xref: /openbmc/linux/kernel/sched/core.c (revision 9144f784f852f9a125cabe9927b986d909bfa439)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
85 
86 #include "sched.h"
87 #include "stats.h"
88 #include "autogroup.h"
89 
90 #include "autogroup.h"
91 #include "pelt.h"
92 #include "smp.h"
93 #include "stats.h"
94 
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98 
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101 
102 /*
103  * Export tracepoints that act as a bare tracehook (ie: have no trace event
104  * associated with them) to allow external modules to probe them.
105  */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117 
118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
119 
120 #ifdef CONFIG_SCHED_DEBUG
121 /*
122  * Debugging: various feature bits
123  *
124  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125  * sysctl_sched_features, defined in sched.h, to allow constants propagation
126  * at compile time and compiler optimization based on features default.
127  */
128 #define SCHED_FEAT(name, enabled)	\
129 	(1UL << __SCHED_FEAT_##name) * enabled |
130 const_debug unsigned int sysctl_sched_features =
131 #include "features.h"
132 	0;
133 #undef SCHED_FEAT
134 
135 /*
136  * Print a warning if need_resched is set for the given duration (if
137  * LATENCY_WARN is enabled).
138  *
139  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140  * per boot.
141  */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 #endif /* CONFIG_SCHED_DEBUG */
145 
146 /*
147  * Number of tasks to iterate in a single balance run.
148  * Limited because this is done with IRQs disabled.
149  */
150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151 
152 __read_mostly int scheduler_running;
153 
154 #ifdef CONFIG_SCHED_CORE
155 
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157 
158 /* kernel prio, less is more */
__task_prio(const struct task_struct * p)159 static inline int __task_prio(const struct task_struct *p)
160 {
161 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 		return -2;
163 
164 	if (rt_prio(p->prio)) /* includes deadline */
165 		return p->prio; /* [-1, 99] */
166 
167 	if (p->sched_class == &idle_sched_class)
168 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169 
170 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171 }
172 
173 /*
174  * l(a,b)
175  * le(a,b) := !l(b,a)
176  * g(a,b)  := l(b,a)
177  * ge(a,b) := !l(a,b)
178  */
179 
180 /* real prio, less is less */
prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)181 static inline bool prio_less(const struct task_struct *a,
182 			     const struct task_struct *b, bool in_fi)
183 {
184 
185 	int pa = __task_prio(a), pb = __task_prio(b);
186 
187 	if (-pa < -pb)
188 		return true;
189 
190 	if (-pb < -pa)
191 		return false;
192 
193 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
195 
196 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
197 		return cfs_prio_less(a, b, in_fi);
198 
199 	return false;
200 }
201 
__sched_core_less(const struct task_struct * a,const struct task_struct * b)202 static inline bool __sched_core_less(const struct task_struct *a,
203 				     const struct task_struct *b)
204 {
205 	if (a->core_cookie < b->core_cookie)
206 		return true;
207 
208 	if (a->core_cookie > b->core_cookie)
209 		return false;
210 
211 	/* flip prio, so high prio is leftmost */
212 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
213 		return true;
214 
215 	return false;
216 }
217 
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219 
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221 {
222 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223 }
224 
rb_sched_core_cmp(const void * key,const struct rb_node * node)225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226 {
227 	const struct task_struct *p = __node_2_sc(node);
228 	unsigned long cookie = (unsigned long)key;
229 
230 	if (cookie < p->core_cookie)
231 		return -1;
232 
233 	if (cookie > p->core_cookie)
234 		return 1;
235 
236 	return 0;
237 }
238 
sched_core_enqueue(struct rq * rq,struct task_struct * p)239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240 {
241 	rq->core->core_task_seq++;
242 
243 	if (!p->core_cookie)
244 		return;
245 
246 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247 }
248 
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250 {
251 	rq->core->core_task_seq++;
252 
253 	if (sched_core_enqueued(p)) {
254 		rb_erase(&p->core_node, &rq->core_tree);
255 		RB_CLEAR_NODE(&p->core_node);
256 	}
257 
258 	/*
259 	 * Migrating the last task off the cpu, with the cpu in forced idle
260 	 * state. Reschedule to create an accounting edge for forced idle,
261 	 * and re-examine whether the core is still in forced idle state.
262 	 */
263 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
265 		resched_curr(rq);
266 }
267 
sched_task_is_throttled(struct task_struct * p,int cpu)268 static int sched_task_is_throttled(struct task_struct *p, int cpu)
269 {
270 	if (p->sched_class->task_is_throttled)
271 		return p->sched_class->task_is_throttled(p, cpu);
272 
273 	return 0;
274 }
275 
sched_core_next(struct task_struct * p,unsigned long cookie)276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277 {
278 	struct rb_node *node = &p->core_node;
279 	int cpu = task_cpu(p);
280 
281 	do {
282 		node = rb_next(node);
283 		if (!node)
284 			return NULL;
285 
286 		p = __node_2_sc(node);
287 		if (p->core_cookie != cookie)
288 			return NULL;
289 
290 	} while (sched_task_is_throttled(p, cpu));
291 
292 	return p;
293 }
294 
295 /*
296  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297  * If no suitable task is found, NULL will be returned.
298  */
sched_core_find(struct rq * rq,unsigned long cookie)299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300 {
301 	struct task_struct *p;
302 	struct rb_node *node;
303 
304 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
305 	if (!node)
306 		return NULL;
307 
308 	p = __node_2_sc(node);
309 	if (!sched_task_is_throttled(p, rq->cpu))
310 		return p;
311 
312 	return sched_core_next(p, cookie);
313 }
314 
315 /*
316  * Magic required such that:
317  *
318  *	raw_spin_rq_lock(rq);
319  *	...
320  *	raw_spin_rq_unlock(rq);
321  *
322  * ends up locking and unlocking the _same_ lock, and all CPUs
323  * always agree on what rq has what lock.
324  *
325  * XXX entirely possible to selectively enable cores, don't bother for now.
326  */
327 
328 static DEFINE_MUTEX(sched_core_mutex);
329 static atomic_t sched_core_count;
330 static struct cpumask sched_core_mask;
331 
sched_core_lock(int cpu,unsigned long * flags)332 static void sched_core_lock(int cpu, unsigned long *flags)
333 {
334 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 	int t, i = 0;
336 
337 	local_irq_save(*flags);
338 	for_each_cpu(t, smt_mask)
339 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340 }
341 
sched_core_unlock(int cpu,unsigned long * flags)342 static void sched_core_unlock(int cpu, unsigned long *flags)
343 {
344 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 	int t;
346 
347 	for_each_cpu(t, smt_mask)
348 		raw_spin_unlock(&cpu_rq(t)->__lock);
349 	local_irq_restore(*flags);
350 }
351 
__sched_core_flip(bool enabled)352 static void __sched_core_flip(bool enabled)
353 {
354 	unsigned long flags;
355 	int cpu, t;
356 
357 	cpus_read_lock();
358 
359 	/*
360 	 * Toggle the online cores, one by one.
361 	 */
362 	cpumask_copy(&sched_core_mask, cpu_online_mask);
363 	for_each_cpu(cpu, &sched_core_mask) {
364 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365 
366 		sched_core_lock(cpu, &flags);
367 
368 		for_each_cpu(t, smt_mask)
369 			cpu_rq(t)->core_enabled = enabled;
370 
371 		cpu_rq(cpu)->core->core_forceidle_start = 0;
372 
373 		sched_core_unlock(cpu, &flags);
374 
375 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
376 	}
377 
378 	/*
379 	 * Toggle the offline CPUs.
380 	 */
381 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 		cpu_rq(cpu)->core_enabled = enabled;
383 
384 	cpus_read_unlock();
385 }
386 
sched_core_assert_empty(void)387 static void sched_core_assert_empty(void)
388 {
389 	int cpu;
390 
391 	for_each_possible_cpu(cpu)
392 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393 }
394 
__sched_core_enable(void)395 static void __sched_core_enable(void)
396 {
397 	static_branch_enable(&__sched_core_enabled);
398 	/*
399 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 	 * and future ones will observe !sched_core_disabled().
401 	 */
402 	synchronize_rcu();
403 	__sched_core_flip(true);
404 	sched_core_assert_empty();
405 }
406 
__sched_core_disable(void)407 static void __sched_core_disable(void)
408 {
409 	sched_core_assert_empty();
410 	__sched_core_flip(false);
411 	static_branch_disable(&__sched_core_enabled);
412 }
413 
sched_core_get(void)414 void sched_core_get(void)
415 {
416 	if (atomic_inc_not_zero(&sched_core_count))
417 		return;
418 
419 	mutex_lock(&sched_core_mutex);
420 	if (!atomic_read(&sched_core_count))
421 		__sched_core_enable();
422 
423 	smp_mb__before_atomic();
424 	atomic_inc(&sched_core_count);
425 	mutex_unlock(&sched_core_mutex);
426 }
427 
__sched_core_put(struct work_struct * work)428 static void __sched_core_put(struct work_struct *work)
429 {
430 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
431 		__sched_core_disable();
432 		mutex_unlock(&sched_core_mutex);
433 	}
434 }
435 
sched_core_put(void)436 void sched_core_put(void)
437 {
438 	static DECLARE_WORK(_work, __sched_core_put);
439 
440 	/*
441 	 * "There can be only one"
442 	 *
443 	 * Either this is the last one, or we don't actually need to do any
444 	 * 'work'. If it is the last *again*, we rely on
445 	 * WORK_STRUCT_PENDING_BIT.
446 	 */
447 	if (!atomic_add_unless(&sched_core_count, -1, 1))
448 		schedule_work(&_work);
449 }
450 
451 #else /* !CONFIG_SCHED_CORE */
452 
sched_core_enqueue(struct rq * rq,struct task_struct * p)453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
454 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
456 
457 #endif /* CONFIG_SCHED_CORE */
458 
459 /*
460  * Serialization rules:
461  *
462  * Lock order:
463  *
464  *   p->pi_lock
465  *     rq->lock
466  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467  *
468  *  rq1->lock
469  *    rq2->lock  where: rq1 < rq2
470  *
471  * Regular state:
472  *
473  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474  * local CPU's rq->lock, it optionally removes the task from the runqueue and
475  * always looks at the local rq data structures to find the most eligible task
476  * to run next.
477  *
478  * Task enqueue is also under rq->lock, possibly taken from another CPU.
479  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480  * the local CPU to avoid bouncing the runqueue state around [ see
481  * ttwu_queue_wakelist() ]
482  *
483  * Task wakeup, specifically wakeups that involve migration, are horribly
484  * complicated to avoid having to take two rq->locks.
485  *
486  * Special state:
487  *
488  * System-calls and anything external will use task_rq_lock() which acquires
489  * both p->pi_lock and rq->lock. As a consequence the state they change is
490  * stable while holding either lock:
491  *
492  *  - sched_setaffinity()/
493  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
494  *  - set_user_nice():		p->se.load, p->*prio
495  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
496  *				p->se.load, p->rt_priority,
497  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
498  *  - sched_setnuma():		p->numa_preferred_nid
499  *  - sched_move_task():	p->sched_task_group
500  *  - uclamp_update_active()	p->uclamp*
501  *
502  * p->state <- TASK_*:
503  *
504  *   is changed locklessly using set_current_state(), __set_current_state() or
505  *   set_special_state(), see their respective comments, or by
506  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
507  *   concurrent self.
508  *
509  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510  *
511  *   is set by activate_task() and cleared by deactivate_task(), under
512  *   rq->lock. Non-zero indicates the task is runnable, the special
513  *   ON_RQ_MIGRATING state is used for migration without holding both
514  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515  *
516  * p->on_cpu <- { 0, 1 }:
517  *
518  *   is set by prepare_task() and cleared by finish_task() such that it will be
519  *   set before p is scheduled-in and cleared after p is scheduled-out, both
520  *   under rq->lock. Non-zero indicates the task is running on its CPU.
521  *
522  *   [ The astute reader will observe that it is possible for two tasks on one
523  *     CPU to have ->on_cpu = 1 at the same time. ]
524  *
525  * task_cpu(p): is changed by set_task_cpu(), the rules are:
526  *
527  *  - Don't call set_task_cpu() on a blocked task:
528  *
529  *    We don't care what CPU we're not running on, this simplifies hotplug,
530  *    the CPU assignment of blocked tasks isn't required to be valid.
531  *
532  *  - for try_to_wake_up(), called under p->pi_lock:
533  *
534  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
535  *
536  *  - for migration called under rq->lock:
537  *    [ see task_on_rq_migrating() in task_rq_lock() ]
538  *
539  *    o move_queued_task()
540  *    o detach_task()
541  *
542  *  - for migration called under double_rq_lock():
543  *
544  *    o __migrate_swap_task()
545  *    o push_rt_task() / pull_rt_task()
546  *    o push_dl_task() / pull_dl_task()
547  *    o dl_task_offline_migration()
548  *
549  */
550 
raw_spin_rq_lock_nested(struct rq * rq,int subclass)551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552 {
553 	raw_spinlock_t *lock;
554 
555 	/* Matches synchronize_rcu() in __sched_core_enable() */
556 	preempt_disable();
557 	if (sched_core_disabled()) {
558 		raw_spin_lock_nested(&rq->__lock, subclass);
559 		/* preempt_count *MUST* be > 1 */
560 		preempt_enable_no_resched();
561 		return;
562 	}
563 
564 	for (;;) {
565 		lock = __rq_lockp(rq);
566 		raw_spin_lock_nested(lock, subclass);
567 		if (likely(lock == __rq_lockp(rq))) {
568 			/* preempt_count *MUST* be > 1 */
569 			preempt_enable_no_resched();
570 			return;
571 		}
572 		raw_spin_unlock(lock);
573 	}
574 }
575 
raw_spin_rq_trylock(struct rq * rq)576 bool raw_spin_rq_trylock(struct rq *rq)
577 {
578 	raw_spinlock_t *lock;
579 	bool ret;
580 
581 	/* Matches synchronize_rcu() in __sched_core_enable() */
582 	preempt_disable();
583 	if (sched_core_disabled()) {
584 		ret = raw_spin_trylock(&rq->__lock);
585 		preempt_enable();
586 		return ret;
587 	}
588 
589 	for (;;) {
590 		lock = __rq_lockp(rq);
591 		ret = raw_spin_trylock(lock);
592 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
593 			preempt_enable();
594 			return ret;
595 		}
596 		raw_spin_unlock(lock);
597 	}
598 }
599 
raw_spin_rq_unlock(struct rq * rq)600 void raw_spin_rq_unlock(struct rq *rq)
601 {
602 	raw_spin_unlock(rq_lockp(rq));
603 }
604 
605 #ifdef CONFIG_SMP
606 /*
607  * double_rq_lock - safely lock two runqueues
608  */
double_rq_lock(struct rq * rq1,struct rq * rq2)609 void double_rq_lock(struct rq *rq1, struct rq *rq2)
610 {
611 	lockdep_assert_irqs_disabled();
612 
613 	if (rq_order_less(rq2, rq1))
614 		swap(rq1, rq2);
615 
616 	raw_spin_rq_lock(rq1);
617 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
619 
620 	double_rq_clock_clear_update(rq1, rq2);
621 }
622 #endif
623 
624 /*
625  * __task_rq_lock - lock the rq @p resides on.
626  */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
628 	__acquires(rq->lock)
629 {
630 	struct rq *rq;
631 
632 	lockdep_assert_held(&p->pi_lock);
633 
634 	for (;;) {
635 		rq = task_rq(p);
636 		raw_spin_rq_lock(rq);
637 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
638 			rq_pin_lock(rq, rf);
639 			return rq;
640 		}
641 		raw_spin_rq_unlock(rq);
642 
643 		while (unlikely(task_on_rq_migrating(p)))
644 			cpu_relax();
645 	}
646 }
647 
648 /*
649  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650  */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 	__acquires(p->pi_lock)
653 	__acquires(rq->lock)
654 {
655 	struct rq *rq;
656 
657 	for (;;) {
658 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
659 		rq = task_rq(p);
660 		raw_spin_rq_lock(rq);
661 		/*
662 		 *	move_queued_task()		task_rq_lock()
663 		 *
664 		 *	ACQUIRE (rq->lock)
665 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
666 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
667 		 *	[S] ->cpu = new_cpu		[L] task_rq()
668 		 *					[L] ->on_rq
669 		 *	RELEASE (rq->lock)
670 		 *
671 		 * If we observe the old CPU in task_rq_lock(), the acquire of
672 		 * the old rq->lock will fully serialize against the stores.
673 		 *
674 		 * If we observe the new CPU in task_rq_lock(), the address
675 		 * dependency headed by '[L] rq = task_rq()' and the acquire
676 		 * will pair with the WMB to ensure we then also see migrating.
677 		 */
678 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
679 			rq_pin_lock(rq, rf);
680 			return rq;
681 		}
682 		raw_spin_rq_unlock(rq);
683 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
684 
685 		while (unlikely(task_on_rq_migrating(p)))
686 			cpu_relax();
687 	}
688 }
689 
690 /*
691  * RQ-clock updating methods:
692  */
693 
update_rq_clock_task(struct rq * rq,s64 delta)694 static void update_rq_clock_task(struct rq *rq, s64 delta)
695 {
696 /*
697  * In theory, the compile should just see 0 here, and optimize out the call
698  * to sched_rt_avg_update. But I don't trust it...
699  */
700 	s64 __maybe_unused steal = 0, irq_delta = 0;
701 
702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
704 
705 	/*
706 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 	 * this case when a previous update_rq_clock() happened inside a
708 	 * {soft,}irq region.
709 	 *
710 	 * When this happens, we stop ->clock_task and only update the
711 	 * prev_irq_time stamp to account for the part that fit, so that a next
712 	 * update will consume the rest. This ensures ->clock_task is
713 	 * monotonic.
714 	 *
715 	 * It does however cause some slight miss-attribution of {soft,}irq
716 	 * time, a more accurate solution would be to update the irq_time using
717 	 * the current rq->clock timestamp, except that would require using
718 	 * atomic ops.
719 	 */
720 	if (irq_delta > delta)
721 		irq_delta = delta;
722 
723 	rq->prev_irq_time += irq_delta;
724 	delta -= irq_delta;
725 	delayacct_irq(rq->curr, irq_delta);
726 #endif
727 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
728 	if (static_key_false((&paravirt_steal_rq_enabled))) {
729 		steal = paravirt_steal_clock(cpu_of(rq));
730 		steal -= rq->prev_steal_time_rq;
731 
732 		if (unlikely(steal > delta))
733 			steal = delta;
734 
735 		rq->prev_steal_time_rq += steal;
736 		delta -= steal;
737 	}
738 #endif
739 
740 	rq->clock_task += delta;
741 
742 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
743 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
744 		update_irq_load_avg(rq, irq_delta + steal);
745 #endif
746 	update_rq_clock_pelt(rq, delta);
747 }
748 
update_rq_clock(struct rq * rq)749 void update_rq_clock(struct rq *rq)
750 {
751 	s64 delta;
752 
753 	lockdep_assert_rq_held(rq);
754 
755 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
756 		return;
757 
758 #ifdef CONFIG_SCHED_DEBUG
759 	if (sched_feat(WARN_DOUBLE_CLOCK))
760 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
761 	rq->clock_update_flags |= RQCF_UPDATED;
762 #endif
763 
764 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
765 	if (delta < 0)
766 		return;
767 	rq->clock += delta;
768 	update_rq_clock_task(rq, delta);
769 }
770 
771 #ifdef CONFIG_SCHED_HRTICK
772 /*
773  * Use HR-timers to deliver accurate preemption points.
774  */
775 
hrtick_clear(struct rq * rq)776 static void hrtick_clear(struct rq *rq)
777 {
778 	if (hrtimer_active(&rq->hrtick_timer))
779 		hrtimer_cancel(&rq->hrtick_timer);
780 }
781 
782 /*
783  * High-resolution timer tick.
784  * Runs from hardirq context with interrupts disabled.
785  */
hrtick(struct hrtimer * timer)786 static enum hrtimer_restart hrtick(struct hrtimer *timer)
787 {
788 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
789 	struct rq_flags rf;
790 
791 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
792 
793 	rq_lock(rq, &rf);
794 	update_rq_clock(rq);
795 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
796 	rq_unlock(rq, &rf);
797 
798 	return HRTIMER_NORESTART;
799 }
800 
801 #ifdef CONFIG_SMP
802 
__hrtick_restart(struct rq * rq)803 static void __hrtick_restart(struct rq *rq)
804 {
805 	struct hrtimer *timer = &rq->hrtick_timer;
806 	ktime_t time = rq->hrtick_time;
807 
808 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
809 }
810 
811 /*
812  * called from hardirq (IPI) context
813  */
__hrtick_start(void * arg)814 static void __hrtick_start(void *arg)
815 {
816 	struct rq *rq = arg;
817 	struct rq_flags rf;
818 
819 	rq_lock(rq, &rf);
820 	__hrtick_restart(rq);
821 	rq_unlock(rq, &rf);
822 }
823 
824 /*
825  * Called to set the hrtick timer state.
826  *
827  * called with rq->lock held and irqs disabled
828  */
hrtick_start(struct rq * rq,u64 delay)829 void hrtick_start(struct rq *rq, u64 delay)
830 {
831 	struct hrtimer *timer = &rq->hrtick_timer;
832 	s64 delta;
833 
834 	/*
835 	 * Don't schedule slices shorter than 10000ns, that just
836 	 * doesn't make sense and can cause timer DoS.
837 	 */
838 	delta = max_t(s64, delay, 10000LL);
839 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
840 
841 	if (rq == this_rq())
842 		__hrtick_restart(rq);
843 	else
844 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
845 }
846 
847 #else
848 /*
849  * Called to set the hrtick timer state.
850  *
851  * called with rq->lock held and irqs disabled
852  */
hrtick_start(struct rq * rq,u64 delay)853 void hrtick_start(struct rq *rq, u64 delay)
854 {
855 	/*
856 	 * Don't schedule slices shorter than 10000ns, that just
857 	 * doesn't make sense. Rely on vruntime for fairness.
858 	 */
859 	delay = max_t(u64, delay, 10000LL);
860 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
861 		      HRTIMER_MODE_REL_PINNED_HARD);
862 }
863 
864 #endif /* CONFIG_SMP */
865 
hrtick_rq_init(struct rq * rq)866 static void hrtick_rq_init(struct rq *rq)
867 {
868 #ifdef CONFIG_SMP
869 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
870 #endif
871 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
872 	rq->hrtick_timer.function = hrtick;
873 }
874 #else	/* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)875 static inline void hrtick_clear(struct rq *rq)
876 {
877 }
878 
hrtick_rq_init(struct rq * rq)879 static inline void hrtick_rq_init(struct rq *rq)
880 {
881 }
882 #endif	/* CONFIG_SCHED_HRTICK */
883 
884 /*
885  * cmpxchg based fetch_or, macro so it works for different integer types
886  */
887 #define fetch_or(ptr, mask)						\
888 	({								\
889 		typeof(ptr) _ptr = (ptr);				\
890 		typeof(mask) _mask = (mask);				\
891 		typeof(*_ptr) _val = *_ptr;				\
892 									\
893 		do {							\
894 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
895 	_val;								\
896 })
897 
898 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
899 /*
900  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
901  * this avoids any races wrt polling state changes and thereby avoids
902  * spurious IPIs.
903  */
set_nr_and_not_polling(struct task_struct * p)904 static inline bool set_nr_and_not_polling(struct task_struct *p)
905 {
906 	struct thread_info *ti = task_thread_info(p);
907 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
908 }
909 
910 /*
911  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
912  *
913  * If this returns true, then the idle task promises to call
914  * sched_ttwu_pending() and reschedule soon.
915  */
set_nr_if_polling(struct task_struct * p)916 static bool set_nr_if_polling(struct task_struct *p)
917 {
918 	struct thread_info *ti = task_thread_info(p);
919 	typeof(ti->flags) val = READ_ONCE(ti->flags);
920 
921 	for (;;) {
922 		if (!(val & _TIF_POLLING_NRFLAG))
923 			return false;
924 		if (val & _TIF_NEED_RESCHED)
925 			return true;
926 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
927 			break;
928 	}
929 	return true;
930 }
931 
932 #else
set_nr_and_not_polling(struct task_struct * p)933 static inline bool set_nr_and_not_polling(struct task_struct *p)
934 {
935 	set_tsk_need_resched(p);
936 	return true;
937 }
938 
939 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)940 static inline bool set_nr_if_polling(struct task_struct *p)
941 {
942 	return false;
943 }
944 #endif
945 #endif
946 
__wake_q_add(struct wake_q_head * head,struct task_struct * task)947 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
948 {
949 	struct wake_q_node *node = &task->wake_q;
950 
951 	/*
952 	 * Atomically grab the task, if ->wake_q is !nil already it means
953 	 * it's already queued (either by us or someone else) and will get the
954 	 * wakeup due to that.
955 	 *
956 	 * In order to ensure that a pending wakeup will observe our pending
957 	 * state, even in the failed case, an explicit smp_mb() must be used.
958 	 */
959 	smp_mb__before_atomic();
960 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
961 		return false;
962 
963 	/*
964 	 * The head is context local, there can be no concurrency.
965 	 */
966 	*head->lastp = node;
967 	head->lastp = &node->next;
968 	return true;
969 }
970 
971 /**
972  * wake_q_add() - queue a wakeup for 'later' waking.
973  * @head: the wake_q_head to add @task to
974  * @task: the task to queue for 'later' wakeup
975  *
976  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
977  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
978  * instantly.
979  *
980  * This function must be used as-if it were wake_up_process(); IOW the task
981  * must be ready to be woken at this location.
982  */
wake_q_add(struct wake_q_head * head,struct task_struct * task)983 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
984 {
985 	if (__wake_q_add(head, task))
986 		get_task_struct(task);
987 }
988 
989 /**
990  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
991  * @head: the wake_q_head to add @task to
992  * @task: the task to queue for 'later' wakeup
993  *
994  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
995  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
996  * instantly.
997  *
998  * This function must be used as-if it were wake_up_process(); IOW the task
999  * must be ready to be woken at this location.
1000  *
1001  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1002  * that already hold reference to @task can call the 'safe' version and trust
1003  * wake_q to do the right thing depending whether or not the @task is already
1004  * queued for wakeup.
1005  */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1006 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1007 {
1008 	if (!__wake_q_add(head, task))
1009 		put_task_struct(task);
1010 }
1011 
wake_up_q(struct wake_q_head * head)1012 void wake_up_q(struct wake_q_head *head)
1013 {
1014 	struct wake_q_node *node = head->first;
1015 
1016 	while (node != WAKE_Q_TAIL) {
1017 		struct task_struct *task;
1018 
1019 		task = container_of(node, struct task_struct, wake_q);
1020 		/* Task can safely be re-inserted now: */
1021 		node = node->next;
1022 		task->wake_q.next = NULL;
1023 
1024 		/*
1025 		 * wake_up_process() executes a full barrier, which pairs with
1026 		 * the queueing in wake_q_add() so as not to miss wakeups.
1027 		 */
1028 		wake_up_process(task);
1029 		put_task_struct(task);
1030 	}
1031 }
1032 
1033 /*
1034  * resched_curr - mark rq's current task 'to be rescheduled now'.
1035  *
1036  * On UP this means the setting of the need_resched flag, on SMP it
1037  * might also involve a cross-CPU call to trigger the scheduler on
1038  * the target CPU.
1039  */
resched_curr(struct rq * rq)1040 void resched_curr(struct rq *rq)
1041 {
1042 	struct task_struct *curr = rq->curr;
1043 	int cpu;
1044 
1045 	lockdep_assert_rq_held(rq);
1046 
1047 	if (test_tsk_need_resched(curr))
1048 		return;
1049 
1050 	cpu = cpu_of(rq);
1051 
1052 	if (cpu == smp_processor_id()) {
1053 		set_tsk_need_resched(curr);
1054 		set_preempt_need_resched();
1055 		return;
1056 	}
1057 
1058 	if (set_nr_and_not_polling(curr))
1059 		smp_send_reschedule(cpu);
1060 	else
1061 		trace_sched_wake_idle_without_ipi(cpu);
1062 }
1063 
resched_cpu(int cpu)1064 void resched_cpu(int cpu)
1065 {
1066 	struct rq *rq = cpu_rq(cpu);
1067 	unsigned long flags;
1068 
1069 	raw_spin_rq_lock_irqsave(rq, flags);
1070 	if (cpu_online(cpu) || cpu == smp_processor_id())
1071 		resched_curr(rq);
1072 	raw_spin_rq_unlock_irqrestore(rq, flags);
1073 }
1074 
1075 #ifdef CONFIG_SMP
1076 #ifdef CONFIG_NO_HZ_COMMON
1077 /*
1078  * In the semi idle case, use the nearest busy CPU for migrating timers
1079  * from an idle CPU.  This is good for power-savings.
1080  *
1081  * We don't do similar optimization for completely idle system, as
1082  * selecting an idle CPU will add more delays to the timers than intended
1083  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1084  */
get_nohz_timer_target(void)1085 int get_nohz_timer_target(void)
1086 {
1087 	int i, cpu = smp_processor_id(), default_cpu = -1;
1088 	struct sched_domain *sd;
1089 	const struct cpumask *hk_mask;
1090 
1091 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1092 		if (!idle_cpu(cpu))
1093 			return cpu;
1094 		default_cpu = cpu;
1095 	}
1096 
1097 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1098 
1099 	guard(rcu)();
1100 
1101 	for_each_domain(cpu, sd) {
1102 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1103 			if (cpu == i)
1104 				continue;
1105 
1106 			if (!idle_cpu(i))
1107 				return i;
1108 		}
1109 	}
1110 
1111 	if (default_cpu == -1)
1112 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1113 
1114 	return default_cpu;
1115 }
1116 
1117 /*
1118  * When add_timer_on() enqueues a timer into the timer wheel of an
1119  * idle CPU then this timer might expire before the next timer event
1120  * which is scheduled to wake up that CPU. In case of a completely
1121  * idle system the next event might even be infinite time into the
1122  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1123  * leaves the inner idle loop so the newly added timer is taken into
1124  * account when the CPU goes back to idle and evaluates the timer
1125  * wheel for the next timer event.
1126  */
wake_up_idle_cpu(int cpu)1127 static void wake_up_idle_cpu(int cpu)
1128 {
1129 	struct rq *rq = cpu_rq(cpu);
1130 
1131 	if (cpu == smp_processor_id())
1132 		return;
1133 
1134 	if (set_nr_and_not_polling(rq->idle))
1135 		smp_send_reschedule(cpu);
1136 	else
1137 		trace_sched_wake_idle_without_ipi(cpu);
1138 }
1139 
wake_up_full_nohz_cpu(int cpu)1140 static bool wake_up_full_nohz_cpu(int cpu)
1141 {
1142 	/*
1143 	 * We just need the target to call irq_exit() and re-evaluate
1144 	 * the next tick. The nohz full kick at least implies that.
1145 	 * If needed we can still optimize that later with an
1146 	 * empty IRQ.
1147 	 */
1148 	if (cpu_is_offline(cpu))
1149 		return true;  /* Don't try to wake offline CPUs. */
1150 	if (tick_nohz_full_cpu(cpu)) {
1151 		if (cpu != smp_processor_id() ||
1152 		    tick_nohz_tick_stopped())
1153 			tick_nohz_full_kick_cpu(cpu);
1154 		return true;
1155 	}
1156 
1157 	return false;
1158 }
1159 
1160 /*
1161  * Wake up the specified CPU.  If the CPU is going offline, it is the
1162  * caller's responsibility to deal with the lost wakeup, for example,
1163  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1164  */
wake_up_nohz_cpu(int cpu)1165 void wake_up_nohz_cpu(int cpu)
1166 {
1167 	if (!wake_up_full_nohz_cpu(cpu))
1168 		wake_up_idle_cpu(cpu);
1169 }
1170 
nohz_csd_func(void * info)1171 static void nohz_csd_func(void *info)
1172 {
1173 	struct rq *rq = info;
1174 	int cpu = cpu_of(rq);
1175 	unsigned int flags;
1176 
1177 	/*
1178 	 * Release the rq::nohz_csd.
1179 	 */
1180 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1181 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1182 
1183 	rq->idle_balance = idle_cpu(cpu);
1184 	if (rq->idle_balance) {
1185 		rq->nohz_idle_balance = flags;
1186 		__raise_softirq_irqoff(SCHED_SOFTIRQ);
1187 	}
1188 }
1189 
1190 #endif /* CONFIG_NO_HZ_COMMON */
1191 
1192 #ifdef CONFIG_NO_HZ_FULL
__need_bw_check(struct rq * rq,struct task_struct * p)1193 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1194 {
1195 	if (rq->nr_running != 1)
1196 		return false;
1197 
1198 	if (p->sched_class != &fair_sched_class)
1199 		return false;
1200 
1201 	if (!task_on_rq_queued(p))
1202 		return false;
1203 
1204 	return true;
1205 }
1206 
sched_can_stop_tick(struct rq * rq)1207 bool sched_can_stop_tick(struct rq *rq)
1208 {
1209 	int fifo_nr_running;
1210 
1211 	/* Deadline tasks, even if single, need the tick */
1212 	if (rq->dl.dl_nr_running)
1213 		return false;
1214 
1215 	/*
1216 	 * If there are more than one RR tasks, we need the tick to affect the
1217 	 * actual RR behaviour.
1218 	 */
1219 	if (rq->rt.rr_nr_running) {
1220 		if (rq->rt.rr_nr_running == 1)
1221 			return true;
1222 		else
1223 			return false;
1224 	}
1225 
1226 	/*
1227 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1228 	 * forced preemption between FIFO tasks.
1229 	 */
1230 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1231 	if (fifo_nr_running)
1232 		return true;
1233 
1234 	/*
1235 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1236 	 * if there's more than one we need the tick for involuntary
1237 	 * preemption.
1238 	 */
1239 	if (rq->nr_running > 1)
1240 		return false;
1241 
1242 	/*
1243 	 * If there is one task and it has CFS runtime bandwidth constraints
1244 	 * and it's on the cpu now we don't want to stop the tick.
1245 	 * This check prevents clearing the bit if a newly enqueued task here is
1246 	 * dequeued by migrating while the constrained task continues to run.
1247 	 * E.g. going from 2->1 without going through pick_next_task().
1248 	 */
1249 	if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1250 		if (cfs_task_bw_constrained(rq->curr))
1251 			return false;
1252 	}
1253 
1254 	return true;
1255 }
1256 #endif /* CONFIG_NO_HZ_FULL */
1257 #endif /* CONFIG_SMP */
1258 
1259 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1260 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1261 /*
1262  * Iterate task_group tree rooted at *from, calling @down when first entering a
1263  * node and @up when leaving it for the final time.
1264  *
1265  * Caller must hold rcu_lock or sufficient equivalent.
1266  */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1267 int walk_tg_tree_from(struct task_group *from,
1268 			     tg_visitor down, tg_visitor up, void *data)
1269 {
1270 	struct task_group *parent, *child;
1271 	int ret;
1272 
1273 	parent = from;
1274 
1275 down:
1276 	ret = (*down)(parent, data);
1277 	if (ret)
1278 		goto out;
1279 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1280 		parent = child;
1281 		goto down;
1282 
1283 up:
1284 		continue;
1285 	}
1286 	ret = (*up)(parent, data);
1287 	if (ret || parent == from)
1288 		goto out;
1289 
1290 	child = parent;
1291 	parent = parent->parent;
1292 	if (parent)
1293 		goto up;
1294 out:
1295 	return ret;
1296 }
1297 
tg_nop(struct task_group * tg,void * data)1298 int tg_nop(struct task_group *tg, void *data)
1299 {
1300 	return 0;
1301 }
1302 #endif
1303 
set_load_weight(struct task_struct * p,bool update_load)1304 static void set_load_weight(struct task_struct *p, bool update_load)
1305 {
1306 	int prio = p->static_prio - MAX_RT_PRIO;
1307 	struct load_weight lw;
1308 
1309 	if (task_has_idle_policy(p)) {
1310 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1311 		lw.inv_weight = WMULT_IDLEPRIO;
1312 	} else {
1313 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1314 		lw.inv_weight = sched_prio_to_wmult[prio];
1315 	}
1316 
1317 	/*
1318 	 * SCHED_OTHER tasks have to update their load when changing their
1319 	 * weight
1320 	 */
1321 	if (update_load && p->sched_class == &fair_sched_class)
1322 		reweight_task(p, &lw);
1323 	else
1324 		p->se.load = lw;
1325 }
1326 
1327 #ifdef CONFIG_UCLAMP_TASK
1328 /*
1329  * Serializes updates of utilization clamp values
1330  *
1331  * The (slow-path) user-space triggers utilization clamp value updates which
1332  * can require updates on (fast-path) scheduler's data structures used to
1333  * support enqueue/dequeue operations.
1334  * While the per-CPU rq lock protects fast-path update operations, user-space
1335  * requests are serialized using a mutex to reduce the risk of conflicting
1336  * updates or API abuses.
1337  */
1338 static DEFINE_MUTEX(uclamp_mutex);
1339 
1340 /* Max allowed minimum utilization */
1341 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1342 
1343 /* Max allowed maximum utilization */
1344 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1345 
1346 /*
1347  * By default RT tasks run at the maximum performance point/capacity of the
1348  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1349  * SCHED_CAPACITY_SCALE.
1350  *
1351  * This knob allows admins to change the default behavior when uclamp is being
1352  * used. In battery powered devices, particularly, running at the maximum
1353  * capacity and frequency will increase energy consumption and shorten the
1354  * battery life.
1355  *
1356  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1357  *
1358  * This knob will not override the system default sched_util_clamp_min defined
1359  * above.
1360  */
1361 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1362 
1363 /* All clamps are required to be less or equal than these values */
1364 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1365 
1366 /*
1367  * This static key is used to reduce the uclamp overhead in the fast path. It
1368  * primarily disables the call to uclamp_rq_{inc, dec}() in
1369  * enqueue/dequeue_task().
1370  *
1371  * This allows users to continue to enable uclamp in their kernel config with
1372  * minimum uclamp overhead in the fast path.
1373  *
1374  * As soon as userspace modifies any of the uclamp knobs, the static key is
1375  * enabled, since we have an actual users that make use of uclamp
1376  * functionality.
1377  *
1378  * The knobs that would enable this static key are:
1379  *
1380  *   * A task modifying its uclamp value with sched_setattr().
1381  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1382  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1383  */
1384 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1385 
1386 /* Integer rounded range for each bucket */
1387 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1388 
1389 #define for_each_clamp_id(clamp_id) \
1390 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1391 
uclamp_bucket_id(unsigned int clamp_value)1392 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1393 {
1394 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1395 }
1396 
uclamp_none(enum uclamp_id clamp_id)1397 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1398 {
1399 	if (clamp_id == UCLAMP_MIN)
1400 		return 0;
1401 	return SCHED_CAPACITY_SCALE;
1402 }
1403 
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1404 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1405 				 unsigned int value, bool user_defined)
1406 {
1407 	uc_se->value = value;
1408 	uc_se->bucket_id = uclamp_bucket_id(value);
1409 	uc_se->user_defined = user_defined;
1410 }
1411 
1412 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1413 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1414 		  unsigned int clamp_value)
1415 {
1416 	/*
1417 	 * Avoid blocked utilization pushing up the frequency when we go
1418 	 * idle (which drops the max-clamp) by retaining the last known
1419 	 * max-clamp.
1420 	 */
1421 	if (clamp_id == UCLAMP_MAX) {
1422 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1423 		return clamp_value;
1424 	}
1425 
1426 	return uclamp_none(UCLAMP_MIN);
1427 }
1428 
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1429 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1430 				     unsigned int clamp_value)
1431 {
1432 	/* Reset max-clamp retention only on idle exit */
1433 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1434 		return;
1435 
1436 	uclamp_rq_set(rq, clamp_id, clamp_value);
1437 }
1438 
1439 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1440 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1441 				   unsigned int clamp_value)
1442 {
1443 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1444 	int bucket_id = UCLAMP_BUCKETS - 1;
1445 
1446 	/*
1447 	 * Since both min and max clamps are max aggregated, find the
1448 	 * top most bucket with tasks in.
1449 	 */
1450 	for ( ; bucket_id >= 0; bucket_id--) {
1451 		if (!bucket[bucket_id].tasks)
1452 			continue;
1453 		return bucket[bucket_id].value;
1454 	}
1455 
1456 	/* No tasks -- default clamp values */
1457 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1458 }
1459 
__uclamp_update_util_min_rt_default(struct task_struct * p)1460 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1461 {
1462 	unsigned int default_util_min;
1463 	struct uclamp_se *uc_se;
1464 
1465 	lockdep_assert_held(&p->pi_lock);
1466 
1467 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1468 
1469 	/* Only sync if user didn't override the default */
1470 	if (uc_se->user_defined)
1471 		return;
1472 
1473 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1474 	uclamp_se_set(uc_se, default_util_min, false);
1475 }
1476 
uclamp_update_util_min_rt_default(struct task_struct * p)1477 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1478 {
1479 	struct rq_flags rf;
1480 	struct rq *rq;
1481 
1482 	if (!rt_task(p))
1483 		return;
1484 
1485 	/* Protect updates to p->uclamp_* */
1486 	rq = task_rq_lock(p, &rf);
1487 	__uclamp_update_util_min_rt_default(p);
1488 	task_rq_unlock(rq, p, &rf);
1489 }
1490 
1491 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1492 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1493 {
1494 	/* Copy by value as we could modify it */
1495 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1496 #ifdef CONFIG_UCLAMP_TASK_GROUP
1497 	unsigned int tg_min, tg_max, value;
1498 
1499 	/*
1500 	 * Tasks in autogroups or root task group will be
1501 	 * restricted by system defaults.
1502 	 */
1503 	if (task_group_is_autogroup(task_group(p)))
1504 		return uc_req;
1505 	if (task_group(p) == &root_task_group)
1506 		return uc_req;
1507 
1508 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1509 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1510 	value = uc_req.value;
1511 	value = clamp(value, tg_min, tg_max);
1512 	uclamp_se_set(&uc_req, value, false);
1513 #endif
1514 
1515 	return uc_req;
1516 }
1517 
1518 /*
1519  * The effective clamp bucket index of a task depends on, by increasing
1520  * priority:
1521  * - the task specific clamp value, when explicitly requested from userspace
1522  * - the task group effective clamp value, for tasks not either in the root
1523  *   group or in an autogroup
1524  * - the system default clamp value, defined by the sysadmin
1525  */
1526 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1527 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1528 {
1529 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1530 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1531 
1532 	/* System default restrictions always apply */
1533 	if (unlikely(uc_req.value > uc_max.value))
1534 		return uc_max;
1535 
1536 	return uc_req;
1537 }
1538 
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1539 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1540 {
1541 	struct uclamp_se uc_eff;
1542 
1543 	/* Task currently refcounted: use back-annotated (effective) value */
1544 	if (p->uclamp[clamp_id].active)
1545 		return (unsigned long)p->uclamp[clamp_id].value;
1546 
1547 	uc_eff = uclamp_eff_get(p, clamp_id);
1548 
1549 	return (unsigned long)uc_eff.value;
1550 }
1551 
1552 /*
1553  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1554  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1555  * updates the rq's clamp value if required.
1556  *
1557  * Tasks can have a task-specific value requested from user-space, track
1558  * within each bucket the maximum value for tasks refcounted in it.
1559  * This "local max aggregation" allows to track the exact "requested" value
1560  * for each bucket when all its RUNNABLE tasks require the same clamp.
1561  */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1562 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1563 				    enum uclamp_id clamp_id)
1564 {
1565 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1566 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1567 	struct uclamp_bucket *bucket;
1568 
1569 	lockdep_assert_rq_held(rq);
1570 
1571 	/* Update task effective clamp */
1572 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1573 
1574 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1575 	bucket->tasks++;
1576 	uc_se->active = true;
1577 
1578 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1579 
1580 	/*
1581 	 * Local max aggregation: rq buckets always track the max
1582 	 * "requested" clamp value of its RUNNABLE tasks.
1583 	 */
1584 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1585 		bucket->value = uc_se->value;
1586 
1587 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1588 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1589 }
1590 
1591 /*
1592  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1593  * is released. If this is the last task reference counting the rq's max
1594  * active clamp value, then the rq's clamp value is updated.
1595  *
1596  * Both refcounted tasks and rq's cached clamp values are expected to be
1597  * always valid. If it's detected they are not, as defensive programming,
1598  * enforce the expected state and warn.
1599  */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1600 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1601 				    enum uclamp_id clamp_id)
1602 {
1603 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1604 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1605 	struct uclamp_bucket *bucket;
1606 	unsigned int bkt_clamp;
1607 	unsigned int rq_clamp;
1608 
1609 	lockdep_assert_rq_held(rq);
1610 
1611 	/*
1612 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1613 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1614 	 *
1615 	 * In this case the uc_se->active flag should be false since no uclamp
1616 	 * accounting was performed at enqueue time and we can just return
1617 	 * here.
1618 	 *
1619 	 * Need to be careful of the following enqueue/dequeue ordering
1620 	 * problem too
1621 	 *
1622 	 *	enqueue(taskA)
1623 	 *	// sched_uclamp_used gets enabled
1624 	 *	enqueue(taskB)
1625 	 *	dequeue(taskA)
1626 	 *	// Must not decrement bucket->tasks here
1627 	 *	dequeue(taskB)
1628 	 *
1629 	 * where we could end up with stale data in uc_se and
1630 	 * bucket[uc_se->bucket_id].
1631 	 *
1632 	 * The following check here eliminates the possibility of such race.
1633 	 */
1634 	if (unlikely(!uc_se->active))
1635 		return;
1636 
1637 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1638 
1639 	SCHED_WARN_ON(!bucket->tasks);
1640 	if (likely(bucket->tasks))
1641 		bucket->tasks--;
1642 
1643 	uc_se->active = false;
1644 
1645 	/*
1646 	 * Keep "local max aggregation" simple and accept to (possibly)
1647 	 * overboost some RUNNABLE tasks in the same bucket.
1648 	 * The rq clamp bucket value is reset to its base value whenever
1649 	 * there are no more RUNNABLE tasks refcounting it.
1650 	 */
1651 	if (likely(bucket->tasks))
1652 		return;
1653 
1654 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1655 	/*
1656 	 * Defensive programming: this should never happen. If it happens,
1657 	 * e.g. due to future modification, warn and fixup the expected value.
1658 	 */
1659 	SCHED_WARN_ON(bucket->value > rq_clamp);
1660 	if (bucket->value >= rq_clamp) {
1661 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1662 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1663 	}
1664 }
1665 
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1666 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1667 {
1668 	enum uclamp_id clamp_id;
1669 
1670 	/*
1671 	 * Avoid any overhead until uclamp is actually used by the userspace.
1672 	 *
1673 	 * The condition is constructed such that a NOP is generated when
1674 	 * sched_uclamp_used is disabled.
