xref: /openbmc/linux/arch/x86/mm/tlb.c (revision 098c0a373cdd51d3a735da7394acd6e57fae45a0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3 
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 #include <linux/task_work.h>
13 #include <linux/mmu_notifier.h>
14 
15 #include <asm/tlbflush.h>
16 #include <asm/mmu_context.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/cache.h>
19 #include <asm/cacheflush.h>
20 #include <asm/apic.h>
21 #include <asm/perf_event.h>
22 #include <asm/tlb.h>
23 
24 #include "mm_internal.h"
25 
26 #ifdef CONFIG_PARAVIRT
27 # define STATIC_NOPV
28 #else
29 # define STATIC_NOPV			static
30 # define __flush_tlb_local		native_flush_tlb_local
31 # define __flush_tlb_global		native_flush_tlb_global
32 # define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
33 # define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
34 #endif
35 
36 /*
37  *	TLB flushing, formerly SMP-only
38  *		c/o Linus Torvalds.
39  *
40  *	These mean you can really definitely utterly forget about
41  *	writing to user space from interrupts. (Its not allowed anyway).
42  *
43  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
44  *
45  *	More scalable flush, from Andi Kleen
46  *
47  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
48  */
49 
50 /*
51  * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
52  * stored in cpu_tlb_state.last_user_mm_spec.
53  */
54 #define LAST_USER_MM_IBPB	0x1UL
55 #define LAST_USER_MM_L1D_FLUSH	0x2UL
56 #define LAST_USER_MM_SPEC_MASK	(LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
57 
58 /* Bits to set when tlbstate and flush is (re)initialized */
59 #define LAST_USER_MM_INIT	LAST_USER_MM_IBPB
60 
61 /*
62  * The x86 feature is called PCID (Process Context IDentifier). It is similar
63  * to what is traditionally called ASID on the RISC processors.
64  *
65  * We don't use the traditional ASID implementation, where each process/mm gets
66  * its own ASID and flush/restart when we run out of ASID space.
67  *
68  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
69  * that came by on this CPU, allowing cheaper switch_mm between processes on
70  * this CPU.
71  *
72  * We end up with different spaces for different things. To avoid confusion we
73  * use different names for each of them:
74  *
75  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
76  *         the canonical identifier for an mm
77  *
78  * kPCID - [1, TLB_NR_DYN_ASIDS]
79  *         the value we write into the PCID part of CR3; corresponds to the
80  *         ASID+1, because PCID 0 is special.
81  *
82  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
83  *         for KPTI each mm has two address spaces and thus needs two
84  *         PCID values, but we can still do with a single ASID denomination
85  *         for each mm. Corresponds to kPCID + 2048.
86  *
87  */
88 
89 /* There are 12 bits of space for ASIDS in CR3 */
90 #define CR3_HW_ASID_BITS		12
91 
92 /*
93  * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
94  * user/kernel switches
95  */
96 #ifdef CONFIG_PAGE_TABLE_ISOLATION
97 # define PTI_CONSUMED_PCID_BITS	1
98 #else
99 # define PTI_CONSUMED_PCID_BITS	0
100 #endif
101 
102 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
103 
104 /*
105  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
106  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
107  * use by non-PCID-aware users.
108  */
109 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
110 
111 /*
112  * Given @asid, compute kPCID
113  */
kern_pcid(u16 asid)114 static inline u16 kern_pcid(u16 asid)
115 {
116 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
117 
118 #ifdef CONFIG_PAGE_TABLE_ISOLATION
119 	/*
120 	 * Make sure that the dynamic ASID space does not conflict with the
121 	 * bit we are using to switch between user and kernel ASIDs.
122 	 */
123 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
124 
125 	/*
126 	 * The ASID being passed in here should have respected the
127 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
128 	 */
129 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
130 #endif
131 	/*
132 	 * The dynamically-assigned ASIDs that get passed in are small
133 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
134 	 * so do not bother to clear it.
135 	 *
136 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
137 	 * PCID bits.  This serves two purposes.  It prevents a nasty
138 	 * situation in which PCID-unaware code saves CR3, loads some other
139 	 * value (with PCID == 0), and then restores CR3, thus corrupting
140 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
141 	 * that any bugs involving loading a PCID-enabled CR3 with
142 	 * CR4.PCIDE off will trigger deterministically.
143 	 */
144 	return asid + 1;
145 }
146 
147 /*
148  * Given @asid, compute uPCID
149  */
user_pcid(u16 asid)150 static inline u16 user_pcid(u16 asid)
151 {
152 	u16 ret = kern_pcid(asid);
153 #ifdef CONFIG_PAGE_TABLE_ISOLATION
154 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
155 #endif
156 	return ret;
157 }
158 
build_cr3(pgd_t * pgd,u16 asid,unsigned long lam)159 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
160 {
161 	unsigned long cr3 = __sme_pa(pgd) | lam;
162 
163 	if (static_cpu_has(X86_FEATURE_PCID)) {
164 		VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
165 		cr3 |= kern_pcid(asid);
166 	} else {
167 		VM_WARN_ON_ONCE(asid != 0);
168 	}
169 
170 	return cr3;
171 }
172 
build_cr3_noflush(pgd_t * pgd,u16 asid,unsigned long lam)173 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
174 					      unsigned long lam)
175 {
176 	/*
177 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
178 	 * might be called during early boot. This should work even after
179 	 * boot because all CPU's the have same capabilities:
180 	 */
181 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
182 	return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
183 }
184 
185 /*
186  * We get here when we do something requiring a TLB invalidation
187  * but could not go invalidate all of the contexts.  We do the
188  * necessary invalidation by clearing out the 'ctx_id' which
189  * forces a TLB flush when the context is loaded.
