1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31
32 #include <asm/apic.h>
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/debugreg.h>
37 #include <asm/kvm_para.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/spec-ctrl.h>
40 #include <asm/cpu_device_id.h>
41 #include <asm/traps.h>
42 #include <asm/reboot.h>
43 #include <asm/fpu/api.h>
44
45 #include <trace/events/ipi.h>
46
47 #include "trace.h"
48
49 #include "svm.h"
50 #include "svm_ops.h"
51
52 #include "kvm_onhyperv.h"
53 #include "svm_onhyperv.h"
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57
58 #ifdef MODULE
59 static const struct x86_cpu_id svm_cpu_id[] = {
60 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
61 {}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
64 #endif
65
66 #define SEG_TYPE_LDT 2
67 #define SEG_TYPE_BUSY_TSS16 3
68
69 static bool erratum_383_found __read_mostly;
70
71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
72
73 /*
74 * Set osvw_len to higher value when updated Revision Guides
75 * are published and we know what the new status bits are
76 */
77 static uint64_t osvw_len = 4, osvw_status;
78
79 static DEFINE_PER_CPU(u64, current_tsc_ratio);
80
81 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4))
82
83 static const struct svm_direct_access_msrs {
84 u32 index; /* Index of the MSR */
85 bool always; /* True if intercept is initially cleared */
86 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
87 { .index = MSR_STAR, .always = true },
88 { .index = MSR_IA32_SYSENTER_CS, .always = true },
89 { .index = MSR_IA32_SYSENTER_EIP, .always = false },
90 { .index = MSR_IA32_SYSENTER_ESP, .always = false },
91 #ifdef CONFIG_X86_64
92 { .index = MSR_GS_BASE, .always = true },
93 { .index = MSR_FS_BASE, .always = true },
94 { .index = MSR_KERNEL_GS_BASE, .always = true },
95 { .index = MSR_LSTAR, .always = true },
96 { .index = MSR_CSTAR, .always = true },
97 { .index = MSR_SYSCALL_MASK, .always = true },
98 #endif
99 { .index = MSR_IA32_SPEC_CTRL, .always = false },
100 { .index = MSR_IA32_PRED_CMD, .always = false },
101 { .index = MSR_IA32_FLUSH_CMD, .always = false },
102 { .index = MSR_IA32_DEBUGCTLMSR, .always = false },
103 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
104 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
105 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
106 { .index = MSR_IA32_LASTINTTOIP, .always = false },
107 { .index = MSR_IA32_XSS, .always = false },
108 { .index = MSR_EFER, .always = false },
109 { .index = MSR_IA32_CR_PAT, .always = false },
110 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true },
111 { .index = MSR_TSC_AUX, .always = false },
112 { .index = X2APIC_MSR(APIC_ID), .always = false },
113 { .index = X2APIC_MSR(APIC_LVR), .always = false },
114 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false },
115 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false },
116 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false },
117 { .index = X2APIC_MSR(APIC_EOI), .always = false },
118 { .index = X2APIC_MSR(APIC_RRR), .always = false },
119 { .index = X2APIC_MSR(APIC_LDR), .always = false },
120 { .index = X2APIC_MSR(APIC_DFR), .always = false },
121 { .index = X2APIC_MSR(APIC_SPIV), .always = false },
122 { .index = X2APIC_MSR(APIC_ISR), .always = false },
123 { .index = X2APIC_MSR(APIC_TMR), .always = false },
124 { .index = X2APIC_MSR(APIC_IRR), .always = false },
125 { .index = X2APIC_MSR(APIC_ESR), .always = false },
126 { .index = X2APIC_MSR(APIC_ICR), .always = false },
127 { .index = X2APIC_MSR(APIC_ICR2), .always = false },
128
129 /*
130 * Note:
131 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
132 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
133 * the AVIC hardware would generate GP fault. Therefore, always
134 * intercept the MSR 0x832, and do not setup direct_access_msr.
135 */
136 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false },
137 { .index = X2APIC_MSR(APIC_LVTPC), .always = false },
138 { .index = X2APIC_MSR(APIC_LVT0), .always = false },
139 { .index = X2APIC_MSR(APIC_LVT1), .always = false },
140 { .index = X2APIC_MSR(APIC_LVTERR), .always = false },
141 { .index = X2APIC_MSR(APIC_TMICT), .always = false },
142 { .index = X2APIC_MSR(APIC_TMCCT), .always = false },
143 { .index = X2APIC_MSR(APIC_TDCR), .always = false },
144 { .index = MSR_INVALID, .always = false },
145 };
146
147 /*
148 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
149 * pause_filter_count: On processors that support Pause filtering(indicated
150 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
151 * count value. On VMRUN this value is loaded into an internal counter.
152 * Each time a pause instruction is executed, this counter is decremented
153 * until it reaches zero at which time a #VMEXIT is generated if pause
154 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
155 * Intercept Filtering for more details.
156 * This also indicate if ple logic enabled.
157 *
158 * pause_filter_thresh: In addition, some processor families support advanced
159 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
160 * the amount of time a guest is allowed to execute in a pause loop.
161 * In this mode, a 16-bit pause filter threshold field is added in the
162 * VMCB. The threshold value is a cycle count that is used to reset the
163 * pause counter. As with simple pause filtering, VMRUN loads the pause
164 * count value from VMCB into an internal counter. Then, on each pause
165 * instruction the hardware checks the elapsed number of cycles since
166 * the most recent pause instruction against the pause filter threshold.
167 * If the elapsed cycle count is greater than the pause filter threshold,
168 * then the internal pause count is reloaded from the VMCB and execution
169 * continues. If the elapsed cycle count is less than the pause filter
170 * threshold, then the internal pause count is decremented. If the count
171 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
172 * triggered. If advanced pause filtering is supported and pause filter
173 * threshold field is set to zero, the filter will operate in the simpler,
174 * count only mode.
175 */
176
177 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
178 module_param(pause_filter_thresh, ushort, 0444);
179
180 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
181 module_param(pause_filter_count, ushort, 0444);
182
183 /* Default doubles per-vcpu window every exit. */
184 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
185 module_param(pause_filter_count_grow, ushort, 0444);
186
187 /* Default resets per-vcpu window every exit to pause_filter_count. */
188 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
189 module_param(pause_filter_count_shrink, ushort, 0444);
190
191 /* Default is to compute the maximum so we can never overflow. */
192 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
193 module_param(pause_filter_count_max, ushort, 0444);
194
195 /*
196 * Use nested page tables by default. Note, NPT may get forced off by
197 * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
198 */
199 bool npt_enabled = true;
200 module_param_named(npt, npt_enabled, bool, 0444);
201
202 /* allow nested virtualization in KVM/SVM */
203 static int nested = true;
204 module_param(nested, int, S_IRUGO);
205
206 /* enable/disable Next RIP Save */
207 int nrips = true;
208 module_param(nrips, int, 0444);
209
210 /* enable/disable Virtual VMLOAD VMSAVE */
211 static int vls = true;
212 module_param(vls, int, 0444);
213
214 /* enable/disable Virtual GIF */
215 int vgif = true;
216 module_param(vgif, int, 0444);
217
218 /* enable/disable LBR virtualization */
219 int lbrv = true;
220 module_param(lbrv, int, 0444);
221
222 static int tsc_scaling = true;
223 module_param(tsc_scaling, int, 0444);
224
225 /*
226 * enable / disable AVIC. Because the defaults differ for APICv
227 * support between VMX and SVM we cannot use module_param_named.
228 */
229 static bool avic;
230 module_param(avic, bool, 0444);
231
232 bool __read_mostly dump_invalid_vmcb;
233 module_param(dump_invalid_vmcb, bool, 0644);
234
235
236 bool intercept_smi = true;
237 module_param(intercept_smi, bool, 0444);
238
239 bool vnmi = true;
240 module_param(vnmi, bool, 0444);
241
242 static bool svm_gp_erratum_intercept = true;
243
244 static u8 rsm_ins_bytes[] = "\x0f\xaa";
245
246 static unsigned long iopm_base;
247
248 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
249
250 /*
251 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
252 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
253 *
254 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
255 * defer the restoration of TSC_AUX until the CPU returns to userspace.
256 */
257 static int tsc_aux_uret_slot __read_mostly = -1;
258
259 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
260
261 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
262 #define MSRS_RANGE_SIZE 2048
263 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
264
svm_msrpm_offset(u32 msr)265 u32 svm_msrpm_offset(u32 msr)
266 {
267 u32 offset;
268 int i;
269
270 for (i = 0; i < NUM_MSR_MAPS; i++) {
271 if (msr < msrpm_ranges[i] ||
272 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
273 continue;
274
275 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
276 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
277
278 /* Now we have the u8 offset - but need the u32 offset */
279 return offset / 4;
280 }
281
282 /* MSR not in any range */
283 return MSR_INVALID;
284 }
285
286 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
287
get_npt_level(void)288 static int get_npt_level(void)
289 {
290 #ifdef CONFIG_X86_64
291 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
292 #else
293 return PT32E_ROOT_LEVEL;
294 #endif
295 }
296
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)297 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
298 {
299 struct vcpu_svm *svm = to_svm(vcpu);
300 u64 old_efer = vcpu->arch.efer;
301 vcpu->arch.efer = efer;
302
303 if (!npt_enabled) {
304 /* Shadow paging assumes NX to be available. */
305 efer |= EFER_NX;
306
307 if (!(efer & EFER_LMA))
308 efer &= ~EFER_LME;
309 }
310
311 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
312 if (!(efer & EFER_SVME)) {
313 svm_leave_nested(vcpu);
314 svm_set_gif(svm, true);
315 /* #GP intercept is still needed for vmware backdoor */
316 if (!enable_vmware_backdoor)
317 clr_exception_intercept(svm, GP_VECTOR);
318
319 /*
320 * Free the nested guest state, unless we are in SMM.
321 * In this case we will return to the nested guest
322 * as soon as we leave SMM.
323 */
324 if (!is_smm(vcpu))
325 svm_free_nested(svm);
326
327 } else {
328 int ret = svm_allocate_nested(svm);
329
330 if (ret) {
331 vcpu->arch.efer = old_efer;
332 return ret;
333 }
334
335 /*
336 * Never intercept #GP for SEV guests, KVM can't
337 * decrypt guest memory to workaround the erratum.
338 */
339 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
340 set_exception_intercept(svm, GP_VECTOR);
341 }
342 }
343
344 svm->vmcb->save.efer = efer | EFER_SVME;
345 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
346 return 0;
347 }
348
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)349 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
350 {
351 struct vcpu_svm *svm = to_svm(vcpu);
352 u32 ret = 0;
353
354 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
355 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
356 return ret;
357 }
358
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)359 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
360 {
361 struct vcpu_svm *svm = to_svm(vcpu);
362
363 if (mask == 0)
364 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
365 else
366 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
367
368 }
369 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
370 void *insn, int insn_len);
371
__svm_skip_emulated_instruction(struct kvm_vcpu * vcpu,bool commit_side_effects)372 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
373 bool commit_side_effects)
374 {
375 struct vcpu_svm *svm = to_svm(vcpu);
376 unsigned long old_rflags;
377
378 /*
379 * SEV-ES does not expose the next RIP. The RIP update is controlled by
380 * the type of exit and the #VC handler in the guest.
381 */
382 if (sev_es_guest(vcpu->kvm))
383 goto done;
384
385 if (nrips && svm->vmcb->control.next_rip != 0) {
386 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
387 svm->next_rip = svm->vmcb->control.next_rip;
388 }
389
390 if (!svm->next_rip) {
391 /*
392 * FIXME: Drop this when kvm_emulate_instruction() does the
393 * right thing and treats "can't emulate" as outright failure
394 * for EMULTYPE_SKIP.
395 */
396 if (!svm_can_emulate_instruction(vcpu, EMULTYPE_SKIP, NULL, 0))
397 return 0;
398
399 if (unlikely(!commit_side_effects))
400 old_rflags = svm->vmcb->save.rflags;
401
402 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
403 return 0;
404
405 if (unlikely(!commit_side_effects))
406 svm->vmcb->save.rflags = old_rflags;
407 } else {
408 kvm_rip_write(vcpu, svm->next_rip);
409 }
410
411 done:
412 if (likely(commit_side_effects))
413 svm_set_interrupt_shadow(vcpu, 0);
414
415 return 1;
416 }
417
svm_skip_emulated_instruction(struct kvm_vcpu * vcpu)418 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
419 {
420 return __svm_skip_emulated_instruction(vcpu, true);
421 }
422
svm_update_soft_interrupt_rip(struct kvm_vcpu * vcpu)423 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
424 {
425 unsigned long rip, old_rip = kvm_rip_read(vcpu);
426 struct vcpu_svm *svm = to_svm(vcpu);
427
428 /*
429 * Due to architectural shortcomings, the CPU doesn't always provide
430 * NextRIP, e.g. if KVM intercepted an exception that occurred while
431 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip
432 * the instruction even if NextRIP is supported to acquire the next
433 * RIP so that it can be shoved into the NextRIP field, otherwise
434 * hardware will fail to advance guest RIP during event injection.
435 * Drop the exception/interrupt if emulation fails and effectively
436 * retry the instruction, it's the least awful option. If NRIPS is
437 * in use, the skip must not commit any side effects such as clearing
438 * the interrupt shadow or RFLAGS.RF.
439 */
440 if (!__svm_skip_emulated_instruction(vcpu, !nrips))
441 return -EIO;
442
443 rip = kvm_rip_read(vcpu);
444
445 /*
446 * Save the injection information, even when using next_rip, as the
447 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
448 * doesn't complete due to a VM-Exit occurring while the CPU is
449 * vectoring the event. Decoding the instruction isn't guaranteed to
450 * work as there may be no backing instruction, e.g. if the event is
451 * being injected by L1 for L2, or if the guest is patching INT3 into
452 * a different instruction.
453 */
454 svm->soft_int_injected = true;
455 svm->soft_int_csbase = svm->vmcb->save.cs.base;
456 svm->soft_int_old_rip = old_rip;
457 svm->soft_int_next_rip = rip;
458
459 if (nrips)
460 kvm_rip_write(vcpu, old_rip);
461
462 if (static_cpu_has(X86_FEATURE_NRIPS))
463 svm->vmcb->control.next_rip = rip;
464
465 return 0;
466 }
467
svm_inject_exception(struct kvm_vcpu * vcpu)468 static void svm_inject_exception(struct kvm_vcpu *vcpu)
469 {
470 struct kvm_queued_exception *ex = &vcpu->arch.exception;
471 struct vcpu_svm *svm = to_svm(vcpu);
472
473 kvm_deliver_exception_payload(vcpu, ex);
474
475 if (kvm_exception_is_soft(ex->vector) &&
476 svm_update_soft_interrupt_rip(vcpu))
477 return;
478
479 svm->vmcb->control.event_inj = ex->vector
480 | SVM_EVTINJ_VALID
481 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
482 | SVM_EVTINJ_TYPE_EXEPT;
483 svm->vmcb->control.event_inj_err = ex->error_code;
484 }
485
svm_init_erratum_383(void)486 static void svm_init_erratum_383(void)
487 {
488 u32 low, high;
489 int err;
490 u64 val;
491
492 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
493 return;
494
495 /* Use _safe variants to not break nested virtualization */
496 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
497 if (err)
498 return;
499
500 val |= (1ULL << 47);
501
502 low = lower_32_bits(val);
503 high = upper_32_bits(val);
504
505 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
506
507 erratum_383_found = true;
508 }
509
svm_init_osvw(struct kvm_vcpu * vcpu)510 static void svm_init_osvw(struct kvm_vcpu *vcpu)
511 {
512 /*
513 * Guests should see errata 400 and 415 as fixed (assuming that
514 * HLT and IO instructions are intercepted).
515 */
516 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
517 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
518
519 /*
520 * By increasing VCPU's osvw.length to 3 we are telling the guest that
521 * all osvw.status bits inside that length, including bit 0 (which is
522 * reserved for erratum 298), are valid. However, if host processor's
523 * osvw_len is 0 then osvw_status[0] carries no information. We need to
524 * be conservative here and therefore we tell the guest that erratum 298
525 * is present (because we really don't know).
526 */
527 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
528 vcpu->arch.osvw.status |= 1;
529 }
530
__kvm_is_svm_supported(void)531 static bool __kvm_is_svm_supported(void)
532 {
533 int cpu = smp_processor_id();
534 struct cpuinfo_x86 *c = &cpu_data(cpu);
535
536 u64 vm_cr;
537
538 if (c->x86_vendor != X86_VENDOR_AMD &&
539 c->x86_vendor != X86_VENDOR_HYGON) {
540 pr_err("CPU %d isn't AMD or Hygon\n", cpu);
541 return false;
542 }
543
544 if (!cpu_has(c, X86_FEATURE_SVM)) {
545 pr_err("SVM not supported by CPU %d\n", cpu);
546 return false;
547 }
548
549 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
550 pr_info("KVM is unsupported when running as an SEV guest\n");
551 return false;
552 }
553
554 rdmsrl(MSR_VM_CR, vm_cr);
555 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) {
556 pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu);
557 return false;
558 }
559
560 return true;
561 }
562
kvm_is_svm_supported(void)563 static bool kvm_is_svm_supported(void)
564 {
565 bool supported;
566
567 migrate_disable();
568 supported = __kvm_is_svm_supported();
569 migrate_enable();
570
571 return supported;
572 }
573
svm_check_processor_compat(void)574 static int svm_check_processor_compat(void)
575 {
576 if (!__kvm_is_svm_supported())
577 return -EIO;
578
579 return 0;
580 }
581
__svm_write_tsc_multiplier(u64 multiplier)582 static void __svm_write_tsc_multiplier(u64 multiplier)
583 {
584 if (multiplier == __this_cpu_read(current_tsc_ratio))
585 return;
586
587 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
588 __this_cpu_write(current_tsc_ratio, multiplier);
589 }
590
kvm_cpu_svm_disable(void)591 static inline void kvm_cpu_svm_disable(void)
592 {
593 uint64_t efer;
594
595 wrmsrl(MSR_VM_HSAVE_PA, 0);
596 rdmsrl(MSR_EFER, efer);
597 if (efer & EFER_SVME) {
598 /*
599 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
600 * NMI aren't blocked.
601 */
602 stgi();
603 wrmsrl(MSR_EFER, efer & ~EFER_SVME);
604 }
605 }
606
svm_emergency_disable(void)607 static void svm_emergency_disable(void)
608 {
609 kvm_rebooting = true;
610
611 kvm_cpu_svm_disable();
612 }
613
svm_hardware_disable(void)614 static void svm_hardware_disable(void)
615 {
616 /* Make sure we clean up behind us */
617 if (tsc_scaling)
618 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
619
620 kvm_cpu_svm_disable();
621
622 amd_pmu_disable_virt();
623 }
624
svm_hardware_enable(void)625 static int svm_hardware_enable(void)
626 {
627
628 struct svm_cpu_data *sd;
629 uint64_t efer;
630 int me = raw_smp_processor_id();
631
632 rdmsrl(MSR_EFER, efer);
633 if (efer & EFER_SVME)
634 return -EBUSY;
635
636 sd = per_cpu_ptr(&svm_data, me);
637 sd->asid_generation = 1;
638 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
639 sd->next_asid = sd->max_asid + 1;
640 sd->min_asid = max_sev_asid + 1;
641
642 wrmsrl(MSR_EFER, efer | EFER_SVME);
643
644 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
645
646 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
647 /*
648 * Set the default value, even if we don't use TSC scaling
649 * to avoid having stale value in the msr
650 */
651 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
652 }
653
654
655 /*
656 * Get OSVW bits.
657 *
658 * Note that it is possible to have a system with mixed processor
659 * revisions and therefore different OSVW bits. If bits are not the same
660 * on different processors then choose the worst case (i.e. if erratum
661 * is present on one processor and not on another then assume that the
662 * erratum is present everywhere).
663 */
664 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
665 uint64_t len, status = 0;
666 int err;
667
668 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
669 if (!err)
670 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
671 &err);
672
673 if (err)
674 osvw_status = osvw_len = 0;
675 else {
676 if (len < osvw_len)
677 osvw_len = len;
678 osvw_status |= status;
679 osvw_status &= (1ULL << osvw_len) - 1;
680 }
681 } else
682 osvw_status = osvw_len = 0;
683
684 svm_init_erratum_383();
685
686 amd_pmu_enable_virt();
687
688 /*
689 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
690 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
691 * Since Linux does not change the value of TSC_AUX once set, prime the
692 * TSC_AUX field now to avoid a RDMSR on every vCPU run.