1675 	 */
1676 	if (!static_branch_unlikely(&sched_uclamp_used))
1677 		return;
1678 
1679 	if (unlikely(!p->sched_class->uclamp_enabled))
1680 		return;
1681 
1682 	for_each_clamp_id(clamp_id)
1683 		uclamp_rq_inc_id(rq, p, clamp_id);
1684 
1685 	/* Reset clamp idle holding when there is one RUNNABLE task */
1686 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1687 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1688 }
1689 
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1690 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1691 {
1692 	enum uclamp_id clamp_id;
1693 
1694 	/*
1695 	 * Avoid any overhead until uclamp is actually used by the userspace.
1696 	 *
1697 	 * The condition is constructed such that a NOP is generated when
1698 	 * sched_uclamp_used is disabled.
1699 	 */
1700 	if (!static_branch_unlikely(&sched_uclamp_used))
1701 		return;
1702 
1703 	if (unlikely(!p->sched_class->uclamp_enabled))
1704 		return;
1705 
1706 	for_each_clamp_id(clamp_id)
1707 		uclamp_rq_dec_id(rq, p, clamp_id);
1708 }
1709 
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1710 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1711 				      enum uclamp_id clamp_id)
1712 {
1713 	if (!p->uclamp[clamp_id].active)
1714 		return;
1715 
1716 	uclamp_rq_dec_id(rq, p, clamp_id);
1717 	uclamp_rq_inc_id(rq, p, clamp_id);
1718 
1719 	/*
1720 	 * Make sure to clear the idle flag if we've transiently reached 0
1721 	 * active tasks on rq.
1722 	 */
1723 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1724 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1725 }
1726 
1727 static inline void
uclamp_update_active(struct task_struct * p)1728 uclamp_update_active(struct task_struct *p)
1729 {
1730 	enum uclamp_id clamp_id;
1731 	struct rq_flags rf;
1732 	struct rq *rq;
1733 
1734 	/*
1735 	 * Lock the task and the rq where the task is (or was) queued.
1736 	 *
1737 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1738 	 * price to pay to safely serialize util_{min,max} updates with
1739 	 * enqueues, dequeues and migration operations.
1740 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1741 	 */
1742 	rq = task_rq_lock(p, &rf);
1743 
1744 	/*
1745 	 * Setting the clamp bucket is serialized by task_rq_lock().
1746 	 * If the task is not yet RUNNABLE and its task_struct is not
1747 	 * affecting a valid clamp bucket, the next time it's enqueued,
1748 	 * it will already see the updated clamp bucket value.
1749 	 */
1750 	for_each_clamp_id(clamp_id)
1751 		uclamp_rq_reinc_id(rq, p, clamp_id);
1752 
1753 	task_rq_unlock(rq, p, &rf);
1754 }
1755 
1756 #ifdef CONFIG_UCLAMP_TASK_GROUP
1757 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1758 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1759 {
1760 	struct css_task_iter it;
1761 	struct task_struct *p;
1762 
1763 	css_task_iter_start(css, 0, &it);
1764 	while ((p = css_task_iter_next(&it)))
1765 		uclamp_update_active(p);
1766 	css_task_iter_end(&it);
1767 }
1768 
1769 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1770 #endif
1771 
1772 #ifdef CONFIG_SYSCTL
1773 #ifdef CONFIG_UCLAMP_TASK
1774 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1775 static void uclamp_update_root_tg(void)
1776 {
1777 	struct task_group *tg = &root_task_group;
1778 
1779 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1780 		      sysctl_sched_uclamp_util_min, false);
1781 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1782 		      sysctl_sched_uclamp_util_max, false);
1783 
1784 	rcu_read_lock();
1785 	cpu_util_update_eff(&root_task_group.css);
1786 	rcu_read_unlock();
1787 }
1788 #else
uclamp_update_root_tg(void)1789 static void uclamp_update_root_tg(void) { }
1790 #endif
1791 
uclamp_sync_util_min_rt_default(void)1792 static void uclamp_sync_util_min_rt_default(void)
1793 {
1794 	struct task_struct *g, *p;
1795 
1796 	/*
1797 	 * copy_process()			sysctl_uclamp
1798 	 *					  uclamp_min_rt = X;
1799 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1800 	 *   // link thread			  smp_mb__after_spinlock()
1801 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1802 	 *   sched_post_fork()			  for_each_process_thread()
1803 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1804 	 *
1805 	 * Ensures that either sched_post_fork() will observe the new
1806 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1807 	 * task.
1808 	 */
1809 	read_lock(&tasklist_lock);
1810 	smp_mb__after_spinlock();
1811 	read_unlock(&tasklist_lock);
1812 
1813 	rcu_read_lock();
1814 	for_each_process_thread(g, p)
1815 		uclamp_update_util_min_rt_default(p);
1816 	rcu_read_unlock();
1817 }
1818 
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1819 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1820 				void *buffer, size_t *lenp, loff_t *ppos)
1821 {
1822 	bool update_root_tg = false;
1823 	int old_min, old_max, old_min_rt;
1824 	int result;
1825 
1826 	guard(mutex)(&uclamp_mutex);
1827 
1828 	old_min = sysctl_sched_uclamp_util_min;
1829 	old_max = sysctl_sched_uclamp_util_max;
1830 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1831 
1832 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1833 	if (result)
1834 		goto undo;
1835 	if (!write)
1836 		return 0;
1837 
1838 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1839 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1840 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1841 
1842 		result = -EINVAL;
1843 		goto undo;
1844 	}
1845 
1846 	if (old_min != sysctl_sched_uclamp_util_min) {
1847 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1848 			      sysctl_sched_uclamp_util_min, false);
1849 		update_root_tg = true;
1850 	}
1851 	if (old_max != sysctl_sched_uclamp_util_max) {
1852 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1853 			      sysctl_sched_uclamp_util_max, false);
1854 		update_root_tg = true;
1855 	}
1856 
1857 	if (update_root_tg) {
1858 		static_branch_enable(&sched_uclamp_used);
1859 		uclamp_update_root_tg();
1860 	}
1861 
1862 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1863 		static_branch_enable(&sched_uclamp_used);
1864 		uclamp_sync_util_min_rt_default();
1865 	}
1866 
1867 	/*
1868 	 * We update all RUNNABLE tasks only when task groups are in use.
1869 	 * Otherwise, keep it simple and do just a lazy update at each next
1870 	 * task enqueue time.
1871 	 */
1872 	return 0;
1873 
1874 undo:
1875 	sysctl_sched_uclamp_util_min = old_min;
1876 	sysctl_sched_uclamp_util_max = old_max;
1877 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1878 	return result;
1879 }
1880 #endif
1881 #endif
1882 
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1883 static int uclamp_validate(struct task_struct *p,
1884 			   const struct sched_attr *attr)
1885 {
1886 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1887 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1888 
1889 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1890 		util_min = attr->sched_util_min;
1891 
1892 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1893 			return -EINVAL;
1894 	}
1895 
1896 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1897 		util_max = attr->sched_util_max;
1898 
1899 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1900 			return -EINVAL;
1901 	}
1902 
1903 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1904 		return -EINVAL;
1905 
1906 	/*
1907 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1908 	 *
1909 	 * We need to do that here, because enabling static branches is a
1910 	 * blocking operation which obviously cannot be done while holding
1911 	 * scheduler locks.
1912 	 */
1913 	static_branch_enable(&sched_uclamp_used);
1914 
1915 	return 0;
1916 }
1917 
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1918 static bool uclamp_reset(const struct sched_attr *attr,
1919 			 enum uclamp_id clamp_id,
1920 			 struct uclamp_se *uc_se)
1921 {
1922 	/* Reset on sched class change for a non user-defined clamp value. */
1923 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1924 	    !uc_se->user_defined)
1925 		return true;
1926 
1927 	/* Reset on sched_util_{min,max} == -1. */
1928 	if (clamp_id == UCLAMP_MIN &&
1929 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1930 	    attr->sched_util_min == -1) {
1931 		return true;
1932 	}
1933 
1934 	if (clamp_id == UCLAMP_MAX &&
1935 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1936 	    attr->sched_util_max == -1) {
1937 		return true;
1938 	}
1939 
1940 	return false;
1941 }
1942 
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1943 static void __setscheduler_uclamp(struct task_struct *p,
1944 				  const struct sched_attr *attr)
1945 {
1946 	enum uclamp_id clamp_id;
1947 
1948 	for_each_clamp_id(clamp_id) {
1949 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1950 		unsigned int value;
1951 
1952 		if (!uclamp_reset(attr, clamp_id, uc_se))
1953 			continue;
1954 
1955 		/*
1956 		 * RT by default have a 100% boost value that could be modified
1957 		 * at runtime.
1958 		 */
1959 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1960 			value = sysctl_sched_uclamp_util_min_rt_default;
1961 		else
1962 			value = uclamp_none(clamp_id);
1963 
1964 		uclamp_se_set(uc_se, value, false);
1965 
1966 	}
1967 
1968 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1969 		return;
1970 
1971 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1972 	    attr->sched_util_min != -1) {
1973 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1974 			      attr->sched_util_min, true);
1975 	}
1976 
1977 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1978 	    attr->sched_util_max != -1) {
1979 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1980 			      attr->sched_util_max, true);
1981 	}
1982 }
1983 
uclamp_fork(struct task_struct * p)1984 static void uclamp_fork(struct task_struct *p)
1985 {
1986 	enum uclamp_id clamp_id;
1987 
1988 	/*
1989 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1990 	 * as the task is still at its early fork stages.
1991 	 */
1992 	for_each_clamp_id(clamp_id)
1993 		p->uclamp[clamp_id].active = false;
1994 
1995 	if (likely(!p->sched_reset_on_fork))
1996 		return;
1997 
1998 	for_each_clamp_id(clamp_id) {
1999 		uclamp_se_set(&p->uclamp_req[clamp_id],
2000 			      uclamp_none(clamp_id), false);
2001 	}
2002 }
2003 
uclamp_post_fork(struct task_struct * p)2004 static void uclamp_post_fork(struct task_struct *p)
2005 {
2006 	uclamp_update_util_min_rt_default(p);
2007 }
2008 
init_uclamp_rq(struct rq * rq)2009 static void __init init_uclamp_rq(struct rq *rq)
2010 {
2011 	enum uclamp_id clamp_id;
2012 	struct uclamp_rq *uc_rq = rq->uclamp;
2013 
2014 	for_each_clamp_id(clamp_id) {
2015 		uc_rq[clamp_id] = (struct uclamp_rq) {
2016 			.value = uclamp_none(clamp_id)
2017 		};
2018 	}
2019 
2020 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2021 }
2022 
init_uclamp(void)2023 static void __init init_uclamp(void)
2024 {
2025 	struct uclamp_se uc_max = {};
2026 	enum uclamp_id clamp_id;
2027 	int cpu;
2028 
2029 	for_each_possible_cpu(cpu)
2030 		init_uclamp_rq(cpu_rq(cpu));
2031 
2032 	for_each_clamp_id(clamp_id) {
2033 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2034 			      uclamp_none(clamp_id), false);
2035 	}
2036 
2037 	/* System defaults allow max clamp values for both indexes */
2038 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2039 	for_each_clamp_id(clamp_id) {
2040 		uclamp_default[clamp_id] = uc_max;
2041 #ifdef CONFIG_UCLAMP_TASK_GROUP
2042 		root_task_group.uclamp_req[clamp_id] = uc_max;
2043 		root_task_group.uclamp[clamp_id] = uc_max;
2044 #endif
2045 	}
2046 }
2047 
2048 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)2049 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2050 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)2051 static inline int uclamp_validate(struct task_struct *p,
2052 				  const struct sched_attr *attr)
2053 {
2054 	return -EOPNOTSUPP;
2055 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)2056 static void __setscheduler_uclamp(struct task_struct *p,
2057 				  const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)2058 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2059 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2060 static inline void init_uclamp(void) { }
2061 #endif /* CONFIG_UCLAMP_TASK */
2062 
sched_task_on_rq(struct task_struct * p)2063 bool sched_task_on_rq(struct task_struct *p)
2064 {
2065 	return task_on_rq_queued(p);
2066 }
2067 
get_wchan(struct task_struct * p)2068 unsigned long get_wchan(struct task_struct *p)
2069 {
2070 	unsigned long ip = 0;
2071 	unsigned int state;
2072 
2073 	if (!p || p == current)
2074 		return 0;
2075 
2076 	/* Only get wchan if task is blocked and we can keep it that way. */
2077 	raw_spin_lock_irq(&p->pi_lock);
2078 	state = READ_ONCE(p->__state);
2079 	smp_rmb(); /* see try_to_wake_up() */
2080 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2081 		ip = __get_wchan(p);
2082 	raw_spin_unlock_irq(&p->pi_lock);
2083 
2084 	return ip;
2085 }
2086 
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2087 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2088 {
2089 	if (!(flags & ENQUEUE_NOCLOCK))
2090 		update_rq_clock(rq);
2091 
2092 	if (!(flags & ENQUEUE_RESTORE)) {
2093 		sched_info_enqueue(rq, p);
2094 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2095 	}
2096 
2097 	uclamp_rq_inc(rq, p);
2098 	p->sched_class->enqueue_task(rq, p, flags);
2099 
2100 	if (sched_core_enabled(rq))
2101 		sched_core_enqueue(rq, p);
2102 }
2103 
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2104 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2105 {
2106 	if (sched_core_enabled(rq))
2107 		sched_core_dequeue(rq, p, flags);
2108 
2109 	if (!(flags & DEQUEUE_NOCLOCK))
2110 		update_rq_clock(rq);
2111 
2112 	if (!(flags & DEQUEUE_SAVE)) {
2113 		sched_info_dequeue(rq, p);
2114 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2115 	}
2116 
2117 	uclamp_rq_dec(rq, p);
2118 	p->sched_class->dequeue_task(rq, p, flags);
2119 }
2120 
activate_task(struct rq * rq,struct task_struct * p,int flags)2121 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2122 {
2123 	if (task_on_rq_migrating(p))
2124 		flags |= ENQUEUE_MIGRATED;
2125 	if (flags & ENQUEUE_MIGRATED)
2126 		sched_mm_cid_migrate_to(rq, p);
2127 
2128 	enqueue_task(rq, p, flags);
2129 
2130 	p->on_rq = TASK_ON_RQ_QUEUED;
2131 }
2132 
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2133 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2134 {
2135 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2136 
2137 	dequeue_task(rq, p, flags);
2138 }
2139 
__normal_prio(int policy,int rt_prio,int nice)2140 static inline int __normal_prio(int policy, int rt_prio, int nice)
2141 {
2142 	int prio;
2143 
2144 	if (dl_policy(policy))
2145 		prio = MAX_DL_PRIO - 1;
2146 	else if (rt_policy(policy))
2147 		prio = MAX_RT_PRIO - 1 - rt_prio;
2148 	else
2149 		prio = NICE_TO_PRIO(nice);
2150 
2151 	return prio;
2152 }
2153 
2154 /*
2155  * Calculate the expected normal priority: i.e. priority
2156  * without taking RT-inheritance into account. Might be
2157  * boosted by interactivity modifiers. Changes upon fork,
2158  * setprio syscalls, and whenever the interactivity
2159  * estimator recalculates.
2160  */
normal_prio(struct task_struct * p)2161 static inline int normal_prio(struct task_struct *p)
2162 {
2163 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2164 }
2165 
2166 /*
2167  * Calculate the current priority, i.e. the priority
2168  * taken into account by the scheduler. This value might
2169  * be boosted by RT tasks, or might be boosted by
2170  * interactivity modifiers. Will be RT if the task got
2171  * RT-boosted. If not then it returns p->normal_prio.
2172  */
effective_prio(struct task_struct * p)2173 static int effective_prio(struct task_struct *p)
2174 {
2175 	p->normal_prio = normal_prio(p);
2176 	/*
2177 	 * If we are RT tasks or we were boosted to RT priority,
2178 	 * keep the priority unchanged. Otherwise, update priority
2179 	 * to the normal priority:
2180 	 */
2181 	if (!rt_prio(p->prio))
2182 		return p->normal_prio;
2183 	return p->prio;
2184 }
2185 
2186 /**
2187  * task_curr - is this task currently executing on a CPU?
2188  * @p: the task in question.
2189  *
2190  * Return: 1 if the task is currently executing. 0 otherwise.
2191  */
task_curr(const struct task_struct * p)2192 inline int task_curr(const struct task_struct *p)
2193 {
2194 	return cpu_curr(task_cpu(p)) == p;
2195 }
2196 
2197 /*
2198  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2199  * use the balance_callback list if you want balancing.
2200  *
2201  * this means any call to check_class_changed() must be followed by a call to
2202  * balance_callback().
2203  */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2204 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2205 				       const struct sched_class *prev_class,
2206 				       int oldprio)
2207 {
2208 	if (prev_class != p->sched_class) {
2209 		if (prev_class->switched_from)
2210 			prev_class->switched_from(rq, p);
2211 
2212 		p->sched_class->switched_to(rq, p);
2213 	} else if (oldprio != p->prio || dl_task(p))
2214 		p->sched_class->prio_changed(rq, p, oldprio);
2215 }
2216 
wakeup_preempt(struct rq * rq,struct task_struct * p,int flags)2217 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2218 {
2219 	if (p->sched_class == rq->curr->sched_class)
2220 		rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2221 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2222 		resched_curr(rq);
2223 
2224 	/*
2225 	 * A queue event has occurred, and we're going to schedule.  In
2226 	 * this case, we can save a useless back to back clock update.
2227 	 */
2228 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2229 		rq_clock_skip_update(rq);
2230 }
2231 
2232 static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2233 int __task_state_match(struct task_struct *p, unsigned int state)
2234 {
2235 	if (READ_ONCE(p->__state) & state)
2236 		return 1;
2237 
2238 #ifdef CONFIG_PREEMPT_RT
2239 	if (READ_ONCE(p->saved_state) & state)
2240 		return -1;
2241 #endif
2242 	return 0;
2243 }
2244 
2245 static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2246 int task_state_match(struct task_struct *p, unsigned int state)
2247 {
2248 #ifdef CONFIG_PREEMPT_RT
2249 	int match;
2250 
2251 	/*
2252 	 * Serialize against current_save_and_set_rtlock_wait_state() and
2253 	 * current_restore_rtlock_saved_state().
2254 	 */
2255 	raw_spin_lock_irq(&p->pi_lock);
2256 	match = __task_state_match(p, state);
2257 	raw_spin_unlock_irq(&p->pi_lock);
2258 
2259 	return match;
2260 #else
2261 	return __task_state_match(p, state);
2262 #endif
2263 }
2264 
2265 /*
2266  * wait_task_inactive - wait for a thread to unschedule.
2267  *
2268  * Wait for the thread to block in any of the states set in @match_state.
2269  * If it changes, i.e. @p might have woken up, then return zero.  When we
2270  * succeed in waiting for @p to be off its CPU, we return a positive number
2271  * (its total switch count).  If a second call a short while later returns the
2272  * same number, the caller can be sure that @p has remained unscheduled the
2273  * whole time.
2274  *
2275  * The caller must ensure that the task *will* unschedule sometime soon,
2276  * else this function might spin for a *long* time. This function can't
2277  * be called with interrupts off, or it may introduce deadlock with
2278  * smp_call_function() if an IPI is sent by the same process we are
2279  * waiting to become inactive.
2280  */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2281 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2282 {
2283 	int running, queued, match;
2284 	struct rq_flags rf;
2285 	unsigned long ncsw;
2286 	struct rq *rq;
2287 
2288 	for (;;) {
2289 		/*
2290 		 * We do the initial early heuristics without holding
2291 		 * any task-queue locks at all. We'll only try to get
2292 		 * the runqueue lock when things look like they will
2293 		 * work out!
2294 		 */
2295 		rq = task_rq(p);
2296 
2297 		/*
2298 		 * If the task is actively running on another CPU
2299 		 * still, just relax and busy-wait without holding
2300 		 * any locks.
2301 		 *
2302 		 * NOTE! Since we don't hold any locks, it's not
2303 		 * even sure that "rq" stays as the right runqueue!
2304 		 * But we don't care, since "task_on_cpu()" will
2305 		 * return false if the runqueue has changed and p
2306 		 * is actually now running somewhere else!
2307 		 */
2308 		while (task_on_cpu(rq, p)) {
2309 			if (!task_state_match(p, match_state))
2310 				return 0;
2311 			cpu_relax();
2312 		}
2313 
2314 		/*
2315 		 * Ok, time to look more closely! We need the rq
2316 		 * lock now, to be *sure*. If we're wrong, we'll
2317 		 * just go back and repeat.
2318 		 */
2319 		rq = task_rq_lock(p, &rf);
2320 		trace_sched_wait_task(p);
2321 		running = task_on_cpu(rq, p);
2322 		queued = task_on_rq_queued(p);
2323 		ncsw = 0;
2324 		if ((match = __task_state_match(p, match_state))) {
2325 			/*
2326 			 * When matching on p->saved_state, consider this task
2327 			 * still queued so it will wait.
2328 			 */
2329 			if (match < 0)
2330 				queued = 1;
2331 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2332 		}
2333 		task_rq_unlock(rq, p, &rf);
2334 
2335 		/*
2336 		 * If it changed from the expected state, bail out now.
2337 		 */
2338 		if (unlikely(!ncsw))
2339 			break;
2340 
2341 		/*
2342 		 * Was it really running after all now that we
2343 		 * checked with the proper locks actually held?
2344 		 *
2345 		 * Oops. Go back and try again..
2346 		 */
2347 		if (unlikely(running)) {
2348 			cpu_relax();
2349 			continue;
2350 		}
2351 
2352 		/*
2353 		 * It's not enough that it's not actively running,
2354 		 * it must be off the runqueue _entirely_, and not
2355 		 * preempted!
2356 		 *
2357 		 * So if it was still runnable (but just not actively
2358 		 * running right now), it's preempted, and we should
2359 		 * yield - it could be a while.
2360 		 */
2361 		if (unlikely(queued)) {
2362 			ktime_t to = NSEC_PER_SEC / HZ;
2363 
2364 			set_current_state(TASK_UNINTERRUPTIBLE);
2365 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2366 			continue;
2367 		}
2368 
2369 		/*
2370 		 * Ahh, all good. It wasn't running, and it wasn't
2371 		 * runnable, which means that it will never become
2372 		 * running in the future either. We're all done!
2373 		 */
2374 		break;
2375 	}
2376 
2377 	return ncsw;
2378 }
2379 
2380 #ifdef CONFIG_SMP
2381 
2382 static void
2383 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2384 
2385 static int __set_cpus_allowed_ptr(struct task_struct *p,
2386 				  struct affinity_context *ctx);
2387 
migrate_disable_switch(struct rq * rq,struct task_struct * p)2388 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2389 {
2390 	struct affinity_context ac = {
2391 		.new_mask  = cpumask_of(rq->cpu),
2392 		.flags     = SCA_MIGRATE_DISABLE,
2393 	};
2394 
2395 	if (likely(!p->migration_disabled))
2396 		return;
2397 
2398 	if (p->cpus_ptr != &p->cpus_mask)
2399 		return;
2400 
2401 	/*
2402 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2403 	 */
2404 	__do_set_cpus_allowed(p, &ac);
2405 }
2406 
migrate_disable(void)2407 void migrate_disable(void)
2408 {
2409 	struct task_struct *p = current;
2410 
2411 	if (p->migration_disabled) {
2412 		p->migration_disabled++;
2413 		return;
2414 	}
2415 
2416 	preempt_disable();
2417 	this_rq()->nr_pinned++;
2418 	p->migration_disabled = 1;
2419 	preempt_enable();
2420 }
2421 EXPORT_SYMBOL_GPL(migrate_disable);
2422 
migrate_enable(void)2423 void migrate_enable(void)
2424 {
2425 	struct task_struct *p = current;
2426 	struct affinity_context ac = {
2427 		.new_mask  = &p->cpus_mask,
2428 		.flags     = SCA_MIGRATE_ENABLE,
2429 	};
2430 
2431 	if (p->migration_disabled > 1) {
2432 		p->migration_disabled--;
2433 		return;
2434 	}
2435 
2436 	if (WARN_ON_ONCE(!p->migration_disabled))
2437 		return;
2438 
2439 	/*
2440 	 * Ensure stop_task runs either before or after this, and that
2441 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2442 	 */
2443 	preempt_disable();
2444 	if (p->cpus_ptr != &p->cpus_mask)
2445 		__set_cpus_allowed_ptr(p, &ac);
2446 	/*
2447 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2448 	 * regular cpus_mask, otherwise things that race (eg.
2449 	 * select_fallback_rq) get confused.
2450 	 */
2451 	barrier();
2452 	p->migration_disabled = 0;
2453 	this_rq()->nr_pinned--;
2454 	preempt_enable();
2455 }
2456 EXPORT_SYMBOL_GPL(migrate_enable);
2457 
rq_has_pinned_tasks(struct rq * rq)2458 static inline bool rq_has_pinned_tasks(struct rq *rq)
2459 {
2460 	return rq->nr_pinned;
2461 }
2462 
2463 /*
2464  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2465  * __set_cpus_allowed_ptr() and select_fallback_rq().
2466  */
is_cpu_allowed(struct task_struct * p,int cpu)2467 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2468 {
2469 	/* When not in the task's cpumask, no point in looking further. */
2470 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2471 		return false;
2472 
2473 	/* migrate_disabled() must be allowed to finish. */
2474 	if (is_migration_disabled(p))
2475 		return cpu_online(cpu);
2476 
2477 	/* Non kernel threads are not allowed during either online or offline. */
2478 	if (!(p->flags & PF_KTHREAD))
2479 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2480 
2481 	/* KTHREAD_IS_PER_CPU is always allowed. */
2482 	if (kthread_is_per_cpu(p))
2483 		return cpu_online(cpu);
2484 
2485 	/* Regular kernel threads don't get to stay during offline. */
2486 	if (cpu_dying(cpu))
2487 		return false;
2488 
2489 	/* But are allowed during online. */
2490 	return cpu_online(cpu);
2491 }
2492 
2493 /*
2494  * This is how migration works:
2495  *
2496  * 1) we invoke migration_cpu_stop() on the target CPU using
2497  *    stop_one_cpu().
2498  * 2) stopper starts to run (implicitly forcing the migrated thread
2499  *    off the CPU)
2500  * 3) it checks whether the migrated task is still in the wrong runqueue.
2501  * 4) if it's in the wrong runqueue then the migration thread removes
2502  *    it and puts it into the right queue.
2503  * 5) stopper completes and stop_one_cpu() returns and the migration
2504  *    is done.
2505  */
2506 
2507 /*
2508  * move_queued_task - move a queued task to new rq.
2509  *
2510  * Returns (locked) new rq. Old rq's lock is released.
2511  */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2512 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2513 				   struct task_struct *p, int new_cpu)
2514 {
2515 	lockdep_assert_rq_held(rq);
2516 
2517 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2518 	set_task_cpu(p, new_cpu);
2519 	rq_unlock(rq, rf);
2520 
2521 	rq = cpu_rq(new_cpu);
2522 
2523 	rq_lock(rq, rf);
2524 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2525 	activate_task(rq, p, 0);
2526 	wakeup_preempt(rq, p, 0);
2527 
2528 	return rq;
2529 }
2530 
2531 struct migration_arg {
2532 	struct task_struct		*task;
2533 	int				dest_cpu;
2534 	struct set_affinity_pending	*pending;
2535 };
2536 
2537 /*
2538  * @refs: number of wait_for_completion()
2539  * @stop_pending: is @stop_work in use
2540  */
2541 struct set_affinity_pending {
2542 	refcount_t		refs;
2543 	unsigned int		stop_pending;
2544 	struct completion	done;
2545 	struct cpu_stop_work	stop_work;
2546 	struct migration_arg	arg;
2547 };
2548 
2549 /*
2550  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2551  * this because either it can't run here any more (set_cpus_allowed()
2552  * away from this CPU, or CPU going down), or because we're
2553  * attempting to rebalance this task on exec (sched_exec).
2554  *
2555  * So we race with normal scheduler movements, but that's OK, as long
2556  * as the task is no longer on this CPU.
2557  */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2558 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2559 				 struct task_struct *p, int dest_cpu)
2560 {
2561 	/* Affinity changed (again). */
2562 	if (!is_cpu_allowed(p, dest_cpu))
2563 		return rq;
2564 
2565 	rq = move_queued_task(rq, rf, p, dest_cpu);
2566 
2567 	return rq;
2568 }
2569 
2570 /*
2571  * migration_cpu_stop - this will be executed by a highprio stopper thread
2572  * and performs thread migration by bumping thread off CPU then
2573  * 'pushing' onto another runqueue.
2574  */
migration_cpu_stop(void * data)2575 static int migration_cpu_stop(void *data)
2576 {
2577 	struct migration_arg *arg = data;
2578 	struct set_affinity_pending *pending = arg->pending;
2579 	struct task_struct *p = arg->task;
2580 	struct rq *rq = this_rq();
2581 	bool complete = false;
2582 	struct rq_flags rf;
2583 
2584 	/*
2585 	 * The original target CPU might have gone down and we might
2586 	 * be on another CPU but it doesn't matter.
2587 	 */
2588 	local_irq_save(rf.flags);
2589 	/*
2590 	 * We need to explicitly wake pending tasks before running
2591 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2592 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2593 	 */
2594 	flush_smp_call_function_queue();
2595 
2596 	raw_spin_lock(&p->pi_lock);
2597 	rq_lock(rq, &rf);
2598 
2599 	/*
2600 	 * If we were passed a pending, then ->stop_pending was set, thus
2601 	 * p->migration_pending must have remained stable.
2602 	 */
2603 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2604 
2605 	/*
2606 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2607 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2608 	 * we're holding p->pi_lock.
2609 	 */
2610 	if (task_rq(p) == rq) {
2611 		if (is_migration_disabled(p))
2612 			goto out;
2613 
2614 		if (pending) {
2615 			p->migration_pending = NULL;
2616 			complete = true;
2617 
2618 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2619 				goto out;
2620 		}
2621 
2622 		if (task_on_rq_queued(p)) {
2623 			update_rq_clock(rq);
2624 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2625 		} else {
2626 			p->wake_cpu = arg->dest_cpu;
2627 		}
2628 
2629 		/*
2630 		 * XXX __migrate_task() can fail, at which point we might end
2631 		 * up running on a dodgy CPU, AFAICT this can only happen
2632 		 * during CPU hotplug, at which point we'll get pushed out
2633 		 * anyway, so it's probably not a big deal.
2634 		 */
2635 
2636 	} else if (pending) {
2637 		/*
2638 		 * This happens when we get migrated between migrate_enable()'s
2639 		 * preempt_enable() and scheduling the stopper task. At that
2640 		 * point we're a regular task again and not current anymore.
2641 		 *
2642 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2643 		 * more likely.
2644 		 */
2645 
2646 		/*
2647 		 * The task moved before the stopper got to run. We're holding
2648 		 * ->pi_lock, so the allowed mask is stable - if it got
2649 		 * somewhere allowed, we're done.
2650 		 */
2651 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2652 			p->migration_pending = NULL;
2653 			complete = true;
2654 			goto out;
2655 		}
2656 
2657 		/*
2658 		 * When migrate_enable() hits a rq mis-match we can't reliably
2659 		 * determine is_migration_disabled() and so have to chase after
2660 		 * it.
2661 		 */
2662 		WARN_ON_ONCE(!pending->stop_pending);
2663 		preempt_disable();
2664 		task_rq_unlock(rq, p, &rf);
2665 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2666 				    &pending->arg, &pending->stop_work);
2667 		preempt_enable();
2668 		return 0;
2669 	}
2670 out:
2671 	if (pending)
2672 		pending->stop_pending = false;
2673 	task_rq_unlock(rq, p, &rf);
2674 
2675 	if (complete)
2676 		complete_all(&pending->done);
2677 
2678 	return 0;
2679 }
2680 
push_cpu_stop(void * arg)2681 int push_cpu_stop(void *arg)
2682 {
2683 	struct rq *lowest_rq = NULL, *rq = this_rq();
2684 	struct task_struct *p = arg;
2685 
2686 	raw_spin_lock_irq(&p->pi_lock);
2687 	raw_spin_rq_lock(rq);
2688 
2689 	if (task_rq(p) != rq)
2690 		goto out_unlock;
2691 
2692 	if (is_migration_disabled(p)) {
2693 		p->migration_flags |= MDF_PUSH;
2694 		goto out_unlock;
2695 	}
2696 
2697 	p->migration_flags &= ~MDF_PUSH;
2698 
2699 	if (p->sched_class->find_lock_rq)
2700 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2701 
2702 	if (!lowest_rq)
2703 		goto out_unlock;
2704 
2705 	// XXX validate p is still the highest prio task
2706 	if (task_rq(p) == rq) {
2707 		deactivate_task(rq, p, 0);
2708 		set_task_cpu(p, lowest_rq->cpu);
2709 		activate_task(lowest_rq, p, 0);
2710 		resched_curr(lowest_rq);
2711 	}
2712 
2713 	double_unlock_balance(rq, lowest_rq);
2714 
2715 out_unlock:
2716 	rq->push_busy = false;
2717 	raw_spin_rq_unlock(rq);
2718 	raw_spin_unlock_irq(&p->pi_lock);
2719 
2720 	put_task_struct(p);
2721 	return 0;
2722 }
2723 
2724 /*
2725  * sched_class::set_cpus_allowed must do the below, but is not required to
2726  * actually call this function.
2727  */
set_cpus_allowed_common(struct task_struct * p,struct affinity_context * ctx)2728 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2729 {
2730 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2731 		p->cpus_ptr = ctx->new_mask;
2732 		return;
2733 	}
2734 
2735 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2736 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2737 
2738 	/*
2739 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2740 	 */
2741 	if (ctx->flags & SCA_USER)
2742 		swap(p->user_cpus_ptr, ctx->user_mask);
2743 }
2744 
2745 static void
__do_set_cpus_allowed(struct task_struct * p,struct affinity_context * ctx)2746 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2747 {
2748 	struct rq *rq = task_rq(p);
2749 	bool queued, running;
2750 
2751 	/*
2752 	 * This here violates the locking rules for affinity, since we're only
2753 	 * supposed to change these variables while holding both rq->lock and
2754 	 * p->pi_lock.
2755 	 *
2756 	 * HOWEVER, it magically works, because ttwu() is the only code that
2757 	 * accesses these variables under p->pi_lock and only does so after
2758 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2759 	 * before finish_task().
2760 	 *
2761 	 * XXX do further audits, this smells like something putrid.
2762 	 */
2763 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2764 		SCHED_WARN_ON(!p->on_cpu);
2765 	else
2766 		lockdep_assert_held(&p->pi_lock);
2767 
2768 	queued = task_on_rq_queued(p);
2769 	running = task_current(rq, p);
2770 
2771 	if (queued) {
2772 		/*
2773 		 * Because __kthread_bind() calls this on blocked tasks without
2774 		 * holding rq->lock.
2775 		 */
2776 		lockdep_assert_rq_held(rq);
2777 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2778 	}
2779 	if (running)
2780 		put_prev_task(rq, p);
2781 
2782 	p->sched_class->set_cpus_allowed(p, ctx);
2783 
2784 	if (queued)
2785 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2786 	if (running)
2787 		set_next_task(rq, p);
2788 }
2789 
2790 /*
2791  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2792  * affinity (if any) should be destroyed too.
2793  */
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2794 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2795 {
2796 	struct affinity_context ac = {
2797 		.new_mask  = new_mask,
2798 		.user_mask = NULL,
2799 		.flags     = SCA_USER,	/* clear the user requested mask */
2800 	};
2801 	union cpumask_rcuhead {
2802 		cpumask_t cpumask;
2803 		struct rcu_head rcu;
2804 	};
2805 
2806 	__do_set_cpus_allowed(p, &ac);
2807 
2808 	/*
2809 	 * Because this is called with p->pi_lock held, it is not possible
2810 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2811 	 * kfree_rcu().
2812 	 */
2813 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2814 }
2815 
alloc_user_cpus_ptr(int node)2816 static cpumask_t *alloc_user_cpus_ptr(int node)
2817 {
2818 	/*
2819 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2820 	 */
2821 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2822 
2823 	return kmalloc_node(size, GFP_KERNEL, node);
2824 }
2825 
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2826 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2827 		      int node)
2828 {
2829 	cpumask_t *user_mask;
2830 	unsigned long flags;
2831 
2832 	/*
2833 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2834 	 * may differ by now due to racing.
2835 	 */
2836 	dst->user_cpus_ptr = NULL;
2837 
2838 	/*
2839 	 * This check is racy and losing the race is a valid situation.
2840 	 * It is not worth the extra overhead of taking the pi_lock on
2841 	 * every fork/clone.
2842 	 */
2843 	if (data_race(!src->user_cpus_ptr))
2844 		return 0;
2845 
2846 	user_mask = alloc_user_cpus_ptr(node);
2847 	if (!user_mask)
2848 		return -ENOMEM;
2849 
2850 	/*
2851 	 * Use pi_lock to protect content of user_cpus_ptr
2852 	 *
2853 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2854 	 * do_set_cpus_allowed().
2855 	 */
2856 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2857 	if (src->user_cpus_ptr) {
2858 		swap(dst->user_cpus_ptr, user_mask);
2859 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2860 	}
2861 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2862 
2863 	if (unlikely(user_mask))
2864 		kfree(user_mask);
2865 
2866 	return 0;
2867 }
2868 
clear_user_cpus_ptr(struct task_struct * p)2869 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2870 {
2871 	struct cpumask *user_mask = NULL;
2872 
2873 	swap(p->user_cpus_ptr, user_mask);
2874 
2875 	return user_mask;
2876 }
2877 
release_user_cpus_ptr(struct task_struct * p)2878 void release_user_cpus_ptr(struct task_struct *p)
2879 {
2880 	kfree(clear_user_cpus_ptr(p));
2881 }
2882 
2883 /*
2884  * This function is wildly self concurrent; here be dragons.
2885  *
2886  *
2887  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2888  * designated task is enqueued on an allowed CPU. If that task is currently
2889  * running, we have to kick it out using the CPU stopper.
2890  *
2891  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2892  * Consider:
2893  *
2894  *     Initial conditions: P0->cpus_mask = [0, 1]
2895  *
2896  *     P0@CPU0                  P1
2897  *
2898  *     migrate_disable();
2899  *     <preempted>
2900  *                              set_cpus_allowed_ptr(P0, [1]);
2901  *
2902  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2903  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2904  * This means we need the following scheme:
2905  *
2906  *     P0@CPU0                  P1
2907  *
2908  *     migrate_disable();
2909  *     <preempted>
2910  *                              set_cpus_allowed_ptr(P0, [1]);
2911  *                                <blocks>
2912  *     <resumes>
2913  *     migrate_enable();
2914  *       __set_cpus_allowed_ptr();
2915  *       <wakes local stopper>
2916  *                         `--> <woken on migration completion>
2917  *
2918  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2919  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2920  * task p are serialized by p->pi_lock, which we can leverage: the one that
2921  * should come into effect at the end of the Migrate-Disable region is the last
2922  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2923  * but we still need to properly signal those waiting tasks at the appropriate
2924  * moment.
2925  *
2926  * This is implemented using struct set_affinity_pending. The first
2927  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2928  * setup an instance of that struct and install it on the targeted task_struct.
2929  * Any and all further callers will reuse that instance. Those then wait for
2930  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2931  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2932  *
2933  *
2934  * (1) In the cases covered above. There is one more where the completion is
2935  * signaled within affine_move_task() itself: when a subsequent affinity request
2936  * occurs after the stopper bailed out due to the targeted task still being
2937  * Migrate-Disable. Consider:
2938  *
2939  *     Initial conditions: P0->cpus_mask = [0, 1]
2940  *
2941  *     CPU0		  P1				P2
2942  *     <P0>
2943  *       migrate_disable();
2944  *       <preempted>
2945  *                        set_cpus_allowed_ptr(P0, [1]);
2946  *                          <blocks>
2947  *     <migration/0>
2948  *       migration_cpu_stop()
2949  *         is_migration_disabled()
2950  *           <bails>
2951  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2952  *                                                         <signal completion>
2953  *                          <awakes>
2954  *
2955  * Note that the above is safe vs a concurrent migrate_enable(), as any
2956  * pending affinity completion is preceded by an uninstallation of
2957  * p->migration_pending done with p->pi_lock held.
2958  */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)2959 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2960 			    int dest_cpu, unsigned int flags)
2961 	__releases(rq->lock)
2962 	__releases(p->pi_lock)
2963 {
2964 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2965 	bool stop_pending, complete = false;
2966 
2967 	/* Can the task run on the task's current CPU? If so, we're done */
2968 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2969 		struct task_struct *push_task = NULL;
2970 
2971 		if ((flags & SCA_MIGRATE_ENABLE) &&
2972 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2973 			rq->push_busy = true;
2974 			push_task = get_task_struct(p);
2975 		}
2976 
2977 		/*
2978 		 * If there are pending waiters, but no pending stop_work,
2979 		 * then complete now.
2980 		 */
2981 		pending = p->migration_pending;
2982 		if (pending && !pending->stop_pending) {
2983 			p->migration_pending = NULL;
2984 			complete = true;
2985 		}
2986 
2987 		preempt_disable();
2988 		task_rq_unlock(rq, p, rf);
2989 		if (push_task) {
2990 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2991 					    p, &rq->push_work);
2992 		}
2993 		preempt_enable();
2994 
2995 		if (complete)
2996 			complete_all(&pending->done);
2997 
2998 		return 0;
2999 	}
3000 
3001 	if (!(flags & SCA_MIGRATE_ENABLE)) {
3002 		/* serialized by p->pi_lock */
3003 		if (!p->migration_pending) {
3004 			/* Install the request */
3005 			refcount_set(&my_pending.refs, 1);
3006 			init_completion(&my_pending.done);
3007 			my_pending.arg = (struct migration_arg) {
3008 				.task = p,
3009 				.dest_cpu = dest_cpu,
3010 				.pending = &my_pending,
3011 			};
3012 
3013 			p->migration_pending = &my_pending;
3014 		} else {
3015 			pending = p->migration_pending;
3016 			refcount_inc(&pending->refs);
3017 			/*
3018 			 * Affinity has changed, but we've already installed a
3019 			 * pending. migration_cpu_stop() *must* see this, else
3020 			 * we risk a completion of the pending despite having a
3021 			 * task on a disallowed CPU.
3022 			 *
3023 			 * Serialized by p->pi_lock, so this is safe.
3024 			 */
3025 			pending->arg.dest_cpu = dest_cpu;
3026 		}
3027 	}
3028 	pending = p->migration_pending;
3029 	/*
3030 	 * - !MIGRATE_ENABLE:
3031 	 *   we'll have installed a pending if there wasn't one already.
3032 	 *
3033 	 * - MIGRATE_ENABLE:
3034 	 *   we're here because the current CPU isn't matching anymore,
3035 	 *   the only way that can happen is because of a concurrent
3036 	 *   set_cpus_allowed_ptr() call, which should then still be
3037 	 *   pending completion.
3038 	 *
3039 	 * Either way, we really should have a @pending here.
3040 	 */
3041 	if (WARN_ON_ONCE(!pending)) {
3042 		task_rq_unlock(rq, p, rf);
3043 		return -EINVAL;
3044 	}
3045 
3046 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3047 		/*
3048 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3049 		 * anything else we cannot do is_migration_disabled(), punt
3050 		 * and have the stopper function handle it all race-free.
3051 		 */
3052 		stop_pending = pending->stop_pending;
3053 		if (!stop_pending)
3054 			pending->stop_pending = true;
3055 
3056 		if (flags & SCA_MIGRATE_ENABLE)
3057 			p->migration_flags &= ~MDF_PUSH;
3058 
3059 		preempt_disable();
3060 		task_rq_unlock(rq, p, rf);
3061 		if (!stop_pending) {
3062 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3063 					    &pending->arg, &pending->stop_work);
3064 		}
3065 		preempt_enable();
3066 
3067 		if (flags & SCA_MIGRATE_ENABLE)
3068 			return 0;
3069 	} else {
3070 
3071 		if (!is_migration_disabled(p)) {
3072 			if (task_on_rq_queued(p))
3073 				rq = move_queued_task(rq, rf, p, dest_cpu);
3074 
3075 			if (!pending->stop_pending) {
3076 				p->migration_pending = NULL;
3077 				complete = true;
3078 			}
3079 		}
3080 		task_rq_unlock(rq, p, rf);
3081 
3082 		if (complete)
3083 			complete_all(&pending->done);
3084 	}
3085 
3086 	wait_for_completion(&pending->done);
3087 
3088 	if (refcount_dec_and_test(&pending->refs))
3089 		wake_up_var(&pending->refs); /* No UaF, just an address */
3090 
3091 	/*
3092 	 * Block the original owner of &pending until all subsequent callers
3093 	 * have seen the completion and decremented the refcount
3094 	 */
3095 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3096 
3097 	/* ARGH */
3098 	WARN_ON_ONCE(my_pending.stop_pending);
3099 
3100 	return 0;
3101 }
3102 
3103 /*
3104  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3105  */
__set_cpus_allowed_ptr_locked(struct task_struct * p,struct affinity_context * ctx,struct rq * rq,struct rq_flags * rf)3106 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3107 					 struct affinity_context *ctx,
3108 					 struct rq *rq,
3109 					 struct rq_flags *rf)
3110 	__releases(rq->lock)
3111 	__releases(p->pi_lock)
3112 {
3113 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3114 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3115 	bool kthread = p->flags & PF_KTHREAD;
3116 	unsigned int dest_cpu;
3117 	int ret = 0;
3118 
3119 	update_rq_clock(rq);
3120 
3121 	if (kthread || is_migration_disabled(p)) {
3122 		/*
3123 		 * Kernel threads are allowed on online && !active CPUs,
3124 		 * however, during cpu-hot-unplug, even these might get pushed
3125 		 * away if not KTHREAD_IS_PER_CPU.
3126 		 *
3127 		 * Specifically, migration_disabled() tasks must not fail the
3128 		 * cpumask_any_and_distribute() pick below, esp. so on
3129 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3130 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3131 		 */
3132 		cpu_valid_mask = cpu_online_mask;
3133 	}
3134 
3135 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3136 		ret = -EINVAL;
3137 		goto out;
3138 	}
3139 
3140 	/*
3141 	 * Must re-check here, to close a race against __kthread_bind(),
3142 	 * sched_setaffinity() is not guaranteed to observe the flag.
3143 	 */
3144 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3145 		ret = -EINVAL;
3146 		goto out;
3147 	}
3148 
3149 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3150 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3151 			if (ctx->flags & SCA_USER)
3152 				swap(p->user_cpus_ptr, ctx->user_mask);
3153 			goto out;
3154 		}
3155 
3156 		if (WARN_ON_ONCE(p == current &&
3157 				 is_migration_disabled(p) &&
3158 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3159 			ret = -EBUSY;
3160 			goto out;
3161 		}
3162 	}
3163 
3164 	/*
3165 	 * Picking a ~random cpu helps in cases where we are changing affinity
3166 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3167 	 * immediately required to distribute the tasks within their new mask.