190  */
clear_asid_other(void)191 static void clear_asid_other(void)
192 {
193 	u16 asid;
194 
195 	/*
196 	 * This is only expected to be set if we have disabled
197 	 * kernel _PAGE_GLOBAL pages.
198 	 */
199 	if (!static_cpu_has(X86_FEATURE_PTI)) {
200 		WARN_ON_ONCE(1);
201 		return;
202 	}
203 
204 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
205 		/* Do not need to flush the current asid */
206 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
207 			continue;
208 		/*
209 		 * Make sure the next time we go to switch to
210 		 * this asid, we do a flush:
211 		 */
212 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
213 	}
214 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
215 }
216 
217 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
218 
219 
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen,u16 * new_asid,bool * need_flush)220 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
221 			    u16 *new_asid, bool *need_flush)
222 {
223 	u16 asid;
224 
225 	if (!static_cpu_has(X86_FEATURE_PCID)) {
226 		*new_asid = 0;
227 		*need_flush = true;
228 		return;
229 	}
230 
231 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
232 		clear_asid_other();
233 
234 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
235 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
236 		    next->context.ctx_id)
237 			continue;
238 
239 		*new_asid = asid;
240 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
241 			       next_tlb_gen);
242 		return;
243 	}
244 
245 	/*
246 	 * We don't currently own an ASID slot on this CPU.
247 	 * Allocate a slot.
248 	 */
249 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
250 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
251 		*new_asid = 0;
252 		this_cpu_write(cpu_tlbstate.next_asid, 1);
253 	}
254 	*need_flush = true;
255 }
256 
257 /*
258  * Given an ASID, flush the corresponding user ASID.  We can delay this
259  * until the next time we switch to it.
260  *
261  * See SWITCH_TO_USER_CR3.
262  */
invalidate_user_asid(u16 asid)263 static inline void invalidate_user_asid(u16 asid)
264 {
265 	/* There is no user ASID if address space separation is off */
266 	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
267 		return;
268 
269 	/*
270 	 * We only have a single ASID if PCID is off and the CR3
271 	 * write will have flushed it.
272 	 */
273 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
274 		return;
275 
276 	if (!static_cpu_has(X86_FEATURE_PTI))
277 		return;
278 
279 	__set_bit(kern_pcid(asid),
280 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
281 }
282 
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,unsigned long lam,bool need_flush)283 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
284 			    bool need_flush)
285 {
286 	unsigned long new_mm_cr3;
287 
288 	if (need_flush) {
289 		invalidate_user_asid(new_asid);
290 		new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
291 	} else {
292 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
293 	}
294 
295 	/*
296 	 * Caution: many callers of this function expect
297 	 * that load_cr3() is serializing and orders TLB
298 	 * fills with respect to the mm_cpumask writes.
299 	 */
300 	write_cr3(new_mm_cr3);
301 }
302 
leave_mm(int cpu)303 void leave_mm(int cpu)
304 {
305 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
306 
307 	/*
308 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
309 	 * If so, our callers still expect us to flush the TLB, but there
310 	 * aren't any user TLB entries in init_mm to worry about.
311 	 *
312 	 * This needs to happen before any other sanity checks due to
313 	 * intel_idle's shenanigans.
314 	 */
315 	if (loaded_mm == &init_mm)
316 		return;
317 
318 	/* Warn if we're not lazy. */
319 	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
320 
321 	switch_mm(NULL, &init_mm, NULL);
322 }
323 EXPORT_SYMBOL_GPL(leave_mm);
324 
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)325 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
326 	       struct task_struct *tsk)
327 {
328 	unsigned long flags;
329 
330 	local_irq_save(flags);
331 	switch_mm_irqs_off(prev, next, tsk);
332 	local_irq_restore(flags);
333 }
334 
335 /*
336  * Invoked from return to user/guest by a task that opted-in to L1D
337  * flushing but ended up running on an SMT enabled core due to wrong
338  * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
339  * contract which this task requested.
340  */
l1d_flush_force_sigbus(struct callback_head * ch)341 static void l1d_flush_force_sigbus(struct callback_head *ch)
342 {
343 	force_sig(SIGBUS);
344 }
345 
l1d_flush_evaluate(unsigned long prev_mm,unsigned long next_mm,struct task_struct * next)346 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
347 				struct task_struct *next)
348 {
349 	/* Flush L1D if the outgoing task requests it */
350 	if (prev_mm & LAST_USER_MM_L1D_FLUSH)
351 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
352 
353 	/* Check whether the incoming task opted in for L1D flush */
354 	if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
355 		return;
356 
357 	/*
358 	 * Validate that it is not running on an SMT sibling as this would
359 	 * make the excercise pointless because the siblings share L1D. If
360 	 * it runs on a SMT sibling, notify it with SIGBUS on return to
361 	 * user/guest
362 	 */
363 	if (this_cpu_read(cpu_info.smt_active)) {
364 		clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
365 		next->l1d_flush_kill.func = l1d_flush_force_sigbus;
366 		task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
367 	}
368 }
369 
mm_mangle_tif_spec_bits(struct task_struct * next)370 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
371 {
372 	unsigned long next_tif = read_task_thread_flags(next);
373 	unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
374 
375 	/*
376 	 * Ensure that the bit shift above works as expected and the two flags
377 	 * end up in bit 0 and 1.
