 }
1549 
1550 /*
1551  * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
1552  *
1553  * Check usb_ep_dequeue() at "usb_gadget.h" for details
1554  */
ep_dequeue(struct usb_ep * ep,struct usb_request * req)1555 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
1556 {
1557 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1558 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1559 	unsigned long flags;
1560 	struct td_node *node, *tmpnode;
1561 
1562 	if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY ||
1563 		hwep->ep.desc == NULL || list_empty(&hwreq->queue) ||
1564 		list_empty(&hwep->qh.queue))
1565 		return -EINVAL;
1566 
1567 	spin_lock_irqsave(hwep->lock, flags);
1568 	if (hwep->ci->gadget.speed != USB_SPEED_UNKNOWN)
1569 		hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1570 
1571 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1572 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1573 		list_del(&node->td);
1574 		kfree(node);
1575 	}
1576 
1577 	/* pop request */
1578 	list_del_init(&hwreq->queue);
1579 
1580 	usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir);
1581 
1582 	req->status = -ECONNRESET;
1583 
1584 	if (hwreq->req.complete != NULL) {
1585 		spin_unlock(hwep->lock);
1586 		usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
1587 		spin_lock(hwep->lock);
1588 	}
1589 
1590 	spin_unlock_irqrestore(hwep->lock, flags);
1591 	return 0;
1592 }
1593 
1594 /*
1595  * ep_set_halt: sets the endpoint halt feature
1596  *
1597  * Check usb_ep_set_halt() at "usb_gadget.h" for details
1598  */
ep_set_halt(struct usb_ep * ep,int value)1599 static int ep_set_halt(struct usb_ep *ep, int value)
1600 {
1601 	return _ep_set_halt(ep, value, true);
1602 }
1603 
1604 /*
1605  * ep_set_wedge: sets the halt feature and ignores clear requests
1606  *
1607  * Check usb_ep_set_wedge() at "usb_gadget.h" for details
1608  */
ep_set_wedge(struct usb_ep * ep)1609 static int ep_set_wedge(struct usb_ep *ep)
1610 {
1611 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1612 	unsigned long flags;
1613 
1614 	if (ep == NULL || hwep->ep.desc == NULL)
1615 		return -EINVAL;
1616 
1617 	spin_lock_irqsave(hwep->lock, flags);
1618 	hwep->wedge = 1;
1619 	spin_unlock_irqrestore(hwep->lock, flags);
1620 
1621 	return usb_ep_set_halt(ep);
1622 }
1623 
1624 /*
1625  * ep_fifo_flush: flushes contents of a fifo
1626  *
1627  * Check usb_ep_fifo_flush() at "usb_gadget.h" for details
1628  */
ep_fifo_flush(struct usb_ep * ep)1629 static void ep_fifo_flush(struct usb_ep *ep)
1630 {
1631 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1632 	unsigned long flags;
1633 
1634 	if (ep == NULL) {
1635 		dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep));
1636 		return;
1637 	}
1638 
1639 	spin_lock_irqsave(hwep->lock, flags);
1640 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1641 		spin_unlock_irqrestore(hwep->lock, flags);
1642 		return;
1643 	}
1644 
1645 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1646 
1647 	spin_unlock_irqrestore(hwep->lock, flags);
1648 }
1649 
1650 /*