693 */
694 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
695 struct sev_es_save_area *hostsa;
696 u32 __maybe_unused msr_hi;
697
698 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
699
700 rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi);
701 }
702
703 return 0;
704 }
705
svm_cpu_uninit(int cpu)706 static void svm_cpu_uninit(int cpu)
707 {
708 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
709
710 if (!sd->save_area)
711 return;
712
713 kfree(sd->sev_vmcbs);
714 __free_page(sd->save_area);
715 sd->save_area_pa = 0;
716 sd->save_area = NULL;
717 }
718
svm_cpu_init(int cpu)719 static int svm_cpu_init(int cpu)
720 {
721 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
722 int ret = -ENOMEM;
723
724 memset(sd, 0, sizeof(struct svm_cpu_data));
725 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
726 if (!sd->save_area)
727 return ret;
728
729 ret = sev_cpu_init(sd);
730 if (ret)
731 goto free_save_area;
732
733 sd->save_area_pa = __sme_page_pa(sd->save_area);
734 return 0;
735
736 free_save_area:
737 __free_page(sd->save_area);
738 sd->save_area = NULL;
739 return ret;
740
741 }
742
set_dr_intercepts(struct vcpu_svm * svm)743 static void set_dr_intercepts(struct vcpu_svm *svm)
744 {
745 struct vmcb *vmcb = svm->vmcb01.ptr;
746
747 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
748 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
749 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
750 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
751 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
752 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
753 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
754 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
755 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
756 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
757 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
758 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
759 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
760 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
761 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
762 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
763
764 recalc_intercepts(svm);
765 }
766
clr_dr_intercepts(struct vcpu_svm * svm)767 static void clr_dr_intercepts(struct vcpu_svm *svm)
768 {
769 struct vmcb *vmcb = svm->vmcb01.ptr;
770
771 vmcb->control.intercepts[INTERCEPT_DR] = 0;
772
773 recalc_intercepts(svm);
774 }
775
direct_access_msr_slot(u32 msr)776 static int direct_access_msr_slot(u32 msr)
777 {
778 u32 i;
779
780 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
781 if (direct_access_msrs[i].index == msr)
782 return i;
783
784 return -ENOENT;
785 }
786
set_shadow_msr_intercept(struct kvm_vcpu * vcpu,u32 msr,int read,int write)787 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
788 int write)
789 {
790 struct vcpu_svm *svm = to_svm(vcpu);
791 int slot = direct_access_msr_slot(msr);
792
793 if (slot == -ENOENT)
794 return;
795
796 /* Set the shadow bitmaps to the desired intercept states */
797 if (read)
798 set_bit(slot, svm->shadow_msr_intercept.read);
799 else
800 clear_bit(slot, svm->shadow_msr_intercept.read);
801
802 if (write)
803 set_bit(slot, svm->shadow_msr_intercept.write);
804 else
805 clear_bit(slot, svm->shadow_msr_intercept.write);
806 }
807
valid_msr_intercept(u32 index)808 static bool valid_msr_intercept(u32 index)
809 {
810 return direct_access_msr_slot(index) != -ENOENT;
811 }
812
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)813 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
814 {
815 u8 bit_write;
816 unsigned long tmp;
817 u32 offset;
818 u32 *msrpm;
819
820 /*
821 * For non-nested case:
822 * If the L01 MSR bitmap does not intercept the MSR, then we need to
823 * save it.
824 *
825 * For nested case:
826 * If the L02 MSR bitmap does not intercept the MSR, then we need to
827 * save it.
828 */
829 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
830 to_svm(vcpu)->msrpm;
831
832 offset = svm_msrpm_offset(msr);
833 bit_write = 2 * (msr & 0x0f) + 1;
834 tmp = msrpm[offset];
835
836 BUG_ON(offset == MSR_INVALID);
837
838 return test_bit(bit_write, &tmp);
839 }
840
set_msr_interception_bitmap(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)841 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
842 u32 msr, int read, int write)
843 {
844 struct vcpu_svm *svm = to_svm(vcpu);
845 u8 bit_read, bit_write;
846 unsigned long tmp;
847 u32 offset;
848
849 /*
850 * If this warning triggers extend the direct_access_msrs list at the
851 * beginning of the file
852 */
853 WARN_ON(!valid_msr_intercept(msr));
854
855 /* Enforce non allowed MSRs to trap */
856 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
857 read = 0;
858
859 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
860 write = 0;
861
862 offset = svm_msrpm_offset(msr);
863 bit_read = 2 * (msr & 0x0f);
864 bit_write = 2 * (msr & 0x0f) + 1;
865 tmp = msrpm[offset];
866
867 BUG_ON(offset == MSR_INVALID);
868
869 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
870 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
871
872 msrpm[offset] = tmp;
873
874 svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
875 svm->nested.force_msr_bitmap_recalc = true;
876 }
877
set_msr_interception(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)878 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
879 int read, int write)
880 {
881 set_shadow_msr_intercept(vcpu, msr, read, write);
882 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
883 }
884
svm_vcpu_alloc_msrpm(void)885 u32 *svm_vcpu_alloc_msrpm(void)
886 {
887 unsigned int order = get_order(MSRPM_SIZE);
888 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
889 u32 *msrpm;
890
891 if (!pages)
892 return NULL;
893
894 msrpm = page_address(pages);
895 memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
896
897 return msrpm;
898 }
899
svm_vcpu_init_msrpm(struct kvm_vcpu * vcpu,u32 * msrpm)900 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
901 {
902 int i;
903
904 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
905 if (!direct_access_msrs[i].always)
906 continue;
907 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
908 }
909 }
910
svm_set_x2apic_msr_interception(struct vcpu_svm * svm,bool intercept)911 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
912 {
913 int i;
914
915 if (intercept == svm->x2avic_msrs_intercepted)
916 return;
917
918 if (!x2avic_enabled)
919 return;
920
921 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
922 int index = direct_access_msrs[i].index;
923
924 if ((index < APIC_BASE_MSR) ||
925 (index > APIC_BASE_MSR + 0xff))
926 continue;
927 set_msr_interception(&svm->vcpu, svm->msrpm, index,
928 !intercept, !intercept);
929 }
930
931 svm->x2avic_msrs_intercepted = intercept;
932 }
933
svm_vcpu_free_msrpm(u32 * msrpm)934 void svm_vcpu_free_msrpm(u32 *msrpm)
935 {
936 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
937 }
938
svm_msr_filter_changed(struct kvm_vcpu * vcpu)939 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
940 {
941 struct vcpu_svm *svm = to_svm(vcpu);
942 u32 i;
943
944 /*
945 * Set intercept permissions for all direct access MSRs again. They
946 * will automatically get filtered through the MSR filter, so we are
947 * back in sync after this.
948 */
949 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
950 u32 msr = direct_access_msrs[i].index;
951 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
952 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
953
954 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
955 }
956 }
957
add_msr_offset(u32 offset)958 static void add_msr_offset(u32 offset)
959 {
960 int i;
961
962 for (i = 0; i < MSRPM_OFFSETS; ++i) {
963
964 /* Offset already in list? */
965 if (msrpm_offsets[i] == offset)
966 return;
967
968 /* Slot used by another offset? */
969 if (msrpm_offsets[i] != MSR_INVALID)
970 continue;
971
972 /* Add offset to list */
973 msrpm_offsets[i] = offset;
974
975 return;
976 }
977
978 /*
979 * If this BUG triggers the msrpm_offsets table has an overflow. Just
980 * increase MSRPM_OFFSETS in this case.
981 */
982 BUG();
983 }
984
init_msrpm_offsets(void)985 static void init_msrpm_offsets(void)
986 {
987 int i;
988
989 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
990
991 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
992 u32 offset;
993
994 offset = svm_msrpm_offset(direct_access_msrs[i].index);
995 BUG_ON(offset == MSR_INVALID);
996
997 add_msr_offset(offset);
998 }
999 }
1000
svm_copy_lbrs(struct vmcb * to_vmcb,struct vmcb * from_vmcb)1001 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
1002 {
1003 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl;
1004 to_vmcb->save.br_from = from_vmcb->save.br_from;
1005 to_vmcb->save.br_to = from_vmcb->save.br_to;
1006 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from;
1007 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to;
1008
1009 vmcb_mark_dirty(to_vmcb, VMCB_LBR);
1010 }
1011
svm_enable_lbrv(struct kvm_vcpu * vcpu)1012 void svm_enable_lbrv(struct kvm_vcpu *vcpu)
1013 {
1014 struct vcpu_svm *svm = to_svm(vcpu);
1015
1016 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1017 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1018 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1019 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1020 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1021
1022 if (sev_es_guest(vcpu->kvm))
1023 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1);
1024
1025 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1026 if (is_guest_mode(vcpu))
1027 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1028 }
1029
svm_disable_lbrv(struct kvm_vcpu * vcpu)1030 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1031 {
1032 struct vcpu_svm *svm = to_svm(vcpu);
1033
1034 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
1035
1036 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1037 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1038 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1039 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1040 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1041
1042 /*
1043 * Move the LBR msrs back to the vmcb01 to avoid copying them
1044 * on nested guest entries.
1045 */
1046 if (is_guest_mode(vcpu))
1047 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1048 }
1049
svm_get_lbr_vmcb(struct vcpu_svm * svm)1050 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1051 {
1052 /*
1053 * If LBR virtualization is disabled, the LBR MSRs are always kept in
1054 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of
1055 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1056 */
1057 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1058 svm->vmcb01.ptr;
1059 }
1060
svm_update_lbrv(struct kvm_vcpu * vcpu)1061 void svm_update_lbrv(struct kvm_vcpu *vcpu)
1062 {
1063 struct vcpu_svm *svm = to_svm(vcpu);
1064 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1065 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1066 (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
1067 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1068
1069 if (enable_lbrv == current_enable_lbrv)
1070 return;
1071
1072 if (enable_lbrv)
1073 svm_enable_lbrv(vcpu);
1074 else
1075 svm_disable_lbrv(vcpu);
1076 }
1077
disable_nmi_singlestep(struct vcpu_svm * svm)1078 void disable_nmi_singlestep(struct vcpu_svm *svm)
1079 {
1080 svm->nmi_singlestep = false;
1081
1082 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1083 /* Clear our flags if they were not set by the guest */
1084 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1085 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1086 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1087 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1088 }
1089 }
1090
grow_ple_window(struct kvm_vcpu * vcpu)1091 static void grow_ple_window(struct kvm_vcpu *vcpu)
1092 {
1093 struct vcpu_svm *svm = to_svm(vcpu);
1094 struct vmcb_control_area *control = &svm->vmcb->control;
1095 int old = control->pause_filter_count;
1096
1097 if (kvm_pause_in_guest(vcpu->kvm))
1098 return;
1099
1100 control->pause_filter_count = __grow_ple_window(old,
1101 pause_filter_count,
1102 pause_filter_count_grow,
1103 pause_filter_count_max);
1104
1105 if (control->pause_filter_count != old) {
1106 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1107 trace_kvm_ple_window_update(vcpu->vcpu_id,
1108 control->pause_filter_count, old);
1109 }
1110 }
1111
shrink_ple_window(struct kvm_vcpu * vcpu)1112 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1113 {
1114 struct vcpu_svm *svm = to_svm(vcpu);
1115 struct vmcb_control_area *control = &svm->vmcb->control;
1116 int old = control->pause_filter_count;
1117
1118 if (kvm_pause_in_guest(vcpu->kvm))
1119 return;
1120
1121 control->pause_filter_count =
1122 __shrink_ple_window(old,
1123 pause_filter_count,
1124 pause_filter_count_shrink,
1125 pause_filter_count);
1126 if (control->pause_filter_count != old) {
1127 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1128 trace_kvm_ple_window_update(vcpu->vcpu_id,
1129 control->pause_filter_count, old);
1130 }
1131 }
1132
svm_hardware_unsetup(void)1133 static void svm_hardware_unsetup(void)
1134 {
1135 int cpu;
1136
1137 sev_hardware_unsetup();
1138
1139 for_each_possible_cpu(cpu)
1140 svm_cpu_uninit(cpu);
1141
1142 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1143 get_order(IOPM_SIZE));
1144 iopm_base = 0;
1145 }
1146
init_seg(struct vmcb_seg * seg)1147 static void init_seg(struct vmcb_seg *seg)
1148 {
1149 seg->selector = 0;
1150 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1151 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1152 seg->limit = 0xffff;
1153 seg->base = 0;
1154 }
1155
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1156 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1157 {
1158 seg->selector = 0;
1159 seg->attrib = SVM_SELECTOR_P_MASK | type;
1160 seg->limit = 0xffff;
1161 seg->base = 0;
1162 }
1163
svm_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1164 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1165 {
1166 struct vcpu_svm *svm = to_svm(vcpu);
1167
1168 return svm->nested.ctl.tsc_offset;
1169 }
1170
svm_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1171 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1172 {
1173 struct vcpu_svm *svm = to_svm(vcpu);
1174
1175 return svm->tsc_ratio_msr;
1176 }
1177
svm_write_tsc_offset(struct kvm_vcpu * vcpu)1178 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1179 {
1180 struct vcpu_svm *svm = to_svm(vcpu);
1181
1182 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1183 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1184 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1185 }
1186
svm_write_tsc_multiplier(struct kvm_vcpu * vcpu)1187 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1188 {
1189 preempt_disable();
1190 if (to_svm(vcpu)->guest_state_loaded)
1191 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1192 preempt_enable();
1193 }
1194
1195 /* Evaluate instruction intercepts that depend on guest CPUID features. */
svm_recalc_instruction_intercepts(struct kvm_vcpu * vcpu,struct vcpu_svm * svm)1196 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1197 struct vcpu_svm *svm)
1198 {
1199 /*
1200 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1201 * roots, or if INVPCID is disabled in the guest to inject #UD.
1202 */
1203 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1204 if (!npt_enabled ||
1205 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1206 svm_set_intercept(svm, INTERCEPT_INVPCID);
1207 else
1208 svm_clr_intercept(svm, INTERCEPT_INVPCID);
1209 }
1210
1211 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1212 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1213 svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1214 else
1215 svm_set_intercept(svm, INTERCEPT_RDTSCP);
1216 }
1217 }
1218
init_vmcb_after_set_cpuid(struct kvm_vcpu * vcpu)1219 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1220 {
1221 struct vcpu_svm *svm = to_svm(vcpu);
1222
1223 if (guest_cpuid_is_intel(vcpu)) {
1224 /*
1225 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1226 * accesses because the processor only stores 32 bits.
1227 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1228 */
1229 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1230 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1231 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1232
1233 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1234 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1235 } else {
1236 /*
1237 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1238 * in VMCB and clear intercepts to avoid #VMEXIT.
1239 */
1240 if (vls) {
1241 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1242 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1243 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1244 }
1245 /* No need to intercept these MSRs */
1246 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1247 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1248 }
1249 }
1250
init_vmcb(struct kvm_vcpu * vcpu)1251 static void init_vmcb(struct kvm_vcpu *vcpu)
1252 {
1253 struct vcpu_svm *svm = to_svm(vcpu);
1254 struct vmcb *vmcb = svm->vmcb01.ptr;
1255 struct vmcb_control_area *control = &vmcb->control;
1256 struct vmcb_save_area *save = &vmcb->save;
1257
1258 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1259 svm_set_intercept(svm, INTERCEPT_CR3_READ);
1260 svm_set_intercept(svm, INTERCEPT_CR4_READ);
1261 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1262 svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1263 svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1264 if (!kvm_vcpu_apicv_active(vcpu))
1265 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1266
1267 set_dr_intercepts(svm);
1268
1269 set_exception_intercept(svm, PF_VECTOR);
1270 set_exception_intercept(svm, UD_VECTOR);
1271 set_exception_intercept(svm, MC_VECTOR);
1272 set_exception_intercept(svm, AC_VECTOR);
1273 set_exception_intercept(svm, DB_VECTOR);
1274 /*
1275 * Guest access to VMware backdoor ports could legitimately
1276 * trigger #GP because of TSS I/O permission bitmap.
1277 * We intercept those #GP and allow access to them anyway
1278 * as VMware does.
1279 */
1280 if (enable_vmware_backdoor)
1281 set_exception_intercept(svm, GP_VECTOR);
1282
1283 svm_set_intercept(svm, INTERCEPT_INTR);
1284 svm_set_intercept(svm, INTERCEPT_NMI);
1285
1286 if (intercept_smi)
1287 svm_set_intercept(svm, INTERCEPT_SMI);
1288
1289 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1290 svm_set_intercept(svm, INTERCEPT_RDPMC);
1291 svm_set_intercept(svm, INTERCEPT_CPUID);
1292 svm_set_intercept(svm, INTERCEPT_INVD);
1293 svm_set_intercept(svm, INTERCEPT_INVLPG);
1294 svm_set_intercept(svm, INTERCEPT_INVLPGA);
1295 svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1296 svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1297 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1298 svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1299 svm_set_intercept(svm, INTERCEPT_VMRUN);
1300 svm_set_intercept(svm, INTERCEPT_VMMCALL);
1301 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1302 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1303 svm_set_intercept(svm, INTERCEPT_STGI);
1304 svm_set_intercept(svm, INTERCEPT_CLGI);
1305 svm_set_intercept(svm, INTERCEPT_SKINIT);
1306 svm_set_intercept(svm, INTERCEPT_WBINVD);
1307 svm_set_intercept(svm, INTERCEPT_XSETBV);
1308 svm_set_intercept(svm, INTERCEPT_RDPRU);
1309 svm_set_intercept(svm, INTERCEPT_RSM);
1310
1311 if (!kvm_mwait_in_guest(vcpu->kvm)) {
1312 svm_set_intercept(svm, INTERCEPT_MONITOR);
1313 svm_set_intercept(svm, INTERCEPT_MWAIT);
1314 }
1315
1316 if (!kvm_hlt_in_guest(vcpu->kvm))
1317 svm_set_intercept(svm, INTERCEPT_HLT);
1318
1319 control->iopm_base_pa = __sme_set(iopm_base);
1320 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1321 control->int_ctl = V_INTR_MASKING_MASK;
1322
1323 init_seg(&save->es);
1324 init_seg(&save->ss);
1325 init_seg(&save->ds);
1326 init_seg(&save->fs);
1327 init_seg(&save->gs);
1328
1329 save->cs.selector = 0xf000;
1330 save->cs.base = 0xffff0000;
1331 /* Executable/Readable Code Segment */
1332 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1333 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1334 save->cs.limit = 0xffff;
1335
1336 save->gdtr.base = 0;
1337 save->gdtr.limit = 0xffff;
1338 save->idtr.base = 0;
1339 save->idtr.limit = 0xffff;
1340
1341 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1342 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1343
1344 if (npt_enabled) {
1345 /* Setup VMCB for Nested Paging */
1346 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1347 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1348 clr_exception_intercept(svm, PF_VECTOR);
1349 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1350 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1351 save->g_pat = vcpu->arch.pat;
1352 save->cr3 = 0;
1353 }
1354 svm->current_vmcb->asid_generation = 0;
1355 svm->asid = 0;
1356
1357 svm->nested.vmcb12_gpa = INVALID_GPA;
1358 svm->nested.last_vmcb12_gpa = INVALID_GPA;
1359
1360 if (!kvm_pause_in_guest(vcpu->kvm)) {
1361 control->pause_filter_count = pause_filter_count;
1362 if (pause_filter_thresh)
1363 control->pause_filter_thresh = pause_filter_thresh;
1364 svm_set_intercept(svm, INTERCEPT_PAUSE);
1365 } else {
1366 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1367 }
1368
1369 svm_recalc_instruction_intercepts(vcpu, svm);
1370
1371 /*
1372 * If the host supports V_SPEC_CTRL then disable the interception
1373 * of MSR_IA32_SPEC_CTRL.
