xref: /openbmc/linux/net/vmw_vsock/af_vsock.c (revision aad29a73199b7fbccfbabea3f1ee627ad1924f52)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 
116 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
117 static void vsock_sk_destruct(struct sock *sk);
118 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
119 static void vsock_close(struct sock *sk, long timeout);
120 
121 /* Protocol family. */
122 struct proto vsock_proto = {
123 	.name = "AF_VSOCK",
124 	.owner = THIS_MODULE,
125 	.obj_size = sizeof(struct vsock_sock),
126 	.close = vsock_close,
127 #ifdef CONFIG_BPF_SYSCALL
128 	.psock_update_sk_prot = vsock_bpf_update_proto,
129 #endif
130 };
131 
132 /* The default peer timeout indicates how long we will wait for a peer response
133  * to a control message.
134  */
135 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
136 
137 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
138 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
140 
141 /* Transport used for host->guest communication */
142 static const struct vsock_transport *transport_h2g;
143 /* Transport used for guest->host communication */
144 static const struct vsock_transport *transport_g2h;
145 /* Transport used for DGRAM communication */
146 static const struct vsock_transport *transport_dgram;
147 /* Transport used for local communication */
148 static const struct vsock_transport *transport_local;
149 static DEFINE_MUTEX(vsock_register_mutex);
150 
151 /**** UTILS ****/
152 
153 /* Each bound VSocket is stored in the bind hash table and each connected
154  * VSocket is stored in the connected hash table.
155  *
156  * Unbound sockets are all put on the same list attached to the end of the hash
157  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
158  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
159  * represents the list that addr hashes to).
160  *
161  * Specifically, we initialize the vsock_bind_table array to a size of
162  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
163  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
164  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
165  * mods with VSOCK_HASH_SIZE to ensure this.
166  */
167 #define MAX_PORT_RETRIES        24
168 
169 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
170 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
171 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
172 
173 /* XXX This can probably be implemented in a better way. */
174 #define VSOCK_CONN_HASH(src, dst)				\
175 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
176 #define vsock_connected_sockets(src, dst)		\
177 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
178 #define vsock_connected_sockets_vsk(vsk)				\
179 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
180 
181 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
182 EXPORT_SYMBOL_GPL(vsock_bind_table);
183 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
184 EXPORT_SYMBOL_GPL(vsock_connected_table);
185 DEFINE_SPINLOCK(vsock_table_lock);
186 EXPORT_SYMBOL_GPL(vsock_table_lock);
187 
188 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)189 static int vsock_auto_bind(struct vsock_sock *vsk)
190 {
191 	struct sock *sk = sk_vsock(vsk);
192 	struct sockaddr_vm local_addr;
193 
194 	if (vsock_addr_bound(&vsk->local_addr))
195 		return 0;
196 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
197 	return __vsock_bind(sk, &local_addr);
198 }
199 
vsock_init_tables(void)200 static void vsock_init_tables(void)
201 {
202 	int i;
203 
204 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
205 		INIT_LIST_HEAD(&vsock_bind_table[i]);
206 
207 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
208 		INIT_LIST_HEAD(&vsock_connected_table[i]);
209 }
210 
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)211 static void __vsock_insert_bound(struct list_head *list,
212 				 struct vsock_sock *vsk)
213 {
214 	sock_hold(&vsk->sk);
215 	list_add(&vsk->bound_table, list);
216 }
217 
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)218 static void __vsock_insert_connected(struct list_head *list,
219 				     struct vsock_sock *vsk)
220 {
221 	sock_hold(&vsk->sk);
222 	list_add(&vsk->connected_table, list);
223 }
224 
__vsock_remove_bound(struct vsock_sock * vsk)225 static void __vsock_remove_bound(struct vsock_sock *vsk)
226 {
227 	list_del_init(&vsk->bound_table);
228 	sock_put(&vsk->sk);
229 }
230 
__vsock_remove_connected(struct vsock_sock * vsk)231 static void __vsock_remove_connected(struct vsock_sock *vsk)
232 {
233 	list_del_init(&vsk->connected_table);
234 	sock_put(&vsk->sk);
235 }
236 
__vsock_find_bound_socket(struct sockaddr_vm * addr)237 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
238 {
239 	struct vsock_sock *vsk;
240 
241 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
242 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
243 			return sk_vsock(vsk);
244 
245 		if (addr->svm_port == vsk->local_addr.svm_port &&
246 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
247 		     addr->svm_cid == VMADDR_CID_ANY))
248 			return sk_vsock(vsk);
249 	}
250 
251 	return NULL;
252 }
253 
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)254 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
255 						  struct sockaddr_vm *dst)
256 {
257 	struct vsock_sock *vsk;
258 
259 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
260 			    connected_table) {
261 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
262 		    dst->svm_port == vsk->local_addr.svm_port) {
263 			return sk_vsock(vsk);
264 		}
265 	}
266 
267 	return NULL;
268 }
269 
vsock_insert_unbound(struct vsock_sock * vsk)270 static void vsock_insert_unbound(struct vsock_sock *vsk)
271 {
272 	spin_lock_bh(&vsock_table_lock);
273 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
274 	spin_unlock_bh(&vsock_table_lock);
275 }
276 
vsock_insert_connected(struct vsock_sock * vsk)277 void vsock_insert_connected(struct vsock_sock *vsk)
278 {
279 	struct list_head *list = vsock_connected_sockets(
280 		&vsk->remote_addr, &vsk->local_addr);
281 
282 	spin_lock_bh(&vsock_table_lock);
283 	__vsock_insert_connected(list, vsk);
284 	spin_unlock_bh(&vsock_table_lock);
285 }
286 EXPORT_SYMBOL_GPL(vsock_insert_connected);
287 
vsock_remove_bound(struct vsock_sock * vsk)288 void vsock_remove_bound(struct vsock_sock *vsk)
289 {
290 	spin_lock_bh(&vsock_table_lock);
291 	if (__vsock_in_bound_table(vsk))
292 		__vsock_remove_bound(vsk);
293 	spin_unlock_bh(&vsock_table_lock);
294 }
295 EXPORT_SYMBOL_GPL(vsock_remove_bound);
296 
vsock_remove_connected(struct vsock_sock * vsk)297 void vsock_remove_connected(struct vsock_sock *vsk)
298 {
299 	spin_lock_bh(&vsock_table_lock);
300 	if (__vsock_in_connected_table(vsk))
301 		__vsock_remove_connected(vsk);
302 	spin_unlock_bh(&vsock_table_lock);
303 }
304 EXPORT_SYMBOL_GPL(vsock_remove_connected);
305 
vsock_find_bound_socket(struct sockaddr_vm * addr)306 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
307 {
308 	struct sock *sk;
309 
310 	spin_lock_bh(&vsock_table_lock);
311 	sk = __vsock_find_bound_socket(addr);
312 	if (sk)
313 		sock_hold(sk);
314 
315 	spin_unlock_bh(&vsock_table_lock);
316 
317 	return sk;
318 }
319 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
320 
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)321 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
322 					 struct sockaddr_vm *dst)
323 {
324 	struct sock *sk;
325 
326 	spin_lock_bh(&vsock_table_lock);
327 	sk = __vsock_find_connected_socket(src, dst);
328 	if (sk)
329 		sock_hold(sk);
330 
331 	spin_unlock_bh(&vsock_table_lock);
332 
333 	return sk;
334 }
335 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
336 
vsock_remove_sock(struct vsock_sock * vsk)337 void vsock_remove_sock(struct vsock_sock *vsk)
338 {
339 	vsock_remove_bound(vsk);
340 	vsock_remove_connected(vsk);
341 }
342 EXPORT_SYMBOL_GPL(vsock_remove_sock);
343 
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))344 void vsock_for_each_connected_socket(struct vsock_transport *transport,
345 				     void (*fn)(struct sock *sk))
346 {
347 	int i;
348 
349 	spin_lock_bh(&vsock_table_lock);
350 
351 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
352 		struct vsock_sock *vsk;
353 		list_for_each_entry(vsk, &vsock_connected_table[i],
354 				    connected_table) {
355 			if (vsk->transport != transport)
356 				continue;
357 
358 			fn(sk_vsock(vsk));
359 		}
360 	}
361 
362 	spin_unlock_bh(&vsock_table_lock);
363 }
364 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
365 
vsock_add_pending(struct sock * listener,struct sock * pending)366 void vsock_add_pending(struct sock *listener, struct sock *pending)
367 {
368 	struct vsock_sock *vlistener;
369 	struct vsock_sock *vpending;
370 
371 	vlistener = vsock_sk(listener);
372 	vpending = vsock_sk(pending);
373 
374 	sock_hold(pending);
375 	sock_hold(listener);
376 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
377 }
378 EXPORT_SYMBOL_GPL(vsock_add_pending);
379 
vsock_remove_pending(struct sock * listener,struct sock * pending)380 void vsock_remove_pending(struct sock *listener, struct sock *pending)
381 {
382 	struct vsock_sock *vpending = vsock_sk(pending);
383 
384 	list_del_init(&vpending->pending_links);
385 	sock_put(listener);
386 	sock_put(pending);
387 }
388 EXPORT_SYMBOL_GPL(vsock_remove_pending);
389 
vsock_enqueue_accept(struct sock * listener,struct sock * connected)390 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
391 {
392 	struct vsock_sock *vlistener;
393 	struct vsock_sock *vconnected;
394 
395 	vlistener = vsock_sk(listener);
396 	vconnected = vsock_sk(connected);
397 
398 	sock_hold(connected);
399 	sock_hold(listener);
400 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
401 }
402 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
403 
vsock_use_local_transport(unsigned int remote_cid)404 static bool vsock_use_local_transport(unsigned int remote_cid)
405 {
406 	if (!transport_local)
407 		return false;
408 
409 	if (remote_cid == VMADDR_CID_LOCAL)
410 		return true;
411 
412 	if (transport_g2h) {
413 		return remote_cid == transport_g2h->get_local_cid();
414 	} else {
415 		return remote_cid == VMADDR_CID_HOST;
416 	}
417 }
418 
vsock_deassign_transport(struct vsock_sock * vsk)419 static void vsock_deassign_transport(struct vsock_sock *vsk)
420 {
421 	if (!vsk->transport)
422 		return;
423 
424 	vsk->transport->destruct(vsk);
425 	module_put(vsk->transport->module);
426 	vsk->transport = NULL;
427 }
428 
429 /* Assign a transport to a socket and call the .init transport callback.