378 	 */
379 	BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
380 
381 	return (unsigned long)next->mm | spec_bits;
382 }
383 
cond_mitigation(struct task_struct * next)384 static void cond_mitigation(struct task_struct *next)
385 {
386 	unsigned long prev_mm, next_mm;
387 
388 	if (!next || !next->mm)
389 		return;
390 
391 	next_mm = mm_mangle_tif_spec_bits(next);
392 	prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
393 
394 	/*
395 	 * Avoid user->user BTB/RSB poisoning by flushing them when switching
396 	 * between processes. This stops one process from doing Spectre-v2
397 	 * attacks on another.
398 	 *
399 	 * Both, the conditional and the always IBPB mode use the mm
400 	 * pointer to avoid the IBPB when switching between tasks of the
401 	 * same process. Using the mm pointer instead of mm->context.ctx_id
402 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
403 	 * less impossible to control by an attacker. Aside of that it
404 	 * would only affect the first schedule so the theoretically
405 	 * exposed data is not really interesting.
406 	 */
407 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
408 		/*
409 		 * This is a bit more complex than the always mode because
410 		 * it has to handle two cases:
411 		 *
412 		 * 1) Switch from a user space task (potential attacker)
413 		 *    which has TIF_SPEC_IB set to a user space task
414 		 *    (potential victim) which has TIF_SPEC_IB not set.
415 		 *
416 		 * 2) Switch from a user space task (potential attacker)
417 		 *    which has TIF_SPEC_IB not set to a user space task
418 		 *    (potential victim) which has TIF_SPEC_IB set.
419 		 *
420 		 * This could be done by unconditionally issuing IBPB when
421 		 * a task which has TIF_SPEC_IB set is either scheduled in
422 		 * or out. Though that results in two flushes when:
423 		 *
424 		 * - the same user space task is scheduled out and later
425 		 *   scheduled in again and only a kernel thread ran in
426 		 *   between.
427 		 *
428 		 * - a user space task belonging to the same process is
429 		 *   scheduled in after a kernel thread ran in between
430 		 *
431 		 * - a user space task belonging to the same process is
432 		 *   scheduled in immediately.
433 		 *
434 		 * Optimize this with reasonably small overhead for the
435 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
436 		 * pointer of the incoming task which is stored in
437 		 * cpu_tlbstate.last_user_mm_spec for comparison.
438 		 *
439 		 * Issue IBPB only if the mm's are different and one or
440 		 * both have the IBPB bit set.
441 		 */
442 		if (next_mm != prev_mm &&
443 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
444 			indirect_branch_prediction_barrier();
445 	}
446 
447 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
448 		/*
449 		 * Only flush when switching to a user space task with a
450 		 * different context than the user space task which ran
451 		 * last on this CPU.
452 		 */
453 		if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
454 					(unsigned long)next->mm)
455 			indirect_branch_prediction_barrier();
456 	}
457 
458 	if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
459 		/*
460 		 * Flush L1D when the outgoing task requested it and/or
461 		 * check whether the incoming task requested L1D flushing
462 		 * and ended up on an SMT sibling.
463 		 */
464 		if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
465 			l1d_flush_evaluate(prev_mm, next_mm, next);
466 	}
467 
468 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
469 }
470 
471 #ifdef CONFIG_PERF_EVENTS
cr4_update_pce_mm(struct mm_struct * mm)472 static inline void cr4_update_pce_mm(struct mm_struct *mm)
473 {
474 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
475 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
476 	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
477 		/*
478 		 * Clear the existing dirty counters to
479 		 * prevent the leak for an RDPMC task.
480 		 */
481 		perf_clear_dirty_counters();
482 		cr4_set_bits_irqsoff(X86_CR4_PCE);
483 	} else
484 		cr4_clear_bits_irqsoff(X86_CR4_PCE);
485 }
486 
cr4_update_pce(void * ignored)487 void cr4_update_pce(void *ignored)
488 {
489 	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
490 }
491 
492 #else
cr4_update_pce_mm(struct mm_struct * mm)493 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
494 #endif
495 
switch_mm_irqs_off(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)496 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
497 			struct task_struct *tsk)
498 {
499 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
500 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
501 	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
502 	unsigned cpu = smp_processor_id();
503 	unsigned long new_lam;
504 	u64 next_tlb_gen;
505 	bool need_flush;
506 	u16 new_asid;
507 
508 	/*
509 	 * NB: The scheduler will call us with prev == next when switching
510 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
511 	 * When this happens, we don't assume that CR3 (and hence
512 	 * cpu_tlbstate.loaded_mm) matches next.
513 	 *
514 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
515 	 */
516 
517 	/* We don't want flush_tlb_func() to run concurrently with us. */
518 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
519 		WARN_ON_ONCE(!irqs_disabled());
520 
521 	/*
522 	 * Verify that CR3 is what we think it is.  This will catch
523 	 * hypothetical buggy code that directly switches to swapper_pg_dir
524 	 * without going through leave_mm() / switch_mm_irqs_off() or that
525 	 * does something like write_cr3(read_cr3_pa()).
526 	 *
527 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
528 	 * isn't free.
529 	 */
530 #ifdef CONFIG_DEBUG_VM
531 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid,
532 						   tlbstate_lam_cr3_mask()))) {
533 		/*
534 		 * If we were to BUG here, we'd be very likely to kill
535 		 * the system so hard that we don't see the call trace.
536 		 * Try to recover instead by ignoring the error and doing
537 		 * a global flush to minimize the chance of corruption.
538 		 *
539 		 * (This is far from being a fully correct recovery.
