xref: /openbmc/linux/mm/memblock.c (revision d32fd6bb9f2bc8178cdd65ebec1ad670a8bfa241)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/sections.h>
21 #include <linux/io.h>
22 
23 #include "internal.h"
24 
25 #define INIT_MEMBLOCK_REGIONS			128
26 #define INIT_PHYSMEM_REGIONS			4
27 
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30 #endif
31 
32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33 #define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
34 #endif
35 
36 /**
37  * DOC: memblock overview
38  *
39  * Memblock is a method of managing memory regions during the early
40  * boot period when the usual kernel memory allocators are not up and
41  * running.
42  *
43  * Memblock views the system memory as collections of contiguous
44  * regions. There are several types of these collections:
45  *
46  * * ``memory`` - describes the physical memory available to the
47  *   kernel; this may differ from the actual physical memory installed
48  *   in the system, for instance when the memory is restricted with
49  *   ``mem=`` command line parameter
50  * * ``reserved`` - describes the regions that were allocated
51  * * ``physmem`` - describes the actual physical memory available during
52  *   boot regardless of the possible restrictions and memory hot(un)plug;
53  *   the ``physmem`` type is only available on some architectures.
54  *
55  * Each region is represented by struct memblock_region that
56  * defines the region extents, its attributes and NUMA node id on NUMA
57  * systems. Every memory type is described by the struct memblock_type
58  * which contains an array of memory regions along with
59  * the allocator metadata. The "memory" and "reserved" types are nicely
60  * wrapped with struct memblock. This structure is statically
61  * initialized at build time. The region arrays are initially sized to
62  * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63  * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64  * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65  * The memblock_allow_resize() enables automatic resizing of the region
66  * arrays during addition of new regions. This feature should be used
67  * with care so that memory allocated for the region array will not
68  * overlap with areas that should be reserved, for example initrd.
69  *
70  * The early architecture setup should tell memblock what the physical
71  * memory layout is by using memblock_add() or memblock_add_node()
72  * functions. The first function does not assign the region to a NUMA
73  * node and it is appropriate for UMA systems. Yet, it is possible to
74  * use it on NUMA systems as well and assign the region to a NUMA node
75  * later in the setup process using memblock_set_node(). The
76  * memblock_add_node() performs such an assignment directly.
77  *
78  * Once memblock is setup the memory can be allocated using one of the
79  * API variants:
80  *
81  * * memblock_phys_alloc*() - these functions return the **physical**
82  *   address of the allocated memory
83  * * memblock_alloc*() - these functions return the **virtual** address
84  *   of the allocated memory.
85  *
86  * Note, that both API variants use implicit assumptions about allowed
87  * memory ranges and the fallback methods. Consult the documentation
88  * of memblock_alloc_internal() and memblock_alloc_range_nid()
89  * functions for more elaborate description.
90  *
91  * As the system boot progresses, the architecture specific mem_init()
92  * function frees all the memory to the buddy page allocator.
93  *
94  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95  * memblock data structures (except "physmem") will be discarded after the
96  * system initialization completes.
97  */
98 
99 #ifndef CONFIG_NUMA
100 struct pglist_data __refdata contig_page_data;
101 EXPORT_SYMBOL(contig_page_data);
102 #endif
103 
104 unsigned long max_low_pfn;
105 unsigned long min_low_pfn;
106 unsigned long max_pfn;
107 unsigned long long max_possible_pfn;
108 
109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113 #endif
114 
115 struct memblock memblock __initdata_memblock = {
116 	.memory.regions		= memblock_memory_init_regions,
117 	.memory.cnt		= 1,	/* empty dummy entry */
118 	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
119 	.memory.name		= "memory",
120 
121 	.reserved.regions	= memblock_reserved_init_regions,
122 	.reserved.cnt		= 1,	/* empty dummy entry */
123 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
124 	.reserved.name		= "reserved",
125 
126 	.bottom_up		= false,
127 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
128 };
129 
130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131 struct memblock_type physmem = {
132 	.regions		= memblock_physmem_init_regions,
133 	.cnt			= 1,	/* empty dummy entry */
134 	.max			= INIT_PHYSMEM_REGIONS,
135 	.name			= "physmem",
136 };
137 #endif
138 
139 /*
140  * keep a pointer to &memblock.memory in the text section to use it in
141  * __next_mem_range() and its helpers.
142  *  For architectures that do not keep memblock data after init, this
143  * pointer will be reset to NULL at memblock_discard()
144  */
145 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146 
147 #define for_each_memblock_type(i, memblock_type, rgn)			\
148 	for (i = 0, rgn = &memblock_type->regions[0];			\
149 	     i < memblock_type->cnt;					\
150 	     i++, rgn = &memblock_type->regions[i])
151 
152 #define memblock_dbg(fmt, ...)						\
153 	do {								\
154 		if (memblock_debug)					\
155 			pr_info(fmt, ##__VA_ARGS__);			\
156 	} while (0)
157 
158 static int memblock_debug __initdata_memblock;
159 static bool system_has_some_mirror __initdata_memblock;
160 static int memblock_can_resize __initdata_memblock;
161 static int memblock_memory_in_slab __initdata_memblock;
162 static int memblock_reserved_in_slab __initdata_memblock;
163 
memblock_has_mirror(void)164 bool __init_memblock memblock_has_mirror(void)
165 {
166 	return system_has_some_mirror;
167 }
168 
choose_memblock_flags(void)169 static enum memblock_flags __init_memblock choose_memblock_flags(void)
170 {
171 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
172 }
173 
174 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)175 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
176 {
177 	return *size = min(*size, PHYS_ADDR_MAX - base);
178 }
179 
180 /*
181  * Address comparison utilities
182  */
183 unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)184 memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
185 		       phys_addr_t size2)
186 {
187 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
188 }
189 
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)190 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
191 					phys_addr_t base, phys_addr_t size)
192 {
193 	unsigned long i;
194 
195 	memblock_cap_size(base, &size);
196 
197 	for (i = 0; i < type->cnt; i++)
198 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
199 					   type->regions[i].size))
200 			break;
201 	return i < type->cnt;
202 }
203 
204 /**
205  * __memblock_find_range_bottom_up - find free area utility in bottom-up
206  * @start: start of candidate range
207  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
208  *       %MEMBLOCK_ALLOC_ACCESSIBLE
209  * @size: size of free area to find
210  * @align: alignment of free area to find
211  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
212  * @flags: pick from blocks based on memory attributes
213  *
214  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
215  *
216  * Return:
217  * Found address on success, 0 on failure.
218  */
219 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)220 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
221 				phys_addr_t size, phys_addr_t align, int nid,
222 				enum memblock_flags flags)
223 {
224 	phys_addr_t this_start, this_end, cand;
225 	u64 i;
226 
227 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
228 		this_start = clamp(this_start, start, end);
229 		this_end = clamp(this_end, start, end);
230 
231 		cand = round_up(this_start, align);
232 		if (cand < this_end && this_end - cand >= size)
233 			return cand;
234 	}
235 
236 	return 0;
237 }
238 
239 /**
240  * __memblock_find_range_top_down - find free area utility, in top-down
241  * @start: start of candidate range
242  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
243  *       %MEMBLOCK_ALLOC_ACCESSIBLE
244  * @size: size of free area to find
245  * @align: alignment of free area to find
246  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
247  * @flags: pick from blocks based on memory attributes
248  *
249  * Utility called from memblock_find_in_range_node(), find free area top-down.
250  *
251  * Return:
252  * Found address on success, 0 on failure.
253  */
254 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)255 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
256 			       phys_addr_t size, phys_addr_t align, int nid,
257 			       enum memblock_flags flags)
258 {
259 	phys_addr_t this_start, this_end, cand;
260 	u64 i;
261 
262 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
263 					NULL) {
264 		this_start = clamp(this_start, start, end);
265 		this_end = clamp(this_end, start, end);
266 
267 		if (this_end < size)
268 			continue;
269 
270 		cand = round_down(this_end - size, align);
271 		if (cand >= this_start)
272 			return cand;
273 	}
274 
275 	return 0;
276 }
277 
278 /**
279  * memblock_find_in_range_node - find free area in given range and node
280  * @size: size of free area to find
281  * @align: alignment of free area to find
282  * @start: start of candidate range
283  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
284  *       %MEMBLOCK_ALLOC_ACCESSIBLE
285  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
286  * @flags: pick from blocks based on memory attributes
287  *
288  * Find @size free area aligned to @align in the specified range and node.
289  *
290  * Return:
291  * Found address on success, 0 on failure.