430  *
431  * Note: for connection oriented socket this must be called when vsk->remote_addr
432  * is set (e.g. during the connect() or when a connection request on a listener
433  * socket is received).
434  * The vsk->remote_addr is used to decide which transport to use:
435  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
436  *    g2h is not loaded, will use local transport;
437  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
438  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
439  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
440  */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)441 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
442 {
443 	const struct vsock_transport *new_transport;
444 	struct sock *sk = sk_vsock(vsk);
445 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
446 	__u8 remote_flags;
447 	int ret;
448 
449 	/* If the packet is coming with the source and destination CIDs higher
450 	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
451 	 * forwarded to the host should be established. Then the host will
452 	 * need to forward the packets to the guest.
453 	 *
454 	 * The flag is set on the (listen) receive path (psk is not NULL). On
455 	 * the connect path the flag can be set by the user space application.
456 	 */
457 	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
458 	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
459 		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
460 
461 	remote_flags = vsk->remote_addr.svm_flags;
462 
463 	switch (sk->sk_type) {
464 	case SOCK_DGRAM:
465 		new_transport = transport_dgram;
466 		break;
467 	case SOCK_STREAM:
468 	case SOCK_SEQPACKET:
469 		if (vsock_use_local_transport(remote_cid))
470 			new_transport = transport_local;
471 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
472 			 (remote_flags & VMADDR_FLAG_TO_HOST))
473 			new_transport = transport_g2h;
474 		else
475 			new_transport = transport_h2g;
476 		break;
477 	default:
478 		return -ESOCKTNOSUPPORT;
479 	}
480 
481 	if (vsk->transport) {
482 		if (vsk->transport == new_transport)
483 			return 0;
484 
485 		/* transport->release() must be called with sock lock acquired.
486 		 * This path can only be taken during vsock_connect(), where we
487 		 * have already held the sock lock. In the other cases, this
488 		 * function is called on a new socket which is not assigned to
489 		 * any transport.
490 		 */
491 		vsk->transport->release(vsk);
492 		vsock_deassign_transport(vsk);
493 
494 		/* transport's release() and destruct() can touch some socket
495 		 * state, since we are reassigning the socket to a new transport
496 		 * during vsock_connect(), let's reset these fields to have a
497 		 * clean state.
498 		 */
499 		sock_reset_flag(sk, SOCK_DONE);
500 		sk->sk_state = TCP_CLOSE;
501 		vsk->peer_shutdown = 0;
502 	}
503 
504 	/* We increase the module refcnt to prevent the transport unloading
505 	 * while there are open sockets assigned to it.
506 	 */
507 	if (!new_transport || !try_module_get(new_transport->module))
508 		return -ENODEV;
509 
510 	if (sk->sk_type == SOCK_SEQPACKET) {
511 		if (!new_transport->seqpacket_allow ||
512 		    !new_transport->seqpacket_allow(remote_cid)) {
513 			module_put(new_transport->module);
514 			return -ESOCKTNOSUPPORT;
515 		}
516 	}
517 
518 	ret = new_transport->init(vsk, psk);
519 	if (ret) {
520 		module_put(new_transport->module);
521 		return ret;
522 	}
523 
524 	vsk->transport = new_transport;
525 
526 	return 0;
527 }
528 EXPORT_SYMBOL_GPL(vsock_assign_transport);
529 
vsock_find_cid(unsigned int cid)530 bool vsock_find_cid(unsigned int cid)
531 {
532 	if (transport_g2h && cid == transport_g2h->get_local_cid())
533 		return true;
534 
535 	if (transport_h2g && cid == VMADDR_CID_HOST)
536 		return true;
537 
538 	if (transport_local && cid == VMADDR_CID_LOCAL)
539 		return true;
540 
541 	return false;
542 }
543 EXPORT_SYMBOL_GPL(vsock_find_cid);
544 
vsock_dequeue_accept(struct sock * listener)545 static struct sock *vsock_dequeue_accept(struct sock *listener)
546 {
547 	struct vsock_sock *vlistener;
548 	struct vsock_sock *vconnected;
549 
550 	vlistener = vsock_sk(listener);
551 
552 	if (list_empty(&vlistener->accept_queue))
553 		return NULL;
554 
555 	vconnected = list_entry(vlistener->accept_queue.next,
556 				struct vsock_sock, accept_queue);
557 
558 	list_del_init(&vconnected->accept_queue);
559 	sock_put(listener);
560 	/* The caller will need a reference on the connected socket so we let
561 	 * it call sock_put().
562 	 */
563 
564 	return sk_vsock(vconnected);
565 }
566 
vsock_is_accept_queue_empty(struct sock * sk)567 static bool vsock_is_accept_queue_empty(struct sock *sk)
568 {
569 	struct vsock_sock *vsk = vsock_sk(sk);
570 	return list_empty(&vsk->accept_queue);
571 }
572 
vsock_is_pending(struct sock * sk)573 static bool vsock_is_pending(struct sock *sk)
574 {
575 	struct vsock_sock *vsk = vsock_sk(sk);
576 	return !list_empty(&vsk->pending_links);
577 }
578 
vsock_send_shutdown(struct sock * sk,int mode)579 static int vsock_send_shutdown(struct sock *sk, int mode)
580 {
581 	struct vsock_sock *vsk = vsock_sk(sk);
582 
583 	if (!vsk->transport)
584 		return -ENODEV;
585 
586 	return vsk->transport->shutdown(vsk, mode);
587 }
588 
vsock_pending_work(struct work_struct * work)589 static void vsock_pending_work(struct work_struct *work)
590 {
591 	struct sock *sk;
592 	struct sock *listener;
593 	struct vsock_sock *vsk;
594 	bool cleanup;
595 
596 	vsk = container_of(work, struct vsock_sock, pending_work.work);
597 	sk = sk_vsock(vsk);
598 	listener = vsk->listener;
599 	cleanup = true;
600 
601 	lock_sock(listener);
602 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
603 
604 	if (vsock_is_pending(sk)) {
605 		vsock_remove_pending(listener, sk);
606 
607 		sk_acceptq_removed(listener);
608 	} else if (!vsk->rejected) {
609 		/* We are not on the pending list and accept() did not reject
610 		 * us, so we must have been accepted by our user process.  We
611 		 * just need to drop our references to the sockets and be on
612 		 * our way.
613 		 */
614 		cleanup = false;
615 		goto out;
616 	}
617 
618 	/* We need to remove ourself from the global connected sockets list so
619 	 * incoming packets can't find this socket, and to reduce the reference
620 	 * count.
621 	 */
622 	vsock_remove_connected(vsk);
623 
624 	sk->sk_state = TCP_CLOSE;
625 
626 out:
627 	release_sock(sk);
628 	release_sock(listener);
629 	if (cleanup)
630 		sock_put(sk);
631 
632 	sock_put(sk);
633 	sock_put(listener);
634 }
635 
636 /**** SOCKET OPERATIONS ****/
637 
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)638 static int __vsock_bind_connectible(struct vsock_sock *vsk,
639 				    struct sockaddr_vm *addr)
640 {
641 	static u32 port;
642 	struct sockaddr_vm new_addr;
643 
644 	if (!port)
645 		port = get_random_u32_above(LAST_RESERVED_PORT);
646 
647 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
648 
649 	if (addr->svm_port == VMADDR_PORT_ANY) {
650 		bool found = false;
651 		unsigned int i;
652 
653 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
654 			if (port <= LAST_RESERVED_PORT)
655 				port = LAST_RESERVED_PORT + 1;
656 
657 			new_addr.svm_port = port++;
658 
659 			if (!__vsock_find_bound_socket(&new_addr)) {
660 				found = true;
661 				break;
662 			}
663 		}
664 
665 		if (!found)
666 			return -EADDRNOTAVAIL;
667 	} else {
668 		/* If port is in reserved range, ensure caller
669 		 * has necessary privileges.
670 		 */
671 		if (addr->svm_port <= LAST_RESERVED_PORT &&
672 		    !capable(CAP_NET_BIND_SERVICE)) {
673 			return -EACCES;
674 		}
675 
676 		if (__vsock_find_bound_socket(&new_addr))
677 			return -EADDRINUSE;
678 	}
679 
680 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
681 
682 	/* Remove connection oriented sockets from the unbound list and add them
683 	 * to the hash table for easy lookup by its address.  The unbound list
684 	 * is simply an extra entry at the end of the hash table, a trick used
685 	 * by AF_UNIX.
