1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 #include <linux/task_work.h>
13 #include <linux/mmu_notifier.h>
14
15 #include <asm/tlbflush.h>
16 #include <asm/mmu_context.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/cache.h>
19 #include <asm/cacheflush.h>
20 #include <asm/apic.h>
21 #include <asm/perf_event.h>
22 #include <asm/tlb.h>
23
24 #include "mm_internal.h"
25
26 #ifdef CONFIG_PARAVIRT
27 # define STATIC_NOPV
28 #else
29 # define STATIC_NOPV static
30 # define __flush_tlb_local native_flush_tlb_local
31 # define __flush_tlb_global native_flush_tlb_global
32 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr)
33 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info)
34 #endif
35
36 /*
37 * TLB flushing, formerly SMP-only
38 * c/o Linus Torvalds.
39 *
40 * These mean you can really definitely utterly forget about
41 * writing to user space from interrupts. (Its not allowed anyway).
42 *
43 * Optimizations Manfred Spraul <manfred@colorfullife.com>
44 *
45 * More scalable flush, from Andi Kleen
46 *
47 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
48 */
49
50 /*
51 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
52 * stored in cpu_tlb_state.last_user_mm_spec.
53 */
54 #define LAST_USER_MM_IBPB 0x1UL
55 #define LAST_USER_MM_L1D_FLUSH 0x2UL
56 #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
57
58 /* Bits to set when tlbstate and flush is (re)initialized */
59 #define LAST_USER_MM_INIT LAST_USER_MM_IBPB
60
61 /*
62 * The x86 feature is called PCID (Process Context IDentifier). It is similar
63 * to what is traditionally called ASID on the RISC processors.
64 *
65 * We don't use the traditional ASID implementation, where each process/mm gets
66 * its own ASID and flush/restart when we run out of ASID space.
67 *
68 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
69 * that came by on this CPU, allowing cheaper switch_mm between processes on
70 * this CPU.
71 *
72 * We end up with different spaces for different things. To avoid confusion we
73 * use different names for each of them:
74 *
75 * ASID - [0, TLB_NR_DYN_ASIDS-1]
76 * the canonical identifier for an mm
77 *
78 * kPCID - [1, TLB_NR_DYN_ASIDS]
79 * the value we write into the PCID part of CR3; corresponds to the
80 * ASID+1, because PCID 0 is special.
81 *
82 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
83 * for KPTI each mm has two address spaces and thus needs two
84 * PCID values, but we can still do with a single ASID denomination
85 * for each mm. Corresponds to kPCID + 2048.
86 *
87 */
88
89 /* There are 12 bits of space for ASIDS in CR3 */
90 #define CR3_HW_ASID_BITS 12
91
92 /*
93 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
94 * user/kernel switches
95 */
96 #ifdef CONFIG_PAGE_TABLE_ISOLATION
97 # define PTI_CONSUMED_PCID_BITS 1
98 #else
99 # define PTI_CONSUMED_PCID_BITS 0
100 #endif
101
102 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
103
104 /*
105 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
106 * for them being zero-based. Another -1 is because PCID 0 is reserved for
107 * use by non-PCID-aware users.
108 */
109 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
110
111 /*
112 * Given @asid, compute kPCID
113 */
kern_pcid(u16 asid)114 static inline u16 kern_pcid(u16 asid)
115 {
116 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
117
118 #ifdef CONFIG_PAGE_TABLE_ISOLATION
119 /*
120 * Make sure that the dynamic ASID space does not conflict with the
121 * bit we are using to switch between user and kernel ASIDs.
122 */
123 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
124
125 /*
126 * The ASID being passed in here should have respected the
127 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
128 */
129 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
130 #endif
131 /*
132 * The dynamically-assigned ASIDs that get passed in are small
133 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
134 * so do not bother to clear it.
135 *
136 * If PCID is on, ASID-aware code paths put the ASID+1 into the
137 * PCID bits. This serves two purposes. It prevents a nasty
138 * situation in which PCID-unaware code saves CR3, loads some other
139 * value (with PCID == 0), and then restores CR3, thus corrupting
140 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
141 * that any bugs involving loading a PCID-enabled CR3 with
142 * CR4.PCIDE off will trigger deterministically.
143 */
144 return asid + 1;
145 }
146
147 /*
148 * Given @asid, compute uPCID
149 */
user_pcid(u16 asid)150 static inline u16 user_pcid(u16 asid)
151 {
152 u16 ret = kern_pcid(asid);
153 #ifdef CONFIG_PAGE_TABLE_ISOLATION
154 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
155 #endif
156 return ret;
157 }
158
build_cr3(pgd_t * pgd,u16 asid,unsigned long lam)159 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
160 {
161 unsigned long cr3 = __sme_pa(pgd) | lam;
162
163 if (static_cpu_has(X86_FEATURE_PCID)) {
164 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
165 cr3 |= kern_pcid(asid);
166 } else {
167 VM_WARN_ON_ONCE(asid != 0);
168 }
169
170 return cr3;
171 }
172
build_cr3_noflush(pgd_t * pgd,u16 asid,unsigned long lam)173 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
174 unsigned long lam)
175 {
176 /*
177 * Use boot_cpu_has() instead of this_cpu_has() as this function
178 * might be called during early boot. This should work even after
179 * boot because all CPU's the have same capabilities:
180 */
181 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
182 return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
183 }
184
185 /*
186 * We get here when we do something requiring a TLB invalidation
187 * but could not go invalidate all of the contexts. We do the
188 * necessary invalidation by clearing out the 'ctx_id' which
189 * forces a TLB flush when the context is loaded.