292  */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)293 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
294 					phys_addr_t align, phys_addr_t start,
295 					phys_addr_t end, int nid,
296 					enum memblock_flags flags)
297 {
298 	/* pump up @end */
299 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
300 	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
301 		end = memblock.current_limit;
302 
303 	/* avoid allocating the first page */
304 	start = max_t(phys_addr_t, start, PAGE_SIZE);
305 	end = max(start, end);
306 
307 	if (memblock_bottom_up())
308 		return __memblock_find_range_bottom_up(start, end, size, align,
309 						       nid, flags);
310 	else
311 		return __memblock_find_range_top_down(start, end, size, align,
312 						      nid, flags);
313 }
314 
315 /**
316  * memblock_find_in_range - find free area in given range
317  * @start: start of candidate range
318  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
319  *       %MEMBLOCK_ALLOC_ACCESSIBLE
320  * @size: size of free area to find
321  * @align: alignment of free area to find
322  *
323  * Find @size free area aligned to @align in the specified range.
324  *
325  * Return:
326  * Found address on success, 0 on failure.
327  */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)328 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
329 					phys_addr_t end, phys_addr_t size,
330 					phys_addr_t align)
331 {
332 	phys_addr_t ret;
333 	enum memblock_flags flags = choose_memblock_flags();
334 
335 again:
336 	ret = memblock_find_in_range_node(size, align, start, end,
337 					    NUMA_NO_NODE, flags);
338 
339 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
340 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
341 			&size);
342 		flags &= ~MEMBLOCK_MIRROR;
343 		goto again;
344 	}
345 
346 	return ret;
347 }
348 
memblock_remove_region(struct memblock_type * type,unsigned long r)349 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
350 {
351 	type->total_size -= type->regions[r].size;
352 	memmove(&type->regions[r], &type->regions[r + 1],
353 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
354 	type->cnt--;
355 
356 	/* Special case for empty arrays */
357 	if (type->cnt == 0) {
358 		WARN_ON(type->total_size != 0);
359 		type->cnt = 1;
360 		type->regions[0].base = 0;
361 		type->regions[0].size = 0;
362 		type->regions[0].flags = 0;
363 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
364 	}
365 }
366 
367 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
368 /**
369  * memblock_discard - discard memory and reserved arrays if they were allocated
370  */
memblock_discard(void)371 void __init memblock_discard(void)
372 {
373 	phys_addr_t addr, size;
374 
375 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
376 		addr = __pa(memblock.reserved.regions);
377 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 				  memblock.reserved.max);
379 		if (memblock_reserved_in_slab)
380 			kfree(memblock.reserved.regions);
381 		else
382 			memblock_free_late(addr, size);
383 	}
384 
385 	if (memblock.memory.regions != memblock_memory_init_regions) {
386 		addr = __pa(memblock.memory.regions);
387 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
388 				  memblock.memory.max);
389 		if (memblock_memory_in_slab)
390 			kfree(memblock.memory.regions);
391 		else
392 			memblock_free_late(addr, size);
393 	}
394 
395 	memblock_memory = NULL;
396 }
397 #endif
398 
399 /**
400  * memblock_double_array - double the size of the memblock regions array
401  * @type: memblock type of the regions array being doubled
402  * @new_area_start: starting address of memory range to avoid overlap with
403  * @new_area_size: size of memory range to avoid overlap with
404  *
405  * Double the size of the @type regions array. If memblock is being used to
406  * allocate memory for a new reserved regions array and there is a previously
407  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
408  * waiting to be reserved, ensure the memory used by the new array does
409  * not overlap.
410  *
411  * Return:
412  * 0 on success, -1 on failure.
413  */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)414 static int __init_memblock memblock_double_array(struct memblock_type *type,
415 						phys_addr_t new_area_start,
416 						phys_addr_t new_area_size)
417 {
418 	struct memblock_region *new_array, *old_array;
419 	phys_addr_t old_alloc_size, new_alloc_size;
420 	phys_addr_t old_size, new_size, addr, new_end;
421 	int use_slab = slab_is_available();
422 	int *in_slab;
423 
424 	/* We don't allow resizing until we know about the reserved regions
425 	 * of memory that aren't suitable for allocation
426 	 */
427 	if (!memblock_can_resize)
428 		return -1;
429 
430 	/* Calculate new doubled size */
431 	old_size = type->max * sizeof(struct memblock_region);
432 	new_size = old_size << 1;
433 	/*
434 	 * We need to allocated new one align to PAGE_SIZE,
435 	 *   so we can free them completely later.
436 	 */
437 	old_alloc_size = PAGE_ALIGN(old_size);
438 	new_alloc_size = PAGE_ALIGN(new_size);
439 
440 	/* Retrieve the slab flag */
441 	if (type == &memblock.memory)
442 		in_slab = &memblock_memory_in_slab;
443 	else
444 		in_slab = &memblock_reserved_in_slab;
445 
446 	/* Try to find some space for it */
447 	if (use_slab) {
448 		new_array = kmalloc(new_size, GFP_KERNEL);
449 		addr = new_array ? __pa(new_array) : 0;
450 	} else {
451 		/* only exclude range when trying to double reserved.regions */
452 		if (type != &memblock.reserved)
453 			new_area_start = new_area_size = 0;
454 
455 		addr = memblock_find_in_range(new_area_start + new_area_size,
456 						memblock.current_limit,
457 						new_alloc_size, PAGE_SIZE);
458 		if (!addr && new_area_size)
459 			addr = memblock_find_in_range(0,
460 				min(new_area_start, memblock.current_limit),
461 				new_alloc_size, PAGE_SIZE);
462 
463 		new_array = addr ? __va(addr) : NULL;
464 	}
465 	if (!addr) {
466 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
467 		       type->name, type->max, type->max * 2);
468 		return -1;
469 	}
470 
471 	new_end = addr + new_size - 1;
472 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
473 			type->name, type->max * 2, &addr, &new_end);
474 
475 	/*
476 	 * Found space, we now need to move the array over before we add the
477 	 * reserved region since it may be our reserved array itself that is
478 	 * full.
479 	 */
480 	memcpy(new_array, type->regions, old_size);
481 	memset(new_array + type->max, 0, old_size);
482 	old_array = type->regions;
483 	type->regions = new_array;
484 	type->max <<= 1;
485 
486 	/* Free old array. We needn't free it if the array is the static one */
487 	if (*in_slab)
488 		kfree(old_array);
489 	else if (old_array != memblock_memory_init_regions &&
490 		 old_array != memblock_reserved_init_regions)
491 		memblock_free(old_array, old_alloc_size);
492 
493 	/*
494 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
495 	 * needn't do it
496 	 */
497 	if (!use_slab)
498 		BUG_ON(memblock_reserve(addr, new_alloc_size));
499 
500 	/* Update slab flag */
501 	*in_slab = use_slab;
502 
503 	return 0;
504 }
505 
506 /**
507  * memblock_merge_regions - merge neighboring compatible regions
508  * @type: memblock type to scan
509  * @start_rgn: start scanning from (@start_rgn - 1)
510  * @end_rgn: end scanning at (@end_rgn - 1)
511  * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
512  */
memblock_merge_regions(struct memblock_type * type,unsigned long start_rgn,unsigned long end_rgn)513 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
514 						   unsigned long start_rgn,
515 						   unsigned long end_rgn)
516 {
517 	int i = 0;
518 	if (start_rgn)
519 		i = start_rgn - 1;
520 	end_rgn = min(end_rgn, type->cnt - 1);
521 	while (i < end_rgn) {
522 		struct memblock_region *this = &type->regions[i];
523 		struct memblock_region *next = &type->regions[i + 1];
524 
525 		if (this->base + this->size != next->base ||
526 		    memblock_get_region_node(this) !=
527 		    memblock_get_region_node(next) ||
528 		    this->flags != next->flags) {
529 			BUG_ON(this->base + this->size > next->base);
530 			i++;
531 			continue;
532 		}
533 
534 		this->size += next->size;
535 		/* move forward from next + 1, index of which is i + 2 */
536 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
537 		type->cnt--;
538 		end_rgn--;
539 	}
540 }
541 
542 /**
543  * memblock_insert_region - insert new memblock region
544  * @type:	memblock type to insert into
545  * @idx:	index for the insertion point
546  * @base:	base address of the new region
547  * @size:	size of the new region
548  * @nid:	node id of the new region
549  * @flags:	flags of the new region
550  *
551  * Insert new memblock region [@base, @base + @size) into @type at @idx.
552  * @type must already have extra room to accommodate the new region.
553  */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)554 static void __init_memblock memblock_insert_region(struct memblock_type *type,
555 						   int idx, phys_addr_t base,
556 						   phys_addr_t size,
557 						   int nid,
558 						   enum memblock_flags flags)
559 {
560 	struct memblock_region *rgn = &type->regions[idx];
561 
562 	BUG_ON(type->cnt >= type->max);
563 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
564 	rgn->base = base;
565 	rgn->size = size;
566 	rgn->flags = flags;
567 	memblock_set_region_node(rgn, nid);
568 	type->cnt++;
569 	type->total_size += size;
570 }
571 
572 /**
573  * memblock_add_range - add new memblock region
574  * @type: memblock type to add new region into
575  * @base: base address of the new region
576  * @size: size of the new region
577  * @nid: nid of the new region
578  * @flags: flags of the new region
579  *
580  * Add new memblock region [@base, @base + @size) into @type.  The new region
581  * is allowed to overlap with existing ones - overlaps don't affect already
582  * existing regions.  @type is guaranteed to be minimal (all neighbouring
583  * compatible regions are merged) after the addition.