540 		 *  Architecturally, the CPU could prefetch something
541 		 *  back into an incorrect ASID slot and leave it there
542 		 *  to cause trouble down the road.  It's better than
543 		 *  nothing, though.)
544 		 */
545 		__flush_tlb_all();
546 	}
547 #endif
548 	if (was_lazy)
549 		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
550 
551 	/*
552 	 * The membarrier system call requires a full memory barrier and
553 	 * core serialization before returning to user-space, after
554 	 * storing to rq->curr, when changing mm.  This is because
555 	 * membarrier() sends IPIs to all CPUs that are in the target mm
556 	 * to make them issue memory barriers.  However, if another CPU
557 	 * switches to/from the target mm concurrently with
558 	 * membarrier(), it can cause that CPU not to receive an IPI
559 	 * when it really should issue a memory barrier.  Writing to CR3
560 	 * provides that full memory barrier and core serializing
561 	 * instruction.
562 	 */
563 	if (real_prev == next) {
564 		/* Not actually switching mm's */
565 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
566 			   next->context.ctx_id);
567 
568 		/*
569 		 * If this races with another thread that enables lam, 'new_lam'
570 		 * might not match tlbstate_lam_cr3_mask().
571 		 */
572 
573 		/*
574 		 * Even in lazy TLB mode, the CPU should stay set in the
575 		 * mm_cpumask. The TLB shootdown code can figure out from
576 		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
577 		 */
578 		if (WARN_ON_ONCE(real_prev != &init_mm &&
579 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
580 			cpumask_set_cpu(cpu, mm_cpumask(next));
581 
582 		/*
583 		 * If the CPU is not in lazy TLB mode, we are just switching
584 		 * from one thread in a process to another thread in the same
585 		 * process. No TLB flush required.
586 		 */
587 		if (!was_lazy)
588 			return;
589 
590 		/*
591 		 * Read the tlb_gen to check whether a flush is needed.
592 		 * If the TLB is up to date, just use it.
593 		 * The barrier synchronizes with the tlb_gen increment in
594 		 * the TLB shootdown code.
595 		 */
596 		smp_mb();
597 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
598 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
599 				next_tlb_gen)
600 			return;
601 
602 		/*
603 		 * TLB contents went out of date while we were in lazy
604 		 * mode. Fall through to the TLB switching code below.
605 		 */
606 		new_asid = prev_asid;
607 		need_flush = true;
608 	} else {
609 		/*
610 		 * Apply process to process speculation vulnerability
611 		 * mitigations if applicable.
612 		 */
613 		cond_mitigation(tsk);
614 
615 		/*
616 		 * Stop remote flushes for the previous mm.
617 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
618 		 * but the bitmap manipulation can cause cache line contention.
619 		 */
620 		if (real_prev != &init_mm) {
621 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
622 						mm_cpumask(real_prev)));
623 			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
624 		}
625 
626 		/* Start receiving IPIs and then read tlb_gen (and LAM below) */
627 		if (next != &init_mm)
628 			cpumask_set_cpu(cpu, mm_cpumask(next));
629 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
630 
631 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
632 
633 		/*
634 		 * Indicate that CR3 is about to change. nmi_uaccess_okay()
635 		 * and others are sensitive to the window where mm_cpumask(),
636 		 * CR3 and cpu_tlbstate.loaded_mm are not all in sync.
637  		 */
638 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
639 		barrier();
640 	}
641 
642 	new_lam = mm_lam_cr3_mask(next);
643 	set_tlbstate_lam_mode(next);
644 	if (need_flush) {
645 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
646 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
647 		load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
648 
649 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
650 	} else {
651 		/* The new ASID is already up to date. */
652 		load_new_mm_cr3(next->pgd, new_asid, new_lam, false);
653 
654 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
655 	}
656 
657 	/* Make sure we write CR3 before loaded_mm. */
658 	barrier();
659 
660 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
661 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
662 
663 	if (next != real_prev) {
664 		cr4_update_pce_mm(next);
665 		switch_ldt(real_prev, next);
666 	}
667 }
668 
669 /*
670  * Please ignore the name of this function.  It should be called
671  * switch_to_kernel_thread().
672  *
673  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
674  * kernel thread or other context without an mm.  Acceptable implementations
675  * include doing nothing whatsoever, switching to init_mm, or various clever
676  * lazy tricks to try to minimize TLB flushes.
677  *
678  * The scheduler reserves the right to call enter_lazy_tlb() several times
679  * in a row.  It will notify us that we're going back to a real mm by
680  * calling switch_mm_irqs_off().
681  */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)682 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
683 {
684 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
685 		return;
686 
687 	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
688 }
689 
690 /*
691  * Call this when reinitializing a CPU.  It fixes the following potential
692  * problems:
693  *
694  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
695  *   because the CPU was taken down and came back up with CR3's PCID
696  *   bits clear.  CPU hotplug can do this.
697  *
698  * - The TLB contains junk in slots corresponding to inactive ASIDs.
699  *
700  * - The CPU went so far out to lunch that it may have missed a TLB
701  *   flush.
702  */
initialize_tlbstate_and_flush(void)703 void initialize_tlbstate_and_flush(void)
704 {
705 	int i;
706 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
707 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
708 	unsigned long cr3 = __read_cr3();
709 
710 	/* Assert that CR3 already references the right mm. */
711 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
712 
713 	/* LAM expected to be disabled */
714 	WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
715 	WARN_ON(mm_lam_cr3_mask(mm));
716 
717 	/*
718 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
719 	 * doesn't work like other CR4 bits because it can only be set from
720 	 * long mode.)