190 */
clear_asid_other(void)191 static void clear_asid_other(void)
192 {
193 u16 asid;
194
195 /*
196 * This is only expected to be set if we have disabled
197 * kernel _PAGE_GLOBAL pages.
198 */
199 if (!static_cpu_has(X86_FEATURE_PTI)) {
200 WARN_ON_ONCE(1);
201 return;
202 }
203
204 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
205 /* Do not need to flush the current asid */
206 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
207 continue;
208 /*
209 * Make sure the next time we go to switch to
210 * this asid, we do a flush:
211 */
212 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
213 }
214 this_cpu_write(cpu_tlbstate.invalidate_other, false);
215 }
216
217 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
218
219
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen,u16 * new_asid,bool * need_flush)220 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
221 u16 *new_asid, bool *need_flush)
222 {
223 u16 asid;
224
225 if (!static_cpu_has(X86_FEATURE_PCID)) {
226 *new_asid = 0;
227 *need_flush = true;
228 return;
229 }
230
231 if (this_cpu_read(cpu_tlbstate.invalidate_other))
232 clear_asid_other();
233
234 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
235 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
236 next->context.ctx_id)
237 continue;
238
239 *new_asid = asid;
240 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
241 next_tlb_gen);
242 return;
243 }
244
245 /*
246 * We don't currently own an ASID slot on this CPU.
247 * Allocate a slot.
248 */
249 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
250 if (*new_asid >= TLB_NR_DYN_ASIDS) {
251 *new_asid = 0;
252 this_cpu_write(cpu_tlbstate.next_asid, 1);
253 }
254 *need_flush = true;
255 }
256
257 /*
258 * Given an ASID, flush the corresponding user ASID. We can delay this
259 * until the next time we switch to it.
260 *
261 * See SWITCH_TO_USER_CR3.
262 */
invalidate_user_asid(u16 asid)263 static inline void invalidate_user_asid(u16 asid)
264 {
265 /* There is no user ASID if address space separation is off */
266 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
267 return;
268
269 /*
270 * We only have a single ASID if PCID is off and the CR3
271 * write will have flushed it.
272 */
273 if (!cpu_feature_enabled(X86_FEATURE_PCID))
274 return;
275
276 if (!static_cpu_has(X86_FEATURE_PTI))
277 return;
278
279 __set_bit(kern_pcid(asid),
280 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
281 }
282
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,unsigned long lam,bool need_flush)283 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
284 bool need_flush)
285 {
286 unsigned long new_mm_cr3;
287
288 if (need_flush) {
289 invalidate_user_asid(new_asid);
290 new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
291 } else {
292 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
293 }
294
295 /*
296 * Caution: many callers of this function expect
297 * that load_cr3() is serializing and orders TLB
298 * fills with respect to the mm_cpumask writes.
299 */
300 write_cr3(new_mm_cr3);
301 }
302
leave_mm(int cpu)303 void leave_mm(int cpu)
304 {
305 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
306
307 /*
308 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
309 * If so, our callers still expect us to flush the TLB, but there
310 * aren't any user TLB entries in init_mm to worry about.
311 *
312 * This needs to happen before any other sanity checks due to
313 * intel_idle's shenanigans.
314 */
315 if (loaded_mm == &init_mm)
316 return;
317
318 /* Warn if we're not lazy. */
319 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
320
321 switch_mm(NULL, &init_mm, NULL);
322 }
323 EXPORT_SYMBOL_GPL(leave_mm);
324
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)325 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
326 struct task_struct *tsk)
327 {
328 unsigned long flags;
329
330 local_irq_save(flags);
331 switch_mm_irqs_off(prev, next, tsk);
332 local_irq_restore(flags);
333 }
334
335 /*
336 * Invoked from return to user/guest by a task that opted-in to L1D
337 * flushing but ended up running on an SMT enabled core due to wrong
338 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
339 * contract which this task requested.
340 */
l1d_flush_force_sigbus(struct callback_head * ch)341 static void l1d_flush_force_sigbus(struct callback_head *ch)
342 {
343 force_sig(SIGBUS);
344 }
345
l1d_flush_evaluate(unsigned long prev_mm,unsigned long next_mm,struct task_struct * next)346 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
347 struct task_struct *next)
348 {
349 /* Flush L1D if the outgoing task requests it */
350 if (prev_mm & LAST_USER_MM_L1D_FLUSH)
351 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
352
353 /* Check whether the incoming task opted in for L1D flush */
354 if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
355 return;
356
357 /*
358 * Validate that it is not running on an SMT sibling as this would
359 * make the excercise pointless because the siblings share L1D. If
360 * it runs on a SMT sibling, notify it with SIGBUS on return to
361 * user/guest
362 */
363 if (this_cpu_read(cpu_info.smt_active)) {
364 clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
365 next->l1d_flush_kill.func = l1d_flush_force_sigbus;
366 task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
367 }
368 }
369
mm_mangle_tif_spec_bits(struct task_struct * next)370 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
371 {
372 unsigned long next_tif = read_task_thread_flags(next);
373 unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
374
375 /*
376 * Ensure that the bit shift above works as expected and the two flags
377 * end up in bit 0 and 1.