3168 	 */
3169 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3170 	if (dest_cpu >= nr_cpu_ids) {
3171 		ret = -EINVAL;
3172 		goto out;
3173 	}
3174 
3175 	__do_set_cpus_allowed(p, ctx);
3176 
3177 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3178 
3179 out:
3180 	task_rq_unlock(rq, p, rf);
3181 
3182 	return ret;
3183 }
3184 
3185 /*
3186  * Change a given task's CPU affinity. Migrate the thread to a
3187  * proper CPU and schedule it away if the CPU it's executing on
3188  * is removed from the allowed bitmask.
3189  *
3190  * NOTE: the caller must have a valid reference to the task, the
3191  * task must not exit() & deallocate itself prematurely. The
3192  * call is not atomic; no spinlocks may be held.
3193  */
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3194 static int __set_cpus_allowed_ptr(struct task_struct *p,
3195 				  struct affinity_context *ctx)
3196 {
3197 	struct rq_flags rf;
3198 	struct rq *rq;
3199 
3200 	rq = task_rq_lock(p, &rf);
3201 	/*
3202 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3203 	 * flags are set.
3204 	 */
3205 	if (p->user_cpus_ptr &&
3206 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3207 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3208 		ctx->new_mask = rq->scratch_mask;
3209 
3210 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3211 }
3212 
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3213 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3214 {
3215 	struct affinity_context ac = {
3216 		.new_mask  = new_mask,
3217 		.flags     = 0,
3218 	};
3219 
3220 	return __set_cpus_allowed_ptr(p, &ac);
3221 }
3222 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3223 
3224 /*
3225  * Change a given task's CPU affinity to the intersection of its current
3226  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3227  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3228  * affinity or use cpu_online_mask instead.
3229  *
3230  * If the resulting mask is empty, leave the affinity unchanged and return
3231  * -EINVAL.
3232  */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3233 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3234 				     struct cpumask *new_mask,
3235 				     const struct cpumask *subset_mask)
3236 {
3237 	struct affinity_context ac = {
3238 		.new_mask  = new_mask,
3239 		.flags     = 0,
3240 	};
3241 	struct rq_flags rf;
3242 	struct rq *rq;
3243 	int err;
3244 
3245 	rq = task_rq_lock(p, &rf);
3246 
3247 	/*
3248 	 * Forcefully restricting the affinity of a deadline task is
3249 	 * likely to cause problems, so fail and noisily override the
3250 	 * mask entirely.
3251 	 */
3252 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3253 		err = -EPERM;
3254 		goto err_unlock;
3255 	}
3256 
3257 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3258 		err = -EINVAL;
3259 		goto err_unlock;
3260 	}
3261 
3262 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3263 
3264 err_unlock:
3265 	task_rq_unlock(rq, p, &rf);
3266 	return err;
3267 }
3268 
3269 /*
3270  * Restrict the CPU affinity of task @p so that it is a subset of
3271  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3272  * old affinity mask. If the resulting mask is empty, we warn and walk
3273  * up the cpuset hierarchy until we find a suitable mask.
3274  */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3275 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3276 {
3277 	cpumask_var_t new_mask;
3278 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3279 
3280 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3281 
3282 	/*
3283 	 * __migrate_task() can fail silently in the face of concurrent
3284 	 * offlining of the chosen destination CPU, so take the hotplug
3285 	 * lock to ensure that the migration succeeds.
3286 	 */
3287 	cpus_read_lock();
3288 	if (!cpumask_available(new_mask))
3289 		goto out_set_mask;
3290 
3291 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3292 		goto out_free_mask;
3293 
3294 	/*
3295 	 * We failed to find a valid subset of the affinity mask for the
3296 	 * task, so override it based on its cpuset hierarchy.
3297 	 */
3298 	cpuset_cpus_allowed(p, new_mask);
3299 	override_mask = new_mask;
3300 
3301 out_set_mask:
3302 	if (printk_ratelimit()) {
3303 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3304 				task_pid_nr(p), p->comm,
3305 				cpumask_pr_args(override_mask));
3306 	}
3307 
3308 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3309 out_free_mask:
3310 	cpus_read_unlock();
3311 	free_cpumask_var(new_mask);
3312 }
3313 
3314 static int
3315 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3316 
3317 /*
3318  * Restore the affinity of a task @p which was previously restricted by a
3319  * call to force_compatible_cpus_allowed_ptr().
3320  *
3321  * It is the caller's responsibility to serialise this with any calls to
3322  * force_compatible_cpus_allowed_ptr(@p).
3323  */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3324 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3325 {
3326 	struct affinity_context ac = {
3327 		.new_mask  = task_user_cpus(p),
3328 		.flags     = 0,
3329 	};
3330 	int ret;
3331 
3332 	/*
3333 	 * Try to restore the old affinity mask with __sched_setaffinity().
3334 	 * Cpuset masking will be done there too.
3335 	 */
3336 	ret = __sched_setaffinity(p, &ac);
3337 	WARN_ON_ONCE(ret);
3338 }
3339 
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3340 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3341 {
3342 #ifdef CONFIG_SCHED_DEBUG
3343 	unsigned int state = READ_ONCE(p->__state);
3344 
3345 	/*
3346 	 * We should never call set_task_cpu() on a blocked task,
3347 	 * ttwu() will sort out the placement.
3348 	 */
3349 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3350 
3351 	/*
3352 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3353 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3354 	 * time relying on p->on_rq.
3355 	 */
3356 	WARN_ON_ONCE(state == TASK_RUNNING &&
3357 		     p->sched_class == &fair_sched_class &&
3358 		     (p->on_rq && !task_on_rq_migrating(p)));
3359 
3360 #ifdef CONFIG_LOCKDEP
3361 	/*
3362 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3363 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3364 	 *
3365 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3366 	 * see task_group().
3367 	 *
3368 	 * Furthermore, all task_rq users should acquire both locks, see
3369 	 * task_rq_lock().
3370 	 */
3371 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3372 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3373 #endif
3374 	/*
3375 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3376 	 */
3377 	WARN_ON_ONCE(!cpu_online(new_cpu));
3378 
3379 	WARN_ON_ONCE(is_migration_disabled(p));
3380 #endif
3381 
3382 	trace_sched_migrate_task(p, new_cpu);
3383 
3384 	if (task_cpu(p) != new_cpu) {
3385 		if (p->sched_class->migrate_task_rq)
3386 			p->sched_class->migrate_task_rq(p, new_cpu);
3387 		p->se.nr_migrations++;
3388 		rseq_migrate(p);
3389 		sched_mm_cid_migrate_from(p);
3390 		perf_event_task_migrate(p);
3391 	}
3392 
3393 	__set_task_cpu(p, new_cpu);
3394 }
3395 
3396 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3397 static void __migrate_swap_task(struct task_struct *p, int cpu)
3398 {
3399 	if (task_on_rq_queued(p)) {
3400 		struct rq *src_rq, *dst_rq;
3401 		struct rq_flags srf, drf;
3402 
3403 		src_rq = task_rq(p);
3404 		dst_rq = cpu_rq(cpu);
3405 
3406 		rq_pin_lock(src_rq, &srf);
3407 		rq_pin_lock(dst_rq, &drf);
3408 
3409 		deactivate_task(src_rq, p, 0);
3410 		set_task_cpu(p, cpu);
3411 		activate_task(dst_rq, p, 0);
3412 		wakeup_preempt(dst_rq, p, 0);
3413 
3414 		rq_unpin_lock(dst_rq, &drf);
3415 		rq_unpin_lock(src_rq, &srf);
3416 
3417 	} else {
3418 		/*
3419 		 * Task isn't running anymore; make it appear like we migrated
3420 		 * it before it went to sleep. This means on wakeup we make the
3421 		 * previous CPU our target instead of where it really is.
3422 		 */
3423 		p->wake_cpu = cpu;
3424 	}
3425 }
3426 
3427 struct migration_swap_arg {
3428 	struct task_struct *src_task, *dst_task;
3429 	int src_cpu, dst_cpu;
3430 };
3431 
migrate_swap_stop(void * data)3432 static int migrate_swap_stop(void *data)
3433 {
3434 	struct migration_swap_arg *arg = data;
3435 	struct rq *src_rq, *dst_rq;
3436 
3437 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3438 		return -EAGAIN;
3439 
3440 	src_rq = cpu_rq(arg->src_cpu);
3441 	dst_rq = cpu_rq(arg->dst_cpu);
3442 
3443 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3444 	guard(double_rq_lock)(src_rq, dst_rq);
3445 
3446 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3447 		return -EAGAIN;
3448 
3449 	if (task_cpu(arg->src_task) != arg->src_cpu)
3450 		return -EAGAIN;
3451 
3452 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3453 		return -EAGAIN;
3454 
3455 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3456 		return -EAGAIN;
3457 
3458 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3459 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3460 
3461 	return 0;
3462 }
3463 
3464 /*
3465  * Cross migrate two tasks
3466  */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3467 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3468 		int target_cpu, int curr_cpu)
3469 {
3470 	struct migration_swap_arg arg;
3471 	int ret = -EINVAL;
3472 
3473 	arg = (struct migration_swap_arg){
3474 		.src_task = cur,
3475 		.src_cpu = curr_cpu,
3476 		.dst_task = p,
3477 		.dst_cpu = target_cpu,
3478 	};
3479 
3480 	if (arg.src_cpu == arg.dst_cpu)
3481 		goto out;
3482 
3483 	/*
3484 	 * These three tests are all lockless; this is OK since all of them
3485 	 * will be re-checked with proper locks held further down the line.
3486 	 */
3487 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3488 		goto out;
3489 
3490 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3491 		goto out;
3492 
3493 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3494 		goto out;
3495 
3496 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3497 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3498 
3499 out:
3500 	return ret;
3501 }
3502 #endif /* CONFIG_NUMA_BALANCING */
3503 
3504 /***
3505  * kick_process - kick a running thread to enter/exit the kernel
3506  * @p: the to-be-kicked thread
3507  *
3508  * Cause a process which is running on another CPU to enter
3509  * kernel-mode, without any delay. (to get signals handled.)
3510  *
3511  * NOTE: this function doesn't have to take the runqueue lock,
3512  * because all it wants to ensure is that the remote task enters
3513  * the kernel. If the IPI races and the task has been migrated
3514  * to another CPU then no harm is done and the purpose has been
3515  * achieved as well.
3516  */
kick_process(struct task_struct * p)3517 void kick_process(struct task_struct *p)
3518 {
3519 	int cpu;
3520 
3521 	preempt_disable();
3522 	cpu = task_cpu(p);
3523 	if ((cpu != smp_processor_id()) && task_curr(p))
3524 		smp_send_reschedule(cpu);
3525 	preempt_enable();
3526 }
3527 EXPORT_SYMBOL_GPL(kick_process);
3528 
3529 /*
3530  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3531  *
3532  * A few notes on cpu_active vs cpu_online:
3533  *
3534  *  - cpu_active must be a subset of cpu_online
3535  *
3536  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3537  *    see __set_cpus_allowed_ptr(). At this point the newly online
3538  *    CPU isn't yet part of the sched domains, and balancing will not
3539  *    see it.
3540  *
3541  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3542  *    avoid the load balancer to place new tasks on the to be removed
3543  *    CPU. Existing tasks will remain running there and will be taken
3544  *    off.
3545  *
3546  * This means that fallback selection must not select !active CPUs.
3547  * And can assume that any active CPU must be online. Conversely
3548  * select_task_rq() below may allow selection of !active CPUs in order
3549  * to satisfy the above rules.
3550  */
select_fallback_rq(int cpu,struct task_struct * p)3551 static int select_fallback_rq(int cpu, struct task_struct *p)
3552 {
3553 	int nid = cpu_to_node(cpu);
3554 	const struct cpumask *nodemask = NULL;
3555 	enum { cpuset, possible, fail } state = cpuset;
3556 	int dest_cpu;
3557 
3558 	/*
3559 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3560 	 * will return -1. There is no CPU on the node, and we should
3561 	 * select the CPU on the other node.
3562 	 */
3563 	if (nid != -1) {
3564 		nodemask = cpumask_of_node(nid);
3565 
3566 		/* Look for allowed, online CPU in same node. */
3567 		for_each_cpu(dest_cpu, nodemask) {
3568 			if (is_cpu_allowed(p, dest_cpu))
3569 				return dest_cpu;
3570 		}
3571 	}
3572 
3573 	for (;;) {
3574 		/* Any allowed, online CPU? */
3575 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3576 			if (!is_cpu_allowed(p, dest_cpu))
3577 				continue;
3578 
3579 			goto out;
3580 		}
3581 
3582 		/* No more Mr. Nice Guy. */
3583 		switch (state) {
3584 		case cpuset:
3585 			if (cpuset_cpus_allowed_fallback(p)) {
3586 				state = possible;
3587 				break;
3588 			}
3589 			fallthrough;
3590 		case possible:
3591 			/*
3592 			 * XXX When called from select_task_rq() we only
3593 			 * hold p->pi_lock and again violate locking order.
3594 			 *
3595 			 * More yuck to audit.
3596 			 */
3597 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3598 			state = fail;
3599 			break;
3600 		case fail:
3601 			BUG();
3602 			break;
3603 		}
3604 	}
3605 
3606 out:
3607 	if (state != cpuset) {
3608 		/*
3609 		 * Don't tell them about moving exiting tasks or
3610 		 * kernel threads (both mm NULL), since they never
3611 		 * leave kernel.
3612 		 */
3613 		if (p->mm && printk_ratelimit()) {
3614 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3615 					task_pid_nr(p), p->comm, cpu);
3616 		}
3617 	}
3618 
3619 	return dest_cpu;
3620 }
3621 
3622 /*
3623  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3624  */
3625 static inline
select_task_rq(struct task_struct * p,int cpu,int wake_flags)3626 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3627 {
3628 	lockdep_assert_held(&p->pi_lock);
3629 
3630 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3631 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3632 	else
3633 		cpu = cpumask_any(p->cpus_ptr);
3634 
3635 	/*
3636 	 * In order not to call set_task_cpu() on a blocking task we need
3637 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3638 	 * CPU.
3639 	 *
3640 	 * Since this is common to all placement strategies, this lives here.
3641 	 *
3642 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3643 	 *   not worry about this generic constraint ]
3644 	 */
3645 	if (unlikely(!is_cpu_allowed(p, cpu)))
3646 		cpu = select_fallback_rq(task_cpu(p), p);
3647 
3648 	return cpu;
3649 }
3650 
sched_set_stop_task(int cpu,struct task_struct * stop)3651 void sched_set_stop_task(int cpu, struct task_struct *stop)
3652 {
3653 	static struct lock_class_key stop_pi_lock;
3654 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3655 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3656 
3657 	if (stop) {
3658 		/*
3659 		 * Make it appear like a SCHED_FIFO task, its something
3660 		 * userspace knows about and won't get confused about.
3661 		 *
3662 		 * Also, it will make PI more or less work without too
3663 		 * much confusion -- but then, stop work should not
3664 		 * rely on PI working anyway.
3665 		 */
3666 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3667 
3668 		stop->sched_class = &stop_sched_class;
3669 
3670 		/*
3671 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3672 		 * adjust the effective priority of a task. As a result,
3673 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3674 		 * which can then trigger wakeups of the stop thread to push
3675 		 * around the current task.
3676 		 *
3677 		 * The stop task itself will never be part of the PI-chain, it
3678 		 * never blocks, therefore that ->pi_lock recursion is safe.
3679 		 * Tell lockdep about this by placing the stop->pi_lock in its
3680 		 * own class.
3681 		 */
3682 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3683 	}
3684 
3685 	cpu_rq(cpu)->stop = stop;
3686 
3687 	if (old_stop) {
3688 		/*
3689 		 * Reset it back to a normal scheduling class so that
3690 		 * it can die in pieces.
3691 		 */
3692 		old_stop->sched_class = &rt_sched_class;
3693 	}
3694 }
3695 
3696 #else /* CONFIG_SMP */
3697 
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3698 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3699 					 struct affinity_context *ctx)
3700 {
3701 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3702 }
3703 
migrate_disable_switch(struct rq * rq,struct task_struct * p)3704 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3705 
rq_has_pinned_tasks(struct rq * rq)3706 static inline bool rq_has_pinned_tasks(struct rq *rq)
3707 {
3708 	return false;
3709 }
3710 
alloc_user_cpus_ptr(int node)3711 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3712 {
3713 	return NULL;
3714 }
3715 
3716 #endif /* !CONFIG_SMP */
3717 
3718 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3719 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3720 {
3721 	struct rq *rq;
3722 
3723 	if (!schedstat_enabled())
3724 		return;
3725 
3726 	rq = this_rq();
3727 
3728 #ifdef CONFIG_SMP
3729 	if (cpu == rq->cpu) {
3730 		__schedstat_inc(rq->ttwu_local);
3731 		__schedstat_inc(p->stats.nr_wakeups_local);
3732 	} else {
3733 		struct sched_domain *sd;
3734 
3735 		__schedstat_inc(p->stats.nr_wakeups_remote);
3736 
3737 		guard(rcu)();
3738 		for_each_domain(rq->cpu, sd) {
3739 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3740 				__schedstat_inc(sd->ttwu_wake_remote);
3741 				break;
3742 			}
3743 		}
3744 	}
3745 
3746 	if (wake_flags & WF_MIGRATED)
3747 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3748 #endif /* CONFIG_SMP */
3749 
3750 	__schedstat_inc(rq->ttwu_count);
3751 	__schedstat_inc(p->stats.nr_wakeups);
3752 
3753 	if (wake_flags & WF_SYNC)
3754 		__schedstat_inc(p->stats.nr_wakeups_sync);
3755 }
3756 
3757 /*
3758  * Mark the task runnable.
3759  */
ttwu_do_wakeup(struct task_struct * p)3760 static inline void ttwu_do_wakeup(struct task_struct *p)
3761 {
3762 	WRITE_ONCE(p->__state, TASK_RUNNING);
3763 	trace_sched_wakeup(p);
3764 }
3765 
3766 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3767 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3768 		 struct rq_flags *rf)
3769 {
3770 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3771 
3772 	lockdep_assert_rq_held(rq);
3773 
3774 	if (p->sched_contributes_to_load)
3775 		rq->nr_uninterruptible--;
3776 
3777 #ifdef CONFIG_SMP
3778 	if (wake_flags & WF_MIGRATED)
3779 		en_flags |= ENQUEUE_MIGRATED;
3780 	else
3781 #endif
3782 	if (p->in_iowait) {
3783 		delayacct_blkio_end(p);
3784 		atomic_dec(&task_rq(p)->nr_iowait);
3785 	}
3786 
3787 	activate_task(rq, p, en_flags);
3788 	wakeup_preempt(rq, p, wake_flags);
3789 
3790 	ttwu_do_wakeup(p);
3791 
3792 #ifdef CONFIG_SMP
3793 	if (p->sched_class->task_woken) {
3794 		/*
3795 		 * Our task @p is fully woken up and running; so it's safe to
3796 		 * drop the rq->lock, hereafter rq is only used for statistics.
3797 		 */
3798 		rq_unpin_lock(rq, rf);
3799 		p->sched_class->task_woken(rq, p);
3800 		rq_repin_lock(rq, rf);
3801 	}
3802 
3803 	if (rq->idle_stamp) {
3804 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3805 		u64 max = 2*rq->max_idle_balance_cost;
3806 
3807 		update_avg(&rq->avg_idle, delta);
3808 
3809 		if (rq->avg_idle > max)
3810 			rq->avg_idle = max;
3811 
3812 		rq->wake_stamp = jiffies;
3813 		rq->wake_avg_idle = rq->avg_idle / 2;
3814 
3815 		rq->idle_stamp = 0;
3816 	}
3817 #endif
3818 }
3819 
3820 /*
3821  * Consider @p being inside a wait loop:
3822  *
3823  *   for (;;) {
3824  *      set_current_state(TASK_UNINTERRUPTIBLE);
3825  *
3826  *      if (CONDITION)
3827  *         break;
3828  *
3829  *      schedule();
3830  *   }
3831  *   __set_current_state(TASK_RUNNING);
3832  *
3833  * between set_current_state() and schedule(). In this case @p is still
3834  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3835  * an atomic manner.
3836  *
3837  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3838  * then schedule() must still happen and p->state can be changed to
3839  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3840  * need to do a full wakeup with enqueue.
3841  *
3842  * Returns: %true when the wakeup is done,
3843  *          %false otherwise.
3844  */
ttwu_runnable(struct task_struct * p,int wake_flags)3845 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3846 {
3847 	struct rq_flags rf;
3848 	struct rq *rq;
3849 	int ret = 0;
3850 
3851 	rq = __task_rq_lock(p, &rf);
3852 	if (task_on_rq_queued(p)) {
3853 		if (!task_on_cpu(rq, p)) {
3854 			/*
3855 			 * When on_rq && !on_cpu the task is preempted, see if
3856 			 * it should preempt the task that is current now.
3857 			 */
3858 			update_rq_clock(rq);
3859 			wakeup_preempt(rq, p, wake_flags);
3860 		}
3861 		ttwu_do_wakeup(p);
3862 		ret = 1;
3863 	}
3864 	__task_rq_unlock(rq, &rf);
3865 
3866 	return ret;
3867 }
3868 
3869 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3870 void sched_ttwu_pending(void *arg)
3871 {
3872 	struct llist_node *llist = arg;
3873 	struct rq *rq = this_rq();
3874 	struct task_struct *p, *t;
3875 	struct rq_flags rf;
3876 
3877 	if (!llist)
3878 		return;
3879 
3880 	rq_lock_irqsave(rq, &rf);
3881 	update_rq_clock(rq);
3882 
3883 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3884 		if (WARN_ON_ONCE(p->on_cpu))
3885 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3886 
3887 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3888 			set_task_cpu(p, cpu_of(rq));
3889 
3890 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3891 	}
3892 
3893 	/*
3894 	 * Must be after enqueueing at least once task such that
3895 	 * idle_cpu() does not observe a false-negative -- if it does,
3896 	 * it is possible for select_idle_siblings() to stack a number
3897 	 * of tasks on this CPU during that window.
3898 	 *
3899 	 * It is ok to clear ttwu_pending when another task pending.
3900 	 * We will receive IPI after local irq enabled and then enqueue it.
3901 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3902 	 */
3903 	WRITE_ONCE(rq->ttwu_pending, 0);
3904 	rq_unlock_irqrestore(rq, &rf);
3905 }
3906 
3907 /*
3908  * Prepare the scene for sending an IPI for a remote smp_call
3909  *
3910  * Returns true if the caller can proceed with sending the IPI.
3911  * Returns false otherwise.
3912  */
call_function_single_prep_ipi(int cpu)3913 bool call_function_single_prep_ipi(int cpu)
3914 {
3915 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3916 		trace_sched_wake_idle_without_ipi(cpu);
3917 		return false;
3918 	}
3919 
3920 	return true;
3921 }
3922 
3923 /*
3924  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3925  * necessary. The wakee CPU on receipt of the IPI will queue the task
3926  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3927  * of the wakeup instead of the waker.
3928  */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3929 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3930 {
3931 	struct rq *rq = cpu_rq(cpu);
3932 
3933 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3934 
3935 	WRITE_ONCE(rq->ttwu_pending, 1);
3936 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3937 }
3938 
wake_up_if_idle(int cpu)3939 void wake_up_if_idle(int cpu)
3940 {
3941 	struct rq *rq = cpu_rq(cpu);
3942 
3943 	guard(rcu)();
3944 	if (is_idle_task(rcu_dereference(rq->curr))) {
3945 		guard(rq_lock_irqsave)(rq);
3946 		if (is_idle_task(rq->curr))
3947 			resched_curr(rq);
3948 	}
3949 }
3950 
cpus_share_cache(int this_cpu,int that_cpu)3951 bool cpus_share_cache(int this_cpu, int that_cpu)
3952 {
3953 	if (this_cpu == that_cpu)
3954 		return true;
3955 
3956 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3957 }
3958 
ttwu_queue_cond(struct task_struct * p,int cpu)3959 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3960 {
3961 	/*
3962 	 * Do not complicate things with the async wake_list while the CPU is
3963 	 * in hotplug state.
3964 	 */
3965 	if (!cpu_active(cpu))
3966 		return false;
3967 
3968 	/* Ensure the task will still be allowed to run on the CPU. */
3969 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3970 		return false;
3971 
3972 	/*
3973 	 * If the CPU does not share cache, then queue the task on the
3974 	 * remote rqs wakelist to avoid accessing remote data.
3975 	 */
3976 	if (!cpus_share_cache(smp_processor_id(), cpu))
3977 		return true;
3978 
3979 	if (cpu == smp_processor_id())
3980 		return false;
3981 
3982 	/*
3983 	 * If the wakee cpu is idle, or the task is descheduling and the
3984 	 * only running task on the CPU, then use the wakelist to offload
3985 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3986 	 * the current CPU is likely busy. nr_running is checked to
3987 	 * avoid unnecessary task stacking.
3988 	 *
3989 	 * Note that we can only get here with (wakee) p->on_rq=0,
3990 	 * p->on_cpu can be whatever, we've done the dequeue, so
3991 	 * the wakee has been accounted out of ->nr_running.
3992 	 */
3993 	if (!cpu_rq(cpu)->nr_running)
3994 		return true;
3995 
3996 	return false;
3997 }
3998 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3999 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4000 {
4001 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4002 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4003 		__ttwu_queue_wakelist(p, cpu, wake_flags);
4004 		return true;
4005 	}
4006 
4007 	return false;
4008 }
4009 
4010 #else /* !CONFIG_SMP */
4011 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4012 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4013 {
4014 	return false;
4015 }
4016 
4017 #endif /* CONFIG_SMP */
4018 
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)4019 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4020 {
4021 	struct rq *rq = cpu_rq(cpu);
4022 	struct rq_flags rf;
4023 
4024 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4025 		return;
4026 
4027 	rq_lock(rq, &rf);
4028 	update_rq_clock(rq);
4029 	ttwu_do_activate(rq, p, wake_flags, &rf);
4030 	rq_unlock(rq, &rf);
4031 }
4032 
4033 /*
4034  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4035  *
4036  * The caller holds p::pi_lock if p != current or has preemption
4037  * disabled when p == current.
4038  *
4039  * The rules of PREEMPT_RT saved_state:
4040  *
4041  *   The related locking code always holds p::pi_lock when updating
4042  *   p::saved_state, which means the code is fully serialized in both cases.
4043  *
4044  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
4045  *   bits set. This allows to distinguish all wakeup scenarios.
4046  */
4047 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)4048 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4049 {
4050 	int match;
4051 
4052 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4053 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4054 			     state != TASK_RTLOCK_WAIT);
4055 	}
4056 
4057 	*success = !!(match = __task_state_match(p, state));
4058 
4059 #ifdef CONFIG_PREEMPT_RT
4060 	/*
4061 	 * Saved state preserves the task state across blocking on
4062 	 * an RT lock.  If the state matches, set p::saved_state to
4063 	 * TASK_RUNNING, but do not wake the task because it waits
4064 	 * for a lock wakeup. Also indicate success because from
4065 	 * the regular waker's point of view this has succeeded.
4066 	 *
4067 	 * After acquiring the lock the task will restore p::__state
4068 	 * from p::saved_state which ensures that the regular
4069 	 * wakeup is not lost. The restore will also set
4070 	 * p::saved_state to TASK_RUNNING so any further tests will
4071 	 * not result in false positives vs. @success
4072 	 */
4073 	if (match < 0)
4074 		p->saved_state = TASK_RUNNING;
4075 #endif
4076 	return match > 0;
4077 }
4078 
4079 /*
4080  * Notes on Program-Order guarantees on SMP systems.
4081  *
4082  *  MIGRATION
4083  *
4084  * The basic program-order guarantee on SMP systems is that when a task [t]
4085  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4086  * execution on its new CPU [c1].
4087  *
4088  * For migration (of runnable tasks) this is provided by the following means:
4089  *
4090  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4091  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4092  *     rq(c1)->lock (if not at the same time, then in that order).
4093  *  C) LOCK of the rq(c1)->lock scheduling in task
4094  *
4095  * Release/acquire chaining guarantees that B happens after A and C after B.
4096  * Note: the CPU doing B need not be c0 or c1
4097  *
4098  * Example:
4099  *
4100  *   CPU0            CPU1            CPU2
4101  *
4102  *   LOCK rq(0)->lock
4103  *   sched-out X
4104  *   sched-in Y
4105  *   UNLOCK rq(0)->lock
4106  *
4107  *                                   LOCK rq(0)->lock // orders against CPU0
4108  *                                   dequeue X
4109  *                                   UNLOCK rq(0)->lock
4110  *
4111  *                                   LOCK rq(1)->lock
4112  *                                   enqueue X
4113  *                                   UNLOCK rq(1)->lock
4114  *
4115  *                   LOCK rq(1)->lock // orders against CPU2
4116  *                   sched-out Z
4117  *                   sched-in X
4118  *                   UNLOCK rq(1)->lock
4119  *
4120  *
4121  *  BLOCKING -- aka. SLEEP + WAKEUP
4122  *
4123  * For blocking we (obviously) need to provide the same guarantee as for
4124  * migration. However the means are completely different as there is no lock
4125  * chain to provide order. Instead we do:
4126  *
4127  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4128  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4129  *
4130  * Example:
4131  *
4132  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4133  *
4134  *   LOCK rq(0)->lock LOCK X->pi_lock
4135  *   dequeue X
4136  *   sched-out X
4137  *   smp_store_release(X->on_cpu, 0);
4138  *
4139  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4140  *                    X->state = WAKING
4141  *                    set_task_cpu(X,2)
4142  *
4143  *                    LOCK rq(2)->lock
4144  *                    enqueue X
4145  *                    X->state = RUNNING
4146  *                    UNLOCK rq(2)->lock
4147  *
4148  *                                          LOCK rq(2)->lock // orders against CPU1
4149  *                                          sched-out Z
4150  *                                          sched-in X
4151  *                                          UNLOCK rq(2)->lock
4152  *
4153  *                    UNLOCK X->pi_lock
4154  *   UNLOCK rq(0)->lock
4155  *
4156  *
4157  * However, for wakeups there is a second guarantee we must provide, namely we
4158  * must ensure that CONDITION=1 done by the caller can not be reordered with
4159  * accesses to the task state; see try_to_wake_up() and set_current_state().
4160  */
4161 
4162 /**
4163  * try_to_wake_up - wake up a thread
4164  * @p: the thread to be awakened
4165  * @state: the mask of task states that can be woken
4166  * @wake_flags: wake modifier flags (WF_*)
4167  *
4168  * Conceptually does:
4169  *
4170  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4171  *
4172  * If the task was not queued/runnable, also place it back on a runqueue.
4173  *
4174  * This function is atomic against schedule() which would dequeue the task.
4175  *
4176  * It issues a full memory barrier before accessing @p->state, see the comment
4177  * with set_current_state().
4178  *
4179  * Uses p->pi_lock to serialize against concurrent wake-ups.
4180  *
4181  * Relies on p->pi_lock stabilizing:
4182  *  - p->sched_class
4183  *  - p->cpus_ptr
4184  *  - p->sched_task_group
4185  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4186  *
4187  * Tries really hard to only take one task_rq(p)->lock for performance.
4188  * Takes rq->lock in:
4189  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4190  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4191  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4192  *
4193  * As a consequence we race really badly with just about everything. See the
4194  * many memory barriers and their comments for details.
4195  *
4196  * Return: %true if @p->state changes (an actual wakeup was done),
4197  *	   %false otherwise.
4198  */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4199 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4200 {
4201 	guard(preempt)();
4202 	int cpu, success = 0;
4203 
4204 	if (p == current) {
4205 		/*
4206 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4207 		 * == smp_processor_id()'. Together this means we can special
4208 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4209 		 * without taking any locks.
4210 		 *
4211 		 * In particular:
4212 		 *  - we rely on Program-Order guarantees for all the ordering,
4213 		 *  - we're serialized against set_special_state() by virtue of
4214 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4215 		 */
4216 		if (!ttwu_state_match(p, state, &success))
4217 			goto out;
4218 
4219 		trace_sched_waking(p);
4220 		ttwu_do_wakeup(p);
4221 		goto out;
4222 	}
4223 
4224 	/*
4225 	 * If we are going to wake up a thread waiting for CONDITION we
4226 	 * need to ensure that CONDITION=1 done by the caller can not be
4227 	 * reordered with p->state check below. This pairs with smp_store_mb()
4228 	 * in set_current_state() that the waiting thread does.
4229 	 */
4230 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4231 		smp_mb__after_spinlock();
4232 		if (!ttwu_state_match(p, state, &success))
4233 			break;
4234 
4235 		trace_sched_waking(p);
4236 
4237 		/*
4238 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4239 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4240 		 * in smp_cond_load_acquire() below.
4241 		 *
4242 		 * sched_ttwu_pending()			try_to_wake_up()
4243 		 *   STORE p->on_rq = 1			  LOAD p->state
4244 		 *   UNLOCK rq->lock
4245 		 *
4246 		 * __schedule() (switch to task 'p')
4247 		 *   LOCK rq->lock			  smp_rmb();
4248 		 *   smp_mb__after_spinlock();
4249 		 *   UNLOCK rq->lock
4250 		 *
4251 		 * [task p]
4252 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4253 		 *
4254 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4255 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4256 		 *
4257 		 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4258 		 */
4259 		smp_rmb();
4260 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4261 			break;
4262 
4263 #ifdef CONFIG_SMP
4264 		/*
4265 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4266 		 * possible to, falsely, observe p->on_cpu == 0.
4267 		 *
4268 		 * One must be running (->on_cpu == 1) in order to remove oneself
4269 		 * from the runqueue.
4270 		 *
4271 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4272 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4273 		 *   UNLOCK rq->lock
4274 		 *
4275 		 * __schedule() (put 'p' to sleep)
4276 		 *   LOCK rq->lock			  smp_rmb();
4277 		 *   smp_mb__after_spinlock();
4278 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4279 		 *
4280 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4281 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4282 		 *
4283 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4284 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4285 		 * care about it's own p->state. See the comment in __schedule().
4286 		 */
4287 		smp_acquire__after_ctrl_dep();
4288 
4289 		/*
4290 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4291 		 * == 0), which means we need to do an enqueue, change p->state to
4292 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4293 		 * enqueue, such as ttwu_queue_wakelist().
4294 		 */
4295 		WRITE_ONCE(p->__state, TASK_WAKING);
4296 
4297 		/*
4298 		 * If the owning (remote) CPU is still in the middle of schedule() with
4299 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4300 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4301 		 * let the waker make forward progress. This is safe because IRQs are
4302 		 * disabled and the IPI will deliver after on_cpu is cleared.
4303 		 *
4304 		 * Ensure we load task_cpu(p) after p->on_cpu:
4305 		 *
4306 		 * set_task_cpu(p, cpu);
4307 		 *   STORE p->cpu = @cpu
4308 		 * __schedule() (switch to task 'p')
4309 		 *   LOCK rq->lock
4310 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4311 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4312 		 *
4313 		 * to ensure we observe the correct CPU on which the task is currently
4314 		 * scheduling.
4315 		 */
4316 		if (smp_load_acquire(&p->on_cpu) &&
4317 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4318 			break;
4319 
4320 		/*
4321 		 * If the owning (remote) CPU is still in the middle of schedule() with
4322 		 * this task as prev, wait until it's done referencing the task.
4323 		 *
4324 		 * Pairs with the smp_store_release() in finish_task().
4325 		 *
4326 		 * This ensures that tasks getting woken will be fully ordered against
4327 		 * their previous state and preserve Program Order.
4328 		 */
4329 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4330 
4331 		cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4332 		if (task_cpu(p) != cpu) {
4333 			if (p->in_iowait) {
4334 				delayacct_blkio_end(p);
4335 				atomic_dec(&task_rq(p)->nr_iowait);
4336 			}
4337 
4338 			wake_flags |= WF_MIGRATED;
4339 			psi_ttwu_dequeue(p);
4340 			set_task_cpu(p, cpu);
4341 		}
4342 #else
4343 		cpu = task_cpu(p);
4344 #endif /* CONFIG_SMP */
4345 
4346 		ttwu_queue(p, cpu, wake_flags);
4347 	}
4348 out:
4349 	if (success)
4350 		ttwu_stat(p, task_cpu(p), wake_flags);
4351 
4352 	return success;
4353 }
4354 
__task_needs_rq_lock(struct task_struct * p)4355 static bool __task_needs_rq_lock(struct task_struct *p)
4356 {
4357 	unsigned int state = READ_ONCE(p->__state);
4358 
4359 	/*
4360 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4361 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4362 	 * locks at the end, see ttwu_queue_wakelist().
4363 	 */
4364 	if (state == TASK_RUNNING || state == TASK_WAKING)
4365 		return true;
4366 
4367 	/*
4368 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4369 	 * possible to, falsely, observe p->on_rq == 0.
4370 	 *
4371 	 * See try_to_wake_up() for a longer comment.
4372 	 */
4373 	smp_rmb();
4374 	if (p->on_rq)
4375 		return true;
4376 
4377 #ifdef CONFIG_SMP
4378 	/*
4379 	 * Ensure the task has finished __schedule() and will not be referenced
4380 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4381 	 */
4382 	smp_rmb();
4383 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4384 #endif
4385 
4386 	return false;
4387 }
4388 
4389 /**
4390  * task_call_func - Invoke a function on task in fixed state
4391  * @p: Process for which the function is to be invoked, can be @current.
4392  * @func: Function to invoke.
4393  * @arg: Argument to function.
4394  *
4395  * Fix the task in it's current state by avoiding wakeups and or rq operations
4396  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4397  * to work out what the state is, if required.  Given that @func can be invoked
4398  * with a runqueue lock held, it had better be quite lightweight.
4399  *
4400  * Returns:
4401  *   Whatever @func returns
4402  */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4403 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4404 {
4405 	struct rq *rq = NULL;
4406 	struct rq_flags rf;
4407 	int ret;
4408 
4409 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4410 
4411 	if (__task_needs_rq_lock(p))
4412 		rq = __task_rq_lock(p, &rf);
4413 
4414 	/*
4415 	 * At this point the task is pinned; either:
4416 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4417 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4418 	 *  - queued, and we're holding off schedule	 (rq->lock)
4419 	 *  - running, and we're holding off de-schedule (rq->lock)
4420 	 *
4421 	 * The called function (@func) can use: task_curr(), p->on_rq and
4422 	 * p->__state to differentiate between these states.
4423 	 */
4424 	ret = func(p, arg);
4425 
4426 	if (rq)
4427 		rq_unlock(rq, &rf);
4428 
4429 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4430 	return ret;
4431 }
4432 
4433 /**
4434  * cpu_curr_snapshot - Return a snapshot of the currently running task
4435  * @cpu: The CPU on which to snapshot the task.
4436  *
4437  * Returns the task_struct pointer of the task "currently" running on
4438  * the specified CPU.
4439  *
4440  * If the specified CPU was offline, the return value is whatever it
4441  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4442  * task, but there is no guarantee.  Callers wishing a useful return
4443  * value must take some action to ensure that the specified CPU remains
4444  * online throughout.
4445  *
4446  * This function executes full memory barriers before and after fetching
4447  * the pointer, which permits the caller to confine this function's fetch
4448  * with respect to the caller's accesses to other shared variables.
4449  */
cpu_curr_snapshot(int cpu)4450 struct task_struct *cpu_curr_snapshot(int cpu)
4451 {
4452 	struct rq *rq = cpu_rq(cpu);
4453 	struct task_struct *t;
4454 	struct rq_flags rf;
4455 
4456 	rq_lock_irqsave(rq, &rf);
4457 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4458 	t = rcu_dereference(cpu_curr(cpu));
4459 	rq_unlock_irqrestore(rq, &rf);
4460 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4461 
4462 	return t;
4463 }
4464 
4465 /**
4466  * wake_up_process - Wake up a specific process
4467  * @p: The process to be woken up.
4468  *
4469  * Attempt to wake up the nominated process and move it to the set of runnable
4470  * processes.
4471  *
4472  * Return: 1 if the process was woken up, 0 if it was already running.
4473  *
4474  * This function executes a full memory barrier before accessing the task state.
4475  */
wake_up_process(struct task_struct * p)4476 int wake_up_process(struct task_struct *p)
4477 {
4478 	return try_to_wake_up(p, TASK_NORMAL, 0);
4479 }
4480 EXPORT_SYMBOL(wake_up_process);
4481 
wake_up_state(struct task_struct * p,unsigned int state)4482 int wake_up_state(struct task_struct *p, unsigned int state)
4483 {
4484 	return try_to_wake_up(p, state, 0);
4485 }
4486 
4487 /*
4488  * Perform scheduler related setup for a newly forked process p.
4489  * p is forked by current.
4490  *
4491  * __sched_fork() is basic setup which is also used by sched_init() to
4492  * initialize the boot CPU's idle task.
4493  */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4494 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4495 {
4496 	p->on_rq			= 0;
4497 
4498 	p->se.on_rq			= 0;
4499 	p->se.exec_start		= 0;
4500 	p->se.sum_exec_runtime		= 0;
4501 	p->se.prev_sum_exec_runtime	= 0;
4502 	p->se.nr_migrations		= 0;
4503 	p->se.vruntime			= 0;
4504 	p->se.vlag			= 0;
4505 	p->se.slice			= sysctl_sched_base_slice;
4506 	INIT_LIST_HEAD(&p->se.group_node);
4507 
4508 #ifdef CONFIG_FAIR_GROUP_SCHED
4509 	p->se.cfs_rq			= NULL;
4510 #endif
4511 
4512 #ifdef CONFIG_SCHEDSTATS
4513 	/* Even if schedstat is disabled, there should not be garbage */
4514 	memset(&p->stats, 0, sizeof(p->stats));
4515 #endif
4516 
4517 	init_dl_entity(&p->dl);
4518 
4519 	INIT_LIST_HEAD(&p->rt.run_list);
4520 	p->rt.timeout		= 0;
4521 	p->rt.time_slice	= sched_rr_timeslice;
4522 	p->rt.on_rq		= 0;
4523 	p->rt.on_list		= 0;
4524 
4525 #ifdef CONFIG_PREEMPT_NOTIFIERS
4526 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4527 #endif
4528 
4529 #ifdef CONFIG_COMPACTION
4530 	p->capture_control = NULL;
4531 #endif
4532 	init_numa_balancing(clone_flags, p);
4533 #ifdef CONFIG_SMP
4534 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4535 	p->migration_pending = NULL;
4536 #endif
4537 	init_sched_mm_cid(p);
4538 }
4539 
4540 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4541 
4542 #ifdef CONFIG_NUMA_BALANCING
4543 
4544 int sysctl_numa_balancing_mode;
4545 
__set_numabalancing_state(bool enabled)4546 static void __set_numabalancing_state(bool enabled)
4547 {
4548 	if (enabled)
4549 		static_branch_enable(&sched_numa_balancing);
4550 	else
4551 		static_branch_disable(&sched_numa_balancing);
4552 }
4553 
set_numabalancing_state(bool enabled)4554 void set_numabalancing_state(bool enabled)
4555 {
4556 	if (enabled)
4557 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4558 	else
4559 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4560 	__set_numabalancing_state(enabled);
4561 }
4562 
4563 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4564 static void reset_memory_tiering(void)
4565 {
4566 	struct pglist_data *pgdat;
4567 
4568 	for_each_online_pgdat(pgdat) {
4569 		pgdat->nbp_threshold = 0;
4570 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4571 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4572 	}
4573 }
4574 
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4575 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4576 			  void *buffer, size_t *lenp, loff_t *ppos)
4577 {
4578 	struct ctl_table t;
4579 	int err;
4580 	int state = sysctl_numa_balancing_mode;
4581 
4582 	if (write && !capable(CAP_SYS_ADMIN))
4583 		return -EPERM;
4584 
4585 	t = *table;
4586 	t.data = &state;
4587 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4588 	if (err < 0)
4589 		return err;
4590 	if (write) {
4591 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4592 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4593 			reset_memory_tiering();
4594 		sysctl_numa_balancing_mode = state;
4595 		__set_numabalancing_state(state);
4596 	}
4597 	return err;
4598 }
4599 #endif
4600 #endif
4601 
4602 #ifdef CONFIG_SCHEDSTATS
4603 
4604 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4605 
set_schedstats(bool enabled)4606 static void set_schedstats(bool enabled)
4607 {
4608 	if (enabled)
4609 		static_branch_enable(&sched_schedstats);
4610 	else
4611 		static_branch_disable(&sched_schedstats);
4612 }
4613 
force_schedstat_enabled(void)4614 void force_schedstat_enabled(void)
4615 {
4616 	if (!schedstat_enabled()) {
4617 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4618 		static_branch_enable(&sched_schedstats);
4619 	}
4620 }
4621 
setup_schedstats(char * str)4622 static int __init setup_schedstats(char *str)
4623 {
4624 	int ret = 0;
4625 	if (!str)
4626 		goto out;
4627 
4628 	if (!strcmp(str, "enable")) {
4629 		set_schedstats(true);
4630 		ret = 1;
4631 	} else if (!strcmp(str, "disable")) {
4632 		set_schedstats(false);
4633 		ret = 1;
4634 	}
4635 out:
4636 	if (!ret)
4637 		pr_warn("Unable to parse schedstats=\n");
4638 
4639 	return ret;
4640 }
4641 __setup("schedstats=", setup_schedstats);
4642 
4643 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4644 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4645 		size_t *lenp, loff_t *ppos)
4646 {
4647 	struct ctl_table t;
4648 	int err;
4649 	int state = static_branch_likely(&sched_schedstats);
4650 
4651 	if (write && !capable(CAP_SYS_ADMIN))
4652 		return -EPERM;
4653 
4654 	t = *table;
4655 	t.data = &state;
4656 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4657 	if (err < 0)
4658 		return err;
4659 	if (write)
4660 		set_schedstats(state);
4661 	return err;
4662 }
4663 #endif /* CONFIG_PROC_SYSCTL */
4664 #endif /* CONFIG_SCHEDSTATS */
4665 
4666 #ifdef CONFIG_SYSCTL
4667 static struct ctl_table sched_core_sysctls[] = {
4668 #ifdef CONFIG_SCHEDSTATS
4669 	{
4670 		.procname       = "sched_schedstats",
4671 		.data           = NULL,
4672 		.maxlen         = sizeof(unsigned int),
4673 		.mode           = 0644,
4674 		.proc_handler   = sysctl_schedstats,
4675 		.extra1         = SYSCTL_ZERO,
4676 		.extra2         = SYSCTL_ONE,
4677 	},
4678 #endif /* CONFIG_SCHEDSTATS */
4679 #ifdef CONFIG_UCLAMP_TASK
4680 	{
4681 		.procname       = "sched_util_clamp_min",
4682 		.data           = &sysctl_sched_uclamp_util_min,
4683 		.maxlen         = sizeof(unsigned int),
4684 		.mode           = 0644,
4685 		.proc_handler   = sysctl_sched_uclamp_handler,
4686 	},
4687 	{
4688 		.procname       = "sched_util_clamp_max",
4689 		.data           = &sysctl_sched_uclamp_util_max,
4690 		.maxlen         = sizeof(unsigned int),
4691 		.mode           = 0644,
4692 		.proc_handler   = sysctl_sched_uclamp_handler,
4693 	},
4694 	{
4695 		.procname       = "sched_util_clamp_min_rt_default",
4696 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4697 		.maxlen         = sizeof(unsigned int),
4698 		.mode           = 0644,
4699 		.proc_handler   = sysctl_sched_uclamp_handler,
4700 	},
4701 #endif /* CONFIG_UCLAMP_TASK */
4702 #ifdef CONFIG_NUMA_BALANCING
4703 	{
4704 		.procname	= "numa_balancing",
4705 		.data		= NULL, /* filled in by handler */
4706 		.maxlen		= sizeof(unsigned int),
4707 		.mode		= 0644,
4708 		.proc_handler	= sysctl_numa_balancing,
4709 		.extra1		= SYSCTL_ZERO,
4710 		.extra2		= SYSCTL_FOUR,
4711 	},
4712 #endif /* CONFIG_NUMA_BALANCING */
4713 	{}
4714 };
sched_core_sysctl_init(void)4715 static int __init sched_core_sysctl_init(void)
4716 {
4717 	register_sysctl_init("kernel", sched_core_sysctls);
4718 	return 0;
4719 }
4720 late_initcall(sched_core_sysctl_init);
4721 #endif /* CONFIG_SYSCTL */
4722 
4723 /*
4724  * fork()/clone()-time setup:
4725  */
sched_fork(unsigned long clone_flags,struct task_struct * p)4726 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4727 {
4728 	__sched_fork(clone_flags, p);
4729 	/*
4730 	 * We mark the process as NEW here. This guarantees that
4731 	 * nobody will actually run it, and a signal or other external
4732 	 * event cannot wake it up and insert it on the runqueue either.