721 	 */
722 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
723 		!(cr4_read_shadow() & X86_CR4_PCIDE));
724 
725 	/* Disable LAM, force ASID 0 and force a TLB flush. */
726 	write_cr3(build_cr3(mm->pgd, 0, 0));
727 
728 	/* Reinitialize tlbstate. */
729 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
730 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
731 	this_cpu_write(cpu_tlbstate.next_asid, 1);
732 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
733 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
734 	set_tlbstate_lam_mode(mm);
735 
736 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
737 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
738 }
739 
740 /*
741  * flush_tlb_func()'s memory ordering requirement is that any
742  * TLB fills that happen after we flush the TLB are ordered after we
743  * read active_mm's tlb_gen.  We don't need any explicit barriers
744  * because all x86 flush operations are serializing and the
745  * atomic64_read operation won't be reordered by the compiler.
746  */
flush_tlb_func(void * info)747 static void flush_tlb_func(void *info)
748 {
749 	/*
750 	 * We have three different tlb_gen values in here.  They are:
751 	 *
752 	 * - mm_tlb_gen:     the latest generation.
753 	 * - local_tlb_gen:  the generation that this CPU has already caught
754 	 *                   up to.
755 	 * - f->new_tlb_gen: the generation that the requester of the flush
756 	 *                   wants us to catch up to.
757 	 */
758 	const struct flush_tlb_info *f = info;
759 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
760 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
761 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
762 	bool local = smp_processor_id() == f->initiating_cpu;
763 	unsigned long nr_invalidate = 0;
764 	u64 mm_tlb_gen;
765 
766 	/* This code cannot presently handle being reentered. */
767 	VM_WARN_ON(!irqs_disabled());
768 
769 	if (!local) {
770 		inc_irq_stat(irq_tlb_count);
771 		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
772 
773 		/* Can only happen on remote CPUs */
774 		if (f->mm && f->mm != loaded_mm)
775 			return;
776 	}
777 
778 	if (unlikely(loaded_mm == &init_mm))
779 		return;
780 
781 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
782 		   loaded_mm->context.ctx_id);
783 
784 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
785 		/*
786 		 * We're in lazy mode.  We need to at least flush our
787 		 * paging-structure cache to avoid speculatively reading
788 		 * garbage into our TLB.  Since switching to init_mm is barely
789 		 * slower than a minimal flush, just switch to init_mm.
790 		 *
791 		 * This should be rare, with native_flush_tlb_multi() skipping
792 		 * IPIs to lazy TLB mode CPUs.
793 		 */
794 		switch_mm_irqs_off(NULL, &init_mm, NULL);
795 		return;
796 	}
797 
798 	if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
799 		     f->new_tlb_gen <= local_tlb_gen)) {
800 		/*
801 		 * The TLB is already up to date in respect to f->new_tlb_gen.
802 		 * While the core might be still behind mm_tlb_gen, checking
803 		 * mm_tlb_gen unnecessarily would have negative caching effects
804 		 * so avoid it.
805 		 */
806 		return;
807 	}
808 
809 	/*
810 	 * Defer mm_tlb_gen reading as long as possible to avoid cache
811 	 * contention.
812 	 */
813 	mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
814 
815 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
816 		/*
817 		 * There's nothing to do: we're already up to date.  This can
818 		 * happen if two concurrent flushes happen -- the first flush to
819 		 * be handled can catch us all the way up, leaving no work for
820 		 * the second flush.
821 		 */
822 		goto done;
823 	}
824 
825 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
826 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
827 
828 	/*
829 	 * If we get to this point, we know that our TLB is out of date.
830 	 * This does not strictly imply that we need to flush (it's
831 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
832 	 * going to need to flush in the very near future, so we might
833 	 * as well get it over with.
834 	 *
835 	 * The only question is whether to do a full or partial flush.
836 	 *
837 	 * We do a partial flush if requested and two extra conditions
838 	 * are met:
839 	 *
840 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
841 	 *    we've always done all needed flushes to catch up to
842 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
843 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
844 	 *    us up to date for tlb_gen 3 is the partial flush we're
845 	 *    processing.
846 	 *
847 	 *    As an example of why this check is needed, suppose that there
848 	 *    are two concurrent flushes.  The first is a full flush that
849 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
850 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
851 	 *    processed on this CPU in reverse order, we'll see
852 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
853 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
854 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
855 	 *    1 without the full flush that's needed for tlb_gen 2.
856 	 *
857 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
858 	 *    Partial TLB flushes are not all that much cheaper than full TLB
859 	 *    flushes, so it seems unlikely that it would be a performance win
860 	 *    to do a partial flush if that won't bring our TLB fully up to
861 	 *    date.  By doing a full flush instead, we can increase
862 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
863 	 *    avoid another flush in the very near future.