378 */
379 BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
380
381 return (unsigned long)next->mm | spec_bits;
382 }
383
cond_mitigation(struct task_struct * next)384 static void cond_mitigation(struct task_struct *next)
385 {
386 unsigned long prev_mm, next_mm;
387
388 if (!next || !next->mm)
389 return;
390
391 next_mm = mm_mangle_tif_spec_bits(next);
392 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
393
394 /*
395 * Avoid user->user BTB/RSB poisoning by flushing them when switching
396 * between processes. This stops one process from doing Spectre-v2
397 * attacks on another.
398 *
399 * Both, the conditional and the always IBPB mode use the mm
400 * pointer to avoid the IBPB when switching between tasks of the
401 * same process. Using the mm pointer instead of mm->context.ctx_id
402 * opens a hypothetical hole vs. mm_struct reuse, which is more or
403 * less impossible to control by an attacker. Aside of that it
404 * would only affect the first schedule so the theoretically
405 * exposed data is not really interesting.
406 */
407 if (static_branch_likely(&switch_mm_cond_ibpb)) {
408 /*
409 * This is a bit more complex than the always mode because
410 * it has to handle two cases:
411 *
412 * 1) Switch from a user space task (potential attacker)
413 * which has TIF_SPEC_IB set to a user space task
414 * (potential victim) which has TIF_SPEC_IB not set.
415 *
416 * 2) Switch from a user space task (potential attacker)
417 * which has TIF_SPEC_IB not set to a user space task
418 * (potential victim) which has TIF_SPEC_IB set.
419 *
420 * This could be done by unconditionally issuing IBPB when
421 * a task which has TIF_SPEC_IB set is either scheduled in
422 * or out. Though that results in two flushes when:
423 *
424 * - the same user space task is scheduled out and later
425 * scheduled in again and only a kernel thread ran in
426 * between.
427 *
428 * - a user space task belonging to the same process is
429 * scheduled in after a kernel thread ran in between
430 *
431 * - a user space task belonging to the same process is
432 * scheduled in immediately.
433 *
434 * Optimize this with reasonably small overhead for the
435 * above cases. Mangle the TIF_SPEC_IB bit into the mm
436 * pointer of the incoming task which is stored in
437 * cpu_tlbstate.last_user_mm_spec for comparison.
438 *
439 * Issue IBPB only if the mm's are different and one or
440 * both have the IBPB bit set.
441 */
442 if (next_mm != prev_mm &&
443 (next_mm | prev_mm) & LAST_USER_MM_IBPB)
444 indirect_branch_prediction_barrier();
445 }
446
447 if (static_branch_unlikely(&switch_mm_always_ibpb)) {
448 /*
449 * Only flush when switching to a user space task with a
450 * different context than the user space task which ran
451 * last on this CPU.
452 */
453 if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
454 (unsigned long)next->mm)
455 indirect_branch_prediction_barrier();
456 }
457
458 if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
459 /*
460 * Flush L1D when the outgoing task requested it and/or
461 * check whether the incoming task requested L1D flushing
462 * and ended up on an SMT sibling.
463 */
464 if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
465 l1d_flush_evaluate(prev_mm, next_mm, next);
466 }
467
468 this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
469 }
470
471 #ifdef CONFIG_PERF_EVENTS
cr4_update_pce_mm(struct mm_struct * mm)472 static inline void cr4_update_pce_mm(struct mm_struct *mm)
473 {
474 if (static_branch_unlikely(&rdpmc_always_available_key) ||
475 (!static_branch_unlikely(&rdpmc_never_available_key) &&
476 atomic_read(&mm->context.perf_rdpmc_allowed))) {
477 /*
478 * Clear the existing dirty counters to
479 * prevent the leak for an RDPMC task.
480 */
481 perf_clear_dirty_counters();
482 cr4_set_bits_irqsoff(X86_CR4_PCE);
483 } else
484 cr4_clear_bits_irqsoff(X86_CR4_PCE);
485 }
486
cr4_update_pce(void * ignored)487 void cr4_update_pce(void *ignored)
488 {
489 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
490 }
491
492 #else
cr4_update_pce_mm(struct mm_struct * mm)493 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
494 #endif
495
switch_mm_irqs_off(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)496 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
497 struct task_struct *tsk)
498 {
499 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
500 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
501 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
502 unsigned cpu = smp_processor_id();
503 unsigned long new_lam;
504 u64 next_tlb_gen;
505 bool need_flush;
506 u16 new_asid;
507
508 /*
509 * NB: The scheduler will call us with prev == next when switching
510 * from lazy TLB mode to normal mode if active_mm isn't changing.
511 * When this happens, we don't assume that CR3 (and hence
512 * cpu_tlbstate.loaded_mm) matches next.
513 *
514 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
515 */
516
517 /* We don't want flush_tlb_func() to run concurrently with us. */
518 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
519 WARN_ON_ONCE(!irqs_disabled());
520
521 /*
522 * Verify that CR3 is what we think it is. This will catch
523 * hypothetical buggy code that directly switches to swapper_pg_dir
524 * without going through leave_mm() / switch_mm_irqs_off() or that
525 * does something like write_cr3(read_cr3_pa()).
526 *
527 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
528 * isn't free.
529 */
530 #ifdef CONFIG_DEBUG_VM
531 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid,
532 tlbstate_lam_cr3_mask()))) {
533 /*
534 * If we were to BUG here, we'd be very likely to kill
535 * the system so hard that we don't see the call trace.