4733 	 */
4734 	p->__state = TASK_NEW;
4735 
4736 	/*
4737 	 * Make sure we do not leak PI boosting priority to the child.
4738 	 */
4739 	p->prio = current->normal_prio;
4740 
4741 	uclamp_fork(p);
4742 
4743 	/*
4744 	 * Revert to default priority/policy on fork if requested.
4745 	 */
4746 	if (unlikely(p->sched_reset_on_fork)) {
4747 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4748 			p->policy = SCHED_NORMAL;
4749 			p->static_prio = NICE_TO_PRIO(0);
4750 			p->rt_priority = 0;
4751 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4752 			p->static_prio = NICE_TO_PRIO(0);
4753 
4754 		p->prio = p->normal_prio = p->static_prio;
4755 		set_load_weight(p, false);
4756 
4757 		/*
4758 		 * We don't need the reset flag anymore after the fork. It has
4759 		 * fulfilled its duty:
4760 		 */
4761 		p->sched_reset_on_fork = 0;
4762 	}
4763 
4764 	if (dl_prio(p->prio))
4765 		return -EAGAIN;
4766 	else if (rt_prio(p->prio))
4767 		p->sched_class = &rt_sched_class;
4768 	else
4769 		p->sched_class = &fair_sched_class;
4770 
4771 	init_entity_runnable_average(&p->se);
4772 
4773 
4774 #ifdef CONFIG_SCHED_INFO
4775 	if (likely(sched_info_on()))
4776 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4777 #endif
4778 #if defined(CONFIG_SMP)
4779 	p->on_cpu = 0;
4780 #endif
4781 	init_task_preempt_count(p);
4782 #ifdef CONFIG_SMP
4783 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4784 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4785 #endif
4786 	return 0;
4787 }
4788 
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4789 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4790 {
4791 	unsigned long flags;
4792 
4793 	/*
4794 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4795 	 * required yet, but lockdep gets upset if rules are violated.
4796 	 */
4797 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4798 #ifdef CONFIG_CGROUP_SCHED
4799 	if (1) {
4800 		struct task_group *tg;
4801 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4802 				  struct task_group, css);
4803 		tg = autogroup_task_group(p, tg);
4804 		p->sched_task_group = tg;
4805 	}
4806 #endif
4807 	rseq_migrate(p);
4808 	/*
4809 	 * We're setting the CPU for the first time, we don't migrate,
4810 	 * so use __set_task_cpu().
4811 	 */
4812 	__set_task_cpu(p, smp_processor_id());
4813 	if (p->sched_class->task_fork)
4814 		p->sched_class->task_fork(p);
4815 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4816 }
4817 
sched_post_fork(struct task_struct * p)4818 void sched_post_fork(struct task_struct *p)
4819 {
4820 	uclamp_post_fork(p);
4821 }
4822 
to_ratio(u64 period,u64 runtime)4823 unsigned long to_ratio(u64 period, u64 runtime)
4824 {
4825 	if (runtime == RUNTIME_INF)
4826 		return BW_UNIT;
4827 
4828 	/*
4829 	 * Doing this here saves a lot of checks in all
4830 	 * the calling paths, and returning zero seems
4831 	 * safe for them anyway.
4832 	 */
4833 	if (period == 0)
4834 		return 0;
4835 
4836 	return div64_u64(runtime << BW_SHIFT, period);
4837 }
4838 
4839 /*
4840  * wake_up_new_task - wake up a newly created task for the first time.
4841  *
4842  * This function will do some initial scheduler statistics housekeeping
4843  * that must be done for every newly created context, then puts the task
4844  * on the runqueue and wakes it.
4845  */
wake_up_new_task(struct task_struct * p)4846 void wake_up_new_task(struct task_struct *p)
4847 {
4848 	struct rq_flags rf;
4849 	struct rq *rq;
4850 
4851 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4852 	WRITE_ONCE(p->__state, TASK_RUNNING);
4853 #ifdef CONFIG_SMP
4854 	/*
4855 	 * Fork balancing, do it here and not earlier because:
4856 	 *  - cpus_ptr can change in the fork path
4857 	 *  - any previously selected CPU might disappear through hotplug
4858 	 *
4859 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4860 	 * as we're not fully set-up yet.
4861 	 */
4862 	p->recent_used_cpu = task_cpu(p);
4863 	rseq_migrate(p);
4864 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4865 #endif
4866 	rq = __task_rq_lock(p, &rf);
4867 	update_rq_clock(rq);
4868 	post_init_entity_util_avg(p);
4869 
4870 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4871 	trace_sched_wakeup_new(p);
4872 	wakeup_preempt(rq, p, WF_FORK);
4873 #ifdef CONFIG_SMP
4874 	if (p->sched_class->task_woken) {
4875 		/*
4876 		 * Nothing relies on rq->lock after this, so it's fine to
4877 		 * drop it.
4878 		 */
4879 		rq_unpin_lock(rq, &rf);
4880 		p->sched_class->task_woken(rq, p);
4881 		rq_repin_lock(rq, &rf);
4882 	}
4883 #endif
4884 	task_rq_unlock(rq, p, &rf);
4885 }
4886 
4887 #ifdef CONFIG_PREEMPT_NOTIFIERS
4888 
4889 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4890 
preempt_notifier_inc(void)4891 void preempt_notifier_inc(void)
4892 {
4893 	static_branch_inc(&preempt_notifier_key);
4894 }
4895 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4896 
preempt_notifier_dec(void)4897 void preempt_notifier_dec(void)
4898 {
4899 	static_branch_dec(&preempt_notifier_key);
4900 }
4901 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4902 
4903 /**
4904  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4905  * @notifier: notifier struct to register
4906  */
preempt_notifier_register(struct preempt_notifier * notifier)4907 void preempt_notifier_register(struct preempt_notifier *notifier)
4908 {
4909 	if (!static_branch_unlikely(&preempt_notifier_key))
4910 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4911 
4912 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4913 }
4914 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4915 
4916 /**
4917  * preempt_notifier_unregister - no longer interested in preemption notifications
4918  * @notifier: notifier struct to unregister
4919  *
4920  * This is *not* safe to call from within a preemption notifier.
4921  */
preempt_notifier_unregister(struct preempt_notifier * notifier)4922 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4923 {
4924 	hlist_del(&notifier->link);
4925 }
4926 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4927 
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4928 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4929 {
4930 	struct preempt_notifier *notifier;
4931 
4932 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4933 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4934 }
4935 
fire_sched_in_preempt_notifiers(struct task_struct * curr)4936 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4937 {
4938 	if (static_branch_unlikely(&preempt_notifier_key))
4939 		__fire_sched_in_preempt_notifiers(curr);
4940 }
4941 
4942 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4943 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4944 				   struct task_struct *next)
4945 {
4946 	struct preempt_notifier *notifier;
4947 
4948 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4949 		notifier->ops->sched_out(notifier, next);
4950 }
4951 
4952 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4953 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4954 				 struct task_struct *next)
4955 {
4956 	if (static_branch_unlikely(&preempt_notifier_key))
4957 		__fire_sched_out_preempt_notifiers(curr, next);
4958 }
4959 
4960 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4961 
fire_sched_in_preempt_notifiers(struct task_struct * curr)4962 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4963 {
4964 }
4965 
4966 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4967 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4968 				 struct task_struct *next)
4969 {
4970 }
4971 
4972 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4973 
prepare_task(struct task_struct * next)4974 static inline void prepare_task(struct task_struct *next)
4975 {
4976 #ifdef CONFIG_SMP
4977 	/*
4978 	 * Claim the task as running, we do this before switching to it
4979 	 * such that any running task will have this set.
4980 	 *
4981 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4982 	 * its ordering comment.
4983 	 */
4984 	WRITE_ONCE(next->on_cpu, 1);
4985 #endif
4986 }
4987 
finish_task(struct task_struct * prev)4988 static inline void finish_task(struct task_struct *prev)
4989 {
4990 #ifdef CONFIG_SMP
4991 	/*
4992 	 * This must be the very last reference to @prev from this CPU. After
4993 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4994 	 * must ensure this doesn't happen until the switch is completely
4995 	 * finished.
4996 	 *
4997 	 * In particular, the load of prev->state in finish_task_switch() must
4998 	 * happen before this.
4999 	 *
5000 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5001 	 */
5002 	smp_store_release(&prev->on_cpu, 0);
5003 #endif
5004 }
5005 
5006 #ifdef CONFIG_SMP
5007 
do_balance_callbacks(struct rq * rq,struct balance_callback * head)5008 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5009 {
5010 	void (*func)(struct rq *rq);
5011 	struct balance_callback *next;
5012 
5013 	lockdep_assert_rq_held(rq);
5014 
5015 	while (head) {
5016 		func = (void (*)(struct rq *))head->func;
5017 		next = head->next;
5018 		head->next = NULL;
5019 		head = next;
5020 
5021 		func(rq);
5022 	}
5023 }
5024 
5025 static void balance_push(struct rq *rq);
5026 
5027 /*
5028  * balance_push_callback is a right abuse of the callback interface and plays
5029  * by significantly different rules.
5030  *
5031  * Where the normal balance_callback's purpose is to be ran in the same context
5032  * that queued it (only later, when it's safe to drop rq->lock again),
5033  * balance_push_callback is specifically targeted at __schedule().
5034  *
5035  * This abuse is tolerated because it places all the unlikely/odd cases behind
5036  * a single test, namely: rq->balance_callback == NULL.
5037  */
5038 struct balance_callback balance_push_callback = {
5039 	.next = NULL,
5040 	.func = balance_push,
5041 };
5042 
5043 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5044 __splice_balance_callbacks(struct rq *rq, bool split)
5045 {
5046 	struct balance_callback *head = rq->balance_callback;
5047 
5048 	if (likely(!head))
5049 		return NULL;
5050 
5051 	lockdep_assert_rq_held(rq);
5052 	/*
5053 	 * Must not take balance_push_callback off the list when
5054 	 * splice_balance_callbacks() and balance_callbacks() are not
5055 	 * in the same rq->lock section.
5056 	 *
5057 	 * In that case it would be possible for __schedule() to interleave
5058 	 * and observe the list empty.
5059 	 */
5060 	if (split && head == &balance_push_callback)
5061 		head = NULL;
5062 	else
5063 		rq->balance_callback = NULL;
5064 
5065 	return head;
5066 }
5067 
splice_balance_callbacks(struct rq * rq)5068 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5069 {
5070 	return __splice_balance_callbacks(rq, true);
5071 }
5072 
__balance_callbacks(struct rq * rq)5073 static void __balance_callbacks(struct rq *rq)
5074 {
5075 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5076 }
5077 
balance_callbacks(struct rq * rq,struct balance_callback * head)5078 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5079 {
5080 	unsigned long flags;
5081 
5082 	if (unlikely(head)) {
5083 		raw_spin_rq_lock_irqsave(rq, flags);
5084 		do_balance_callbacks(rq, head);
5085 		raw_spin_rq_unlock_irqrestore(rq, flags);
5086 	}
5087 }
5088 
5089 #else
5090 
__balance_callbacks(struct rq * rq)5091 static inline void __balance_callbacks(struct rq *rq)
5092 {
5093 }
5094 
splice_balance_callbacks(struct rq * rq)5095 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5096 {
5097 	return NULL;
5098 }
5099 
balance_callbacks(struct rq * rq,struct balance_callback * head)5100 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5101 {
5102 }
5103 
5104 #endif
5105 
5106 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5107 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5108 {
5109 	/*
5110 	 * Since the runqueue lock will be released by the next
5111 	 * task (which is an invalid locking op but in the case
5112 	 * of the scheduler it's an obvious special-case), so we
5113 	 * do an early lockdep release here:
5114 	 */
5115 	rq_unpin_lock(rq, rf);
5116 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5117 #ifdef CONFIG_DEBUG_SPINLOCK
5118 	/* this is a valid case when another task releases the spinlock */
5119 	rq_lockp(rq)->owner = next;
5120 #endif
5121 }
5122 
finish_lock_switch(struct rq * rq)5123 static inline void finish_lock_switch(struct rq *rq)
5124 {
5125 	/*
5126 	 * If we are tracking spinlock dependencies then we have to
5127 	 * fix up the runqueue lock - which gets 'carried over' from
5128 	 * prev into current:
5129 	 */
5130 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5131 	__balance_callbacks(rq);
5132 	raw_spin_rq_unlock_irq(rq);
5133 }
5134 
5135 /*
5136  * NOP if the arch has not defined these:
5137  */
5138 
5139 #ifndef prepare_arch_switch
5140 # define prepare_arch_switch(next)	do { } while (0)
5141 #endif
5142 
5143 #ifndef finish_arch_post_lock_switch
5144 # define finish_arch_post_lock_switch()	do { } while (0)
5145 #endif
5146 
kmap_local_sched_out(void)5147 static inline void kmap_local_sched_out(void)
5148 {
5149 #ifdef CONFIG_KMAP_LOCAL
5150 	if (unlikely(current->kmap_ctrl.idx))
5151 		__kmap_local_sched_out();
5152 #endif
5153 }
5154 
kmap_local_sched_in(void)5155 static inline void kmap_local_sched_in(void)
5156 {
5157 #ifdef CONFIG_KMAP_LOCAL
5158 	if (unlikely(current->kmap_ctrl.idx))
5159 		__kmap_local_sched_in();
5160 #endif
5161 }
5162 
5163 /**
5164  * prepare_task_switch - prepare to switch tasks
5165  * @rq: the runqueue preparing to switch
5166  * @prev: the current task that is being switched out
5167  * @next: the task we are going to switch to.
5168  *
5169  * This is called with the rq lock held and interrupts off. It must
5170  * be paired with a subsequent finish_task_switch after the context
5171  * switch.
5172  *
5173  * prepare_task_switch sets up locking and calls architecture specific
5174  * hooks.
5175  */
5176 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5177 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5178 		    struct task_struct *next)
5179 {
5180 	kcov_prepare_switch(prev);
5181 	sched_info_switch(rq, prev, next);
5182 	perf_event_task_sched_out(prev, next);
5183 	rseq_preempt(prev);
5184 	fire_sched_out_preempt_notifiers(prev, next);
5185 	kmap_local_sched_out();
5186 	prepare_task(next);
5187 	prepare_arch_switch(next);
5188 }
5189 
5190 /**
5191  * finish_task_switch - clean up after a task-switch
5192  * @prev: the thread we just switched away from.
5193  *
5194  * finish_task_switch must be called after the context switch, paired
5195  * with a prepare_task_switch call before the context switch.
5196  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5197  * and do any other architecture-specific cleanup actions.
5198  *
5199  * Note that we may have delayed dropping an mm in context_switch(). If
5200  * so, we finish that here outside of the runqueue lock. (Doing it
5201  * with the lock held can cause deadlocks; see schedule() for
5202  * details.)
5203  *
5204  * The context switch have flipped the stack from under us and restored the
5205  * local variables which were saved when this task called schedule() in the
5206  * past. prev == current is still correct but we need to recalculate this_rq
5207  * because prev may have moved to another CPU.
5208  */
finish_task_switch(struct task_struct * prev)5209 static struct rq *finish_task_switch(struct task_struct *prev)
5210 	__releases(rq->lock)
5211 {
5212 	struct rq *rq = this_rq();
5213 	struct mm_struct *mm = rq->prev_mm;
5214 	unsigned int prev_state;
5215 
5216 	/*
5217 	 * The previous task will have left us with a preempt_count of 2
5218 	 * because it left us after:
5219 	 *
5220 	 *	schedule()
5221 	 *	  preempt_disable();			// 1
5222 	 *	  __schedule()
5223 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5224 	 *
5225 	 * Also, see FORK_PREEMPT_COUNT.
5226 	 */
5227 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5228 		      "corrupted preempt_count: %s/%d/0x%x\n",
5229 		      current->comm, current->pid, preempt_count()))
5230 		preempt_count_set(FORK_PREEMPT_COUNT);
5231 
5232 	rq->prev_mm = NULL;
5233 
5234 	/*
5235 	 * A task struct has one reference for the use as "current".
5236 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5237 	 * schedule one last time. The schedule call will never return, and
5238 	 * the scheduled task must drop that reference.
5239 	 *
5240 	 * We must observe prev->state before clearing prev->on_cpu (in
5241 	 * finish_task), otherwise a concurrent wakeup can get prev
5242 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5243 	 * transition, resulting in a double drop.
5244 	 */
5245 	prev_state = READ_ONCE(prev->__state);
5246 	vtime_task_switch(prev);
5247 	perf_event_task_sched_in(prev, current);
5248 	finish_task(prev);
5249 	tick_nohz_task_switch();
5250 	finish_lock_switch(rq);
5251 	finish_arch_post_lock_switch();
5252 	kcov_finish_switch(current);
5253 	/*
5254 	 * kmap_local_sched_out() is invoked with rq::lock held and
5255 	 * interrupts disabled. There is no requirement for that, but the
5256 	 * sched out code does not have an interrupt enabled section.
5257 	 * Restoring the maps on sched in does not require interrupts being
5258 	 * disabled either.
5259 	 */
5260 	kmap_local_sched_in();
5261 
5262 	fire_sched_in_preempt_notifiers(current);
5263 	/*
5264 	 * When switching through a kernel thread, the loop in
5265 	 * membarrier_{private,global}_expedited() may have observed that
5266 	 * kernel thread and not issued an IPI. It is therefore possible to
5267 	 * schedule between user->kernel->user threads without passing though
5268 	 * switch_mm(). Membarrier requires a barrier after storing to
5269 	 * rq->curr, before returning to userspace, so provide them here:
5270 	 *
5271 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5272 	 *   provided by mmdrop_lazy_tlb(),
5273 	 * - a sync_core for SYNC_CORE.
5274 	 */
5275 	if (mm) {
5276 		membarrier_mm_sync_core_before_usermode(mm);
5277 		mmdrop_lazy_tlb_sched(mm);
5278 	}
5279 
5280 	if (unlikely(prev_state == TASK_DEAD)) {
5281 		if (prev->sched_class->task_dead)
5282 			prev->sched_class->task_dead(prev);
5283 
5284 		/* Task is done with its stack. */
5285 		put_task_stack(prev);
5286 
5287 		put_task_struct_rcu_user(prev);
5288 	}
5289 
5290 	return rq;
5291 }
5292 
5293 /**
5294  * schedule_tail - first thing a freshly forked thread must call.
5295  * @prev: the thread we just switched away from.
5296  */
schedule_tail(struct task_struct * prev)5297 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5298 	__releases(rq->lock)
5299 {
5300 	/*
5301 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5302 	 * finish_task_switch() for details.
5303 	 *
5304 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5305 	 * and the preempt_enable() will end up enabling preemption (on
5306 	 * PREEMPT_COUNT kernels).
5307 	 */
5308 
5309 	finish_task_switch(prev);
5310 	preempt_enable();
5311 
5312 	if (current->set_child_tid)
5313 		put_user(task_pid_vnr(current), current->set_child_tid);
5314 
5315 	calculate_sigpending();
5316 }
5317 
5318 /*
5319  * context_switch - switch to the new MM and the new thread's register state.
5320  */
5321 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5322 context_switch(struct rq *rq, struct task_struct *prev,
5323 	       struct task_struct *next, struct rq_flags *rf)
5324 {
5325 	prepare_task_switch(rq, prev, next);
5326 
5327 	/*
5328 	 * For paravirt, this is coupled with an exit in switch_to to
5329 	 * combine the page table reload and the switch backend into
5330 	 * one hypercall.
5331 	 */
5332 	arch_start_context_switch(prev);
5333 
5334 	/*
5335 	 * kernel -> kernel   lazy + transfer active
5336 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5337 	 *
5338 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5339 	 *   user ->   user   switch
5340 	 *
5341 	 * switch_mm_cid() needs to be updated if the barriers provided
5342 	 * by context_switch() are modified.
5343 	 */
5344 	if (!next->mm) {                                // to kernel
5345 		enter_lazy_tlb(prev->active_mm, next);
5346 
5347 		next->active_mm = prev->active_mm;
5348 		if (prev->mm)                           // from user
5349 			mmgrab_lazy_tlb(prev->active_mm);
5350 		else
5351 			prev->active_mm = NULL;
5352 	} else {                                        // to user
5353 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5354 		/*
5355 		 * sys_membarrier() requires an smp_mb() between setting
5356 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5357 		 *
5358 		 * The below provides this either through switch_mm(), or in
5359 		 * case 'prev->active_mm == next->mm' through
5360 		 * finish_task_switch()'s mmdrop().
5361 		 */
5362 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5363 		lru_gen_use_mm(next->mm);
5364 
5365 		if (!prev->mm) {                        // from kernel
5366 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5367 			rq->prev_mm = prev->active_mm;
5368 			prev->active_mm = NULL;
5369 		}
5370 	}
5371 
5372 	/* switch_mm_cid() requires the memory barriers above. */
5373 	switch_mm_cid(rq, prev, next);
5374 
5375 	prepare_lock_switch(rq, next, rf);
5376 
5377 	/* Here we just switch the register state and the stack. */
5378 	switch_to(prev, next, prev);
5379 	barrier();
5380 
5381 	return finish_task_switch(prev);
5382 }
5383 
5384 /*
5385  * nr_running and nr_context_switches:
5386  *
5387  * externally visible scheduler statistics: current number of runnable
5388  * threads, total number of context switches performed since bootup.
5389  */
nr_running(void)5390 unsigned int nr_running(void)
5391 {
5392 	unsigned int i, sum = 0;
5393 
5394 	for_each_online_cpu(i)
5395 		sum += cpu_rq(i)->nr_running;
5396 
5397 	return sum;
5398 }
5399 
5400 /*
5401  * Check if only the current task is running on the CPU.
5402  *
5403  * Caution: this function does not check that the caller has disabled
5404  * preemption, thus the result might have a time-of-check-to-time-of-use
5405  * race.  The caller is responsible to use it correctly, for example:
5406  *
5407  * - from a non-preemptible section (of course)
5408  *
5409  * - from a thread that is bound to a single CPU
5410  *
5411  * - in a loop with very short iterations (e.g. a polling loop)
5412  */
single_task_running(void)5413 bool single_task_running(void)
5414 {
5415 	return raw_rq()->nr_running == 1;
5416 }
5417 EXPORT_SYMBOL(single_task_running);
5418 
nr_context_switches_cpu(int cpu)5419 unsigned long long nr_context_switches_cpu(int cpu)
5420 {
5421 	return cpu_rq(cpu)->nr_switches;
5422 }
5423 
nr_context_switches(void)5424 unsigned long long nr_context_switches(void)
5425 {
5426 	int i;
5427 	unsigned long long sum = 0;
5428 
5429 	for_each_possible_cpu(i)
5430 		sum += cpu_rq(i)->nr_switches;
5431 
5432 	return sum;
5433 }
5434 
5435 /*
5436  * Consumers of these two interfaces, like for example the cpuidle menu
5437  * governor, are using nonsensical data. Preferring shallow idle state selection
5438  * for a CPU that has IO-wait which might not even end up running the task when
5439  * it does become runnable.
5440  */
5441 
nr_iowait_cpu(int cpu)5442 unsigned int nr_iowait_cpu(int cpu)
5443 {
5444 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5445 }
5446 
5447 /*
5448  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5449  *
5450  * The idea behind IO-wait account is to account the idle time that we could
5451  * have spend running if it were not for IO. That is, if we were to improve the
5452  * storage performance, we'd have a proportional reduction in IO-wait time.
5453  *
5454  * This all works nicely on UP, where, when a task blocks on IO, we account
5455  * idle time as IO-wait, because if the storage were faster, it could've been
5456  * running and we'd not be idle.
5457  *
5458  * This has been extended to SMP, by doing the same for each CPU. This however
5459  * is broken.
5460  *
5461  * Imagine for instance the case where two tasks block on one CPU, only the one
5462  * CPU will have IO-wait accounted, while the other has regular idle. Even
5463  * though, if the storage were faster, both could've ran at the same time,
5464  * utilising both CPUs.
5465  *
5466  * This means, that when looking globally, the current IO-wait accounting on
5467  * SMP is a lower bound, by reason of under accounting.
5468  *
5469  * Worse, since the numbers are provided per CPU, they are sometimes
5470  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5471  * associated with any one particular CPU, it can wake to another CPU than it
5472  * blocked on. This means the per CPU IO-wait number is meaningless.
5473  *
5474  * Task CPU affinities can make all that even more 'interesting'.
5475  */
5476 
nr_iowait(void)5477 unsigned int nr_iowait(void)
5478 {
5479 	unsigned int i, sum = 0;
5480 
5481 	for_each_possible_cpu(i)
5482 		sum += nr_iowait_cpu(i);
5483 
5484 	return sum;
5485 }
5486 
5487 #ifdef CONFIG_SMP
5488 
5489 /*
5490  * sched_exec - execve() is a valuable balancing opportunity, because at
5491  * this point the task has the smallest effective memory and cache footprint.
5492  */
sched_exec(void)5493 void sched_exec(void)
5494 {
5495 	struct task_struct *p = current;
5496 	struct migration_arg arg;
5497 	int dest_cpu;
5498 
5499 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5500 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5501 		if (dest_cpu == smp_processor_id())
5502 			return;
5503 
5504 		if (unlikely(!cpu_active(dest_cpu)))
5505 			return;
5506 
5507 		arg = (struct migration_arg){ p, dest_cpu };
5508 	}
5509 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5510 }
5511 
5512 #endif
5513 
5514 DEFINE_PER_CPU(struct kernel_stat, kstat);
5515 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5516 
5517 EXPORT_PER_CPU_SYMBOL(kstat);
5518 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5519 
5520 /*
5521  * The function fair_sched_class.update_curr accesses the struct curr
5522  * and its field curr->exec_start; when called from task_sched_runtime(),
5523  * we observe a high rate of cache misses in practice.
5524  * Prefetching this data results in improved performance.
5525  */
prefetch_curr_exec_start(struct task_struct * p)5526 static inline void prefetch_curr_exec_start(struct task_struct *p)
5527 {
5528 #ifdef CONFIG_FAIR_GROUP_SCHED
5529 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5530 #else
5531 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5532 #endif
5533 	prefetch(curr);
5534 	prefetch(&curr->exec_start);
5535 }
5536 
5537 /*
5538  * Return accounted runtime for the task.
5539  * In case the task is currently running, return the runtime plus current's
5540  * pending runtime that have not been accounted yet.
5541  */
task_sched_runtime(struct task_struct * p)5542 unsigned long long task_sched_runtime(struct task_struct *p)
5543 {
5544 	struct rq_flags rf;
5545 	struct rq *rq;
5546 	u64 ns;
5547 
5548 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5549 	/*
5550 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5551 	 * So we have a optimization chance when the task's delta_exec is 0.
5552 	 * Reading ->on_cpu is racy, but this is ok.
5553 	 *
5554 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5555 	 * If we race with it entering CPU, unaccounted time is 0. This is
5556 	 * indistinguishable from the read occurring a few cycles earlier.
5557 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5558 	 * been accounted, so we're correct here as well.
5559 	 */
5560 	if (!p->on_cpu || !task_on_rq_queued(p))
5561 		return p->se.sum_exec_runtime;
5562 #endif
5563 
5564 	rq = task_rq_lock(p, &rf);
5565 	/*
5566 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5567 	 * project cycles that may never be accounted to this
5568 	 * thread, breaking clock_gettime().
5569 	 */
5570 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5571 		prefetch_curr_exec_start(p);
5572 		update_rq_clock(rq);
5573 		p->sched_class->update_curr(rq);
5574 	}
5575 	ns = p->se.sum_exec_runtime;
5576 	task_rq_unlock(rq, p, &rf);
5577 
5578 	return ns;
5579 }
5580 
5581 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5582 static u64 cpu_resched_latency(struct rq *rq)
5583 {
5584 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5585 	u64 resched_latency, now = rq_clock(rq);
5586 	static bool warned_once;
5587 
5588 	if (sysctl_resched_latency_warn_once && warned_once)
5589 		return 0;
5590 
5591 	if (!need_resched() || !latency_warn_ms)
5592 		return 0;
5593 
5594 	if (system_state == SYSTEM_BOOTING)
5595 		return 0;
5596 
5597 	if (!rq->last_seen_need_resched_ns) {
5598 		rq->last_seen_need_resched_ns = now;
5599 		rq->ticks_without_resched = 0;
5600 		return 0;
5601 	}
5602 
5603 	rq->ticks_without_resched++;
5604 	resched_latency = now - rq->last_seen_need_resched_ns;
5605 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5606 		return 0;
5607 
5608 	warned_once = true;
5609 
5610 	return resched_latency;
5611 }
5612 
setup_resched_latency_warn_ms(char * str)5613 static int __init setup_resched_latency_warn_ms(char *str)
5614 {
5615 	long val;
5616 
5617 	if ((kstrtol(str, 0, &val))) {
5618 		pr_warn("Unable to set resched_latency_warn_ms\n");
5619 		return 1;
5620 	}
5621 
5622 	sysctl_resched_latency_warn_ms = val;
5623 	return 1;
5624 }
5625 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5626 #else
cpu_resched_latency(struct rq * rq)5627 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5628 #endif /* CONFIG_SCHED_DEBUG */
5629 
5630 /*
5631  * This function gets called by the timer code, with HZ frequency.
5632  * We call it with interrupts disabled.
5633  */
scheduler_tick(void)5634 void scheduler_tick(void)
5635 {
5636 	int cpu = smp_processor_id();
5637 	struct rq *rq = cpu_rq(cpu);
5638 	struct task_struct *curr;
5639 	struct rq_flags rf;
5640 	unsigned long thermal_pressure;
5641 	u64 resched_latency;
5642 
5643 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5644 		arch_scale_freq_tick();
5645 
5646 	sched_clock_tick();
5647 
5648 	rq_lock(rq, &rf);
5649 
5650 	curr = rq->curr;
5651 	psi_account_irqtime(rq, curr, NULL);
5652 
5653 	update_rq_clock(rq);
5654 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5655 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5656 	curr->sched_class->task_tick(rq, curr, 0);
5657 	if (sched_feat(LATENCY_WARN))
5658 		resched_latency = cpu_resched_latency(rq);
5659 	calc_global_load_tick(rq);
5660 	sched_core_tick(rq);
5661 	task_tick_mm_cid(rq, curr);
5662 
5663 	rq_unlock(rq, &rf);
5664 
5665 	if (sched_feat(LATENCY_WARN) && resched_latency)
5666 		resched_latency_warn(cpu, resched_latency);
5667 
5668 	perf_event_task_tick();
5669 
5670 	if (curr->flags & PF_WQ_WORKER)
5671 		wq_worker_tick(curr);
5672 
5673 #ifdef CONFIG_SMP
5674 	rq->idle_balance = idle_cpu(cpu);
5675 	trigger_load_balance(rq);
5676 #endif
5677 }
5678 
5679 #ifdef CONFIG_NO_HZ_FULL
5680 
5681 struct tick_work {
5682 	int			cpu;
5683 	atomic_t		state;
5684 	struct delayed_work	work;
5685 };
5686 /* Values for ->state, see diagram below. */
5687 #define TICK_SCHED_REMOTE_OFFLINE	0
5688 #define TICK_SCHED_REMOTE_OFFLINING	1
5689 #define TICK_SCHED_REMOTE_RUNNING	2
5690 
5691 /*
5692  * State diagram for ->state:
5693  *
5694  *
5695  *          TICK_SCHED_REMOTE_OFFLINE
5696  *                    |   ^
5697  *                    |   |
5698  *                    |   | sched_tick_remote()
5699  *                    |   |
5700  *                    |   |
5701  *                    +--TICK_SCHED_REMOTE_OFFLINING
5702  *                    |   ^
5703  *                    |   |
5704  * sched_tick_start() |   | sched_tick_stop()
5705  *                    |   |
5706  *                    V   |
5707  *          TICK_SCHED_REMOTE_RUNNING
5708  *
5709  *
5710  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5711  * and sched_tick_start() are happy to leave the state in RUNNING.
5712  */
5713 
5714 static struct tick_work __percpu *tick_work_cpu;
5715 
sched_tick_remote(struct work_struct * work)5716 static void sched_tick_remote(struct work_struct *work)
5717 {
5718 	struct delayed_work *dwork = to_delayed_work(work);
5719 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5720 	int cpu = twork->cpu;
5721 	struct rq *rq = cpu_rq(cpu);
5722 	int os;
5723 
5724 	/*
5725 	 * Handle the tick only if it appears the remote CPU is running in full
5726 	 * dynticks mode. The check is racy by nature, but missing a tick or
5727 	 * having one too much is no big deal because the scheduler tick updates
5728 	 * statistics and checks timeslices in a time-independent way, regardless
5729 	 * of when exactly it is running.
5730 	 */
5731 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5732 		guard(rq_lock_irq)(rq);
5733 		struct task_struct *curr = rq->curr;
5734 
5735 		if (cpu_online(cpu)) {
5736 			update_rq_clock(rq);
5737 
5738 			if (!is_idle_task(curr)) {
5739 				/*
5740 				 * Make sure the next tick runs within a
5741 				 * reasonable amount of time.
5742 				 */
5743 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5744 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5745 			}
5746 			curr->sched_class->task_tick(rq, curr, 0);
5747 
5748 			calc_load_nohz_remote(rq);
5749 		}
5750 	}
5751 
5752 	/*
5753 	 * Run the remote tick once per second (1Hz). This arbitrary
5754 	 * frequency is large enough to avoid overload but short enough
5755 	 * to keep scheduler internal stats reasonably up to date.  But
5756 	 * first update state to reflect hotplug activity if required.
5757 	 */
5758 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5759 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5760 	if (os == TICK_SCHED_REMOTE_RUNNING)
5761 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5762 }
5763 
sched_tick_start(int cpu)5764 static void sched_tick_start(int cpu)
5765 {
5766 	int os;
5767 	struct tick_work *twork;
5768 
5769 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5770 		return;
5771 
5772 	WARN_ON_ONCE(!tick_work_cpu);
5773 
5774 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5775 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5776 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5777 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5778 		twork->cpu = cpu;
5779 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5780 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5781 	}
5782 }
5783 
5784 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5785 static void sched_tick_stop(int cpu)
5786 {
5787 	struct tick_work *twork;
5788 	int os;
5789 
5790 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5791 		return;
5792 
5793 	WARN_ON_ONCE(!tick_work_cpu);
5794 
5795 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5796 	/* There cannot be competing actions, but don't rely on stop-machine. */
5797 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5798 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5799 	/* Don't cancel, as this would mess up the state machine. */
5800 }
5801 #endif /* CONFIG_HOTPLUG_CPU */
5802 
sched_tick_offload_init(void)5803 int __init sched_tick_offload_init(void)
5804 {
5805 	tick_work_cpu = alloc_percpu(struct tick_work);
5806 	BUG_ON(!tick_work_cpu);
5807 	return 0;
5808 }
5809 
5810 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5811 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5812 static inline void sched_tick_stop(int cpu) { }
5813 #endif
5814 
5815 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5816 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5817 /*
5818  * If the value passed in is equal to the current preempt count
5819  * then we just disabled preemption. Start timing the latency.
5820  */
preempt_latency_start(int val)5821 static inline void preempt_latency_start(int val)
5822 {
5823 	if (preempt_count() == val) {
5824 		unsigned long ip = get_lock_parent_ip();
5825 #ifdef CONFIG_DEBUG_PREEMPT
5826 		current->preempt_disable_ip = ip;
5827 #endif
5828 		trace_preempt_off(CALLER_ADDR0, ip);
5829 	}
5830 }
5831 
preempt_count_add(int val)5832 void preempt_count_add(int val)
5833 {
5834 #ifdef CONFIG_DEBUG_PREEMPT
5835 	/*
5836 	 * Underflow?
5837 	 */
5838 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5839 		return;
5840 #endif
5841 	__preempt_count_add(val);
5842 #ifdef CONFIG_DEBUG_PREEMPT
5843 	/*
5844 	 * Spinlock count overflowing soon?
5845 	 */
5846 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5847 				PREEMPT_MASK - 10);
5848 #endif
5849 	preempt_latency_start(val);
5850 }
5851 EXPORT_SYMBOL(preempt_count_add);
5852 NOKPROBE_SYMBOL(preempt_count_add);
5853 
5854 /*
5855  * If the value passed in equals to the current preempt count
5856  * then we just enabled preemption. Stop timing the latency.
5857  */
preempt_latency_stop(int val)5858 static inline void preempt_latency_stop(int val)
5859 {
5860 	if (preempt_count() == val)
5861 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5862 }
5863 
preempt_count_sub(int val)5864 void preempt_count_sub(int val)
5865 {
5866 #ifdef CONFIG_DEBUG_PREEMPT
5867 	/*
5868 	 * Underflow?
5869 	 */
5870 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5871 		return;
5872 	/*
5873 	 * Is the spinlock portion underflowing?
5874 	 */
5875 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5876 			!(preempt_count() & PREEMPT_MASK)))
5877 		return;
5878 #endif
5879 
5880 	preempt_latency_stop(val);
5881 	__preempt_count_sub(val);
5882 }
5883 EXPORT_SYMBOL(preempt_count_sub);
5884 NOKPROBE_SYMBOL(preempt_count_sub);
5885 
5886 #else
preempt_latency_start(int val)5887 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5888 static inline void preempt_latency_stop(int val) { }
5889 #endif
5890 
get_preempt_disable_ip(struct task_struct * p)5891 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5892 {
5893 #ifdef CONFIG_DEBUG_PREEMPT
5894 	return p->preempt_disable_ip;
5895 #else
5896 	return 0;
5897 #endif
5898 }
5899 
5900 /*
5901  * Print scheduling while atomic bug:
5902  */
__schedule_bug(struct task_struct * prev)5903 static noinline void __schedule_bug(struct task_struct *prev)
5904 {
5905 	/* Save this before calling printk(), since that will clobber it */
5906 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5907 
5908 	if (oops_in_progress)
5909 		return;
5910 
5911 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5912 		prev->comm, prev->pid, preempt_count());
5913 
5914 	debug_show_held_locks(prev);
5915 	print_modules();
5916 	if (irqs_disabled())
5917 		print_irqtrace_events(prev);
5918 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5919 	    && in_atomic_preempt_off()) {
5920 		pr_err("Preemption disabled at:");
5921 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5922 	}
5923 	check_panic_on_warn("scheduling while atomic");
5924 
5925 	dump_stack();
5926 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5927 }
5928 
5929 /*
5930  * Various schedule()-time debugging checks and statistics:
5931  */
schedule_debug(struct task_struct * prev,bool preempt)5932 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5933 {
5934 #ifdef CONFIG_SCHED_STACK_END_CHECK
5935 	if (task_stack_end_corrupted(prev))
5936 		panic("corrupted stack end detected inside scheduler\n");
5937 
5938 	if (task_scs_end_corrupted(prev))
5939 		panic("corrupted shadow stack detected inside scheduler\n");
5940 #endif
5941 
5942 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5943 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5944 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5945 			prev->comm, prev->pid, prev->non_block_count);
5946 		dump_stack();
5947 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5948 	}
5949 #endif
5950 
5951 	if (unlikely(in_atomic_preempt_off())) {
5952 		__schedule_bug(prev);
5953 		preempt_count_set(PREEMPT_DISABLED);
5954 	}
5955 	rcu_sleep_check();
5956 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5957 
5958 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5959 
5960 	schedstat_inc(this_rq()->sched_count);
5961 }
5962 
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5963 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5964 				  struct rq_flags *rf)
5965 {
5966 #ifdef CONFIG_SMP
5967 	const struct sched_class *class;
5968 	/*
5969 	 * We must do the balancing pass before put_prev_task(), such
5970 	 * that when we release the rq->lock the task is in the same
5971 	 * state as before we took rq->lock.
5972 	 *
5973 	 * We can terminate the balance pass as soon as we know there is
5974 	 * a runnable task of @class priority or higher.
5975 	 */
5976 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5977 		if (class->balance(rq, prev, rf))
5978 			break;
5979 	}
5980 #endif
5981 
5982 	put_prev_task(rq, prev);
5983 }
5984 
5985 /*
5986  * Pick up the highest-prio task:
5987  */
5988 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5989 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5990 {
5991 	const struct sched_class *class;
5992 	struct task_struct *p;
5993 
5994 	/*
5995 	 * Optimization: we know that if all tasks are in the fair class we can
5996 	 * call that function directly, but only if the @prev task wasn't of a
5997 	 * higher scheduling class, because otherwise those lose the
5998 	 * opportunity to pull in more work from other CPUs.
5999 	 */
6000 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6001 		   rq->nr_running == rq->cfs.h_nr_running)) {
6002 
6003 		p = pick_next_task_fair(rq, prev, rf);
6004 		if (unlikely(p == RETRY_TASK))
6005 			goto restart;
6006 
6007 		/* Assume the next prioritized class is idle_sched_class */
6008 		if (!p) {
6009 			put_prev_task(rq, prev);
6010 			p = pick_next_task_idle(rq);
6011 		}
6012 
6013 		return p;
6014 	}
6015 
6016 restart:
6017 	put_prev_task_balance(rq, prev, rf);
6018 
6019 	for_each_class(class) {
6020 		p = class->pick_next_task(rq);
6021 		if (p)
6022 			return p;
6023 	}
6024 
6025 	BUG(); /* The idle class should always have a runnable task. */
6026 }
6027 
6028 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6029 static inline bool is_task_rq_idle(struct task_struct *t)
6030 {
6031 	return (task_rq(t)->idle == t);
6032 }
6033 
cookie_equals(struct task_struct * a,unsigned long cookie)6034 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6035 {
6036 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6037 }
6038 
cookie_match(struct task_struct * a,struct task_struct * b)6039 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6040 {
6041 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6042 		return true;
6043 
6044 	return a->core_cookie == b->core_cookie;
6045 }
6046 
pick_task(struct rq * rq)6047 static inline struct task_struct *pick_task(struct rq *rq)
6048 {
6049 	const struct sched_class *class;
6050 	struct task_struct *p;
6051 
6052 	for_each_class(class) {
6053 		p = class->pick_task(rq);
6054 		if (p)
6055 			return p;
6056 	}
6057 
6058 	BUG(); /* The idle class should always have a runnable task. */
6059 }
6060 
6061 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6062 
6063 static void queue_core_balance(struct rq *rq);
6064 
6065 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6066 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6067 {
6068 	struct task_struct *next, *p, *max = NULL;
6069 	const struct cpumask *smt_mask;
6070 	bool fi_before = false;
6071 	bool core_clock_updated = (rq == rq->core);
6072 	unsigned long cookie;
6073 	int i, cpu, occ = 0;
6074 	struct rq *rq_i;
6075 	bool need_sync;
6076 
6077 	if (!sched_core_enabled(rq))
6078 		return __pick_next_task(rq, prev, rf);
6079 
6080 	cpu = cpu_of(rq);
6081 
6082 	/* Stopper task is switching into idle, no need core-wide selection. */
6083 	if (cpu_is_offline(cpu)) {
6084 		/*
6085 		 * Reset core_pick so that we don't enter the fastpath when
6086 		 * coming online. core_pick would already be migrated to
6087 		 * another cpu during offline.
6088 		 */
6089 		rq->core_pick = NULL;
6090 		return __pick_next_task(rq, prev, rf);
6091 	}
6092 
6093 	/*
6094 	 * If there were no {en,de}queues since we picked (IOW, the task
6095 	 * pointers are all still valid), and we haven't scheduled the last
6096 	 * pick yet, do so now.
6097 	 *
6098 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6099 	 * it was either offline or went offline during a sibling's core-wide
6100 	 * selection. In this case, do a core-wide selection.
6101 	 */
6102 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6103 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6104 	    rq->core_pick) {
6105 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6106 
6107 		next = rq->core_pick;
6108 		if (next != prev) {
6109 			put_prev_task(rq, prev);
6110 			set_next_task(rq, next);
6111 		}
6112 
6113 		rq->core_pick = NULL;
6114 		goto out;
6115 	}
6116 
6117 	put_prev_task_balance(rq, prev, rf);
6118 
6119 	smt_mask = cpu_smt_mask(cpu);
6120 	need_sync = !!rq->core->core_cookie;
6121 
6122 	/* reset state */
6123 	rq->core->core_cookie = 0UL;
6124 	if (rq->core->core_forceidle_count) {
6125 		if (!core_clock_updated) {
6126 			update_rq_clock(rq->core);
6127 			core_clock_updated = true;
6128 		}
6129 		sched_core_account_forceidle(rq);
6130 		/* reset after accounting force idle */
6131 		rq->core->core_forceidle_start = 0;
6132 		rq->core->core_forceidle_count = 0;
6133 		rq->core->core_forceidle_occupation = 0;
6134 		need_sync = true;
6135 		fi_before = true;
6136 	}
6137 
6138 	/*
6139 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6140 	 *
6141 	 * @task_seq guards the task state ({en,de}queues)
6142 	 * @pick_seq is the @task_seq we did a selection on
6143 	 * @sched_seq is the @pick_seq we scheduled
6144 	 *
6145 	 * However, preemptions can cause multiple picks on the same task set.
6146 	 * 'Fix' this by also increasing @task_seq for every pick.