864 	 */
865 	if (f->end != TLB_FLUSH_ALL &&
866 	    f->new_tlb_gen == local_tlb_gen + 1 &&
867 	    f->new_tlb_gen == mm_tlb_gen) {
868 		/* Partial flush */
869 		unsigned long addr = f->start;
870 
871 		/* Partial flush cannot have invalid generations */
872 		VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
873 
874 		/* Partial flush must have valid mm */
875 		VM_WARN_ON(f->mm == NULL);
876 
877 		nr_invalidate = (f->end - f->start) >> f->stride_shift;
878 
879 		while (addr < f->end) {
880 			flush_tlb_one_user(addr);
881 			addr += 1UL << f->stride_shift;
882 		}
883 		if (local)
884 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
885 	} else {
886 		/* Full flush. */
887 		nr_invalidate = TLB_FLUSH_ALL;
888 
889 		flush_tlb_local();
890 		if (local)
891 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
892 	}
893 
894 	/* Both paths above update our state to mm_tlb_gen. */
895 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
896 
897 	/* Tracing is done in a unified manner to reduce the code size */
898 done:
899 	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
900 				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
901 						  TLB_LOCAL_MM_SHOOTDOWN,
902 			nr_invalidate);
903 }
904 
should_flush_tlb(int cpu,void * data)905 static bool should_flush_tlb(int cpu, void *data)
906 {
907 	struct mm_struct *loaded_mm = per_cpu(cpu_tlbstate.loaded_mm, cpu);
908 	struct flush_tlb_info *info = data;
909 
910 	/*
911 	 * Order the 'loaded_mm' and 'is_lazy' against their
912 	 * write ordering in switch_mm_irqs_off(). Ensure
913 	 * 'is_lazy' is at least as new as 'loaded_mm'.
914 	 */
915 	smp_rmb();
916 
917 	/* Lazy TLB will get flushed at the next context switch. */
918 	if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
919 		return false;
920 
921 	/* No mm means kernel memory flush. */
922 	if (!info->mm)
923 		return true;
924 
925 	/*
926 	 * While switching, the remote CPU could have state from
927 	 * either the prev or next mm. Assume the worst and flush.
928 	 */
929 	if (loaded_mm == LOADED_MM_SWITCHING)
930 		return true;
931 
932 	/* The target mm is loaded, and the CPU is not lazy. */
933 	if (loaded_mm == info->mm)
934 		return true;
935 
936 	/* In cpumask, but not the loaded mm? Periodically remove by flushing. */
937 	if (info->trim_cpumask)
938 		return true;
939 
940 	return false;
941 }
942 
should_trim_cpumask(struct mm_struct * mm)943 static bool should_trim_cpumask(struct mm_struct *mm)
944 {
945 	if (time_after(jiffies, READ_ONCE(mm->context.next_trim_cpumask))) {
946 		WRITE_ONCE(mm->context.next_trim_cpumask, jiffies + HZ);
947 		return true;
948 	}
949 	return false;
950 }
951 
952 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
953 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
954 
native_flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)955 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
956 					 const struct flush_tlb_info *info)
957 {
958 	/*
959 	 * Do accounting and tracing. Note that there are (and have always been)
960 	 * cases in which a remote TLB flush will be traced, but eventually
961 	 * would not happen.
962 	 */
963 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
964 	if (info->end == TLB_FLUSH_ALL)
965 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
966 	else
967 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
968 				(info->end - info->start) >> PAGE_SHIFT);
969 
970 	/*
971 	 * If no page tables were freed, we can skip sending IPIs to
972 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
973 	 * at the next context switch.
974 	 *
975 	 * However, if page tables are getting freed, we need to send the
976 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
977 	 * up on the new contents of what used to be page tables, while
978 	 * doing a speculative memory access.
979 	 */
980 	if (info->freed_tables)
981 		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
982 	else
983 		on_each_cpu_cond_mask(should_flush_tlb, flush_tlb_func,
984 				(void *)info, 1, cpumask);
985 }
986 
flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)987 void flush_tlb_multi(const struct cpumask *cpumask,
988 		      const struct flush_tlb_info *info)
989 {
990 	__flush_tlb_multi(cpumask, info);
991 }
992 
993 /*
994  * See Documentation/arch/x86/tlb.rst for details.  We choose 33
995  * because it is large enough to cover the vast majority (at
996  * least 95%) of allocations, and is small enough that we are
997  * confident it will not cause too much overhead.  Each single
998  * flush is about 100 ns, so this caps the maximum overhead at
999  * _about_ 3,000 ns.
1000  *
1001  * This is in units of pages.
1002  */
1003 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
1004 
1005 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
1006 
1007 #ifdef CONFIG_DEBUG_VM
1008 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
1009 #endif
1010 
get_flush_tlb_info(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables,u64 new_tlb_gen)1011 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
1012 			unsigned long start, unsigned long end,
1013 			unsigned int stride_shift, bool freed_tables,
1014 			u64 new_tlb_gen)
1015 {
1016 	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
1017 
1018 #ifdef CONFIG_DEBUG_VM
1019 	/*
1020 	 * Ensure that the following code is non-reentrant and flush_tlb_info
1021 	 * is not overwritten. This means no TLB flushing is initiated by
1022 	 * interrupt handlers and machine-check exception handlers.
1023 	 */
1024 	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
1025 #endif
1026 
1027 	info->start		= start;
1028 	info->end		= end;
1029 	info->mm		= mm;
1030 	info->stride_shift	= stride_shift;
1031 	info->freed_tables	= freed_tables;
1032 	info->new_tlb_gen	= new_tlb_gen;
1033 	info->initiating_cpu	= smp_processor_id();
1034 	info->trim_cpumask	= 0;
1035 
1036 	return info;
1037 }
1038 
put_flush_tlb_info(void)1039 static void put_flush_tlb_info(void)
1040 {
1041 #ifdef CONFIG_DEBUG_VM
1042 	/* Complete reentrancy prevention checks */
1043 	barrier();
1044 	this_cpu_dec(flush_tlb_info_idx);
1045 #endif
1046 }
1047 
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables)1048 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
1049 				unsigned long end, unsigned int stride_shift,
1050 				bool freed_tables)
1051 {
1052 	struct flush_tlb_info *info;
1053 	u64 new_tlb_gen;
1054 	int cpu;
1055 
1056 	cpu = get_cpu();
1057 
1058 	/* Should we flush just the requested range? */
1059 	if ((end == TLB_FLUSH_ALL) ||
1060 	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
1061 		start = 0;
1062 		end = TLB_FLUSH_ALL;
1063 	}
1064 
1065 	/* This is also a barrier that synchronizes with switch_mm(). */
1066 	new_tlb_gen = inc_mm_tlb_gen(mm);
1067 
1068 	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1069 				  new_tlb_gen);
1070 
1071 	/*
1072 	 * flush_tlb_multi() is not optimized for the common case in which only
1073 	 * a local TLB flush is needed. Optimize this use-case by calling
1074 	 * flush_tlb_func_local() directly in this case.