686 	 */
687 	__vsock_remove_bound(vsk);
688 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
689 
690 	return 0;
691 }
692 
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)693 static int __vsock_bind_dgram(struct vsock_sock *vsk,
694 			      struct sockaddr_vm *addr)
695 {
696 	return vsk->transport->dgram_bind(vsk, addr);
697 }
698 
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)699 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
700 {
701 	struct vsock_sock *vsk = vsock_sk(sk);
702 	int retval;
703 
704 	/* First ensure this socket isn't already bound. */
705 	if (vsock_addr_bound(&vsk->local_addr))
706 		return -EINVAL;
707 
708 	/* Now bind to the provided address or select appropriate values if
709 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
710 	 * like AF_INET prevents binding to a non-local IP address (in most
711 	 * cases), we only allow binding to a local CID.
712 	 */
713 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
714 		return -EADDRNOTAVAIL;
715 
716 	switch (sk->sk_socket->type) {
717 	case SOCK_STREAM:
718 	case SOCK_SEQPACKET:
719 		spin_lock_bh(&vsock_table_lock);
720 		retval = __vsock_bind_connectible(vsk, addr);
721 		spin_unlock_bh(&vsock_table_lock);
722 		break;
723 
724 	case SOCK_DGRAM:
725 		retval = __vsock_bind_dgram(vsk, addr);
726 		break;
727 
728 	default:
729 		retval = -EINVAL;
730 		break;
731 	}
732 
733 	return retval;
734 }
735 
736 static void vsock_connect_timeout(struct work_struct *work);
737 
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)738 static struct sock *__vsock_create(struct net *net,
739 				   struct socket *sock,
740 				   struct sock *parent,
741 				   gfp_t priority,
742 				   unsigned short type,
743 				   int kern)
744 {
745 	struct sock *sk;
746 	struct vsock_sock *psk;
747 	struct vsock_sock *vsk;
748 
749 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
750 	if (!sk)
751 		return NULL;
752 
753 	sock_init_data(sock, sk);
754 
755 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
756 	 * non-NULL. We make sure that our sockets always have a type by
757 	 * setting it here if needed.
758 	 */
759 	if (!sock)
760 		sk->sk_type = type;
761 
762 	vsk = vsock_sk(sk);
763 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
764 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
765 
766 	sk->sk_destruct = vsock_sk_destruct;
767 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
768 	sock_reset_flag(sk, SOCK_DONE);
769 
770 	INIT_LIST_HEAD(&vsk->bound_table);
771 	INIT_LIST_HEAD(&vsk->connected_table);
772 	vsk->listener = NULL;
773 	INIT_LIST_HEAD(&vsk->pending_links);
774 	INIT_LIST_HEAD(&vsk->accept_queue);
775 	vsk->rejected = false;
776 	vsk->sent_request = false;
777 	vsk->ignore_connecting_rst = false;
778 	vsk->peer_shutdown = 0;
779 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
780 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
781 
782 	psk = parent ? vsock_sk(parent) : NULL;
783 	if (parent) {
784 		vsk->trusted = psk->trusted;
785 		vsk->owner = get_cred(psk->owner);
786 		vsk->connect_timeout = psk->connect_timeout;
787 		vsk->buffer_size = psk->buffer_size;
788 		vsk->buffer_min_size = psk->buffer_min_size;
789 		vsk->buffer_max_size = psk->buffer_max_size;
790 		security_sk_clone(parent, sk);
791 	} else {
792 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
793 		vsk->owner = get_current_cred();
794 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
795 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
796 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
797 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
798 	}
799 
800 	return sk;
801 }
802 
sock_type_connectible(u16 type)803 static bool sock_type_connectible(u16 type)
804 {
805 	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
806 }
807 
__vsock_release(struct sock * sk,int level)808 static void __vsock_release(struct sock *sk, int level)
809 {
810 	struct vsock_sock *vsk;
811 	struct sock *pending;
812 
813 	vsk = vsock_sk(sk);
814 	pending = NULL;	/* Compiler warning. */
815 
816 	/* When "level" is SINGLE_DEPTH_NESTING, use the nested
817 	 * version to avoid the warning "possible recursive locking
818 	 * detected". When "level" is 0, lock_sock_nested(sk, level)
819 	 * is the same as lock_sock(sk).
820 	 */
821 	lock_sock_nested(sk, level);
822 
823 	if (vsk->transport)
824 		vsk->transport->release(vsk);
825 	else if (sock_type_connectible(sk->sk_type))
826 		vsock_remove_sock(vsk);
827 
828 	sock_orphan(sk);
829 	sk->sk_shutdown = SHUTDOWN_MASK;
830 
831 	skb_queue_purge(&sk->sk_receive_queue);
832 
833 	/* Clean up any sockets that never were accepted. */
834 	while ((pending = vsock_dequeue_accept(sk)) != NULL) {
835 		__vsock_release(pending, SINGLE_DEPTH_NESTING);
836 		sock_put(pending);
837 	}
838 
839 	release_sock(sk);
840 	sock_put(sk);
841 }
842 
vsock_sk_destruct(struct sock * sk)843 static void vsock_sk_destruct(struct sock *sk)
844 {
845 	struct vsock_sock *vsk = vsock_sk(sk);
846 
847 	vsock_deassign_transport(vsk);
848 
849 	/* When clearing these addresses, there's no need to set the family and
850 	 * possibly register the address family with the kernel.
851 	 */
852 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
853 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
854 
855 	put_cred(vsk->owner);
856 }
857 
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)858 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
859 {
860 	int err;
861 
862 	err = sock_queue_rcv_skb(sk, skb);
863 	if (err)
864 		kfree_skb(skb);
865 
866 	return err;
867 }
868 
vsock_create_connected(struct sock * parent)869 struct sock *vsock_create_connected(struct sock *parent)
870 {
871 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
872 			      parent->sk_type, 0);
873 }
874 EXPORT_SYMBOL_GPL(vsock_create_connected);
875 
vsock_stream_has_data(struct vsock_sock * vsk)876 s64 vsock_stream_has_data(struct vsock_sock *vsk)
877 {
878 	if (WARN_ON(!vsk->transport))
879 		return 0;
880 
881 	return vsk->transport->stream_has_data(vsk);
882 }
883 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
884 
vsock_connectible_has_data(struct vsock_sock * vsk)885 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
886 {
887 	struct sock *sk = sk_vsock(vsk);
888 
889 	if (WARN_ON(!vsk->transport))
890 		return 0;
891 
892 	if (sk->sk_type == SOCK_SEQPACKET)
893 		return vsk->transport->seqpacket_has_data(vsk);
894 	else
895 		return vsock_stream_has_data(vsk);
896 }
897 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
898 
vsock_stream_has_space(struct vsock_sock * vsk)899 s64 vsock_stream_has_space(struct vsock_sock *vsk)
900 {
901 	if (WARN_ON(!vsk->transport))
902 		return 0;
903 
904 	return vsk->transport->stream_has_space(vsk);
905 }
906 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
907 
vsock_data_ready(struct sock * sk)908 void vsock_data_ready(struct sock *sk)
909 {
910 	struct vsock_sock *vsk = vsock_sk(sk);
911 
912 	if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
913 	    sock_flag(sk, SOCK_DONE))
914 		sk->sk_data_ready(sk);
915 }
916 EXPORT_SYMBOL_GPL(vsock_data_ready);
917 
918 /* Dummy callback required by sockmap.
919  * See unconditional call of saved_close() in sock_map_close().
920  */
vsock_close(struct sock * sk,long timeout)921 static void vsock_close(struct sock *sk, long timeout)
922 {
923 }
924 
vsock_release(struct socket * sock)925 static int vsock_release(struct socket *sock)
926 {
927 	struct sock *sk = sock->sk;
928 
929 	if (!sk)
930 		return 0;
931 
932 	sk->sk_prot->close(sk, 0);
933 	__vsock_release(sk, 0);
934 	sock->sk = NULL;
935 	sock->state = SS_FREE;
936 
937 	return 0;
938 }
939 
940 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)941 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
942 {
943 	int err;
944 	struct sock *sk;
945 	struct sockaddr_vm *vm_addr;
946 
947 	sk = sock->sk;
948 
949 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
950 		return -EINVAL;
951 
952 	lock_sock(sk);
953 	err = __vsock_bind(sk, vm_addr);
954 	release_sock(sk);
955 
956 	return err;
957 }
958 
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)959 static int vsock_getname(struct socket *sock,
960 			 struct sockaddr *addr, int peer)
961 {
962 	int err;
963 	struct sock *sk;
964 	struct vsock_sock *vsk;
965 	struct sockaddr_vm *vm_addr;
966 
967 	sk = sock->sk;
968 	vsk = vsock_sk(sk);
969 	err = 0;
970 
971 	lock_sock(sk);
972 
973 	if (peer) {
974 		if (sock->state != SS_CONNECTED) {
975 			err = -ENOTCONN;
976 			goto out;
977 		}
978 		vm_addr = &vsk->remote_addr;
979 	} else {
980 		vm_addr = &vsk->local_addr;
981 	}
982 
983 	if (!vm_addr) {
984 		err = -EINVAL;
985 		goto out;
986 	}
987 
988 	/* sys_getsockname() and sys_getpeername() pass us a
989 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
990 	 * that macro is defined in socket.c instead of .h, so we hardcode its
991 	 * value here.