584  *
585  * Return:
586  * 0 on success, -errno on failure.
587  */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)588 static int __init_memblock memblock_add_range(struct memblock_type *type,
589 				phys_addr_t base, phys_addr_t size,
590 				int nid, enum memblock_flags flags)
591 {
592 	bool insert = false;
593 	phys_addr_t obase = base;
594 	phys_addr_t end = base + memblock_cap_size(base, &size);
595 	int idx, nr_new, start_rgn = -1, end_rgn;
596 	struct memblock_region *rgn;
597 
598 	if (!size)
599 		return 0;
600 
601 	/* special case for empty array */
602 	if (type->regions[0].size == 0) {
603 		WARN_ON(type->cnt != 1 || type->total_size);
604 		type->regions[0].base = base;
605 		type->regions[0].size = size;
606 		type->regions[0].flags = flags;
607 		memblock_set_region_node(&type->regions[0], nid);
608 		type->total_size = size;
609 		return 0;
610 	}
611 
612 	/*
613 	 * The worst case is when new range overlaps all existing regions,
614 	 * then we'll need type->cnt + 1 empty regions in @type. So if
615 	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
616 	 * that there is enough empty regions in @type, and we can insert
617 	 * regions directly.
618 	 */
619 	if (type->cnt * 2 + 1 <= type->max)
620 		insert = true;
621 
622 repeat:
623 	/*
624 	 * The following is executed twice.  Once with %false @insert and
625 	 * then with %true.  The first counts the number of regions needed
626 	 * to accommodate the new area.  The second actually inserts them.
627 	 */
628 	base = obase;
629 	nr_new = 0;
630 
631 	for_each_memblock_type(idx, type, rgn) {
632 		phys_addr_t rbase = rgn->base;
633 		phys_addr_t rend = rbase + rgn->size;
634 
635 		if (rbase >= end)
636 			break;
637 		if (rend <= base)
638 			continue;
639 		/*
640 		 * @rgn overlaps.  If it separates the lower part of new
641 		 * area, insert that portion.
642 		 */
643 		if (rbase > base) {
644 #ifdef CONFIG_NUMA
645 			WARN_ON(nid != memblock_get_region_node(rgn));
646 #endif
647 			WARN_ON(flags != rgn->flags);
648 			nr_new++;
649 			if (insert) {
650 				if (start_rgn == -1)
651 					start_rgn = idx;
652 				end_rgn = idx + 1;
653 				memblock_insert_region(type, idx++, base,
654 						       rbase - base, nid,
655 						       flags);
656 			}
657 		}
658 		/* area below @rend is dealt with, forget about it */
659 		base = min(rend, end);
660 	}
661 
662 	/* insert the remaining portion */
663 	if (base < end) {
664 		nr_new++;
665 		if (insert) {
666 			if (start_rgn == -1)
667 				start_rgn = idx;
668 			end_rgn = idx + 1;
669 			memblock_insert_region(type, idx, base, end - base,
670 					       nid, flags);
671 		}
672 	}
673 
674 	if (!nr_new)
675 		return 0;
676 
677 	/*
678 	 * If this was the first round, resize array and repeat for actual
679 	 * insertions; otherwise, merge and return.
680 	 */
681 	if (!insert) {
682 		while (type->cnt + nr_new > type->max)
683 			if (memblock_double_array(type, obase, size) < 0)
684 				return -ENOMEM;
685 		insert = true;
686 		goto repeat;
687 	} else {
688 		memblock_merge_regions(type, start_rgn, end_rgn);
689 		return 0;
690 	}
691 }
692 
693 /**
694  * memblock_add_node - add new memblock region within a NUMA node
695  * @base: base address of the new region
696  * @size: size of the new region
697  * @nid: nid of the new region
698  * @flags: flags of the new region
699  *
700  * Add new memblock region [@base, @base + @size) to the "memory"
701  * type. See memblock_add_range() description for mode details
702  *
703  * Return:
704  * 0 on success, -errno on failure.
705  */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)706 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
707 				      int nid, enum memblock_flags flags)
708 {
709 	phys_addr_t end = base + size - 1;
710 
711 	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
712 		     &base, &end, nid, flags, (void *)_RET_IP_);
713 
714 	return memblock_add_range(&memblock.memory, base, size, nid, flags);
715 }
716 
717 /**
718  * memblock_add - add new memblock region
719  * @base: base address of the new region
720  * @size: size of the new region
721  *
722  * Add new memblock region [@base, @base + @size) to the "memory"
723  * type. See memblock_add_range() description for mode details
724  *
725  * Return:
726  * 0 on success, -errno on failure.
727  */
memblock_add(phys_addr_t base,phys_addr_t size)728 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
729 {
730 	phys_addr_t end = base + size - 1;
731 
732 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
733 		     &base, &end, (void *)_RET_IP_);
734 
735 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
736 }
737 
738 /**
739  * memblock_validate_numa_coverage - check if amount of memory with
740  * no node ID assigned is less than a threshold
741  * @threshold_bytes: maximal memory size that can have unassigned node
742  * ID (in bytes).
743  *
744  * A buggy firmware may report memory that does not belong to any node.
745  * Check if amount of such memory is below @threshold_bytes.
746  *
747  * Return: true on success, false on failure.
748  */
memblock_validate_numa_coverage(unsigned long threshold_bytes)749 bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
750 {
751 	unsigned long nr_pages = 0;
752 	unsigned long start_pfn, end_pfn, mem_size_mb;
753 	int nid, i;
754 
755 	/* calculate lose page */
756 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
757 		if (!numa_valid_node(nid))
758 			nr_pages += end_pfn - start_pfn;
759 	}
760 
761 	if ((nr_pages << PAGE_SHIFT) > threshold_bytes) {
762 		mem_size_mb = memblock_phys_mem_size() >> 20;
763 		pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
764 		       (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
765 		return false;
766 	}
767 
768 	return true;
769 }
770 
771 
772 /**
773  * memblock_isolate_range - isolate given range into disjoint memblocks
774  * @type: memblock type to isolate range for
775  * @base: base of range to isolate
776  * @size: size of range to isolate
777  * @start_rgn: out parameter for the start of isolated region
778  * @end_rgn: out parameter for the end of isolated region
779  *
780  * Walk @type and ensure that regions don't cross the boundaries defined by
781  * [@base, @base + @size).  Crossing regions are split at the boundaries,
782  * which may create at most two more regions.  The index of the first
783  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
784  *
785  * Return:
786  * 0 on success, -errno on failure.
787  */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)788 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
789 					phys_addr_t base, phys_addr_t size,
790 					int *start_rgn, int *end_rgn)
791 {
792 	phys_addr_t end = base + memblock_cap_size(base, &size);
793 	int idx;
794 	struct memblock_region *rgn;
795 
796 	*start_rgn = *end_rgn = 0;
797 
798 	if (!size)
799 		return 0;
800 
801 	/* we'll create at most two more regions */
802 	while (type->cnt + 2 > type->max)
803 		if (memblock_double_array(type, base, size) < 0)
804 			return -ENOMEM;
805 
806 	for_each_memblock_type(idx, type, rgn) {
807 		phys_addr_t rbase = rgn->base;
808 		phys_addr_t rend = rbase + rgn->size;
809 
810 		if (rbase >= end)
811 			break;
812 		if (rend <= base)
813 			continue;
814 
815 		if (rbase < base) {
816 			/*
817 			 * @rgn intersects from below.  Split and continue
818 			 * to process the next region - the new top half.
819 			 */
820 			rgn->base = base;
821 			rgn->size -= base - rbase;
822 			type->total_size -= base - rbase;
823 			memblock_insert_region(type, idx, rbase, base - rbase,
824 					       memblock_get_region_node(rgn),
825 					       rgn->flags);
826 		} else if (rend > end) {
827 			/*
828 			 * @rgn intersects from above.  Split and redo the
829 			 * current region - the new bottom half.
830 			 */
831 			rgn->base = end;
832 			rgn->size -= end - rbase;
833 			type->total_size -= end - rbase;
834 			memblock_insert_region(type, idx--, rbase, end - rbase,
835 					       memblock_get_region_node(rgn),
836 					       rgn->flags);
837 		} else {
838 			/* @rgn is fully contained, record it */
839 			if (!*end_rgn)
840 				*start_rgn = idx;
841 			*end_rgn = idx + 1;
842 		}
843 	}
844 
845 	return 0;
846 }
847 
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)848 static int __init_memblock memblock_remove_range(struct memblock_type *type,
849 					  phys_addr_t base, phys_addr_t size)
850 {
851 	int start_rgn, end_rgn;
852 	int i, ret;
853 
854 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
855 	if (ret)
856 		return ret;
857 
858 	for (i = end_rgn - 1; i >= start_rgn; i--)
859 		memblock_remove_region(type, i);
860 	return 0;
861 }
862 
memblock_remove(phys_addr_t base,phys_addr_t size)863 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
864 {
865 	phys_addr_t end = base + size - 1;
866 
867 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
868 		     &base, &end, (void *)_RET_IP_);
869 
870 	return memblock_remove_range(&memblock.memory, base, size);
871 }
872 
873 /**
874  * memblock_free - free boot memory allocation
875  * @ptr: starting address of the  boot memory allocation
876  * @size: size of the boot memory block in bytes
877  *
878  * Free boot memory block previously allocated by memblock_alloc_xx() API.