1374 */
1375 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1376 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1377
1378 if (kvm_vcpu_apicv_active(vcpu))
1379 avic_init_vmcb(svm, vmcb);
1380
1381 if (vnmi)
1382 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1383
1384 if (vgif) {
1385 svm_clr_intercept(svm, INTERCEPT_STGI);
1386 svm_clr_intercept(svm, INTERCEPT_CLGI);
1387 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1388 }
1389
1390 if (sev_guest(vcpu->kvm))
1391 sev_init_vmcb(svm);
1392
1393 svm_hv_init_vmcb(vmcb);
1394 init_vmcb_after_set_cpuid(vcpu);
1395
1396 vmcb_mark_all_dirty(vmcb);
1397
1398 enable_gif(svm);
1399 }
1400
__svm_vcpu_reset(struct kvm_vcpu * vcpu)1401 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1402 {
1403 struct vcpu_svm *svm = to_svm(vcpu);
1404
1405 svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1406
1407 svm_init_osvw(vcpu);
1408 vcpu->arch.microcode_version = 0x01000065;
1409 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1410
1411 svm->nmi_masked = false;
1412 svm->awaiting_iret_completion = false;
1413
1414 if (sev_es_guest(vcpu->kvm))
1415 sev_es_vcpu_reset(svm);
1416 }
1417
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1418 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1419 {
1420 struct vcpu_svm *svm = to_svm(vcpu);
1421
1422 svm->spec_ctrl = 0;
1423 svm->virt_spec_ctrl = 0;
1424
1425 init_vmcb(vcpu);
1426
1427 if (!init_event)
1428 __svm_vcpu_reset(vcpu);
1429 }
1430
svm_switch_vmcb(struct vcpu_svm * svm,struct kvm_vmcb_info * target_vmcb)1431 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1432 {
1433 svm->current_vmcb = target_vmcb;
1434 svm->vmcb = target_vmcb->ptr;
1435 }
1436
svm_vcpu_create(struct kvm_vcpu * vcpu)1437 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1438 {
1439 struct vcpu_svm *svm;
1440 struct page *vmcb01_page;
1441 struct page *vmsa_page = NULL;
1442 int err;
1443
1444 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1445 svm = to_svm(vcpu);
1446
1447 err = -ENOMEM;
1448 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1449 if (!vmcb01_page)
1450 goto out;
1451
1452 if (sev_es_guest(vcpu->kvm)) {
1453 /*
1454 * SEV-ES guests require a separate VMSA page used to contain
1455 * the encrypted register state of the guest.
1456 */
1457 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1458 if (!vmsa_page)
1459 goto error_free_vmcb_page;
1460
1461 /*
1462 * SEV-ES guests maintain an encrypted version of their FPU
1463 * state which is restored and saved on VMRUN and VMEXIT.
1464 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1465 * do xsave/xrstor on it.
1466 */
1467 fpstate_set_confidential(&vcpu->arch.guest_fpu);
1468 }
1469
1470 err = avic_init_vcpu(svm);
1471 if (err)
1472 goto error_free_vmsa_page;
1473
1474 svm->msrpm = svm_vcpu_alloc_msrpm();
1475 if (!svm->msrpm) {
1476 err = -ENOMEM;
1477 goto error_free_vmsa_page;
1478 }
1479
1480 svm->x2avic_msrs_intercepted = true;
1481
1482 svm->vmcb01.ptr = page_address(vmcb01_page);
1483 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1484 svm_switch_vmcb(svm, &svm->vmcb01);
1485
1486 if (vmsa_page)
1487 svm->sev_es.vmsa = page_address(vmsa_page);
1488
1489 svm->guest_state_loaded = false;
1490
1491 return 0;
1492
1493 error_free_vmsa_page:
1494 if (vmsa_page)
1495 __free_page(vmsa_page);
1496 error_free_vmcb_page:
1497 __free_page(vmcb01_page);
1498 out:
1499 return err;
1500 }
1501
svm_clear_current_vmcb(struct vmcb * vmcb)1502 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1503 {
1504 int i;
1505
1506 for_each_online_cpu(i)
1507 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1508 }
1509
svm_vcpu_free(struct kvm_vcpu * vcpu)1510 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1511 {
1512 struct vcpu_svm *svm = to_svm(vcpu);
1513
1514 /*
1515 * The vmcb page can be recycled, causing a false negative in
1516 * svm_vcpu_load(). So, ensure that no logical CPU has this
1517 * vmcb page recorded as its current vmcb.
1518 */
1519 svm_clear_current_vmcb(svm->vmcb);
1520
1521 svm_leave_nested(vcpu);
1522 svm_free_nested(svm);
1523
1524 sev_free_vcpu(vcpu);
1525
1526 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1527 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1528 }
1529
svm_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1530 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1531 {
1532 struct vcpu_svm *svm = to_svm(vcpu);
1533 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1534
1535 if (sev_es_guest(vcpu->kvm))
1536 sev_es_unmap_ghcb(svm);
1537
1538 if (svm->guest_state_loaded)
1539 return;
1540
1541 /*
1542 * Save additional host state that will be restored on VMEXIT (sev-es)
1543 * or subsequent vmload of host save area.
1544 */
1545 vmsave(sd->save_area_pa);
1546 if (sev_es_guest(vcpu->kvm)) {
1547 struct sev_es_save_area *hostsa;
1548 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1549
1550 sev_es_prepare_switch_to_guest(hostsa);
1551 }
1552
1553 if (tsc_scaling)
1554 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1555
1556 /*
1557 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1558 * available. The user return MSR support is not required in this case
1559 * because TSC_AUX is restored on #VMEXIT from the host save area
1560 * (which has been initialized in svm_hardware_enable()).
1561 */
1562 if (likely(tsc_aux_uret_slot >= 0) &&
1563 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1564 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1565
1566 svm->guest_state_loaded = true;
1567 }
1568
svm_prepare_host_switch(struct kvm_vcpu * vcpu)1569 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1570 {
1571 to_svm(vcpu)->guest_state_loaded = false;
1572 }
1573
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1574 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1575 {
1576 struct vcpu_svm *svm = to_svm(vcpu);
1577 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1578
1579 if (sd->current_vmcb != svm->vmcb) {
1580 sd->current_vmcb = svm->vmcb;
1581
1582 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
1583 indirect_branch_prediction_barrier();
1584 }
1585 if (kvm_vcpu_apicv_active(vcpu))
1586 avic_vcpu_load(vcpu, cpu);
1587 }
1588
svm_vcpu_put(struct kvm_vcpu * vcpu)1589 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1590 {
1591 if (kvm_vcpu_apicv_active(vcpu))
1592 avic_vcpu_put(vcpu);
1593
1594 svm_prepare_host_switch(vcpu);
1595
1596 ++vcpu->stat.host_state_reload;
1597 }
1598
svm_get_rflags(struct kvm_vcpu * vcpu)1599 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1600 {
1601 struct vcpu_svm *svm = to_svm(vcpu);
1602 unsigned long rflags = svm->vmcb->save.rflags;
1603
1604 if (svm->nmi_singlestep) {
1605 /* Hide our flags if they were not set by the guest */
1606 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1607 rflags &= ~X86_EFLAGS_TF;
1608 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1609 rflags &= ~X86_EFLAGS_RF;
1610 }
1611 return rflags;
1612 }
1613
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1614 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1615 {
1616 if (to_svm(vcpu)->nmi_singlestep)
1617 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1618
1619 /*
1620 * Any change of EFLAGS.VM is accompanied by a reload of SS
1621 * (caused by either a task switch or an inter-privilege IRET),
1622 * so we do not need to update the CPL here.
1623 */
1624 to_svm(vcpu)->vmcb->save.rflags = rflags;
1625 }
1626
svm_get_if_flag(struct kvm_vcpu * vcpu)1627 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1628 {
1629 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1630
1631 return sev_es_guest(vcpu->kvm)
1632 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1633 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1634 }
1635
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1636 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1637 {
1638 kvm_register_mark_available(vcpu, reg);
1639
1640 switch (reg) {
1641 case VCPU_EXREG_PDPTR:
1642 /*
1643 * When !npt_enabled, mmu->pdptrs[] is already available since
1644 * it is always updated per SDM when moving to CRs.
1645 */
1646 if (npt_enabled)
1647 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1648 break;
1649 default:
1650 KVM_BUG_ON(1, vcpu->kvm);
1651 }
1652 }
1653
svm_set_vintr(struct vcpu_svm * svm)1654 static void svm_set_vintr(struct vcpu_svm *svm)
1655 {
1656 struct vmcb_control_area *control;
1657
1658 /*
1659 * The following fields are ignored when AVIC is enabled
1660 */
1661 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1662
1663 svm_set_intercept(svm, INTERCEPT_VINTR);
1664
1665 /*
1666 * Recalculating intercepts may have cleared the VINTR intercept. If
1667 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1668 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1669 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1670 * interrupts will never be unblocked while L2 is running.
1671 */
1672 if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1673 return;
1674
1675 /*
1676 * This is just a dummy VINTR to actually cause a vmexit to happen.
1677 * Actual injection of virtual interrupts happens through EVENTINJ.
1678 */
1679 control = &svm->vmcb->control;
1680 control->int_vector = 0x0;
1681 control->int_ctl &= ~V_INTR_PRIO_MASK;
1682 control->int_ctl |= V_IRQ_MASK |
1683 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1684 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1685 }
1686
svm_clear_vintr(struct vcpu_svm * svm)1687 static void svm_clear_vintr(struct vcpu_svm *svm)
1688 {
1689 svm_clr_intercept(svm, INTERCEPT_VINTR);
1690
1691 /* Drop int_ctl fields related to VINTR injection. */
1692 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1693 if (is_guest_mode(&svm->vcpu)) {
1694 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1695
1696 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1697 (svm->nested.ctl.int_ctl & V_TPR_MASK));
1698
1699 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1700 V_IRQ_INJECTION_BITS_MASK;
1701
1702 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1703 }
1704
1705 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1706 }
1707
svm_seg(struct kvm_vcpu * vcpu,int seg)1708 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1709 {
1710 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1711 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1712
1713 switch (seg) {
1714 case VCPU_SREG_CS: return &save->cs;
1715 case VCPU_SREG_DS: return &save->ds;
1716 case VCPU_SREG_ES: return &save->es;
1717 case VCPU_SREG_FS: return &save01->fs;
1718 case VCPU_SREG_GS: return &save01->gs;
1719 case VCPU_SREG_SS: return &save->ss;
1720 case VCPU_SREG_TR: return &save01->tr;
1721 case VCPU_SREG_LDTR: return &save01->ldtr;
1722 }
1723 BUG();
1724 return NULL;
1725 }
1726
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1727 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1728 {
1729 struct vmcb_seg *s = svm_seg(vcpu, seg);
1730
1731 return s->base;
1732 }
1733
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1734 static void svm_get_segment(struct kvm_vcpu *vcpu,
1735 struct kvm_segment *var, int seg)
1736 {
1737 struct vmcb_seg *s = svm_seg(vcpu, seg);
1738
1739 var->base = s->base;
1740 var->limit = s->limit;
1741 var->selector = s->selector;
1742 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1743 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1744 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1745 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1746 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1747 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1748 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1749
1750 /*
1751 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1752 * However, the SVM spec states that the G bit is not observed by the
1753 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1754 * So let's synthesize a legal G bit for all segments, this helps
1755 * running KVM nested. It also helps cross-vendor migration, because
1756 * Intel's vmentry has a check on the 'G' bit.
1757 */
1758 var->g = s->limit > 0xfffff;
1759
1760 /*
1761 * AMD's VMCB does not have an explicit unusable field, so emulate it
1762 * for cross vendor migration purposes by "not present"
1763 */
1764 var->unusable = !var->present;
1765
1766 switch (seg) {
1767 case VCPU_SREG_TR:
1768 /*
1769 * Work around a bug where the busy flag in the tr selector
1770 * isn't exposed
1771 */
1772 var->type |= 0x2;
1773 break;
1774 case VCPU_SREG_DS:
1775 case VCPU_SREG_ES:
1776 case VCPU_SREG_FS:
1777 case VCPU_SREG_GS:
1778 /*
1779 * The accessed bit must always be set in the segment
1780 * descriptor cache, although it can be cleared in the
1781 * descriptor, the cached bit always remains at 1. Since
1782 * Intel has a check on this, set it here to support
1783 * cross-vendor migration.
1784 */
1785 if (!var->unusable)
1786 var->type |= 0x1;
1787 break;
1788 case VCPU_SREG_SS:
1789 /*
1790 * On AMD CPUs sometimes the DB bit in the segment
1791 * descriptor is left as 1, although the whole segment has
1792 * been made unusable. Clear it here to pass an Intel VMX
1793 * entry check when cross vendor migrating.
1794 */
1795 if (var->unusable)
1796 var->db = 0;
1797 /* This is symmetric with svm_set_segment() */
1798 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1799 break;
1800 }
1801 }
1802
svm_get_cpl(struct kvm_vcpu * vcpu)1803 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1804 {
1805 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1806
1807 return save->cpl;
1808 }
1809
svm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)1810 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1811 {
1812 struct kvm_segment cs;
1813
1814 svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1815 *db = cs.db;
1816 *l = cs.l;
1817 }
1818
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1819 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1820 {
1821 struct vcpu_svm *svm = to_svm(vcpu);
1822
1823 dt->size = svm->vmcb->save.idtr.limit;
1824 dt->address = svm->vmcb->save.idtr.base;
1825 }
1826
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1827 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1828 {
1829 struct vcpu_svm *svm = to_svm(vcpu);
1830
1831 svm->vmcb->save.idtr.limit = dt->size;
1832 svm->vmcb->save.idtr.base = dt->address ;
1833 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1834 }
1835
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1836 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1837 {
1838 struct vcpu_svm *svm = to_svm(vcpu);
1839
1840 dt->size = svm->vmcb->save.gdtr.limit;
1841 dt->address = svm->vmcb->save.gdtr.base;
1842 }
1843
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1844 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1845 {
1846 struct vcpu_svm *svm = to_svm(vcpu);
1847
1848 svm->vmcb->save.gdtr.limit = dt->size;
1849 svm->vmcb->save.gdtr.base = dt->address ;
1850 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1851 }
1852
sev_post_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1853 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1854 {
1855 struct vcpu_svm *svm = to_svm(vcpu);
1856
1857 /*
1858 * For guests that don't set guest_state_protected, the cr3 update is
1859 * handled via kvm_mmu_load() while entering the guest. For guests
1860 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1861 * VMCB save area now, since the save area will become the initial
1862 * contents of the VMSA, and future VMCB save area updates won't be
1863 * seen.
1864 */
1865 if (sev_es_guest(vcpu->kvm)) {
1866 svm->vmcb->save.cr3 = cr3;
1867 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1868 }
1869 }
1870
svm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1871 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1872 {
1873 return true;
1874 }
1875
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1876 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1877 {
1878 struct vcpu_svm *svm = to_svm(vcpu);
1879 u64 hcr0 = cr0;
1880 bool old_paging = is_paging(vcpu);
1881
1882 #ifdef CONFIG_X86_64
1883 if (vcpu->arch.efer & EFER_LME) {
1884 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1885 vcpu->arch.efer |= EFER_LMA;
1886 if (!vcpu->arch.guest_state_protected)
1887 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1888 }
1889
1890 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1891 vcpu->arch.efer &= ~EFER_LMA;
1892 if (!vcpu->arch.guest_state_protected)
1893 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1894 }
1895 }
1896 #endif
1897 vcpu->arch.cr0 = cr0;
1898
1899 if (!npt_enabled) {
1900 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1901 if (old_paging != is_paging(vcpu))
1902 svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1903 }
1904
1905 /*
1906 * re-enable caching here because the QEMU bios
1907 * does not do it - this results in some delay at
1908 * reboot
1909 */
1910 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1911 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1912
1913 svm->vmcb->save.cr0 = hcr0;
1914 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1915
1916 /*
1917 * SEV-ES guests must always keep the CR intercepts cleared. CR
1918 * tracking is done using the CR write traps.
1919 */
1920 if (sev_es_guest(vcpu->kvm))
1921 return;
1922
1923 if (hcr0 == cr0) {
1924 /* Selective CR0 write remains on. */
1925 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1926 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1927 } else {
1928 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1929 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1930 }
1931 }
1932
svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1933 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1934 {
1935 return true;
1936 }
1937
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1938 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1939 {
1940 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1941 unsigned long old_cr4 = vcpu->arch.cr4;
1942
1943 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1944 svm_flush_tlb_current(vcpu);
1945
1946 vcpu->arch.cr4 = cr4;
1947 if (!npt_enabled) {
1948 cr4 |= X86_CR4_PAE;
1949
1950 if (!is_paging(vcpu))
1951 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1952 }
1953 cr4 |= host_cr4_mce;
1954 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1955 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1956
1957 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1958 kvm_update_cpuid_runtime(vcpu);
1959 }
1960
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1961 static void svm_set_segment(struct kvm_vcpu *vcpu,
1962 struct kvm_segment *var, int seg)
1963 {
1964 struct vcpu_svm *svm = to_svm(vcpu);
1965 struct vmcb_seg *s = svm_seg(vcpu, seg);
1966
1967 s->base = var->base;
1968 s->limit = var->limit;
1969 s->selector = var->selector;
1970 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1971 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1972 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1973 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1974 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1975 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1976 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1977 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1978
1979 /*
1980 * This is always accurate, except if SYSRET returned to a segment
1981 * with SS.DPL != 3. Intel does not have this quirk, and always
1982 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1983 * would entail passing the CPL to userspace and back.
1984 */
1985 if (seg == VCPU_SREG_SS)
1986 /* This is symmetric with svm_get_segment() */
1987 svm->vmcb->save.cpl = (var->dpl & 3);
1988
1989 vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1990 }
1991
svm_update_exception_bitmap(struct kvm_vcpu * vcpu)1992 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1993 {
1994 struct vcpu_svm *svm = to_svm(vcpu);
1995
1996 clr_exception_intercept(svm, BP_VECTOR);
1997
1998 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1999 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2000 set_exception_intercept(svm, BP_VECTOR);
2001 }
2002 }
2003
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)2004 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2005 {
2006 if (sd->next_asid > sd->max_asid) {
2007 ++sd->asid_generation;
2008 sd->next_asid = sd->min_asid;
2009 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2010 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2011 }
2012
2013 svm->current_vmcb->asid_generation = sd->asid_generation;
2014 svm->asid = sd->next_asid++;
2015 }
2016
svm_set_dr6(struct vcpu_svm * svm,unsigned long value)2017 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
2018 {
2019 struct vmcb *vmcb = svm->vmcb;
2020
2021 if (svm->vcpu.arch.guest_state_protected)
2022 return;
2023
2024 if (unlikely(value != vmcb->save.dr6)) {
2025 vmcb->save.dr6 = value;
2026 vmcb_mark_dirty(vmcb, VMCB_DR);
2027 }
2028 }
2029
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)2030 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2031 {
2032 struct vcpu_svm *svm = to_svm(vcpu);
2033
2034 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2035 return;
2036
2037 get_debugreg(vcpu->arch.db[0], 0);
2038 get_debugreg(vcpu->arch.db[1], 1);
2039 get_debugreg(vcpu->arch.db[2], 2);
2040 get_debugreg(vcpu->arch.db[3], 3);
2041 /*
2042 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2043 * because db_interception might need it. We can do it before vmentry.
2044 */
2045 vcpu->arch.dr6 = svm->vmcb->save.dr6;
2046 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2047 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2048 set_dr_intercepts(svm);
2049 }
2050
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)2051 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2052 {
2053 struct vcpu_svm *svm = to_svm(vcpu);
2054
2055 if (vcpu->arch.guest_state_protected)
2056 return;
2057
2058 svm->vmcb->save.dr7 = value;
2059 vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2060 }
2061
pf_interception(struct kvm_vcpu * vcpu)2062 static int pf_interception(struct kvm_vcpu *vcpu)
2063 {
2064 struct vcpu_svm *svm = to_svm(vcpu);
2065
2066 u64 fault_address = svm->vmcb->control.exit_info_2;
2067 u64 error_code = svm->vmcb->control.exit_info_1;
2068
2069 return kvm_handle_page_fault(vcpu, error_code, fault_address,
2070 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2071 svm->vmcb->control.insn_bytes : NULL,
2072 svm->vmcb->control.insn_len);
2073 }
2074
npf_interception(struct kvm_vcpu * vcpu)2075 static int npf_interception(struct kvm_vcpu *vcpu)
2076 {
2077 struct vcpu_svm *svm = to_svm(vcpu);
2078
2079 u64 fault_address = svm->vmcb->control.exit_info_2;
2080 u64 error_code = svm->vmcb->control.exit_info_1;
2081
2082 trace_kvm_page_fault(vcpu, fault_address, error_code);
2083 return kvm_mmu_page_fault(vcpu, fault_address, error_code,
2084 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2085 svm->vmcb->control.insn_bytes : NULL,
2086 svm->vmcb->control.insn_len);
2087 }
2088
db_interception(struct kvm_vcpu * vcpu)2089 static int db_interception(struct kvm_vcpu *vcpu)
2090 {
2091 struct kvm_run *kvm_run = vcpu->run;
2092 struct vcpu_svm *svm = to_svm(vcpu);
2093
2094 if (!(vcpu->guest_debug &
2095 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2096 !svm->nmi_singlestep) {
2097 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2098 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2099 return 1;
2100 }
2101
2102 if (svm->nmi_singlestep) {
2103 disable_nmi_singlestep(svm);
2104 /* Make sure we check for pending NMIs upon entry */
2105 kvm_make_request(KVM_REQ_EVENT, vcpu);
2106 }
2107
2108 if (vcpu->guest_debug &
2109 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2110 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2111 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2112 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2113 kvm_run->debug.arch.pc =
2114 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2115 kvm_run->debug.arch.exception = DB_VECTOR;
2116 return 0;
2117 }
2118
2119 return 1;
2120 }
2121
bp_interception(struct kvm_vcpu * vcpu)2122 static int bp_interception(struct kvm_vcpu *vcpu)
2123 {
2124 struct vcpu_svm *svm = to_svm(vcpu);
2125 struct kvm_run *kvm_run = vcpu->run;
2126
2127 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2128 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2129 kvm_run->debug.arch.exception = BP_VECTOR;
2130 return 0;
2131 }
2132
ud_interception(struct kvm_vcpu * vcpu)2133 static int ud_interception(struct kvm_vcpu *vcpu)
2134 {
2135 return handle_ud(vcpu);
2136 }
2137
ac_interception(struct kvm_vcpu * vcpu)2138 static int ac_interception(struct kvm_vcpu *vcpu)
2139 {
2140 kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2141 return 1;
2142 }
2143
is_erratum_383(void)2144 static bool is_erratum_383(void)
2145 {
2146 int err, i;
2147 u64 value;
2148
2149 if (!erratum_383_found)
2150 return false;
2151
2152 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2153 if (err)
2154 return false;
2155
2156 /* Bit 62 may or may not be set for this mce */
2157 value &= ~(1ULL << 62);
2158
2159 if (value != 0xb600000000010015ULL)
2160 return false;
2161
2162 /* Clear MCi_STATUS registers */
2163 for (i = 0; i < 6; ++i)
2164 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2165
2166 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2167 if (!err) {
2168 u32 low, high;
2169
2170 value &= ~(1ULL << 2);
2171 low = lower_32_bits(value);
2172 high = upper_32_bits(value);
2173
2174 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2175 }
2176
2177 /* Flush tlb to evict multi-match entries */
2178 __flush_tlb_all();
2179
2180 return true;
2181 }
2182
svm_handle_mce(struct kvm_vcpu * vcpu)2183 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2184 {
2185 if (is_erratum_383()) {
2186 /*
2187 * Erratum 383 triggered. Guest state is corrupt so kill the
2188 * guest.