536 * Try to recover instead by ignoring the error and doing
537 * a global flush to minimize the chance of corruption.
538 *
539 * (This is far from being a fully correct recovery.
540 * Architecturally, the CPU could prefetch something
541 * back into an incorrect ASID slot and leave it there
542 * to cause trouble down the road. It's better than
543 * nothing, though.)
544 */
545 __flush_tlb_all();
546 }
547 #endif
548 if (was_lazy)
549 this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
550
551 /*
552 * The membarrier system call requires a full memory barrier and
553 * core serialization before returning to user-space, after
554 * storing to rq->curr, when changing mm. This is because
555 * membarrier() sends IPIs to all CPUs that are in the target mm
556 * to make them issue memory barriers. However, if another CPU
557 * switches to/from the target mm concurrently with
558 * membarrier(), it can cause that CPU not to receive an IPI
559 * when it really should issue a memory barrier. Writing to CR3
560 * provides that full memory barrier and core serializing
561 * instruction.
562 */
563 if (real_prev == next) {
564 /* Not actually switching mm's */
565 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
566 next->context.ctx_id);
567
568 /*
569 * If this races with another thread that enables lam, 'new_lam'
570 * might not match tlbstate_lam_cr3_mask().
571 */
572
573 /*
574 * Even in lazy TLB mode, the CPU should stay set in the
575 * mm_cpumask. The TLB shootdown code can figure out from
576 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
577 */
578 if (WARN_ON_ONCE(real_prev != &init_mm &&
579 !cpumask_test_cpu(cpu, mm_cpumask(next))))
580 cpumask_set_cpu(cpu, mm_cpumask(next));
581
582 /*
583 * If the CPU is not in lazy TLB mode, we are just switching
584 * from one thread in a process to another thread in the same
585 * process. No TLB flush required.
586 */
587 if (!was_lazy)
588 return;
589
590 /*
591 * Read the tlb_gen to check whether a flush is needed.
592 * If the TLB is up to date, just use it.
593 * The barrier synchronizes with the tlb_gen increment in
594 * the TLB shootdown code.
595 */
596 smp_mb();
597 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
598 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
599 next_tlb_gen)
600 return;
601
602 /*
603 * TLB contents went out of date while we were in lazy
604 * mode. Fall through to the TLB switching code below.
605 */
606 new_asid = prev_asid;
607 need_flush = true;
608 } else {
609 /*
610 * Apply process to process speculation vulnerability
611 * mitigations if applicable.
612 */
613 cond_mitigation(tsk);
614
615 /*
616 * Stop remote flushes for the previous mm.
617 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
618 * but the bitmap manipulation can cause cache line contention.
619 */
620 if (real_prev != &init_mm) {
621 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
622 mm_cpumask(real_prev)));
623 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
624 }
625
626 /* Start receiving IPIs and then read tlb_gen (and LAM below) */
627 if (next != &init_mm)
628 cpumask_set_cpu(cpu, mm_cpumask(next));
629 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
630
631 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
632
633 /*
634 * Indicate that CR3 is about to change. nmi_uaccess_okay()
635 * and others are sensitive to the window where mm_cpumask(),
636 * CR3 and cpu_tlbstate.loaded_mm are not all in sync.
637 */
638 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
639 barrier();
640 }
641
642 new_lam = mm_lam_cr3_mask(next);
643 set_tlbstate_lam_mode(next);
644 if (need_flush) {
645 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
646 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
647 load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
648
649 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
650 } else {
651 /* The new ASID is already up to date. */
652 load_new_mm_cr3(next->pgd, new_asid, new_lam, false);
653
654 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
655 }
656
657 /* Make sure we write CR3 before loaded_mm. */
658 barrier();
659
660 this_cpu_write(cpu_tlbstate.loaded_mm, next);
661 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
662
663 if (next != real_prev) {
664 cr4_update_pce_mm(next);
665 switch_ldt(real_prev, next);
666 }
667 }
668
669 /*
670 * Please ignore the name of this function. It should be called
671 * switch_to_kernel_thread().
672 *
673 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
674 * kernel thread or other context without an mm. Acceptable implementations
675 * include doing nothing whatsoever, switching to init_mm, or various clever
676 * lazy tricks to try to minimize TLB flushes.
677 *
678 * The scheduler reserves the right to call enter_lazy_tlb() several times
679 * in a row. It will notify us that we're going back to a real mm by
680 * calling switch_mm_irqs_off().
681 */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)682 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
683 {
684 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
685 return;
686
687 this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
688 }
689
690 /*
691 * Call this when reinitializing a CPU. It fixes the following potential
692 * problems:
693 *
694 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
695 * because the CPU was taken down and came back up with CR3's PCID
696 * bits clear. CPU hotplug can do this.
697 *
698 * - The TLB contains junk in slots corresponding to inactive ASIDs.
699 *
700 * - The CPU went so far out to lunch that it may have missed a TLB
701 * flush.
702 */
initialize_tlbstate_and_flush(void)703 void initialize_tlbstate_and_flush(void)
704 {
705 int i;
706 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
707 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
708 unsigned long cr3 = __read_cr3();
709
710 /* Assert that CR3 already references the right mm. */
711 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
712
713 /* LAM expected to be disabled */
714 WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
715 WARN_ON(mm_lam_cr3_mask(mm));
716
717 /*
718 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
719 * doesn't work like other CR4 bits because it can only be set from
720 * long mode.)