992 	 */
993 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
994 	memcpy(addr, vm_addr, sizeof(*vm_addr));
995 	err = sizeof(*vm_addr);
996 
997 out:
998 	release_sock(sk);
999 	return err;
1000 }
1001 
vsock_shutdown(struct socket * sock,int mode)1002 static int vsock_shutdown(struct socket *sock, int mode)
1003 {
1004 	int err;
1005 	struct sock *sk;
1006 
1007 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1008 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1009 	 * here like the other address families do.  Note also that the
1010 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1011 	 * which is what we want.
1012 	 */
1013 	mode++;
1014 
1015 	if ((mode & ~SHUTDOWN_MASK) || !mode)
1016 		return -EINVAL;
1017 
1018 	/* If this is a connection oriented socket and it is not connected then
1019 	 * bail out immediately.  If it is a DGRAM socket then we must first
1020 	 * kick the socket so that it wakes up from any sleeping calls, for
1021 	 * example recv(), and then afterwards return the error.
1022 	 */
1023 
1024 	sk = sock->sk;
1025 
1026 	lock_sock(sk);
1027 	if (sock->state == SS_UNCONNECTED) {
1028 		err = -ENOTCONN;
1029 		if (sock_type_connectible(sk->sk_type))
1030 			goto out;
1031 	} else {
1032 		sock->state = SS_DISCONNECTING;
1033 		err = 0;
1034 	}
1035 
1036 	/* Receive and send shutdowns are treated alike. */
1037 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1038 	if (mode) {
1039 		sk->sk_shutdown |= mode;
1040 		sk->sk_state_change(sk);
1041 
1042 		if (sock_type_connectible(sk->sk_type)) {
1043 			sock_reset_flag(sk, SOCK_DONE);
1044 			vsock_send_shutdown(sk, mode);
1045 		}
1046 	}
1047 
1048 out:
1049 	release_sock(sk);
1050 	return err;
1051 }
1052 
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1053 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1054 			       poll_table *wait)
1055 {
1056 	struct sock *sk;
1057 	__poll_t mask;
1058 	struct vsock_sock *vsk;
1059 
1060 	sk = sock->sk;
1061 	vsk = vsock_sk(sk);
1062 
1063 	poll_wait(file, sk_sleep(sk), wait);
1064 	mask = 0;
1065 
1066 	if (sk->sk_err)
1067 		/* Signify that there has been an error on this socket. */
1068 		mask |= EPOLLERR;
1069 
1070 	/* INET sockets treat local write shutdown and peer write shutdown as a
1071 	 * case of EPOLLHUP set.
1072 	 */
1073 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1074 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1075 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1076 		mask |= EPOLLHUP;
1077 	}
1078 
1079 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1080 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1081 		mask |= EPOLLRDHUP;
1082 	}
1083 
1084 	if (sk_is_readable(sk))
1085 		mask |= EPOLLIN | EPOLLRDNORM;
1086 
1087 	if (sock->type == SOCK_DGRAM) {
1088 		/* For datagram sockets we can read if there is something in
1089 		 * the queue and write as long as the socket isn't shutdown for
1090 		 * sending.
1091 		 */
1092 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1093 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1094 			mask |= EPOLLIN | EPOLLRDNORM;
1095 		}
1096 
1097 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1098 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1099 
1100 	} else if (sock_type_connectible(sk->sk_type)) {
1101 		const struct vsock_transport *transport;
1102 
1103 		lock_sock(sk);
1104 
1105 		transport = vsk->transport;
1106 
1107 		/* Listening sockets that have connections in their accept
1108 		 * queue can be read.
1109 		 */
1110 		if (sk->sk_state == TCP_LISTEN
1111 		    && !vsock_is_accept_queue_empty(sk))
1112 			mask |= EPOLLIN | EPOLLRDNORM;
1113 
1114 		/* If there is something in the queue then we can read. */
1115 		if (transport && transport->stream_is_active(vsk) &&
1116 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1117 			bool data_ready_now = false;
1118 			int target = sock_rcvlowat(sk, 0, INT_MAX);
1119 			int ret = transport->notify_poll_in(
1120 					vsk, target, &data_ready_now);
1121 			if (ret < 0) {
1122 				mask |= EPOLLERR;
1123 			} else {
1124 				if (data_ready_now)
1125 					mask |= EPOLLIN | EPOLLRDNORM;
1126 
1127 			}
1128 		}
1129 
1130 		/* Sockets whose connections have been closed, reset, or
1131 		 * terminated should also be considered read, and we check the
1132 		 * shutdown flag for that.
1133 		 */
1134 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1135 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1136 			mask |= EPOLLIN | EPOLLRDNORM;
1137 		}
1138 
1139 		/* Connected sockets that can produce data can be written. */
1140 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1141 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1142 				bool space_avail_now = false;
1143 				int ret = transport->notify_poll_out(
1144 						vsk, 1, &space_avail_now);
1145 				if (ret < 0) {
1146 					mask |= EPOLLERR;
1147 				} else {
1148 					if (space_avail_now)
1149 						/* Remove EPOLLWRBAND since INET
1150 						 * sockets are not setting it.
1151 						 */
1152 						mask |= EPOLLOUT | EPOLLWRNORM;
1153 
1154 				}
1155 			}
1156 		}
1157 
1158 		/* Simulate INET socket poll behaviors, which sets
1159 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1160 		 * but local send is not shutdown.
1161 		 */
1162 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1163 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1164 				mask |= EPOLLOUT | EPOLLWRNORM;
1165 
1166 		}
1167 
1168 		release_sock(sk);
1169 	}
1170 
1171 	return mask;
1172 }
1173 
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1174 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1175 {
1176 	struct vsock_sock *vsk = vsock_sk(sk);
1177 
1178 	return vsk->transport->read_skb(vsk, read_actor);
1179 }
1180 
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1181 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1182 			       size_t len)
1183 {
1184 	int err;
1185 	struct sock *sk;
1186 	struct vsock_sock *vsk;
1187 	struct sockaddr_vm *remote_addr;
1188 	const struct vsock_transport *transport;
1189 
1190 	if (msg->msg_flags & MSG_OOB)
1191 		return -EOPNOTSUPP;
1192 
1193 	/* For now, MSG_DONTWAIT is always assumed... */
1194 	err = 0;
1195 	sk = sock->sk;
1196 	vsk = vsock_sk(sk);
1197 
1198 	lock_sock(sk);
1199 
1200 	transport = vsk->transport;
1201 
1202 	err = vsock_auto_bind(vsk);
1203 	if (err)
1204 		goto out;
1205 
1206 
1207 	/* If the provided message contains an address, use that.  Otherwise
1208 	 * fall back on the socket's remote handle (if it has been connected).
1209 	 */
1210 	if (msg->msg_name &&
1211 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1212 			    &remote_addr) == 0) {
1213 		/* Ensure this address is of the right type and is a valid
1214 		 * destination.
1215 		 */
1216 
1217 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1218 			remote_addr->svm_cid = transport->get_local_cid();
1219 
1220 		if (!vsock_addr_bound(remote_addr)) {
1221 			err = -EINVAL;
1222 			goto out;
1223 		}
1224 	} else if (sock->state == SS_CONNECTED) {
1225 		remote_addr = &vsk->remote_addr;
1226 
1227 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1228 			remote_addr->svm_cid = transport->get_local_cid();
1229 
1230 		/* XXX Should connect() or this function ensure remote_addr is
1231 		 * bound?
1232 		 */
1233 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1234 			err = -EINVAL;
1235 			goto out;
1236 		}
1237 	} else {
1238 		err = -EINVAL;
1239 		goto out;
1240 	}
1241 
1242 	if (!transport->dgram_allow(remote_addr->svm_cid,
1243 				    remote_addr->svm_port)) {
1244 		err = -EINVAL;
1245 		goto out;
1246 	}
1247 
1248 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1249 
1250 out:
1251 	release_sock(sk);
1252 	return err;
1253 }
1254 
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1255 static int vsock_dgram_connect(struct socket *sock,
1256 			       struct sockaddr *addr, int addr_len, int flags)
1257 {
1258 	int err;
1259 	struct sock *sk;
1260 	struct vsock_sock *vsk;
1261 	struct sockaddr_vm *remote_addr;
1262 
1263 	sk = sock->sk;
1264 	vsk = vsock_sk(sk);
1265 
1266 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1267 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1268 		lock_sock(sk);
1269 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1270 				VMADDR_PORT_ANY);
1271 		sock->state = SS_UNCONNECTED;
1272 		release_sock(sk);
1273 		return 0;
1274 	} else if (err != 0)
1275 		return -EINVAL;
1276 
1277 	lock_sock(sk);
1278 
1279 	err = vsock_auto_bind(vsk);
1280 	if (err)
1281 		goto out;
1282 
1283 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1284 					 remote_addr->svm_port)) {
1285 		err = -EINVAL;
1286 		goto out;
1287 	}
1288 
1289 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1290 	sock->state = SS_CONNECTED;
1291 
1292 	/* sock map disallows redirection of non-TCP sockets with sk_state !=
1293 	 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1294 	 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1295 	 *
1296 	 * This doesn't seem to be abnormal state for datagram sockets, as the
1297 	 * same approach can be see in other datagram socket types as well
1298 	 * (such as unix sockets).