2189 */
2190 pr_err("Guest triggered AMD Erratum 383\n");
2191
2192 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2193
2194 return;
2195 }
2196
2197 /*
2198 * On an #MC intercept the MCE handler is not called automatically in
2199 * the host. So do it by hand here.
2200 */
2201 kvm_machine_check();
2202 }
2203
mc_interception(struct kvm_vcpu * vcpu)2204 static int mc_interception(struct kvm_vcpu *vcpu)
2205 {
2206 return 1;
2207 }
2208
shutdown_interception(struct kvm_vcpu * vcpu)2209 static int shutdown_interception(struct kvm_vcpu *vcpu)
2210 {
2211 struct kvm_run *kvm_run = vcpu->run;
2212 struct vcpu_svm *svm = to_svm(vcpu);
2213
2214 /*
2215 * The VM save area has already been encrypted so it
2216 * cannot be reinitialized - just terminate.
2217 */
2218 if (sev_es_guest(vcpu->kvm))
2219 return -EINVAL;
2220
2221 /*
2222 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put
2223 * the VMCB in a known good state. Unfortuately, KVM doesn't have
2224 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2225 * userspace. At a platform view, INIT is acceptable behavior as
2226 * there exist bare metal platforms that automatically INIT the CPU
2227 * in response to shutdown.
2228 */
2229 clear_page(svm->vmcb);
2230 kvm_vcpu_reset(vcpu, true);
2231
2232 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2233 return 0;
2234 }
2235
io_interception(struct kvm_vcpu * vcpu)2236 static int io_interception(struct kvm_vcpu *vcpu)
2237 {
2238 struct vcpu_svm *svm = to_svm(vcpu);
2239 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2240 int size, in, string;
2241 unsigned port;
2242
2243 ++vcpu->stat.io_exits;
2244 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2245 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2246 port = io_info >> 16;
2247 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2248
2249 if (string) {
2250 if (sev_es_guest(vcpu->kvm))
2251 return sev_es_string_io(svm, size, port, in);
2252 else
2253 return kvm_emulate_instruction(vcpu, 0);
2254 }
2255
2256 svm->next_rip = svm->vmcb->control.exit_info_2;
2257
2258 return kvm_fast_pio(vcpu, size, port, in);
2259 }
2260
nmi_interception(struct kvm_vcpu * vcpu)2261 static int nmi_interception(struct kvm_vcpu *vcpu)
2262 {
2263 return 1;
2264 }
2265
smi_interception(struct kvm_vcpu * vcpu)2266 static int smi_interception(struct kvm_vcpu *vcpu)
2267 {
2268 return 1;
2269 }
2270
intr_interception(struct kvm_vcpu * vcpu)2271 static int intr_interception(struct kvm_vcpu *vcpu)
2272 {
2273 ++vcpu->stat.irq_exits;
2274 return 1;
2275 }
2276
vmload_vmsave_interception(struct kvm_vcpu * vcpu,bool vmload)2277 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2278 {
2279 struct vcpu_svm *svm = to_svm(vcpu);
2280 struct vmcb *vmcb12;
2281 struct kvm_host_map map;
2282 int ret;
2283
2284 if (nested_svm_check_permissions(vcpu))
2285 return 1;
2286
2287 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2288 if (ret) {
2289 if (ret == -EINVAL)
2290 kvm_inject_gp(vcpu, 0);
2291 return 1;
2292 }
2293
2294 vmcb12 = map.hva;
2295
2296 ret = kvm_skip_emulated_instruction(vcpu);
2297
2298 if (vmload) {
2299 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2300 svm->sysenter_eip_hi = 0;
2301 svm->sysenter_esp_hi = 0;
2302 } else {
2303 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2304 }
2305
2306 kvm_vcpu_unmap(vcpu, &map, true);
2307
2308 return ret;
2309 }
2310
vmload_interception(struct kvm_vcpu * vcpu)2311 static int vmload_interception(struct kvm_vcpu *vcpu)
2312 {
2313 return vmload_vmsave_interception(vcpu, true);
2314 }
2315
vmsave_interception(struct kvm_vcpu * vcpu)2316 static int vmsave_interception(struct kvm_vcpu *vcpu)
2317 {
2318 return vmload_vmsave_interception(vcpu, false);
2319 }
2320
vmrun_interception(struct kvm_vcpu * vcpu)2321 static int vmrun_interception(struct kvm_vcpu *vcpu)
2322 {
2323 if (nested_svm_check_permissions(vcpu))
2324 return 1;
2325
2326 return nested_svm_vmrun(vcpu);
2327 }
2328
2329 enum {
2330 NONE_SVM_INSTR,
2331 SVM_INSTR_VMRUN,
2332 SVM_INSTR_VMLOAD,
2333 SVM_INSTR_VMSAVE,
2334 };
2335
2336 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
svm_instr_opcode(struct kvm_vcpu * vcpu)2337 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2338 {
2339 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2340
2341 if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2342 return NONE_SVM_INSTR;
2343
2344 switch (ctxt->modrm) {
2345 case 0xd8: /* VMRUN */
2346 return SVM_INSTR_VMRUN;
2347 case 0xda: /* VMLOAD */
2348 return SVM_INSTR_VMLOAD;
2349 case 0xdb: /* VMSAVE */
2350 return SVM_INSTR_VMSAVE;
2351 default:
2352 break;
2353 }
2354
2355 return NONE_SVM_INSTR;
2356 }
2357
emulate_svm_instr(struct kvm_vcpu * vcpu,int opcode)2358 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2359 {
2360 const int guest_mode_exit_codes[] = {
2361 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2362 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2363 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2364 };
2365 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2366 [SVM_INSTR_VMRUN] = vmrun_interception,
2367 [SVM_INSTR_VMLOAD] = vmload_interception,
2368 [SVM_INSTR_VMSAVE] = vmsave_interception,
2369 };
2370 struct vcpu_svm *svm = to_svm(vcpu);
2371 int ret;
2372
2373 if (is_guest_mode(vcpu)) {
2374 /* Returns '1' or -errno on failure, '0' on success. */
2375 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2376 if (ret)
2377 return ret;
2378 return 1;
2379 }
2380 return svm_instr_handlers[opcode](vcpu);
2381 }
2382
2383 /*
2384 * #GP handling code. Note that #GP can be triggered under the following two
2385 * cases:
2386 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2387 * some AMD CPUs when EAX of these instructions are in the reserved memory
2388 * regions (e.g. SMM memory on host).
2389 * 2) VMware backdoor
2390 */
gp_interception(struct kvm_vcpu * vcpu)2391 static int gp_interception(struct kvm_vcpu *vcpu)
2392 {
2393 struct vcpu_svm *svm = to_svm(vcpu);
2394 u32 error_code = svm->vmcb->control.exit_info_1;
2395 int opcode;
2396
2397 /* Both #GP cases have zero error_code */
2398 if (error_code)
2399 goto reinject;
2400
2401 /* Decode the instruction for usage later */
2402 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2403 goto reinject;
2404
2405 opcode = svm_instr_opcode(vcpu);
2406
2407 if (opcode == NONE_SVM_INSTR) {
2408 if (!enable_vmware_backdoor)
2409 goto reinject;
2410
2411 /*
2412 * VMware backdoor emulation on #GP interception only handles
2413 * IN{S}, OUT{S}, and RDPMC.
2414 */
2415 if (!is_guest_mode(vcpu))
2416 return kvm_emulate_instruction(vcpu,
2417 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2418 } else {
2419 /* All SVM instructions expect page aligned RAX */
2420 if (svm->vmcb->save.rax & ~PAGE_MASK)
2421 goto reinject;
2422
2423 return emulate_svm_instr(vcpu, opcode);
2424 }
2425
2426 reinject:
2427 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2428 return 1;
2429 }
2430
svm_set_gif(struct vcpu_svm * svm,bool value)2431 void svm_set_gif(struct vcpu_svm *svm, bool value)
2432 {
2433 if (value) {
2434 /*
2435 * If VGIF is enabled, the STGI intercept is only added to
2436 * detect the opening of the SMI/NMI window; remove it now.
2437 * Likewise, clear the VINTR intercept, we will set it
2438 * again while processing KVM_REQ_EVENT if needed.
2439 */
2440 if (vgif)
2441 svm_clr_intercept(svm, INTERCEPT_STGI);
2442 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2443 svm_clear_vintr(svm);
2444
2445 enable_gif(svm);
2446 if (svm->vcpu.arch.smi_pending ||
2447 svm->vcpu.arch.nmi_pending ||
2448 kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2449 kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2450 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2451 } else {
2452 disable_gif(svm);
2453
2454 /*
2455 * After a CLGI no interrupts should come. But if vGIF is
2456 * in use, we still rely on the VINTR intercept (rather than
2457 * STGI) to detect an open interrupt window.
2458 */
2459 if (!vgif)
2460 svm_clear_vintr(svm);
2461 }
2462 }
2463
stgi_interception(struct kvm_vcpu * vcpu)2464 static int stgi_interception(struct kvm_vcpu *vcpu)
2465 {
2466 int ret;
2467
2468 if (nested_svm_check_permissions(vcpu))
2469 return 1;
2470
2471 ret = kvm_skip_emulated_instruction(vcpu);
2472 svm_set_gif(to_svm(vcpu), true);
2473 return ret;
2474 }
2475
clgi_interception(struct kvm_vcpu * vcpu)2476 static int clgi_interception(struct kvm_vcpu *vcpu)
2477 {
2478 int ret;
2479
2480 if (nested_svm_check_permissions(vcpu))
2481 return 1;
2482
2483 ret = kvm_skip_emulated_instruction(vcpu);
2484 svm_set_gif(to_svm(vcpu), false);
2485 return ret;
2486 }
2487
invlpga_interception(struct kvm_vcpu * vcpu)2488 static int invlpga_interception(struct kvm_vcpu *vcpu)
2489 {
2490 gva_t gva = kvm_rax_read(vcpu);
2491 u32 asid = kvm_rcx_read(vcpu);
2492
2493 /* FIXME: Handle an address size prefix. */
2494 if (!is_long_mode(vcpu))
2495 gva = (u32)gva;
2496
2497 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2498
2499 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2500 kvm_mmu_invlpg(vcpu, gva);
2501
2502 return kvm_skip_emulated_instruction(vcpu);
2503 }
2504
skinit_interception(struct kvm_vcpu * vcpu)2505 static int skinit_interception(struct kvm_vcpu *vcpu)
2506 {
2507 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2508
2509 kvm_queue_exception(vcpu, UD_VECTOR);
2510 return 1;
2511 }
2512
task_switch_interception(struct kvm_vcpu * vcpu)2513 static int task_switch_interception(struct kvm_vcpu *vcpu)
2514 {
2515 struct vcpu_svm *svm = to_svm(vcpu);
2516 u16 tss_selector;
2517 int reason;
2518 int int_type = svm->vmcb->control.exit_int_info &
2519 SVM_EXITINTINFO_TYPE_MASK;
2520 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2521 uint32_t type =
2522 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2523 uint32_t idt_v =
2524 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2525 bool has_error_code = false;
2526 u32 error_code = 0;
2527
2528 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2529
2530 if (svm->vmcb->control.exit_info_2 &
2531 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2532 reason = TASK_SWITCH_IRET;
2533 else if (svm->vmcb->control.exit_info_2 &
2534 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2535 reason = TASK_SWITCH_JMP;
2536 else if (idt_v)
2537 reason = TASK_SWITCH_GATE;
2538 else
2539 reason = TASK_SWITCH_CALL;
2540
2541 if (reason == TASK_SWITCH_GATE) {
2542 switch (type) {
2543 case SVM_EXITINTINFO_TYPE_NMI:
2544 vcpu->arch.nmi_injected = false;
2545 break;
2546 case SVM_EXITINTINFO_TYPE_EXEPT:
2547 if (svm->vmcb->control.exit_info_2 &
2548 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2549 has_error_code = true;
2550 error_code =
2551 (u32)svm->vmcb->control.exit_info_2;
2552 }
2553 kvm_clear_exception_queue(vcpu);
2554 break;
2555 case SVM_EXITINTINFO_TYPE_INTR:
2556 case SVM_EXITINTINFO_TYPE_SOFT:
2557 kvm_clear_interrupt_queue(vcpu);
2558 break;
2559 default:
2560 break;
2561 }
2562 }
2563
2564 if (reason != TASK_SWITCH_GATE ||
2565 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2566 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2567 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2568 if (!svm_skip_emulated_instruction(vcpu))
2569 return 0;
2570 }
2571
2572 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2573 int_vec = -1;
2574
2575 return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2576 has_error_code, error_code);
2577 }
2578
svm_clr_iret_intercept(struct vcpu_svm * svm)2579 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2580 {
2581 if (!sev_es_guest(svm->vcpu.kvm))
2582 svm_clr_intercept(svm, INTERCEPT_IRET);
2583 }
2584
svm_set_iret_intercept(struct vcpu_svm * svm)2585 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2586 {
2587 if (!sev_es_guest(svm->vcpu.kvm))
2588 svm_set_intercept(svm, INTERCEPT_IRET);
2589 }
2590
iret_interception(struct kvm_vcpu * vcpu)2591 static int iret_interception(struct kvm_vcpu *vcpu)
2592 {
2593 struct vcpu_svm *svm = to_svm(vcpu);
2594
2595 WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2596
2597 ++vcpu->stat.nmi_window_exits;
2598 svm->awaiting_iret_completion = true;
2599
2600 svm_clr_iret_intercept(svm);
2601 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2602
2603 kvm_make_request(KVM_REQ_EVENT, vcpu);
2604 return 1;
2605 }
2606
invlpg_interception(struct kvm_vcpu * vcpu)2607 static int invlpg_interception(struct kvm_vcpu *vcpu)
2608 {
2609 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2610 return kvm_emulate_instruction(vcpu, 0);
2611
2612 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2613 return kvm_skip_emulated_instruction(vcpu);
2614 }
2615
emulate_on_interception(struct kvm_vcpu * vcpu)2616 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2617 {
2618 return kvm_emulate_instruction(vcpu, 0);
2619 }
2620
rsm_interception(struct kvm_vcpu * vcpu)2621 static int rsm_interception(struct kvm_vcpu *vcpu)
2622 {
2623 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2624 }
2625
check_selective_cr0_intercepted(struct kvm_vcpu * vcpu,unsigned long val)2626 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2627 unsigned long val)
2628 {
2629 struct vcpu_svm *svm = to_svm(vcpu);
2630 unsigned long cr0 = vcpu->arch.cr0;
2631 bool ret = false;
2632
2633 if (!is_guest_mode(vcpu) ||
2634 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2635 return false;
2636
2637 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2638 val &= ~SVM_CR0_SELECTIVE_MASK;
2639
2640 if (cr0 ^ val) {
2641 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2642 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2643 }
2644
2645 return ret;
2646 }
2647
2648 #define CR_VALID (1ULL << 63)
2649
cr_interception(struct kvm_vcpu * vcpu)2650 static int cr_interception(struct kvm_vcpu *vcpu)
2651 {
2652 struct vcpu_svm *svm = to_svm(vcpu);
2653 int reg, cr;
2654 unsigned long val;
2655 int err;
2656
2657 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2658 return emulate_on_interception(vcpu);
2659
2660 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2661 return emulate_on_interception(vcpu);
2662
2663 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2664 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2665 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2666 else
2667 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2668
2669 err = 0;
2670 if (cr >= 16) { /* mov to cr */
2671 cr -= 16;
2672 val = kvm_register_read(vcpu, reg);
2673 trace_kvm_cr_write(cr, val);
2674 switch (cr) {
2675 case 0:
2676 if (!check_selective_cr0_intercepted(vcpu, val))
2677 err = kvm_set_cr0(vcpu, val);
2678 else
2679 return 1;
2680
2681 break;
2682 case 3:
2683 err = kvm_set_cr3(vcpu, val);
2684 break;
2685 case 4:
2686 err = kvm_set_cr4(vcpu, val);
2687 break;
2688 case 8:
2689 err = kvm_set_cr8(vcpu, val);
2690 break;
2691 default:
2692 WARN(1, "unhandled write to CR%d", cr);
2693 kvm_queue_exception(vcpu, UD_VECTOR);
2694 return 1;
2695 }
2696 } else { /* mov from cr */
2697 switch (cr) {
2698 case 0:
2699 val = kvm_read_cr0(vcpu);
2700 break;
2701 case 2:
2702 val = vcpu->arch.cr2;
2703 break;
2704 case 3:
2705 val = kvm_read_cr3(vcpu);
2706 break;
2707 case 4:
2708 val = kvm_read_cr4(vcpu);
2709 break;
2710 case 8:
2711 val = kvm_get_cr8(vcpu);
2712 break;
2713 default:
2714 WARN(1, "unhandled read from CR%d", cr);
2715 kvm_queue_exception(vcpu, UD_VECTOR);
2716 return 1;
2717 }
2718 kvm_register_write(vcpu, reg, val);
2719 trace_kvm_cr_read(cr, val);
2720 }
2721 return kvm_complete_insn_gp(vcpu, err);
2722 }
2723
cr_trap(struct kvm_vcpu * vcpu)2724 static int cr_trap(struct kvm_vcpu *vcpu)
2725 {
2726 struct vcpu_svm *svm = to_svm(vcpu);
2727 unsigned long old_value, new_value;
2728 unsigned int cr;
2729 int ret = 0;
2730
2731 new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2732
2733 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2734 switch (cr) {
2735 case 0:
2736 old_value = kvm_read_cr0(vcpu);
2737 svm_set_cr0(vcpu, new_value);
2738
2739 kvm_post_set_cr0(vcpu, old_value, new_value);
2740 break;
2741 case 4:
2742 old_value = kvm_read_cr4(vcpu);
2743 svm_set_cr4(vcpu, new_value);
2744
2745 kvm_post_set_cr4(vcpu, old_value, new_value);
2746 break;
2747 case 8:
2748 ret = kvm_set_cr8(vcpu, new_value);
2749 break;
2750 default:
2751 WARN(1, "unhandled CR%d write trap", cr);
2752 kvm_queue_exception(vcpu, UD_VECTOR);
2753 return 1;
2754 }
2755
2756 return kvm_complete_insn_gp(vcpu, ret);
2757 }
2758
dr_interception(struct kvm_vcpu * vcpu)2759 static int dr_interception(struct kvm_vcpu *vcpu)
2760 {
2761 struct vcpu_svm *svm = to_svm(vcpu);
2762 int reg, dr;
2763 unsigned long val;
2764 int err = 0;
2765
2766 /*
2767 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2768 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2769 */
2770 if (sev_es_guest(vcpu->kvm))
2771 return 1;
2772
2773 if (vcpu->guest_debug == 0) {
2774 /*
2775 * No more DR vmexits; force a reload of the debug registers
2776 * and reenter on this instruction. The next vmexit will
2777 * retrieve the full state of the debug registers.