721 */
722 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
723 !(cr4_read_shadow() & X86_CR4_PCIDE));
724
725 /* Disable LAM, force ASID 0 and force a TLB flush. */
726 write_cr3(build_cr3(mm->pgd, 0, 0));
727
728 /* Reinitialize tlbstate. */
729 this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
730 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
731 this_cpu_write(cpu_tlbstate.next_asid, 1);
732 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
733 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
734 set_tlbstate_lam_mode(mm);
735
736 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
737 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
738 }
739
740 /*
741 * flush_tlb_func()'s memory ordering requirement is that any
742 * TLB fills that happen after we flush the TLB are ordered after we
743 * read active_mm's tlb_gen. We don't need any explicit barriers
744 * because all x86 flush operations are serializing and the
745 * atomic64_read operation won't be reordered by the compiler.
746 */
flush_tlb_func(void * info)747 static void flush_tlb_func(void *info)
748 {
749 /*
750 * We have three different tlb_gen values in here. They are:
751 *
752 * - mm_tlb_gen: the latest generation.
753 * - local_tlb_gen: the generation that this CPU has already caught
754 * up to.
755 * - f->new_tlb_gen: the generation that the requester of the flush
756 * wants us to catch up to.
757 */
758 const struct flush_tlb_info *f = info;
759 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
760 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
761 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
762 bool local = smp_processor_id() == f->initiating_cpu;
763 unsigned long nr_invalidate = 0;
764 u64 mm_tlb_gen;
765
766 /* This code cannot presently handle being reentered. */
767 VM_WARN_ON(!irqs_disabled());
768
769 if (!local) {
770 inc_irq_stat(irq_tlb_count);
771 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
772
773 /* Can only happen on remote CPUs */
774 if (f->mm && f->mm != loaded_mm)
775 return;
776 }
777
778 if (unlikely(loaded_mm == &init_mm))
779 return;
780
781 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
782 loaded_mm->context.ctx_id);
783
784 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
785 /*
786 * We're in lazy mode. We need to at least flush our
787 * paging-structure cache to avoid speculatively reading
788 * garbage into our TLB. Since switching to init_mm is barely
789 * slower than a minimal flush, just switch to init_mm.
790 *
791 * This should be rare, with native_flush_tlb_multi() skipping
792 * IPIs to lazy TLB mode CPUs.
793 */
794 switch_mm_irqs_off(NULL, &init_mm, NULL);
795 return;
796 }
797
798 if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
799 f->new_tlb_gen <= local_tlb_gen)) {
800 /*
801 * The TLB is already up to date in respect to f->new_tlb_gen.
802 * While the core might be still behind mm_tlb_gen, checking
803 * mm_tlb_gen unnecessarily would have negative caching effects
804 * so avoid it.
805 */
806 return;
807 }
808
809 /*
810 * Defer mm_tlb_gen reading as long as possible to avoid cache
811 * contention.
812 */
813 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
814
815 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
816 /*
817 * There's nothing to do: we're already up to date. This can
818 * happen if two concurrent flushes happen -- the first flush to
819 * be handled can catch us all the way up, leaving no work for
820 * the second flush.
821 */
822 goto done;
823 }
824
825 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
826 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
827
828 /*
829 * If we get to this point, we know that our TLB is out of date.
830 * This does not strictly imply that we need to flush (it's
831 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
832 * going to need to flush in the very near future, so we might
833 * as well get it over with.
834 *
835 * The only question is whether to do a full or partial flush.
836 *
837 * We do a partial flush if requested and two extra conditions
838 * are met:
839 *
840 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
841 * we've always done all needed flushes to catch up to
842 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
843 * f->new_tlb_gen == 3, then we know that the flush needed to bring
844 * us up to date for tlb_gen 3 is the partial flush we're
845 * processing.
846 *
847 * As an example of why this check is needed, suppose that there
848 * are two concurrent flushes. The first is a full flush that
849 * changes context.tlb_gen from 1 to 2. The second is a partial
850 * flush that changes context.tlb_gen from 2 to 3. If they get
851 * processed on this CPU in reverse order, we'll see
852 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
853 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
854 * 3, we'd be break the invariant: we'd update local_tlb_gen above
855 * 1 without the full flush that's needed for tlb_gen 2.
856 *
857 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization.
858 * Partial TLB flushes are not all that much cheaper than full TLB
859 * flushes, so it seems unlikely that it would be a performance win
860 * to do a partial flush if that won't bring our TLB fully up to
861 * date. By doing a full flush instead, we can increase
862 * local_tlb_gen all the way to mm_tlb_gen and we can probably
863 * avoid another flush in the very near future.