1651  * Endpoint-specific part of the API to the USB controller hardware
1652  * Check "usb_gadget.h" for details
1653  */
1654 static const struct usb_ep_ops usb_ep_ops = {
1655 	.enable	       = ep_enable,
1656 	.disable       = ep_disable,
1657 	.alloc_request = ep_alloc_request,
1658 	.free_request  = ep_free_request,
1659 	.queue	       = ep_queue,
1660 	.dequeue       = ep_dequeue,
1661 	.set_halt      = ep_set_halt,
1662 	.set_wedge     = ep_set_wedge,
1663 	.fifo_flush    = ep_fifo_flush,
1664 };
1665 
1666 /******************************************************************************
1667  * GADGET block
1668  *****************************************************************************/
1669 
ci_udc_get_frame(struct usb_gadget * _gadget)1670 static int ci_udc_get_frame(struct usb_gadget *_gadget)
1671 {
1672 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1673 	unsigned long flags;
1674 	int ret;
1675 
1676 	spin_lock_irqsave(&ci->lock, flags);
1677 	ret = hw_read(ci, OP_FRINDEX, 0x3fff);
1678 	spin_unlock_irqrestore(&ci->lock, flags);
1679 	return ret >> 3;
1680 }
1681 
1682 /*
1683  * ci_hdrc_gadget_connect: caller makes sure gadget driver is binded
1684  */
ci_hdrc_gadget_connect(struct usb_gadget * _gadget,int is_active)1685 static void ci_hdrc_gadget_connect(struct usb_gadget *_gadget, int is_active)
1686 {
1687 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1688 
1689 	if (is_active) {
1690 		pm_runtime_get_sync(ci->dev);
1691 		hw_device_reset(ci);
1692 		spin_lock_irq(&ci->lock);
1693 		if (ci->driver) {
1694 			hw_device_state(ci, ci->ep0out->qh.dma);
1695 			usb_gadget_set_state(_gadget, USB_STATE_POWERED);
1696 			spin_unlock_irq(&ci->lock);
1697 			usb_udc_vbus_handler(_gadget, true);
1698 		} else {
1699 			spin_unlock_irq(&ci->lock);
1700 		}
1701 	} else {
1702 		usb_udc_vbus_handler(_gadget, false);
1703 		if (ci->driver)
1704 			ci->driver->disconnect(&ci->gadget);
1705 		hw_device_state(ci, 0);
1706 		if (ci->platdata->notify_event)
1707 			ci->platdata->notify_event(ci,
1708 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
1709 		_gadget_stop_activity(&ci->gadget);
1710 		pm_runtime_put_sync(ci->dev);
1711 		usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED);
1712 	}
1713 }
1714 
ci_udc_vbus_session(struct usb_gadget * _gadget,int is_active)1715 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1716 {
1717 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1718 	unsigned long flags;
1719 	int ret = 0;
1720 
1721 	spin_lock_irqsave(&ci->lock, flags);
1722 	ci->vbus_active = is_active;
1723 	spin_unlock_irqrestore(&ci->lock, flags);
1724 
1725 	if (ci->usb_phy)
1726 		usb_phy_set_charger_state(ci->usb_phy, is_active ?
1727 			USB_CHARGER_PRESENT : USB_CHARGER_ABSENT);
1728 
1729 	if (ci->platdata->notify_event)
1730 		ret = ci->platdata->notify_event(ci,
1731 				CI_HDRC_CONTROLLER_VBUS_EVENT);
1732 
1733 	if (ci->usb_phy) {
1734 		if (is_active)
1735 			usb_phy_set_event(ci->usb_phy, USB_EVENT_VBUS);
1736 		else
1737 			usb_phy_set_event(ci->usb_phy, USB_EVENT_NONE);
1738 	}
1739 
1740 	if (ci->driver)