2778 */
2779 clr_dr_intercepts(svm);
2780 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2781 return 1;
2782 }
2783
2784 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2785 return emulate_on_interception(vcpu);
2786
2787 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2788 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2789 if (dr >= 16) { /* mov to DRn */
2790 dr -= 16;
2791 val = kvm_register_read(vcpu, reg);
2792 err = kvm_set_dr(vcpu, dr, val);
2793 } else {
2794 kvm_get_dr(vcpu, dr, &val);
2795 kvm_register_write(vcpu, reg, val);
2796 }
2797
2798 return kvm_complete_insn_gp(vcpu, err);
2799 }
2800
cr8_write_interception(struct kvm_vcpu * vcpu)2801 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2802 {
2803 int r;
2804
2805 u8 cr8_prev = kvm_get_cr8(vcpu);
2806 /* instruction emulation calls kvm_set_cr8() */
2807 r = cr_interception(vcpu);
2808 if (lapic_in_kernel(vcpu))
2809 return r;
2810 if (cr8_prev <= kvm_get_cr8(vcpu))
2811 return r;
2812 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2813 return 0;
2814 }
2815
efer_trap(struct kvm_vcpu * vcpu)2816 static int efer_trap(struct kvm_vcpu *vcpu)
2817 {
2818 struct msr_data msr_info;
2819 int ret;
2820
2821 /*
2822 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2823 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2824 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2825 * the guest doesn't have X86_FEATURE_SVM.
2826 */
2827 msr_info.host_initiated = false;
2828 msr_info.index = MSR_EFER;
2829 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2830 ret = kvm_set_msr_common(vcpu, &msr_info);
2831
2832 return kvm_complete_insn_gp(vcpu, ret);
2833 }
2834
svm_get_msr_feature(struct kvm_msr_entry * msr)2835 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2836 {
2837 msr->data = 0;
2838
2839 switch (msr->index) {
2840 case MSR_AMD64_DE_CFG:
2841 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2842 msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2843 break;
2844 default:
2845 return KVM_MSR_RET_INVALID;
2846 }
2847
2848 return 0;
2849 }
2850
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2851 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2852 {
2853 struct vcpu_svm *svm = to_svm(vcpu);
2854
2855 switch (msr_info->index) {
2856 case MSR_AMD64_TSC_RATIO:
2857 if (!msr_info->host_initiated &&
2858 !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
2859 return 1;
2860 msr_info->data = svm->tsc_ratio_msr;
2861 break;
2862 case MSR_STAR:
2863 msr_info->data = svm->vmcb01.ptr->save.star;
2864 break;
2865 #ifdef CONFIG_X86_64
2866 case MSR_LSTAR:
2867 msr_info->data = svm->vmcb01.ptr->save.lstar;
2868 break;
2869 case MSR_CSTAR:
2870 msr_info->data = svm->vmcb01.ptr->save.cstar;
2871 break;
2872 case MSR_GS_BASE:
2873 msr_info->data = svm->vmcb01.ptr->save.gs.base;
2874 break;
2875 case MSR_FS_BASE:
2876 msr_info->data = svm->vmcb01.ptr->save.fs.base;
2877 break;
2878 case MSR_KERNEL_GS_BASE:
2879 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2880 break;
2881 case MSR_SYSCALL_MASK:
2882 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2883 break;
2884 #endif
2885 case MSR_IA32_SYSENTER_CS:
2886 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2887 break;
2888 case MSR_IA32_SYSENTER_EIP:
2889 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2890 if (guest_cpuid_is_intel(vcpu))
2891 msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2892 break;
2893 case MSR_IA32_SYSENTER_ESP:
2894 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2895 if (guest_cpuid_is_intel(vcpu))
2896 msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2897 break;
2898 case MSR_TSC_AUX:
2899 msr_info->data = svm->tsc_aux;
2900 break;
2901 case MSR_IA32_DEBUGCTLMSR:
2902 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2903 break;
2904 case MSR_IA32_LASTBRANCHFROMIP:
2905 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2906 break;
2907 case MSR_IA32_LASTBRANCHTOIP:
2908 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2909 break;
2910 case MSR_IA32_LASTINTFROMIP:
2911 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2912 break;
2913 case MSR_IA32_LASTINTTOIP:
2914 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2915 break;
2916 case MSR_VM_HSAVE_PA:
2917 msr_info->data = svm->nested.hsave_msr;
2918 break;
2919 case MSR_VM_CR:
2920 msr_info->data = svm->nested.vm_cr_msr;
2921 break;
2922 case MSR_IA32_SPEC_CTRL:
2923 if (!msr_info->host_initiated &&
2924 !guest_has_spec_ctrl_msr(vcpu))
2925 return 1;
2926
2927 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2928 msr_info->data = svm->vmcb->save.spec_ctrl;
2929 else
2930 msr_info->data = svm->spec_ctrl;
2931 break;
2932 case MSR_AMD64_VIRT_SPEC_CTRL:
2933 if (!msr_info->host_initiated &&
2934 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2935 return 1;
2936
2937 msr_info->data = svm->virt_spec_ctrl;
2938 break;
2939 case MSR_F15H_IC_CFG: {
2940
2941 int family, model;
2942
2943 family = guest_cpuid_family(vcpu);
2944 model = guest_cpuid_model(vcpu);
2945
2946 if (family < 0 || model < 0)
2947 return kvm_get_msr_common(vcpu, msr_info);
2948
2949 msr_info->data = 0;
2950
2951 if (family == 0x15 &&
2952 (model >= 0x2 && model < 0x20))
2953 msr_info->data = 0x1E;
2954 }
2955 break;
2956 case MSR_AMD64_DE_CFG:
2957 msr_info->data = svm->msr_decfg;
2958 break;
2959 default:
2960 return kvm_get_msr_common(vcpu, msr_info);
2961 }
2962 return 0;
2963 }
2964
svm_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)2965 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2966 {
2967 struct vcpu_svm *svm = to_svm(vcpu);
2968 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2969 return kvm_complete_insn_gp(vcpu, err);
2970
2971 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2972 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2973 X86_TRAP_GP |
2974 SVM_EVTINJ_TYPE_EXEPT |
2975 SVM_EVTINJ_VALID);
2976 return 1;
2977 }
2978
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2979 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2980 {
2981 struct vcpu_svm *svm = to_svm(vcpu);
2982 int svm_dis, chg_mask;
2983
2984 if (data & ~SVM_VM_CR_VALID_MASK)
2985 return 1;
2986
2987 chg_mask = SVM_VM_CR_VALID_MASK;
2988
2989 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2990 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2991
2992 svm->nested.vm_cr_msr &= ~chg_mask;
2993 svm->nested.vm_cr_msr |= (data & chg_mask);
2994
2995 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2996
2997 /* check for svm_disable while efer.svme is set */
2998 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2999 return 1;
3000
3001 return 0;
3002 }
3003
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)3004 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3005 {
3006 struct vcpu_svm *svm = to_svm(vcpu);
3007 int ret = 0;
3008
3009 u32 ecx = msr->index;
3010 u64 data = msr->data;
3011 switch (ecx) {
3012 case MSR_AMD64_TSC_RATIO:
3013
3014 if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {
3015
3016 if (!msr->host_initiated)
3017 return 1;
3018 /*
3019 * In case TSC scaling is not enabled, always
3020 * leave this MSR at the default value.
3021 *
3022 * Due to bug in qemu 6.2.0, it would try to set
3023 * this msr to 0 if tsc scaling is not enabled.
3024 * Ignore this value as well.
3025 */
3026 if (data != 0 && data != svm->tsc_ratio_msr)
3027 return 1;
3028 break;
3029 }
3030
3031 if (data & SVM_TSC_RATIO_RSVD)
3032 return 1;
3033
3034 svm->tsc_ratio_msr = data;
3035
3036 if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
3037 is_guest_mode(vcpu))
3038 nested_svm_update_tsc_ratio_msr(vcpu);
3039
3040 break;
3041 case MSR_IA32_CR_PAT:
3042 ret = kvm_set_msr_common(vcpu, msr);
3043 if (ret)
3044 break;
3045
3046 svm->vmcb01.ptr->save.g_pat = data;
3047 if (is_guest_mode(vcpu))
3048 nested_vmcb02_compute_g_pat(svm);
3049 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3050 break;
3051 case MSR_IA32_SPEC_CTRL:
3052 if (!msr->host_initiated &&
3053 !guest_has_spec_ctrl_msr(vcpu))
3054 return 1;
3055
3056 if (kvm_spec_ctrl_test_value(data))
3057 return 1;
3058
3059 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3060 svm->vmcb->save.spec_ctrl = data;
3061 else
3062 svm->spec_ctrl = data;
3063 if (!data)
3064 break;
3065
3066 /*
3067 * For non-nested:
3068 * When it's written (to non-zero) for the first time, pass
3069 * it through.
3070 *
3071 * For nested:
3072 * The handling of the MSR bitmap for L2 guests is done in
3073 * nested_svm_vmrun_msrpm.
3074 * We update the L1 MSR bit as well since it will end up
3075 * touching the MSR anyway now.
3076 */
3077 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3078 break;
3079 case MSR_AMD64_VIRT_SPEC_CTRL:
3080 if (!msr->host_initiated &&
3081 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
3082 return 1;
3083
3084 if (data & ~SPEC_CTRL_SSBD)
3085 return 1;
3086
3087 svm->virt_spec_ctrl = data;
3088 break;
3089 case MSR_STAR:
3090 svm->vmcb01.ptr->save.star = data;
3091 break;
3092 #ifdef CONFIG_X86_64
3093 case MSR_LSTAR:
3094 svm->vmcb01.ptr->save.lstar = data;
3095 break;
3096 case MSR_CSTAR:
3097 svm->vmcb01.ptr->save.cstar = data;
3098 break;
3099 case MSR_GS_BASE:
3100 svm->vmcb01.ptr->save.gs.base = data;
3101 break;
3102 case MSR_FS_BASE:
3103 svm->vmcb01.ptr->save.fs.base = data;
3104 break;
3105 case MSR_KERNEL_GS_BASE:
3106 svm->vmcb01.ptr->save.kernel_gs_base = data;
3107 break;
3108 case MSR_SYSCALL_MASK:
3109 svm->vmcb01.ptr->save.sfmask = data;
3110 break;
3111 #endif
3112 case MSR_IA32_SYSENTER_CS:
3113 svm->vmcb01.ptr->save.sysenter_cs = data;
3114 break;
3115 case MSR_IA32_SYSENTER_EIP:
3116 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3117 /*
3118 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3119 * when we spoof an Intel vendor ID (for cross vendor migration).
3120 * In this case we use this intercept to track the high
3121 * 32 bit part of these msrs to support Intel's
3122 * implementation of SYSENTER/SYSEXIT.
3123 */
3124 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3125 break;
3126 case MSR_IA32_SYSENTER_ESP:
3127 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3128 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3129 break;
3130 case MSR_TSC_AUX:
3131 /*
3132 * TSC_AUX is always virtualized for SEV-ES guests when the
3133 * feature is available. The user return MSR support is not
3134 * required in this case because TSC_AUX is restored on #VMEXIT
3135 * from the host save area (which has been initialized in
3136 * svm_hardware_enable()).
3137 */
3138 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3139 break;
3140
3141 /*
3142 * TSC_AUX is usually changed only during boot and never read
3143 * directly. Intercept TSC_AUX instead of exposing it to the
3144 * guest via direct_access_msrs, and switch it via user return.
3145 */
3146 preempt_disable();
3147 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3148 preempt_enable();
3149 if (ret)
3150 break;
3151
3152 svm->tsc_aux = data;
3153 break;
3154 case MSR_IA32_DEBUGCTLMSR:
3155 if (!lbrv) {
3156 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3157 break;
3158 }
3159
3160 /*
3161 * AMD changed the architectural behavior of bits 5:2. On CPUs
3162 * without BusLockTrap, bits 5:2 control "external pins", but
3163 * on CPUs that support BusLockDetect, bit 2 enables BusLockTrap
3164 * and bits 5:3 are reserved-to-zero. Sadly, old KVM allowed
3165 * the guest to set bits 5:2 despite not actually virtualizing
3166 * Performance-Monitoring/Breakpoint external pins. Drop bits
3167 * 5:2 for backwards compatibility.
3168 */
3169 data &= ~GENMASK(5, 2);
3170
3171 /*
3172 * Suppress BTF as KVM doesn't virtualize BTF, but there's no
3173 * way to communicate lack of support to the guest.
3174 */
3175 if (data & DEBUGCTLMSR_BTF) {
3176 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
3177 data &= ~DEBUGCTLMSR_BTF;
3178 }
3179
3180 if (data & DEBUGCTL_RESERVED_BITS)
3181 return 1;
3182
3183 svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3184 svm_update_lbrv(vcpu);
3185 break;
3186 case MSR_VM_HSAVE_PA:
3187 /*
3188 * Old kernels did not validate the value written to
3189 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid
3190 * value to allow live migrating buggy or malicious guests
3191 * originating from those kernels.
3192 */
3193 if (!msr->host_initiated && !page_address_valid(vcpu, data))
3194 return 1;
3195
3196 svm->nested.hsave_msr = data & PAGE_MASK;
3197 break;
3198 case MSR_VM_CR:
3199 return svm_set_vm_cr(vcpu, data);
3200 case MSR_VM_IGNNE:
3201 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3202 break;
3203 case MSR_AMD64_DE_CFG: {
3204 struct kvm_msr_entry msr_entry;
3205
3206 msr_entry.index = msr->index;
3207 if (svm_get_msr_feature(&msr_entry))
3208 return 1;
3209
3210 /* Check the supported bits */
3211 if (data & ~msr_entry.data)
3212 return 1;
3213
3214 /* Don't allow the guest to change a bit, #GP */
3215 if (!msr->host_initiated && (data ^ msr_entry.data))
3216 return 1;
3217
3218 svm->msr_decfg = data;
3219 break;
3220 }
3221 default:
3222 return kvm_set_msr_common(vcpu, msr);
3223 }
3224 return ret;
3225 }
3226
msr_interception(struct kvm_vcpu * vcpu)3227 static int msr_interception(struct kvm_vcpu *vcpu)
3228 {
3229 if (to_svm(vcpu)->vmcb->control.exit_info_1)
3230 return kvm_emulate_wrmsr(vcpu);
3231 else
3232 return kvm_emulate_rdmsr(vcpu);
3233 }
3234
interrupt_window_interception(struct kvm_vcpu * vcpu)3235 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3236 {
3237 kvm_make_request(KVM_REQ_EVENT, vcpu);
3238 svm_clear_vintr(to_svm(vcpu));
3239
3240 /*
3241 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3242 * In this case AVIC was temporarily disabled for
3243 * requesting the IRQ window and we have to re-enable it.
3244 *
3245 * If running nested, still remove the VM wide AVIC inhibit to
3246 * support case in which the interrupt window was requested when the
3247 * vCPU was not running nested.
3248
3249 * All vCPUs which run still run nested, will remain to have their
3250 * AVIC still inhibited due to per-cpu AVIC inhibition.
3251 */
3252 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3253
3254 ++vcpu->stat.irq_window_exits;
3255 return 1;
3256 }
3257
pause_interception(struct kvm_vcpu * vcpu)3258 static int pause_interception(struct kvm_vcpu *vcpu)
3259 {
3260 bool in_kernel;
3261 /*
3262 * CPL is not made available for an SEV-ES guest, therefore
3263 * vcpu->arch.preempted_in_kernel can never be true. Just
3264 * set in_kernel to false as well.
3265 */
3266 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3267
3268 grow_ple_window(vcpu);
3269
3270 kvm_vcpu_on_spin(vcpu, in_kernel);
3271 return kvm_skip_emulated_instruction(vcpu);
3272 }
3273
invpcid_interception(struct kvm_vcpu * vcpu)3274 static int invpcid_interception(struct kvm_vcpu *vcpu)
3275 {
3276 struct vcpu_svm *svm = to_svm(vcpu);
3277 unsigned long type;
3278 gva_t gva;
3279
3280 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3281 kvm_queue_exception(vcpu, UD_VECTOR);
3282 return 1;
3283 }
3284
3285 /*
3286 * For an INVPCID intercept:
3287 * EXITINFO1 provides the linear address of the memory operand.
3288 * EXITINFO2 provides the contents of the register operand.