864 */
865 if (f->end != TLB_FLUSH_ALL &&
866 f->new_tlb_gen == local_tlb_gen + 1 &&
867 f->new_tlb_gen == mm_tlb_gen) {
868 /* Partial flush */
869 unsigned long addr = f->start;
870
871 /* Partial flush cannot have invalid generations */
872 VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
873
874 /* Partial flush must have valid mm */
875 VM_WARN_ON(f->mm == NULL);
876
877 nr_invalidate = (f->end - f->start) >> f->stride_shift;
878
879 while (addr < f->end) {
880 flush_tlb_one_user(addr);
881 addr += 1UL << f->stride_shift;
882 }
883 if (local)
884 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
885 } else {
886 /* Full flush. */
887 nr_invalidate = TLB_FLUSH_ALL;
888
889 flush_tlb_local();
890 if (local)
891 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
892 }
893
894 /* Both paths above update our state to mm_tlb_gen. */
895 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
896
897 /* Tracing is done in a unified manner to reduce the code size */
898 done:
899 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
900 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
901 TLB_LOCAL_MM_SHOOTDOWN,
902 nr_invalidate);
903 }
904
should_flush_tlb(int cpu,void * data)905 static bool should_flush_tlb(int cpu, void *data)
906 {
907 struct mm_struct *loaded_mm = per_cpu(cpu_tlbstate.loaded_mm, cpu);
908 struct flush_tlb_info *info = data;
909
910 /*
911 * Order the 'loaded_mm' and 'is_lazy' against their
912 * write ordering in switch_mm_irqs_off(). Ensure
913 * 'is_lazy' is at least as new as 'loaded_mm'.
914 */
915 smp_rmb();
916
917 /* Lazy TLB will get flushed at the next context switch. */
918 if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
919 return false;
920
921 /* No mm means kernel memory flush. */
922 if (!info->mm)
923 return true;
924
925 /*
926 * While switching, the remote CPU could have state from
927 * either the prev or next mm. Assume the worst and flush.
928 */
929 if (loaded_mm == LOADED_MM_SWITCHING)
930 return true;
931
932 /* The target mm is loaded, and the CPU is not lazy. */
933 if (loaded_mm == info->mm)
934 return true;
935
936 /* In cpumask, but not the loaded mm? Periodically remove by flushing. */
937 if (info->trim_cpumask)
938 return true;
939
940 return false;
941 }
942
should_trim_cpumask(struct mm_struct * mm)943 static bool should_trim_cpumask(struct mm_struct *mm)
944 {
945 if (time_after(jiffies, READ_ONCE(mm->context.next_trim_cpumask))) {
946 WRITE_ONCE(mm->context.next_trim_cpumask, jiffies + HZ);
947 return true;
948 }
949 return false;
950 }
951
952 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
953 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
954
native_flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)955 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
956 const struct flush_tlb_info *info)
957 {
958 /*
959 * Do accounting and tracing. Note that there are (and have always been)
960 * cases in which a remote TLB flush will be traced, but eventually
961 * would not happen.
962 */
963 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
964 if (info->end == TLB_FLUSH_ALL)
965 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
966 else
967 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
968 (info->end - info->start) >> PAGE_SHIFT);
969
970 /*
971 * If no page tables were freed, we can skip sending IPIs to
972 * CPUs in lazy TLB mode. They will flush the CPU themselves
973 * at the next context switch.
974 *
975 * However, if page tables are getting freed, we need to send the
976 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
977 * up on the new contents of what used to be page tables, while
978 * doing a speculative memory access.
979 */
980 if (info->freed_tables)
981 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
982 else
983 on_each_cpu_cond_mask(should_flush_tlb, flush_tlb_func,
984 (void *)info, 1, cpumask);
985 }
986
flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)987 void flush_tlb_multi(const struct cpumask *cpumask,
988 const struct flush_tlb_info *info)
989 {
990 __flush_tlb_multi(cpumask, info);
991 }
992
993 /*
994 * See Documentation/arch/x86/tlb.rst for details. We choose 33
995 * because it is large enough to cover the vast majority (at
996 * least 95%) of allocations, and is small enough that we are
997 * confident it will not cause too much overhead. Each single
998 * flush is about 100 ns, so this caps the maximum overhead at
999 * _about_ 3,000 ns.
1000 *
1001 * This is in units of pages.
1002 */
1003 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
1004
1005 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
1006
1007 #ifdef CONFIG_DEBUG_VM
1008 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
1009 #endif
1010
get_flush_tlb_info(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables,u64 new_tlb_gen)1011 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
1012 unsigned long start, unsigned long end,
1013 unsigned int stride_shift, bool freed_tables,
1014 u64 new_tlb_gen)
1015 {
1016 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
1017
1018 #ifdef CONFIG_DEBUG_VM
1019 /*
1020 * Ensure that the following code is non-reentrant and flush_tlb_info
1021 * is not overwritten. This means no TLB flushing is initiated by
1022 * interrupt handlers and machine-check exception handlers.
1023 */
1024 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
1025 #endif
1026
1027 info->start = start;
1028 info->end = end;
1029 info->mm = mm;
1030 info->stride_shift = stride_shift;
1031 info->freed_tables = freed_tables;
1032 info->new_tlb_gen = new_tlb_gen;
1033 info->initiating_cpu = smp_processor_id();
1034 info->trim_cpumask = 0;
1035
1036 return info;
1037 }
1038
put_flush_tlb_info(void)1039 static void put_flush_tlb_info(void)
1040 {
1041 #ifdef CONFIG_DEBUG_VM
1042 /* Complete reentrancy prevention checks */
1043 barrier();
1044 this_cpu_dec(flush_tlb_info_idx);
1045 #endif
1046 }
1047
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables)1048 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
1049 unsigned long end, unsigned int stride_shift,
1050 bool freed_tables)
1051 {
1052 struct flush_tlb_info *info;
1053 u64 new_tlb_gen;
1054 int cpu;
1055
1056 cpu = get_cpu();
1057
1058 /* Should we flush just the requested range? */
1059 if ((end == TLB_FLUSH_ALL) ||
1060 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
1061 start = 0;
1062 end = TLB_FLUSH_ALL;
1063 }
1064
1065 /* This is also a barrier that synchronizes with switch_mm(). */
1066 new_tlb_gen = inc_mm_tlb_gen(mm);
1067
1068 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1069 new_tlb_gen);
1070
1071 /*
1072 * flush_tlb_multi() is not optimized for the common case in which only
1073 * a local TLB flush is needed. Optimize this use-case by calling
1074 * flush_tlb_func_local() directly in this case.