1741 		ci_hdrc_gadget_connect(_gadget, is_active);
1742 
1743 	return ret;
1744 }
1745 
ci_udc_wakeup(struct usb_gadget * _gadget)1746 static int ci_udc_wakeup(struct usb_gadget *_gadget)
1747 {
1748 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1749 	unsigned long flags;
1750 	int ret = 0;
1751 
1752 	spin_lock_irqsave(&ci->lock, flags);
1753 	if (ci->gadget.speed == USB_SPEED_UNKNOWN) {
1754 		spin_unlock_irqrestore(&ci->lock, flags);
1755 		return 0;
1756 	}
1757 	if (!ci->remote_wakeup) {
1758 		ret = -EOPNOTSUPP;
1759 		goto out;
1760 	}
1761 	if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) {
1762 		ret = -EINVAL;
1763 		goto out;
1764 	}
1765 	hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
1766 out:
1767 	spin_unlock_irqrestore(&ci->lock, flags);
1768 	return ret;
1769 }
1770 
ci_udc_vbus_draw(struct usb_gadget * _gadget,unsigned ma)1771 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma)
1772 {
1773 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1774 
1775 	if (ci->usb_phy)
1776 		return usb_phy_set_power(ci->usb_phy, ma);
1777 	return -ENOTSUPP;
1778 }
1779 
ci_udc_selfpowered(struct usb_gadget * _gadget,int is_on)1780 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on)
1781 {
1782 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1783 	struct ci_hw_ep *hwep = ci->ep0in;
1784 	unsigned long flags;
1785 
1786 	spin_lock_irqsave(hwep->lock, flags);
1787 	_gadget->is_selfpowered = (is_on != 0);
1788 	spin_unlock_irqrestore(hwep->lock, flags);
1789 
1790 	return 0;
1791 }
1792 
1793 /* Change Data+ pullup status
1794  * this func is used by usb_gadget_connect/disconnect
1795  */
ci_udc_pullup(struct usb_gadget * _gadget,int is_on)1796 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on)
1797 {
1798 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1799 
1800 	/*
1801 	 * Data+ pullup controlled by OTG state machine in OTG fsm mode;
1802 	 * and don't touch Data+ in host mode for dual role config.
1803 	 */
1804 	if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST)
1805 		return 0;
1806 
1807 	pm_runtime_get_sync(ci->dev);
1808 	if (is_on)
1809 		hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
1810 	else
1811 		hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
1812 	pm_runtime_put_sync(ci->dev);
1813 
1814 	return 0;
1815 }
1816 
1817 static int ci_udc_start(struct usb_gadget *gadget,
1818 			 struct usb_gadget_driver *driver);
1819 static int ci_udc_stop(struct usb_gadget *gadget);
1820 
1821 /* Match ISOC IN from the highest endpoint */
ci_udc_match_ep(struct usb_gadget * gadget,struct usb_endpoint_descriptor * desc,struct usb_ss_ep_comp_descriptor * comp_desc)1822 static struct usb_ep *ci_udc_match_ep(struct usb_gadget *gadget,
1823 			      struct usb_endpoint_descriptor *desc,
1824 			      struct usb_ss_ep_comp_descriptor *comp_desc)
1825 {
1826 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1827 	struct usb_ep *ep;
1828 
1829 	if (usb_endpoint_xfer_isoc(desc) && usb_endpoint_dir_in(desc)) {
1830 		list_for_each_entry_reverse(ep, &ci->gadget.ep_list, ep_list) {