1075 	 */
1076 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1077 		info->trim_cpumask = should_trim_cpumask(mm);
1078 		flush_tlb_multi(mm_cpumask(mm), info);
1079 	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1080 		lockdep_assert_irqs_enabled();
1081 		local_irq_disable();
1082 		flush_tlb_func(info);
1083 		local_irq_enable();
1084 	}
1085 
1086 	put_flush_tlb_info();
1087 	put_cpu();
1088 	mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
1089 }
1090 
1091 
do_flush_tlb_all(void * info)1092 static void do_flush_tlb_all(void *info)
1093 {
1094 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1095 	__flush_tlb_all();
1096 }
1097 
flush_tlb_all(void)1098 void flush_tlb_all(void)
1099 {
1100 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1101 	on_each_cpu(do_flush_tlb_all, NULL, 1);
1102 }
1103 
do_kernel_range_flush(void * info)1104 static void do_kernel_range_flush(void *info)
1105 {
1106 	struct flush_tlb_info *f = info;
1107 	unsigned long addr;
1108 
1109 	/* flush range by one by one 'invlpg' */
1110 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1111 		flush_tlb_one_kernel(addr);
1112 }
1113 
flush_tlb_kernel_range(unsigned long start,unsigned long end)1114 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1115 {
1116 	/* Balance as user space task's flush, a bit conservative */
1117 	if (end == TLB_FLUSH_ALL ||
1118 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1119 		on_each_cpu(do_flush_tlb_all, NULL, 1);
1120 	} else {
1121 		struct flush_tlb_info *info;
1122 
1123 		preempt_disable();
1124 		info = get_flush_tlb_info(NULL, start, end, 0, false,
1125 					  TLB_GENERATION_INVALID);
1126 
1127 		on_each_cpu(do_kernel_range_flush, info, 1);
1128 
1129 		put_flush_tlb_info();
1130 		preempt_enable();
1131 	}
1132 }
1133 
1134 /*
1135  * This can be used from process context to figure out what the value of
1136  * CR3 is without needing to do a (slow) __read_cr3().
1137  *
1138  * It's intended to be used for code like KVM that sneakily changes CR3
1139  * and needs to restore it.  It needs to be used very carefully.
1140  */
__get_current_cr3_fast(void)1141 unsigned long __get_current_cr3_fast(void)
1142 {
1143 	unsigned long cr3 =
1144 		build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1145 			  this_cpu_read(cpu_tlbstate.loaded_mm_asid),
1146 			  tlbstate_lam_cr3_mask());
1147 
1148 	/* For now, be very restrictive about when this can be called. */
1149 	VM_WARN_ON(in_nmi() || preemptible());
1150 
1151 	VM_BUG_ON(cr3 != __read_cr3());
1152 	return cr3;
1153 }
1154 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1155 
1156 /*
1157  * Flush one page in the kernel mapping
1158  */
flush_tlb_one_kernel(unsigned long addr)1159 void flush_tlb_one_kernel(unsigned long addr)
1160 {
1161 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1162 
1163 	/*
1164 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1165 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
1166 	 * use PCID if we also use global PTEs for the kernel mapping, and
1167 	 * INVLPG flushes global translations across all address spaces.
1168 	 *
1169 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1170 	 * __flush_tlb_one_user() will flush the given address for the current
1171 	 * kernel address space and for its usermode counterpart, but it does
1172 	 * not flush it for other address spaces.
1173 	 */
1174 	flush_tlb_one_user(addr);
1175 
1176 	if (!static_cpu_has(X86_FEATURE_PTI))
1177 		return;
1178 
1179 	/*
1180 	 * See above.  We need to propagate the flush to all other address
1181 	 * spaces.  In principle, we only need to propagate it to kernelmode
1182 	 * address spaces, but the extra bookkeeping we would need is not
1183 	 * worth it.
1184 	 */
1185 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1186 }
1187 
1188 /*
1189  * Flush one page in the user mapping
1190  */
native_flush_tlb_one_user(unsigned long addr)1191 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1192 {
1193 	u32 loaded_mm_asid;
1194 	bool cpu_pcide;
1195 
1196 	/* Flush 'addr' from the kernel PCID: */
1197 	invlpg(addr);
1198 
1199 	/* If PTI is off there is no user PCID and nothing to flush. */
1200 	if (!static_cpu_has(X86_FEATURE_PTI))
1201 		return;
1202 
1203 	loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1204 	cpu_pcide      = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
1205 
1206 	/*
1207 	 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0.  Check
1208 	 * 'cpu_pcide' to ensure that *this* CPU will not trigger those
1209 	 * #GP's even if called before CR4.PCIDE has been initialized.