1075 */
1076 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1077 info->trim_cpumask = should_trim_cpumask(mm);
1078 flush_tlb_multi(mm_cpumask(mm), info);
1079 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1080 lockdep_assert_irqs_enabled();
1081 local_irq_disable();
1082 flush_tlb_func(info);
1083 local_irq_enable();
1084 }
1085
1086 put_flush_tlb_info();
1087 put_cpu();
1088 mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
1089 }
1090
1091
do_flush_tlb_all(void * info)1092 static void do_flush_tlb_all(void *info)
1093 {
1094 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1095 __flush_tlb_all();
1096 }
1097
flush_tlb_all(void)1098 void flush_tlb_all(void)
1099 {
1100 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1101 on_each_cpu(do_flush_tlb_all, NULL, 1);
1102 }
1103
do_kernel_range_flush(void * info)1104 static void do_kernel_range_flush(void *info)
1105 {
1106 struct flush_tlb_info *f = info;
1107 unsigned long addr;
1108
1109 /* flush range by one by one 'invlpg' */
1110 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1111 flush_tlb_one_kernel(addr);
1112 }
1113
flush_tlb_kernel_range(unsigned long start,unsigned long end)1114 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1115 {
1116 /* Balance as user space task's flush, a bit conservative */
1117 if (end == TLB_FLUSH_ALL ||
1118 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1119 on_each_cpu(do_flush_tlb_all, NULL, 1);
1120 } else {
1121 struct flush_tlb_info *info;
1122
1123 preempt_disable();
1124 info = get_flush_tlb_info(NULL, start, end, 0, false,
1125 TLB_GENERATION_INVALID);
1126
1127 on_each_cpu(do_kernel_range_flush, info, 1);
1128
1129 put_flush_tlb_info();
1130 preempt_enable();
1131 }
1132 }
1133
1134 /*
1135 * This can be used from process context to figure out what the value of
1136 * CR3 is without needing to do a (slow) __read_cr3().
1137 *
1138 * It's intended to be used for code like KVM that sneakily changes CR3
1139 * and needs to restore it. It needs to be used very carefully.
1140 */
__get_current_cr3_fast(void)1141 unsigned long __get_current_cr3_fast(void)
1142 {
1143 unsigned long cr3 =
1144 build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1145 this_cpu_read(cpu_tlbstate.loaded_mm_asid),
1146 tlbstate_lam_cr3_mask());
1147
1148 /* For now, be very restrictive about when this can be called. */
1149 VM_WARN_ON(in_nmi() || preemptible());
1150
1151 VM_BUG_ON(cr3 != __read_cr3());
1152 return cr3;
1153 }
1154 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1155
1156 /*
1157 * Flush one page in the kernel mapping
1158 */
flush_tlb_one_kernel(unsigned long addr)1159 void flush_tlb_one_kernel(unsigned long addr)
1160 {
1161 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1162
1163 /*
1164 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1165 * paravirt equivalent. Even with PCID, this is sufficient: we only
1166 * use PCID if we also use global PTEs for the kernel mapping, and
1167 * INVLPG flushes global translations across all address spaces.
1168 *
1169 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1170 * __flush_tlb_one_user() will flush the given address for the current
1171 * kernel address space and for its usermode counterpart, but it does
1172 * not flush it for other address spaces.
1173 */
1174 flush_tlb_one_user(addr);
1175
1176 if (!static_cpu_has(X86_FEATURE_PTI))
1177 return;
1178
1179 /*
1180 * See above. We need to propagate the flush to all other address
1181 * spaces. In principle, we only need to propagate it to kernelmode
1182 * address spaces, but the extra bookkeeping we would need is not
1183 * worth it.
1184 */
1185 this_cpu_write(cpu_tlbstate.invalidate_other, true);
1186 }
1187
1188 /*
1189 * Flush one page in the user mapping
1190 */
native_flush_tlb_one_user(unsigned long addr)1191 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1192 {
1193 u32 loaded_mm_asid;
1194 bool cpu_pcide;
1195
1196 /* Flush 'addr' from the kernel PCID: */
1197 invlpg(addr);
1198
1199 /* If PTI is off there is no user PCID and nothing to flush. */
1200 if (!static_cpu_has(X86_FEATURE_PTI))
1201 return;
1202
1203 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1204 cpu_pcide = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
1205
1206 /*
1207 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0. Check
1208 * 'cpu_pcide' to ensure that *this* CPU will not trigger those
1209 * #GP's even if called before CR4.PCIDE has been initialized.