6147 	 */
6148 	rq->core->core_task_seq++;
6149 
6150 	/*
6151 	 * Optimize for common case where this CPU has no cookies
6152 	 * and there are no cookied tasks running on siblings.
6153 	 */
6154 	if (!need_sync) {
6155 		next = pick_task(rq);
6156 		if (!next->core_cookie) {
6157 			rq->core_pick = NULL;
6158 			/*
6159 			 * For robustness, update the min_vruntime_fi for
6160 			 * unconstrained picks as well.
6161 			 */
6162 			WARN_ON_ONCE(fi_before);
6163 			task_vruntime_update(rq, next, false);
6164 			goto out_set_next;
6165 		}
6166 	}
6167 
6168 	/*
6169 	 * For each thread: do the regular task pick and find the max prio task
6170 	 * amongst them.
6171 	 *
6172 	 * Tie-break prio towards the current CPU
6173 	 */
6174 	for_each_cpu_wrap(i, smt_mask, cpu) {
6175 		rq_i = cpu_rq(i);
6176 
6177 		/*
6178 		 * Current cpu always has its clock updated on entrance to
6179 		 * pick_next_task(). If the current cpu is not the core,
6180 		 * the core may also have been updated above.
6181 		 */
6182 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6183 			update_rq_clock(rq_i);
6184 
6185 		p = rq_i->core_pick = pick_task(rq_i);
6186 		if (!max || prio_less(max, p, fi_before))
6187 			max = p;
6188 	}
6189 
6190 	cookie = rq->core->core_cookie = max->core_cookie;
6191 
6192 	/*
6193 	 * For each thread: try and find a runnable task that matches @max or
6194 	 * force idle.
6195 	 */
6196 	for_each_cpu(i, smt_mask) {
6197 		rq_i = cpu_rq(i);
6198 		p = rq_i->core_pick;
6199 
6200 		if (!cookie_equals(p, cookie)) {
6201 			p = NULL;
6202 			if (cookie)
6203 				p = sched_core_find(rq_i, cookie);
6204 			if (!p)
6205 				p = idle_sched_class.pick_task(rq_i);
6206 		}
6207 
6208 		rq_i->core_pick = p;
6209 
6210 		if (p == rq_i->idle) {
6211 			if (rq_i->nr_running) {
6212 				rq->core->core_forceidle_count++;
6213 				if (!fi_before)
6214 					rq->core->core_forceidle_seq++;
6215 			}
6216 		} else {
6217 			occ++;
6218 		}
6219 	}
6220 
6221 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6222 		rq->core->core_forceidle_start = rq_clock(rq->core);
6223 		rq->core->core_forceidle_occupation = occ;
6224 	}
6225 
6226 	rq->core->core_pick_seq = rq->core->core_task_seq;
6227 	next = rq->core_pick;
6228 	rq->core_sched_seq = rq->core->core_pick_seq;
6229 
6230 	/* Something should have been selected for current CPU */
6231 	WARN_ON_ONCE(!next);
6232 
6233 	/*
6234 	 * Reschedule siblings
6235 	 *
6236 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6237 	 * sending an IPI (below) ensures the sibling will no longer be running
6238 	 * their task. This ensures there is no inter-sibling overlap between
6239 	 * non-matching user state.
6240 	 */
6241 	for_each_cpu(i, smt_mask) {
6242 		rq_i = cpu_rq(i);
6243 
6244 		/*
6245 		 * An online sibling might have gone offline before a task
6246 		 * could be picked for it, or it might be offline but later
6247 		 * happen to come online, but its too late and nothing was
6248 		 * picked for it.  That's Ok - it will pick tasks for itself,
6249 		 * so ignore it.
6250 		 */
6251 		if (!rq_i->core_pick)
6252 			continue;
6253 
6254 		/*
6255 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6256 		 * fi_before     fi      update?
6257 		 *  0            0       1
6258 		 *  0            1       1
6259 		 *  1            0       1
6260 		 *  1            1       0
6261 		 */
6262 		if (!(fi_before && rq->core->core_forceidle_count))
6263 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6264 
6265 		rq_i->core_pick->core_occupation = occ;
6266 
6267 		if (i == cpu) {
6268 			rq_i->core_pick = NULL;
6269 			continue;
6270 		}
6271 
6272 		/* Did we break L1TF mitigation requirements? */
6273 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6274 
6275 		if (rq_i->curr == rq_i->core_pick) {
6276 			rq_i->core_pick = NULL;
6277 			continue;
6278 		}
6279 
6280 		resched_curr(rq_i);
6281 	}
6282 
6283 out_set_next:
6284 	set_next_task(rq, next);
6285 out:
6286 	if (rq->core->core_forceidle_count && next == rq->idle)
6287 		queue_core_balance(rq);
6288 
6289 	return next;
6290 }
6291 
try_steal_cookie(int this,int that)6292 static bool try_steal_cookie(int this, int that)
6293 {
6294 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6295 	struct task_struct *p;
6296 	unsigned long cookie;
6297 	bool success = false;
6298 
6299 	guard(irq)();
6300 	guard(double_rq_lock)(dst, src);
6301 
6302 	cookie = dst->core->core_cookie;
6303 	if (!cookie)
6304 		return false;
6305 
6306 	if (dst->curr != dst->idle)
6307 		return false;
6308 
6309 	p = sched_core_find(src, cookie);
6310 	if (!p)
6311 		return false;
6312 
6313 	do {
6314 		if (p == src->core_pick || p == src->curr)
6315 			goto next;
6316 
6317 		if (!is_cpu_allowed(p, this))
6318 			goto next;
6319 
6320 		if (p->core_occupation > dst->idle->core_occupation)
6321 			goto next;
6322 		/*
6323 		 * sched_core_find() and sched_core_next() will ensure
6324 		 * that task @p is not throttled now, we also need to
6325 		 * check whether the runqueue of the destination CPU is
6326 		 * being throttled.
6327 		 */
6328 		if (sched_task_is_throttled(p, this))
6329 			goto next;
6330 
6331 		deactivate_task(src, p, 0);
6332 		set_task_cpu(p, this);
6333 		activate_task(dst, p, 0);
6334 
6335 		resched_curr(dst);
6336 
6337 		success = true;
6338 		break;
6339 
6340 next:
6341 		p = sched_core_next(p, cookie);
6342 	} while (p);
6343 
6344 	return success;
6345 }
6346 
steal_cookie_task(int cpu,struct sched_domain * sd)6347 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6348 {
6349 	int i;
6350 
6351 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6352 		if (i == cpu)
6353 			continue;
6354 
6355 		if (need_resched())
6356 			break;
6357 
6358 		if (try_steal_cookie(cpu, i))
6359 			return true;
6360 	}
6361 
6362 	return false;
6363 }
6364 
sched_core_balance(struct rq * rq)6365 static void sched_core_balance(struct rq *rq)
6366 {
6367 	struct sched_domain *sd;
6368 	int cpu = cpu_of(rq);
6369 
6370 	preempt_disable();
6371 	rcu_read_lock();
6372 	raw_spin_rq_unlock_irq(rq);
6373 	for_each_domain(cpu, sd) {
6374 		if (need_resched())
6375 			break;
6376 
6377 		if (steal_cookie_task(cpu, sd))
6378 			break;
6379 	}
6380 	raw_spin_rq_lock_irq(rq);
6381 	rcu_read_unlock();
6382 	preempt_enable();
6383 }
6384 
6385 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6386 
queue_core_balance(struct rq * rq)6387 static void queue_core_balance(struct rq *rq)
6388 {
6389 	if (!sched_core_enabled(rq))
6390 		return;
6391 
6392 	if (!rq->core->core_cookie)
6393 		return;
6394 
6395 	if (!rq->nr_running) /* not forced idle */
6396 		return;
6397 
6398 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6399 }
6400 
6401 DEFINE_LOCK_GUARD_1(core_lock, int,
6402 		    sched_core_lock(*_T->lock, &_T->flags),
6403 		    sched_core_unlock(*_T->lock, &_T->flags),
6404 		    unsigned long flags)
6405 
sched_core_cpu_starting(unsigned int cpu)6406 static void sched_core_cpu_starting(unsigned int cpu)
6407 {
6408 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6409 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6410 	int t;
6411 
6412 	guard(core_lock)(&cpu);
6413 
6414 	WARN_ON_ONCE(rq->core != rq);
6415 
6416 	/* if we're the first, we'll be our own leader */
6417 	if (cpumask_weight(smt_mask) == 1)
6418 		return;
6419 
6420 	/* find the leader */
6421 	for_each_cpu(t, smt_mask) {
6422 		if (t == cpu)
6423 			continue;
6424 		rq = cpu_rq(t);
6425 		if (rq->core == rq) {
6426 			core_rq = rq;
6427 			break;
6428 		}
6429 	}
6430 
6431 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6432 		return;
6433 
6434 	/* install and validate core_rq */
6435 	for_each_cpu(t, smt_mask) {
6436 		rq = cpu_rq(t);
6437 
6438 		if (t == cpu)
6439 			rq->core = core_rq;
6440 
6441 		WARN_ON_ONCE(rq->core != core_rq);
6442 	}
6443 }
6444 
sched_core_cpu_deactivate(unsigned int cpu)6445 static void sched_core_cpu_deactivate(unsigned int cpu)
6446 {
6447 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6448 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6449 	int t;
6450 
6451 	guard(core_lock)(&cpu);
6452 
6453 	/* if we're the last man standing, nothing to do */
6454 	if (cpumask_weight(smt_mask) == 1) {
6455 		WARN_ON_ONCE(rq->core != rq);
6456 		return;
6457 	}
6458 
6459 	/* if we're not the leader, nothing to do */
6460 	if (rq->core != rq)
6461 		return;
6462 
6463 	/* find a new leader */
6464 	for_each_cpu(t, smt_mask) {
6465 		if (t == cpu)
6466 			continue;
6467 		core_rq = cpu_rq(t);
6468 		break;
6469 	}
6470 
6471 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6472 		return;
6473 
6474 	/* copy the shared state to the new leader */
6475 	core_rq->core_task_seq             = rq->core_task_seq;
6476 	core_rq->core_pick_seq             = rq->core_pick_seq;
6477 	core_rq->core_cookie               = rq->core_cookie;
6478 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6479 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6480 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6481 
6482 	/*
6483 	 * Accounting edge for forced idle is handled in pick_next_task().
6484 	 * Don't need another one here, since the hotplug thread shouldn't
6485 	 * have a cookie.
6486 	 */
6487 	core_rq->core_forceidle_start = 0;
6488 
6489 	/* install new leader */
6490 	for_each_cpu(t, smt_mask) {
6491 		rq = cpu_rq(t);
6492 		rq->core = core_rq;
6493 	}
6494 }
6495 
sched_core_cpu_dying(unsigned int cpu)6496 static inline void sched_core_cpu_dying(unsigned int cpu)
6497 {
6498 	struct rq *rq = cpu_rq(cpu);
6499 
6500 	if (rq->core != rq)
6501 		rq->core = rq;
6502 }
6503 
6504 #else /* !CONFIG_SCHED_CORE */
6505 
sched_core_cpu_starting(unsigned int cpu)6506 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6507 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6508 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6509 
6510 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6511 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6512 {
6513 	return __pick_next_task(rq, prev, rf);
6514 }
6515 
6516 #endif /* CONFIG_SCHED_CORE */
6517 
6518 /*
6519  * Constants for the sched_mode argument of __schedule().
6520  *
6521  * The mode argument allows RT enabled kernels to differentiate a
6522  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6523  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6524  * optimize the AND operation out and just check for zero.
6525  */
6526 #define SM_NONE			0x0
6527 #define SM_PREEMPT		0x1
6528 #define SM_RTLOCK_WAIT		0x2
6529 
6530 #ifndef CONFIG_PREEMPT_RT
6531 # define SM_MASK_PREEMPT	(~0U)
6532 #else
6533 # define SM_MASK_PREEMPT	SM_PREEMPT
6534 #endif
6535 
6536 /*
6537  * __schedule() is the main scheduler function.
6538  *
6539  * The main means of driving the scheduler and thus entering this function are:
6540  *
6541  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6542  *
6543  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6544  *      paths. For example, see arch/x86/entry_64.S.
6545  *
6546  *      To drive preemption between tasks, the scheduler sets the flag in timer
6547  *      interrupt handler scheduler_tick().
6548  *
6549  *   3. Wakeups don't really cause entry into schedule(). They add a
6550  *      task to the run-queue and that's it.
6551  *
6552  *      Now, if the new task added to the run-queue preempts the current
6553  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6554  *      called on the nearest possible occasion:
6555  *
6556  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6557  *
6558  *         - in syscall or exception context, at the next outmost
6559  *           preempt_enable(). (this might be as soon as the wake_up()'s
6560  *           spin_unlock()!)
6561  *
6562  *         - in IRQ context, return from interrupt-handler to
6563  *           preemptible context
6564  *
6565  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6566  *         then at the next:
6567  *
6568  *          - cond_resched() call
6569  *          - explicit schedule() call
6570  *          - return from syscall or exception to user-space
6571  *          - return from interrupt-handler to user-space
6572  *
6573  * WARNING: must be called with preemption disabled!
6574  */
__schedule(unsigned int sched_mode)6575 static void __sched notrace __schedule(unsigned int sched_mode)
6576 {
6577 	struct task_struct *prev, *next;
6578 	unsigned long *switch_count;
6579 	unsigned long prev_state;
6580 	struct rq_flags rf;
6581 	struct rq *rq;
6582 	int cpu;
6583 
6584 	cpu = smp_processor_id();
6585 	rq = cpu_rq(cpu);
6586 	prev = rq->curr;
6587 
6588 	schedule_debug(prev, !!sched_mode);
6589 
6590 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6591 		hrtick_clear(rq);
6592 
6593 	local_irq_disable();
6594 	rcu_note_context_switch(!!sched_mode);
6595 
6596 	/*
6597 	 * Make sure that signal_pending_state()->signal_pending() below
6598 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6599 	 * done by the caller to avoid the race with signal_wake_up():
6600 	 *
6601 	 * __set_current_state(@state)		signal_wake_up()
6602 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6603 	 *					  wake_up_state(p, state)
6604 	 *   LOCK rq->lock			    LOCK p->pi_state
6605 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6606 	 *     if (signal_pending_state())	    if (p->state & @state)
6607 	 *
6608 	 * Also, the membarrier system call requires a full memory barrier
6609 	 * after coming from user-space, before storing to rq->curr.
6610 	 */
6611 	rq_lock(rq, &rf);
6612 	smp_mb__after_spinlock();
6613 
6614 	/* Promote REQ to ACT */
6615 	rq->clock_update_flags <<= 1;
6616 	update_rq_clock(rq);
6617 	rq->clock_update_flags = RQCF_UPDATED;
6618 
6619 	switch_count = &prev->nivcsw;
6620 
6621 	/*
6622 	 * We must load prev->state once (task_struct::state is volatile), such
6623 	 * that we form a control dependency vs deactivate_task() below.
6624 	 */
6625 	prev_state = READ_ONCE(prev->__state);
6626 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6627 		if (signal_pending_state(prev_state, prev)) {
6628 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6629 		} else {
6630 			prev->sched_contributes_to_load =
6631 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6632 				!(prev_state & TASK_NOLOAD) &&
6633 				!(prev_state & TASK_FROZEN);
6634 
6635 			if (prev->sched_contributes_to_load)
6636 				rq->nr_uninterruptible++;
6637 
6638 			/*
6639 			 * __schedule()			ttwu()
6640 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6641 			 *   if (prev_state)		    goto out;
6642 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6643 			 *				  p->state = TASK_WAKING
6644 			 *
6645 			 * Where __schedule() and ttwu() have matching control dependencies.
6646 			 *
6647 			 * After this, schedule() must not care about p->state any more.
6648 			 */
6649 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6650 
6651 			if (prev->in_iowait) {
6652 				atomic_inc(&rq->nr_iowait);
6653 				delayacct_blkio_start();
6654 			}
6655 		}
6656 		switch_count = &prev->nvcsw;
6657 	}
6658 
6659 	next = pick_next_task(rq, prev, &rf);
6660 	clear_tsk_need_resched(prev);
6661 	clear_preempt_need_resched();
6662 #ifdef CONFIG_SCHED_DEBUG
6663 	rq->last_seen_need_resched_ns = 0;
6664 #endif
6665 
6666 	if (likely(prev != next)) {
6667 		rq->nr_switches++;
6668 		/*
6669 		 * RCU users of rcu_dereference(rq->curr) may not see
6670 		 * changes to task_struct made by pick_next_task().
6671 		 */
6672 		RCU_INIT_POINTER(rq->curr, next);
6673 		/*
6674 		 * The membarrier system call requires each architecture
6675 		 * to have a full memory barrier after updating
6676 		 * rq->curr, before returning to user-space.
6677 		 *
6678 		 * Here are the schemes providing that barrier on the
6679 		 * various architectures:
6680 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6681 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6682 		 *   on PowerPC and on RISC-V.
6683 		 * - finish_lock_switch() for weakly-ordered
6684 		 *   architectures where spin_unlock is a full barrier,
6685 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6686 		 *   is a RELEASE barrier),
6687 		 */
6688 		++*switch_count;
6689 
6690 		migrate_disable_switch(rq, prev);
6691 		psi_account_irqtime(rq, prev, next);
6692 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6693 
6694 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6695 
6696 		/* Also unlocks the rq: */
6697 		rq = context_switch(rq, prev, next, &rf);
6698 	} else {
6699 		rq_unpin_lock(rq, &rf);
6700 		__balance_callbacks(rq);
6701 		raw_spin_rq_unlock_irq(rq);
6702 	}
6703 }
6704 
do_task_dead(void)6705 void __noreturn do_task_dead(void)
6706 {
6707 	/* Causes final put_task_struct in finish_task_switch(): */
6708 	set_special_state(TASK_DEAD);
6709 
6710 	/* Tell freezer to ignore us: */
6711 	current->flags |= PF_NOFREEZE;
6712 
6713 	__schedule(SM_NONE);
6714 	BUG();
6715 
6716 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6717 	for (;;)
6718 		cpu_relax();
6719 }
6720 
sched_submit_work(struct task_struct * tsk)6721 static inline void sched_submit_work(struct task_struct *tsk)
6722 {
6723 	unsigned int task_flags;
6724 
6725 	if (task_is_running(tsk))
6726 		return;
6727 
6728 	task_flags = tsk->flags;
6729 	/*
6730 	 * If a worker goes to sleep, notify and ask workqueue whether it
6731 	 * wants to wake up a task to maintain concurrency.
6732 	 */
6733 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6734 		if (task_flags & PF_WQ_WORKER)
6735 			wq_worker_sleeping(tsk);
6736 		else
6737 			io_wq_worker_sleeping(tsk);
6738 	}
6739 
6740 	/*
6741 	 * spinlock and rwlock must not flush block requests.  This will
6742 	 * deadlock if the callback attempts to acquire a lock which is
6743 	 * already acquired.
6744 	 */
6745 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6746 
6747 	/*
6748 	 * If we are going to sleep and we have plugged IO queued,
6749 	 * make sure to submit it to avoid deadlocks.
6750 	 */
6751 	blk_flush_plug(tsk->plug, true);
6752 }
6753 
sched_update_worker(struct task_struct * tsk)6754 static void sched_update_worker(struct task_struct *tsk)
6755 {
6756 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6757 		if (tsk->flags & PF_WQ_WORKER)
6758 			wq_worker_running(tsk);
6759 		else
6760 			io_wq_worker_running(tsk);
6761 	}
6762 }
6763 
schedule(void)6764 asmlinkage __visible void __sched schedule(void)
6765 {
6766 	struct task_struct *tsk = current;
6767 
6768 	sched_submit_work(tsk);
6769 	do {
6770 		preempt_disable();
6771 		__schedule(SM_NONE);
6772 		sched_preempt_enable_no_resched();
6773 	} while (need_resched());
6774 	sched_update_worker(tsk);
6775 }
6776 EXPORT_SYMBOL(schedule);
6777 
6778 /*
6779  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6780  * state (have scheduled out non-voluntarily) by making sure that all
6781  * tasks have either left the run queue or have gone into user space.
6782  * As idle tasks do not do either, they must not ever be preempted
6783  * (schedule out non-voluntarily).
6784  *
6785  * schedule_idle() is similar to schedule_preempt_disable() except that it
6786  * never enables preemption because it does not call sched_submit_work().
6787  */
schedule_idle(void)6788 void __sched schedule_idle(void)
6789 {
6790 	/*
6791 	 * As this skips calling sched_submit_work(), which the idle task does
6792 	 * regardless because that function is a nop when the task is in a
6793 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6794 	 * current task can be in any other state. Note, idle is always in the
6795 	 * TASK_RUNNING state.
6796 	 */
6797 	WARN_ON_ONCE(current->__state);
6798 	do {
6799 		__schedule(SM_NONE);
6800 	} while (need_resched());
6801 }
6802 
6803 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)6804 asmlinkage __visible void __sched schedule_user(void)
6805 {
6806 	/*
6807 	 * If we come here after a random call to set_need_resched(),
6808 	 * or we have been woken up remotely but the IPI has not yet arrived,
6809 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6810 	 * we find a better solution.
6811 	 *
6812 	 * NB: There are buggy callers of this function.  Ideally we
6813 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6814 	 * too frequently to make sense yet.
6815 	 */
6816 	enum ctx_state prev_state = exception_enter();
6817 	schedule();
6818 	exception_exit(prev_state);
6819 }
6820 #endif
6821 
6822 /**
6823  * schedule_preempt_disabled - called with preemption disabled
6824  *
6825  * Returns with preemption disabled. Note: preempt_count must be 1
6826  */
schedule_preempt_disabled(void)6827 void __sched schedule_preempt_disabled(void)
6828 {
6829 	sched_preempt_enable_no_resched();
6830 	schedule();
6831 	preempt_disable();
6832 }
6833 
6834 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6835 void __sched notrace schedule_rtlock(void)
6836 {
6837 	do {
6838 		preempt_disable();
6839 		__schedule(SM_RTLOCK_WAIT);
6840 		sched_preempt_enable_no_resched();
6841 	} while (need_resched());
6842 }
6843 NOKPROBE_SYMBOL(schedule_rtlock);
6844 #endif
6845 
preempt_schedule_common(void)6846 static void __sched notrace preempt_schedule_common(void)
6847 {
6848 	do {
6849 		/*
6850 		 * Because the function tracer can trace preempt_count_sub()
6851 		 * and it also uses preempt_enable/disable_notrace(), if
6852 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6853 		 * by the function tracer will call this function again and
6854 		 * cause infinite recursion.
6855 		 *
6856 		 * Preemption must be disabled here before the function
6857 		 * tracer can trace. Break up preempt_disable() into two
6858 		 * calls. One to disable preemption without fear of being
6859 		 * traced. The other to still record the preemption latency,
6860 		 * which can also be traced by the function tracer.
6861 		 */
6862 		preempt_disable_notrace();
6863 		preempt_latency_start(1);
6864 		__schedule(SM_PREEMPT);
6865 		preempt_latency_stop(1);
6866 		preempt_enable_no_resched_notrace();
6867 
6868 		/*
6869 		 * Check again in case we missed a preemption opportunity
6870 		 * between schedule and now.
6871 		 */
6872 	} while (need_resched());
6873 }
6874 
6875 #ifdef CONFIG_PREEMPTION
6876 /*
6877  * This is the entry point to schedule() from in-kernel preemption
6878  * off of preempt_enable.
6879  */
preempt_schedule(void)6880 asmlinkage __visible void __sched notrace preempt_schedule(void)
6881 {
6882 	/*
6883 	 * If there is a non-zero preempt_count or interrupts are disabled,
6884 	 * we do not want to preempt the current task. Just return..
6885 	 */
6886 	if (likely(!preemptible()))
6887 		return;
6888 	preempt_schedule_common();
6889 }
6890 NOKPROBE_SYMBOL(preempt_schedule);
6891 EXPORT_SYMBOL(preempt_schedule);
6892 
6893 #ifdef CONFIG_PREEMPT_DYNAMIC
6894 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6895 #ifndef preempt_schedule_dynamic_enabled
6896 #define preempt_schedule_dynamic_enabled	preempt_schedule
6897 #define preempt_schedule_dynamic_disabled	NULL
6898 #endif
6899 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6900 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6901 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6902 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)6903 void __sched notrace dynamic_preempt_schedule(void)
6904 {
6905 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6906 		return;
6907 	preempt_schedule();
6908 }
6909 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6910 EXPORT_SYMBOL(dynamic_preempt_schedule);
6911 #endif
6912 #endif
6913 
6914 /**
6915  * preempt_schedule_notrace - preempt_schedule called by tracing
6916  *
6917  * The tracing infrastructure uses preempt_enable_notrace to prevent
6918  * recursion and tracing preempt enabling caused by the tracing
6919  * infrastructure itself. But as tracing can happen in areas coming
6920  * from userspace or just about to enter userspace, a preempt enable
6921  * can occur before user_exit() is called. This will cause the scheduler
6922  * to be called when the system is still in usermode.
6923  *
6924  * To prevent this, the preempt_enable_notrace will use this function
6925  * instead of preempt_schedule() to exit user context if needed before
6926  * calling the scheduler.
6927  */
preempt_schedule_notrace(void)6928 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6929 {
6930 	enum ctx_state prev_ctx;
6931 
6932 	if (likely(!preemptible()))
6933 		return;
6934 
6935 	do {
6936 		/*
6937 		 * Because the function tracer can trace preempt_count_sub()
6938 		 * and it also uses preempt_enable/disable_notrace(), if
6939 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6940 		 * by the function tracer will call this function again and
6941 		 * cause infinite recursion.
6942 		 *
6943 		 * Preemption must be disabled here before the function
6944 		 * tracer can trace. Break up preempt_disable() into two
6945 		 * calls. One to disable preemption without fear of being
6946 		 * traced. The other to still record the preemption latency,
6947 		 * which can also be traced by the function tracer.
6948 		 */
6949 		preempt_disable_notrace();
6950 		preempt_latency_start(1);
6951 		/*
6952 		 * Needs preempt disabled in case user_exit() is traced
6953 		 * and the tracer calls preempt_enable_notrace() causing
6954 		 * an infinite recursion.
6955 		 */
6956 		prev_ctx = exception_enter();
6957 		__schedule(SM_PREEMPT);
6958 		exception_exit(prev_ctx);
6959 
6960 		preempt_latency_stop(1);
6961 		preempt_enable_no_resched_notrace();
6962 	} while (need_resched());
6963 }
6964 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6965 
6966 #ifdef CONFIG_PREEMPT_DYNAMIC
6967 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6968 #ifndef preempt_schedule_notrace_dynamic_enabled
6969 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6970 #define preempt_schedule_notrace_dynamic_disabled	NULL
6971 #endif
6972 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6973 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6974 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6975 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)6976 void __sched notrace dynamic_preempt_schedule_notrace(void)
6977 {
6978 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6979 		return;
6980 	preempt_schedule_notrace();
6981 }
6982 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6983 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6984 #endif
6985 #endif
6986 
6987 #endif /* CONFIG_PREEMPTION */
6988 
6989 /*
6990  * This is the entry point to schedule() from kernel preemption
6991  * off of irq context.
6992  * Note, that this is called and return with irqs disabled. This will
6993  * protect us against recursive calling from irq.
6994  */
preempt_schedule_irq(void)6995 asmlinkage __visible void __sched preempt_schedule_irq(void)
6996 {
6997 	enum ctx_state prev_state;
6998 
6999 	/* Catch callers which need to be fixed */
7000 	BUG_ON(preempt_count() || !irqs_disabled());
7001 
7002 	prev_state = exception_enter();
7003 
7004 	do {
7005 		preempt_disable();
7006 		local_irq_enable();
7007 		__schedule(SM_PREEMPT);
7008 		local_irq_disable();
7009 		sched_preempt_enable_no_resched();
7010 	} while (need_resched());
7011 
7012 	exception_exit(prev_state);
7013 }
7014 
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)7015 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7016 			  void *key)
7017 {
7018 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7019 	return try_to_wake_up(curr->private, mode, wake_flags);
7020 }
7021 EXPORT_SYMBOL(default_wake_function);
7022 
__setscheduler_prio(struct task_struct * p,int prio)7023 static void __setscheduler_prio(struct task_struct *p, int prio)
7024 {
7025 	if (dl_prio(prio))
7026 		p->sched_class = &dl_sched_class;
7027 	else if (rt_prio(prio))
7028 		p->sched_class = &rt_sched_class;
7029 	else
7030 		p->sched_class = &fair_sched_class;
7031 
7032 	p->prio = prio;
7033 }
7034 
7035 #ifdef CONFIG_RT_MUTEXES
7036 
__rt_effective_prio(struct task_struct * pi_task,int prio)7037 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7038 {
7039 	if (pi_task)
7040 		prio = min(prio, pi_task->prio);
7041 
7042 	return prio;
7043 }
7044 
rt_effective_prio(struct task_struct * p,int prio)7045 static inline int rt_effective_prio(struct task_struct *p, int prio)
7046 {
7047 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
7048 
7049 	return __rt_effective_prio(pi_task, prio);
7050 }
7051 
7052 /*
7053  * rt_mutex_setprio - set the current priority of a task
7054  * @p: task to boost
7055  * @pi_task: donor task
7056  *
7057  * This function changes the 'effective' priority of a task. It does
7058  * not touch ->normal_prio like __setscheduler().
7059  *
7060  * Used by the rt_mutex code to implement priority inheritance
7061  * logic. Call site only calls if the priority of the task changed.
7062  */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)7063 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7064 {
7065 	int prio, oldprio, queued, running, queue_flag =
7066 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7067 	const struct sched_class *prev_class;
7068 	struct rq_flags rf;
7069 	struct rq *rq;
7070 
7071 	/* XXX used to be waiter->prio, not waiter->task->prio */
7072 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7073 
7074 	/*
7075 	 * If nothing changed; bail early.
7076 	 */
7077 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7078 		return;
7079 
7080 	rq = __task_rq_lock(p, &rf);
7081 	update_rq_clock(rq);
7082 	/*
7083 	 * Set under pi_lock && rq->lock, such that the value can be used under
7084 	 * either lock.
7085 	 *
7086 	 * Note that there is loads of tricky to make this pointer cache work
7087 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7088 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7089 	 * task is allowed to run again (and can exit). This ensures the pointer
7090 	 * points to a blocked task -- which guarantees the task is present.
7091 	 */
7092 	p->pi_top_task = pi_task;
7093 
7094 	/*
7095 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7096 	 */
7097 	if (prio == p->prio && !dl_prio(prio))
7098 		goto out_unlock;
7099 
7100 	/*
7101 	 * Idle task boosting is a nono in general. There is one
7102 	 * exception, when PREEMPT_RT and NOHZ is active:
7103 	 *
7104 	 * The idle task calls get_next_timer_interrupt() and holds
7105 	 * the timer wheel base->lock on the CPU and another CPU wants
7106 	 * to access the timer (probably to cancel it). We can safely
7107 	 * ignore the boosting request, as the idle CPU runs this code
7108 	 * with interrupts disabled and will complete the lock
7109 	 * protected section without being interrupted. So there is no
7110 	 * real need to boost.
7111 	 */
7112 	if (unlikely(p == rq->idle)) {
7113 		WARN_ON(p != rq->curr);
7114 		WARN_ON(p->pi_blocked_on);
7115 		goto out_unlock;
7116 	}
7117 
7118 	trace_sched_pi_setprio(p, pi_task);
7119 	oldprio = p->prio;
7120 
7121 	if (oldprio == prio)
7122 		queue_flag &= ~DEQUEUE_MOVE;
7123 
7124 	prev_class = p->sched_class;
7125 	queued = task_on_rq_queued(p);
7126 	running = task_current(rq, p);
7127 	if (queued)
7128 		dequeue_task(rq, p, queue_flag);
7129 	if (running)
7130 		put_prev_task(rq, p);
7131 
7132 	/*
7133 	 * Boosting condition are:
7134 	 * 1. -rt task is running and holds mutex A
7135 	 *      --> -dl task blocks on mutex A
7136 	 *
7137 	 * 2. -dl task is running and holds mutex A
7138 	 *      --> -dl task blocks on mutex A and could preempt the
7139 	 *          running task
7140 	 */
7141 	if (dl_prio(prio)) {
7142 		if (!dl_prio(p->normal_prio) ||
7143 		    (pi_task && dl_prio(pi_task->prio) &&
7144 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7145 			p->dl.pi_se = pi_task->dl.pi_se;
7146 			queue_flag |= ENQUEUE_REPLENISH;
7147 		} else {
7148 			p->dl.pi_se = &p->dl;
7149 		}
7150 	} else if (rt_prio(prio)) {
7151 		if (dl_prio(oldprio))
7152 			p->dl.pi_se = &p->dl;
7153 		if (oldprio < prio)
7154 			queue_flag |= ENQUEUE_HEAD;
7155 	} else {
7156 		if (dl_prio(oldprio))
7157 			p->dl.pi_se = &p->dl;
7158 		if (rt_prio(oldprio))
7159 			p->rt.timeout = 0;
7160 	}
7161 
7162 	__setscheduler_prio(p, prio);
7163 
7164 	if (queued)
7165 		enqueue_task(rq, p, queue_flag);
7166 	if (running)
7167 		set_next_task(rq, p);
7168 
7169 	check_class_changed(rq, p, prev_class, oldprio);
7170 out_unlock:
7171 	/* Avoid rq from going away on us: */
7172 	preempt_disable();
7173 
7174 	rq_unpin_lock(rq, &rf);
7175 	__balance_callbacks(rq);
7176 	raw_spin_rq_unlock(rq);
7177 
7178 	preempt_enable();
7179 }
7180 #else
rt_effective_prio(struct task_struct * p,int prio)7181 static inline int rt_effective_prio(struct task_struct *p, int prio)
7182 {
7183 	return prio;
7184 }
7185 #endif
7186 
set_user_nice(struct task_struct * p,long nice)7187 void set_user_nice(struct task_struct *p, long nice)
7188 {
7189 	bool queued, running;
7190 	int old_prio;
7191 	struct rq_flags rf;
7192 	struct rq *rq;
7193 
7194 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7195 		return;
7196 	/*
7197 	 * We have to be careful, if called from sys_setpriority(),
7198 	 * the task might be in the middle of scheduling on another CPU.
7199 	 */
7200 	rq = task_rq_lock(p, &rf);
7201 	update_rq_clock(rq);
7202 
7203 	/*
7204 	 * The RT priorities are set via sched_setscheduler(), but we still
7205 	 * allow the 'normal' nice value to be set - but as expected
7206 	 * it won't have any effect on scheduling until the task is
7207 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7208 	 */
7209 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7210 		p->static_prio = NICE_TO_PRIO(nice);
7211 		goto out_unlock;
7212 	}
7213 	queued = task_on_rq_queued(p);
7214 	running = task_current(rq, p);
7215 	if (queued)
7216 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7217 	if (running)
7218 		put_prev_task(rq, p);
7219 
7220 	p->static_prio = NICE_TO_PRIO(nice);
7221 	set_load_weight(p, true);
7222 	old_prio = p->prio;
7223 	p->prio = effective_prio(p);
7224 
7225 	if (queued)
7226 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7227 	if (running)
7228 		set_next_task(rq, p);
7229 
7230 	/*
7231 	 * If the task increased its priority or is running and
7232 	 * lowered its priority, then reschedule its CPU:
7233 	 */
7234 	p->sched_class->prio_changed(rq, p, old_prio);
7235 
7236 out_unlock:
7237 	task_rq_unlock(rq, p, &rf);
7238 }
7239 EXPORT_SYMBOL(set_user_nice);
7240 
7241 /*
7242  * is_nice_reduction - check if nice value is an actual reduction
7243  *
7244  * Similar to can_nice() but does not perform a capability check.
7245  *
7246  * @p: task
7247  * @nice: nice value
7248  */
is_nice_reduction(const struct task_struct * p,const int nice)7249 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7250 {
7251 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7252 	int nice_rlim = nice_to_rlimit(nice);
7253 
7254 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7255 }
7256 
7257 /*
7258  * can_nice - check if a task can reduce its nice value
7259  * @p: task
7260  * @nice: nice value
7261  */
can_nice(const struct task_struct * p,const int nice)7262 int can_nice(const struct task_struct *p, const int nice)
7263 {
7264 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7265 }
7266 
7267 #ifdef __ARCH_WANT_SYS_NICE
7268 
7269 /*
7270  * sys_nice - change the priority of the current process.
7271  * @increment: priority increment
7272  *
7273  * sys_setpriority is a more generic, but much slower function that
7274  * does similar things.
7275  */
SYSCALL_DEFINE1(nice,int,increment)7276 SYSCALL_DEFINE1(nice, int, increment)
7277 {
7278 	long nice, retval;
7279 
7280 	/*
7281 	 * Setpriority might change our priority at the same moment.
7282 	 * We don't have to worry. Conceptually one call occurs first
7283 	 * and we have a single winner.
7284 	 */
7285 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7286 	nice = task_nice(current) + increment;
7287 
7288 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7289 	if (increment < 0 && !can_nice(current, nice))
7290 		return -EPERM;
7291 
7292 	retval = security_task_setnice(current, nice);
7293 	if (retval)
7294 		return retval;
7295 
7296 	set_user_nice(current, nice);
7297 	return 0;
7298 }
7299 
7300 #endif
7301 
7302 /**
7303  * task_prio - return the priority value of a given task.
7304  * @p: the task in question.
7305  *
7306  * Return: The priority value as seen by users in /proc.
7307  *
7308  * sched policy         return value   kernel prio    user prio/nice
7309  *
7310  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7311  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7312  * deadline                     -101             -1           0
7313  */
task_prio(const struct task_struct * p)7314 int task_prio(const struct task_struct *p)
7315 {
7316 	return p->prio - MAX_RT_PRIO;
7317 }
7318 
7319 /**
7320  * idle_cpu - is a given CPU idle currently?
7321  * @cpu: the processor in question.
7322  *
7323  * Return: 1 if the CPU is currently idle. 0 otherwise.
7324  */
idle_cpu(int cpu)7325 int idle_cpu(int cpu)
7326 {
7327 	struct rq *rq = cpu_rq(cpu);
7328 
7329 	if (rq->curr != rq->idle)
7330 		return 0;
7331 
7332 	if (rq->nr_running)
7333 		return 0;
7334 
7335 #ifdef CONFIG_SMP
7336 	if (rq->ttwu_pending)
7337 		return 0;
7338 #endif
7339 
7340 	return 1;
7341 }
7342 
7343 /**
7344  * available_idle_cpu - is a given CPU idle for enqueuing work.
7345  * @cpu: the CPU in question.
7346  *
7347  * Return: 1 if the CPU is currently idle. 0 otherwise.
7348  */
available_idle_cpu(int cpu)7349 int available_idle_cpu(int cpu)
7350 {
7351 	if (!idle_cpu(cpu))
7352 		return 0;
7353 
7354 	if (vcpu_is_preempted(cpu))
7355 		return 0;
7356 
7357 	return 1;
7358 }
7359 
7360 /**
7361  * idle_task - return the idle task for a given CPU.
7362  * @cpu: the processor in question.
7363  *
7364  * Return: The idle task for the CPU @cpu.
7365  */
idle_task(int cpu)7366 struct task_struct *idle_task(int cpu)
7367 {
7368 	return cpu_rq(cpu)->idle;
7369 }
7370 
7371 #ifdef CONFIG_SCHED_CORE
sched_core_idle_cpu(int cpu)7372 int sched_core_idle_cpu(int cpu)
7373 {
7374 	struct rq *rq = cpu_rq(cpu);
7375 
7376 	if (sched_core_enabled(rq) && rq->curr == rq->idle)
7377 		return 1;
7378 
7379 	return idle_cpu(cpu);
7380 }
7381 
7382 #endif
7383 
7384 #ifdef CONFIG_SMP
7385 /*
7386  * This function computes an effective utilization for the given CPU, to be
7387  * used for frequency selection given the linear relation: f = u * f_max.
7388  *
7389  * The scheduler tracks the following metrics:
7390  *
7391  *   cpu_util_{cfs,rt,dl,irq}()
7392  *   cpu_bw_dl()
7393  *
7394  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7395  * synchronized windows and are thus directly comparable.
7396  *
7397  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7398  * which excludes things like IRQ and steal-time. These latter are then accrued
7399  * in the irq utilization.
7400  *
7401  * The DL bandwidth number otoh is not a measured metric but a value computed
7402  * based on the task model parameters and gives the minimal utilization
7403  * required to meet deadlines.
7404  */
effective_cpu_util(int cpu,unsigned long util_cfs,enum cpu_util_type type,struct task_struct * p)7405 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7406 				 enum cpu_util_type type,
7407 				 struct task_struct *p)
7408 {
7409 	unsigned long dl_util, util, irq, max;
7410 	struct rq *rq = cpu_rq(cpu);
7411 
7412 	max = arch_scale_cpu_capacity(cpu);
7413 
7414 	if (!uclamp_is_used() &&
7415 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7416 		return max;
7417 	}
7418 
7419 	/*
7420 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7421 	 * because of inaccuracies in how we track these -- see
7422 	 * update_irq_load_avg().
7423 	 */
7424 	irq = cpu_util_irq(rq);
7425 	if (unlikely(irq >= max))
7426 		return max;
7427 
7428 	/*
7429 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7430 	 * CFS tasks and we use the same metric to track the effective
7431 	 * utilization (PELT windows are synchronized) we can directly add them
7432 	 * to obtain the CPU's actual utilization.
7433 	 *
7434 	 * CFS and RT utilization can be boosted or capped, depending on
7435 	 * utilization clamp constraints requested by currently RUNNABLE
7436 	 * tasks.
7437 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7438 	 * frequency will be gracefully reduced with the utilization decay.
7439 	 */
7440 	util = util_cfs + cpu_util_rt(rq);
7441 	if (type == FREQUENCY_UTIL)
7442 		util = uclamp_rq_util_with(rq, util, p);
7443 
7444 	dl_util = cpu_util_dl(rq);
7445 
7446 	/*
7447 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7448 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7449 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7450 	 * that we select f_max when there is no idle time.
7451 	 *
7452 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7453 	 * saturation when we should -- something for later.
7454 	 */
7455 	if (util + dl_util >= max)
7456 		return max;
7457 
7458 	/*
7459 	 * OTOH, for energy computation we need the estimated running time, so
7460 	 * include util_dl and ignore dl_bw.
7461 	 */
7462 	if (type == ENERGY_UTIL)
7463 		util += dl_util;
7464 
7465 	/*
7466 	 * There is still idle time; further improve the number by using the
7467 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7468 	 * need to scale the task numbers:
7469 	 *
7470 	 *              max - irq
7471 	 *   U' = irq + --------- * U
7472 	 *                 max
7473 	 */
7474 	util = scale_irq_capacity(util, irq, max);
7475 	util += irq;
7476 
7477 	/*
7478 	 * Bandwidth required by DEADLINE must always be granted while, for
7479 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7480 	 * to gracefully reduce the frequency when no tasks show up for longer
7481 	 * periods of time.
7482 	 *
7483 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7484 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7485 	 * an interface. So, we only do the latter for now.
7486 	 */
7487 	if (type == FREQUENCY_UTIL)
7488 		util += cpu_bw_dl(rq);
7489 
7490 	return min(max, util);
7491 }
7492 
sched_cpu_util(int cpu)7493 unsigned long sched_cpu_util(int cpu)
7494 {
7495 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7496 }
7497 #endif /* CONFIG_SMP */
7498 
7499 /**
7500  * find_process_by_pid - find a process with a matching PID value.
7501  * @pid: the pid in question.
7502  *
7503  * The task of @pid, if found. %NULL otherwise.
7504  */
find_process_by_pid(pid_t pid)7505 static struct task_struct *find_process_by_pid(pid_t pid)
7506 {
7507 	return pid ? find_task_by_vpid(pid) : current;
7508 }
7509 
7510 /*
7511  * sched_setparam() passes in -1 for its policy, to let the functions
7512  * it calls know not to change it.
7513  */
7514 #define SETPARAM_POLICY	-1
7515 
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)7516 static void __setscheduler_params(struct task_struct *p,
7517 		const struct sched_attr *attr)
7518 {
7519 	int policy = attr->sched_policy;
7520 
7521 	if (policy == SETPARAM_POLICY)
7522 		policy = p->policy;
7523 
7524 	p->policy = policy;
7525 
7526 	if (dl_policy(policy))
7527 		__setparam_dl(p, attr);
7528 	else if (fair_policy(policy))
7529 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7530 
7531 	/*
7532 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7533 	 * !rt_policy. Always setting this ensures that things like
7534 	 * getparam()/getattr() don't report silly values for !rt tasks.
7535 	 */
7536 	p->rt_priority = attr->sched_priority;
7537 	p->normal_prio = normal_prio(p);
7538 	set_load_weight(p, true);
7539 }
7540 
7541 /*
7542  * Check the target process has a UID that matches the current process's:
7543  */
check_same_owner(struct task_struct * p)7544 static bool check_same_owner(struct task_struct *p)
7545 {
7546 	const struct cred *cred = current_cred(), *pcred;
7547 	bool match;
7548 
7549 	rcu_read_lock();
7550 	pcred = __task_cred(p);
7551 	match = (uid_eq(cred->euid, pcred->euid) ||
7552 		 uid_eq(cred->euid, pcred->uid));
7553 	rcu_read_unlock();
7554 	return match;
7555 }
7556 
7557 /*
7558  * Allow unprivileged RT tasks to decrease priority.