3289 */
3290 type = svm->vmcb->control.exit_info_2;
3291 gva = svm->vmcb->control.exit_info_1;
3292
3293 return kvm_handle_invpcid(vcpu, type, gva);
3294 }
3295
3296 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3297 [SVM_EXIT_READ_CR0] = cr_interception,
3298 [SVM_EXIT_READ_CR3] = cr_interception,
3299 [SVM_EXIT_READ_CR4] = cr_interception,
3300 [SVM_EXIT_READ_CR8] = cr_interception,
3301 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3302 [SVM_EXIT_WRITE_CR0] = cr_interception,
3303 [SVM_EXIT_WRITE_CR3] = cr_interception,
3304 [SVM_EXIT_WRITE_CR4] = cr_interception,
3305 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3306 [SVM_EXIT_READ_DR0] = dr_interception,
3307 [SVM_EXIT_READ_DR1] = dr_interception,
3308 [SVM_EXIT_READ_DR2] = dr_interception,
3309 [SVM_EXIT_READ_DR3] = dr_interception,
3310 [SVM_EXIT_READ_DR4] = dr_interception,
3311 [SVM_EXIT_READ_DR5] = dr_interception,
3312 [SVM_EXIT_READ_DR6] = dr_interception,
3313 [SVM_EXIT_READ_DR7] = dr_interception,
3314 [SVM_EXIT_WRITE_DR0] = dr_interception,
3315 [SVM_EXIT_WRITE_DR1] = dr_interception,
3316 [SVM_EXIT_WRITE_DR2] = dr_interception,
3317 [SVM_EXIT_WRITE_DR3] = dr_interception,
3318 [SVM_EXIT_WRITE_DR4] = dr_interception,
3319 [SVM_EXIT_WRITE_DR5] = dr_interception,
3320 [SVM_EXIT_WRITE_DR6] = dr_interception,
3321 [SVM_EXIT_WRITE_DR7] = dr_interception,
3322 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3323 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3324 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3325 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3326 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3327 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3328 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
3329 [SVM_EXIT_INTR] = intr_interception,
3330 [SVM_EXIT_NMI] = nmi_interception,
3331 [SVM_EXIT_SMI] = smi_interception,
3332 [SVM_EXIT_VINTR] = interrupt_window_interception,
3333 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc,
3334 [SVM_EXIT_CPUID] = kvm_emulate_cpuid,
3335 [SVM_EXIT_IRET] = iret_interception,
3336 [SVM_EXIT_INVD] = kvm_emulate_invd,
3337 [SVM_EXIT_PAUSE] = pause_interception,
3338 [SVM_EXIT_HLT] = kvm_emulate_halt,
3339 [SVM_EXIT_INVLPG] = invlpg_interception,
3340 [SVM_EXIT_INVLPGA] = invlpga_interception,
3341 [SVM_EXIT_IOIO] = io_interception,
3342 [SVM_EXIT_MSR] = msr_interception,
3343 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3344 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3345 [SVM_EXIT_VMRUN] = vmrun_interception,
3346 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall,
3347 [SVM_EXIT_VMLOAD] = vmload_interception,
3348 [SVM_EXIT_VMSAVE] = vmsave_interception,
3349 [SVM_EXIT_STGI] = stgi_interception,
3350 [SVM_EXIT_CLGI] = clgi_interception,
3351 [SVM_EXIT_SKINIT] = skinit_interception,
3352 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op,
3353 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd,
3354 [SVM_EXIT_MONITOR] = kvm_emulate_monitor,
3355 [SVM_EXIT_MWAIT] = kvm_emulate_mwait,
3356 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv,
3357 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op,
3358 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap,
3359 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap,
3360 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
3361 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
3362 [SVM_EXIT_INVPCID] = invpcid_interception,
3363 [SVM_EXIT_NPF] = npf_interception,
3364 [SVM_EXIT_RSM] = rsm_interception,
3365 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
3366 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
3367 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit,
3368 };
3369
dump_vmcb(struct kvm_vcpu * vcpu)3370 static void dump_vmcb(struct kvm_vcpu *vcpu)
3371 {
3372 struct vcpu_svm *svm = to_svm(vcpu);
3373 struct vmcb_control_area *control = &svm->vmcb->control;
3374 struct vmcb_save_area *save = &svm->vmcb->save;
3375 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3376
3377 if (!dump_invalid_vmcb) {
3378 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3379 return;
3380 }
3381
3382 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3383 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3384 pr_err("VMCB Control Area:\n");
3385 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3386 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3387 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3388 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3389 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3390 pr_err("%-20s%08x %08x\n", "intercepts:",
3391 control->intercepts[INTERCEPT_WORD3],
3392 control->intercepts[INTERCEPT_WORD4]);
3393 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3394 pr_err("%-20s%d\n", "pause filter threshold:",
3395 control->pause_filter_thresh);
3396 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3397 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3398 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3399 pr_err("%-20s%d\n", "asid:", control->asid);
3400 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3401 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3402 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3403 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3404 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3405 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3406 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3407 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3408 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3409 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3410 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3411 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3412 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3413 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3414 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3415 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3416 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3417 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3418 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3419 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3420 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3421 pr_err("VMCB State Save Area:\n");
3422 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3423 "es:",
3424 save->es.selector, save->es.attrib,
3425 save->es.limit, save->es.base);
3426 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3427 "cs:",
3428 save->cs.selector, save->cs.attrib,
3429 save->cs.limit, save->cs.base);
3430 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3431 "ss:",
3432 save->ss.selector, save->ss.attrib,
3433 save->ss.limit, save->ss.base);
3434 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3435 "ds:",
3436 save->ds.selector, save->ds.attrib,
3437 save->ds.limit, save->ds.base);
3438 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3439 "fs:",
3440 save01->fs.selector, save01->fs.attrib,
3441 save01->fs.limit, save01->fs.base);
3442 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3443 "gs:",
3444 save01->gs.selector, save01->gs.attrib,
3445 save01->gs.limit, save01->gs.base);
3446 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3447 "gdtr:",
3448 save->gdtr.selector, save->gdtr.attrib,
3449 save->gdtr.limit, save->gdtr.base);
3450 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3451 "ldtr:",
3452 save01->ldtr.selector, save01->ldtr.attrib,
3453 save01->ldtr.limit, save01->ldtr.base);
3454 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3455 "idtr:",
3456 save->idtr.selector, save->idtr.attrib,
3457 save->idtr.limit, save->idtr.base);
3458 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3459 "tr:",
3460 save01->tr.selector, save01->tr.attrib,
3461 save01->tr.limit, save01->tr.base);
3462 pr_err("vmpl: %d cpl: %d efer: %016llx\n",
3463 save->vmpl, save->cpl, save->efer);
3464 pr_err("%-15s %016llx %-13s %016llx\n",
3465 "cr0:", save->cr0, "cr2:", save->cr2);
3466 pr_err("%-15s %016llx %-13s %016llx\n",
3467 "cr3:", save->cr3, "cr4:", save->cr4);
3468 pr_err("%-15s %016llx %-13s %016llx\n",
3469 "dr6:", save->dr6, "dr7:", save->dr7);
3470 pr_err("%-15s %016llx %-13s %016llx\n",
3471 "rip:", save->rip, "rflags:", save->rflags);
3472 pr_err("%-15s %016llx %-13s %016llx\n",
3473 "rsp:", save->rsp, "rax:", save->rax);
3474 pr_err("%-15s %016llx %-13s %016llx\n",
3475 "star:", save01->star, "lstar:", save01->lstar);
3476 pr_err("%-15s %016llx %-13s %016llx\n",
3477 "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3478 pr_err("%-15s %016llx %-13s %016llx\n",
3479 "kernel_gs_base:", save01->kernel_gs_base,
3480 "sysenter_cs:", save01->sysenter_cs);
3481 pr_err("%-15s %016llx %-13s %016llx\n",
3482 "sysenter_esp:", save01->sysenter_esp,
3483 "sysenter_eip:", save01->sysenter_eip);
3484 pr_err("%-15s %016llx %-13s %016llx\n",
3485 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3486 pr_err("%-15s %016llx %-13s %016llx\n",
3487 "br_from:", save->br_from, "br_to:", save->br_to);
3488 pr_err("%-15s %016llx %-13s %016llx\n",
3489 "excp_from:", save->last_excp_from,
3490 "excp_to:", save->last_excp_to);
3491 }
3492
svm_check_exit_valid(u64 exit_code)3493 static bool svm_check_exit_valid(u64 exit_code)
3494 {
3495 return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3496 svm_exit_handlers[exit_code]);
3497 }
3498
svm_handle_invalid_exit(struct kvm_vcpu * vcpu,u64 exit_code)3499 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3500 {
3501 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3502 dump_vmcb(vcpu);
3503 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3504 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3505 vcpu->run->internal.ndata = 2;
3506 vcpu->run->internal.data[0] = exit_code;
3507 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3508 return 0;
3509 }
3510
svm_invoke_exit_handler(struct kvm_vcpu * vcpu,u64 exit_code)3511 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3512 {
3513 if (!svm_check_exit_valid(exit_code))
3514 return svm_handle_invalid_exit(vcpu, exit_code);
3515
3516 #ifdef CONFIG_RETPOLINE
3517 if (exit_code == SVM_EXIT_MSR)
3518 return msr_interception(vcpu);
3519 else if (exit_code == SVM_EXIT_VINTR)
3520 return interrupt_window_interception(vcpu);
3521 else if (exit_code == SVM_EXIT_INTR)
3522 return intr_interception(vcpu);
3523 else if (exit_code == SVM_EXIT_HLT)
3524 return kvm_emulate_halt(vcpu);
3525 else if (exit_code == SVM_EXIT_NPF)
3526 return npf_interception(vcpu);
3527 #endif
3528 return svm_exit_handlers[exit_code](vcpu);
3529 }
3530
svm_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3531 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3532 u64 *info1, u64 *info2,
3533 u32 *intr_info, u32 *error_code)
3534 {
3535 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3536
3537 *reason = control->exit_code;
3538 *info1 = control->exit_info_1;
3539 *info2 = control->exit_info_2;
3540 *intr_info = control->exit_int_info;
3541 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3542 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3543 *error_code = control->exit_int_info_err;
3544 else
3545 *error_code = 0;
3546 }
3547
svm_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3548 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3549 {
3550 struct vcpu_svm *svm = to_svm(vcpu);
3551 struct kvm_run *kvm_run = vcpu->run;
3552 u32 exit_code = svm->vmcb->control.exit_code;
3553
3554 /* SEV-ES guests must use the CR write traps to track CR registers. */
3555 if (!sev_es_guest(vcpu->kvm)) {
3556 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3557 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3558 if (npt_enabled)
3559 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3560 }
3561
3562 if (is_guest_mode(vcpu)) {
3563 int vmexit;
3564
3565 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3566
3567 vmexit = nested_svm_exit_special(svm);
3568
3569 if (vmexit == NESTED_EXIT_CONTINUE)
3570 vmexit = nested_svm_exit_handled(svm);
3571
3572 if (vmexit == NESTED_EXIT_DONE)
3573 return 1;
3574 }
3575
3576 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3577 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3578 kvm_run->fail_entry.hardware_entry_failure_reason
3579 = svm->vmcb->control.exit_code;
3580 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3581 dump_vmcb(vcpu);
3582 return 0;
3583 }
3584
3585 if (exit_fastpath != EXIT_FASTPATH_NONE)
3586 return 1;
3587
3588 return svm_invoke_exit_handler(vcpu, exit_code);
3589 }
3590
pre_svm_run(struct kvm_vcpu * vcpu)3591 static void pre_svm_run(struct kvm_vcpu *vcpu)
3592 {
3593 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3594 struct vcpu_svm *svm = to_svm(vcpu);
3595
3596 /*
3597 * If the previous vmrun of the vmcb occurred on a different physical
3598 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's
3599 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3600 */
3601 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3602 svm->current_vmcb->asid_generation = 0;
3603 vmcb_mark_all_dirty(svm->vmcb);
3604 svm->current_vmcb->cpu = vcpu->cpu;
3605 }
3606
3607 if (sev_guest(vcpu->kvm))
3608 return pre_sev_run(svm, vcpu->cpu);
3609
3610 /* FIXME: handle wraparound of asid_generation */
3611 if (svm->current_vmcb->asid_generation != sd->asid_generation)
3612 new_asid(svm, sd);
3613 }
3614
svm_inject_nmi(struct kvm_vcpu * vcpu)3615 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3616 {
3617 struct vcpu_svm *svm = to_svm(vcpu);
3618
3619 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3620
3621 if (svm->nmi_l1_to_l2)
3622 return;
3623
3624 svm->nmi_masked = true;
3625 svm_set_iret_intercept(svm);
3626 ++vcpu->stat.nmi_injections;
3627 }
3628
svm_is_vnmi_pending(struct kvm_vcpu * vcpu)3629 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3630 {
3631 struct vcpu_svm *svm = to_svm(vcpu);
3632
3633 if (!is_vnmi_enabled(svm))
3634 return false;
3635
3636 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3637 }
3638
svm_set_vnmi_pending(struct kvm_vcpu * vcpu)3639 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3640 {
3641 struct vcpu_svm *svm = to_svm(vcpu);
3642
3643 if (!is_vnmi_enabled(svm))
3644 return false;
3645
3646 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3647 return false;
3648
3649 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3650 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3651
3652 /*
3653 * Because the pending NMI is serviced by hardware, KVM can't know when
3654 * the NMI is "injected", but for all intents and purposes, passing the
3655 * NMI off to hardware counts as injection.
3656 */
3657 ++vcpu->stat.nmi_injections;
3658
3659 return true;
3660 }
3661
svm_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)3662 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3663 {
3664 struct vcpu_svm *svm = to_svm(vcpu);
3665 u32 type;
3666
3667 if (vcpu->arch.interrupt.soft) {
3668 if (svm_update_soft_interrupt_rip(vcpu))
3669 return;
3670
3671 type = SVM_EVTINJ_TYPE_SOFT;
3672 } else {
3673 type = SVM_EVTINJ_TYPE_INTR;
3674 }
3675
3676 trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3677 vcpu->arch.interrupt.soft, reinjected);
3678 ++vcpu->stat.irq_injections;
3679
3680 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3681 SVM_EVTINJ_VALID | type;
3682 }
3683
svm_complete_interrupt_delivery(struct kvm_vcpu * vcpu,int delivery_mode,int trig_mode,int vector)3684 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3685 int trig_mode, int vector)
3686 {
3687 /*
3688 * apic->apicv_active must be read after vcpu->mode.
3689 * Pairs with smp_store_release in vcpu_enter_guest.
3690 */
3691 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3692
3693 /* Note, this is called iff the local APIC is in-kernel. */
3694 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3695 /* Process the interrupt via kvm_check_and_inject_events(). */
3696 kvm_make_request(KVM_REQ_EVENT, vcpu);
3697 kvm_vcpu_kick(vcpu);
3698 return;
3699 }
3700
3701 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3702 if (in_guest_mode) {
3703 /*
3704 * Signal the doorbell to tell hardware to inject the IRQ. If
3705 * the vCPU exits the guest before the doorbell chimes, hardware
3706 * will automatically process AVIC interrupts at the next VMRUN.
3707 */
3708 avic_ring_doorbell(vcpu);
3709 } else {
3710 /*
3711 * Wake the vCPU if it was blocking. KVM will then detect the
3712 * pending IRQ when checking if the vCPU has a wake event.
3713 */
3714 kvm_vcpu_wake_up(vcpu);
3715 }
3716 }
3717
svm_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)3718 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
3719 int trig_mode, int vector)
3720 {
3721 kvm_lapic_set_irr(vector, apic);
3722
3723 /*
3724 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3725 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3726 * the read of guest_mode. This guarantees that either VMRUN will see
3727 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3728 * will signal the doorbell if the CPU has already entered the guest.
3729 */
3730 smp_mb__after_atomic();
3731 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3732 }
3733
svm_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3734 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3735 {
3736 struct vcpu_svm *svm = to_svm(vcpu);
3737
3738 /*
3739 * SEV-ES guests must always keep the CR intercepts cleared. CR
3740 * tracking is done using the CR write traps.
3741 */
3742 if (sev_es_guest(vcpu->kvm))
3743 return;
3744
3745 if (nested_svm_virtualize_tpr(vcpu))
3746 return;
3747
3748 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3749
3750 if (irr == -1)
3751 return;
3752
3753 if (tpr >= irr)
3754 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3755 }
3756
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3757 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3758 {
3759 struct vcpu_svm *svm = to_svm(vcpu);
3760
3761 if (is_vnmi_enabled(svm))
3762 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3763 else
3764 return svm->nmi_masked;
3765 }
3766
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3767 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3768 {
3769 struct vcpu_svm *svm = to_svm(vcpu);
3770
3771 if (is_vnmi_enabled(svm)) {
3772 if (masked)
3773 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3774 else
3775 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3776
3777 } else {
3778 svm->nmi_masked = masked;
3779 if (masked)
3780 svm_set_iret_intercept(svm);
3781 else
3782 svm_clr_iret_intercept(svm);
3783 }
3784 }
3785
svm_nmi_blocked(struct kvm_vcpu * vcpu)3786 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3787 {
3788 struct vcpu_svm *svm = to_svm(vcpu);
3789 struct vmcb *vmcb = svm->vmcb;
3790
3791 if (!gif_set(svm))
3792 return true;
3793
3794 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3795 return false;
3796
3797 if (svm_get_nmi_mask(vcpu))
3798 return true;
3799
3800 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3801 }
3802
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3803 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3804 {
3805 struct vcpu_svm *svm = to_svm(vcpu);
3806 if (svm->nested.nested_run_pending)
3807 return -EBUSY;
3808
3809 if (svm_nmi_blocked(vcpu))
3810 return 0;
3811
3812 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3813 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3814 return -EBUSY;
3815 return 1;
3816 }
3817
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3818 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3819 {
3820 struct vcpu_svm *svm = to_svm(vcpu);
3821 struct vmcb *vmcb = svm->vmcb;
3822
3823 if (!gif_set(svm))
3824 return true;
3825
3826 if (is_guest_mode(vcpu)) {
3827 /* As long as interrupts are being delivered... */
3828 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3829 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3830 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3831 return true;
3832
3833 /* ... vmexits aren't blocked by the interrupt shadow */
3834 if (nested_exit_on_intr(svm))
3835 return false;
3836 } else {
3837 if (!svm_get_if_flag(vcpu))
3838 return true;
3839 }
3840
3841 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3842 }
3843
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3844 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3845 {
3846 struct vcpu_svm *svm = to_svm(vcpu);
3847
3848 if (svm->nested.nested_run_pending)
3849 return -EBUSY;
3850
3851 if (svm_interrupt_blocked(vcpu))
3852 return 0;
3853
3854 /*
3855 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3856 * e.g. if the IRQ arrived asynchronously after checking nested events.
3857 */
3858 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3859 return -EBUSY;
3860
3861 return 1;
3862 }
3863
svm_enable_irq_window(struct kvm_vcpu * vcpu)3864 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3865 {
3866 struct vcpu_svm *svm = to_svm(vcpu);
3867
3868 /*
3869 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3870 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3871 * get that intercept, this function will be called again though and
3872 * we'll get the vintr intercept. However, if the vGIF feature is
3873 * enabled, the STGI interception will not occur. Enable the irq
3874 * window under the assumption that the hardware will set the GIF.
3875 */
3876 if (vgif || gif_set(svm)) {
3877 /*
3878 * IRQ window is not needed when AVIC is enabled,
3879 * unless we have pending ExtINT since it cannot be injected
3880 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3881 * and fallback to injecting IRQ via V_IRQ.
3882 *
3883 * If running nested, AVIC is already locally inhibited
3884 * on this vCPU, therefore there is no need to request
3885 * the VM wide AVIC inhibition.
3886 */
3887 if (!is_guest_mode(vcpu))
3888 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3889
3890 svm_set_vintr(svm);
3891 }
3892 }
3893
svm_enable_nmi_window(struct kvm_vcpu * vcpu)3894 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3895 {
3896 struct vcpu_svm *svm = to_svm(vcpu);
3897
3898 /*
3899 * If NMIs are outright masked, i.e. the vCPU is already handling an
3900 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
3901 * more to do at this time as KVM has already enabled IRET intercepts.
3902 * If KVM has already intercepted IRET, then single-step over the IRET,
3903 * as NMIs aren't architecturally unmasked until the IRET completes.
3904 *
3905 * If vNMI is enabled, KVM should never request an NMI window if NMIs
3906 * are masked, as KVM allows at most one to-be-injected NMI and one
3907 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one
3908 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3909 * unmasked. KVM _will_ request an NMI window in some situations, e.g.
3910 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3911 * inject the NMI. In those situations, KVM needs to single-step over
3912 * the STI shadow or intercept STGI.
3913 */
3914 if (svm_get_nmi_mask(vcpu)) {
3915 WARN_ON_ONCE(is_vnmi_enabled(svm));
3916
3917 if (!svm->awaiting_iret_completion)
3918 return; /* IRET will cause a vm exit */
3919 }
3920
3921 /*
3922 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3923 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3924 * KVM can't intercept and single-step IRET to detect when NMIs are
3925 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE.
3926 *
3927 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3928 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3929 * supported NAEs in the GHCB protocol.
3930 */
3931 if (sev_es_guest(vcpu->kvm))
3932 return;
3933
3934 if (!gif_set(svm)) {
3935 if (vgif)
3936 svm_set_intercept(svm, INTERCEPT_STGI);
3937 return; /* STGI will cause a vm exit */
3938 }
3939
3940 /*
3941 * Something prevents NMI from been injected. Single step over possible
3942 * problem (IRET or exception injection or interrupt shadow)
3943 */
3944 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3945 svm->nmi_singlestep = true;
3946 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3947 }
3948
svm_flush_tlb_asid(struct kvm_vcpu * vcpu)3949 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3950 {
3951 struct vcpu_svm *svm = to_svm(vcpu);
3952
3953 /*
3954 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3955 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3956 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3957 */
3958 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3959
3960 /*
3961 * Flush only the current ASID even if the TLB flush was invoked via
3962 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
3963 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3964 * unconditionally does a TLB flush on both nested VM-Enter and nested
3965 * VM-Exit (via kvm_mmu_reset_context()).
3966 */
3967 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3968 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3969 else
3970 svm->current_vmcb->asid_generation--;
3971 }
3972
svm_flush_tlb_current(struct kvm_vcpu * vcpu)3973 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3974 {
3975 hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3976
3977 /*
3978 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3979 * flush the NPT mappings via hypercall as flushing the ASID only
3980 * affects virtual to physical mappings, it does not invalidate guest
3981 * physical to host physical mappings.
3982 */
3983 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3984 hyperv_flush_guest_mapping(root_tdp);
3985
3986 svm_flush_tlb_asid(vcpu);
3987 }
3988
svm_flush_tlb_all(struct kvm_vcpu * vcpu)3989 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3990 {
3991 /*
3992 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3993 * flushes should be routed to hv_flush_remote_tlbs() without requesting
3994 * a "regular" remote flush. Reaching this point means either there's
3995 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3996 * which might be fatal to the guest. Yell, but try to recover.
3997 */
3998 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3999 hv_flush_remote_tlbs(vcpu->kvm);
4000
4001 svm_flush_tlb_asid(vcpu);
4002 }
4003
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)4004 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
4005 {
4006 struct vcpu_svm *svm = to_svm(vcpu);
4007
4008 invlpga(gva, svm->vmcb->control.asid);
4009 }
4010
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)4011 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4012 {
4013 struct vcpu_svm *svm = to_svm(vcpu);
4014
4015 if (nested_svm_virtualize_tpr(vcpu))
4016 return;
4017
4018 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
4019 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4020 kvm_set_cr8(vcpu, cr8);
4021 }
4022 }
4023
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)4024 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4025 {
4026 struct vcpu_svm *svm = to_svm(vcpu);
4027 u64 cr8;
4028
4029 if (nested_svm_virtualize_tpr(vcpu) ||
4030 kvm_vcpu_apicv_active(vcpu))
4031 return;
4032
4033 cr8 = kvm_get_cr8(vcpu);
4034 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4035 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4036 }
4037
svm_complete_soft_interrupt(struct kvm_vcpu * vcpu,u8 vector,int type)4038 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4039 int type)
4040 {
4041 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4042 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4043 struct vcpu_svm *svm = to_svm(vcpu);
4044
4045 /*
4046 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4047 * associated with the original soft exception/interrupt. next_rip is
4048 * cleared on all exits that can occur while vectoring an event, so KVM
4049 * needs to manually set next_rip for re-injection. Unlike the !nrips
4050 * case below, this needs to be done if and only if KVM is re-injecting
4051 * the same event, i.e. if the event is a soft exception/interrupt,
4052 * otherwise next_rip is unused on VMRUN.
4053 */
4054 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4055 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4056 svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4057 /*
4058 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4059 * injecting the soft exception/interrupt. That advancement needs to
4060 * be unwound if vectoring didn't complete. Note, the new event may
4061 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4062 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4063 * be the reported vectored event, but RIP still needs to be unwound.