1831 			if (ep->caps.dir_in && !ep->claimed)
1832 				return ep;
1833 		}
1834 	}
1835 
1836 	return NULL;
1837 }
1838 
1839 /*
1840  * Device operations part of the API to the USB controller hardware,
1841  * which don't involve endpoints (or i/o)
1842  * Check  "usb_gadget.h" for details
1843  */
1844 static const struct usb_gadget_ops usb_gadget_ops = {
1845 	.get_frame	= ci_udc_get_frame,
1846 	.vbus_session	= ci_udc_vbus_session,
1847 	.wakeup		= ci_udc_wakeup,
1848 	.set_selfpowered	= ci_udc_selfpowered,
1849 	.pullup		= ci_udc_pullup,
1850 	.vbus_draw	= ci_udc_vbus_draw,
1851 	.udc_start	= ci_udc_start,
1852 	.udc_stop	= ci_udc_stop,
1853 	.match_ep 	= ci_udc_match_ep,
1854 };
1855 
init_eps(struct ci_hdrc * ci)1856 static int init_eps(struct ci_hdrc *ci)
1857 {
1858 	int retval = 0, i, j;
1859 
1860 	for (i = 0; i < ci->hw_ep_max/2; i++)
1861 		for (j = RX; j <= TX; j++) {
1862 			int k = i + j * ci->hw_ep_max/2;
1863 			struct ci_hw_ep *hwep = &ci->ci_hw_ep[k];
1864 
1865 			scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i,
1866 					(j == TX)  ? "in" : "out");
1867 
1868 			hwep->ci          = ci;
1869 			hwep->lock         = &ci->lock;
1870 			hwep->td_pool      = ci->td_pool;
1871 
1872 			hwep->ep.name      = hwep->name;
1873 			hwep->ep.ops       = &usb_ep_ops;
1874 
1875 			if (i == 0) {
1876 				hwep->ep.caps.type_control = true;
1877 			} else {
1878 				hwep->ep.caps.type_iso = true;
1879 				hwep->ep.caps.type_bulk = true;
1880 				hwep->ep.caps.type_int = true;
1881 			}
1882 
1883 			if (j == TX)
1884 				hwep->ep.caps.dir_in = true;
1885 			else
1886 				hwep->ep.caps.dir_out = true;
1887 
1888 			/*
1889 			 * for ep0: maxP defined in desc, for other
1890 			 * eps, maxP is set by epautoconfig() called
1891 			 * by gadget layer
1892 			 */
1893 			usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0);
1894 
1895 			INIT_LIST_HEAD(&hwep->qh.queue);
1896 			hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL,
1897 						       &hwep->qh.dma);
1898 			if (hwep->qh.ptr == NULL)
1899 				retval = -ENOMEM;
1900 
1901 			/*
1902 			 * set up shorthands for ep0 out and in endpoints,
1903 			 * don't add to gadget's ep_list
1904 			 */
1905 			if (i == 0) {
1906 				if (j == RX)
1907 					ci->ep0out = hwep;
1908 				else
1909 					ci->ep0in = hwep;
1910 
1911 				usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX);
1912 				continue;
1913 			}
1914 
1915 			list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list);
1916 		}
1917 
1918 	return retval;
1919 }
1920 
destroy_eps(struct ci_hdrc * ci)1921 static void destroy_eps(struct ci_hdrc *ci)
1922 {
1923 	int i;
1924 
1925 	for (i = 0; i < ci->hw_ep_max; i++) {
1926 		struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
1927 
1928 		if (hwep->pending_td)
1929 			free_pending_td(hwep);
1930 		dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma);
1931 	}
1932 }
1933 
1934 /**
1935  * ci_udc_start: register a gadget driver
1936  * @gadget: our gadget
1937  * @driver: the driver being registered
1938  *
1939  * Interrupts are enabled here.