1210 	 */
1211 	if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
1212 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1213 	else
1214 		invalidate_user_asid(loaded_mm_asid);
1215 }
1216 
flush_tlb_one_user(unsigned long addr)1217 void flush_tlb_one_user(unsigned long addr)
1218 {
1219 	__flush_tlb_one_user(addr);
1220 }
1221 
1222 /*
1223  * Flush everything
1224  */
native_flush_tlb_global(void)1225 STATIC_NOPV void native_flush_tlb_global(void)
1226 {
1227 	unsigned long flags;
1228 
1229 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1230 		/*
1231 		 * Using INVPCID is considerably faster than a pair of writes
1232 		 * to CR4 sandwiched inside an IRQ flag save/restore.
1233 		 *
1234 		 * Note, this works with CR4.PCIDE=0 or 1.
1235 		 */
1236 		invpcid_flush_all();
1237 		return;
1238 	}
1239 
1240 	/*
1241 	 * Read-modify-write to CR4 - protect it from preemption and
1242 	 * from interrupts. (Use the raw variant because this code can
1243 	 * be called from deep inside debugging code.)
1244 	 */
1245 	raw_local_irq_save(flags);
1246 
1247 	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1248 
1249 	raw_local_irq_restore(flags);
1250 }
1251 
1252 /*
1253  * Flush the entire current user mapping
1254  */
native_flush_tlb_local(void)1255 STATIC_NOPV void native_flush_tlb_local(void)
1256 {
1257 	/*
1258 	 * Preemption or interrupts must be disabled to protect the access
1259 	 * to the per CPU variable and to prevent being preempted between
1260 	 * read_cr3() and write_cr3().
1261 	 */
1262 	WARN_ON_ONCE(preemptible());
1263 
1264 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1265 
1266 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1267 	native_write_cr3(__native_read_cr3());
1268 }
1269 
flush_tlb_local(void)1270 void flush_tlb_local(void)
1271 {
1272 	__flush_tlb_local();
1273 }
1274 
1275 /*
1276  * Flush everything
1277  */
__flush_tlb_all(void)1278 void __flush_tlb_all(void)
1279 {
1280 	/*
1281 	 * This is to catch users with enabled preemption and the PGE feature
1282 	 * and don't trigger the warning in __native_flush_tlb().
1283 	 */
1284 	VM_WARN_ON_ONCE(preemptible());
1285 
1286 	if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1287 		__flush_tlb_global();
1288 	} else {
1289 		/*
1290 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1291 		 */
1292 		flush_tlb_local();
1293 	}
1294 }
1295 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1296 
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)1297 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1298 {
1299 	struct flush_tlb_info *info;
1300 
1301 	int cpu = get_cpu();
1302 
1303 	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1304 				  TLB_GENERATION_INVALID);
1305 	/*
1306 	 * flush_tlb_multi() is not optimized for the common case in which only
1307 	 * a local TLB flush is needed. Optimize this use-case by calling
1308 	 * flush_tlb_func_local() directly in this case.
1309 	 */
1310 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1311 		flush_tlb_multi(&batch->cpumask, info);
1312 	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1313 		lockdep_assert_irqs_enabled();
1314 		local_irq_disable();
1315 		flush_tlb_func(info);
1316 		local_irq_enable();
1317 	}
1318 
1319 	cpumask_clear(&batch->cpumask);
1320 
1321 	put_flush_tlb_info();
1322 	put_cpu();
1323 }
1324 
1325 /*
1326  * Blindly accessing user memory from NMI context can be dangerous
1327  * if we're in the middle of switching the current user task or
1328  * switching the loaded mm.  It can also be dangerous if we
1329  * interrupted some kernel code that was temporarily using a
1330  * different mm.
1331  */
nmi_uaccess_okay(void)1332 bool nmi_uaccess_okay(void)
1333 {
1334 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1335 	struct mm_struct *current_mm = current->mm;
1336 
1337 	VM_WARN_ON_ONCE(!loaded_mm);
1338 
1339 	/*
1340 	 * The condition we want to check is
1341 	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1342 	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1343 	 * is supposed to be reasonably fast.
1344 	 *
1345 	 * Instead, we check the almost equivalent but somewhat conservative
1346 	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1347 	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1348 	 */
1349 	if (loaded_mm != current_mm)
1350 		return false;
1351 
1352 	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1353 
1354 	return true;
1355 }
1356 
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1357 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1358 			     size_t count, loff_t *ppos)
1359 {
1360 	char buf[32];
1361 	unsigned int len;
1362 
1363 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1364 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1365 }
1366 
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1367 static ssize_t tlbflush_write_file(struct file *file,
1368 		 const char __user *user_buf, size_t count, loff_t *ppos)
1369 {
1370 	char buf[32];
1371 	ssize_t len;
1372 	int ceiling;
1373 
1374 	len = min(count, sizeof(buf) - 1);
1375 	if (copy_from_user(buf, user_buf, len))
1376 		return -EFAULT;
1377 
1378 	buf[len] = '\0';
1379 	if (kstrtoint(buf, 0, &ceiling))
1380 		return -EINVAL;
1381 
1382 	if (ceiling < 0)
1383 		return -EINVAL;
1384 
1385 	tlb_single_page_flush_ceiling = ceiling;
1386 	return count;
1387 }
1388 
1389 static const struct file_operations fops_tlbflush = {
1390 	.read = tlbflush_read_file,
1391 	.write = tlbflush_write_file,
1392 	.llseek = default_llseek,
1393 };
1394 
create_tlb_single_page_flush_ceiling(void)1395 static int __init create_tlb_single_page_flush_ceiling(void)
1396 {
1397 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1398 			    arch_debugfs_dir, NULL, &fops_tlbflush);
1399 	return 0;
1400 }
1401 late_initcall(create_tlb_single_page_flush_ceiling);
1402