4064 */
4065 else if (!nrips && (is_soft || is_exception) &&
4066 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4067 kvm_rip_write(vcpu, svm->soft_int_old_rip);
4068 }
4069
svm_complete_interrupts(struct kvm_vcpu * vcpu)4070 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4071 {
4072 struct vcpu_svm *svm = to_svm(vcpu);
4073 u8 vector;
4074 int type;
4075 u32 exitintinfo = svm->vmcb->control.exit_int_info;
4076 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4077 bool soft_int_injected = svm->soft_int_injected;
4078
4079 svm->nmi_l1_to_l2 = false;
4080 svm->soft_int_injected = false;
4081
4082 /*
4083 * If we've made progress since setting awaiting_iret_completion, we've
4084 * executed an IRET and can allow NMI injection.
4085 */
4086 if (svm->awaiting_iret_completion &&
4087 kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4088 svm->awaiting_iret_completion = false;
4089 svm->nmi_masked = false;
4090 kvm_make_request(KVM_REQ_EVENT, vcpu);
4091 }
4092
4093 vcpu->arch.nmi_injected = false;
4094 kvm_clear_exception_queue(vcpu);
4095 kvm_clear_interrupt_queue(vcpu);
4096
4097 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4098 return;
4099
4100 kvm_make_request(KVM_REQ_EVENT, vcpu);
4101
4102 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4103 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4104
4105 if (soft_int_injected)
4106 svm_complete_soft_interrupt(vcpu, vector, type);
4107
4108 switch (type) {
4109 case SVM_EXITINTINFO_TYPE_NMI:
4110 vcpu->arch.nmi_injected = true;
4111 svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4112 break;
4113 case SVM_EXITINTINFO_TYPE_EXEPT:
4114 /*
4115 * Never re-inject a #VC exception.
4116 */
4117 if (vector == X86_TRAP_VC)
4118 break;
4119
4120 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4121 u32 err = svm->vmcb->control.exit_int_info_err;
4122 kvm_requeue_exception_e(vcpu, vector, err);
4123
4124 } else
4125 kvm_requeue_exception(vcpu, vector);
4126 break;
4127 case SVM_EXITINTINFO_TYPE_INTR:
4128 kvm_queue_interrupt(vcpu, vector, false);
4129 break;
4130 case SVM_EXITINTINFO_TYPE_SOFT:
4131 kvm_queue_interrupt(vcpu, vector, true);
4132 break;
4133 default:
4134 break;
4135 }
4136
4137 }
4138
svm_cancel_injection(struct kvm_vcpu * vcpu)4139 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4140 {
4141 struct vcpu_svm *svm = to_svm(vcpu);
4142 struct vmcb_control_area *control = &svm->vmcb->control;
4143
4144 control->exit_int_info = control->event_inj;
4145 control->exit_int_info_err = control->event_inj_err;
4146 control->event_inj = 0;
4147 svm_complete_interrupts(vcpu);
4148 }
4149
svm_vcpu_pre_run(struct kvm_vcpu * vcpu)4150 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4151 {
4152 return 1;
4153 }
4154
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)4155 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4156 {
4157 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
4158 to_svm(vcpu)->vmcb->control.exit_info_1)
4159 return handle_fastpath_set_msr_irqoff(vcpu);
4160
4161 return EXIT_FASTPATH_NONE;
4162 }
4163
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,bool spec_ctrl_intercepted)4164 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4165 {
4166 struct vcpu_svm *svm = to_svm(vcpu);
4167
4168 guest_state_enter_irqoff();
4169
4170 amd_clear_divider();
4171
4172 if (sev_es_guest(vcpu->kvm))
4173 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
4174 else
4175 __svm_vcpu_run(svm, spec_ctrl_intercepted);
4176
4177 guest_state_exit_irqoff();
4178 }
4179
svm_vcpu_run(struct kvm_vcpu * vcpu)4180 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
4181 {
4182 struct vcpu_svm *svm = to_svm(vcpu);
4183 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4184
4185 trace_kvm_entry(vcpu);
4186
4187 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4188 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4189 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4190
4191 /*
4192 * Disable singlestep if we're injecting an interrupt/exception.
4193 * We don't want our modified rflags to be pushed on the stack where
4194 * we might not be able to easily reset them if we disabled NMI
4195 * singlestep later.
4196 */
4197 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4198 /*
4199 * Event injection happens before external interrupts cause a
4200 * vmexit and interrupts are disabled here, so smp_send_reschedule
4201 * is enough to force an immediate vmexit.
4202 */
4203 disable_nmi_singlestep(svm);
4204 smp_send_reschedule(vcpu->cpu);
4205 }
4206
4207 pre_svm_run(vcpu);
4208
4209 sync_lapic_to_cr8(vcpu);
4210
4211 if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4212 svm->vmcb->control.asid = svm->asid;
4213 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4214 }
4215 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4216
4217 svm_hv_update_vp_id(svm->vmcb, vcpu);
4218
4219 /*
4220 * Run with all-zero DR6 unless needed, so that we can get the exact cause
4221 * of a #DB.
4222 */
4223 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
4224 svm_set_dr6(svm, vcpu->arch.dr6);
4225 else
4226 svm_set_dr6(svm, DR6_ACTIVE_LOW);
4227
4228 clgi();
4229 kvm_load_guest_xsave_state(vcpu);
4230
4231 kvm_wait_lapic_expire(vcpu);
4232
4233 /*
4234 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4235 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4236 * is no need to worry about the conditional branch over the wrmsr
4237 * being speculatively taken.
4238 */
4239 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4240 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4241
4242 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4243
4244 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4245 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4246
4247 if (!sev_es_guest(vcpu->kvm)) {
4248 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4249 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4250 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4251 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4252 }
4253 vcpu->arch.regs_dirty = 0;
4254
4255 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4256 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4257
4258 kvm_load_host_xsave_state(vcpu);
4259 stgi();
4260
4261 /* Any pending NMI will happen here */
4262
4263 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4264 kvm_after_interrupt(vcpu);
4265
4266 sync_cr8_to_lapic(vcpu);
4267
4268 svm->next_rip = 0;
4269 if (is_guest_mode(vcpu)) {
4270 nested_sync_control_from_vmcb02(svm);
4271
4272 /* Track VMRUNs that have made past consistency checking */
4273 if (svm->nested.nested_run_pending &&
4274 svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4275 ++vcpu->stat.nested_run;
4276
4277 svm->nested.nested_run_pending = 0;
4278 }
4279
4280 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4281 vmcb_mark_all_clean(svm->vmcb);
4282
4283 /* if exit due to PF check for async PF */
4284 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4285 vcpu->arch.apf.host_apf_flags =
4286 kvm_read_and_reset_apf_flags();
4287
4288 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4289
4290 /*
4291 * We need to handle MC intercepts here before the vcpu has a chance to
4292 * change the physical cpu
4293 */
4294 if (unlikely(svm->vmcb->control.exit_code ==
4295 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4296 svm_handle_mce(vcpu);
4297
4298 trace_kvm_exit(vcpu, KVM_ISA_SVM);
4299
4300 svm_complete_interrupts(vcpu);
4301
4302 if (is_guest_mode(vcpu))
4303 return EXIT_FASTPATH_NONE;
4304
4305 return svm_exit_handlers_fastpath(vcpu);
4306 }
4307
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)4308 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4309 int root_level)
4310 {
4311 struct vcpu_svm *svm = to_svm(vcpu);
4312 unsigned long cr3;
4313
4314 if (npt_enabled) {
4315 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4316 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4317
4318 hv_track_root_tdp(vcpu, root_hpa);
4319
4320 cr3 = vcpu->arch.cr3;
4321 } else if (root_level >= PT64_ROOT_4LEVEL) {
4322 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4323 } else {
4324 /* PCID in the guest should be impossible with a 32-bit MMU. */
4325 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4326 cr3 = root_hpa;
4327 }
4328
4329 svm->vmcb->save.cr3 = cr3;
4330 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4331 }
4332
4333 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4334 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4335 {
4336 /*
4337 * Patch in the VMMCALL instruction:
4338 */
4339 hypercall[0] = 0x0f;
4340 hypercall[1] = 0x01;
4341 hypercall[2] = 0xd9;
4342 }
4343
4344 /*
4345 * The kvm parameter can be NULL (module initialization, or invocation before
4346 * VM creation). Be sure to check the kvm parameter before using it.
4347 */
svm_has_emulated_msr(struct kvm * kvm,u32 index)4348 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4349 {
4350 switch (index) {
4351 case MSR_IA32_MCG_EXT_CTL:
4352 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4353 return false;
4354 case MSR_IA32_SMBASE:
4355 if (!IS_ENABLED(CONFIG_KVM_SMM))
4356 return false;
4357 /* SEV-ES guests do not support SMM, so report false */
4358 if (kvm && sev_es_guest(kvm))
4359 return false;
4360 break;
4361 default:
4362 break;
4363 }
4364
4365 return true;
4366 }
4367
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)4368 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4369 {
4370 struct vcpu_svm *svm = to_svm(vcpu);
4371
4372 /*
4373 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4374 * can only disable all variants of by disallowing CR4.OSXSAVE from
4375 * being set. As a result, if the host has XSAVE and XSAVES, and the
4376 * guest has XSAVE enabled, the guest can execute XSAVES without
4377 * faulting. Treat XSAVES as enabled in this case regardless of
4378 * whether it's advertised to the guest so that KVM context switches
4379 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give
4380 * the guest read/write access to the host's XSS.
4381 */
4382 if (boot_cpu_has(X86_FEATURE_XSAVE) &&
4383 boot_cpu_has(X86_FEATURE_XSAVES) &&
4384 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
4385 kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);
4386
4387 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
4388 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
4389 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);
4390
4391 /*
4392 * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that
4393 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4394 * SVM on Intel is bonkers and extremely unlikely to work).
4395 */
4396 if (!guest_cpuid_is_intel(vcpu))
4397 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4398
4399 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
4400 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
4401 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
4402 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);
4403
4404 svm_recalc_instruction_intercepts(vcpu, svm);
4405
4406 if (boot_cpu_has(X86_FEATURE_IBPB))
4407 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4408 !!guest_has_pred_cmd_msr(vcpu));
4409
4410 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4411 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4412 !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
4413
4414 if (sev_guest(vcpu->kvm))
4415 sev_vcpu_after_set_cpuid(svm);
4416
4417 init_vmcb_after_set_cpuid(vcpu);
4418 }
4419
svm_has_wbinvd_exit(void)4420 static bool svm_has_wbinvd_exit(void)
4421 {
4422 return true;
4423 }
4424
4425 #define PRE_EX(exit) { .exit_code = (exit), \
4426 .stage = X86_ICPT_PRE_EXCEPT, }
4427 #define POST_EX(exit) { .exit_code = (exit), \
4428 .stage = X86_ICPT_POST_EXCEPT, }
4429 #define POST_MEM(exit) { .exit_code = (exit), \
4430 .stage = X86_ICPT_POST_MEMACCESS, }
4431
4432 static const struct __x86_intercept {
4433 u32 exit_code;
4434 enum x86_intercept_stage stage;
4435 } x86_intercept_map[] = {
4436 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4437 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4438 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4439 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4440 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4441 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4442 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4443 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4444 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4445 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4446 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4447 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4448 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4449 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4450 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4451 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4452 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4453 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4454 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4455 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4456 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4457 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4458 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4459 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4460 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4461 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4462 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4463 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4464 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4465 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4466 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4467 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4468 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4469 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4470 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4471 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4472 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4473 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4474 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4475 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4476 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4477 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4478 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4479 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4480 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4481 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4482 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
4483 };
4484
4485 #undef PRE_EX
4486 #undef POST_EX
4487 #undef POST_MEM
4488
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)4489 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4490 struct x86_instruction_info *info,
4491 enum x86_intercept_stage stage,
4492 struct x86_exception *exception)
4493 {
4494 struct vcpu_svm *svm = to_svm(vcpu);
4495 int vmexit, ret = X86EMUL_CONTINUE;
4496 struct __x86_intercept icpt_info;
4497 struct vmcb *vmcb = svm->vmcb;
4498
4499 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4500 goto out;
4501
4502 icpt_info = x86_intercept_map[info->intercept];
4503
4504 if (stage != icpt_info.stage)
4505 goto out;
4506
4507 switch (icpt_info.exit_code) {
4508 case SVM_EXIT_READ_CR0:
4509 if (info->intercept == x86_intercept_cr_read)
4510 icpt_info.exit_code += info->modrm_reg;
4511 break;
4512 case SVM_EXIT_WRITE_CR0: {
4513 unsigned long cr0, val;
4514
4515 if (info->intercept == x86_intercept_cr_write)
4516 icpt_info.exit_code += info->modrm_reg;
4517
4518 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4519 info->intercept == x86_intercept_clts)
4520 break;
4521
4522 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4523 INTERCEPT_SELECTIVE_CR0)))
4524 break;
4525
4526 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4527 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4528
4529 if (info->intercept == x86_intercept_lmsw) {
4530 cr0 &= 0xfUL;
4531 val &= 0xfUL;
4532 /* lmsw can't clear PE - catch this here */
4533 if (cr0 & X86_CR0_PE)
4534 val |= X86_CR0_PE;
4535 }
4536
4537 if (cr0 ^ val)
4538 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4539
4540 break;
4541 }
4542 case SVM_EXIT_READ_DR0:
4543 case SVM_EXIT_WRITE_DR0:
4544 icpt_info.exit_code += info->modrm_reg;
4545 break;
4546 case SVM_EXIT_MSR:
4547 if (info->intercept == x86_intercept_wrmsr)
4548 vmcb->control.exit_info_1 = 1;
4549 else
4550 vmcb->control.exit_info_1 = 0;
4551 break;
4552 case SVM_EXIT_PAUSE:
4553 /*
4554 * We get this for NOP only, but pause
4555 * is rep not, check this here
4556 */
4557 if (info->rep_prefix != REPE_PREFIX)
4558 goto out;
4559 break;
4560 case SVM_EXIT_IOIO: {
4561 u64 exit_info;
4562 u32 bytes;
4563
4564 if (info->intercept == x86_intercept_in ||
4565 info->intercept == x86_intercept_ins) {
4566 exit_info = ((info->src_val & 0xffff) << 16) |
4567 SVM_IOIO_TYPE_MASK;
4568 bytes = info->dst_bytes;
4569 } else {
4570 exit_info = (info->dst_val & 0xffff) << 16;
4571 bytes = info->src_bytes;
4572 }
4573
4574 if (info->intercept == x86_intercept_outs ||
4575 info->intercept == x86_intercept_ins)
4576 exit_info |= SVM_IOIO_STR_MASK;
4577
4578 if (info->rep_prefix)
4579 exit_info |= SVM_IOIO_REP_MASK;
4580
4581 bytes = min(bytes, 4u);
4582
4583 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4584
4585 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4586
4587 vmcb->control.exit_info_1 = exit_info;
4588 vmcb->control.exit_info_2 = info->next_rip;
4589
4590 break;
4591 }
4592 default:
4593 break;
4594 }
4595
4596 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4597 if (static_cpu_has(X86_FEATURE_NRIPS))
4598 vmcb->control.next_rip = info->next_rip;
4599 vmcb->control.exit_code = icpt_info.exit_code;
4600 vmexit = nested_svm_exit_handled(svm);
4601
4602 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4603 : X86EMUL_CONTINUE;
4604
4605 out:
4606 return ret;
4607 }
4608
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)4609 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4610 {
4611 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4612 vcpu->arch.at_instruction_boundary = true;
4613 }
4614
svm_sched_in(struct kvm_vcpu * vcpu,int cpu)4615 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4616 {
4617 if (!kvm_pause_in_guest(vcpu->kvm))
4618 shrink_ple_window(vcpu);
4619 }
4620
svm_setup_mce(struct kvm_vcpu * vcpu)4621 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4622 {
4623 /* [63:9] are reserved. */
4624 vcpu->arch.mcg_cap &= 0x1ff;
4625 }
4626
4627 #ifdef CONFIG_KVM_SMM
svm_smi_blocked(struct kvm_vcpu * vcpu)4628 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4629 {
4630 struct vcpu_svm *svm = to_svm(vcpu);
4631
4632 /* Per APM Vol.2 15.22.2 "Response to SMI" */
4633 if (!gif_set(svm))
4634 return true;
4635
4636 return is_smm(vcpu);
4637 }
4638
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4639 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4640 {
4641 struct vcpu_svm *svm = to_svm(vcpu);
4642 if (svm->nested.nested_run_pending)
4643 return -EBUSY;
4644
4645 if (svm_smi_blocked(vcpu))
4646 return 0;
4647
4648 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
4649 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4650 return -EBUSY;
4651
4652 return 1;
4653 }
4654
svm_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)4655 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4656 {
4657 struct vcpu_svm *svm = to_svm(vcpu);
4658 struct kvm_host_map map_save;
4659 int ret;
4660
4661 if (!is_guest_mode(vcpu))
4662 return 0;
4663
4664 /*
4665 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is
4666 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4667 */
4668
4669 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4670 return 1;
4671
4672 smram->smram64.svm_guest_flag = 1;
4673 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4674
4675 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4676 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4677 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4678
4679 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4680 if (ret)
4681 return ret;
4682
4683 /*
4684 * KVM uses VMCB01 to store L1 host state while L2 runs but
4685 * VMCB01 is going to be used during SMM and thus the state will
4686 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4687 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4688 * format of the area is identical to guest save area offsetted
4689 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4690 * within 'struct vmcb'). Note: HSAVE area may also be used by
4691 * L1 hypervisor to save additional host context (e.g. KVM does
4692 * that, see svm_prepare_switch_to_guest()) which must be
4693 * preserved.
4694 */
4695 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4696 return 1;
4697
4698 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4699
4700 svm_copy_vmrun_state(map_save.hva + 0x400,
4701 &svm->vmcb01.ptr->save);
4702
4703 kvm_vcpu_unmap(vcpu, &map_save, true);
4704 return 0;
4705 }
4706
svm_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)4707 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4708 {
4709 struct vcpu_svm *svm = to_svm(vcpu);
4710 struct kvm_host_map map, map_save;
4711 struct vmcb *vmcb12;
4712 int ret;
4713
4714 const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4715
4716 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4717 return 0;
4718
4719 /* Non-zero if SMI arrived while vCPU was in guest mode. */
4720 if (!smram64->svm_guest_flag)
4721 return 0;
4722
4723 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4724 return 1;
4725
4726 if (!(smram64->efer & EFER_SVME))
4727 return 1;
4728
4729 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4730 return 1;
4731
4732 ret = 1;
4733 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4734 goto unmap_map;
4735
4736 if (svm_allocate_nested(svm))
4737 goto unmap_save;
4738
4739 /*
4740 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4741 * used during SMM (see svm_enter_smm())
4742 */
4743
4744 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4745
4746 /*
4747 * Enter the nested guest now
4748 */
4749
4750 vmcb_mark_all_dirty(svm->vmcb01.ptr);
4751
4752 vmcb12 = map.hva;
4753 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4754 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4755 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4756
4757 if (ret)
4758 goto unmap_save;
4759
4760 svm->nested.nested_run_pending = 1;
4761
4762 unmap_save:
4763 kvm_vcpu_unmap(vcpu, &map_save, true);
4764 unmap_map:
4765 kvm_vcpu_unmap(vcpu, &map, true);
4766 return ret;
4767 }
4768
svm_enable_smi_window(struct kvm_vcpu * vcpu)4769 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4770 {
4771 struct vcpu_svm *svm = to_svm(vcpu);
4772
4773 if (!gif_set(svm)) {
4774 if (vgif)
4775 svm_set_intercept(svm, INTERCEPT_STGI);
4776 /* STGI will cause a vm exit */
4777 } else {
4778 /* We must be in SMM; RSM will cause a vmexit anyway. */
4779 }
4780 }
4781 #endif
4782
svm_can_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)4783 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4784 void *insn, int insn_len)
4785 {
4786 bool smep, smap, is_user;
4787 u64 error_code;
4788
4789 /* Emulation is always possible when KVM has access to all guest state. */
4790 if (!sev_guest(vcpu->kvm))
4791 return true;
4792
4793 /* #UD and #GP should never be intercepted for SEV guests. */
4794 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4795 EMULTYPE_TRAP_UD_FORCED |
4796 EMULTYPE_VMWARE_GP));
4797
4798 /*
4799 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4800 * to guest register state.
4801 */
4802 if (sev_es_guest(vcpu->kvm))
4803 return false;
4804
4805 /*
4806 * Emulation is possible if the instruction is already decoded, e.g.
4807 * when completing I/O after returning from userspace.