879  * The freeing memory will not be released to the buddy allocator.
880  */
memblock_free(void * ptr,size_t size)881 void __init_memblock memblock_free(void *ptr, size_t size)
882 {
883 	if (ptr)
884 		memblock_phys_free(__pa(ptr), size);
885 }
886 
887 /**
888  * memblock_phys_free - free boot memory block
889  * @base: phys starting address of the  boot memory block
890  * @size: size of the boot memory block in bytes
891  *
892  * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
893  * The freeing memory will not be released to the buddy allocator.
894  */
memblock_phys_free(phys_addr_t base,phys_addr_t size)895 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
896 {
897 	phys_addr_t end = base + size - 1;
898 
899 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
900 		     &base, &end, (void *)_RET_IP_);
901 
902 	kmemleak_free_part_phys(base, size);
903 	return memblock_remove_range(&memblock.reserved, base, size);
904 }
905 
memblock_reserve(phys_addr_t base,phys_addr_t size)906 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
907 {
908 	phys_addr_t end = base + size - 1;
909 
910 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
911 		     &base, &end, (void *)_RET_IP_);
912 
913 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
914 }
915 
916 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)917 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
918 {
919 	phys_addr_t end = base + size - 1;
920 
921 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
922 		     &base, &end, (void *)_RET_IP_);
923 
924 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
925 }
926 #endif
927 
928 /**
929  * memblock_setclr_flag - set or clear flag for a memory region
930  * @base: base address of the region
931  * @size: size of the region
932  * @set: set or clear the flag
933  * @flag: the flag to update
934  *
935  * This function isolates region [@base, @base + @size), and sets/clears flag
936  *
937  * Return: 0 on success, -errno on failure.
938  */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)939 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
940 				phys_addr_t size, int set, int flag)
941 {
942 	struct memblock_type *type = &memblock.memory;
943 	int i, ret, start_rgn, end_rgn;
944 
945 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
946 	if (ret)
947 		return ret;
948 
949 	for (i = start_rgn; i < end_rgn; i++) {
950 		struct memblock_region *r = &type->regions[i];
951 
952 		if (set)
953 			r->flags |= flag;
954 		else
955 			r->flags &= ~flag;
956 	}
957 
958 	memblock_merge_regions(type, start_rgn, end_rgn);
959 	return 0;
960 }
961 
962 /**
963  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
964  * @base: the base phys addr of the region
965  * @size: the size of the region
966  *
967  * Return: 0 on success, -errno on failure.
968  */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)969 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
970 {
971 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
972 }
973 
974 /**
975  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
976  * @base: the base phys addr of the region
977  * @size: the size of the region
978  *
979  * Return: 0 on success, -errno on failure.
980  */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)981 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
982 {
983 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
984 }
985 
986 /**
987  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
988  * @base: the base phys addr of the region
989  * @size: the size of the region
990  *
991  * Return: 0 on success, -errno on failure.
992  */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)993 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
994 {
995 	if (!mirrored_kernelcore)
996 		return 0;
997 
998 	system_has_some_mirror = true;
999 
1000 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
1001 }
1002 
1003 /**
1004  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1005  * @base: the base phys addr of the region
1006  * @size: the size of the region
1007  *
1008  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1009  * direct mapping of the physical memory. These regions will still be
1010  * covered by the memory map. The struct page representing NOMAP memory
1011  * frames in the memory map will be PageReserved()
1012  *
1013  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1014  * memblock, the caller must inform kmemleak to ignore that memory
1015  *
1016  * Return: 0 on success, -errno on failure.
1017  */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)1018 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1019 {
1020 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
1021 }
1022 
1023 /**
1024  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1025  * @base: the base phys addr of the region
1026  * @size: the size of the region
1027  *
1028  * Return: 0 on success, -errno on failure.
1029  */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)1030 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1031 {
1032 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
1033 }
1034 
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)1035 static bool should_skip_region(struct memblock_type *type,
1036 			       struct memblock_region *m,
1037 			       int nid, int flags)
1038 {
1039 	int m_nid = memblock_get_region_node(m);
1040 
1041 	/* we never skip regions when iterating memblock.reserved or physmem */
1042 	if (type != memblock_memory)
1043 		return false;
1044 
1045 	/* only memory regions are associated with nodes, check it */
1046 	if (numa_valid_node(nid) && nid != m_nid)
1047 		return true;
1048 
1049 	/* skip hotpluggable memory regions if needed */
1050 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1051 	    !(flags & MEMBLOCK_HOTPLUG))
1052 		return true;
1053 
1054 	/* if we want mirror memory skip non-mirror memory regions */
1055 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1056 		return true;
1057 
1058 	/* skip nomap memory unless we were asked for it explicitly */
1059 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1060 		return true;
1061 
1062 	/* skip driver-managed memory unless we were asked for it explicitly */
1063 	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1064 		return true;
1065 
1066 	return false;
1067 }
1068 
1069 /**
1070  * __next_mem_range - next function for for_each_free_mem_range() etc.
1071  * @idx: pointer to u64 loop variable
1072  * @nid: node selector, %NUMA_NO_NODE for all nodes
1073  * @flags: pick from blocks based on memory attributes
1074  * @type_a: pointer to memblock_type from where the range is taken
1075  * @type_b: pointer to memblock_type which excludes memory from being taken
1076  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1077  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1078  * @out_nid: ptr to int for nid of the range, can be %NULL
1079  *
1080  * Find the first area from *@idx which matches @nid, fill the out
1081  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1082  * *@idx contains index into type_a and the upper 32bit indexes the
1083  * areas before each region in type_b.	For example, if type_b regions
1084  * look like the following,
1085  *
1086  *	0:[0-16), 1:[32-48), 2:[128-130)
1087  *
1088  * The upper 32bit indexes the following regions.
1089  *
1090  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1091  *
1092  * As both region arrays are sorted, the function advances the two indices
1093  * in lockstep and returns each intersection.
1094  */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1095 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1096 		      struct memblock_type *type_a,
1097 		      struct memblock_type *type_b, phys_addr_t *out_start,
1098 		      phys_addr_t *out_end, int *out_nid)
1099 {
1100 	int idx_a = *idx & 0xffffffff;
1101 	int idx_b = *idx >> 32;
1102 
1103 	for (; idx_a < type_a->cnt; idx_a++) {
1104 		struct memblock_region *m = &type_a->regions[idx_a];
1105 
1106 		phys_addr_t m_start = m->base;
1107 		phys_addr_t m_end = m->base + m->size;
1108 		int	    m_nid = memblock_get_region_node(m);
1109 
1110 		if (should_skip_region(type_a, m, nid, flags))
1111 			continue;
1112 
1113 		if (!type_b) {
1114 			if (out_start)
1115 				*out_start = m_start;
1116 			if (out_end)
1117 				*out_end = m_end;
1118 			if (out_nid)
1119 				*out_nid = m_nid;
1120 			idx_a++;
1121 			*idx = (u32)idx_a | (u64)idx_b << 32;
1122 			return;
1123 		}
1124 
1125 		/* scan areas before each reservation */
1126 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1127 			struct memblock_region *r;
1128 			phys_addr_t r_start;
1129 			phys_addr_t r_end;
1130 
1131 			r = &type_b->regions[idx_b];
1132 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1133 			r_end = idx_b < type_b->cnt ?
1134 				r->base : PHYS_ADDR_MAX;
1135 
1136 			/*
1137 			 * if idx_b advanced past idx_a,
1138 			 * break out to advance idx_a
1139 			 */
1140 			if (r_start >= m_end)
1141 				break;
1142 			/* if the two regions intersect, we're done */
1143 			if (m_start < r_end) {
1144 				if (out_start)
1145 					*out_start =
1146 						max(m_start, r_start);
1147 				if (out_end)
1148 					*out_end = min(m_end, r_end);
1149 				if (out_nid)
1150 					*out_nid = m_nid;
1151 				/*
1152 				 * The region which ends first is
1153 				 * advanced for the next iteration.