7559  * Only issue a capable test if needed and only once to avoid an audit
7560  * event on permitted non-privileged operations:
7561  */
user_check_sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,int policy,int reset_on_fork)7562 static int user_check_sched_setscheduler(struct task_struct *p,
7563 					 const struct sched_attr *attr,
7564 					 int policy, int reset_on_fork)
7565 {
7566 	if (fair_policy(policy)) {
7567 		if (attr->sched_nice < task_nice(p) &&
7568 		    !is_nice_reduction(p, attr->sched_nice))
7569 			goto req_priv;
7570 	}
7571 
7572 	if (rt_policy(policy)) {
7573 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7574 
7575 		/* Can't set/change the rt policy: */
7576 		if (policy != p->policy && !rlim_rtprio)
7577 			goto req_priv;
7578 
7579 		/* Can't increase priority: */
7580 		if (attr->sched_priority > p->rt_priority &&
7581 		    attr->sched_priority > rlim_rtprio)
7582 			goto req_priv;
7583 	}
7584 
7585 	/*
7586 	 * Can't set/change SCHED_DEADLINE policy at all for now
7587 	 * (safest behavior); in the future we would like to allow
7588 	 * unprivileged DL tasks to increase their relative deadline
7589 	 * or reduce their runtime (both ways reducing utilization)
7590 	 */
7591 	if (dl_policy(policy))
7592 		goto req_priv;
7593 
7594 	/*
7595 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7596 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7597 	 */
7598 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7599 		if (!is_nice_reduction(p, task_nice(p)))
7600 			goto req_priv;
7601 	}
7602 
7603 	/* Can't change other user's priorities: */
7604 	if (!check_same_owner(p))
7605 		goto req_priv;
7606 
7607 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7608 	if (p->sched_reset_on_fork && !reset_on_fork)
7609 		goto req_priv;
7610 
7611 	return 0;
7612 
7613 req_priv:
7614 	if (!capable(CAP_SYS_NICE))
7615 		return -EPERM;
7616 
7617 	return 0;
7618 }
7619 
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)7620 static int __sched_setscheduler(struct task_struct *p,
7621 				const struct sched_attr *attr,
7622 				bool user, bool pi)
7623 {
7624 	int oldpolicy = -1, policy = attr->sched_policy;
7625 	int retval, oldprio, newprio, queued, running;
7626 	const struct sched_class *prev_class;
7627 	struct balance_callback *head;
7628 	struct rq_flags rf;
7629 	int reset_on_fork;
7630 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7631 	struct rq *rq;
7632 	bool cpuset_locked = false;
7633 
7634 	/* The pi code expects interrupts enabled */
7635 	BUG_ON(pi && in_interrupt());
7636 recheck:
7637 	/* Double check policy once rq lock held: */
7638 	if (policy < 0) {
7639 		reset_on_fork = p->sched_reset_on_fork;
7640 		policy = oldpolicy = p->policy;
7641 	} else {
7642 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7643 
7644 		if (!valid_policy(policy))
7645 			return -EINVAL;
7646 	}
7647 
7648 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7649 		return -EINVAL;
7650 
7651 	/*
7652 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7653 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7654 	 * SCHED_BATCH and SCHED_IDLE is 0.
7655 	 */
7656 	if (attr->sched_priority > MAX_RT_PRIO-1)
7657 		return -EINVAL;
7658 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7659 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7660 		return -EINVAL;
7661 
7662 	if (user) {
7663 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7664 		if (retval)
7665 			return retval;
7666 
7667 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7668 			return -EINVAL;
7669 
7670 		retval = security_task_setscheduler(p);
7671 		if (retval)
7672 			return retval;
7673 	}
7674 
7675 	/* Update task specific "requested" clamps */
7676 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7677 		retval = uclamp_validate(p, attr);
7678 		if (retval)
7679 			return retval;
7680 	}
7681 
7682 	/*
7683 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7684 	 * information.
7685 	 */
7686 	if (dl_policy(policy) || dl_policy(p->policy)) {
7687 		cpuset_locked = true;
7688 		cpuset_lock();
7689 	}
7690 
7691 	/*
7692 	 * Make sure no PI-waiters arrive (or leave) while we are
7693 	 * changing the priority of the task:
7694 	 *
7695 	 * To be able to change p->policy safely, the appropriate
7696 	 * runqueue lock must be held.
7697 	 */
7698 	rq = task_rq_lock(p, &rf);
7699 	update_rq_clock(rq);
7700 
7701 	/*
7702 	 * Changing the policy of the stop threads its a very bad idea:
7703 	 */
7704 	if (p == rq->stop) {
7705 		retval = -EINVAL;
7706 		goto unlock;
7707 	}
7708 
7709 	/*
7710 	 * If not changing anything there's no need to proceed further,
7711 	 * but store a possible modification of reset_on_fork.
7712 	 */
7713 	if (unlikely(policy == p->policy)) {
7714 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7715 			goto change;
7716 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7717 			goto change;
7718 		if (dl_policy(policy) && dl_param_changed(p, attr))
7719 			goto change;
7720 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7721 			goto change;
7722 
7723 		p->sched_reset_on_fork = reset_on_fork;
7724 		retval = 0;
7725 		goto unlock;
7726 	}
7727 change:
7728 
7729 	if (user) {
7730 #ifdef CONFIG_RT_GROUP_SCHED
7731 		/*
7732 		 * Do not allow realtime tasks into groups that have no runtime
7733 		 * assigned.
7734 		 */
7735 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7736 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7737 				!task_group_is_autogroup(task_group(p))) {
7738 			retval = -EPERM;
7739 			goto unlock;
7740 		}
7741 #endif
7742 #ifdef CONFIG_SMP
7743 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7744 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7745 			cpumask_t *span = rq->rd->span;
7746 
7747 			/*
7748 			 * Don't allow tasks with an affinity mask smaller than
7749 			 * the entire root_domain to become SCHED_DEADLINE. We
7750 			 * will also fail if there's no bandwidth available.
7751 			 */
7752 			if (!cpumask_subset(span, p->cpus_ptr) ||
7753 			    rq->rd->dl_bw.bw == 0) {
7754 				retval = -EPERM;
7755 				goto unlock;
7756 			}
7757 		}
7758 #endif
7759 	}
7760 
7761 	/* Re-check policy now with rq lock held: */
7762 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7763 		policy = oldpolicy = -1;
7764 		task_rq_unlock(rq, p, &rf);
7765 		if (cpuset_locked)
7766 			cpuset_unlock();
7767 		goto recheck;
7768 	}
7769 
7770 	/*
7771 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7772 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7773 	 * is available.
7774 	 */
7775 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7776 		retval = -EBUSY;
7777 		goto unlock;
7778 	}
7779 
7780 	p->sched_reset_on_fork = reset_on_fork;
7781 	oldprio = p->prio;
7782 
7783 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7784 	if (pi) {
7785 		/*
7786 		 * Take priority boosted tasks into account. If the new
7787 		 * effective priority is unchanged, we just store the new
7788 		 * normal parameters and do not touch the scheduler class and
7789 		 * the runqueue. This will be done when the task deboost
7790 		 * itself.
7791 		 */
7792 		newprio = rt_effective_prio(p, newprio);
7793 		if (newprio == oldprio)
7794 			queue_flags &= ~DEQUEUE_MOVE;
7795 	}
7796 
7797 	queued = task_on_rq_queued(p);
7798 	running = task_current(rq, p);
7799 	if (queued)
7800 		dequeue_task(rq, p, queue_flags);
7801 	if (running)
7802 		put_prev_task(rq, p);
7803 
7804 	prev_class = p->sched_class;
7805 
7806 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7807 		__setscheduler_params(p, attr);
7808 		__setscheduler_prio(p, newprio);
7809 	}
7810 	__setscheduler_uclamp(p, attr);
7811 
7812 	if (queued) {
7813 		/*
7814 		 * We enqueue to tail when the priority of a task is
7815 		 * increased (user space view).
7816 		 */
7817 		if (oldprio < p->prio)
7818 			queue_flags |= ENQUEUE_HEAD;
7819 
7820 		enqueue_task(rq, p, queue_flags);
7821 	}
7822 	if (running)
7823 		set_next_task(rq, p);
7824 
7825 	check_class_changed(rq, p, prev_class, oldprio);
7826 
7827 	/* Avoid rq from going away on us: */
7828 	preempt_disable();
7829 	head = splice_balance_callbacks(rq);
7830 	task_rq_unlock(rq, p, &rf);
7831 
7832 	if (pi) {
7833 		if (cpuset_locked)
7834 			cpuset_unlock();
7835 		rt_mutex_adjust_pi(p);
7836 	}
7837 
7838 	/* Run balance callbacks after we've adjusted the PI chain: */
7839 	balance_callbacks(rq, head);
7840 	preempt_enable();
7841 
7842 	return 0;
7843 
7844 unlock:
7845 	task_rq_unlock(rq, p, &rf);
7846 	if (cpuset_locked)
7847 		cpuset_unlock();
7848 	return retval;
7849 }
7850 
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)7851 static int _sched_setscheduler(struct task_struct *p, int policy,
7852 			       const struct sched_param *param, bool check)
7853 {
7854 	struct sched_attr attr = {
7855 		.sched_policy   = policy,
7856 		.sched_priority = param->sched_priority,
7857 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7858 	};
7859 
7860 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7861 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7862 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7863 		policy &= ~SCHED_RESET_ON_FORK;
7864 		attr.sched_policy = policy;
7865 	}
7866 
7867 	return __sched_setscheduler(p, &attr, check, true);
7868 }
7869 /**
7870  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7871  * @p: the task in question.
7872  * @policy: new policy.
7873  * @param: structure containing the new RT priority.
7874  *
7875  * Use sched_set_fifo(), read its comment.
7876  *
7877  * Return: 0 on success. An error code otherwise.
7878  *
7879  * NOTE that the task may be already dead.
7880  */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)7881 int sched_setscheduler(struct task_struct *p, int policy,
7882 		       const struct sched_param *param)
7883 {
7884 	return _sched_setscheduler(p, policy, param, true);
7885 }
7886 
sched_setattr(struct task_struct * p,const struct sched_attr * attr)7887 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7888 {
7889 	return __sched_setscheduler(p, attr, true, true);
7890 }
7891 
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)7892 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7893 {
7894 	return __sched_setscheduler(p, attr, false, true);
7895 }
7896 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7897 
7898 /**
7899  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7900  * @p: the task in question.
7901  * @policy: new policy.
7902  * @param: structure containing the new RT priority.
7903  *
7904  * Just like sched_setscheduler, only don't bother checking if the
7905  * current context has permission.  For example, this is needed in
7906  * stop_machine(): we create temporary high priority worker threads,
7907  * but our caller might not have that capability.
7908  *
7909  * Return: 0 on success. An error code otherwise.
7910  */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)7911 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7912 			       const struct sched_param *param)
7913 {
7914 	return _sched_setscheduler(p, policy, param, false);
7915 }
7916 
7917 /*
7918  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7919  * incapable of resource management, which is the one thing an OS really should
7920  * be doing.
7921  *
7922  * This is of course the reason it is limited to privileged users only.
7923  *
7924  * Worse still; it is fundamentally impossible to compose static priority
7925  * workloads. You cannot take two correctly working static prio workloads
7926  * and smash them together and still expect them to work.
7927  *
7928  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7929  *
7930  *   MAX_RT_PRIO / 2
7931  *
7932  * The administrator _MUST_ configure the system, the kernel simply doesn't
7933  * know enough information to make a sensible choice.
7934  */
sched_set_fifo(struct task_struct * p)7935 void sched_set_fifo(struct task_struct *p)
7936 {
7937 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7938 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7939 }
7940 EXPORT_SYMBOL_GPL(sched_set_fifo);
7941 
7942 /*
7943  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7944  */
sched_set_fifo_low(struct task_struct * p)7945 void sched_set_fifo_low(struct task_struct *p)
7946 {
7947 	struct sched_param sp = { .sched_priority = 1 };
7948 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7949 }
7950 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7951 
sched_set_normal(struct task_struct * p,int nice)7952 void sched_set_normal(struct task_struct *p, int nice)
7953 {
7954 	struct sched_attr attr = {
7955 		.sched_policy = SCHED_NORMAL,
7956 		.sched_nice = nice,
7957 	};
7958 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7959 }
7960 EXPORT_SYMBOL_GPL(sched_set_normal);
7961 
7962 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)7963 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7964 {
7965 	struct sched_param lparam;
7966 	struct task_struct *p;
7967 	int retval;
7968 
7969 	if (!param || pid < 0)
7970 		return -EINVAL;
7971 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7972 		return -EFAULT;
7973 
7974 	rcu_read_lock();
7975 	retval = -ESRCH;
7976 	p = find_process_by_pid(pid);
7977 	if (likely(p))
7978 		get_task_struct(p);
7979 	rcu_read_unlock();
7980 
7981 	if (likely(p)) {
7982 		retval = sched_setscheduler(p, policy, &lparam);
7983 		put_task_struct(p);
7984 	}
7985 
7986 	return retval;
7987 }
7988 
7989 /*
7990  * Mimics kernel/events/core.c perf_copy_attr().
7991  */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)7992 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7993 {
7994 	u32 size;
7995 	int ret;
7996 
7997 	/* Zero the full structure, so that a short copy will be nice: */
7998 	memset(attr, 0, sizeof(*attr));
7999 
8000 	ret = get_user(size, &uattr->size);
8001 	if (ret)
8002 		return ret;
8003 
8004 	/* ABI compatibility quirk: */
8005 	if (!size)
8006 		size = SCHED_ATTR_SIZE_VER0;
8007 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8008 		goto err_size;
8009 
8010 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8011 	if (ret) {
8012 		if (ret == -E2BIG)
8013 			goto err_size;
8014 		return ret;
8015 	}
8016 
8017 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8018 	    size < SCHED_ATTR_SIZE_VER1)
8019 		return -EINVAL;
8020 
8021 	/*
8022 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
8023 	 * to be strict and return an error on out-of-bounds values?
8024 	 */
8025 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8026 
8027 	return 0;
8028 
8029 err_size:
8030 	put_user(sizeof(*attr), &uattr->size);
8031 	return -E2BIG;
8032 }
8033 
get_params(struct task_struct * p,struct sched_attr * attr)8034 static void get_params(struct task_struct *p, struct sched_attr *attr)
8035 {
8036 	if (task_has_dl_policy(p))
8037 		__getparam_dl(p, attr);
8038 	else if (task_has_rt_policy(p))
8039 		attr->sched_priority = p->rt_priority;
8040 	else
8041 		attr->sched_nice = task_nice(p);
8042 }
8043 
8044 /**
8045  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8046  * @pid: the pid in question.
8047  * @policy: new policy.
8048  * @param: structure containing the new RT priority.
8049  *
8050  * Return: 0 on success. An error code otherwise.
8051  */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)8052 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8053 {
8054 	if (policy < 0)
8055 		return -EINVAL;
8056 
8057 	return do_sched_setscheduler(pid, policy, param);
8058 }
8059 
8060 /**
8061  * sys_sched_setparam - set/change the RT priority of a thread
8062  * @pid: the pid in question.
8063  * @param: structure containing the new RT priority.
8064  *
8065  * Return: 0 on success. An error code otherwise.
8066  */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)8067 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8068 {
8069 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8070 }
8071 
8072 /**
8073  * sys_sched_setattr - same as above, but with extended sched_attr
8074  * @pid: the pid in question.
8075  * @uattr: structure containing the extended parameters.
8076  * @flags: for future extension.
8077  */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)8078 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8079 			       unsigned int, flags)
8080 {
8081 	struct sched_attr attr;
8082 	struct task_struct *p;
8083 	int retval;
8084 
8085 	if (!uattr || pid < 0 || flags)
8086 		return -EINVAL;
8087 
8088 	retval = sched_copy_attr(uattr, &attr);
8089 	if (retval)
8090 		return retval;
8091 
8092 	if ((int)attr.sched_policy < 0)
8093 		return -EINVAL;
8094 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8095 		attr.sched_policy = SETPARAM_POLICY;
8096 
8097 	rcu_read_lock();
8098 	retval = -ESRCH;
8099 	p = find_process_by_pid(pid);
8100 	if (likely(p))
8101 		get_task_struct(p);
8102 	rcu_read_unlock();
8103 
8104 	if (likely(p)) {
8105 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8106 			get_params(p, &attr);
8107 		retval = sched_setattr(p, &attr);
8108 		put_task_struct(p);
8109 	}
8110 
8111 	return retval;
8112 }
8113 
8114 /**
8115  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8116  * @pid: the pid in question.
8117  *
8118  * Return: On success, the policy of the thread. Otherwise, a negative error
8119  * code.
8120  */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)8121 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8122 {
8123 	struct task_struct *p;
8124 	int retval;
8125 
8126 	if (pid < 0)
8127 		return -EINVAL;
8128 
8129 	retval = -ESRCH;
8130 	rcu_read_lock();
8131 	p = find_process_by_pid(pid);
8132 	if (p) {
8133 		retval = security_task_getscheduler(p);
8134 		if (!retval)
8135 			retval = p->policy
8136 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8137 	}
8138 	rcu_read_unlock();
8139 	return retval;
8140 }
8141 
8142 /**
8143  * sys_sched_getparam - get the RT priority of a thread
8144  * @pid: the pid in question.
8145  * @param: structure containing the RT priority.
8146  *
8147  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8148  * code.
8149  */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)8150 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8151 {
8152 	struct sched_param lp = { .sched_priority = 0 };
8153 	struct task_struct *p;
8154 	int retval;
8155 
8156 	if (!param || pid < 0)
8157 		return -EINVAL;
8158 
8159 	rcu_read_lock();
8160 	p = find_process_by_pid(pid);
8161 	retval = -ESRCH;
8162 	if (!p)
8163 		goto out_unlock;
8164 
8165 	retval = security_task_getscheduler(p);
8166 	if (retval)
8167 		goto out_unlock;
8168 
8169 	if (task_has_rt_policy(p))
8170 		lp.sched_priority = p->rt_priority;
8171 	rcu_read_unlock();
8172 
8173 	/*
8174 	 * This one might sleep, we cannot do it with a spinlock held ...
8175 	 */
8176 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8177 
8178 	return retval;
8179 
8180 out_unlock:
8181 	rcu_read_unlock();
8182 	return retval;
8183 }
8184 
8185 /*
8186  * Copy the kernel size attribute structure (which might be larger
8187  * than what user-space knows about) to user-space.
8188  *
8189  * Note that all cases are valid: user-space buffer can be larger or
8190  * smaller than the kernel-space buffer. The usual case is that both
8191  * have the same size.
8192  */
8193 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)8194 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8195 			struct sched_attr *kattr,
8196 			unsigned int usize)
8197 {
8198 	unsigned int ksize = sizeof(*kattr);
8199 
8200 	if (!access_ok(uattr, usize))
8201 		return -EFAULT;
8202 
8203 	/*
8204 	 * sched_getattr() ABI forwards and backwards compatibility:
8205 	 *
8206 	 * If usize == ksize then we just copy everything to user-space and all is good.
8207 	 *
8208 	 * If usize < ksize then we only copy as much as user-space has space for,
8209 	 * this keeps ABI compatibility as well. We skip the rest.
8210 	 *
8211 	 * If usize > ksize then user-space is using a newer version of the ABI,
8212 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8213 	 * detect the kernel's knowledge of attributes from the attr->size value
8214 	 * which is set to ksize in this case.
8215 	 */
8216 	kattr->size = min(usize, ksize);
8217 
8218 	if (copy_to_user(uattr, kattr, kattr->size))
8219 		return -EFAULT;
8220 
8221 	return 0;
8222 }
8223 
8224 /**
8225  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8226  * @pid: the pid in question.
8227  * @uattr: structure containing the extended parameters.
8228  * @usize: sizeof(attr) for fwd/bwd comp.
8229  * @flags: for future extension.
8230  */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)8231 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8232 		unsigned int, usize, unsigned int, flags)
8233 {
8234 	struct sched_attr kattr = { };
8235 	struct task_struct *p;
8236 	int retval;
8237 
8238 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8239 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8240 		return -EINVAL;
8241 
8242 	rcu_read_lock();
8243 	p = find_process_by_pid(pid);
8244 	retval = -ESRCH;
8245 	if (!p)
8246 		goto out_unlock;
8247 
8248 	retval = security_task_getscheduler(p);
8249 	if (retval)
8250 		goto out_unlock;
8251 
8252 	kattr.sched_policy = p->policy;
8253 	if (p->sched_reset_on_fork)
8254 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8255 	get_params(p, &kattr);
8256 	kattr.sched_flags &= SCHED_FLAG_ALL;
8257 
8258 #ifdef CONFIG_UCLAMP_TASK
8259 	/*
8260 	 * This could race with another potential updater, but this is fine
8261 	 * because it'll correctly read the old or the new value. We don't need
8262 	 * to guarantee who wins the race as long as it doesn't return garbage.
8263 	 */
8264 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8265 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8266 #endif
8267 
8268 	rcu_read_unlock();
8269 
8270 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8271 
8272 out_unlock:
8273 	rcu_read_unlock();
8274 	return retval;
8275 }
8276 
8277 #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)8278 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8279 {
8280 	int ret = 0;
8281 
8282 	/*
8283 	 * If the task isn't a deadline task or admission control is
8284 	 * disabled then we don't care about affinity changes.
8285 	 */
8286 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8287 		return 0;
8288 
8289 	/*
8290 	 * Since bandwidth control happens on root_domain basis,
8291 	 * if admission test is enabled, we only admit -deadline
8292 	 * tasks allowed to run on all the CPUs in the task's
8293 	 * root_domain.
8294 	 */
8295 	rcu_read_lock();
8296 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8297 		ret = -EBUSY;
8298 	rcu_read_unlock();
8299 	return ret;
8300 }
8301 #endif
8302 
8303 static int
__sched_setaffinity(struct task_struct * p,struct affinity_context * ctx)8304 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8305 {
8306 	int retval;
8307 	cpumask_var_t cpus_allowed, new_mask;
8308 
8309 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8310 		return -ENOMEM;
8311 
8312 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8313 		retval = -ENOMEM;
8314 		goto out_free_cpus_allowed;
8315 	}
8316 
8317 	cpuset_cpus_allowed(p, cpus_allowed);
8318 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8319 
8320 	ctx->new_mask = new_mask;
8321 	ctx->flags |= SCA_CHECK;
8322 
8323 	retval = dl_task_check_affinity(p, new_mask);
8324 	if (retval)
8325 		goto out_free_new_mask;
8326 
8327 	retval = __set_cpus_allowed_ptr(p, ctx);
8328 	if (retval)
8329 		goto out_free_new_mask;
8330 
8331 	cpuset_cpus_allowed(p, cpus_allowed);
8332 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8333 		/*
8334 		 * We must have raced with a concurrent cpuset update.
8335 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8336 		 */
8337 		cpumask_copy(new_mask, cpus_allowed);
8338 
8339 		/*
8340 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8341 		 * will restore the previous user_cpus_ptr value.
8342 		 *
8343 		 * In the unlikely event a previous user_cpus_ptr exists,
8344 		 * we need to further restrict the mask to what is allowed
8345 		 * by that old user_cpus_ptr.
8346 		 */
8347 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8348 			bool empty = !cpumask_and(new_mask, new_mask,
8349 						  ctx->user_mask);
8350 
8351 			if (WARN_ON_ONCE(empty))
8352 				cpumask_copy(new_mask, cpus_allowed);
8353 		}
8354 		__set_cpus_allowed_ptr(p, ctx);
8355 		retval = -EINVAL;
8356 	}
8357 
8358 out_free_new_mask:
8359 	free_cpumask_var(new_mask);
8360 out_free_cpus_allowed:
8361 	free_cpumask_var(cpus_allowed);
8362 	return retval;
8363 }
8364 
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)8365 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8366 {
8367 	struct affinity_context ac;
8368 	struct cpumask *user_mask;
8369 	struct task_struct *p;
8370 	int retval;
8371 
8372 	rcu_read_lock();
8373 
8374 	p = find_process_by_pid(pid);
8375 	if (!p) {
8376 		rcu_read_unlock();
8377 		return -ESRCH;
8378 	}
8379 
8380 	/* Prevent p going away */
8381 	get_task_struct(p);
8382 	rcu_read_unlock();
8383 
8384 	if (p->flags & PF_NO_SETAFFINITY) {
8385 		retval = -EINVAL;
8386 		goto out_put_task;
8387 	}
8388 
8389 	if (!check_same_owner(p)) {
8390 		rcu_read_lock();
8391 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8392 			rcu_read_unlock();
8393 			retval = -EPERM;
8394 			goto out_put_task;
8395 		}
8396 		rcu_read_unlock();
8397 	}
8398 
8399 	retval = security_task_setscheduler(p);
8400 	if (retval)
8401 		goto out_put_task;
8402 
8403 	/*
8404 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8405 	 * alloc_user_cpus_ptr() returns NULL.
8406 	 */
8407 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8408 	if (user_mask) {
8409 		cpumask_copy(user_mask, in_mask);
8410 	} else if (IS_ENABLED(CONFIG_SMP)) {
8411 		retval = -ENOMEM;
8412 		goto out_put_task;
8413 	}
8414 
8415 	ac = (struct affinity_context){
8416 		.new_mask  = in_mask,
8417 		.user_mask = user_mask,
8418 		.flags     = SCA_USER,
8419 	};
8420 
8421 	retval = __sched_setaffinity(p, &ac);
8422 	kfree(ac.user_mask);
8423 
8424 out_put_task:
8425 	put_task_struct(p);
8426 	return retval;
8427 }
8428 
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)8429 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8430 			     struct cpumask *new_mask)
8431 {
8432 	if (len < cpumask_size())
8433 		cpumask_clear(new_mask);
8434 	else if (len > cpumask_size())
8435 		len = cpumask_size();
8436 
8437 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8438 }
8439 
8440 /**
8441  * sys_sched_setaffinity - set the CPU affinity of a process
8442  * @pid: pid of the process
8443  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8444  * @user_mask_ptr: user-space pointer to the new CPU mask
8445  *
8446  * Return: 0 on success. An error code otherwise.
8447  */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8448 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8449 		unsigned long __user *, user_mask_ptr)
8450 {
8451 	cpumask_var_t new_mask;
8452 	int retval;
8453 
8454 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8455 		return -ENOMEM;
8456 
8457 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8458 	if (retval == 0)
8459 		retval = sched_setaffinity(pid, new_mask);
8460 	free_cpumask_var(new_mask);
8461 	return retval;
8462 }
8463 
sched_getaffinity(pid_t pid,struct cpumask * mask)8464 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8465 {
8466 	struct task_struct *p;
8467 	unsigned long flags;
8468 	int retval;
8469 
8470 	rcu_read_lock();
8471 
8472 	retval = -ESRCH;
8473 	p = find_process_by_pid(pid);
8474 	if (!p)
8475 		goto out_unlock;
8476 
8477 	retval = security_task_getscheduler(p);
8478 	if (retval)
8479 		goto out_unlock;
8480 
8481 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8482 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8483 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8484 
8485 out_unlock:
8486 	rcu_read_unlock();
8487 
8488 	return retval;
8489 }
8490 
8491 /**
8492  * sys_sched_getaffinity - get the CPU affinity of a process
8493  * @pid: pid of the process
8494  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8495  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8496  *
8497  * Return: size of CPU mask copied to user_mask_ptr on success. An
8498  * error code otherwise.
8499  */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8500 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8501 		unsigned long __user *, user_mask_ptr)
8502 {
8503 	int ret;
8504 	cpumask_var_t mask;
8505 
8506 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8507 		return -EINVAL;
8508 	if (len & (sizeof(unsigned long)-1))
8509 		return -EINVAL;
8510 
8511 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8512 		return -ENOMEM;
8513 
8514 	ret = sched_getaffinity(pid, mask);
8515 	if (ret == 0) {
8516 		unsigned int retlen = min(len, cpumask_size());
8517 
8518 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8519 			ret = -EFAULT;
8520 		else
8521 			ret = retlen;
8522 	}
8523 	free_cpumask_var(mask);
8524 
8525 	return ret;
8526 }
8527 
do_sched_yield(void)8528 static void do_sched_yield(void)
8529 {
8530 	struct rq_flags rf;
8531 	struct rq *rq;
8532 
8533 	rq = this_rq_lock_irq(&rf);
8534 
8535 	schedstat_inc(rq->yld_count);
8536 	current->sched_class->yield_task(rq);
8537 
8538 	preempt_disable();
8539 	rq_unlock_irq(rq, &rf);
8540 	sched_preempt_enable_no_resched();
8541 
8542 	schedule();
8543 }
8544 
8545 /**
8546  * sys_sched_yield - yield the current processor to other threads.
8547  *
8548  * This function yields the current CPU to other tasks. If there are no
8549  * other threads running on this CPU then this function will return.
8550  *
8551  * Return: 0.
8552  */
SYSCALL_DEFINE0(sched_yield)8553 SYSCALL_DEFINE0(sched_yield)
8554 {
8555 	do_sched_yield();
8556 	return 0;
8557 }
8558 
8559 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8560 int __sched __cond_resched(void)
8561 {
8562 	if (should_resched(0)) {
8563 		preempt_schedule_common();
8564 		return 1;
8565 	}
8566 	/*
8567 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8568 	 * whether the current CPU is in an RCU read-side critical section,
8569 	 * so the tick can report quiescent states even for CPUs looping
8570 	 * in kernel context.  In contrast, in non-preemptible kernels,
8571 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8572 	 * processes executing in kernel context might never report an
8573 	 * RCU quiescent state.  Therefore, the following code causes
8574 	 * cond_resched() to report a quiescent state, but only when RCU
8575 	 * is in urgent need of one.
8576 	 */
8577 #ifndef CONFIG_PREEMPT_RCU
8578 	rcu_all_qs();
8579 #endif
8580 	return 0;
8581 }
8582 EXPORT_SYMBOL(__cond_resched);
8583 #endif
8584 
8585 #ifdef CONFIG_PREEMPT_DYNAMIC
8586 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8587 #define cond_resched_dynamic_enabled	__cond_resched
8588 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8589 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8590 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8591 
8592 #define might_resched_dynamic_enabled	__cond_resched
8593 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8594 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8595 EXPORT_STATIC_CALL_TRAMP(might_resched);
8596 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8597 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)8598 int __sched dynamic_cond_resched(void)
8599 {
8600 	klp_sched_try_switch();
8601 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8602 		return 0;
8603 	return __cond_resched();
8604 }
8605 EXPORT_SYMBOL(dynamic_cond_resched);
8606 
8607 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)8608 int __sched dynamic_might_resched(void)
8609 {
8610 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8611 		return 0;
8612 	return __cond_resched();
8613 }
8614 EXPORT_SYMBOL(dynamic_might_resched);
8615 #endif
8616 #endif
8617 
8618 /*
8619  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8620  * call schedule, and on return reacquire the lock.
8621  *
8622  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8623  * operations here to prevent schedule() from being called twice (once via
8624  * spin_unlock(), once by hand).
8625  */
__cond_resched_lock(spinlock_t * lock)8626 int __cond_resched_lock(spinlock_t *lock)
8627 {
8628 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8629 	int ret = 0;
8630 
8631 	lockdep_assert_held(lock);
8632 
8633 	if (spin_needbreak(lock) || resched) {
8634 		spin_unlock(lock);
8635 		if (!_cond_resched())
8636 			cpu_relax();
8637 		ret = 1;
8638 		spin_lock(lock);
8639 	}
8640 	return ret;
8641 }
8642 EXPORT_SYMBOL(__cond_resched_lock);
8643 
__cond_resched_rwlock_read(rwlock_t * lock)8644 int __cond_resched_rwlock_read(rwlock_t *lock)
8645 {
8646 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8647 	int ret = 0;
8648 
8649 	lockdep_assert_held_read(lock);
8650 
8651 	if (rwlock_needbreak(lock) || resched) {
8652 		read_unlock(lock);
8653 		if (!_cond_resched())
8654 			cpu_relax();
8655 		ret = 1;
8656 		read_lock(lock);
8657 	}
8658 	return ret;
8659 }
8660 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8661 
__cond_resched_rwlock_write(rwlock_t * lock)8662 int __cond_resched_rwlock_write(rwlock_t *lock)
8663 {
8664 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8665 	int ret = 0;
8666 
8667 	lockdep_assert_held_write(lock);
8668 
8669 	if (rwlock_needbreak(lock) || resched) {
8670 		write_unlock(lock);
8671 		if (!_cond_resched())
8672 			cpu_relax();
8673 		ret = 1;
8674 		write_lock(lock);
8675 	}
8676 	return ret;
8677 }
8678 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8679 
8680 #ifdef CONFIG_PREEMPT_DYNAMIC
8681 
8682 #ifdef CONFIG_GENERIC_ENTRY
8683 #include <linux/entry-common.h>
8684 #endif
8685 
8686 /*
8687  * SC:cond_resched
8688  * SC:might_resched
8689  * SC:preempt_schedule
8690  * SC:preempt_schedule_notrace
8691  * SC:irqentry_exit_cond_resched
8692  *
8693  *
8694  * NONE:
8695  *   cond_resched               <- __cond_resched
8696  *   might_resched              <- RET0
8697  *   preempt_schedule           <- NOP
8698  *   preempt_schedule_notrace   <- NOP
8699  *   irqentry_exit_cond_resched <- NOP
8700  *
8701  * VOLUNTARY:
8702  *   cond_resched               <- __cond_resched
8703  *   might_resched              <- __cond_resched
8704  *   preempt_schedule           <- NOP
8705  *   preempt_schedule_notrace   <- NOP
8706  *   irqentry_exit_cond_resched <- NOP
8707  *
8708  * FULL:
8709  *   cond_resched               <- RET0
8710  *   might_resched              <- RET0
8711  *   preempt_schedule           <- preempt_schedule
8712  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8713  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8714  */
8715 
8716 enum {
8717 	preempt_dynamic_undefined = -1,
8718 	preempt_dynamic_none,
8719 	preempt_dynamic_voluntary,
8720 	preempt_dynamic_full,
8721 };
8722 
8723 int preempt_dynamic_mode = preempt_dynamic_undefined;
8724 
sched_dynamic_mode(const char * str)8725 int sched_dynamic_mode(const char *str)
8726 {
8727 	if (!strcmp(str, "none"))
8728 		return preempt_dynamic_none;
8729 
8730 	if (!strcmp(str, "voluntary"))
8731 		return preempt_dynamic_voluntary;
8732 
8733 	if (!strcmp(str, "full"))
8734 		return preempt_dynamic_full;
8735 
8736 	return -EINVAL;
8737 }
8738 
8739 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8740 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8741 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8742 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8743 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8744 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8745 #else
8746 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8747 #endif
8748 
8749 static DEFINE_MUTEX(sched_dynamic_mutex);
8750 static bool klp_override;
8751 
__sched_dynamic_update(int mode)8752 static void __sched_dynamic_update(int mode)
8753 {
8754 	/*
8755 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8756 	 * the ZERO state, which is invalid.
8757 	 */
8758 	if (!klp_override)
8759 		preempt_dynamic_enable(cond_resched);
8760 	preempt_dynamic_enable(might_resched);
8761 	preempt_dynamic_enable(preempt_schedule);
8762 	preempt_dynamic_enable(preempt_schedule_notrace);
8763 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8764 
8765 	switch (mode) {
8766 	case preempt_dynamic_none:
8767 		if (!klp_override)
8768 			preempt_dynamic_enable(cond_resched);
8769 		preempt_dynamic_disable(might_resched);
8770 		preempt_dynamic_disable(preempt_schedule);
8771 		preempt_dynamic_disable(preempt_schedule_notrace);
8772 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8773 		if (mode != preempt_dynamic_mode)
8774 			pr_info("Dynamic Preempt: none\n");
8775 		break;
8776 
8777 	case preempt_dynamic_voluntary:
8778 		if (!klp_override)
8779 			preempt_dynamic_enable(cond_resched);
8780 		preempt_dynamic_enable(might_resched);
8781 		preempt_dynamic_disable(preempt_schedule);
8782 		preempt_dynamic_disable(preempt_schedule_notrace);
8783 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8784 		if (mode != preempt_dynamic_mode)
8785 			pr_info("Dynamic Preempt: voluntary\n");
8786 		break;
8787 
8788 	case preempt_dynamic_full:
8789 		if (!klp_override)
8790 			preempt_dynamic_disable(cond_resched);
8791 		preempt_dynamic_disable(might_resched);
8792 		preempt_dynamic_enable(preempt_schedule);
8793 		preempt_dynamic_enable(preempt_schedule_notrace);
8794 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8795 		if (mode != preempt_dynamic_mode)
8796 			pr_info("Dynamic Preempt: full\n");
8797 		break;
8798 	}
8799 
8800 	preempt_dynamic_mode = mode;
8801 }
8802 
sched_dynamic_update(int mode)8803 void sched_dynamic_update(int mode)
8804 {
8805 	mutex_lock(&sched_dynamic_mutex);
8806 	__sched_dynamic_update(mode);
8807 	mutex_unlock(&sched_dynamic_mutex);
8808 }
8809 
8810 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8811 
klp_cond_resched(void)8812 static int klp_cond_resched(void)
8813 {
8814 	__klp_sched_try_switch();
8815 	return __cond_resched();
8816 }
8817 
sched_dynamic_klp_enable(void)8818 void sched_dynamic_klp_enable(void)
8819 {
8820 	mutex_lock(&sched_dynamic_mutex);
8821 
8822 	klp_override = true;
8823 	static_call_update(cond_resched, klp_cond_resched);
8824 
8825 	mutex_unlock(&sched_dynamic_mutex);
8826 }
8827 
sched_dynamic_klp_disable(void)8828 void sched_dynamic_klp_disable(void)
8829 {
8830 	mutex_lock(&sched_dynamic_mutex);
8831 
8832 	klp_override = false;
8833 	__sched_dynamic_update(preempt_dynamic_mode);
8834 
8835 	mutex_unlock(&sched_dynamic_mutex);
8836 }
8837 
8838 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8839 
setup_preempt_mode(char * str)8840 static int __init setup_preempt_mode(char *str)
8841 {
8842 	int mode = sched_dynamic_mode(str);
8843 	if (mode < 0) {
8844 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8845 		return 0;
8846 	}
8847 
8848 	sched_dynamic_update(mode);
8849 	return 1;
8850 }
8851 __setup("preempt=", setup_preempt_mode);
8852 
preempt_dynamic_init(void)8853 static void __init preempt_dynamic_init(void)
8854 {
8855 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8856 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8857 			sched_dynamic_update(preempt_dynamic_none);
8858 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8859 			sched_dynamic_update(preempt_dynamic_voluntary);
8860 		} else {
8861 			/* Default static call setting, nothing to do */
8862 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8863 			preempt_dynamic_mode = preempt_dynamic_full;
8864 			pr_info("Dynamic Preempt: full\n");
8865 		}
8866 	}
8867 }
8868 
8869 #define PREEMPT_MODEL_ACCESSOR(mode) \
8870 	bool preempt_model_##mode(void)						 \
8871 	{									 \
8872 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8873 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8874 	}									 \
8875 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8876 
8877 PREEMPT_MODEL_ACCESSOR(none);
8878 PREEMPT_MODEL_ACCESSOR(voluntary);
8879 PREEMPT_MODEL_ACCESSOR(full);
8880 
8881 #else /* !CONFIG_PREEMPT_DYNAMIC */
8882 
preempt_dynamic_init(void)8883 static inline void preempt_dynamic_init(void) { }
8884 
8885 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8886 
8887 /**
8888  * yield - yield the current processor to other threads.
8889  *
8890  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8891  *
8892  * The scheduler is at all times free to pick the calling task as the most
8893  * eligible task to run, if removing the yield() call from your code breaks
8894  * it, it's already broken.
8895  *
8896  * Typical broken usage is:
8897  *
8898  * while (!event)
8899  *	yield();
8900  *
8901  * where one assumes that yield() will let 'the other' process run that will
8902  * make event true. If the current task is a SCHED_FIFO task that will never
8903  * happen. Never use yield() as a progress guarantee!!
8904  *
8905  * If you want to use yield() to wait for something, use wait_event().
8906  * If you want to use yield() to be 'nice' for others, use cond_resched().
8907  * If you still want to use yield(), do not!
8908  */
yield(void)8909 void __sched yield(void)
8910 {
8911 	set_current_state(TASK_RUNNING);
8912 	do_sched_yield();
8913 }
8914 EXPORT_SYMBOL(yield);
8915 
8916 /**
8917  * yield_to - yield the current processor to another thread in
8918  * your thread group, or accelerate that thread toward the
8919  * processor it's on.
8920  * @p: target task
8921  * @preempt: whether task preemption is allowed or not
8922  *
8923  * It's the caller's job to ensure that the target task struct
8924  * can't go away on us before we can do any checks.
8925  *
8926  * Return:
8927  *	true (>0) if we indeed boosted the target task.
8928  *	false (0) if we failed to boost the target.
8929  *	-ESRCH if there's no task to yield to.
8930  */
yield_to(struct task_struct * p,bool preempt)8931 int __sched yield_to(struct task_struct *p, bool preempt)
8932 {
8933 	struct task_struct *curr = current;
8934 	struct rq *rq, *p_rq;
8935 	unsigned long flags;
8936 	int yielded = 0;
8937 
8938 	local_irq_save(flags);
8939 	rq = this_rq();
8940 
8941 again:
8942 	p_rq = task_rq(p);
8943 	/*
8944 	 * If we're the only runnable task on the rq and target rq also
8945 	 * has only one task, there's absolutely no point in yielding.
8946 	 */
8947 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8948 		yielded = -ESRCH;
8949 		goto out_irq;
8950 	}
8951 
8952 	double_rq_lock(rq, p_rq);
8953 	if (task_rq(p) != p_rq) {
8954 		double_rq_unlock(rq, p_rq);
8955 		goto again;
8956 	}
8957 
8958 	if (!curr->sched_class->yield_to_task)
8959 		goto out_unlock;
8960 
8961 	if (curr->sched_class != p->sched_class)
8962 		goto out_unlock;
8963 
8964 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
8965 		goto out_unlock;
8966 
8967 	yielded = curr->sched_class->yield_to_task(rq, p);
8968 	if (yielded) {
8969 		schedstat_inc(rq->yld_count);
8970 		/*
8971 		 * Make p's CPU reschedule; pick_next_entity takes care of
8972 		 * fairness.
8973 		 */
8974 		if (preempt && rq != p_rq)
8975 			resched_curr(p_rq);
8976 	}
8977 
8978 out_unlock:
8979 	double_rq_unlock(rq, p_rq);
8980 out_irq:
8981 	local_irq_restore(flags);
8982 
8983 	if (yielded > 0)
8984 		schedule();
8985 
8986 	return yielded;
8987 }
8988 EXPORT_SYMBOL_GPL(yield_to);
8989 
io_schedule_prepare(void)8990 int io_schedule_prepare(void)
8991 {
8992 	int old_iowait = current->in_iowait;
8993 
8994 	current->in_iowait = 1;
8995 	blk_flush_plug(current->plug, true);
8996 	return old_iowait;
8997 }
8998 
io_schedule_finish(int token)8999 void io_schedule_finish(int token)
9000 {
9001 	current->in_iowait = token;
9002 }
9003 
9004 /*
9005  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9006  * that process accounting knows that this is a task in IO wait state.
9007  */
io_schedule_timeout(long timeout)9008 long __sched io_schedule_timeout(long timeout)
9009 {
9010 	int token;
9011 	long ret;
9012 
9013 	token = io_schedule_prepare();
9014 	ret = schedule_timeout(timeout);
9015 	io_schedule_finish(token);
9016 
9017 	return ret;
9018 }
9019 EXPORT_SYMBOL(io_schedule_timeout);
9020 
io_schedule(void)9021 void __sched io_schedule(void)
9022 {
9023 	int token;
9024 
9025 	token = io_schedule_prepare();
9026 	schedule();
9027 	io_schedule_finish(token);
9028 }
9029 EXPORT_SYMBOL(io_schedule);
9030 
9031 /**
9032  * sys_sched_get_priority_max - return maximum RT priority.
9033  * @policy: scheduling class.
9034  *
9035  * Return: On success, this syscall returns the maximum
9036  * rt_priority that can be used by a given scheduling class.
9037  * On failure, a negative error code is returned.
9038  */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)9039 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9040 {
9041 	int ret = -EINVAL;
9042 
9043 	switch (policy) {
9044 	case SCHED_FIFO:
9045 	case SCHED_RR:
9046 		ret = MAX_RT_PRIO-1;
9047 		break;
9048 	case SCHED_DEADLINE:
9049 	case SCHED_NORMAL:
9050 	case SCHED_BATCH:
9051 	case SCHED_IDLE:
9052 		ret = 0;
9053 		break;
9054 	}
9055 	return ret;
9056 }
9057 
9058 /**
9059  * sys_sched_get_priority_min - return minimum RT priority.
9060  * @policy: scheduling class.
9061  *
9062  * Return: On success, this syscall returns the minimum
9063  * rt_priority that can be used by a given scheduling class.
9064  * On failure, a negative error code is returned.
9065  */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)9066 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9067 {
9068 	int ret = -EINVAL;
9069 
9070 	switch (policy) {
9071 	case SCHED_FIFO:
9072 	case SCHED_RR:
9073 		ret = 1;
9074 		break;
9075 	case SCHED_DEADLINE:
9076 	case SCHED_NORMAL:
9077 	case SCHED_BATCH:
9078 	case SCHED_IDLE:
9079 		ret = 0;
9080 	}
9081 	return ret;
9082 }
9083 
sched_rr_get_interval(pid_t pid,struct timespec64 * t)9084 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9085 {
9086 	struct task_struct *p;
9087 	unsigned int time_slice;
9088 	struct rq_flags rf;
9089 	struct rq *rq;
9090 	int retval;
9091 
9092 	if (pid < 0)
9093 		return -EINVAL;
9094 
9095 	retval = -ESRCH;
9096 	rcu_read_lock();
9097 	p = find_process_by_pid(pid);
9098 	if (!p)
9099 		goto out_unlock;
9100 
9101 	retval = security_task_getscheduler(p);
9102 	if (retval)
9103 		goto out_unlock;
9104 
9105 	rq = task_rq_lock(p, &rf);
9106 	time_slice = 0;
9107 	if (p->sched_class->get_rr_interval)
9108 		time_slice = p->sched_class->get_rr_interval(rq, p);
9109 	task_rq_unlock(rq, p, &rf);
9110 
9111 	rcu_read_unlock();
9112 	jiffies_to_timespec64(time_slice, t);
9113 	return 0;
9114 
9115 out_unlock:
9116 	rcu_read_unlock();
9117 	return retval;
9118 }
9119 
9120 /**
9121  * sys_sched_rr_get_interval - return the default timeslice of a process.
9122  * @pid: pid of the process.
9123  * @interval: userspace pointer to the timeslice value.
9124  *
9125  * this syscall writes the default timeslice value of a given process
9126  * into the user-space timespec buffer. A value of '0' means infinity.
9127  *
9128  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9129  * an error code.
9130  */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)9131 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9132 		struct __kernel_timespec __user *, interval)
9133 {
9134 	struct timespec64 t;
9135 	int retval = sched_rr_get_interval(pid, &t);
9136 
9137 	if (retval == 0)
9138 		retval = put_timespec64(&t, interval);
9139 
9140 	return retval;
9141 }
9142 
9143 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)9144 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9145 		struct old_timespec32 __user *, interval)
9146 {
9147 	struct timespec64 t;
9148 	int retval = sched_rr_get_interval(pid, &t);
9149 
9150 	if (retval == 0)
9151 		retval = put_old_timespec32(&t, interval);
9152 	return retval;
9153 }
9154 #endif
9155 
sched_show_task(struct task_struct * p)9156 void sched_show_task(struct task_struct *p)
9157 {
9158 	unsigned long free = 0;
9159 	int ppid;
9160 
9161 	if (!try_get_task_stack(p))
9162 		return;
9163 
9164 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9165 
9166 	if (task_is_running(p))
9167 		pr_cont("  running task    ");
9168 #ifdef CONFIG_DEBUG_STACK_USAGE
9169 	free = stack_not_used(p);
9170 #endif
9171 	ppid = 0;
9172 	rcu_read_lock();
9173 	if (pid_alive(p))
9174 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
9175 	rcu_read_unlock();
9176 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9177 		free, task_pid_nr(p), ppid,
9178 		read_task_thread_flags(p));
9179 
9180 	print_worker_info(KERN_INFO, p);
9181 	print_stop_info(KERN_INFO, p);
9182 	show_stack(p, NULL, KERN_INFO);
9183 	put_task_stack(p);
9184 }
9185 EXPORT_SYMBOL_GPL(sched_show_task);
9186 
9187 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)9188 state_filter_match(unsigned long state_filter, struct task_struct *p)
9189 {
9190 	unsigned int state = READ_ONCE(p->__state);
9191 
9192 	/* no filter, everything matches */
9193 	if (!state_filter)
9194 		return true;
9195 
9196 	/* filter, but doesn't match */
9197 	if (!(state & state_filter))
9198 		return false;
9199 
9200 	/*
9201 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9202 	 * TASK_KILLABLE).