4808 */
4809 if (emul_type & EMULTYPE_NO_DECODE)
4810 return true;
4811
4812 /*
4813 * Emulation is possible for SEV guests if and only if a prefilled
4814 * buffer containing the bytes of the intercepted instruction is
4815 * available. SEV guest memory is encrypted with a guest specific key
4816 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4817 * decode garbage.
4818 *
4819 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4820 * KVM reached this point without an instruction buffer. In practice,
4821 * this path should never be hit by a well-behaved guest, e.g. KVM
4822 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4823 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4824 * access, and needs to be handled by KVM to avoid putting the guest
4825 * into an infinite loop. Injecting #UD is somewhat arbitrary, but
4826 * its the least awful option given lack of insight into the guest.
4827 *
4828 * If KVM is trying to skip an instruction, simply resume the guest.
4829 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4830 * will attempt to re-inject the INT3/INTO and skip the instruction.
4831 * In that scenario, retrying the INT3/INTO and hoping the guest will
4832 * make forward progress is the only option that has a chance of
4833 * success (and in practice it will work the vast majority of the time).
4834 */
4835 if (unlikely(!insn)) {
4836 if (!(emul_type & EMULTYPE_SKIP))
4837 kvm_queue_exception(vcpu, UD_VECTOR);
4838 return false;
4839 }
4840
4841 /*
4842 * Emulate for SEV guests if the insn buffer is not empty. The buffer
4843 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4844 * the faulting instruction because the code fetch itself faulted, e.g.
4845 * the guest attempted to fetch from emulated MMIO or a guest page
4846 * table used to translate CS:RIP resides in emulated MMIO.
4847 */
4848 if (likely(insn_len))
4849 return true;
4850
4851 /*
4852 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4853 *
4854 * Errata:
4855 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4856 * possible that CPU microcode implementing DecodeAssist will fail to
4857 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4858 * be '0'. This happens because microcode reads CS:RIP using a _data_
4859 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode
4860 * gives up and does not fill the instruction bytes buffer.
4861 *
4862 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4863 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4864 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4865 * GuestIntrBytes field of the VMCB.
4866 *
4867 * This does _not_ mean that the erratum has been encountered, as the
4868 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4869 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4870 * encountered a reserved/not-present #PF.
4871 *
4872 * To hit the erratum, the following conditions must be true:
4873 * 1. CR4.SMAP=1 (obviously).
4874 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot
4875 * have been hit as the guest would have encountered a SMEP
4876 * violation #PF, not a #NPF.
4877 * 3. The #NPF is not due to a code fetch, in which case failure to
4878 * retrieve the instruction bytes is legitimate (see abvoe).
4879 *
4880 * In addition, don't apply the erratum workaround if the #NPF occurred
4881 * while translating guest page tables (see below).
4882 */
4883 error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4884 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4885 goto resume_guest;
4886
4887 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4888 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4889 is_user = svm_get_cpl(vcpu) == 3;
4890 if (smap && (!smep || is_user)) {
4891 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4892
4893 /*
4894 * If the fault occurred in userspace, arbitrarily inject #GP
4895 * to avoid killing the guest and to hopefully avoid confusing
4896 * the guest kernel too much, e.g. injecting #PF would not be
4897 * coherent with respect to the guest's page tables. Request
4898 * triple fault if the fault occurred in the kernel as there's
4899 * no fault that KVM can inject without confusing the guest.
4900 * In practice, the triple fault is moot as no sane SEV kernel
4901 * will execute from user memory while also running with SMAP=1.
4902 */
4903 if (is_user)
4904 kvm_inject_gp(vcpu, 0);
4905 else
4906 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4907 }
4908
4909 resume_guest:
4910 /*
4911 * If the erratum was not hit, simply resume the guest and let it fault
4912 * again. While awful, e.g. the vCPU may get stuck in an infinite loop
4913 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to
4914 * userspace will kill the guest, and letting the emulator read garbage
4915 * will yield random behavior and potentially corrupt the guest.
4916 *
4917 * Simply resuming the guest is technically not a violation of the SEV
4918 * architecture. AMD's APM states that all code fetches and page table
4919 * accesses for SEV guest are encrypted, regardless of the C-Bit. The
4920 * APM also states that encrypted accesses to MMIO are "ignored", but
4921 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4922 * the guest spin is technically "ignoring" the access.
4923 */
4924 return false;
4925 }
4926
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)4927 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4928 {
4929 struct vcpu_svm *svm = to_svm(vcpu);
4930
4931 return !gif_set(svm);
4932 }
4933
svm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4934 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4935 {
4936 if (!sev_es_guest(vcpu->kvm))
4937 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4938
4939 sev_vcpu_deliver_sipi_vector(vcpu, vector);
4940 }
4941
svm_vm_destroy(struct kvm * kvm)4942 static void svm_vm_destroy(struct kvm *kvm)
4943 {
4944 avic_vm_destroy(kvm);
4945 sev_vm_destroy(kvm);
4946 }
4947
svm_vm_init(struct kvm * kvm)4948 static int svm_vm_init(struct kvm *kvm)
4949 {
4950 if (!pause_filter_count || !pause_filter_thresh)
4951 kvm->arch.pause_in_guest = true;
4952
4953 if (enable_apicv) {
4954 int ret = avic_vm_init(kvm);
4955 if (ret)
4956 return ret;
4957 }
4958
4959 return 0;
4960 }
4961
4962 static struct kvm_x86_ops svm_x86_ops __initdata = {
4963 .name = KBUILD_MODNAME,
4964
4965 .check_processor_compatibility = svm_check_processor_compat,
4966
4967 .hardware_unsetup = svm_hardware_unsetup,
4968 .hardware_enable = svm_hardware_enable,
4969 .hardware_disable = svm_hardware_disable,
4970 .has_emulated_msr = svm_has_emulated_msr,
4971
4972 .vcpu_create = svm_vcpu_create,
4973 .vcpu_free = svm_vcpu_free,
4974 .vcpu_reset = svm_vcpu_reset,
4975
4976 .vm_size = sizeof(struct kvm_svm),
4977 .vm_init = svm_vm_init,
4978 .vm_destroy = svm_vm_destroy,
4979
4980 .prepare_switch_to_guest = svm_prepare_switch_to_guest,
4981 .vcpu_load = svm_vcpu_load,
4982 .vcpu_put = svm_vcpu_put,
4983 .vcpu_blocking = avic_vcpu_blocking,
4984 .vcpu_unblocking = avic_vcpu_unblocking,
4985
4986 .update_exception_bitmap = svm_update_exception_bitmap,
4987 .get_msr_feature = svm_get_msr_feature,
4988 .get_msr = svm_get_msr,
4989 .set_msr = svm_set_msr,
4990 .get_segment_base = svm_get_segment_base,
4991 .get_segment = svm_get_segment,
4992 .set_segment = svm_set_segment,
4993 .get_cpl = svm_get_cpl,
4994 .get_cs_db_l_bits = svm_get_cs_db_l_bits,
4995 .is_valid_cr0 = svm_is_valid_cr0,
4996 .set_cr0 = svm_set_cr0,
4997 .post_set_cr3 = sev_post_set_cr3,
4998 .is_valid_cr4 = svm_is_valid_cr4,
4999 .set_cr4 = svm_set_cr4,
5000 .set_efer = svm_set_efer,
5001 .get_idt = svm_get_idt,
5002 .set_idt = svm_set_idt,
5003 .get_gdt = svm_get_gdt,
5004 .set_gdt = svm_set_gdt,
5005 .set_dr7 = svm_set_dr7,
5006 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5007 .cache_reg = svm_cache_reg,
5008 .get_rflags = svm_get_rflags,
5009 .set_rflags = svm_set_rflags,
5010 .get_if_flag = svm_get_if_flag,
5011
5012 .flush_tlb_all = svm_flush_tlb_all,
5013 .flush_tlb_current = svm_flush_tlb_current,
5014 .flush_tlb_gva = svm_flush_tlb_gva,
5015 .flush_tlb_guest = svm_flush_tlb_asid,
5016
5017 .vcpu_pre_run = svm_vcpu_pre_run,
5018 .vcpu_run = svm_vcpu_run,
5019 .handle_exit = svm_handle_exit,
5020 .skip_emulated_instruction = svm_skip_emulated_instruction,
5021 .update_emulated_instruction = NULL,
5022 .set_interrupt_shadow = svm_set_interrupt_shadow,
5023 .get_interrupt_shadow = svm_get_interrupt_shadow,
5024 .patch_hypercall = svm_patch_hypercall,
5025 .inject_irq = svm_inject_irq,
5026 .inject_nmi = svm_inject_nmi,
5027 .is_vnmi_pending = svm_is_vnmi_pending,
5028 .set_vnmi_pending = svm_set_vnmi_pending,
5029 .inject_exception = svm_inject_exception,
5030 .cancel_injection = svm_cancel_injection,
5031 .interrupt_allowed = svm_interrupt_allowed,
5032 .nmi_allowed = svm_nmi_allowed,
5033 .get_nmi_mask = svm_get_nmi_mask,
5034 .set_nmi_mask = svm_set_nmi_mask,
5035 .enable_nmi_window = svm_enable_nmi_window,
5036 .enable_irq_window = svm_enable_irq_window,
5037 .update_cr8_intercept = svm_update_cr8_intercept,
5038
5039 .x2apic_icr_is_split = true,
5040 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5041 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5042 .apicv_post_state_restore = avic_apicv_post_state_restore,
5043 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5044
5045 .get_exit_info = svm_get_exit_info,
5046
5047 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5048
5049 .has_wbinvd_exit = svm_has_wbinvd_exit,
5050
5051 .get_l2_tsc_offset = svm_get_l2_tsc_offset,
5052 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5053 .write_tsc_offset = svm_write_tsc_offset,
5054 .write_tsc_multiplier = svm_write_tsc_multiplier,
5055
5056 .load_mmu_pgd = svm_load_mmu_pgd,
5057
5058 .check_intercept = svm_check_intercept,
5059 .handle_exit_irqoff = svm_handle_exit_irqoff,
5060
5061 .request_immediate_exit = __kvm_request_immediate_exit,
5062
5063 .sched_in = svm_sched_in,
5064
5065 .nested_ops = &svm_nested_ops,
5066
5067 .deliver_interrupt = svm_deliver_interrupt,
5068 .pi_update_irte = avic_pi_update_irte,
5069 .setup_mce = svm_setup_mce,
5070
5071 #ifdef CONFIG_KVM_SMM
5072 .smi_allowed = svm_smi_allowed,
5073 .enter_smm = svm_enter_smm,
5074 .leave_smm = svm_leave_smm,
5075 .enable_smi_window = svm_enable_smi_window,
5076 #endif
5077
5078 .mem_enc_ioctl = sev_mem_enc_ioctl,
5079 .mem_enc_register_region = sev_mem_enc_register_region,
5080 .mem_enc_unregister_region = sev_mem_enc_unregister_region,
5081 .guest_memory_reclaimed = sev_guest_memory_reclaimed,
5082
5083 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5084 .vm_move_enc_context_from = sev_vm_move_enc_context_from,
5085
5086 .can_emulate_instruction = svm_can_emulate_instruction,
5087
5088 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
5089
5090 .msr_filter_changed = svm_msr_filter_changed,
5091 .complete_emulated_msr = svm_complete_emulated_msr,
5092
5093 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5094 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5095 };
5096
5097 /*
5098 * The default MMIO mask is a single bit (excluding the present bit),
5099 * which could conflict with the memory encryption bit. Check for
5100 * memory encryption support and override the default MMIO mask if
5101 * memory encryption is enabled.
5102 */
svm_adjust_mmio_mask(void)5103 static __init void svm_adjust_mmio_mask(void)
5104 {
5105 unsigned int enc_bit, mask_bit;
5106 u64 msr, mask;
5107
5108 /* If there is no memory encryption support, use existing mask */
5109 if (cpuid_eax(0x80000000) < 0x8000001f)
5110 return;
5111
5112 /* If memory encryption is not enabled, use existing mask */
5113 rdmsrl(MSR_AMD64_SYSCFG, msr);
5114 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5115 return;
5116
5117 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5118 mask_bit = boot_cpu_data.x86_phys_bits;
5119
5120 /* Increment the mask bit if it is the same as the encryption bit */
5121 if (enc_bit == mask_bit)
5122 mask_bit++;
5123
5124 /*
5125 * If the mask bit location is below 52, then some bits above the
5126 * physical addressing limit will always be reserved, so use the
5127 * rsvd_bits() function to generate the mask. This mask, along with
5128 * the present bit, will be used to generate a page fault with
5129 * PFER.RSV = 1.
5130 *
5131 * If the mask bit location is 52 (or above), then clear the mask.
5132 */
5133 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5134
5135 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5136 }
5137
svm_set_cpu_caps(void)5138 static __init void svm_set_cpu_caps(void)
5139 {
5140 kvm_set_cpu_caps();
5141
5142 kvm_caps.supported_perf_cap = 0;
5143 kvm_caps.supported_xss = 0;
5144
5145 /* CPUID 0x80000001 and 0x8000000A (SVM features) */
5146 if (nested) {
5147 kvm_cpu_cap_set(X86_FEATURE_SVM);
5148 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5149
5150 if (nrips)
5151 kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5152
5153 if (npt_enabled)
5154 kvm_cpu_cap_set(X86_FEATURE_NPT);
5155
5156 if (tsc_scaling)
5157 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5158
5159 if (vls)
5160 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5161 if (lbrv)
5162 kvm_cpu_cap_set(X86_FEATURE_LBRV);
5163
5164 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5165 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5166
5167 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5168 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5169
5170 if (vgif)
5171 kvm_cpu_cap_set(X86_FEATURE_VGIF);
5172
5173 if (vnmi)
5174 kvm_cpu_cap_set(X86_FEATURE_VNMI);
5175
5176 /* Nested VM can receive #VMEXIT instead of triggering #GP */
5177 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5178 }
5179
5180 /* CPUID 0x80000008 */
5181 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5182 boot_cpu_has(X86_FEATURE_AMD_SSBD))
5183 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5184
5185 if (enable_pmu) {
5186 /*
5187 * Enumerate support for PERFCTR_CORE if and only if KVM has
5188 * access to enough counters to virtualize "core" support,
5189 * otherwise limit vPMU support to the legacy number of counters.
5190 */
5191 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5192 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5193 kvm_pmu_cap.num_counters_gp);
5194 else
5195 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5196
5197 if (kvm_pmu_cap.version != 2 ||
5198 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5199 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5200 }
5201
5202 /* CPUID 0x8000001F (SME/SEV features) */
5203 sev_set_cpu_caps();
5204
5205 /* Don't advertise Bus Lock Detect to guest if SVM support is absent */
5206 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5207 }
5208
svm_hardware_setup(void)5209 static __init int svm_hardware_setup(void)
5210 {
5211 int cpu;
5212 struct page *iopm_pages;
5213 void *iopm_va;
5214 int r;
5215 unsigned int order = get_order(IOPM_SIZE);
5216
5217 /*
5218 * NX is required for shadow paging and for NPT if the NX huge pages
5219 * mitigation is enabled.
5220 */
5221 if (!boot_cpu_has(X86_FEATURE_NX)) {
5222 pr_err_ratelimited("NX (Execute Disable) not supported\n");
5223 return -EOPNOTSUPP;
5224 }
5225 kvm_enable_efer_bits(EFER_NX);
5226
5227 iopm_pages = alloc_pages(GFP_KERNEL, order);
5228
5229 if (!iopm_pages)
5230 return -ENOMEM;
5231
5232 iopm_va = page_address(iopm_pages);
5233 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5234 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
5235
5236 init_msrpm_offsets();
5237
5238 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5239 XFEATURE_MASK_BNDCSR);
5240
5241 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5242 kvm_enable_efer_bits(EFER_FFXSR);
5243
5244 if (tsc_scaling) {
5245 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5246 tsc_scaling = false;
5247 } else {
5248 pr_info("TSC scaling supported\n");
5249 kvm_caps.has_tsc_control = true;
5250 }
5251 }
5252 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5253 kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5254
5255 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5256
5257 if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5258 kvm_enable_efer_bits(EFER_AUTOIBRS);
5259
5260 /* Check for pause filtering support */
5261 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5262 pause_filter_count = 0;
5263 pause_filter_thresh = 0;
5264 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5265 pause_filter_thresh = 0;
5266 }
5267
5268 if (nested) {
5269 pr_info("Nested Virtualization enabled\n");
5270 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5271 }
5272
5273 /*
5274 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5275 * NPT isn't supported if the host is using 2-level paging since host
5276 * CR4 is unchanged on VMRUN.
5277 */
5278 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5279 npt_enabled = false;
5280
5281 if (!boot_cpu_has(X86_FEATURE_NPT))
5282 npt_enabled = false;
5283
5284 /* Force VM NPT level equal to the host's paging level */
5285 kvm_configure_mmu(npt_enabled, get_npt_level(),
5286 get_npt_level(), PG_LEVEL_1G);
5287 pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5288
5289 /* Setup shadow_me_value and shadow_me_mask */
5290 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5291
5292 svm_adjust_mmio_mask();
5293
5294 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5295
5296 if (lbrv) {
5297 if (!boot_cpu_has(X86_FEATURE_LBRV))
5298 lbrv = false;
5299 else
5300 pr_info("LBR virtualization supported\n");
5301 }
5302 /*
5303 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5304 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5305 */
5306 sev_hardware_setup();
5307
5308 svm_hv_hardware_setup();
5309
5310 for_each_possible_cpu(cpu) {
5311 r = svm_cpu_init(cpu);
5312 if (r)
5313 goto err;
5314 }
5315
5316 enable_apicv = avic = avic && avic_hardware_setup();
5317
5318 if (!enable_apicv) {
5319 svm_x86_ops.vcpu_blocking = NULL;
5320 svm_x86_ops.vcpu_unblocking = NULL;
5321 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5322 } else if (!x2avic_enabled) {
5323 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5324 }
5325
5326 if (vls) {
5327 if (!npt_enabled ||
5328 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5329 !IS_ENABLED(CONFIG_X86_64)) {
5330 vls = false;
5331 } else {
5332 pr_info("Virtual VMLOAD VMSAVE supported\n");
5333 }
5334 }
5335
5336 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5337 svm_gp_erratum_intercept = false;
5338
5339 if (vgif) {
5340 if (!boot_cpu_has(X86_FEATURE_VGIF))
5341 vgif = false;
5342 else
5343 pr_info("Virtual GIF supported\n");
5344 }
5345
5346 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5347 if (vnmi)
5348 pr_info("Virtual NMI enabled\n");
5349
5350 if (!vnmi) {
5351 svm_x86_ops.is_vnmi_pending = NULL;
5352 svm_x86_ops.set_vnmi_pending = NULL;
5353 }
5354
5355 if (!enable_pmu)
5356 pr_info("PMU virtualization is disabled\n");
5357
5358 svm_set_cpu_caps();
5359
5360 /*
5361 * It seems that on AMD processors PTE's accessed bit is
5362 * being set by the CPU hardware before the NPF vmexit.
5363 * This is not expected behaviour and our tests fail because
5364 * of it.
5365 * A workaround here is to disable support for
5366 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5367 * In this case userspace can know if there is support using
5368 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5369 * it
5370 * If future AMD CPU models change the behaviour described above,
5371 * this variable can be changed accordingly
5372 */
5373 allow_smaller_maxphyaddr = !npt_enabled;
5374
5375 return 0;
5376
5377 err:
5378 svm_hardware_unsetup();
5379 return r;
5380 }
5381
5382
5383 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5384 .hardware_setup = svm_hardware_setup,
5385
5386 .runtime_ops = &svm_x86_ops,
5387 .pmu_ops = &amd_pmu_ops,
5388 };
5389
__svm_exit(void)5390 static void __svm_exit(void)
5391 {
5392 kvm_x86_vendor_exit();
5393
5394 cpu_emergency_unregister_virt_callback(svm_emergency_disable);
5395 }
5396
svm_init(void)5397 static int __init svm_init(void)
5398 {
5399 int r;
5400
5401 __unused_size_checks();
5402
5403 if (!kvm_is_svm_supported())
5404 return -EOPNOTSUPP;
5405
5406 r = kvm_x86_vendor_init(&svm_init_ops);
5407 if (r)
5408 return r;
5409
5410 cpu_emergency_register_virt_callback(svm_emergency_disable);
5411
5412 /*
5413 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5414 * exposed to userspace!
5415 */
5416 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5417 THIS_MODULE);
5418 if (r)
5419 goto err_kvm_init;
5420
5421 return 0;
5422
5423 err_kvm_init:
5424 __svm_exit();
5425 return r;
5426 }
5427
svm_exit(void)5428 static void __exit svm_exit(void)
5429 {
5430 kvm_exit();
5431 __svm_exit();
5432 }
5433
5434 module_init(svm_init)
5435 module_exit(svm_exit)
5436