1940  */
ci_udc_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1941 static int ci_udc_start(struct usb_gadget *gadget,
1942 			 struct usb_gadget_driver *driver)
1943 {
1944 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1945 	int retval;
1946 
1947 	if (driver->disconnect == NULL)
1948 		return -EINVAL;
1949 
1950 	ci->ep0out->ep.desc = &ctrl_endpt_out_desc;
1951 	retval = usb_ep_enable(&ci->ep0out->ep);
1952 	if (retval)
1953 		return retval;
1954 
1955 	ci->ep0in->ep.desc = &ctrl_endpt_in_desc;
1956 	retval = usb_ep_enable(&ci->ep0in->ep);
1957 	if (retval)
1958 		return retval;
1959 
1960 	ci->driver = driver;
1961 
1962 	/* Start otg fsm for B-device */
1963 	if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) {
1964 		ci_hdrc_otg_fsm_start(ci);
1965 		return retval;
1966 	}
1967 
1968 	if (ci->vbus_active)
1969 		ci_hdrc_gadget_connect(gadget, 1);
1970 	else
1971 		usb_udc_vbus_handler(&ci->gadget, false);
1972 
1973 	return retval;
1974 }
1975 
ci_udc_stop_for_otg_fsm(struct ci_hdrc * ci)1976 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci)
1977 {
1978 	if (!ci_otg_is_fsm_mode(ci))
1979 		return;
1980 
1981 	mutex_lock(&ci->fsm.lock);
1982 	if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
1983 		ci->fsm.a_bidl_adis_tmout = 1;
1984 		ci_hdrc_otg_fsm_start(ci);
1985 	} else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
1986 		ci->fsm.protocol = PROTO_UNDEF;
1987 		ci->fsm.otg->state = OTG_STATE_UNDEFINED;
1988 	}
1989 	mutex_unlock(&ci->fsm.lock);
1990 }
1991 
1992 /*
1993  * ci_udc_stop: unregister a gadget driver
1994  */
ci_udc_stop(struct usb_gadget * gadget)1995 static int ci_udc_stop(struct usb_gadget *gadget)
1996 {
1997 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1998 	unsigned long flags;
1999 
2000 	spin_lock_irqsave(&ci->lock, flags);
2001 	ci->driver = NULL;
2002 
2003 	if (ci->vbus_active) {
2004 		hw_device_state(ci, 0);
2005 		spin_unlock_irqrestore(&ci->lock, flags);
2006 		if (ci->platdata->notify_event)
2007 			ci->platdata->notify_event(ci,
2008 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
2009 		_gadget_stop_activity(&ci->gadget);
2010 		spin_lock_irqsave(&ci->lock, flags);
2011 		pm_runtime_put(ci->dev);
2012 	}
2013 
2014 	spin_unlock_irqrestore(&ci->lock, flags);
2015 
2016 	ci_udc_stop_for_otg_fsm(ci);
2017 	return 0;
2018 }
2019 
2020 /******************************************************************************
2021  * BUS block
2022  *****************************************************************************/
2023 /*
2024  * udc_irq: ci interrupt handler
2025  *
2026  * This function returns IRQ_HANDLED if the IRQ has been handled
2027  * It locks access to registers
2028  */
udc_irq(struct ci_hdrc * ci)2029 static irqreturn_t udc_irq(struct ci_hdrc *ci)
2030 {
2031 	irqreturn_t retval;
2032 	u32 intr;
2033 
2034 	if (ci == NULL)
2035 		return IRQ_HANDLED;
2036 
2037 	spin_lock(&ci->lock);
2038 
2039 	if (ci->platdata->flags & CI_HDRC_REGS_SHARED) {
2040 		if (hw_read(ci, OP_USBMODE, USBMODE_CM) !=
2041 				USBMODE_CM_DC) {
2042 			spin_unlock(&ci->lock);
2043 			return IRQ_NONE;
2044 		}
2045 	}
2046 	intr = hw_test_and_clear_intr_active(ci);
2047 
2048 	if (intr) {
2049 		/* order defines priority - do NOT change it */
2050 		if (USBi_URI & intr)
2051 			isr_reset_handler(ci);
2052 
2053 		if (USBi_PCI & intr) {
2054 			ci->gadget.speed = hw_port_is_high_speed(ci) ?