1154 				 */
1155 				if (m_end <= r_end)
1156 					idx_a++;
1157 				else
1158 					idx_b++;
1159 				*idx = (u32)idx_a | (u64)idx_b << 32;
1160 				return;
1161 			}
1162 		}
1163 	}
1164 
1165 	/* signal end of iteration */
1166 	*idx = ULLONG_MAX;
1167 }
1168 
1169 /**
1170  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1171  *
1172  * @idx: pointer to u64 loop variable
1173  * @nid: node selector, %NUMA_NO_NODE for all nodes
1174  * @flags: pick from blocks based on memory attributes
1175  * @type_a: pointer to memblock_type from where the range is taken
1176  * @type_b: pointer to memblock_type which excludes memory from being taken
1177  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1178  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1179  * @out_nid: ptr to int for nid of the range, can be %NULL
1180  *
1181  * Finds the next range from type_a which is not marked as unsuitable
1182  * in type_b.
1183  *
1184  * Reverse of __next_mem_range().
1185  */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1186 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1187 					  enum memblock_flags flags,
1188 					  struct memblock_type *type_a,
1189 					  struct memblock_type *type_b,
1190 					  phys_addr_t *out_start,
1191 					  phys_addr_t *out_end, int *out_nid)
1192 {
1193 	int idx_a = *idx & 0xffffffff;
1194 	int idx_b = *idx >> 32;
1195 
1196 	if (*idx == (u64)ULLONG_MAX) {
1197 		idx_a = type_a->cnt - 1;
1198 		if (type_b != NULL)
1199 			idx_b = type_b->cnt;
1200 		else
1201 			idx_b = 0;
1202 	}
1203 
1204 	for (; idx_a >= 0; idx_a--) {
1205 		struct memblock_region *m = &type_a->regions[idx_a];
1206 
1207 		phys_addr_t m_start = m->base;
1208 		phys_addr_t m_end = m->base + m->size;
1209 		int m_nid = memblock_get_region_node(m);
1210 
1211 		if (should_skip_region(type_a, m, nid, flags))
1212 			continue;
1213 
1214 		if (!type_b) {
1215 			if (out_start)
1216 				*out_start = m_start;
1217 			if (out_end)
1218 				*out_end = m_end;
1219 			if (out_nid)
1220 				*out_nid = m_nid;
1221 			idx_a--;
1222 			*idx = (u32)idx_a | (u64)idx_b << 32;
1223 			return;
1224 		}
1225 
1226 		/* scan areas before each reservation */
1227 		for (; idx_b >= 0; idx_b--) {
1228 			struct memblock_region *r;
1229 			phys_addr_t r_start;
1230 			phys_addr_t r_end;
1231 
1232 			r = &type_b->regions[idx_b];
1233 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1234 			r_end = idx_b < type_b->cnt ?
1235 				r->base : PHYS_ADDR_MAX;
1236 			/*
1237 			 * if idx_b advanced past idx_a,
1238 			 * break out to advance idx_a
1239 			 */
1240 
1241 			if (r_end <= m_start)
1242 				break;
1243 			/* if the two regions intersect, we're done */
1244 			if (m_end > r_start) {
1245 				if (out_start)
1246 					*out_start = max(m_start, r_start);
1247 				if (out_end)
1248 					*out_end = min(m_end, r_end);
1249 				if (out_nid)
1250 					*out_nid = m_nid;
1251 				if (m_start >= r_start)
1252 					idx_a--;
1253 				else
1254 					idx_b--;
1255 				*idx = (u32)idx_a | (u64)idx_b << 32;
1256 				return;
1257 			}
1258 		}
1259 	}
1260 	/* signal end of iteration */
1261 	*idx = ULLONG_MAX;
1262 }
1263 
1264 /*
1265  * Common iterator interface used to define for_each_mem_pfn_range().
1266  */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1267 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1268 				unsigned long *out_start_pfn,
1269 				unsigned long *out_end_pfn, int *out_nid)
1270 {
1271 	struct memblock_type *type = &memblock.memory;
1272 	struct memblock_region *r;
1273 	int r_nid;
1274 
1275 	while (++*idx < type->cnt) {
1276 		r = &type->regions[*idx];
1277 		r_nid = memblock_get_region_node(r);
1278 
1279 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1280 			continue;
1281 		if (!numa_valid_node(nid) || nid == r_nid)
1282 			break;
1283 	}
1284 	if (*idx >= type->cnt) {
1285 		*idx = -1;
1286 		return;
1287 	}
1288 
1289 	if (out_start_pfn)
1290 		*out_start_pfn = PFN_UP(r->base);
1291 	if (out_end_pfn)
1292 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1293 	if (out_nid)
1294 		*out_nid = r_nid;
1295 }
1296 
1297 /**
1298  * memblock_set_node - set node ID on memblock regions
1299  * @base: base of area to set node ID for
1300  * @size: size of area to set node ID for
1301  * @type: memblock type to set node ID for
1302  * @nid: node ID to set
1303  *
1304  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1305  * Regions which cross the area boundaries are split as necessary.
1306  *
1307  * Return:
1308  * 0 on success, -errno on failure.
1309  */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1310 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1311 				      struct memblock_type *type, int nid)
1312 {
1313 #ifdef CONFIG_NUMA
1314 	int start_rgn, end_rgn;
1315 	int i, ret;
1316 
1317 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1318 	if (ret)
1319 		return ret;
1320 
1321 	for (i = start_rgn; i < end_rgn; i++)
1322 		memblock_set_region_node(&type->regions[i], nid);
1323 
1324 	memblock_merge_regions(type, start_rgn, end_rgn);
1325 #endif
1326 	return 0;
1327 }
1328 
1329 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1330 /**
1331  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1332  *
1333  * @idx: pointer to u64 loop variable
1334  * @zone: zone in which all of the memory blocks reside
1335  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1336  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1337  *
1338  * This function is meant to be a zone/pfn specific wrapper for the
1339  * for_each_mem_range type iterators. Specifically they are used in the
1340  * deferred memory init routines and as such we were duplicating much of
1341  * this logic throughout the code. So instead of having it in multiple
1342  * locations it seemed like it would make more sense to centralize this to
1343  * one new iterator that does everything they need.
1344  */
1345 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1346 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1347 			     unsigned long *out_spfn, unsigned long *out_epfn)
1348 {
1349 	int zone_nid = zone_to_nid(zone);
1350 	phys_addr_t spa, epa;
1351 
1352 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1353 			 &memblock.memory, &memblock.reserved,
1354 			 &spa, &epa, NULL);
1355 
1356 	while (*idx != U64_MAX) {
1357 		unsigned long epfn = PFN_DOWN(epa);
1358 		unsigned long spfn = PFN_UP(spa);
1359 
1360 		/*
1361 		 * Verify the end is at least past the start of the zone and
1362 		 * that we have at least one PFN to initialize.
1363 		 */
1364 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1365 			/* if we went too far just stop searching */
1366 			if (zone_end_pfn(zone) <= spfn) {
1367 				*idx = U64_MAX;
1368 				break;
1369 			}
1370 
1371 			if (out_spfn)
1372 				*out_spfn = max(zone->zone_start_pfn, spfn);
1373 			if (out_epfn)
1374 				*out_epfn = min(zone_end_pfn(zone), epfn);
1375 
1376 			return;
1377 		}
1378 
1379 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1380 				 &memblock.memory, &memblock.reserved,
1381 				 &spa, &epa, NULL);
1382 	}
1383 
1384 	/* signal end of iteration */
1385 	if (out_spfn)
1386 		*out_spfn = ULONG_MAX;
1387 	if (out_epfn)
1388 		*out_epfn = 0;
1389 }
1390 
1391 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1392 
1393 /**
1394  * memblock_alloc_range_nid - allocate boot memory block
1395  * @size: size of memory block to be allocated in bytes
1396  * @align: alignment of the region and block's size
1397  * @start: the lower bound of the memory region to allocate (phys address)
1398  * @end: the upper bound of the memory region to allocate (phys address)
1399  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1400  * @exact_nid: control the allocation fall back to other nodes
1401  *
1402  * The allocation is performed from memory region limited by
1403  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1404  *
1405  * If the specified node can not hold the requested memory and @exact_nid
1406  * is false, the allocation falls back to any node in the system.
1407  *
1408  * For systems with memory mirroring, the allocation is attempted first
1409  * from the regions with mirroring enabled and then retried from any
1410  * memory region.
1411  *
1412  * In addition, function using kmemleak_alloc_phys for allocated boot
1413  * memory block, it is never reported as leaks.
1414  *
1415  * Return:
1416  * Physical address of allocated memory block on success, %0 on failure.
1417  */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1418 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1419 					phys_addr_t align, phys_addr_t start,
1420 					phys_addr_t end, int nid,
1421 					bool exact_nid)
1422 {
1423 	enum memblock_flags flags = choose_memblock_flags();
1424 	phys_addr_t found;
1425 
1426 	if (!align) {
1427 		/* Can't use WARNs this early in boot on powerpc */
1428 		dump_stack();
1429 		align = SMP_CACHE_BYTES;
1430 	}
1431 
1432 again:
1433 	found = memblock_find_in_range_node(size, align, start, end, nid,
1434 					    flags);
1435 	if (found && !memblock_reserve(found, size))
1436 		goto done;
1437 
1438 	if (numa_valid_node(nid) && !exact_nid) {
1439 		found = memblock_find_in_range_node(size, align, start,
1440 						    end, NUMA_NO_NODE,
1441 						    flags);
1442 		if (found && !memblock_reserve(found, size))
1443 			goto done;
1444 	}
1445 
1446 	if (flags & MEMBLOCK_MIRROR) {
1447 		flags &= ~MEMBLOCK_MIRROR;
1448 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1449 			&size);
1450 		goto again;
1451 	}
1452 
1453 	return 0;
1454 
1455 done:
1456 	/*
1457 	 * Skip kmemleak for those places like kasan_init() and
1458 	 * early_pgtable_alloc() due to high volume.