1210 */
1211 if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
1212 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1213 else
1214 invalidate_user_asid(loaded_mm_asid);
1215 }
1216
flush_tlb_one_user(unsigned long addr)1217 void flush_tlb_one_user(unsigned long addr)
1218 {
1219 __flush_tlb_one_user(addr);
1220 }
1221
1222 /*
1223 * Flush everything
1224 */
native_flush_tlb_global(void)1225 STATIC_NOPV void native_flush_tlb_global(void)
1226 {
1227 unsigned long flags;
1228
1229 if (static_cpu_has(X86_FEATURE_INVPCID)) {
1230 /*
1231 * Using INVPCID is considerably faster than a pair of writes
1232 * to CR4 sandwiched inside an IRQ flag save/restore.
1233 *
1234 * Note, this works with CR4.PCIDE=0 or 1.
1235 */
1236 invpcid_flush_all();
1237 return;
1238 }
1239
1240 /*
1241 * Read-modify-write to CR4 - protect it from preemption and
1242 * from interrupts. (Use the raw variant because this code can
1243 * be called from deep inside debugging code.)
1244 */
1245 raw_local_irq_save(flags);
1246
1247 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1248
1249 raw_local_irq_restore(flags);
1250 }
1251
1252 /*
1253 * Flush the entire current user mapping
1254 */
native_flush_tlb_local(void)1255 STATIC_NOPV void native_flush_tlb_local(void)
1256 {
1257 /*
1258 * Preemption or interrupts must be disabled to protect the access
1259 * to the per CPU variable and to prevent being preempted between
1260 * read_cr3() and write_cr3().
1261 */
1262 WARN_ON_ONCE(preemptible());
1263
1264 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1265
1266 /* If current->mm == NULL then the read_cr3() "borrows" an mm */
1267 native_write_cr3(__native_read_cr3());
1268 }
1269
flush_tlb_local(void)1270 void flush_tlb_local(void)
1271 {
1272 __flush_tlb_local();
1273 }
1274
1275 /*
1276 * Flush everything
1277 */
__flush_tlb_all(void)1278 void __flush_tlb_all(void)
1279 {
1280 /*
1281 * This is to catch users with enabled preemption and the PGE feature
1282 * and don't trigger the warning in __native_flush_tlb().
1283 */
1284 VM_WARN_ON_ONCE(preemptible());
1285
1286 if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1287 __flush_tlb_global();
1288 } else {
1289 /*
1290 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1291 */
1292 flush_tlb_local();
1293 }
1294 }
1295 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1296
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)1297 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1298 {
1299 struct flush_tlb_info *info;
1300
1301 int cpu = get_cpu();
1302
1303 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1304 TLB_GENERATION_INVALID);
1305 /*
1306 * flush_tlb_multi() is not optimized for the common case in which only
1307 * a local TLB flush is needed. Optimize this use-case by calling
1308 * flush_tlb_func_local() directly in this case.
1309 */
1310 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1311 flush_tlb_multi(&batch->cpumask, info);
1312 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1313 lockdep_assert_irqs_enabled();
1314 local_irq_disable();
1315 flush_tlb_func(info);
1316 local_irq_enable();
1317 }
1318
1319 cpumask_clear(&batch->cpumask);
1320
1321 put_flush_tlb_info();
1322 put_cpu();
1323 }
1324
1325 /*
1326 * Blindly accessing user memory from NMI context can be dangerous
1327 * if we're in the middle of switching the current user task or
1328 * switching the loaded mm. It can also be dangerous if we
1329 * interrupted some kernel code that was temporarily using a
1330 * different mm.
1331 */
nmi_uaccess_okay(void)1332 bool nmi_uaccess_okay(void)
1333 {
1334 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1335 struct mm_struct *current_mm = current->mm;
1336
1337 VM_WARN_ON_ONCE(!loaded_mm);
1338
1339 /*
1340 * The condition we want to check is
1341 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
1342 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1343 * is supposed to be reasonably fast.
1344 *
1345 * Instead, we check the almost equivalent but somewhat conservative
1346 * condition below, and we rely on the fact that switch_mm_irqs_off()
1347 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1348 */
1349 if (loaded_mm != current_mm)
1350 return false;
1351
1352 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1353
1354 return true;
1355 }
1356
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1357 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1358 size_t count, loff_t *ppos)
1359 {
1360 char buf[32];
1361 unsigned int len;
1362
1363 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1364 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1365 }
1366
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1367 static ssize_t tlbflush_write_file(struct file *file,
1368 const char __user *user_buf, size_t count, loff_t *ppos)
1369 {
1370 char buf[32];
1371 ssize_t len;
1372 int ceiling;
1373
1374 len = min(count, sizeof(buf) - 1);
1375 if (copy_from_user(buf, user_buf, len))
1376 return -EFAULT;
1377
1378 buf[len] = '\0';
1379 if (kstrtoint(buf, 0, &ceiling))
1380 return -EINVAL;
1381
1382 if (ceiling < 0)
1383 return -EINVAL;
1384
1385 tlb_single_page_flush_ceiling = ceiling;
1386 return count;
1387 }
1388
1389 static const struct file_operations fops_tlbflush = {
1390 .read = tlbflush_read_file,
1391 .write = tlbflush_write_file,
1392 .llseek = default_llseek,
1393 };
1394
create_tlb_single_page_flush_ceiling(void)1395 static int __init create_tlb_single_page_flush_ceiling(void)
1396 {
1397 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1398 arch_debugfs_dir, NULL, &fops_tlbflush);
1399 return 0;
1400 }
1401 late_initcall(create_tlb_single_page_flush_ceiling);
1402