1299 	 */
1300 	sk->sk_state = TCP_ESTABLISHED;
1301 
1302 out:
1303 	release_sock(sk);
1304 	return err;
1305 }
1306 
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1307 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1308 			  size_t len, int flags)
1309 {
1310 	struct sock *sk = sock->sk;
1311 	struct vsock_sock *vsk = vsock_sk(sk);
1312 
1313 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1314 }
1315 
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1316 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1317 			size_t len, int flags)
1318 {
1319 #ifdef CONFIG_BPF_SYSCALL
1320 	struct sock *sk = sock->sk;
1321 	const struct proto *prot;
1322 
1323 	prot = READ_ONCE(sk->sk_prot);
1324 	if (prot != &vsock_proto)
1325 		return prot->recvmsg(sk, msg, len, flags, NULL);
1326 #endif
1327 
1328 	return __vsock_dgram_recvmsg(sock, msg, len, flags);
1329 }
1330 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1331 
1332 static const struct proto_ops vsock_dgram_ops = {
1333 	.family = PF_VSOCK,
1334 	.owner = THIS_MODULE,
1335 	.release = vsock_release,
1336 	.bind = vsock_bind,
1337 	.connect = vsock_dgram_connect,
1338 	.socketpair = sock_no_socketpair,
1339 	.accept = sock_no_accept,
1340 	.getname = vsock_getname,
1341 	.poll = vsock_poll,
1342 	.ioctl = sock_no_ioctl,
1343 	.listen = sock_no_listen,
1344 	.shutdown = vsock_shutdown,
1345 	.sendmsg = vsock_dgram_sendmsg,
1346 	.recvmsg = vsock_dgram_recvmsg,
1347 	.mmap = sock_no_mmap,
1348 	.read_skb = vsock_read_skb,
1349 };
1350 
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1351 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1352 {
1353 	const struct vsock_transport *transport = vsk->transport;
1354 
1355 	if (!transport || !transport->cancel_pkt)
1356 		return -EOPNOTSUPP;
1357 
1358 	return transport->cancel_pkt(vsk);
1359 }
1360 
vsock_connect_timeout(struct work_struct * work)1361 static void vsock_connect_timeout(struct work_struct *work)
1362 {
1363 	struct sock *sk;
1364 	struct vsock_sock *vsk;
1365 
1366 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1367 	sk = sk_vsock(vsk);
1368 
1369 	lock_sock(sk);
1370 	if (sk->sk_state == TCP_SYN_SENT &&
1371 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1372 		sk->sk_state = TCP_CLOSE;
1373 		sk->sk_socket->state = SS_UNCONNECTED;
1374 		sk->sk_err = ETIMEDOUT;
1375 		sk_error_report(sk);
1376 		vsock_transport_cancel_pkt(vsk);
1377 	}
1378 	release_sock(sk);
1379 
1380 	sock_put(sk);
1381 }
1382 
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1383 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1384 			 int addr_len, int flags)
1385 {
1386 	int err;
1387 	struct sock *sk;
1388 	struct vsock_sock *vsk;
1389 	const struct vsock_transport *transport;
1390 	struct sockaddr_vm *remote_addr;
1391 	long timeout;
1392 	DEFINE_WAIT(wait);
1393 
1394 	err = 0;
1395 	sk = sock->sk;
1396 	vsk = vsock_sk(sk);
1397 
1398 	lock_sock(sk);
1399 
1400 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1401 	switch (sock->state) {
1402 	case SS_CONNECTED:
1403 		err = -EISCONN;
1404 		goto out;
1405 	case SS_DISCONNECTING:
1406 		err = -EINVAL;
1407 		goto out;
1408 	case SS_CONNECTING:
1409 		/* This continues on so we can move sock into the SS_CONNECTED
1410 		 * state once the connection has completed (at which point err
1411 		 * will be set to zero also).  Otherwise, we will either wait
1412 		 * for the connection or return -EALREADY should this be a
1413 		 * non-blocking call.
1414 		 */
1415 		err = -EALREADY;
1416 		if (flags & O_NONBLOCK)
1417 			goto out;
1418 		break;
1419 	default:
1420 		if ((sk->sk_state == TCP_LISTEN) ||
1421 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1422 			err = -EINVAL;
1423 			goto out;
1424 		}
1425 
1426 		/* Set the remote address that we are connecting to. */
1427 		memcpy(&vsk->remote_addr, remote_addr,
1428 		       sizeof(vsk->remote_addr));
1429 
1430 		err = vsock_assign_transport(vsk, NULL);
1431 		if (err)
1432 			goto out;
1433 
1434 		transport = vsk->transport;
1435 
1436 		/* The hypervisor and well-known contexts do not have socket
1437 		 * endpoints.
1438 		 */
1439 		if (!transport ||
1440 		    !transport->stream_allow(remote_addr->svm_cid,
1441 					     remote_addr->svm_port)) {
1442 			err = -ENETUNREACH;
1443 			goto out;
1444 		}
1445 
1446 		err = vsock_auto_bind(vsk);
1447 		if (err)
1448 			goto out;
1449 
1450 		sk->sk_state = TCP_SYN_SENT;
1451 
1452 		err = transport->connect(vsk);
1453 		if (err < 0)
1454 			goto out;
1455 
1456 		/* Mark sock as connecting and set the error code to in
1457 		 * progress in case this is a non-blocking connect.
1458 		 */
1459 		sock->state = SS_CONNECTING;
1460 		err = -EINPROGRESS;
1461 	}
1462 
1463 	/* The receive path will handle all communication until we are able to
1464 	 * enter the connected state.  Here we wait for the connection to be
1465 	 * completed or a notification of an error.
1466 	 */
1467 	timeout = vsk->connect_timeout;
1468 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1469 
1470 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1471 		if (flags & O_NONBLOCK) {
1472 			/* If we're not going to block, we schedule a timeout
1473 			 * function to generate a timeout on the connection
1474 			 * attempt, in case the peer doesn't respond in a
1475 			 * timely manner. We hold on to the socket until the
1476 			 * timeout fires.
1477 			 */
1478 			sock_hold(sk);
1479 
1480 			/* If the timeout function is already scheduled,
1481 			 * reschedule it, then ungrab the socket refcount to
1482 			 * keep it balanced.
1483 			 */
1484 			if (mod_delayed_work(system_wq, &vsk->connect_work,
1485 					     timeout))
1486 				sock_put(sk);
1487 
1488 			/* Skip ahead to preserve error code set above. */
1489 			goto out_wait;
1490 		}
1491 
1492 		release_sock(sk);
1493 		timeout = schedule_timeout(timeout);
1494 		lock_sock(sk);
1495 
1496 		if (signal_pending(current)) {
1497 			err = sock_intr_errno(timeout);
1498 			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1499 			sock->state = SS_UNCONNECTED;
1500 			vsock_transport_cancel_pkt(vsk);
1501 			vsock_remove_connected(vsk);
1502 			goto out_wait;
1503 		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1504 			err = -ETIMEDOUT;
1505 			sk->sk_state = TCP_CLOSE;
1506 			sock->state = SS_UNCONNECTED;
1507 			vsock_transport_cancel_pkt(vsk);
1508 			goto out_wait;
1509 		}
1510 
1511 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1512 	}
1513 
1514 	if (sk->sk_err) {
1515 		err = -sk->sk_err;
1516 		sk->sk_state = TCP_CLOSE;
1517 		sock->state = SS_UNCONNECTED;
1518 	} else {
1519 		err = 0;
1520 	}
1521 
1522 out_wait:
1523 	finish_wait(sk_sleep(sk), &wait);
1524 out:
1525 	release_sock(sk);
1526 	return err;
1527 }
1528 
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1529 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1530 			bool kern)
1531 {
1532 	struct sock *listener;
1533 	int err;
1534 	struct sock *connected;
1535 	struct vsock_sock *vconnected;
1536 	long timeout;
1537 	DEFINE_WAIT(wait);
1538 
1539 	err = 0;
1540 	listener = sock->sk;
1541 
1542 	lock_sock(listener);
1543 
1544 	if (!sock_type_connectible(sock->type)) {
1545 		err = -EOPNOTSUPP;
1546 		goto out;
1547 	}
1548 
1549 	if (listener->sk_state != TCP_LISTEN) {
1550 		err = -EINVAL;
1551 		goto out;
1552 	}
1553 
1554 	/* Wait for children sockets to appear; these are the new sockets
1555 	 * created upon connection establishment.
1556 	 */
1557 	timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1558 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1559 
1560 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1561 	       listener->sk_err == 0) {
1562 		release_sock(listener);
1563 		timeout = schedule_timeout(timeout);
1564 		finish_wait(sk_sleep(listener), &wait);
1565 		lock_sock(listener);
1566 
1567 		if (signal_pending(current)) {
1568 			err = sock_intr_errno(timeout);
1569 			goto out;
1570 		} else if (timeout == 0) {
1571 			err = -EAGAIN;
1572 			goto out;
1573 		}
1574 
1575 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1576 	}
1577 	finish_wait(sk_sleep(listener), &wait);
1578 
1579 	if (listener->sk_err)
1580 		err = -listener->sk_err;
1581 
1582 	if (connected) {
1583 		sk_acceptq_removed(listener);
1584 
1585 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1586 		vconnected = vsock_sk(connected);
1587 
1588 		/* If the listener socket has received an error, then we should
1589 		 * reject this socket and return.  Note that we simply mark the
1590 		 * socket rejected, drop our reference, and let the cleanup
1591 		 * function handle the cleanup; the fact that we found it in
1592 		 * the listener's accept queue guarantees that the cleanup
1593 		 * function hasn't run yet.