1459 	 */
1460 	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1461 		/*
1462 		 * Memblock allocated blocks are never reported as
1463 		 * leaks. This is because many of these blocks are
1464 		 * only referred via the physical address which is
1465 		 * not looked up by kmemleak.
1466 		 */
1467 		kmemleak_alloc_phys(found, size, 0);
1468 
1469 	/*
1470 	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1471 	 * require memory to be accepted before it can be used by the
1472 	 * guest.
1473 	 *
1474 	 * Accept the memory of the allocated buffer.
1475 	 */
1476 	accept_memory(found, found + size);
1477 
1478 	return found;
1479 }
1480 
1481 /**
1482  * memblock_phys_alloc_range - allocate a memory block inside specified range
1483  * @size: size of memory block to be allocated in bytes
1484  * @align: alignment of the region and block's size
1485  * @start: the lower bound of the memory region to allocate (physical address)
1486  * @end: the upper bound of the memory region to allocate (physical address)
1487  *
1488  * Allocate @size bytes in the between @start and @end.
1489  *
1490  * Return: physical address of the allocated memory block on success,
1491  * %0 on failure.
1492  */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1493 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1494 					     phys_addr_t align,
1495 					     phys_addr_t start,
1496 					     phys_addr_t end)
1497 {
1498 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1499 		     __func__, (u64)size, (u64)align, &start, &end,
1500 		     (void *)_RET_IP_);
1501 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1502 					false);
1503 }
1504 
1505 /**
1506  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1507  * @size: size of memory block to be allocated in bytes
1508  * @align: alignment of the region and block's size
1509  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1510  *
1511  * Allocates memory block from the specified NUMA node. If the node
1512  * has no available memory, attempts to allocated from any node in the
1513  * system.
1514  *
1515  * Return: physical address of the allocated memory block on success,
1516  * %0 on failure.
1517  */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1518 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1519 {
1520 	return memblock_alloc_range_nid(size, align, 0,
1521 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1522 }
1523 
1524 /**
1525  * memblock_alloc_internal - allocate boot memory block
1526  * @size: size of memory block to be allocated in bytes
1527  * @align: alignment of the region and block's size
1528  * @min_addr: the lower bound of the memory region to allocate (phys address)
1529  * @max_addr: the upper bound of the memory region to allocate (phys address)
1530  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1531  * @exact_nid: control the allocation fall back to other nodes
1532  *
1533  * Allocates memory block using memblock_alloc_range_nid() and
1534  * converts the returned physical address to virtual.
1535  *
1536  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1537  * will fall back to memory below @min_addr. Other constraints, such
1538  * as node and mirrored memory will be handled again in
1539  * memblock_alloc_range_nid().
1540  *
1541  * Return:
1542  * Virtual address of allocated memory block on success, NULL on failure.
1543  */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1544 static void * __init memblock_alloc_internal(
1545 				phys_addr_t size, phys_addr_t align,
1546 				phys_addr_t min_addr, phys_addr_t max_addr,
1547 				int nid, bool exact_nid)
1548 {
1549 	phys_addr_t alloc;
1550 
1551 	/*
1552 	 * Detect any accidental use of these APIs after slab is ready, as at
1553 	 * this moment memblock may be deinitialized already and its
1554 	 * internal data may be destroyed (after execution of memblock_free_all)
1555 	 */
1556 	if (WARN_ON_ONCE(slab_is_available()))
1557 		return kzalloc_node(size, GFP_NOWAIT, nid);
1558 
1559 	if (max_addr > memblock.current_limit)
1560 		max_addr = memblock.current_limit;
1561 
1562 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1563 					exact_nid);
1564 
1565 	/* retry allocation without lower limit */
1566 	if (!alloc && min_addr)
1567 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1568 						exact_nid);
1569 
1570 	if (!alloc)
1571 		return NULL;
1572 
1573 	return phys_to_virt(alloc);
1574 }
1575 
1576 /**
1577  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1578  * without zeroing memory
1579  * @size: size of memory block to be allocated in bytes
1580  * @align: alignment of the region and block's size
1581  * @min_addr: the lower bound of the memory region from where the allocation
1582  *	  is preferred (phys address)
1583  * @max_addr: the upper bound of the memory region from where the allocation
1584  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1585  *	      allocate only from memory limited by memblock.current_limit value
1586  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1587  *
1588  * Public function, provides additional debug information (including caller
1589  * info), if enabled. Does not zero allocated memory.
1590  *
1591  * Return:
1592  * Virtual address of allocated memory block on success, NULL on failure.
1593  */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1594 void * __init memblock_alloc_exact_nid_raw(
1595 			phys_addr_t size, phys_addr_t align,
1596 			phys_addr_t min_addr, phys_addr_t max_addr,
1597 			int nid)
1598 {
1599 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1600 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1601 		     &max_addr, (void *)_RET_IP_);
1602 
1603 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1604 				       true);
1605 }
1606 
1607 /**
1608  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1609  * memory and without panicking
1610  * @size: size of memory block to be allocated in bytes
1611  * @align: alignment of the region and block's size
1612  * @min_addr: the lower bound of the memory region from where the allocation
1613  *	  is preferred (phys address)
1614  * @max_addr: the upper bound of the memory region from where the allocation
1615  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1616  *	      allocate only from memory limited by memblock.current_limit value
1617  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1618  *
1619  * Public function, provides additional debug information (including caller
1620  * info), if enabled. Does not zero allocated memory, does not panic if request
1621  * cannot be satisfied.
1622  *
1623  * Return:
1624  * Virtual address of allocated memory block on success, NULL on failure.
1625  */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1626 void * __init memblock_alloc_try_nid_raw(
1627 			phys_addr_t size, phys_addr_t align,
1628 			phys_addr_t min_addr, phys_addr_t max_addr,
1629 			int nid)
1630 {
1631 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1632 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1633 		     &max_addr, (void *)_RET_IP_);
1634 
1635 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1636 				       false);
1637 }
1638 
1639 /**
1640  * memblock_alloc_try_nid - allocate boot memory block
1641  * @size: size of memory block to be allocated in bytes
1642  * @align: alignment of the region and block's size
1643  * @min_addr: the lower bound of the memory region from where the allocation
1644  *	  is preferred (phys address)
1645  * @max_addr: the upper bound of the memory region from where the allocation
1646  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1647  *	      allocate only from memory limited by memblock.current_limit value
1648  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1649  *
1650  * Public function, provides additional debug information (including caller
1651  * info), if enabled. This function zeroes the allocated memory.
1652  *
1653  * Return:
1654  * Virtual address of allocated memory block on success, NULL on failure.
1655  */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1656 void * __init memblock_alloc_try_nid(
1657 			phys_addr_t size, phys_addr_t align,
1658 			phys_addr_t min_addr, phys_addr_t max_addr,
1659 			int nid)
1660 {
1661 	void *ptr;
1662 
1663 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1664 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1665 		     &max_addr, (void *)_RET_IP_);
1666 	ptr = memblock_alloc_internal(size, align,
1667 					   min_addr, max_addr, nid, false);
1668 	if (ptr)
1669 		memset(ptr, 0, size);
1670 
1671 	return ptr;
1672 }
1673 
1674 /**
1675  * memblock_free_late - free pages directly to buddy allocator
1676  * @base: phys starting address of the  boot memory block
1677  * @size: size of the boot memory block in bytes
1678  *
1679  * This is only useful when the memblock allocator has already been torn
1680  * down, but we are still initializing the system.  Pages are released directly
1681  * to the buddy allocator.