9203 	 */
9204 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9205 		return false;
9206 
9207 	return true;
9208 }
9209 
9210 
show_state_filter(unsigned int state_filter)9211 void show_state_filter(unsigned int state_filter)
9212 {
9213 	struct task_struct *g, *p;
9214 
9215 	rcu_read_lock();
9216 	for_each_process_thread(g, p) {
9217 		/*
9218 		 * reset the NMI-timeout, listing all files on a slow
9219 		 * console might take a lot of time:
9220 		 * Also, reset softlockup watchdogs on all CPUs, because
9221 		 * another CPU might be blocked waiting for us to process
9222 		 * an IPI.
9223 		 */
9224 		touch_nmi_watchdog();
9225 		touch_all_softlockup_watchdogs();
9226 		if (state_filter_match(state_filter, p))
9227 			sched_show_task(p);
9228 	}
9229 
9230 #ifdef CONFIG_SCHED_DEBUG
9231 	if (!state_filter)
9232 		sysrq_sched_debug_show();
9233 #endif
9234 	rcu_read_unlock();
9235 	/*
9236 	 * Only show locks if all tasks are dumped:
9237 	 */
9238 	if (!state_filter)
9239 		debug_show_all_locks();
9240 }
9241 
9242 /**
9243  * init_idle - set up an idle thread for a given CPU
9244  * @idle: task in question
9245  * @cpu: CPU the idle task belongs to
9246  *
9247  * NOTE: this function does not set the idle thread's NEED_RESCHED
9248  * flag, to make booting more robust.
9249  */
init_idle(struct task_struct * idle,int cpu)9250 void __init init_idle(struct task_struct *idle, int cpu)
9251 {
9252 #ifdef CONFIG_SMP
9253 	struct affinity_context ac = (struct affinity_context) {
9254 		.new_mask  = cpumask_of(cpu),
9255 		.flags     = 0,
9256 	};
9257 #endif
9258 	struct rq *rq = cpu_rq(cpu);
9259 	unsigned long flags;
9260 
9261 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9262 	raw_spin_rq_lock(rq);
9263 
9264 	idle->__state = TASK_RUNNING;
9265 	idle->se.exec_start = sched_clock();
9266 	/*
9267 	 * PF_KTHREAD should already be set at this point; regardless, make it
9268 	 * look like a proper per-CPU kthread.
9269 	 */
9270 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9271 	kthread_set_per_cpu(idle, cpu);
9272 
9273 #ifdef CONFIG_SMP
9274 	/*
9275 	 * No validation and serialization required at boot time and for
9276 	 * setting up the idle tasks of not yet online CPUs.
9277 	 */
9278 	set_cpus_allowed_common(idle, &ac);
9279 #endif
9280 	/*
9281 	 * We're having a chicken and egg problem, even though we are
9282 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9283 	 * lockdep check in task_group() will fail.
9284 	 *
9285 	 * Similar case to sched_fork(). / Alternatively we could
9286 	 * use task_rq_lock() here and obtain the other rq->lock.
9287 	 *
9288 	 * Silence PROVE_RCU
9289 	 */
9290 	rcu_read_lock();
9291 	__set_task_cpu(idle, cpu);
9292 	rcu_read_unlock();
9293 
9294 	rq->idle = idle;
9295 	rcu_assign_pointer(rq->curr, idle);
9296 	idle->on_rq = TASK_ON_RQ_QUEUED;
9297 #ifdef CONFIG_SMP
9298 	idle->on_cpu = 1;
9299 #endif
9300 	raw_spin_rq_unlock(rq);
9301 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9302 
9303 	/* Set the preempt count _outside_ the spinlocks! */
9304 	init_idle_preempt_count(idle, cpu);
9305 
9306 	/*
9307 	 * The idle tasks have their own, simple scheduling class:
9308 	 */
9309 	idle->sched_class = &idle_sched_class;
9310 	ftrace_graph_init_idle_task(idle, cpu);
9311 	vtime_init_idle(idle, cpu);
9312 #ifdef CONFIG_SMP
9313 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9314 #endif
9315 }
9316 
9317 #ifdef CONFIG_SMP
9318 
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)9319 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9320 			      const struct cpumask *trial)
9321 {
9322 	int ret = 1;
9323 
9324 	if (cpumask_empty(cur))
9325 		return ret;
9326 
9327 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9328 
9329 	return ret;
9330 }
9331 
task_can_attach(struct task_struct * p)9332 int task_can_attach(struct task_struct *p)
9333 {
9334 	int ret = 0;
9335 
9336 	/*
9337 	 * Kthreads which disallow setaffinity shouldn't be moved
9338 	 * to a new cpuset; we don't want to change their CPU
9339 	 * affinity and isolating such threads by their set of
9340 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9341 	 * applicable for such threads.  This prevents checking for
9342 	 * success of set_cpus_allowed_ptr() on all attached tasks
9343 	 * before cpus_mask may be changed.
9344 	 */
9345 	if (p->flags & PF_NO_SETAFFINITY)
9346 		ret = -EINVAL;
9347 
9348 	return ret;
9349 }
9350 
9351 bool sched_smp_initialized __read_mostly;
9352 
9353 #ifdef CONFIG_NUMA_BALANCING
9354 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)9355 int migrate_task_to(struct task_struct *p, int target_cpu)
9356 {
9357 	struct migration_arg arg = { p, target_cpu };
9358 	int curr_cpu = task_cpu(p);
9359 
9360 	if (curr_cpu == target_cpu)
9361 		return 0;
9362 
9363 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9364 		return -EINVAL;
9365 
9366 	/* TODO: This is not properly updating schedstats */
9367 
9368 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9369 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9370 }
9371 
9372 /*
9373  * Requeue a task on a given node and accurately track the number of NUMA
9374  * tasks on the runqueues
9375  */
sched_setnuma(struct task_struct * p,int nid)9376 void sched_setnuma(struct task_struct *p, int nid)
9377 {
9378 	bool queued, running;
9379 	struct rq_flags rf;
9380 	struct rq *rq;
9381 
9382 	rq = task_rq_lock(p, &rf);
9383 	queued = task_on_rq_queued(p);
9384 	running = task_current(rq, p);
9385 
9386 	if (queued)
9387 		dequeue_task(rq, p, DEQUEUE_SAVE);
9388 	if (running)
9389 		put_prev_task(rq, p);
9390 
9391 	p->numa_preferred_nid = nid;
9392 
9393 	if (queued)
9394 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9395 	if (running)
9396 		set_next_task(rq, p);
9397 	task_rq_unlock(rq, p, &rf);
9398 }
9399 #endif /* CONFIG_NUMA_BALANCING */
9400 
9401 #ifdef CONFIG_HOTPLUG_CPU
9402 /*
9403  * Ensure that the idle task is using init_mm right before its CPU goes
9404  * offline.
9405  */
idle_task_exit(void)9406 void idle_task_exit(void)
9407 {
9408 	struct mm_struct *mm = current->active_mm;
9409 
9410 	BUG_ON(cpu_online(smp_processor_id()));
9411 	BUG_ON(current != this_rq()->idle);
9412 
9413 	if (mm != &init_mm) {
9414 		switch_mm(mm, &init_mm, current);
9415 		finish_arch_post_lock_switch();
9416 	}
9417 
9418 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9419 }
9420 
__balance_push_cpu_stop(void * arg)9421 static int __balance_push_cpu_stop(void *arg)
9422 {
9423 	struct task_struct *p = arg;
9424 	struct rq *rq = this_rq();
9425 	struct rq_flags rf;
9426 	int cpu;
9427 
9428 	raw_spin_lock_irq(&p->pi_lock);
9429 	rq_lock(rq, &rf);
9430 
9431 	update_rq_clock(rq);
9432 
9433 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9434 		cpu = select_fallback_rq(rq->cpu, p);
9435 		rq = __migrate_task(rq, &rf, p, cpu);
9436 	}
9437 
9438 	rq_unlock(rq, &rf);
9439 	raw_spin_unlock_irq(&p->pi_lock);
9440 
9441 	put_task_struct(p);
9442 
9443 	return 0;
9444 }
9445 
9446 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9447 
9448 /*
9449  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9450  *
9451  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9452  * effective when the hotplug motion is down.
9453  */
balance_push(struct rq * rq)9454 static void balance_push(struct rq *rq)
9455 {
9456 	struct task_struct *push_task = rq->curr;
9457 
9458 	lockdep_assert_rq_held(rq);
9459 
9460 	/*
9461 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9462 	 */
9463 	rq->balance_callback = &balance_push_callback;
9464 
9465 	/*
9466 	 * Only active while going offline and when invoked on the outgoing
9467 	 * CPU.
9468 	 */
9469 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9470 		return;
9471 
9472 	/*
9473 	 * Both the cpu-hotplug and stop task are in this case and are
9474 	 * required to complete the hotplug process.
9475 	 */
9476 	if (kthread_is_per_cpu(push_task) ||
9477 	    is_migration_disabled(push_task)) {
9478 
9479 		/*
9480 		 * If this is the idle task on the outgoing CPU try to wake
9481 		 * up the hotplug control thread which might wait for the
9482 		 * last task to vanish. The rcuwait_active() check is
9483 		 * accurate here because the waiter is pinned on this CPU
9484 		 * and can't obviously be running in parallel.
9485 		 *
9486 		 * On RT kernels this also has to check whether there are
9487 		 * pinned and scheduled out tasks on the runqueue. They
9488 		 * need to leave the migrate disabled section first.
9489 		 */
9490 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9491 		    rcuwait_active(&rq->hotplug_wait)) {
9492 			raw_spin_rq_unlock(rq);
9493 			rcuwait_wake_up(&rq->hotplug_wait);
9494 			raw_spin_rq_lock(rq);
9495 		}
9496 		return;
9497 	}
9498 
9499 	get_task_struct(push_task);
9500 	/*
9501 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9502 	 * Both preemption and IRQs are still disabled.
9503 	 */
9504 	preempt_disable();
9505 	raw_spin_rq_unlock(rq);
9506 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9507 			    this_cpu_ptr(&push_work));
9508 	preempt_enable();
9509 	/*
9510 	 * At this point need_resched() is true and we'll take the loop in
9511 	 * schedule(). The next pick is obviously going to be the stop task
9512 	 * which kthread_is_per_cpu() and will push this task away.
9513 	 */
9514 	raw_spin_rq_lock(rq);
9515 }
9516 
balance_push_set(int cpu,bool on)9517 static void balance_push_set(int cpu, bool on)
9518 {
9519 	struct rq *rq = cpu_rq(cpu);
9520 	struct rq_flags rf;
9521 
9522 	rq_lock_irqsave(rq, &rf);
9523 	if (on) {
9524 		WARN_ON_ONCE(rq->balance_callback);
9525 		rq->balance_callback = &balance_push_callback;
9526 	} else if (rq->balance_callback == &balance_push_callback) {
9527 		rq->balance_callback = NULL;
9528 	}
9529 	rq_unlock_irqrestore(rq, &rf);
9530 }
9531 
9532 /*
9533  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9534  * inactive. All tasks which are not per CPU kernel threads are either
9535  * pushed off this CPU now via balance_push() or placed on a different CPU
9536  * during wakeup. Wait until the CPU is quiescent.
9537  */
balance_hotplug_wait(void)9538 static void balance_hotplug_wait(void)
9539 {
9540 	struct rq *rq = this_rq();
9541 
9542 	rcuwait_wait_event(&rq->hotplug_wait,
9543 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9544 			   TASK_UNINTERRUPTIBLE);
9545 }
9546 
9547 #else
9548 
balance_push(struct rq * rq)9549 static inline void balance_push(struct rq *rq)
9550 {
9551 }
9552 
balance_push_set(int cpu,bool on)9553 static inline void balance_push_set(int cpu, bool on)
9554 {
9555 }
9556 
balance_hotplug_wait(void)9557 static inline void balance_hotplug_wait(void)
9558 {
9559 }
9560 
9561 #endif /* CONFIG_HOTPLUG_CPU */
9562 
set_rq_online(struct rq * rq)9563 void set_rq_online(struct rq *rq)
9564 {
9565 	if (!rq->online) {
9566 		const struct sched_class *class;
9567 
9568 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9569 		rq->online = 1;
9570 
9571 		for_each_class(class) {
9572 			if (class->rq_online)
9573 				class->rq_online(rq);
9574 		}
9575 	}
9576 }
9577 
set_rq_offline(struct rq * rq)9578 void set_rq_offline(struct rq *rq)
9579 {
9580 	if (rq->online) {
9581 		const struct sched_class *class;
9582 
9583 		update_rq_clock(rq);
9584 		for_each_class(class) {
9585 			if (class->rq_offline)
9586 				class->rq_offline(rq);
9587 		}
9588 
9589 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9590 		rq->online = 0;
9591 	}
9592 }
9593 
sched_set_rq_online(struct rq * rq,int cpu)9594 static inline void sched_set_rq_online(struct rq *rq, int cpu)
9595 {
9596 	struct rq_flags rf;
9597 
9598 	rq_lock_irqsave(rq, &rf);
9599 	if (rq->rd) {
9600 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9601 		set_rq_online(rq);
9602 	}
9603 	rq_unlock_irqrestore(rq, &rf);
9604 }
9605 
sched_set_rq_offline(struct rq * rq,int cpu)9606 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
9607 {
9608 	struct rq_flags rf;
9609 
9610 	rq_lock_irqsave(rq, &rf);
9611 	if (rq->rd) {
9612 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9613 		set_rq_offline(rq);
9614 	}
9615 	rq_unlock_irqrestore(rq, &rf);
9616 }
9617 
9618 /*
9619  * used to mark begin/end of suspend/resume:
9620  */
9621 static int num_cpus_frozen;
9622 
9623 /*
9624  * Update cpusets according to cpu_active mask.  If cpusets are
9625  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9626  * around partition_sched_domains().
9627  *
9628  * If we come here as part of a suspend/resume, don't touch cpusets because we
9629  * want to restore it back to its original state upon resume anyway.
9630  */
cpuset_cpu_active(void)9631 static void cpuset_cpu_active(void)
9632 {
9633 	if (cpuhp_tasks_frozen) {
9634 		/*
9635 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9636 		 * resume sequence. As long as this is not the last online
9637 		 * operation in the resume sequence, just build a single sched
9638 		 * domain, ignoring cpusets.
9639 		 */
9640 		partition_sched_domains(1, NULL, NULL);
9641 		if (--num_cpus_frozen)
9642 			return;
9643 		/*
9644 		 * This is the last CPU online operation. So fall through and
9645 		 * restore the original sched domains by considering the
9646 		 * cpuset configurations.
9647 		 */
9648 		cpuset_force_rebuild();
9649 	}
9650 	cpuset_update_active_cpus();
9651 }
9652 
cpuset_cpu_inactive(unsigned int cpu)9653 static int cpuset_cpu_inactive(unsigned int cpu)
9654 {
9655 	if (!cpuhp_tasks_frozen) {
9656 		int ret = dl_bw_check_overflow(cpu);
9657 
9658 		if (ret)
9659 			return ret;
9660 		cpuset_update_active_cpus();
9661 	} else {
9662 		num_cpus_frozen++;
9663 		partition_sched_domains(1, NULL, NULL);
9664 	}
9665 	return 0;
9666 }
9667 
sched_smt_present_inc(int cpu)9668 static inline void sched_smt_present_inc(int cpu)
9669 {
9670 #ifdef CONFIG_SCHED_SMT
9671 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9672 		static_branch_inc_cpuslocked(&sched_smt_present);
9673 #endif
9674 }
9675 
sched_smt_present_dec(int cpu)9676 static inline void sched_smt_present_dec(int cpu)
9677 {
9678 #ifdef CONFIG_SCHED_SMT
9679 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9680 		static_branch_dec_cpuslocked(&sched_smt_present);
9681 #endif
9682 }
9683 
sched_cpu_activate(unsigned int cpu)9684 int sched_cpu_activate(unsigned int cpu)
9685 {
9686 	struct rq *rq = cpu_rq(cpu);
9687 
9688 	/*
9689 	 * Clear the balance_push callback and prepare to schedule
9690 	 * regular tasks.
9691 	 */
9692 	balance_push_set(cpu, false);
9693 
9694 	/*
9695 	 * When going up, increment the number of cores with SMT present.
9696 	 */
9697 	sched_smt_present_inc(cpu);
9698 	set_cpu_active(cpu, true);
9699 
9700 	if (sched_smp_initialized) {
9701 		sched_update_numa(cpu, true);
9702 		sched_domains_numa_masks_set(cpu);
9703 		cpuset_cpu_active();
9704 	}
9705 
9706 	/*
9707 	 * Put the rq online, if not already. This happens:
9708 	 *
9709 	 * 1) In the early boot process, because we build the real domains
9710 	 *    after all CPUs have been brought up.
9711 	 *
9712 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9713 	 *    domains.
9714 	 */
9715 	sched_set_rq_online(rq, cpu);
9716 
9717 	return 0;
9718 }
9719 
sched_cpu_deactivate(unsigned int cpu)9720 int sched_cpu_deactivate(unsigned int cpu)
9721 {
9722 	struct rq *rq = cpu_rq(cpu);
9723 	int ret;
9724 
9725 	/*
9726 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9727 	 * load balancing when not active
9728 	 */
9729 	nohz_balance_exit_idle(rq);
9730 
9731 	set_cpu_active(cpu, false);
9732 
9733 	/*
9734 	 * From this point forward, this CPU will refuse to run any task that
9735 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9736 	 * push those tasks away until this gets cleared, see
9737 	 * sched_cpu_dying().
9738 	 */
9739 	balance_push_set(cpu, true);
9740 
9741 	/*
9742 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9743 	 * preempt-disabled and RCU users of this state to go away such that
9744 	 * all new such users will observe it.
9745 	 *
9746 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9747 	 * ttwu_queue_cond() and is_cpu_allowed().
9748 	 *
9749 	 * Do sync before park smpboot threads to take care the rcu boost case.
9750 	 */
9751 	synchronize_rcu();
9752 
9753 	sched_set_rq_offline(rq, cpu);
9754 
9755 	/*
9756 	 * When going down, decrement the number of cores with SMT present.
9757 	 */
9758 	sched_smt_present_dec(cpu);
9759 
9760 #ifdef CONFIG_SCHED_SMT
9761 	sched_core_cpu_deactivate(cpu);
9762 #endif
9763 
9764 	if (!sched_smp_initialized)
9765 		return 0;
9766 
9767 	sched_update_numa(cpu, false);
9768 	ret = cpuset_cpu_inactive(cpu);
9769 	if (ret) {
9770 		sched_smt_present_inc(cpu);
9771 		sched_set_rq_online(rq, cpu);
9772 		balance_push_set(cpu, false);
9773 		set_cpu_active(cpu, true);
9774 		sched_update_numa(cpu, true);
9775 		return ret;
9776 	}
9777 	sched_domains_numa_masks_clear(cpu);
9778 	return 0;
9779 }
9780 
sched_rq_cpu_starting(unsigned int cpu)9781 static void sched_rq_cpu_starting(unsigned int cpu)
9782 {
9783 	struct rq *rq = cpu_rq(cpu);
9784 
9785 	rq->calc_load_update = calc_load_update;
9786 	update_max_interval();
9787 }
9788 
sched_cpu_starting(unsigned int cpu)9789 int sched_cpu_starting(unsigned int cpu)
9790 {
9791 	sched_core_cpu_starting(cpu);
9792 	sched_rq_cpu_starting(cpu);
9793 	sched_tick_start(cpu);
9794 	return 0;
9795 }
9796 
9797 #ifdef CONFIG_HOTPLUG_CPU
9798 
9799 /*
9800  * Invoked immediately before the stopper thread is invoked to bring the
9801  * CPU down completely. At this point all per CPU kthreads except the
9802  * hotplug thread (current) and the stopper thread (inactive) have been
9803  * either parked or have been unbound from the outgoing CPU. Ensure that
9804  * any of those which might be on the way out are gone.
9805  *
9806  * If after this point a bound task is being woken on this CPU then the
9807  * responsible hotplug callback has failed to do it's job.
9808  * sched_cpu_dying() will catch it with the appropriate fireworks.
9809  */
sched_cpu_wait_empty(unsigned int cpu)9810 int sched_cpu_wait_empty(unsigned int cpu)
9811 {
9812 	balance_hotplug_wait();
9813 	return 0;
9814 }
9815 
9816 /*
9817  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9818  * might have. Called from the CPU stopper task after ensuring that the
9819  * stopper is the last running task on the CPU, so nr_active count is
9820  * stable. We need to take the teardown thread which is calling this into
9821  * account, so we hand in adjust = 1 to the load calculation.
9822  *
9823  * Also see the comment "Global load-average calculations".
9824  */
calc_load_migrate(struct rq * rq)9825 static void calc_load_migrate(struct rq *rq)
9826 {
9827 	long delta = calc_load_fold_active(rq, 1);
9828 
9829 	if (delta)
9830 		atomic_long_add(delta, &calc_load_tasks);
9831 }
9832 
dump_rq_tasks(struct rq * rq,const char * loglvl)9833 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9834 {
9835 	struct task_struct *g, *p;
9836 	int cpu = cpu_of(rq);
9837 
9838 	lockdep_assert_rq_held(rq);
9839 
9840 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9841 	for_each_process_thread(g, p) {
9842 		if (task_cpu(p) != cpu)
9843 			continue;
9844 
9845 		if (!task_on_rq_queued(p))
9846 			continue;
9847 
9848 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9849 	}
9850 }
9851 
sched_cpu_dying(unsigned int cpu)9852 int sched_cpu_dying(unsigned int cpu)
9853 {
9854 	struct rq *rq = cpu_rq(cpu);
9855 	struct rq_flags rf;
9856 
9857 	/* Handle pending wakeups and then migrate everything off */
9858 	sched_tick_stop(cpu);
9859 
9860 	rq_lock_irqsave(rq, &rf);
9861 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9862 		WARN(true, "Dying CPU not properly vacated!");
9863 		dump_rq_tasks(rq, KERN_WARNING);
9864 	}
9865 	rq_unlock_irqrestore(rq, &rf);
9866 
9867 	calc_load_migrate(rq);
9868 	update_max_interval();
9869 	hrtick_clear(rq);
9870 	sched_core_cpu_dying(cpu);
9871 	return 0;
9872 }
9873 #endif
9874 
sched_init_smp(void)9875 void __init sched_init_smp(void)
9876 {
9877 	sched_init_numa(NUMA_NO_NODE);
9878 
9879 	/*
9880 	 * There's no userspace yet to cause hotplug operations; hence all the
9881 	 * CPU masks are stable and all blatant races in the below code cannot
9882 	 * happen.
9883 	 */
9884 	mutex_lock(&sched_domains_mutex);
9885 	sched_init_domains(cpu_active_mask);
9886 	mutex_unlock(&sched_domains_mutex);
9887 
9888 	/* Move init over to a non-isolated CPU */
9889 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9890 		BUG();
9891 	current->flags &= ~PF_NO_SETAFFINITY;
9892 	sched_init_granularity();
9893 
9894 	init_sched_rt_class();
9895 	init_sched_dl_class();
9896 
9897 	sched_smp_initialized = true;
9898 }
9899 
migration_init(void)9900 static int __init migration_init(void)
9901 {
9902 	sched_cpu_starting(smp_processor_id());
9903 	return 0;
9904 }
9905 early_initcall(migration_init);
9906 
9907 #else
sched_init_smp(void)9908 void __init sched_init_smp(void)
9909 {
9910 	sched_init_granularity();
9911 }
9912 #endif /* CONFIG_SMP */
9913 
in_sched_functions(unsigned long addr)9914 int in_sched_functions(unsigned long addr)
9915 {
9916 	return in_lock_functions(addr) ||
9917 		(addr >= (unsigned long)__sched_text_start
9918 		&& addr < (unsigned long)__sched_text_end);
9919 }
9920 
9921 #ifdef CONFIG_CGROUP_SCHED
9922 /*
9923  * Default task group.
9924  * Every task in system belongs to this group at bootup.
9925  */
9926 struct task_group root_task_group;
9927 LIST_HEAD(task_groups);
9928 
9929 /* Cacheline aligned slab cache for task_group */
9930 static struct kmem_cache *task_group_cache __read_mostly;
9931 #endif
9932 
sched_init(void)9933 void __init sched_init(void)
9934 {
9935 	unsigned long ptr = 0;
9936 	int i;
9937 
9938 	/* Make sure the linker didn't screw up */
9939 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9940 	       &fair_sched_class != &rt_sched_class + 1 ||
9941 	       &rt_sched_class   != &dl_sched_class + 1);
9942 #ifdef CONFIG_SMP
9943 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9944 #endif
9945 
9946 	wait_bit_init();
9947 
9948 #ifdef CONFIG_FAIR_GROUP_SCHED
9949 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9950 #endif
9951 #ifdef CONFIG_RT_GROUP_SCHED
9952 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9953 #endif
9954 	if (ptr) {
9955 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9956 
9957 #ifdef CONFIG_FAIR_GROUP_SCHED
9958 		root_task_group.se = (struct sched_entity **)ptr;
9959 		ptr += nr_cpu_ids * sizeof(void **);
9960 
9961 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9962 		ptr += nr_cpu_ids * sizeof(void **);
9963 
9964 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9965 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
9966 #endif /* CONFIG_FAIR_GROUP_SCHED */
9967 #ifdef CONFIG_RT_GROUP_SCHED
9968 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9969 		ptr += nr_cpu_ids * sizeof(void **);
9970 
9971 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9972 		ptr += nr_cpu_ids * sizeof(void **);
9973 
9974 #endif /* CONFIG_RT_GROUP_SCHED */
9975 	}
9976 
9977 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9978 
9979 #ifdef CONFIG_SMP
9980 	init_defrootdomain();
9981 #endif
9982 
9983 #ifdef CONFIG_RT_GROUP_SCHED
9984 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9985 			global_rt_period(), global_rt_runtime());
9986 #endif /* CONFIG_RT_GROUP_SCHED */
9987 
9988 #ifdef CONFIG_CGROUP_SCHED
9989 	task_group_cache = KMEM_CACHE(task_group, 0);
9990 
9991 	list_add(&root_task_group.list, &task_groups);
9992 	INIT_LIST_HEAD(&root_task_group.children);
9993 	INIT_LIST_HEAD(&root_task_group.siblings);
9994 	autogroup_init(&init_task);
9995 #endif /* CONFIG_CGROUP_SCHED */
9996 
9997 	for_each_possible_cpu(i) {
9998 		struct rq *rq;
9999 
10000 		rq = cpu_rq(i);
10001 		raw_spin_lock_init(&rq->__lock);
10002 		rq->nr_running = 0;
10003 		rq->calc_load_active = 0;
10004 		rq->calc_load_update = jiffies + LOAD_FREQ;
10005 		init_cfs_rq(&rq->cfs);
10006 		init_rt_rq(&rq->rt);
10007 		init_dl_rq(&rq->dl);
10008 #ifdef CONFIG_FAIR_GROUP_SCHED
10009 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
10010 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
10011 		/*
10012 		 * How much CPU bandwidth does root_task_group get?
10013 		 *
10014 		 * In case of task-groups formed thr' the cgroup filesystem, it
10015 		 * gets 100% of the CPU resources in the system. This overall
10016 		 * system CPU resource is divided among the tasks of
10017 		 * root_task_group and its child task-groups in a fair manner,
10018 		 * based on each entity's (task or task-group's) weight
10019 		 * (se->load.weight).
10020 		 *
10021 		 * In other words, if root_task_group has 10 tasks of weight
10022 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
10023 		 * then A0's share of the CPU resource is:
10024 		 *
10025 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10026 		 *
10027 		 * We achieve this by letting root_task_group's tasks sit
10028 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10029 		 */
10030 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10031 #endif /* CONFIG_FAIR_GROUP_SCHED */
10032 
10033 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10034 #ifdef CONFIG_RT_GROUP_SCHED
10035 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10036 #endif
10037 #ifdef CONFIG_SMP
10038 		rq->sd = NULL;
10039 		rq->rd = NULL;
10040 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
10041 		rq->balance_callback = &balance_push_callback;
10042 		rq->active_balance = 0;
10043 		rq->next_balance = jiffies;
10044 		rq->push_cpu = 0;
10045 		rq->cpu = i;
10046 		rq->online = 0;
10047 		rq->idle_stamp = 0;
10048 		rq->avg_idle = 2*sysctl_sched_migration_cost;
10049 		rq->wake_stamp = jiffies;
10050 		rq->wake_avg_idle = rq->avg_idle;
10051 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10052 
10053 		INIT_LIST_HEAD(&rq->cfs_tasks);
10054 
10055 		rq_attach_root(rq, &def_root_domain);
10056 #ifdef CONFIG_NO_HZ_COMMON
10057 		rq->last_blocked_load_update_tick = jiffies;
10058 		atomic_set(&rq->nohz_flags, 0);
10059 
10060 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10061 #endif
10062 #ifdef CONFIG_HOTPLUG_CPU
10063 		rcuwait_init(&rq->hotplug_wait);
10064 #endif
10065 #endif /* CONFIG_SMP */
10066 		hrtick_rq_init(rq);
10067 		atomic_set(&rq->nr_iowait, 0);
10068 
10069 #ifdef CONFIG_SCHED_CORE
10070 		rq->core = rq;
10071 		rq->core_pick = NULL;
10072 		rq->core_enabled = 0;
10073 		rq->core_tree = RB_ROOT;
10074 		rq->core_forceidle_count = 0;
10075 		rq->core_forceidle_occupation = 0;
10076 		rq->core_forceidle_start = 0;
10077 
10078 		rq->core_cookie = 0UL;
10079 #endif
10080 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10081 	}
10082 
10083 	set_load_weight(&init_task, false);
10084 
10085 	/*
10086 	 * The boot idle thread does lazy MMU switching as well:
10087 	 */
10088 	mmgrab_lazy_tlb(&init_mm);
10089 	enter_lazy_tlb(&init_mm, current);
10090 
10091 	/*
10092 	 * The idle task doesn't need the kthread struct to function, but it
10093 	 * is dressed up as a per-CPU kthread and thus needs to play the part
10094 	 * if we want to avoid special-casing it in code that deals with per-CPU
10095 	 * kthreads.
10096 	 */
10097 	WARN_ON(!set_kthread_struct(current));
10098 
10099 	/*
10100 	 * Make us the idle thread. Technically, schedule() should not be
10101 	 * called from this thread, however somewhere below it might be,
10102 	 * but because we are the idle thread, we just pick up running again
10103 	 * when this runqueue becomes "idle".
10104 	 */
10105 	__sched_fork(0, current);
10106 	init_idle(current, smp_processor_id());
10107 
10108 	calc_load_update = jiffies + LOAD_FREQ;
10109 
10110 #ifdef CONFIG_SMP
10111 	idle_thread_set_boot_cpu();
10112 	balance_push_set(smp_processor_id(), false);
10113 #endif
10114 	init_sched_fair_class();
10115 
10116 	psi_init();
10117 
10118 	init_uclamp();
10119 
10120 	preempt_dynamic_init();
10121 
10122 	scheduler_running = 1;
10123 }
10124 
10125 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10126 
__might_sleep(const char * file,int line)10127 void __might_sleep(const char *file, int line)
10128 {
10129 	unsigned int state = get_current_state();
10130 	/*
10131 	 * Blocking primitives will set (and therefore destroy) current->state,
10132 	 * since we will exit with TASK_RUNNING make sure we enter with it,
10133 	 * otherwise we will destroy state.
10134 	 */
10135 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10136 			"do not call blocking ops when !TASK_RUNNING; "
10137 			"state=%x set at [<%p>] %pS\n", state,
10138 			(void *)current->task_state_change,
10139 			(void *)current->task_state_change);
10140 
10141 	__might_resched(file, line, 0);
10142 }
10143 EXPORT_SYMBOL(__might_sleep);
10144 
print_preempt_disable_ip(int preempt_offset,unsigned long ip)10145 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10146 {
10147 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10148 		return;
10149 
10150 	if (preempt_count() == preempt_offset)
10151 		return;
10152 
10153 	pr_err("Preemption disabled at:");
10154 	print_ip_sym(KERN_ERR, ip);
10155 }
10156 
resched_offsets_ok(unsigned int offsets)10157 static inline bool resched_offsets_ok(unsigned int offsets)
10158 {
10159 	unsigned int nested = preempt_count();
10160 
10161 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10162 
10163 	return nested == offsets;
10164 }
10165 
__might_resched(const char * file,int line,unsigned int offsets)10166 void __might_resched(const char *file, int line, unsigned int offsets)
10167 {
10168 	/* Ratelimiting timestamp: */
10169 	static unsigned long prev_jiffy;
10170 
10171 	unsigned long preempt_disable_ip;
10172 
10173 	/* WARN_ON_ONCE() by default, no rate limit required: */
10174 	rcu_sleep_check();
10175 
10176 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10177 	     !is_idle_task(current) && !current->non_block_count) ||
10178 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10179 	    oops_in_progress)
10180 		return;
10181 
10182 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10183 		return;
10184 	prev_jiffy = jiffies;
10185 
10186 	/* Save this before calling printk(), since that will clobber it: */
10187 	preempt_disable_ip = get_preempt_disable_ip(current);
10188 
10189 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10190 	       file, line);
10191 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10192 	       in_atomic(), irqs_disabled(), current->non_block_count,
10193 	       current->pid, current->comm);
10194 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10195 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10196 
10197 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10198 		pr_err("RCU nest depth: %d, expected: %u\n",
10199 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10200 	}
10201 
10202 	if (task_stack_end_corrupted(current))
10203 		pr_emerg("Thread overran stack, or stack corrupted\n");
10204 
10205 	debug_show_held_locks(current);
10206 	if (irqs_disabled())
10207 		print_irqtrace_events(current);
10208 
10209 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10210 				 preempt_disable_ip);
10211 
10212 	dump_stack();
10213 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10214 }
10215 EXPORT_SYMBOL(__might_resched);
10216 
__cant_sleep(const char * file,int line,int preempt_offset)10217 void __cant_sleep(const char *file, int line, int preempt_offset)
10218 {
10219 	static unsigned long prev_jiffy;
10220 
10221 	if (irqs_disabled())
10222 		return;
10223 
10224 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10225 		return;
10226 
10227 	if (preempt_count() > preempt_offset)
10228 		return;
10229 
10230 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10231 		return;
10232 	prev_jiffy = jiffies;
10233 
10234 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10235 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10236 			in_atomic(), irqs_disabled(),
10237 			current->pid, current->comm);
10238 
10239 	debug_show_held_locks(current);
10240 	dump_stack();
10241 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10242 }
10243 EXPORT_SYMBOL_GPL(__cant_sleep);
10244 
10245 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)10246 void __cant_migrate(const char *file, int line)
10247 {
10248 	static unsigned long prev_jiffy;
10249 
10250 	if (irqs_disabled())
10251 		return;
10252 
10253 	if (is_migration_disabled(current))
10254 		return;
10255 
10256 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10257 		return;
10258 
10259 	if (preempt_count() > 0)
10260 		return;
10261 
10262 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10263 		return;
10264 	prev_jiffy = jiffies;
10265 
10266 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10267 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10268 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10269 	       current->pid, current->comm);
10270 
10271 	debug_show_held_locks(current);
10272 	dump_stack();
10273 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10274 }
10275 EXPORT_SYMBOL_GPL(__cant_migrate);
10276 #endif
10277 #endif
10278 
10279 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)10280 void normalize_rt_tasks(void)
10281 {
10282 	struct task_struct *g, *p;
10283 	struct sched_attr attr = {
10284 		.sched_policy = SCHED_NORMAL,
10285 	};
10286 
10287 	read_lock(&tasklist_lock);
10288 	for_each_process_thread(g, p) {
10289 		/*
10290 		 * Only normalize user tasks:
10291 		 */
10292 		if (p->flags & PF_KTHREAD)
10293 			continue;
10294 
10295 		p->se.exec_start = 0;
10296 		schedstat_set(p->stats.wait_start,  0);
10297 		schedstat_set(p->stats.sleep_start, 0);
10298 		schedstat_set(p->stats.block_start, 0);
10299 
10300 		if (!dl_task(p) && !rt_task(p)) {
10301 			/*
10302 			 * Renice negative nice level userspace
10303 			 * tasks back to 0:
10304 			 */
10305 			if (task_nice(p) < 0)
10306 				set_user_nice(p, 0);
10307 			continue;
10308 		}
10309 
10310 		__sched_setscheduler(p, &attr, false, false);
10311 	}
10312 	read_unlock(&tasklist_lock);
10313 }
10314 
10315 #endif /* CONFIG_MAGIC_SYSRQ */
10316 
10317 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10318 /*
10319  * These functions are only useful for the IA64 MCA handling, or kdb.
10320  *
10321  * They can only be called when the whole system has been
10322  * stopped - every CPU needs to be quiescent, and no scheduling
10323  * activity can take place. Using them for anything else would
10324  * be a serious bug, and as a result, they aren't even visible
10325  * under any other configuration.
10326  */
10327 
10328 /**
10329  * curr_task - return the current task for a given CPU.
10330  * @cpu: the processor in question.
10331  *
10332  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10333  *
10334  * Return: The current task for @cpu.
10335  */
curr_task(int cpu)10336 struct task_struct *curr_task(int cpu)
10337 {
10338 	return cpu_curr(cpu);
10339 }
10340 
10341 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10342 
10343 #ifdef CONFIG_IA64
10344 /**
10345  * ia64_set_curr_task - set the current task for a given CPU.
10346  * @cpu: the processor in question.
10347  * @p: the task pointer to set.
10348  *
10349  * Description: This function must only be used when non-maskable interrupts
10350  * are serviced on a separate stack. It allows the architecture to switch the
10351  * notion of the current task on a CPU in a non-blocking manner. This function
10352  * must be called with all CPU's synchronized, and interrupts disabled, the
10353  * and caller must save the original value of the current task (see
10354  * curr_task() above) and restore that value before reenabling interrupts and
10355  * re-starting the system.
10356  *
10357  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10358  */
ia64_set_curr_task(int cpu,struct task_struct * p)10359 void ia64_set_curr_task(int cpu, struct task_struct *p)
10360 {
10361 	cpu_curr(cpu) = p;
10362 }
10363 
10364 #endif
10365 
10366 #ifdef CONFIG_CGROUP_SCHED
10367 /* task_group_lock serializes the addition/removal of task groups */
10368 static DEFINE_SPINLOCK(task_group_lock);
10369 
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)10370 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10371 					    struct task_group *parent)
10372 {
10373 #ifdef CONFIG_UCLAMP_TASK_GROUP
10374 	enum uclamp_id clamp_id;
10375 
10376 	for_each_clamp_id(clamp_id) {
10377 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10378 			      uclamp_none(clamp_id), false);
10379 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10380 	}
10381 #endif
10382 }
10383 
sched_free_group(struct task_group * tg)10384 static void sched_free_group(struct task_group *tg)
10385 {
10386 	free_fair_sched_group(tg);
10387 	free_rt_sched_group(tg);
10388 	autogroup_free(tg);
10389 	kmem_cache_free(task_group_cache, tg);
10390 }
10391 
sched_free_group_rcu(struct rcu_head * rcu)10392 static void sched_free_group_rcu(struct rcu_head *rcu)
10393 {
10394 	sched_free_group(container_of(rcu, struct task_group, rcu));
10395 }
10396 
sched_unregister_group(struct task_group * tg)10397 static void sched_unregister_group(struct task_group *tg)
10398 {
10399 	unregister_fair_sched_group(tg);
10400 	unregister_rt_sched_group(tg);
10401 	/*
10402 	 * We have to wait for yet another RCU grace period to expire, as
10403 	 * print_cfs_stats() might run concurrently.
10404 	 */
10405 	call_rcu(&tg->rcu, sched_free_group_rcu);
10406 }
10407 
10408 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)10409 struct task_group *sched_create_group(struct task_group *parent)
10410 {
10411 	struct task_group *tg;
10412 
10413 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10414 	if (!tg)
10415 		return ERR_PTR(-ENOMEM);
10416 
10417 	if (!alloc_fair_sched_group(tg, parent))
10418 		goto err;
10419 
10420 	if (!alloc_rt_sched_group(tg, parent))
10421 		goto err;
10422 
10423 	alloc_uclamp_sched_group(tg, parent);
10424 
10425 	return tg;
10426 
10427 err:
10428 	sched_free_group(tg);
10429 	return ERR_PTR(-ENOMEM);
10430 }
10431 
sched_online_group(struct task_group * tg,struct task_group * parent)10432 void sched_online_group(struct task_group *tg, struct task_group *parent)
10433 {
10434 	unsigned long flags;
10435 
10436 	spin_lock_irqsave(&task_group_lock, flags);
10437 	list_add_rcu(&tg->list, &task_groups);
10438 
10439 	/* Root should already exist: */
10440 	WARN_ON(!parent);
10441 
10442 	tg->parent = parent;
10443 	INIT_LIST_HEAD(&tg->children);
10444 	list_add_rcu(&tg->siblings, &parent->children);
10445 	spin_unlock_irqrestore(&task_group_lock, flags);
10446 
10447 	online_fair_sched_group(tg);
10448 }
10449 
10450 /* rcu callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)10451 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10452 {
10453 	/* Now it should be safe to free those cfs_rqs: */
10454 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10455 }
10456 
sched_destroy_group(struct task_group * tg)10457 void sched_destroy_group(struct task_group *tg)
10458 {
10459 	/* Wait for possible concurrent references to cfs_rqs complete: */
10460 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10461 }
10462 
sched_release_group(struct task_group * tg)10463 void sched_release_group(struct task_group *tg)
10464 {
10465 	unsigned long flags;
10466 
10467 	/*
10468 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10469 	 * sched_cfs_period_timer()).
10470 	 *
10471 	 * For this to be effective, we have to wait for all pending users of
10472 	 * this task group to leave their RCU critical section to ensure no new
10473 	 * user will see our dying task group any more. Specifically ensure
10474 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10475 	 *
10476 	 * We therefore defer calling unregister_fair_sched_group() to
10477 	 * sched_unregister_group() which is guarantied to get called only after the
10478 	 * current RCU grace period has expired.
10479 	 */
10480 	spin_lock_irqsave(&task_group_lock, flags);
10481 	list_del_rcu(&tg->list);
10482 	list_del_rcu(&tg->siblings);
10483 	spin_unlock_irqrestore(&task_group_lock, flags);
10484 }
10485 
sched_get_task_group(struct task_struct * tsk)10486 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10487 {
10488 	struct task_group *tg;
10489 
10490 	/*
10491 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10492 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10493 	 * to prevent lockdep warnings.
10494 	 */
10495 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10496 			  struct task_group, css);
10497 	tg = autogroup_task_group(tsk, tg);
10498 
10499 	return tg;
10500 }
10501 
sched_change_group(struct task_struct * tsk,struct task_group * group)10502 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10503 {
10504 	tsk->sched_task_group = group;
10505 
10506 #ifdef CONFIG_FAIR_GROUP_SCHED
10507 	if (tsk->sched_class->task_change_group)
10508 		tsk->sched_class->task_change_group(tsk);
10509 	else
10510 #endif
10511 		set_task_rq(tsk, task_cpu(tsk));
10512 }
10513 
10514 /*
10515  * Change task's runqueue when it moves between groups.
10516  *
10517  * The caller of this function should have put the task in its new group by
10518  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10519  * its new group.
10520  */
sched_move_task(struct task_struct * tsk)10521 void sched_move_task(struct task_struct *tsk)
10522 {
10523 	int queued, running, queue_flags =
10524 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10525 	struct task_group *group;
10526 	struct rq_flags rf;
10527 	struct rq *rq;
10528 
10529 	rq = task_rq_lock(tsk, &rf);
10530 	/*
10531 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10532 	 * group changes.
10533 	 */
10534 	group = sched_get_task_group(tsk);
10535 	if (group == tsk->sched_task_group)
10536 		goto unlock;
10537 
10538 	update_rq_clock(rq);
10539 
10540 	running = task_current(rq, tsk);
10541 	queued = task_on_rq_queued(tsk);
10542 
10543 	if (queued)
10544 		dequeue_task(rq, tsk, queue_flags);
10545 	if (running)
10546 		put_prev_task(rq, tsk);
10547 
10548 	sched_change_group(tsk, group);
10549 
10550 	if (queued)
10551 		enqueue_task(rq, tsk, queue_flags);
10552 	if (running) {
10553 		set_next_task(rq, tsk);
10554 		/*
10555 		 * After changing group, the running task may have joined a
10556 		 * throttled one but it's still the running task. Trigger a
10557 		 * resched to make sure that task can still run.
10558 		 */
10559 		resched_curr(rq);
10560 	}
10561 
10562 unlock:
10563 	task_rq_unlock(rq, tsk, &rf);
10564 }
10565 
css_tg(struct cgroup_subsys_state * css)10566 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10567 {
10568 	return css ? container_of(css, struct task_group, css) : NULL;
10569 }
10570 
10571 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)10572 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10573 {
10574 	struct task_group *parent = css_tg(parent_css);
10575 	struct task_group *tg;
10576 
10577 	if (!parent) {
10578 		/* This is early initialization for the top cgroup */
10579 		return &root_task_group.css;
10580 	}
10581 
10582 	tg = sched_create_group(parent);
10583 	if (IS_ERR(tg))
10584 		return ERR_PTR(-ENOMEM);
10585 
10586 	return &tg->css;
10587 }
10588 
10589 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)10590 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10591 {
10592 	struct task_group *tg = css_tg(css);
10593 	struct task_group *parent = css_tg(css->parent);
10594 
10595 	if (parent)
10596 		sched_online_group(tg, parent);
10597 
10598 #ifdef CONFIG_UCLAMP_TASK_GROUP
10599 	/* Propagate the effective uclamp value for the new group */
10600 	mutex_lock(&uclamp_mutex);
10601 	rcu_read_lock();
10602 	cpu_util_update_eff(css);
10603 	rcu_read_unlock();
10604 	mutex_unlock(&uclamp_mutex);
10605 #endif
10606 
10607 	return 0;
10608 }
10609 
cpu_cgroup_css_released(struct cgroup_subsys_state * css)10610 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10611 {
10612 	struct task_group *tg = css_tg(css);
10613 
10614 	sched_release_group(tg);
10615 }
10616 
cpu_cgroup_css_free(struct cgroup_subsys_state * css)10617 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10618 {
10619 	struct task_group *tg = css_tg(css);
10620 
10621 	/*
10622 	 * Relies on the RCU grace period between css_released() and this.