1594 		 */
1595 		if (err) {
1596 			vconnected->rejected = true;
1597 		} else {
1598 			newsock->state = SS_CONNECTED;
1599 			sock_graft(connected, newsock);
1600 		}
1601 
1602 		release_sock(connected);
1603 		sock_put(connected);
1604 	}
1605 
1606 out:
1607 	release_sock(listener);
1608 	return err;
1609 }
1610 
vsock_listen(struct socket * sock,int backlog)1611 static int vsock_listen(struct socket *sock, int backlog)
1612 {
1613 	int err;
1614 	struct sock *sk;
1615 	struct vsock_sock *vsk;
1616 
1617 	sk = sock->sk;
1618 
1619 	lock_sock(sk);
1620 
1621 	if (!sock_type_connectible(sk->sk_type)) {
1622 		err = -EOPNOTSUPP;
1623 		goto out;
1624 	}
1625 
1626 	if (sock->state != SS_UNCONNECTED) {
1627 		err = -EINVAL;
1628 		goto out;
1629 	}
1630 
1631 	vsk = vsock_sk(sk);
1632 
1633 	if (!vsock_addr_bound(&vsk->local_addr)) {
1634 		err = -EINVAL;
1635 		goto out;
1636 	}
1637 
1638 	sk->sk_max_ack_backlog = backlog;
1639 	sk->sk_state = TCP_LISTEN;
1640 
1641 	err = 0;
1642 
1643 out:
1644 	release_sock(sk);
1645 	return err;
1646 }
1647 
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1648 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1649 				     const struct vsock_transport *transport,
1650 				     u64 val)
1651 {
1652 	if (val > vsk->buffer_max_size)
1653 		val = vsk->buffer_max_size;
1654 
1655 	if (val < vsk->buffer_min_size)
1656 		val = vsk->buffer_min_size;
1657 
1658 	if (val != vsk->buffer_size &&
1659 	    transport && transport->notify_buffer_size)
1660 		transport->notify_buffer_size(vsk, &val);
1661 
1662 	vsk->buffer_size = val;
1663 }
1664 
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1665 static int vsock_connectible_setsockopt(struct socket *sock,
1666 					int level,
1667 					int optname,
1668 					sockptr_t optval,
1669 					unsigned int optlen)
1670 {
1671 	int err;
1672 	struct sock *sk;
1673 	struct vsock_sock *vsk;
1674 	const struct vsock_transport *transport;
1675 	u64 val;
1676 
1677 	if (level != AF_VSOCK)
1678 		return -ENOPROTOOPT;
1679 
1680 #define COPY_IN(_v)                                       \
1681 	do {						  \
1682 		if (optlen < sizeof(_v)) {		  \
1683 			err = -EINVAL;			  \
1684 			goto exit;			  \
1685 		}					  \
1686 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1687 			err = -EFAULT;					\
1688 			goto exit;					\
1689 		}							\
1690 	} while (0)
1691 
1692 	err = 0;
1693 	sk = sock->sk;
1694 	vsk = vsock_sk(sk);
1695 
1696 	lock_sock(sk);
1697 
1698 	transport = vsk->transport;
1699 
1700 	switch (optname) {
1701 	case SO_VM_SOCKETS_BUFFER_SIZE:
1702 		COPY_IN(val);
1703 		vsock_update_buffer_size(vsk, transport, val);
1704 		break;
1705 
1706 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1707 		COPY_IN(val);
1708 		vsk->buffer_max_size = val;
1709 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1710 		break;
1711 
1712 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1713 		COPY_IN(val);
1714 		vsk->buffer_min_size = val;
1715 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1716 		break;
1717 
1718 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1719 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1720 		struct __kernel_sock_timeval tv;
1721 
1722 		err = sock_copy_user_timeval(&tv, optval, optlen,
1723 					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1724 		if (err)
1725 			break;
1726 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1727 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1728 			vsk->connect_timeout = tv.tv_sec * HZ +
1729 				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1730 			if (vsk->connect_timeout == 0)
1731 				vsk->connect_timeout =
1732 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1733 
1734 		} else {
1735 			err = -ERANGE;
1736 		}
1737 		break;
1738 	}
1739 
1740 	default:
1741 		err = -ENOPROTOOPT;
1742 		break;
1743 	}
1744 
1745 #undef COPY_IN
1746 
1747 exit:
1748 	release_sock(sk);
1749 	return err;
1750 }
1751 
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1752 static int vsock_connectible_getsockopt(struct socket *sock,
1753 					int level, int optname,
1754 					char __user *optval,
1755 					int __user *optlen)
1756 {
1757 	struct sock *sk = sock->sk;
1758 	struct vsock_sock *vsk = vsock_sk(sk);
1759 
1760 	union {
1761 		u64 val64;
1762 		struct old_timeval32 tm32;
1763 		struct __kernel_old_timeval tm;
1764 		struct  __kernel_sock_timeval stm;
1765 	} v;
1766 
1767 	int lv = sizeof(v.val64);
1768 	int len;
1769 
1770 	if (level != AF_VSOCK)
1771 		return -ENOPROTOOPT;
1772 
1773 	if (get_user(len, optlen))
1774 		return -EFAULT;
1775 
1776 	memset(&v, 0, sizeof(v));
1777 
1778 	switch (optname) {
1779 	case SO_VM_SOCKETS_BUFFER_SIZE:
1780 		v.val64 = vsk->buffer_size;
1781 		break;
1782 
1783 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1784 		v.val64 = vsk->buffer_max_size;
1785 		break;
1786 
1787 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1788 		v.val64 = vsk->buffer_min_size;
1789 		break;
1790 
1791 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1792 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1793 		lv = sock_get_timeout(vsk->connect_timeout, &v,
1794 				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1795 		break;
1796 
1797 	default:
1798 		return -ENOPROTOOPT;
1799 	}
1800 
1801 	if (len < lv)
1802 		return -EINVAL;
1803 	if (len > lv)
1804 		len = lv;
1805 	if (copy_to_user(optval, &v, len))
1806 		return -EFAULT;
1807 
1808 	if (put_user(len, optlen))
1809 		return -EFAULT;
1810 
1811 	return 0;
1812 }
1813 
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1814 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1815 				     size_t len)
1816 {
1817 	struct sock *sk;
1818 	struct vsock_sock *vsk;
1819 	const struct vsock_transport *transport;
1820 	ssize_t total_written;
1821 	long timeout;
1822 	int err;
1823 	struct vsock_transport_send_notify_data send_data;
1824 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1825 
1826 	sk = sock->sk;
1827 	vsk = vsock_sk(sk);
1828 	total_written = 0;
1829 	err = 0;
1830 
1831 	if (msg->msg_flags & MSG_OOB)
1832 		return -EOPNOTSUPP;
1833 
1834 	lock_sock(sk);
1835 
1836 	transport = vsk->transport;
1837 
1838 	/* Callers should not provide a destination with connection oriented
1839 	 * sockets.
1840 	 */
1841 	if (msg->msg_namelen) {
1842 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1843 		goto out;
1844 	}
1845 
1846 	/* Send data only if both sides are not shutdown in the direction. */
1847 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1848 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1849 		err = -EPIPE;
1850 		goto out;
1851 	}
1852 
1853 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1854 	    !vsock_addr_bound(&vsk->local_addr)) {
1855 		err = -ENOTCONN;
1856 		goto out;
1857 	}
1858 
1859 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1860 		err = -EDESTADDRREQ;
1861 		goto out;
1862 	}
1863 
1864 	/* Wait for room in the produce queue to enqueue our user's data. */
1865 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1866 
1867 	err = transport->notify_send_init(vsk, &send_data);
1868 	if (err < 0)
1869 		goto out;
1870 
1871 	while (total_written < len) {
1872 		ssize_t written;
1873 
1874 		add_wait_queue(sk_sleep(sk), &wait);
1875 		while (vsock_stream_has_space(vsk) == 0 &&
1876 		       sk->sk_err == 0 &&
1877 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1878 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1879 
1880 			/* Don't wait for non-blocking sockets. */
1881 			if (timeout == 0) {
1882 				err = -EAGAIN;
1883 				remove_wait_queue(sk_sleep(sk), &wait);
1884 				goto out_err;
1885 			}
1886 
1887 			err = transport->notify_send_pre_block(vsk, &send_data);
1888 			if (err < 0) {
1889 				remove_wait_queue(sk_sleep(sk), &wait);
1890 				goto out_err;
1891 			}
1892 
1893 			release_sock(sk);
1894 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1895 			lock_sock(sk);
1896 			if (signal_pending(current)) {
1897 				err = sock_intr_errno(timeout);
1898 				remove_wait_queue(sk_sleep(sk), &wait);
1899 				goto out_err;
1900 			} else if (timeout == 0) {
1901 				err = -EAGAIN;
1902 				remove_wait_queue(sk_sleep(sk), &wait);
1903 				goto out_err;
1904 			}
1905 		}
1906 		remove_wait_queue(sk_sleep(sk), &wait);
1907 
1908 		/* These checks occur both as part of and after the loop
1909 		 * conditional since we need to check before and after
1910 		 * sleeping.
1911 		 */
1912 		if (sk->sk_err) {
1913 			err = -sk->sk_err;
1914 			goto out_err;
1915 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1916 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1917 			err = -EPIPE;
1918 			goto out_err;
1919 		}
1920 
1921 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1922 		if (err < 0)
1923 			goto out_err;
1924 
1925 		/* Note that enqueue will only write as many bytes as are free
1926 		 * in the produce queue, so we don't need to ensure len is
1927 		 * smaller than the queue size.  It is the caller's
1928 		 * responsibility to check how many bytes we were able to send.