2055 				USB_SPEED_HIGH : USB_SPEED_FULL;
2056 			if (ci->usb_phy)
2057 				usb_phy_set_event(ci->usb_phy,
2058 					USB_EVENT_ENUMERATED);
2059 			if (ci->suspended) {
2060 				if (ci->driver->resume) {
2061 					spin_unlock(&ci->lock);
2062 					ci->driver->resume(&ci->gadget);
2063 					spin_lock(&ci->lock);
2064 				}
2065 				ci->suspended = 0;
2066 				usb_gadget_set_state(&ci->gadget,
2067 						ci->resume_state);
2068 			}
2069 		}
2070 
2071 		if ((USBi_UI | USBi_UEI) & intr)
2072 			isr_tr_complete_handler(ci);
2073 
2074 		if ((USBi_SLI & intr) && !(ci->suspended)) {
2075 			ci->suspended = 1;
2076 			ci->resume_state = ci->gadget.state;
2077 			if (ci->gadget.speed != USB_SPEED_UNKNOWN &&
2078 			    ci->driver->suspend) {
2079 				spin_unlock(&ci->lock);
2080 				ci->driver->suspend(&ci->gadget);
2081 				spin_lock(&ci->lock);
2082 			}
2083 			usb_gadget_set_state(&ci->gadget,
2084 					USB_STATE_SUSPENDED);
2085 		}
2086 		retval = IRQ_HANDLED;
2087 	} else {
2088 		retval = IRQ_NONE;
2089 	}
2090 	spin_unlock(&ci->lock);
2091 
2092 	return retval;
2093 }
2094 
2095 /**
2096  * udc_start: initialize gadget role
2097  * @ci: chipidea controller
2098  */
udc_start(struct ci_hdrc * ci)2099 static int udc_start(struct ci_hdrc *ci)
2100 {
2101 	struct device *dev = ci->dev;
2102 	struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps;
2103 	int retval = 0;
2104 
2105 	ci->gadget.ops          = &usb_gadget_ops;
2106 	ci->gadget.speed        = USB_SPEED_UNKNOWN;
2107 	ci->gadget.max_speed    = USB_SPEED_HIGH;
2108 	ci->gadget.name         = ci->platdata->name;
2109 	ci->gadget.otg_caps	= otg_caps;
2110 	ci->gadget.sg_supported = 1;
2111 	ci->gadget.irq		= ci->irq;
2112 
2113 	if (ci->platdata->flags & CI_HDRC_REQUIRES_ALIGNED_DMA)
2114 		ci->gadget.quirk_avoids_skb_reserve = 1;
2115 
2116 	if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support ||
2117 						otg_caps->adp_support))
2118 		ci->gadget.is_otg = 1;
2119 
2120 	INIT_LIST_HEAD(&ci->gadget.ep_list);
2121 
2122 	/* alloc resources */
2123 	ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent,
2124 				       sizeof(struct ci_hw_qh),
2125 				       64, CI_HDRC_PAGE_SIZE);
2126 	if (ci->qh_pool == NULL)
2127 		return -ENOMEM;
2128 
2129 	ci->td_pool = dma_pool_create("ci_hw_td", dev->parent,
2130 				       sizeof(struct ci_hw_td),
2131 				       64, CI_HDRC_PAGE_SIZE);
2132 	if (ci->td_pool == NULL) {
2133 		retval = -ENOMEM;
2134 		goto free_qh_pool;
2135 	}
2136 
2137 	retval = init_eps(ci);
2138 	if (retval)
2139 		goto free_pools;
2140 
2141 	ci->gadget.ep0 = &ci->ep0in->ep;
2142 
2143 	retval = usb_add_gadget_udc(dev, &ci->gadget);
2144 	if (retval)
2145 		goto destroy_eps;
2146 
2147 	return retval;
2148 
2149 destroy_eps:
2150 	destroy_eps(ci);
2151 free_pools:
2152 	dma_pool_destroy(ci->td_pool);
2153 free_qh_pool:
2154 	dma_pool_destroy(ci->qh_pool);
2155 	return retval;
2156 }
2157 
2158 /*
2159  * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC
2160  *
2161  * No interrupts active, the IRQ has been released
2162  */