10623 	 */
10624 	sched_unregister_group(tg);
10625 }
10626 
10627 #ifdef CONFIG_RT_GROUP_SCHED
cpu_cgroup_can_attach(struct cgroup_taskset * tset)10628 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10629 {
10630 	struct task_struct *task;
10631 	struct cgroup_subsys_state *css;
10632 
10633 	cgroup_taskset_for_each(task, css, tset) {
10634 		if (!sched_rt_can_attach(css_tg(css), task))
10635 			return -EINVAL;
10636 	}
10637 	return 0;
10638 }
10639 #endif
10640 
cpu_cgroup_attach(struct cgroup_taskset * tset)10641 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10642 {
10643 	struct task_struct *task;
10644 	struct cgroup_subsys_state *css;
10645 
10646 	cgroup_taskset_for_each(task, css, tset)
10647 		sched_move_task(task);
10648 }
10649 
10650 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)10651 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10652 {
10653 	struct cgroup_subsys_state *top_css = css;
10654 	struct uclamp_se *uc_parent = NULL;
10655 	struct uclamp_se *uc_se = NULL;
10656 	unsigned int eff[UCLAMP_CNT];
10657 	enum uclamp_id clamp_id;
10658 	unsigned int clamps;
10659 
10660 	lockdep_assert_held(&uclamp_mutex);
10661 	SCHED_WARN_ON(!rcu_read_lock_held());
10662 
10663 	css_for_each_descendant_pre(css, top_css) {
10664 		uc_parent = css_tg(css)->parent
10665 			? css_tg(css)->parent->uclamp : NULL;
10666 
10667 		for_each_clamp_id(clamp_id) {
10668 			/* Assume effective clamps matches requested clamps */
10669 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10670 			/* Cap effective clamps with parent's effective clamps */
10671 			if (uc_parent &&
10672 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10673 				eff[clamp_id] = uc_parent[clamp_id].value;
10674 			}
10675 		}
10676 		/* Ensure protection is always capped by limit */
10677 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10678 
10679 		/* Propagate most restrictive effective clamps */
10680 		clamps = 0x0;
10681 		uc_se = css_tg(css)->uclamp;
10682 		for_each_clamp_id(clamp_id) {
10683 			if (eff[clamp_id] == uc_se[clamp_id].value)
10684 				continue;
10685 			uc_se[clamp_id].value = eff[clamp_id];
10686 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10687 			clamps |= (0x1 << clamp_id);
10688 		}
10689 		if (!clamps) {
10690 			css = css_rightmost_descendant(css);
10691 			continue;
10692 		}
10693 
10694 		/* Immediately update descendants RUNNABLE tasks */
10695 		uclamp_update_active_tasks(css);
10696 	}
10697 }
10698 
10699 /*
10700  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10701  * C expression. Since there is no way to convert a macro argument (N) into a
10702  * character constant, use two levels of macros.
10703  */
10704 #define _POW10(exp) ((unsigned int)1e##exp)
10705 #define POW10(exp) _POW10(exp)
10706 
10707 struct uclamp_request {
10708 #define UCLAMP_PERCENT_SHIFT	2
10709 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10710 	s64 percent;
10711 	u64 util;
10712 	int ret;
10713 };
10714 
10715 static inline struct uclamp_request
capacity_from_percent(char * buf)10716 capacity_from_percent(char *buf)
10717 {
10718 	struct uclamp_request req = {
10719 		.percent = UCLAMP_PERCENT_SCALE,
10720 		.util = SCHED_CAPACITY_SCALE,
10721 		.ret = 0,
10722 	};
10723 
10724 	buf = strim(buf);
10725 	if (strcmp(buf, "max")) {
10726 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10727 					     &req.percent);
10728 		if (req.ret)
10729 			return req;
10730 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10731 			req.ret = -ERANGE;
10732 			return req;
10733 		}
10734 
10735 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10736 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10737 	}
10738 
10739 	return req;
10740 }
10741 
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)10742 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10743 				size_t nbytes, loff_t off,
10744 				enum uclamp_id clamp_id)
10745 {
10746 	struct uclamp_request req;
10747 	struct task_group *tg;
10748 
10749 	req = capacity_from_percent(buf);
10750 	if (req.ret)
10751 		return req.ret;
10752 
10753 	static_branch_enable(&sched_uclamp_used);
10754 
10755 	mutex_lock(&uclamp_mutex);
10756 	rcu_read_lock();
10757 
10758 	tg = css_tg(of_css(of));
10759 	if (tg->uclamp_req[clamp_id].value != req.util)
10760 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10761 
10762 	/*
10763 	 * Because of not recoverable conversion rounding we keep track of the
10764 	 * exact requested value
10765 	 */
10766 	tg->uclamp_pct[clamp_id] = req.percent;
10767 
10768 	/* Update effective clamps to track the most restrictive value */
10769 	cpu_util_update_eff(of_css(of));
10770 
10771 	rcu_read_unlock();
10772 	mutex_unlock(&uclamp_mutex);
10773 
10774 	return nbytes;
10775 }
10776 
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10777 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10778 				    char *buf, size_t nbytes,
10779 				    loff_t off)
10780 {
10781 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10782 }
10783 
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10784 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10785 				    char *buf, size_t nbytes,
10786 				    loff_t off)
10787 {
10788 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10789 }
10790 
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)10791 static inline void cpu_uclamp_print(struct seq_file *sf,
10792 				    enum uclamp_id clamp_id)
10793 {
10794 	struct task_group *tg;
10795 	u64 util_clamp;
10796 	u64 percent;
10797 	u32 rem;
10798 
10799 	rcu_read_lock();
10800 	tg = css_tg(seq_css(sf));
10801 	util_clamp = tg->uclamp_req[clamp_id].value;
10802 	rcu_read_unlock();
10803 
10804 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10805 		seq_puts(sf, "max\n");
10806 		return;
10807 	}
10808 
10809 	percent = tg->uclamp_pct[clamp_id];
10810 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10811 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10812 }
10813 
cpu_uclamp_min_show(struct seq_file * sf,void * v)10814 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10815 {
10816 	cpu_uclamp_print(sf, UCLAMP_MIN);
10817 	return 0;
10818 }
10819 
cpu_uclamp_max_show(struct seq_file * sf,void * v)10820 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10821 {
10822 	cpu_uclamp_print(sf, UCLAMP_MAX);
10823 	return 0;
10824 }
10825 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10826 
10827 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)10828 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10829 				struct cftype *cftype, u64 shareval)
10830 {
10831 	if (shareval > scale_load_down(ULONG_MAX))
10832 		shareval = MAX_SHARES;
10833 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10834 }
10835 
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10836 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10837 			       struct cftype *cft)
10838 {
10839 	struct task_group *tg = css_tg(css);
10840 
10841 	return (u64) scale_load_down(tg->shares);
10842 }
10843 
10844 #ifdef CONFIG_CFS_BANDWIDTH
10845 static DEFINE_MUTEX(cfs_constraints_mutex);
10846 
10847 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10848 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10849 /* More than 203 days if BW_SHIFT equals 20. */
10850 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10851 
10852 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10853 
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)10854 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10855 				u64 burst)
10856 {
10857 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10858 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10859 
10860 	if (tg == &root_task_group)
10861 		return -EINVAL;
10862 
10863 	/*
10864 	 * Ensure we have at some amount of bandwidth every period.  This is
10865 	 * to prevent reaching a state of large arrears when throttled via
10866 	 * entity_tick() resulting in prolonged exit starvation.
10867 	 */
10868 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10869 		return -EINVAL;
10870 
10871 	/*
10872 	 * Likewise, bound things on the other side by preventing insane quota
10873 	 * periods.  This also allows us to normalize in computing quota
10874 	 * feasibility.
10875 	 */
10876 	if (period > max_cfs_quota_period)
10877 		return -EINVAL;
10878 
10879 	/*
10880 	 * Bound quota to defend quota against overflow during bandwidth shift.
10881 	 */
10882 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10883 		return -EINVAL;
10884 
10885 	if (quota != RUNTIME_INF && (burst > quota ||
10886 				     burst + quota > max_cfs_runtime))
10887 		return -EINVAL;
10888 
10889 	/*
10890 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10891 	 * unthrottle_offline_cfs_rqs().
10892 	 */
10893 	guard(cpus_read_lock)();
10894 	guard(mutex)(&cfs_constraints_mutex);
10895 
10896 	ret = __cfs_schedulable(tg, period, quota);
10897 	if (ret)
10898 		return ret;
10899 
10900 	runtime_enabled = quota != RUNTIME_INF;
10901 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10902 	/*
10903 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10904 	 * before making related changes, and on->off must occur afterwards
10905 	 */
10906 	if (runtime_enabled && !runtime_was_enabled)
10907 		cfs_bandwidth_usage_inc();
10908 
10909 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
10910 		cfs_b->period = ns_to_ktime(period);
10911 		cfs_b->quota = quota;
10912 		cfs_b->burst = burst;
10913 
10914 		__refill_cfs_bandwidth_runtime(cfs_b);
10915 
10916 		/*
10917 		 * Restart the period timer (if active) to handle new
10918 		 * period expiry:
10919 		 */
10920 		if (runtime_enabled)
10921 			start_cfs_bandwidth(cfs_b);
10922 	}
10923 
10924 	for_each_online_cpu(i) {
10925 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10926 		struct rq *rq = cfs_rq->rq;
10927 
10928 		guard(rq_lock_irq)(rq);
10929 		cfs_rq->runtime_enabled = runtime_enabled;
10930 		cfs_rq->runtime_remaining = 0;
10931 
10932 		if (cfs_rq->throttled)
10933 			unthrottle_cfs_rq(cfs_rq);
10934 	}
10935 
10936 	if (runtime_was_enabled && !runtime_enabled)
10937 		cfs_bandwidth_usage_dec();
10938 
10939 	return 0;
10940 }
10941 
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)10942 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10943 {
10944 	u64 quota, period, burst;
10945 
10946 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10947 	burst = tg->cfs_bandwidth.burst;
10948 	if (cfs_quota_us < 0)
10949 		quota = RUNTIME_INF;
10950 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10951 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10952 	else
10953 		return -EINVAL;
10954 
10955 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10956 }
10957 
tg_get_cfs_quota(struct task_group * tg)10958 static long tg_get_cfs_quota(struct task_group *tg)
10959 {
10960 	u64 quota_us;
10961 
10962 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10963 		return -1;
10964 
10965 	quota_us = tg->cfs_bandwidth.quota;
10966 	do_div(quota_us, NSEC_PER_USEC);
10967 
10968 	return quota_us;
10969 }
10970 
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)10971 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10972 {
10973 	u64 quota, period, burst;
10974 
10975 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10976 		return -EINVAL;
10977 
10978 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10979 	quota = tg->cfs_bandwidth.quota;
10980 	burst = tg->cfs_bandwidth.burst;
10981 
10982 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10983 }
10984 
tg_get_cfs_period(struct task_group * tg)10985 static long tg_get_cfs_period(struct task_group *tg)
10986 {
10987 	u64 cfs_period_us;
10988 
10989 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10990 	do_div(cfs_period_us, NSEC_PER_USEC);
10991 
10992 	return cfs_period_us;
10993 }
10994 
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)10995 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10996 {
10997 	u64 quota, period, burst;
10998 
10999 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
11000 		return -EINVAL;
11001 
11002 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
11003 	period = ktime_to_ns(tg->cfs_bandwidth.period);
11004 	quota = tg->cfs_bandwidth.quota;
11005 
11006 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
11007 }
11008 
tg_get_cfs_burst(struct task_group * tg)11009 static long tg_get_cfs_burst(struct task_group *tg)
11010 {
11011 	u64 burst_us;
11012 
11013 	burst_us = tg->cfs_bandwidth.burst;
11014 	do_div(burst_us, NSEC_PER_USEC);
11015 
11016 	return burst_us;
11017 }
11018 
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11019 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
11020 				  struct cftype *cft)
11021 {
11022 	return tg_get_cfs_quota(css_tg(css));
11023 }
11024 
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)11025 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
11026 				   struct cftype *cftype, s64 cfs_quota_us)
11027 {
11028 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
11029 }
11030 
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11031 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
11032 				   struct cftype *cft)
11033 {
11034 	return tg_get_cfs_period(css_tg(css));
11035 }
11036 
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)11037 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
11038 				    struct cftype *cftype, u64 cfs_period_us)
11039 {
11040 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
11041 }
11042 
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11043 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
11044 				  struct cftype *cft)
11045 {
11046 	return tg_get_cfs_burst(css_tg(css));
11047 }
11048 
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)11049 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11050 				   struct cftype *cftype, u64 cfs_burst_us)
11051 {
11052 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11053 }
11054 
11055 struct cfs_schedulable_data {
11056 	struct task_group *tg;
11057 	u64 period, quota;
11058 };
11059 
11060 /*
11061  * normalize group quota/period to be quota/max_period
11062  * note: units are usecs
11063  */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)11064 static u64 normalize_cfs_quota(struct task_group *tg,
11065 			       struct cfs_schedulable_data *d)
11066 {
11067 	u64 quota, period;
11068 
11069 	if (tg == d->tg) {
11070 		period = d->period;
11071 		quota = d->quota;
11072 	} else {
11073 		period = tg_get_cfs_period(tg);
11074 		quota = tg_get_cfs_quota(tg);
11075 	}
11076 
11077 	/* note: these should typically be equivalent */
11078 	if (quota == RUNTIME_INF || quota == -1)
11079 		return RUNTIME_INF;
11080 
11081 	return to_ratio(period, quota);
11082 }
11083 
tg_cfs_schedulable_down(struct task_group * tg,void * data)11084 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11085 {
11086 	struct cfs_schedulable_data *d = data;
11087 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11088 	s64 quota = 0, parent_quota = -1;
11089 
11090 	if (!tg->parent) {
11091 		quota = RUNTIME_INF;
11092 	} else {
11093 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11094 
11095 		quota = normalize_cfs_quota(tg, d);
11096 		parent_quota = parent_b->hierarchical_quota;
11097 
11098 		/*
11099 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
11100 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
11101 		 * inherit when no limit is set. In both cases this is used
11102 		 * by the scheduler to determine if a given CFS task has a
11103 		 * bandwidth constraint at some higher level.
11104 		 */
11105 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11106 			if (quota == RUNTIME_INF)
11107 				quota = parent_quota;
11108 			else if (parent_quota != RUNTIME_INF)
11109 				quota = min(quota, parent_quota);
11110 		} else {
11111 			if (quota == RUNTIME_INF)
11112 				quota = parent_quota;
11113 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11114 				return -EINVAL;
11115 		}
11116 	}
11117 	cfs_b->hierarchical_quota = quota;
11118 
11119 	return 0;
11120 }
11121 
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)11122 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11123 {
11124 	int ret;
11125 	struct cfs_schedulable_data data = {
11126 		.tg = tg,
11127 		.period = period,
11128 		.quota = quota,
11129 	};
11130 
11131 	if (quota != RUNTIME_INF) {
11132 		do_div(data.period, NSEC_PER_USEC);
11133 		do_div(data.quota, NSEC_PER_USEC);
11134 	}
11135 
11136 	rcu_read_lock();
11137 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11138 	rcu_read_unlock();
11139 
11140 	return ret;
11141 }
11142 
cpu_cfs_stat_show(struct seq_file * sf,void * v)11143 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11144 {
11145 	struct task_group *tg = css_tg(seq_css(sf));
11146 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11147 
11148 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11149 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11150 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11151 
11152 	if (schedstat_enabled() && tg != &root_task_group) {
11153 		struct sched_statistics *stats;
11154 		u64 ws = 0;
11155 		int i;
11156 
11157 		for_each_possible_cpu(i) {
11158 			stats = __schedstats_from_se(tg->se[i]);
11159 			ws += schedstat_val(stats->wait_sum);
11160 		}
11161 
11162 		seq_printf(sf, "wait_sum %llu\n", ws);
11163 	}
11164 
11165 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11166 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11167 
11168 	return 0;
11169 }
11170 
throttled_time_self(struct task_group * tg)11171 static u64 throttled_time_self(struct task_group *tg)
11172 {
11173 	int i;
11174 	u64 total = 0;
11175 
11176 	for_each_possible_cpu(i) {
11177 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11178 	}
11179 
11180 	return total;
11181 }
11182 
cpu_cfs_local_stat_show(struct seq_file * sf,void * v)11183 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11184 {
11185 	struct task_group *tg = css_tg(seq_css(sf));
11186 
11187 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11188 
11189 	return 0;
11190 }
11191 #endif /* CONFIG_CFS_BANDWIDTH */
11192 #endif /* CONFIG_FAIR_GROUP_SCHED */
11193 
11194 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)11195 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11196 				struct cftype *cft, s64 val)
11197 {
11198 	return sched_group_set_rt_runtime(css_tg(css), val);
11199 }
11200 
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)11201 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11202 			       struct cftype *cft)
11203 {
11204 	return sched_group_rt_runtime(css_tg(css));
11205 }
11206 
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)11207 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11208 				    struct cftype *cftype, u64 rt_period_us)
11209 {
11210 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11211 }
11212 
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)11213 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11214 				   struct cftype *cft)
11215 {
11216 	return sched_group_rt_period(css_tg(css));
11217 }
11218 #endif /* CONFIG_RT_GROUP_SCHED */
11219 
11220 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11221 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11222 			       struct cftype *cft)
11223 {
11224 	return css_tg(css)->idle;
11225 }
11226 
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)11227 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11228 				struct cftype *cft, s64 idle)
11229 {
11230 	return sched_group_set_idle(css_tg(css), idle);
11231 }
11232 #endif
11233 
11234 static struct cftype cpu_legacy_files[] = {
11235 #ifdef CONFIG_FAIR_GROUP_SCHED
11236 	{
11237 		.name = "shares",
11238 		.read_u64 = cpu_shares_read_u64,
11239 		.write_u64 = cpu_shares_write_u64,
11240 	},
11241 	{
11242 		.name = "idle",
11243 		.read_s64 = cpu_idle_read_s64,
11244 		.write_s64 = cpu_idle_write_s64,
11245 	},
11246 #endif
11247 #ifdef CONFIG_CFS_BANDWIDTH
11248 	{
11249 		.name = "cfs_quota_us",
11250 		.read_s64 = cpu_cfs_quota_read_s64,
11251 		.write_s64 = cpu_cfs_quota_write_s64,
11252 	},
11253 	{
11254 		.name = "cfs_period_us",
11255 		.read_u64 = cpu_cfs_period_read_u64,
11256 		.write_u64 = cpu_cfs_period_write_u64,
11257 	},
11258 	{
11259 		.name = "cfs_burst_us",
11260 		.read_u64 = cpu_cfs_burst_read_u64,
11261 		.write_u64 = cpu_cfs_burst_write_u64,
11262 	},
11263 	{
11264 		.name = "stat",
11265 		.seq_show = cpu_cfs_stat_show,
11266 	},
11267 	{
11268 		.name = "stat.local",
11269 		.seq_show = cpu_cfs_local_stat_show,
11270 	},
11271 #endif
11272 #ifdef CONFIG_RT_GROUP_SCHED
11273 	{
11274 		.name = "rt_runtime_us",
11275 		.read_s64 = cpu_rt_runtime_read,
11276 		.write_s64 = cpu_rt_runtime_write,
11277 	},
11278 	{
11279 		.name = "rt_period_us",
11280 		.read_u64 = cpu_rt_period_read_uint,
11281 		.write_u64 = cpu_rt_period_write_uint,
11282 	},
11283 #endif
11284 #ifdef CONFIG_UCLAMP_TASK_GROUP
11285 	{
11286 		.name = "uclamp.min",
11287 		.flags = CFTYPE_NOT_ON_ROOT,
11288 		.seq_show = cpu_uclamp_min_show,
11289 		.write = cpu_uclamp_min_write,
11290 	},
11291 	{
11292 		.name = "uclamp.max",
11293 		.flags = CFTYPE_NOT_ON_ROOT,
11294 		.seq_show = cpu_uclamp_max_show,
11295 		.write = cpu_uclamp_max_write,
11296 	},
11297 #endif
11298 	{ }	/* Terminate */
11299 };
11300 
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11301 static int cpu_extra_stat_show(struct seq_file *sf,
11302 			       struct cgroup_subsys_state *css)
11303 {
11304 #ifdef CONFIG_CFS_BANDWIDTH
11305 	{
11306 		struct task_group *tg = css_tg(css);
11307 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11308 		u64 throttled_usec, burst_usec;
11309 
11310 		throttled_usec = cfs_b->throttled_time;
11311 		do_div(throttled_usec, NSEC_PER_USEC);
11312 		burst_usec = cfs_b->burst_time;
11313 		do_div(burst_usec, NSEC_PER_USEC);
11314 
11315 		seq_printf(sf, "nr_periods %d\n"
11316 			   "nr_throttled %d\n"
11317 			   "throttled_usec %llu\n"
11318 			   "nr_bursts %d\n"
11319 			   "burst_usec %llu\n",
11320 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11321 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11322 	}
11323 #endif
11324 	return 0;
11325 }
11326 
cpu_local_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11327 static int cpu_local_stat_show(struct seq_file *sf,
11328 			       struct cgroup_subsys_state *css)
11329 {
11330 #ifdef CONFIG_CFS_BANDWIDTH
11331 	{
11332 		struct task_group *tg = css_tg(css);
11333 		u64 throttled_self_usec;
11334 
11335 		throttled_self_usec = throttled_time_self(tg);
11336 		do_div(throttled_self_usec, NSEC_PER_USEC);
11337 
11338 		seq_printf(sf, "throttled_usec %llu\n",
11339 			   throttled_self_usec);
11340 	}
11341 #endif
11342 	return 0;
11343 }
11344 
11345 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11346 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11347 			       struct cftype *cft)
11348 {
11349 	struct task_group *tg = css_tg(css);
11350 	u64 weight = scale_load_down(tg->shares);
11351 
11352 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11353 }
11354 
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)11355 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11356 				struct cftype *cft, u64 weight)
11357 {
11358 	/*
11359 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11360 	 * values which are 1, 100 and 10000 respectively.  While it loses
11361 	 * a bit of range on both ends, it maps pretty well onto the shares
11362 	 * value used by scheduler and the round-trip conversions preserve
11363 	 * the original value over the entire range.
11364 	 */
11365 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11366 		return -ERANGE;
11367 
11368 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11369 
11370 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11371 }
11372 
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11373 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11374 				    struct cftype *cft)
11375 {
11376 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11377 	int last_delta = INT_MAX;
11378 	int prio, delta;
11379 
11380 	/* find the closest nice value to the current weight */
11381 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11382 		delta = abs(sched_prio_to_weight[prio] - weight);
11383 		if (delta >= last_delta)
11384 			break;
11385 		last_delta = delta;
11386 	}
11387 
11388 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11389 }
11390 
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)11391 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11392 				     struct cftype *cft, s64 nice)
11393 {
11394 	unsigned long weight;
11395 	int idx;
11396 
11397 	if (nice < MIN_NICE || nice > MAX_NICE)
11398 		return -ERANGE;
11399 
11400 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11401 	idx = array_index_nospec(idx, 40);
11402 	weight = sched_prio_to_weight[idx];
11403 
11404 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11405 }
11406 #endif
11407 
cpu_period_quota_print(struct seq_file * sf,long period,long quota)11408 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11409 						  long period, long quota)
11410 {
11411 	if (quota < 0)
11412 		seq_puts(sf, "max");
11413 	else
11414 		seq_printf(sf, "%ld", quota);
11415 
11416 	seq_printf(sf, " %ld\n", period);
11417 }
11418 
11419 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)11420 static int __maybe_unused cpu_period_quota_parse(char *buf,
11421 						 u64 *periodp, u64 *quotap)
11422 {
11423 	char tok[21];	/* U64_MAX */
11424 
11425 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11426 		return -EINVAL;
11427 
11428 	*periodp *= NSEC_PER_USEC;
11429 
11430 	if (sscanf(tok, "%llu", quotap))
11431 		*quotap *= NSEC_PER_USEC;
11432 	else if (!strcmp(tok, "max"))
11433 		*quotap = RUNTIME_INF;
11434 	else
11435 		return -EINVAL;
11436 
11437 	return 0;
11438 }
11439 
11440 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)11441 static int cpu_max_show(struct seq_file *sf, void *v)
11442 {
11443 	struct task_group *tg = css_tg(seq_css(sf));
11444 
11445 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11446 	return 0;
11447 }
11448 
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11449 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11450 			     char *buf, size_t nbytes, loff_t off)
11451 {
11452 	struct task_group *tg = css_tg(of_css(of));
11453 	u64 period = tg_get_cfs_period(tg);
11454 	u64 burst = tg->cfs_bandwidth.burst;
11455 	u64 quota;
11456 	int ret;
11457 
11458 	ret = cpu_period_quota_parse(buf, &period, &quota);
11459 	if (!ret)
11460 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11461 	return ret ?: nbytes;
11462 }
11463 #endif
11464 
11465 static struct cftype cpu_files[] = {
11466 #ifdef CONFIG_FAIR_GROUP_SCHED
11467 	{
11468 		.name = "weight",
11469 		.flags = CFTYPE_NOT_ON_ROOT,
11470 		.read_u64 = cpu_weight_read_u64,
11471 		.write_u64 = cpu_weight_write_u64,
11472 	},
11473 	{
11474 		.name = "weight.nice",
11475 		.flags = CFTYPE_NOT_ON_ROOT,
11476 		.read_s64 = cpu_weight_nice_read_s64,
11477 		.write_s64 = cpu_weight_nice_write_s64,
11478 	},
11479 	{
11480 		.name = "idle",
11481 		.flags = CFTYPE_NOT_ON_ROOT,
11482 		.read_s64 = cpu_idle_read_s64,
11483 		.write_s64 = cpu_idle_write_s64,
11484 	},
11485 #endif
11486 #ifdef CONFIG_CFS_BANDWIDTH
11487 	{
11488 		.name = "max",
11489 		.flags = CFTYPE_NOT_ON_ROOT,
11490 		.seq_show = cpu_max_show,
11491 		.write = cpu_max_write,
11492 	},
11493 	{
11494 		.name = "max.burst",
11495 		.flags = CFTYPE_NOT_ON_ROOT,
11496 		.read_u64 = cpu_cfs_burst_read_u64,
11497 		.write_u64 = cpu_cfs_burst_write_u64,
11498 	},
11499 #endif
11500 #ifdef CONFIG_UCLAMP_TASK_GROUP
11501 	{
11502 		.name = "uclamp.min",
11503 		.flags = CFTYPE_NOT_ON_ROOT,
11504 		.seq_show = cpu_uclamp_min_show,
11505 		.write = cpu_uclamp_min_write,
11506 	},
11507 	{
11508 		.name = "uclamp.max",
11509 		.flags = CFTYPE_NOT_ON_ROOT,
11510 		.seq_show = cpu_uclamp_max_show,
11511 		.write = cpu_uclamp_max_write,
11512 	},
11513 #endif
11514 	{ }	/* terminate */
11515 };
11516 
11517 struct cgroup_subsys cpu_cgrp_subsys = {
11518 	.css_alloc	= cpu_cgroup_css_alloc,
11519 	.css_online	= cpu_cgroup_css_online,
11520 	.css_released	= cpu_cgroup_css_released,
11521 	.css_free	= cpu_cgroup_css_free,
11522 	.css_extra_stat_show = cpu_extra_stat_show,
11523 	.css_local_stat_show = cpu_local_stat_show,
11524 #ifdef CONFIG_RT_GROUP_SCHED
11525 	.can_attach	= cpu_cgroup_can_attach,
11526 #endif
11527 	.attach		= cpu_cgroup_attach,
11528 	.legacy_cftypes	= cpu_legacy_files,
11529 	.dfl_cftypes	= cpu_files,
11530 	.early_init	= true,
11531 	.threaded	= true,
11532 };
11533 
11534 #endif	/* CONFIG_CGROUP_SCHED */
11535 
dump_cpu_task(int cpu)11536 void dump_cpu_task(int cpu)
11537 {
11538 	if (cpu == smp_processor_id() && in_hardirq()) {
11539 		struct pt_regs *regs;
11540 
11541 		regs = get_irq_regs();
11542 		if (regs) {
11543 			show_regs(regs);
11544 			return;
11545 		}
11546 	}
11547 
11548 	if (trigger_single_cpu_backtrace(cpu))
11549 		return;
11550 
11551 	pr_info("Task dump for CPU %d:\n", cpu);
11552 	sched_show_task(cpu_curr(cpu));
11553 }
11554 
11555 /*
11556  * Nice levels are multiplicative, with a gentle 10% change for every
11557  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11558  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11559  * that remained on nice 0.
11560  *
11561  * The "10% effect" is relative and cumulative: from _any_ nice level,
11562  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11563  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11564  * If a task goes up by ~10% and another task goes down by ~10% then
11565  * the relative distance between them is ~25%.)
11566  */
11567 const int sched_prio_to_weight[40] = {
11568  /* -20 */     88761,     71755,     56483,     46273,     36291,
11569  /* -15 */     29154,     23254,     18705,     14949,     11916,
11570  /* -10 */      9548,      7620,      6100,      4904,      3906,
11571  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11572  /*   0 */      1024,       820,       655,       526,       423,
11573  /*   5 */       335,       272,       215,       172,       137,
11574  /*  10 */       110,        87,        70,        56,        45,
11575  /*  15 */        36,        29,        23,        18,        15,
11576 };
11577 
11578 /*
11579  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11580  *
11581  * In cases where the weight does not change often, we can use the
11582  * precalculated inverse to speed up arithmetics by turning divisions
11583  * into multiplications:
11584  */
11585 const u32 sched_prio_to_wmult[40] = {
11586  /* -20 */     48388,     59856,     76040,     92818,    118348,
11587  /* -15 */    147320,    184698,    229616,    287308,    360437,
11588  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11589  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11590  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11591  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11592  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11593  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11594 };
11595 
call_trace_sched_update_nr_running(struct rq * rq,int count)11596 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11597 {
11598         trace_sched_update_nr_running_tp(rq, count);
11599 }
11600 
11601 #ifdef CONFIG_SCHED_MM_CID
11602 
11603 /*
11604  * @cid_lock: Guarantee forward-progress of cid allocation.
11605  *
11606  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11607  * is only used when contention is detected by the lock-free allocation so
11608  * forward progress can be guaranteed.
11609  */
11610 DEFINE_RAW_SPINLOCK(cid_lock);
11611 
11612 /*
11613  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11614  *
11615  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11616  * detected, it is set to 1 to ensure that all newly coming allocations are
11617  * serialized by @cid_lock until the allocation which detected contention
11618  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11619  * of a cid allocation.
11620  */
11621 int use_cid_lock;
11622 
11623 /*
11624  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11625  * concurrently with respect to the execution of the source runqueue context
11626  * switch.
11627  *
11628  * There is one basic properties we want to guarantee here:
11629  *
11630  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11631  * used by a task. That would lead to concurrent allocation of the cid and
11632  * userspace corruption.
11633  *
11634  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11635  * that a pair of loads observe at least one of a pair of stores, which can be
11636  * shown as:
11637  *
11638  *      X = Y = 0
11639  *
11640  *      w[X]=1          w[Y]=1
11641  *      MB              MB
11642  *      r[Y]=y          r[X]=x
11643  *
11644  * Which guarantees that x==0 && y==0 is impossible. But rather than using
11645  * values 0 and 1, this algorithm cares about specific state transitions of the
11646  * runqueue current task (as updated by the scheduler context switch), and the
11647  * per-mm/cpu cid value.
11648  *
11649  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11650  * task->mm != mm for the rest of the discussion. There are two scheduler state
11651  * transitions on context switch we care about:
11652  *
11653  * (TSA) Store to rq->curr with transition from (N) to (Y)
11654  *
11655  * (TSB) Store to rq->curr with transition from (Y) to (N)
11656  *
11657  * On the remote-clear side, there is one transition we care about:
11658  *
11659  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11660  *
11661  * There is also a transition to UNSET state which can be performed from all
11662  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11663  * guarantees that only a single thread will succeed:
11664  *
11665  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11666  *
11667  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11668  * when a thread is actively using the cid (property (1)).
11669  *
11670  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11671  *
11672  * Scenario A) (TSA)+(TMA) (from next task perspective)
11673  *
11674  * CPU0                                      CPU1
11675  *
11676  * Context switch CS-1                       Remote-clear
11677  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
11678  *                                             (implied barrier after cmpxchg)
11679  *   - switch_mm_cid()
11680  *     - memory barrier (see switch_mm_cid()
11681  *       comment explaining how this barrier
11682  *       is combined with other scheduler
11683  *       barriers)
11684  *     - mm_cid_get (next)
11685  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
11686  *
11687  * This Dekker ensures that either task (Y) is observed by the
11688  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11689  * observed.
11690  *
11691  * If task (Y) store is observed by rcu_dereference(), it means that there is
11692  * still an active task on the cpu. Remote-clear will therefore not transition
11693  * to UNSET, which fulfills property (1).
11694  *
11695  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11696  * it will move its state to UNSET, which clears the percpu cid perhaps
11697  * uselessly (which is not an issue for correctness). Because task (Y) is not
11698  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11699  * state to UNSET is done with a cmpxchg expecting that the old state has the
11700  * LAZY flag set, only one thread will successfully UNSET.
11701  *
11702  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11703  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11704  * CPU1 will observe task (Y) and do nothing more, which is fine.
11705  *
11706  * What we are effectively preventing with this Dekker is a scenario where
11707  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11708  * because this would UNSET a cid which is actively used.
11709  */
11710 
sched_mm_cid_migrate_from(struct task_struct * t)11711 void sched_mm_cid_migrate_from(struct task_struct *t)
11712 {
11713 	t->migrate_from_cpu = task_cpu(t);
11714 }
11715 
11716 static
__sched_mm_cid_migrate_from_fetch_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid)11717 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11718 					  struct task_struct *t,
11719 					  struct mm_cid *src_pcpu_cid)
11720 {
11721 	struct mm_struct *mm = t->mm;
11722 	struct task_struct *src_task;
11723 	int src_cid, last_mm_cid;
11724 
11725 	if (!mm)
11726 		return -1;
11727 
11728 	last_mm_cid = t->last_mm_cid;
11729 	/*
11730 	 * If the migrated task has no last cid, or if the current
11731 	 * task on src rq uses the cid, it means the source cid does not need
11732 	 * to be moved to the destination cpu.
11733 	 */
11734 	if (last_mm_cid == -1)
11735 		return -1;
11736 	src_cid = READ_ONCE(src_pcpu_cid->cid);
11737 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11738 		return -1;
11739 
11740 	/*
11741 	 * If we observe an active task using the mm on this rq, it means we
11742 	 * are not the last task to be migrated from this cpu for this mm, so
11743 	 * there is no need to move src_cid to the destination cpu.
11744 	 */
11745 	rcu_read_lock();
11746 	src_task = rcu_dereference(src_rq->curr);
11747 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11748 		rcu_read_unlock();
11749 		t->last_mm_cid = -1;
11750 		return -1;
11751 	}
11752 	rcu_read_unlock();
11753 
11754 	return src_cid;
11755 }
11756 
11757 static
__sched_mm_cid_migrate_from_try_steal_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid,int src_cid)11758 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11759 					      struct task_struct *t,
11760 					      struct mm_cid *src_pcpu_cid,
11761 					      int src_cid)
11762 {
11763 	struct task_struct *src_task;
11764 	struct mm_struct *mm = t->mm;
11765 	int lazy_cid;
11766 
11767 	if (src_cid == -1)
11768 		return -1;
11769 
11770 	/*
11771 	 * Attempt to clear the source cpu cid to move it to the destination
11772 	 * cpu.
11773 	 */
11774 	lazy_cid = mm_cid_set_lazy_put(src_cid);
11775 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11776 		return -1;
11777 
11778 	/*
11779 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11780 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11781 	 * between store to rq->curr and load of prev and next task's
11782 	 * per-mm/cpu cid.
11783 	 *
11784 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11785 	 * rq->curr->mm_cid_active matches the barrier in
11786 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11787 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11788 	 * load of per-mm/cpu cid.
11789 	 */
11790 
11791 	/*
11792 	 * If we observe an active task using the mm on this rq after setting
11793 	 * the lazy-put flag, this task will be responsible for transitioning
11794 	 * from lazy-put flag set to MM_CID_UNSET.
11795 	 */
11796 	rcu_read_lock();
11797 	src_task = rcu_dereference(src_rq->curr);
11798 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11799 		rcu_read_unlock();
11800 		/*
11801 		 * We observed an active task for this mm, there is therefore
11802 		 * no point in moving this cid to the destination cpu.
11803 		 */
11804 		t->last_mm_cid = -1;
11805 		return -1;
11806 	}
11807 	rcu_read_unlock();
11808 
11809 	/*
11810 	 * The src_cid is unused, so it can be unset.
11811 	 */
11812 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11813 		return -1;
11814 	return src_cid;
11815 }
11816 
11817 /*
11818  * Migration to dst cpu. Called with dst_rq lock held.
11819  * Interrupts are disabled, which keeps the window of cid ownership without the
11820  * source rq lock held small.
11821  */
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)11822 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11823 {
11824 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11825 	struct mm_struct *mm = t->mm;
11826 	int src_cid, dst_cid, src_cpu;
11827 	struct rq *src_rq;
11828 
11829 	lockdep_assert_rq_held(dst_rq);
11830 
11831 	if (!mm)
11832 		return;
11833 	src_cpu = t->migrate_from_cpu;
11834 	if (src_cpu == -1) {
11835 		t->last_mm_cid = -1;
11836 		return;
11837 	}
11838 	/*
11839 	 * Move the src cid if the dst cid is unset. This keeps id
11840 	 * allocation closest to 0 in cases where few threads migrate around
11841 	 * many cpus.
11842 	 *
11843 	 * If destination cid is already set, we may have to just clear
11844 	 * the src cid to ensure compactness in frequent migrations
11845 	 * scenarios.
11846 	 *
11847 	 * It is not useful to clear the src cid when the number of threads is
11848 	 * greater or equal to the number of allowed cpus, because user-space
11849 	 * can expect that the number of allowed cids can reach the number of
11850 	 * allowed cpus.
11851 	 */
11852 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11853 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11854 	if (!mm_cid_is_unset(dst_cid) &&
11855 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11856 		return;
11857 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11858 	src_rq = cpu_rq(src_cpu);
11859 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11860 	if (src_cid == -1)
11861 		return;
11862 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11863 							    src_cid);
11864 	if (src_cid == -1)
11865 		return;
11866 	if (!mm_cid_is_unset(dst_cid)) {
11867 		__mm_cid_put(mm, src_cid);
11868 		return;
11869 	}
11870 	/* Move src_cid to dst cpu. */
11871 	mm_cid_snapshot_time(dst_rq, mm);
11872 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11873 }
11874 
sched_mm_cid_remote_clear(struct mm_struct * mm,struct mm_cid * pcpu_cid,int cpu)11875 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11876 				      int cpu)
11877 {
11878 	struct rq *rq = cpu_rq(cpu);
11879 	struct task_struct *t;
11880 	unsigned long flags;
11881 	int cid, lazy_cid;
11882 
11883 	cid = READ_ONCE(pcpu_cid->cid);
11884 	if (!mm_cid_is_valid(cid))
11885 		return;
11886 
11887 	/*
11888 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
11889 	 * there happens to be other tasks left on the source cpu using this
11890 	 * mm, the next task using this mm will reallocate its cid on context
11891 	 * switch.
11892 	 */
11893 	lazy_cid = mm_cid_set_lazy_put(cid);
11894 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11895 		return;
11896 
11897 	/*
11898 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11899 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11900 	 * between store to rq->curr and load of prev and next task's
11901 	 * per-mm/cpu cid.
11902 	 *
11903 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11904 	 * rq->curr->mm_cid_active matches the barrier in
11905 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11906 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11907 	 * load of per-mm/cpu cid.
11908 	 */
11909 
11910 	/*
11911 	 * If we observe an active task using the mm on this rq after setting
11912 	 * the lazy-put flag, that task will be responsible for transitioning
11913 	 * from lazy-put flag set to MM_CID_UNSET.
11914 	 */
11915 	rcu_read_lock();
11916 	t = rcu_dereference(rq->curr);
11917 	if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
11918 		rcu_read_unlock();
11919 		return;
11920 	}
11921 	rcu_read_unlock();
11922 
11923 	/*
11924 	 * The cid is unused, so it can be unset.
11925 	 * Disable interrupts to keep the window of cid ownership without rq
11926 	 * lock small.
11927 	 */
11928 	local_irq_save(flags);
11929 	if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11930 		__mm_cid_put(mm, cid);
11931 	local_irq_restore(flags);
11932 }
11933 
sched_mm_cid_remote_clear_old(struct mm_struct * mm,int cpu)11934 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11935 {
11936 	struct rq *rq = cpu_rq(cpu);
11937 	struct mm_cid *pcpu_cid;
11938 	struct task_struct *curr;
11939 	u64 rq_clock;
11940 
11941 	/*
11942 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
11943 	 * while is irrelevant.
11944 	 */
11945 	rq_clock = READ_ONCE(rq->clock);
11946 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11947 
11948 	/*
11949 	 * In order to take care of infrequently scheduled tasks, bump the time
11950 	 * snapshot associated with this cid if an active task using the mm is
11951 	 * observed on this rq.
11952 	 */
11953 	rcu_read_lock();
11954 	curr = rcu_dereference(rq->curr);
11955 	if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11956 		WRITE_ONCE(pcpu_cid->time, rq_clock);
11957 		rcu_read_unlock();
11958 		return;
11959 	}
11960 	rcu_read_unlock();
11961 
11962 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11963 		return;
11964 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11965 }
11966 
sched_mm_cid_remote_clear_weight(struct mm_struct * mm,int cpu,int weight)11967 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11968 					     int weight)
11969 {
11970 	struct mm_cid *pcpu_cid;
11971 	int cid;
11972 
11973 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11974 	cid = READ_ONCE(pcpu_cid->cid);
11975 	if (!mm_cid_is_valid(cid) || cid < weight)
11976 		return;
11977 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11978 }
11979 
task_mm_cid_work(struct callback_head * work)11980 static void task_mm_cid_work(struct callback_head *work)
11981 {
11982 	unsigned long now = jiffies, old_scan, next_scan;
11983 	struct task_struct *t = current;
11984 	struct cpumask *cidmask;
11985 	struct mm_struct *mm;
11986 	int weight, cpu;
11987 
11988 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11989 
11990 	work->next = work;	/* Prevent double-add */
11991 	if (t->flags & PF_EXITING)
11992 		return;
11993 	mm = t->mm;
11994 	if (!mm)
11995 		return;
11996 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
11997 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11998 	if (!old_scan) {
11999 		unsigned long res;
12000 
12001 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
12002 		if (res != old_scan)
12003 			old_scan = res;
12004 		else
12005 			old_scan = next_scan;
12006 	}
12007 	if (time_before(now, old_scan))
12008 		return;
12009 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
12010 		return;
12011 	cidmask = mm_cidmask(mm);
12012 	/* Clear cids that were not recently used. */
12013 	for_each_possible_cpu(cpu)
12014 		sched_mm_cid_remote_clear_old(mm, cpu);
12015 	weight = cpumask_weight(cidmask);
12016 	/*
12017 	 * Clear cids that are greater or equal to the cidmask weight to
12018 	 * recompact it.
12019 	 */
12020 	for_each_possible_cpu(cpu)
12021 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
12022 }
12023 
init_sched_mm_cid(struct task_struct * t)12024 void init_sched_mm_cid(struct task_struct *t)
12025 {
12026 	struct mm_struct *mm = t->mm;
12027 	int mm_users = 0;
12028 
12029 	if (mm) {
12030 		mm_users = atomic_read(&mm->mm_users);
12031 		if (mm_users == 1)
12032 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12033 	}
12034 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
12035 	init_task_work(&t->cid_work, task_mm_cid_work);
12036 }
12037 
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)12038 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
12039 {
12040 	struct callback_head *work = &curr->cid_work;
12041 	unsigned long now = jiffies;
12042 
12043 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
12044 	    work->next != work)
12045 		return;
12046 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
12047 		return;
12048 
12049 	/* No page allocation under rq lock */
12050 	task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
12051 }
12052 
sched_mm_cid_exit_signals(struct task_struct * t)12053 void sched_mm_cid_exit_signals(struct task_struct *t)
12054 {
12055 	struct mm_struct *mm = t->mm;
12056 	struct rq_flags rf;
12057 	struct rq *rq;
12058 
12059 	if (!mm)
12060 		return;
12061 
12062 	preempt_disable();
12063 	rq = this_rq();
12064 	rq_lock_irqsave(rq, &rf);
12065 	preempt_enable_no_resched();	/* holding spinlock */
12066 	WRITE_ONCE(t->mm_cid_active, 0);
12067 	/*
12068 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12069 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12070 	 */
12071 	smp_mb();
12072 	mm_cid_put(mm);
12073 	t->last_mm_cid = t->mm_cid = -1;
12074 	rq_unlock_irqrestore(rq, &rf);
12075 }
12076 
sched_mm_cid_before_execve(struct task_struct * t)12077 void sched_mm_cid_before_execve(struct task_struct *t)
12078 {
12079 	struct mm_struct *mm = t->mm;
12080 	struct rq_flags rf;
12081 	struct rq *rq;
12082 
12083 	if (!mm)
12084 		return;
12085 
12086 	preempt_disable();
12087 	rq = this_rq();
12088 	rq_lock_irqsave(rq, &rf);
12089 	preempt_enable_no_resched();	/* holding spinlock */
12090 	WRITE_ONCE(t->mm_cid_active, 0);
12091 	/*
12092 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12093 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12094 	 */
12095 	smp_mb();
12096 	mm_cid_put(mm);
12097 	t->last_mm_cid = t->mm_cid = -1;
12098 	rq_unlock_irqrestore(rq, &rf);
12099 }
12100 
sched_mm_cid_after_execve(struct task_struct * t)12101 void sched_mm_cid_after_execve(struct task_struct *t)
12102 {
12103 	struct mm_struct *mm = t->mm;
12104 	struct rq_flags rf;
12105 	struct rq *rq;
12106 
12107 	if (!mm)
12108 		return;
12109 
12110 	preempt_disable();
12111 	rq = this_rq();
12112 	rq_lock_irqsave(rq, &rf);
12113 	preempt_enable_no_resched();	/* holding spinlock */
12114 	WRITE_ONCE(t->mm_cid_active, 1);
12115 	/*
12116 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12117 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12118 	 */
12119 	smp_mb();
12120 	t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12121 	rq_unlock_irqrestore(rq, &rf);
12122 	rseq_set_notify_resume(t);
12123 }
12124 
sched_mm_cid_fork(struct task_struct * t)12125 void sched_mm_cid_fork(struct task_struct *t)
12126 {
12127 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12128 	t->mm_cid_active = 1;
12129 }
12130 #endif
12131