1682  */
memblock_free_late(phys_addr_t base,phys_addr_t size)1683 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1684 {
1685 	phys_addr_t cursor, end;
1686 
1687 	end = base + size - 1;
1688 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1689 		     __func__, &base, &end, (void *)_RET_IP_);
1690 	kmemleak_free_part_phys(base, size);
1691 	cursor = PFN_UP(base);
1692 	end = PFN_DOWN(base + size);
1693 
1694 	for (; cursor < end; cursor++) {
1695 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1696 		totalram_pages_inc();
1697 	}
1698 }
1699 
1700 /*
1701  * Remaining API functions
1702  */
1703 
memblock_phys_mem_size(void)1704 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1705 {
1706 	return memblock.memory.total_size;
1707 }
1708 
memblock_reserved_size(void)1709 phys_addr_t __init_memblock memblock_reserved_size(void)
1710 {
1711 	return memblock.reserved.total_size;
1712 }
1713 
1714 /* lowest address */
memblock_start_of_DRAM(void)1715 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1716 {
1717 	return memblock.memory.regions[0].base;
1718 }
1719 
memblock_end_of_DRAM(void)1720 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1721 {
1722 	int idx = memblock.memory.cnt - 1;
1723 
1724 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1725 }
1726 
__find_max_addr(phys_addr_t limit)1727 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1728 {
1729 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1730 	struct memblock_region *r;
1731 
1732 	/*
1733 	 * translate the memory @limit size into the max address within one of
1734 	 * the memory memblock regions, if the @limit exceeds the total size
1735 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1736 	 */
1737 	for_each_mem_region(r) {
1738 		if (limit <= r->size) {
1739 			max_addr = r->base + limit;
1740 			break;
1741 		}
1742 		limit -= r->size;
1743 	}
1744 
1745 	return max_addr;
1746 }
1747 
memblock_enforce_memory_limit(phys_addr_t limit)1748 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1749 {
1750 	phys_addr_t max_addr;
1751 
1752 	if (!limit)
1753 		return;
1754 
1755 	max_addr = __find_max_addr(limit);
1756 
1757 	/* @limit exceeds the total size of the memory, do nothing */
1758 	if (max_addr == PHYS_ADDR_MAX)
1759 		return;
1760 
1761 	/* truncate both memory and reserved regions */
1762 	memblock_remove_range(&memblock.memory, max_addr,
1763 			      PHYS_ADDR_MAX);
1764 	memblock_remove_range(&memblock.reserved, max_addr,
1765 			      PHYS_ADDR_MAX);
1766 }
1767 
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1768 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1769 {
1770 	int start_rgn, end_rgn;
1771 	int i, ret;
1772 
1773 	if (!size)
1774 		return;
1775 
1776 	if (!memblock_memory->total_size) {
1777 		pr_warn("%s: No memory registered yet\n", __func__);
1778 		return;
1779 	}
1780 
1781 	ret = memblock_isolate_range(&memblock.memory, base, size,
1782 						&start_rgn, &end_rgn);
1783 	if (ret)
1784 		return;
1785 
1786 	/* remove all the MAP regions */
1787 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1788 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1789 			memblock_remove_region(&memblock.memory, i);
1790 
1791 	for (i = start_rgn - 1; i >= 0; i--)
1792 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1793 			memblock_remove_region(&memblock.memory, i);
1794 
1795 	/* truncate the reserved regions */
1796 	memblock_remove_range(&memblock.reserved, 0, base);
1797 	memblock_remove_range(&memblock.reserved,
1798 			base + size, PHYS_ADDR_MAX);
1799 }
1800 
memblock_mem_limit_remove_map(phys_addr_t limit)1801 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1802 {
1803 	phys_addr_t max_addr;
1804 
1805 	if (!limit)
1806 		return;
1807 
1808 	max_addr = __find_max_addr(limit);
1809 
1810 	/* @limit exceeds the total size of the memory, do nothing */
1811 	if (max_addr == PHYS_ADDR_MAX)
1812 		return;
1813 
1814 	memblock_cap_memory_range(0, max_addr);
1815 }
1816 
memblock_search(struct memblock_type * type,phys_addr_t addr)1817 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1818 {
1819 	unsigned int left = 0, right = type->cnt;
1820 
1821 	do {
1822 		unsigned int mid = (right + left) / 2;
1823 
1824 		if (addr < type->regions[mid].base)
1825 			right = mid;
1826 		else if (addr >= (type->regions[mid].base +
1827 				  type->regions[mid].size))
1828 			left = mid + 1;
1829 		else
1830 			return mid;
1831 	} while (left < right);
1832 	return -1;
1833 }
1834 
memblock_is_reserved(phys_addr_t addr)1835 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1836 {
1837 	return memblock_search(&memblock.reserved, addr) != -1;
1838 }
1839 
memblock_is_memory(phys_addr_t addr)1840 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1841 {
1842 	return memblock_search(&memblock.memory, addr) != -1;
1843 }
1844 
memblock_is_map_memory(phys_addr_t addr)1845 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1846 {
1847 	int i = memblock_search(&memblock.memory, addr);
1848 
1849 	if (i == -1)
1850 		return false;
1851 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1852 }
1853 
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1854 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1855 			 unsigned long *start_pfn, unsigned long *end_pfn)
1856 {
1857 	struct memblock_type *type = &memblock.memory;
1858 	int mid = memblock_search(type, PFN_PHYS(pfn));
1859 
1860 	if (mid == -1)
1861 		return -1;
1862 
1863 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1864 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1865 
1866 	return memblock_get_region_node(&type->regions[mid]);
1867 }
1868 
1869 /**
1870  * memblock_is_region_memory - check if a region is a subset of memory
1871  * @base: base of region to check
1872  * @size: size of region to check
1873  *
1874  * Check if the region [@base, @base + @size) is a subset of a memory block.
1875  *
1876  * Return:
1877  * 0 if false, non-zero if true
1878  */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1879 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1880 {
1881 	int idx = memblock_search(&memblock.memory, base);
1882 	phys_addr_t end = base + memblock_cap_size(base, &size);
1883 
1884 	if (idx == -1)
1885 		return false;
1886 	return (memblock.memory.regions[idx].base +
1887 		 memblock.memory.regions[idx].size) >= end;
1888 }
1889 
1890 /**
1891  * memblock_is_region_reserved - check if a region intersects reserved memory
1892  * @base: base of region to check
1893  * @size: size of region to check
1894  *
1895  * Check if the region [@base, @base + @size) intersects a reserved
1896  * memory block.
1897  *
1898  * Return:
1899  * True if they intersect, false if not.
1900  */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1901 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1902 {
1903 	return memblock_overlaps_region(&memblock.reserved, base, size);
1904 }
1905 
memblock_trim_memory(phys_addr_t align)1906 void __init_memblock memblock_trim_memory(phys_addr_t align)
1907 {
1908 	phys_addr_t start, end, orig_start, orig_end;
1909 	struct memblock_region *r;
1910 
1911 	for_each_mem_region(r) {
1912 		orig_start = r->base;
1913 		orig_end = r->base + r->size;
1914 		start = round_up(orig_start, align);
1915 		end = round_down(orig_end, align);
1916 
1917 		if (start == orig_start && end == orig_end)
1918 			continue;
1919 
1920 		if (start < end) {
1921 			r->base = start;
1922 			r->size = end - start;
1923 		} else {
1924 			memblock_remove_region(&memblock.memory,
1925 					       r - memblock.memory.regions);
1926 			r--;
1927 		}
1928 	}
1929 }
1930 
memblock_set_current_limit(phys_addr_t limit)1931 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1932 {
1933 	memblock.current_limit = limit;
1934 }
1935 
memblock_get_current_limit(void)1936 phys_addr_t __init_memblock memblock_get_current_limit(void)
1937 {
1938 	return memblock.current_limit;
1939 }
1940 
memblock_dump(struct memblock_type * type)1941 static void __init_memblock memblock_dump(struct memblock_type *type)
1942 {
1943 	phys_addr_t base, end, size;
1944 	enum memblock_flags flags;
1945 	int idx;
1946 	struct memblock_region *rgn;
1947 
1948 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1949 
1950 	for_each_memblock_type(idx, type, rgn) {
1951 		char nid_buf[32] = "";
1952 
1953 		base = rgn->base;
1954 		size = rgn->size;
1955 		end = base + size - 1;
1956 		flags = rgn->flags;
1957 #ifdef CONFIG_NUMA
1958 		if (numa_valid_node(memblock_get_region_node(rgn)))
1959 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1960 				 memblock_get_region_node(rgn));
1961 #endif
1962 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1963 			type->name, idx, &base, &end, &size, nid_buf, flags);
1964 	}
1965 }
1966 
__memblock_dump_all(void)1967 static void __init_memblock __memblock_dump_all(void)
1968 {
1969 	pr_info("MEMBLOCK configuration:\n");
1970 	pr_info(" memory size = %pa reserved size = %pa\n",
1971 		&memblock.memory.total_size,
1972 		&memblock.reserved.total_size);
1973 
1974 	memblock_dump(&memblock.memory);
1975 	memblock_dump(&memblock.reserved);
1976 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1977 	memblock_dump(&physmem);
1978 #endif
1979 }
1980 
memblock_dump_all(void)1981 void __init_memblock memblock_dump_all(void)
1982 {
1983 	if (memblock_debug)
1984 		__memblock_dump_all();
1985 }
1986 
memblock_allow_resize(void)1987 void __init memblock_allow_resize(void)
1988 {
1989 	memblock_can_resize = 1;
1990 }
1991 
early_memblock(char * p)1992 static int __init early_memblock(char *p)
1993 {
1994 	if (p && strstr(p, "debug"))
1995 		memblock_debug = 1;
1996 	return 0;
1997 }
1998 early_param("memblock", early_memblock);
1999 
free_memmap(unsigned long start_pfn,unsigned long end_pfn)2000 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2001 {
2002 	struct page *start_pg, *end_pg;
2003 	phys_addr_t pg, pgend;
2004 
2005 	/*
2006 	 * Convert start_pfn/end_pfn to a struct page pointer.