1929 		 */
1930 
1931 		if (sk->sk_type == SOCK_SEQPACKET) {
1932 			written = transport->seqpacket_enqueue(vsk,
1933 						msg, len - total_written);
1934 		} else {
1935 			written = transport->stream_enqueue(vsk,
1936 					msg, len - total_written);
1937 		}
1938 
1939 		if (written < 0) {
1940 			err = written;
1941 			goto out_err;
1942 		}
1943 
1944 		total_written += written;
1945 
1946 		err = transport->notify_send_post_enqueue(
1947 				vsk, written, &send_data);
1948 		if (err < 0)
1949 			goto out_err;
1950 
1951 	}
1952 
1953 out_err:
1954 	if (total_written > 0) {
1955 		/* Return number of written bytes only if:
1956 		 * 1) SOCK_STREAM socket.
1957 		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1958 		 */
1959 		if (sk->sk_type == SOCK_STREAM || total_written == len)
1960 			err = total_written;
1961 	}
1962 out:
1963 	release_sock(sk);
1964 	return err;
1965 }
1966 
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)1967 static int vsock_connectible_wait_data(struct sock *sk,
1968 				       struct wait_queue_entry *wait,
1969 				       long timeout,
1970 				       struct vsock_transport_recv_notify_data *recv_data,
1971 				       size_t target)
1972 {
1973 	const struct vsock_transport *transport;
1974 	struct vsock_sock *vsk;
1975 	s64 data;
1976 	int err;
1977 
1978 	vsk = vsock_sk(sk);
1979 	err = 0;
1980 	transport = vsk->transport;
1981 
1982 	while (1) {
1983 		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1984 		data = vsock_connectible_has_data(vsk);
1985 		if (data != 0)
1986 			break;
1987 
1988 		if (sk->sk_err != 0 ||
1989 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1990 		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1991 			break;
1992 		}
1993 
1994 		/* Don't wait for non-blocking sockets. */
1995 		if (timeout == 0) {
1996 			err = -EAGAIN;
1997 			break;
1998 		}
1999 
2000 		if (recv_data) {
2001 			err = transport->notify_recv_pre_block(vsk, target, recv_data);
2002 			if (err < 0)
2003 				break;
2004 		}
2005 
2006 		release_sock(sk);
2007 		timeout = schedule_timeout(timeout);
2008 		lock_sock(sk);
2009 
2010 		if (signal_pending(current)) {
2011 			err = sock_intr_errno(timeout);
2012 			break;
2013 		} else if (timeout == 0) {
2014 			err = -EAGAIN;
2015 			break;
2016 		}
2017 	}
2018 
2019 	finish_wait(sk_sleep(sk), wait);
2020 
2021 	if (err)
2022 		return err;
2023 
2024 	/* Internal transport error when checking for available
2025 	 * data. XXX This should be changed to a connection
2026 	 * reset in a later change.
2027 	 */
2028 	if (data < 0)
2029 		return -ENOMEM;
2030 
2031 	return data;
2032 }
2033 
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2034 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2035 				  size_t len, int flags)
2036 {
2037 	struct vsock_transport_recv_notify_data recv_data;
2038 	const struct vsock_transport *transport;
2039 	struct vsock_sock *vsk;
2040 	ssize_t copied;
2041 	size_t target;
2042 	long timeout;
2043 	int err;
2044 
2045 	DEFINE_WAIT(wait);
2046 
2047 	vsk = vsock_sk(sk);
2048 	transport = vsk->transport;
2049 
2050 	/* We must not copy less than target bytes into the user's buffer
2051 	 * before returning successfully, so we wait for the consume queue to
2052 	 * have that much data to consume before dequeueing.  Note that this
2053 	 * makes it impossible to handle cases where target is greater than the
2054 	 * queue size.
2055 	 */
2056 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2057 	if (target >= transport->stream_rcvhiwat(vsk)) {
2058 		err = -ENOMEM;
2059 		goto out;
2060 	}
2061 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2062 	copied = 0;
2063 
2064 	err = transport->notify_recv_init(vsk, target, &recv_data);
2065 	if (err < 0)
2066 		goto out;
2067 
2068 
2069 	while (1) {
2070 		ssize_t read;
2071 
2072 		err = vsock_connectible_wait_data(sk, &wait, timeout,
2073 						  &recv_data, target);
2074 		if (err <= 0)
2075 			break;
2076 
2077 		err = transport->notify_recv_pre_dequeue(vsk, target,
2078 							 &recv_data);
2079 		if (err < 0)
2080 			break;
2081 
2082 		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2083 		if (read < 0) {
2084 			err = read;
2085 			break;
2086 		}
2087 
2088 		copied += read;
2089 
2090 		err = transport->notify_recv_post_dequeue(vsk, target, read,
2091 						!(flags & MSG_PEEK), &recv_data);
2092 		if (err < 0)
2093 			goto out;
2094 
2095 		if (read >= target || flags & MSG_PEEK)
2096 			break;
2097 
2098 		target -= read;
2099 	}
2100 
2101 	if (sk->sk_err)
2102 		err = -sk->sk_err;
2103 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
2104 		err = 0;
2105 
2106 	if (copied > 0)
2107 		err = copied;
2108 
2109 out:
2110 	return err;
2111 }
2112 
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2113 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2114 				     size_t len, int flags)
2115 {
2116 	const struct vsock_transport *transport;
2117 	struct vsock_sock *vsk;
2118 	ssize_t msg_len;
2119 	long timeout;
2120 	int err = 0;
2121 	DEFINE_WAIT(wait);
2122 
2123 	vsk = vsock_sk(sk);
2124 	transport = vsk->transport;
2125 
2126 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2127 
2128 	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2129 	if (err <= 0)
2130 		goto out;
2131 
2132 	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2133 
2134 	if (msg_len < 0) {
2135 		err = msg_len;
2136 		goto out;
2137 	}
2138 
2139 	if (sk->sk_err) {
2140 		err = -sk->sk_err;
2141 	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2142 		err = 0;
2143 	} else {
2144 		/* User sets MSG_TRUNC, so return real length of
2145 		 * packet.
2146 		 */
2147 		if (flags & MSG_TRUNC)
2148 			err = msg_len;
2149 		else
2150 			err = len - msg_data_left(msg);
2151 
2152 		/* Always set MSG_TRUNC if real length of packet is
2153 		 * bigger than user's buffer.
2154 		 */
2155 		if (msg_len > len)
2156 			msg->msg_flags |= MSG_TRUNC;
2157 	}
2158 
2159 out:
2160 	return err;
2161 }
2162 
2163 int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2164 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2165 			    int flags)
2166 {
2167 	struct sock *sk;
2168 	struct vsock_sock *vsk;
2169 	const struct vsock_transport *transport;
2170 	int err;
2171 
2172 	sk = sock->sk;
2173 
2174 	if (unlikely(flags & MSG_ERRQUEUE))
2175 		return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2176 
2177 	vsk = vsock_sk(sk);
2178 	err = 0;
2179 
2180 	lock_sock(sk);
2181 
2182 	transport = vsk->transport;
2183 
2184 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2185 		/* Recvmsg is supposed to return 0 if a peer performs an
2186 		 * orderly shutdown. Differentiate between that case and when a
2187 		 * peer has not connected or a local shutdown occurred with the
2188 		 * SOCK_DONE flag.
2189 		 */
2190 		if (sock_flag(sk, SOCK_DONE))
2191 			err = 0;
2192 		else
2193 			err = -ENOTCONN;
2194 
2195 		goto out;
2196 	}
2197 
2198 	if (flags & MSG_OOB) {
2199 		err = -EOPNOTSUPP;
2200 		goto out;
2201 	}
2202 
2203 	/* We don't check peer_shutdown flag here since peer may actually shut
2204 	 * down, but there can be data in the queue that a local socket can
2205 	 * receive.
2206 	 */
2207 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2208 		err = 0;
2209 		goto out;
2210 	}
2211 
2212 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2213 	 * is not an error.  We may as well bail out now.