ci_hdrc_gadget_destroy(struct ci_hdrc * ci)2163 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci)
2164 {
2165 	if (!ci->roles[CI_ROLE_GADGET])
2166 		return;
2167 
2168 	usb_del_gadget_udc(&ci->gadget);
2169 
2170 	destroy_eps(ci);
2171 
2172 	dma_pool_destroy(ci->td_pool);
2173 	dma_pool_destroy(ci->qh_pool);
2174 }
2175 
udc_id_switch_for_device(struct ci_hdrc * ci)2176 static int udc_id_switch_for_device(struct ci_hdrc *ci)
2177 {
2178 	if (ci->platdata->pins_device)
2179 		pinctrl_select_state(ci->platdata->pctl,
2180 				     ci->platdata->pins_device);
2181 
2182 	if (ci->is_otg)
2183 		/* Clear and enable BSV irq */
2184 		hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2185 					OTGSC_BSVIS | OTGSC_BSVIE);
2186 
2187 	return 0;
2188 }
2189 
udc_id_switch_for_host(struct ci_hdrc * ci)2190 static void udc_id_switch_for_host(struct ci_hdrc *ci)
2191 {
2192 	/*
2193 	 * host doesn't care B_SESSION_VALID event
2194 	 * so clear and disable BSV irq
2195 	 */
2196 	if (ci->is_otg)
2197 		hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS);
2198 
2199 	ci->vbus_active = 0;
2200 
2201 	if (ci->platdata->pins_device && ci->platdata->pins_default)
2202 		pinctrl_select_state(ci->platdata->pctl,
2203 				     ci->platdata->pins_default);
2204 }
2205 
2206 #ifdef CONFIG_PM_SLEEP
udc_suspend(struct ci_hdrc * ci)2207 static void udc_suspend(struct ci_hdrc *ci)
2208 {
2209 	/*
2210 	 * Set OP_ENDPTLISTADDR to be non-zero for
2211 	 * checking if controller resume from power lost
2212 	 * in non-host mode.
2213 	 */
2214 	if (hw_read(ci, OP_ENDPTLISTADDR, ~0) == 0)
2215 		hw_write(ci, OP_ENDPTLISTADDR, ~0, ~0);
2216 }
2217 
udc_resume(struct ci_hdrc * ci,bool power_lost)2218 static void udc_resume(struct ci_hdrc *ci, bool power_lost)
2219 {
2220 	if (power_lost) {
2221 		if (ci->is_otg)
2222 			hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2223 					OTGSC_BSVIS | OTGSC_BSVIE);
2224 		if (ci->vbus_active)
2225 			usb_gadget_vbus_disconnect(&ci->gadget);
2226 	}
2227 
2228 	/* Restore value 0 if it was set for power lost check */
2229 	if (hw_read(ci, OP_ENDPTLISTADDR, ~0) == 0xFFFFFFFF)
2230 		hw_write(ci, OP_ENDPTLISTADDR, ~0, 0);
2231 }
2232 #endif
2233 
2234 /**
2235  * ci_hdrc_gadget_init - initialize device related bits
2236  * @ci: the controller
2237  *
2238  * This function initializes the gadget, if the device is "device capable".
2239  */
ci_hdrc_gadget_init(struct ci_hdrc * ci)2240 int ci_hdrc_gadget_init(struct ci_hdrc *ci)
2241 {
2242 	struct ci_role_driver *rdrv;
2243 	int ret;
2244 
2245 	if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC))
2246 		return -ENXIO;
2247 
2248 	rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL);
2249 	if (!rdrv)
2250 		return -ENOMEM;
2251 
2252 	rdrv->start	= udc_id_switch_for_device;
2253 	rdrv->stop	= udc_id_switch_for_host;
2254 #ifdef CONFIG_PM_SLEEP
2255 	rdrv->suspend	= udc_suspend;
2256 	rdrv->resume	= udc_resume;
2257 #endif
2258 	rdrv->irq	= udc_irq;
2259 	rdrv->name	= "gadget";
2260 
2261 	ret = udc_start(ci);
2262 	if (!ret)
2263 		ci->roles[CI_ROLE_GADGET] = rdrv;
2264 
2265 	return ret;
2266 }
2267