2007 	 */
2008 	start_pg = pfn_to_page(start_pfn - 1) + 1;
2009 	end_pg = pfn_to_page(end_pfn - 1) + 1;
2010 
2011 	/*
2012 	 * Convert to physical addresses, and round start upwards and end
2013 	 * downwards.
2014 	 */
2015 	pg = PAGE_ALIGN(__pa(start_pg));
2016 	pgend = __pa(end_pg) & PAGE_MASK;
2017 
2018 	/*
2019 	 * If there are free pages between these, free the section of the
2020 	 * memmap array.
2021 	 */
2022 	if (pg < pgend)
2023 		memblock_phys_free(pg, pgend - pg);
2024 }
2025 
2026 /*
2027  * The mem_map array can get very big.  Free the unused area of the memory map.
2028  */
free_unused_memmap(void)2029 static void __init free_unused_memmap(void)
2030 {
2031 	unsigned long start, end, prev_end = 0;
2032 	int i;
2033 
2034 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2035 	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2036 		return;
2037 
2038 	/*
2039 	 * This relies on each bank being in address order.
2040 	 * The banks are sorted previously in bootmem_init().
2041 	 */
2042 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2043 #ifdef CONFIG_SPARSEMEM
2044 		/*
2045 		 * Take care not to free memmap entries that don't exist
2046 		 * due to SPARSEMEM sections which aren't present.
2047 		 */
2048 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2049 #endif
2050 		/*
2051 		 * Align down here since many operations in VM subsystem
2052 		 * presume that there are no holes in the memory map inside
2053 		 * a pageblock
2054 		 */
2055 		start = pageblock_start_pfn(start);
2056 
2057 		/*
2058 		 * If we had a previous bank, and there is a space
2059 		 * between the current bank and the previous, free it.
2060 		 */
2061 		if (prev_end && prev_end < start)
2062 			free_memmap(prev_end, start);
2063 
2064 		/*
2065 		 * Align up here since many operations in VM subsystem
2066 		 * presume that there are no holes in the memory map inside
2067 		 * a pageblock
2068 		 */
2069 		prev_end = pageblock_align(end);
2070 	}
2071 
2072 #ifdef CONFIG_SPARSEMEM
2073 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2074 		prev_end = pageblock_align(end);
2075 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2076 	}
2077 #endif
2078 }
2079 
__free_pages_memory(unsigned long start,unsigned long end)2080 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2081 {
2082 	int order;
2083 
2084 	while (start < end) {
2085 		/*
2086 		 * Free the pages in the largest chunks alignment allows.
2087 		 *
2088 		 * __ffs() behaviour is undefined for 0. start == 0 is
2089 		 * MAX_ORDER-aligned, set order to MAX_ORDER for the case.
2090 		 */
2091 		if (start)
2092 			order = min_t(int, MAX_ORDER, __ffs(start));
2093 		else
2094 			order = MAX_ORDER;
2095 
2096 		while (start + (1UL << order) > end)
2097 			order--;
2098 
2099 		memblock_free_pages(pfn_to_page(start), start, order);
2100 
2101 		start += (1UL << order);
2102 	}
2103 }
2104 
__free_memory_core(phys_addr_t start,phys_addr_t end)2105 static unsigned long __init __free_memory_core(phys_addr_t start,
2106 				 phys_addr_t end)
2107 {
2108 	unsigned long start_pfn = PFN_UP(start);
2109 	unsigned long end_pfn = min_t(unsigned long,
2110 				      PFN_DOWN(end), max_low_pfn);
2111 
2112 	if (start_pfn >= end_pfn)
2113 		return 0;
2114 
2115 	__free_pages_memory(start_pfn, end_pfn);
2116 
2117 	return end_pfn - start_pfn;
2118 }
2119 
memmap_init_reserved_pages(void)2120 static void __init memmap_init_reserved_pages(void)
2121 {
2122 	struct memblock_region *region;
2123 	phys_addr_t start, end;
2124 	int nid;
2125 
2126 	/*
2127 	 * set nid on all reserved pages and also treat struct
2128 	 * pages for the NOMAP regions as PageReserved
2129 	 */
2130 	for_each_mem_region(region) {
2131 		nid = memblock_get_region_node(region);
2132 		start = region->base;
2133 		end = start + region->size;
2134 
2135 		if (memblock_is_nomap(region))
2136 			reserve_bootmem_region(start, end, nid);
2137 
2138 		memblock_set_node(start, end, &memblock.reserved, nid);
2139 	}
2140 
2141 	/* initialize struct pages for the reserved regions */
2142 	for_each_reserved_mem_region(region) {
2143 		nid = memblock_get_region_node(region);
2144 		start = region->base;
2145 		end = start + region->size;
2146 
2147 		if (!numa_valid_node(nid))
2148 			nid = early_pfn_to_nid(PFN_DOWN(start));
2149 
2150 		reserve_bootmem_region(start, end, nid);
2151 	}
2152 }
2153 
free_low_memory_core_early(void)2154 static unsigned long __init free_low_memory_core_early(void)
2155 {
2156 	unsigned long count = 0;
2157 	phys_addr_t start, end;
2158 	u64 i;
2159 
2160 	memblock_clear_hotplug(0, -1);
2161 
2162 	memmap_init_reserved_pages();
2163 
2164 	/*
2165 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2166 	 *  because in some case like Node0 doesn't have RAM installed
2167 	 *  low ram will be on Node1
2168 	 */
2169 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2170 				NULL)
2171 		count += __free_memory_core(start, end);
2172 
2173 	return count;
2174 }
2175 
2176 static int reset_managed_pages_done __initdata;
2177 
reset_node_managed_pages(pg_data_t * pgdat)2178 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2179 {
2180 	struct zone *z;
2181 
2182 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2183 		atomic_long_set(&z->managed_pages, 0);
2184 }
2185 
reset_all_zones_managed_pages(void)2186 void __init reset_all_zones_managed_pages(void)
2187 {
2188 	struct pglist_data *pgdat;
2189 
2190 	if (reset_managed_pages_done)
2191 		return;
2192 
2193 	for_each_online_pgdat(pgdat)
2194 		reset_node_managed_pages(pgdat);
2195 
2196 	reset_managed_pages_done = 1;
2197 }
2198 
2199 /**
2200  * memblock_free_all - release free pages to the buddy allocator
2201  */
memblock_free_all(void)2202 void __init memblock_free_all(void)
2203 {
2204 	unsigned long pages;
2205 
2206 	free_unused_memmap();
2207 	reset_all_zones_managed_pages();
2208 
2209 	pages = free_low_memory_core_early();
2210 	totalram_pages_add(pages);
2211 }
2212 
2213 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2214 static const char * const flagname[] = {
2215 	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2216 	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2217 	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2218 	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2219 };
2220 
memblock_debug_show(struct seq_file * m,void * private)2221 static int memblock_debug_show(struct seq_file *m, void *private)
2222 {
2223 	struct memblock_type *type = m->private;
2224 	struct memblock_region *reg;
2225 	int i, j, nid;
2226 	unsigned int count = ARRAY_SIZE(flagname);
2227 	phys_addr_t end;
2228 
2229 	for (i = 0; i < type->cnt; i++) {
2230 		reg = &type->regions[i];
2231 		end = reg->base + reg->size - 1;
2232 		nid = memblock_get_region_node(reg);
2233 
2234 		seq_printf(m, "%4d: ", i);
2235 		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2236 		if (numa_valid_node(nid))
2237 			seq_printf(m, "%4d ", nid);
2238 		else
2239 			seq_printf(m, "%4c ", 'x');
2240 		if (reg->flags) {
2241 			for (j = 0; j < count; j++) {
2242 				if (reg->flags & (1U << j)) {
2243 					seq_printf(m, "%s\n", flagname[j]);
2244 					break;
2245 				}
2246 			}
2247 			if (j == count)
2248 				seq_printf(m, "%s\n", "UNKNOWN");
2249 		} else {
2250 			seq_printf(m, "%s\n", "NONE");
2251 		}
2252 	}
2253 	return 0;
2254 }
2255 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2256 
memblock_init_debugfs(void)2257 static int __init memblock_init_debugfs(void)
2258 {
2259 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2260 
2261 	debugfs_create_file("memory", 0444, root,
2262 			    &memblock.memory, &memblock_debug_fops);
2263 	debugfs_create_file("reserved", 0444, root,
2264 			    &memblock.reserved, &memblock_debug_fops);
2265 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2266 	debugfs_create_file("physmem", 0444, root, &physmem,
2267 			    &memblock_debug_fops);
2268 #endif
2269 
2270 	return 0;
2271 }
2272 __initcall(memblock_init_debugfs);
2273 
2274 #endif /* CONFIG_DEBUG_FS */
2275