2214 	 */
2215 	if (!len) {
2216 		err = 0;
2217 		goto out;
2218 	}
2219 
2220 	if (sk->sk_type == SOCK_STREAM)
2221 		err = __vsock_stream_recvmsg(sk, msg, len, flags);
2222 	else
2223 		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2224 
2225 out:
2226 	release_sock(sk);
2227 	return err;
2228 }
2229 
2230 int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2231 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2232 			  int flags)
2233 {
2234 #ifdef CONFIG_BPF_SYSCALL
2235 	struct sock *sk = sock->sk;
2236 	const struct proto *prot;
2237 
2238 	prot = READ_ONCE(sk->sk_prot);
2239 	if (prot != &vsock_proto)
2240 		return prot->recvmsg(sk, msg, len, flags, NULL);
2241 #endif
2242 
2243 	return __vsock_connectible_recvmsg(sock, msg, len, flags);
2244 }
2245 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2246 
vsock_set_rcvlowat(struct sock * sk,int val)2247 static int vsock_set_rcvlowat(struct sock *sk, int val)
2248 {
2249 	const struct vsock_transport *transport;
2250 	struct vsock_sock *vsk;
2251 
2252 	vsk = vsock_sk(sk);
2253 
2254 	if (val > vsk->buffer_size)
2255 		return -EINVAL;
2256 
2257 	transport = vsk->transport;
2258 
2259 	if (transport && transport->notify_set_rcvlowat) {
2260 		int err;
2261 
2262 		err = transport->notify_set_rcvlowat(vsk, val);
2263 		if (err)
2264 			return err;
2265 	}
2266 
2267 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2268 	return 0;
2269 }
2270 
2271 static const struct proto_ops vsock_stream_ops = {
2272 	.family = PF_VSOCK,
2273 	.owner = THIS_MODULE,
2274 	.release = vsock_release,
2275 	.bind = vsock_bind,
2276 	.connect = vsock_connect,
2277 	.socketpair = sock_no_socketpair,
2278 	.accept = vsock_accept,
2279 	.getname = vsock_getname,
2280 	.poll = vsock_poll,
2281 	.ioctl = sock_no_ioctl,
2282 	.listen = vsock_listen,
2283 	.shutdown = vsock_shutdown,
2284 	.setsockopt = vsock_connectible_setsockopt,
2285 	.getsockopt = vsock_connectible_getsockopt,
2286 	.sendmsg = vsock_connectible_sendmsg,
2287 	.recvmsg = vsock_connectible_recvmsg,
2288 	.mmap = sock_no_mmap,
2289 	.set_rcvlowat = vsock_set_rcvlowat,
2290 	.read_skb = vsock_read_skb,
2291 };
2292 
2293 static const struct proto_ops vsock_seqpacket_ops = {
2294 	.family = PF_VSOCK,
2295 	.owner = THIS_MODULE,
2296 	.release = vsock_release,
2297 	.bind = vsock_bind,
2298 	.connect = vsock_connect,
2299 	.socketpair = sock_no_socketpair,
2300 	.accept = vsock_accept,
2301 	.getname = vsock_getname,
2302 	.poll = vsock_poll,
2303 	.ioctl = sock_no_ioctl,
2304 	.listen = vsock_listen,
2305 	.shutdown = vsock_shutdown,
2306 	.setsockopt = vsock_connectible_setsockopt,
2307 	.getsockopt = vsock_connectible_getsockopt,
2308 	.sendmsg = vsock_connectible_sendmsg,
2309 	.recvmsg = vsock_connectible_recvmsg,
2310 	.mmap = sock_no_mmap,
2311 	.read_skb = vsock_read_skb,
2312 };
2313 
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2314 static int vsock_create(struct net *net, struct socket *sock,
2315 			int protocol, int kern)
2316 {
2317 	struct vsock_sock *vsk;
2318 	struct sock *sk;
2319 	int ret;
2320 
2321 	if (!sock)
2322 		return -EINVAL;
2323 
2324 	if (protocol && protocol != PF_VSOCK)
2325 		return -EPROTONOSUPPORT;
2326 
2327 	switch (sock->type) {
2328 	case SOCK_DGRAM:
2329 		sock->ops = &vsock_dgram_ops;
2330 		break;
2331 	case SOCK_STREAM:
2332 		sock->ops = &vsock_stream_ops;
2333 		break;
2334 	case SOCK_SEQPACKET:
2335 		sock->ops = &vsock_seqpacket_ops;
2336 		break;
2337 	default:
2338 		return -ESOCKTNOSUPPORT;
2339 	}
2340 
2341 	sock->state = SS_UNCONNECTED;
2342 
2343 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2344 	if (!sk)
2345 		return -ENOMEM;
2346 
2347 	vsk = vsock_sk(sk);
2348 
2349 	if (sock->type == SOCK_DGRAM) {
2350 		ret = vsock_assign_transport(vsk, NULL);
2351 		if (ret < 0) {
2352 			sock_put(sk);
2353 			return ret;
2354 		}
2355 	}
2356 
2357 	vsock_insert_unbound(vsk);
2358 
2359 	return 0;
2360 }
2361 
2362 static const struct net_proto_family vsock_family_ops = {
2363 	.family = AF_VSOCK,
2364 	.create = vsock_create,
2365 	.owner = THIS_MODULE,
2366 };
2367 
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2368 static long vsock_dev_do_ioctl(struct file *filp,
2369 			       unsigned int cmd, void __user *ptr)
2370 {
2371 	u32 __user *p = ptr;
2372 	u32 cid = VMADDR_CID_ANY;
2373 	int retval = 0;
2374 
2375 	switch (cmd) {
2376 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2377 		/* To be compatible with the VMCI behavior, we prioritize the
2378 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2379 		 */
2380 		if (transport_g2h)
2381 			cid = transport_g2h->get_local_cid();
2382 		else if (transport_h2g)
2383 			cid = transport_h2g->get_local_cid();
2384 
2385 		if (put_user(cid, p) != 0)
2386 			retval = -EFAULT;
2387 		break;
2388 
2389 	default:
2390 		retval = -ENOIOCTLCMD;
2391 	}
2392 
2393 	return retval;
2394 }
2395 
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2396 static long vsock_dev_ioctl(struct file *filp,
2397 			    unsigned int cmd, unsigned long arg)
2398 {
2399 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2400 }
2401 
2402 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2403 static long vsock_dev_compat_ioctl(struct file *filp,
2404 				   unsigned int cmd, unsigned long arg)
2405 {
2406 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2407 }
2408 #endif
2409 
2410 static const struct file_operations vsock_device_ops = {
2411 	.owner		= THIS_MODULE,
2412 	.unlocked_ioctl	= vsock_dev_ioctl,
2413 #ifdef CONFIG_COMPAT
2414 	.compat_ioctl	= vsock_dev_compat_ioctl,
2415 #endif
2416 	.open		= nonseekable_open,
2417 };
2418 
2419 static struct miscdevice vsock_device = {
2420 	.name		= "vsock",
2421 	.fops		= &vsock_device_ops,
2422 };
2423 
vsock_init(void)2424 static int __init vsock_init(void)
2425 {
2426 	int err = 0;
2427 
2428 	vsock_init_tables();
2429 
2430 	vsock_proto.owner = THIS_MODULE;
2431 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2432 	err = misc_register(&vsock_device);
2433 	if (err) {
2434 		pr_err("Failed to register misc device\n");
2435 		goto err_reset_transport;
2436 	}
2437 
2438 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2439 	if (err) {
2440 		pr_err("Cannot register vsock protocol\n");
2441 		goto err_deregister_misc;
2442 	}
2443 
2444 	err = sock_register(&vsock_family_ops);
2445 	if (err) {
2446 		pr_err("could not register af_vsock (%d) address family: %d\n",
2447 		       AF_VSOCK, err);
2448 		goto err_unregister_proto;
2449 	}
2450 
2451 	vsock_bpf_build_proto();
2452 
2453 	return 0;
2454 
2455 err_unregister_proto:
2456 	proto_unregister(&vsock_proto);
2457 err_deregister_misc:
2458 	misc_deregister(&vsock_device);
2459 err_reset_transport:
2460 	return err;
2461 }
2462 
vsock_exit(void)2463 static void __exit vsock_exit(void)
2464 {
2465 	misc_deregister(&vsock_device);
2466 	sock_unregister(AF_VSOCK);
2467 	proto_unregister(&vsock_proto);
2468 }
2469 
vsock_core_get_transport(struct vsock_sock * vsk)2470 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2471 {
2472 	return vsk->transport;
2473 }
2474 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2475 
vsock_core_register(const struct vsock_transport * t,int features)2476 int vsock_core_register(const struct vsock_transport *t, int features)
2477 {
2478 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2479 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2480 
2481 	if (err)
2482 		return err;
2483 
2484 	t_h2g = transport_h2g;
2485 	t_g2h = transport_g2h;
2486 	t_dgram = transport_dgram;
2487 	t_local = transport_local;
2488 
2489 	if (features & VSOCK_TRANSPORT_F_H2G) {
2490 		if (t_h2g) {
2491 			err = -EBUSY;
2492 			goto err_busy;
2493 		}
2494 		t_h2g = t;
2495 	}
2496 
2497 	if (features & VSOCK_TRANSPORT_F_G2H) {
2498 		if (t_g2h) {
2499 			err = -EBUSY;
2500 			goto err_busy;
2501 		}
2502 		t_g2h = t;
2503 	}
2504 
2505 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2506 		if (t_dgram) {
2507 			err = -EBUSY;
2508 			goto err_busy;
2509 		}
2510 		t_dgram = t;
2511 	}
2512 
2513 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2514 		if (t_local) {
2515 			err = -EBUSY;
2516 			goto err_busy;
2517 		}
2518 		t_local = t;
2519 	}
2520 
2521 	transport_h2g = t_h2g;
2522 	transport_g2h = t_g2h;
2523 	transport_dgram = t_dgram;
2524 	transport_local = t_local;
2525 
2526 err_busy:
2527 	mutex_unlock(&vsock_register_mutex);
2528 	return err;
2529 }
2530 EXPORT_SYMBOL_GPL(vsock_core_register);
2531 
vsock_core_unregister(const struct vsock_transport * t)2532 void vsock_core_unregister(const struct vsock_transport *t)
2533 {
2534 	mutex_lock(&vsock_register_mutex);
2535 
2536 	if (transport_h2g == t)
2537 		transport_h2g = NULL;
2538 
2539 	if (transport_g2h == t)
2540 		transport_g2h = NULL;
2541 
2542 	if (transport_dgram == t)
2543 		transport_dgram = NULL;
2544 
2545 	if (transport_local == t)
2546 		transport_local = NULL;
2547 
2548 	mutex_unlock(&vsock_register_mutex);
2549 }
2550 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2551 
2552 module_init(vsock_init);
2553 module_exit(vsock_exit);
2554 
2555 MODULE_AUTHOR("VMware, Inc.");
2556 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2557 MODULE_VERSION("1.0.2.0-k");
2558 MODULE_LICENSE("GPL v2");
2559